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A New Block Algorithm for Full-Rank Solution of the
Sylvester-Observer Equation

João Carvalho, Karabi Datta, and Yoopyo Hong

Abstract—A new block algorithm for computing a full rank solution of
the Sylvester-observer equation arising in state estimation is proposed. The
major computational kernels of this algorithm are: 1) solutions of standard
Sylvester equations, in each case of which one of the matrices is of much
smaller order than that of the system matrix and (furthermore, this small
matrix can be chosen arbitrarily), and 2) orthogonal reduction of small
order matrices. There are numerically stable algorithms for performing
these tasks including the Krylov-subspace methods for solving large and
sparse Sylvester equations. The proposed algorithm is also rich in Level 3
Basic Linear Algebra Subroutine (BLAS-3) computations and is thus suit-
able for high performance computing. Furthermore, the results on numer-
ical experiments on some benchmark examples show that the algorithm has
better accuracy than that of some of the existing block algorithms for this
problem.

Index Terms—Block algorithm Sylvester-observer equation, state
estimation.

I. INTRODUCTION

The matrix equation

XA� FX = GC (1)

where the matricesA 2
n�n,C 2

r�n are given and the matrices
X 2

(n�r)�n, F 2
(n�r)�(n�r) andG 2

(n�r)�r are to be
found, is called the Sylvester-observer matrix equation [7].

The (1) is a variation of the well-known standard Sylvester equation
XA� TX = R, in whichA, T , andR are given andX is unknown.
This is so called, because it arises in the construction of reduced-order
observers [16] for the linear system

_x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2)

in the context ofstate estimation.
There are two basic approaches for state estimation [7]: Eigenvalue

Assignment approach and the Sylvester-equation approach. Since
one way of finding feedback matrix for eigenvalue assignment is
via Sylvester equation [2], [12], [19], [20]; here we will pursue
the Sylvester equation approach and, therefore, consider numerical
solution of (1).

It is well known that the solvability of (1) is guaranteed if

(F ) 
(A) = ;, where
(M) denotes the spectrum of the matrix
M . If F is indeed a stable matrix, then once a solution triple(X;F; G)
of (1) is computed, an estimatêx(t) to the state vectorx(t) can be
computed by solving the following algebraic system of equations [16]:

X

C
x̂(t) =

z(t)

y(t)
: (3)
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Here,z(t) is the state vector of theobserversystem

_z(t) = Fz(t) +Gy(t) +XBu(t); z(0) = z0: (4)

The state estimation problem clearly requires that the solution matrix
X of (1) has full rank. Necessary conditions for existence of a full-rank
solutionX of (1) are that(A;C) is observable and(F;G) is control-
lable [18]. We will assume the observability of(A;C) and the matrices
F andG will be constructed in such a way that the controllability of
(F;G) will be satisfied.

A well-known method for solving the Sylvester-observer equation,
based on the observer-Hessenberg decomposition of the observable
pair (A;C) is due to Van Dooren [19]. The method is recursive in na-
ture and computes the solution matrixX and the matricesF andG
recursively, one row or column at a time.

Van Dooren’s algorithm has been generalized to a block algorithm in
[5]. The other block algorithms for this problem have been developed
earlier in [3], [6], and [17].

In this paper, we present another block algorithm. A distinguishing
feature of this new algorithm, compared to other above existing block
algorithm is that it is guaranteed to give a full-rank solutionX with a
triangular structure. This structure can be exploited in computing the
first (n�r) components of the vector̂x(t) during the process of solving
the linear algebraic system (3). The algorithm also seems to be more
accurate then some of the other block algorithms.

The block algorithms are composed of Level 3 Basic Linear Algebra
Subroutine (BLAS-3) computations. Such computations are ideally
suited for achieving high-speed in today’s high performance computers
[10]. Indeed many traditional numerical linear algebra algorithms
for matrix computations have been re-designed or new algorithms
have been created for this purpose and a high-quality mathematical
software package, called LAPACK [1] have been developed based
on those block algorithms. Unfortunately, such algorithms in control
are rare.

II. NEW BLOCK ALGORITHM

We propose to solve (1) by imposing some structure on the
right-hand side of the equation. This means that (like in the
SVD-based method [6]) no reduction is imposed on the system matrix.
To be more specific, given matricesA, C and a stable self-conjugate
setS , we construct matricesX, F andR satisfying

XA� FX = R 
(F ) = S (5)

and such that we are able to solveGC = R for G 2
(n�r)�r later.

As the solutionX is being computed, a Householder-QR [13] based
strategy will be applied so that at the end of the process,X will be a
full-rank upper triangular matrix.

A. Development of the Algorithm

In this section, we propose our new block algorithm for solving (1).
First, we investigate the solution ofGC = R for G. A solution exists
only if the rows of the matrixR belong to the row space of the matrix
C. Assume that the matrixC has full rankr and letC = RcQc be the
thin RQ factorization ofC [13], whereQc 2

r�n andRc 2
r�r.

If we choose

R =

N1

. . .

Nq

Qc = NQc (6)
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whereNi 2
n �r , i = 1; . . . ; q, andn1+n2+� � �+nq = n�r = s,

then we can find a solutionG 2 (n�r)�r ofGC = RwhereGiRc =
Ni, i = 1; . . . ; q and

G =

G1

. . .

Gq

: (7)

In particular, the choiceN1 = Ir ensures thatrank(R) =
rank(C) = r.

Second, we partitionX andF conformally

X =

X1

. . .

Xq

F =

F11 0 . . . 0

F21 F22 . . .
...

...
...

. . .
...

Fq1 Fq;q�1 Fqq

: (8)

Note that

rank [G FG � � � F
n�r�1

G]

=rank [GRc FGRc � �F
n�r�1

GRc]

(whereRc is a full rankr � r matrix)

=rank [N FN � �F
n�r�1

N ]:

This shows that if we chose(F;N) as a controllable pair, then auto-
matically (F;G) is controllable. To ensure the controllability of the
pair (F;N), we chooseN1 = Ir; N2 = �� = Nq = 0, andF as in (8)
with full-rank blocksFi;i�1 andFij = 0 for j < i� 1. Then,(F;N)
is controllable.

Substituting (6) and (8) into (5) and equating corresponding blocks
on the right and left-hand sides of (5), we obtain

X1A� F11X1 =N1Qc (9)

XiA� FiiXi =NiQc +

i�1

j=1

FijXj ;

i =2; . . . ; q: (10)

Therefore, as long as the elements of the given setS can be successfully
distributed in self-conjugate subsetsSi 2

n , i = 1; . . . ; q, which are
to be assigned as eigenvalues of the block matricesFii, i = 1; . . . ; q,
we are able to construct matricesX, F andG from their blocks by
computing them recursively using (9) and (10).

Let us define

X
i =

X1

. . .

Xi

G
i =

G1

. . .

Gi

(11)

F
i =

F11 . . . F1;i�1 0

. . . . . . . . . 0

Fi�1;1 Fi�1;i�1 0

Fi1 . . . . . . Fii

: (12)

Next, we now update eachXi using QR factorization, so that the matrix
X has an uppertriangle structure.

After each blockXi of the solutionX has been computed, the matrix
Xi defined previously will have the following structure:

X
i =

� � � � � � �

� � � � � �

� � � � �

� � �

� � � � � � �

� � � � � � �

� � � � � � �

:

The matrixXi is now made upper triangular by premultiplyingXi with
an appropriate orthogonal matrixQi (for example,Qi can be product
of suitable Householder matrices).

Symbolically, we write:Xi
 QT

i X
i whereXi is updated to the

matrixQT
i X

i and the updated matrixQT
i X

i is overwritten byXi.
The matrix equation

X
i
A� F

i
X

i = G
i
C (13)

is then updated to

Q
T
i X

i
A�Q

T
i � F

i
Qi �Q

T
i X

i = Q
T
i G

i
C

meaning that it is possible to update the solution matrices, at every step
of the orthogonal reduction, simply by computing

X
i
 Q

T
i X

i
; F

i
 Q

T
i F

i
Qi ; G

i
 Q

T
i G

i
: (14)

B. Proposed Block Algorithm for SolvingXA� FX = GC

The aforementioned discussion leads to the following algorithm.

Input: Matrices and of
the system (2) and a self-conjugate set

.
Output: Block matrices , and , such
that and .
Assumption: System (2) is observable,
has full rank and .
Step 1: Set , and ,

and .
Step 2: Compute the thin factorization
of [13] : where and

.
Step 3: For do Steps 4 to 10
Step 4: Set to be a self-conjugate

subset of the part of that was not used
yet.
Step 5: Set to be any ma-

trix in upper real Schur form satisfying
.

Step 6: Free parameter setup. If set
and , to

be arbitrary matrices, so that is
controllable. Compute .
Step 7: Solve the Sylvester equation:

XiA� FiiXi = NiQc +

i�1

j=1

FijXj

for .
Step 8: Form , and as in (11) and

(12) . If , then set as the number
of rows of that are linearly indepen-
dent of the rows of . If , then
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set , and choose another set from
and repeat Steps 5–8.

Step 9: Find, implicitly, an orthogonal
matrix that reduces to upper trian-
gular form via left multiplication by ,
using, say householder matrices ,[13] .
Then compute the matrix updates

X
i  Q

T
i X

i
G

i  Q
T
i G

i
F

i  Q
T
i F

i
Qi

Step 10: If , then let
and exit loop.
Step 11: Form the matrices ,
and .

Remarks:

1) Some compatibility between the structure of the vectorS and the
parametersni, i = 1; . . . ; q is required so that Step 4 is always
possible to be accomplished.

2) The algorithm does not require reduction of the system matrices
A andC. This feature is specially attractive whenA is large
and sparse. There now exist Krylov-subspace based methods for
Sylvester equations, suitable for large and sparse computations
[8]. If A is small and dense, the standard Hessenberg–Schur
method [14] can be used.

3) In Step 6, it is possible to exploit the freedom of assigningFij

to facilitate the solution of the Sylvester equation in Step 7. In
particular, the diagonal blocksFii can be chosen in real-Schur
forms, so that if the Hessenberg-Schur algorithm is used, then
only the matrixA needs to be decomposed into Hessenberg form
andthis is to be done once for allthe equations in step 7.

4) If matrix A is dense, an orthogonal similarity reductionA  
P TAP ; C  CP , can be used so to bring Hessenberg struc-
ture to the matrixA. This will allow Step 7 to be computed ef-
ficiently. If (Xh; F; G) is the solution of this reduced problem,
thenX = XhP

T is the solution of the original problem.
5) The algorithm is rich in Level 3-BLAS computations and thus

is suitable for high-performance computing using the software
LAPACK [1], [10], which is especially designed for such a
purpose.

6) The total flop-count of the algorithm is approximately

21
2

3
n
3 + 14 � 5n2r

flops. This amount is smaller than that of Van Dooren’s method
[19]: 2rn3 + 7n3, if r, the number of columns of the matrixC,
is grater than 7.

III. A N ILLUSTRATIVE NUMERICAL EXAMPLE

To illustrate the implementation of the proposed algorithm, we take
matricesA andC, and the setS given in (I).

Step 1: .
Step 2: The RQ factorization of gives
the matrices and given in (II) at
the bottom of the page.
Step 3: .
Step 4:

Step 5: to be

F11 =
�1 �1

1 �1
:

Clearly .
Step 6: Set

N1 =
1 0

0 1

for simplicity.
Step 7: Solve , using
MATLAB Commandlyap .

X1 =
�:134 :280 :067 �:055 :103 �:444 :235

�:398 �:104 :438 �:124 :314 �:027 :219

Step 8: , .
Step 9: After the reduction with an or-
thogonal matrix, we have the matrix ,
as shown in (III) at the bottom of the
page.
Step 3: .
Step 4: .

A =

0:995 2:041 �3:162 3:112 �2:689 0:126 2:576

2:694 0:815 2:552 1:953 1:438 �2:547 1:255

1:953 �1:010 0:117 1:144 2:694 3:035 1:739

�2:231 �1:635 3:101 1:437 �0:956 �1:430 2:340

1:462 0:829 0:076 �3:292 �0:852 �2:465 �1:228

3:431 �2:182 �1:959 2:366 3:037 0:544 3:268

�0:722 �0:419 1:307 �0:590 2:300 0:798 �1:580

(I)

C =
:20 5:54 5:06 4:69 4:37 6:42 1:76

4:79 4:51 2:68 5:56 :06 4:37 5:14

S = f�1:� 1:� 1:i� 1:+ 1:i� 2:� 1:i� 2:+ 1:ig :

Rc =
�7:625 162 �9:136 243

�11:264 567

Qc =
0:482 �0:474 �0:018 �0:282 0:117 0:637 0:209

�0:425 0:458 0:314 �0:561 0:063 0:308 0:313
: (II)
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Step 5: Set to be

F22 =
�2 �1

1 �2

Then, clearly .
Step 6: The free assignment is done via

N2 =
0 0

0 0
; F21 =

1 0

0 1

by simplicity.
Step 7: Solving ,
we obtain the matrix given by (IV) at the
bottom of the page.
Step 8: , .
Step 9: After the reduction, we have the
matrix given in (V) at the bottom of the
page.
Step 3: .
Step 4: .
Step 5: We set .
Step 6: Set , .
Step 7: Solving ,
we obtain given in (VI) at the bottom
of the page.

Step 8: , .
Step 9: After the reduction, we have the
final solution given in (VII) at the
bottom of the page.
Step 10: Since we set
and exit the loop.
Step 11: The algorithm finishes with ma-
trices , and .

It can be shown thatkXA� FX �GCkF = 2:4037� 10�15.

A. Remark

In order to solve the state estimation problem, system (3) is reduced
to upper triangular form by premultiplication by an orthogonal matrix
QT

4 , given by (VIII) at the bottom of the next page. Because of the
upper triangular structure of the matrixX, the matrixQ4 is obtained
as the product of six appropriate Householder matrices, (which is not
shown here). Therefore, the linear system (3) is reduced to

Ux̂(t) = Q
T

4

z(t)

y(t)

where the matrixU is given by (IX) at the top of the page 2228.

X1 =
:420 �:107 :271 :171 :263 �:144 :471

�:014 �:198 �:136 �:217 �:079 :421
(III)

X1

X2

=

:420 �:107 :271 :171 :263 �:144 :471

�:014 �:198 �:1359 �:217 �:079 :421

:072 �:024 :089 :068 :115 �:032 :030

:213 �:138 :051 :129 :217 �:044 :235

: (IV)

X1

X2

=

�:476 :160 �:275 �:218 �:347 :151 �:525

0 :076 0:111 �0:012 �:035 �:011 �:072

0 0 �:187 �:145 �:235 �:078 :414

0 0 :001 �:003 :030 �:056

[ ] : (V)

X1

X2

X3

=

�:476 :160 �:275 �:218 �:347 :151 �:525

0 :076 :111 �:012 �:035 �:011 �:072

0 0 �:187 �:145 �:235 �:078 :414

0 0 0 :001 �:003 0:030 �:056

:238 �:156 :069 :165 :270 �:009 :256

: (VI)

X1

X2

X3

=

:532 �:213 :277 :269 :431 �:140 :584

0 �:102 �:124 0:43 :084 :047 :051

0 0 :188 :148 0:239 :082 �:417

0 0 0 �:007 �:006 �:030 �:001

0 0 0 0 :004 �:026 :057

(VII)
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Fig. 1. Heren is the size of the system matrixA = Pentoep(n), regarded
as pentadiagonal. The dash-dotted line corresponds to the proposed algorithm,
the dashed line to the SVD-based algorithm and the solid line to the Hessenberg
reduction algorithm.

IV. COMPARISON OFEFFICIENCY AND ACCURACY WITH EXISTING

BLOCK ALGORITHMS ON BENCHMARK EXAMPLES

Figs. 1 and 2 show a comparison, in terms of accuracy and speed,
of the proposed algorithm with the recent SVD-based [6] and the ob-
server-Hessenberg reduction based [5] algorithms. The left-hand side
graph of each figure compares the CPU-time and the right-hand side

Fig. 2. Heren is the size of the system matrixA = Pentoep(n), regarded as
toeplitz. The dash-dotted line corresponds to the proposed algorithm, the dashed
line to the SVD-based algorithm and the solid line to the Hessenberg reduction
algorithm.

compares the accuracy.n is the size of the matrixA. The comparison is
made on benchmark testing with the familyPentoepand with the family
of Riemann matrices [15]. Speed is measured in terms of normalized
CPU-time, that is, the required CPU-time is divided by the CPU-time
of a call to the LAPACK [1]routinedgemm for multiplying two arbi-
trary matrices. Accuracy is measured by computing the Frobenius norm
kXA� FX �GCkF . Computations were performed inMatlab 6 in
Pentium II 400 MHz environment. The results of our experiment show
that the proposed algorithm can achieve a better accuracy with a com-
parable speed for the problems tested.

Q4 =

�:11 �:135 �:942 �:092 �:271 :011 :001

:0 �:019 :05 :886 �:4593 �:013 �:036

:0 :0 �:29 :45 :844 �:04 �:010

:0 :0 :0 �:047 �:014 �:641 �:77

:0 :0 :0 :0 �:0285 �:766 :64

�:042 :990 �:1248 :005 �:0449 :001 �:001

�:99 �:027 :110 :010 :032 �:001 �:0

: (VIII)
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U =

�4:82 �4:69 �2:90 �5:75 �:29 �4:6 �5:24

�:0 5:4 4:9 4:45 4:27 6:25 1:52

:0 :0 �:66 �:27 �1:01 �:209 �:081

:0 :0 �:0 :16 :163 :167 �:137

:0 :0 :0 �:0 �:148 �:061 �:449

:0 :0 :0 �:0 �:0 :036 �:026

:0 :0 :0 �:0 �:0 :0 :039

: (IX)

V. CONCLUSION

A new block algorithm for solving the Sylvester-observer equation
is proposed. The algorithm does not require the reduction of the system
matrixA and is then ideally suitable for large and sparse computations
by using the recently developed Krylov-subspace based methods. This
algorithm is well-suited for implementation on high-performance com-
puting usingLAPACKand it seems to be accurate compared with sim-
ilar ones; however, numerical stability properties have not been studied
yet.
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