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Abstract—This paper describes a novel solution to the rigid point pattern matching problem in Euclidean spaces of any dimension.

Although we assume rigid motion, jitter is allowed. We present a noniterative, polynomial time algorithm that is guaranteed to find an

optimal solution for the noiseless case. First, we model point pattern matching as a weighted graph matching problem, where weights

correspond to Euclidean distances between nodes. We then formulate graph matching as a problem of finding a maximum probability

configuration in a graphical model. By using graph rigidity arguments, we prove that a sparse graphical model yields equivalent results

to the fully connected model in the noiseless case. This allows us to obtain an algorithm that runs in polynomial time and is provably

optimal for exact matching between noiseless point sets. For inexact matching, we can still apply the same algorithm to find

approximately optimal solutions. Experimental results obtained by our approach show improvements in accuracy over current

methods, particularly when matching patterns of different sizes.

Index Terms—Point pattern matching, graph matching, graphical models, Markov random fields, junction tree algorithm.

Ç

1 INTRODUCTION

POINT pattern matching (or point set matching) is a basic
problem in pattern recognition that is fundamental to

computer vision (stereo correspondence, image registration
and model-based object recognition [3], [4], [5], [6]),
astronautics [7], [8], computational chemistry [9], [10] and
computational biology [11], [12]. Here, we consider the
(possibly noisy) rigid body case, when one pattern differs
from a subset of the other by an isometry but position jitter
may be present.

1.1 Problem Description and Related Problems

In general terms, the problem consists of finding a
correspondence between elements of two point sets in IR2

or IR3 (or in IRn; n 2 IN, for general—not necessarily
visual—patterns). In the case of exact matching, one point
set differs from a subset of the other by an isometric
transformation. In the inexact case, there is position jitter in
one point set with respect to the other. This occurs in
practical application domains like those cited above, so
matching algorithms need to take this into account.

A related, but more general problem, is that of graph
matching, which consists of finding correspondences (one-
to-one [13], many-to-one [14] or many-to-many [15], [16])
between the nodes of two graphs so as to achieve some
form of global consistency. In this case, nodes and edges
may have vector attributes or labels. There is a vast

literature addressing the graph matching problem in
pattern recognition, which can be divided generally into
work on search methods [14], [17], [18], [19], [20], [21], [22],
[23], and work on nonsearch methods, such as probabilistic
relaxation [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], spectral and least-squares methods [5], [36], [37],
[38], [39], [40], graduated assignment [13], genetic optimiza-
tion [41] and other principles [15], [16], [42], [43]. For a
recent comprehensive review on graph matching for
pattern recognition, see [44]. We have shown how ideas
similar to those presented in this paper can be applied to the
graph matching problem in [14] and [45]; however, in this
paper we focus specifically on the point pattern matching
problem.

1.2 Potential Applications

Isometric point pattern matching (allowing for jitter) is
encountered in several application domains.

In computer vision, two sets of interest points extracted
from two stereo images are approximately related by an
isometry when the stereo pair has a narrow baseline. An
accurate correspondence between the features results in an
accurate depth map or the recovery of the 3D geometry of
the scene [46]. This form of stereo correspondence consti-
tutes one of the fundamental point pattern matching
problems of computer vision.

In astronautics, the attitude of sounding rockets or
satellites can be estimated by matching stellar images
acquired from the onboard star sensor (a CCD camera) to
those in an empirical star catalog [47]. Images acquired
from the same region of the sky but from different
viewpoints reveal sets of stars whose coordinates are
related by an isometric transformation [7]. In this way, the
star matching problem can be posed as a rigid point pattern
matching problem.

In computational chemistry, rigid point pattern matching
is a recurrent problem in drug design, specifically in the
identification of pharmacophores—common subsets of mo-
lecules that systematically interact with some receptor (i.e.,
that perform some specific task). By matching a set of
molecules (called ligands) that activate (“bind”) a given
receptor, one can identify whether there is a common
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subconformation among the ligands. If this is the case, the
structure encountered becomes a candidate pharmacophore,
which is a distillation of the functional attributes of ligands
that accomplish some specific task. The pharmacophore can
then be used in the design of a new drug which is expected to
systematically interact with the given receptor [10].

Finally, a similar problem arises in computational
biology, when the interest is to detect specific structural
motifs within a family of proteins (or DNA sequences).
Identification of these motifs contributes to uncovering the
mechanism of the proteins’ operation [12].

In all these problems, rigid point pattern matching is a
reasonable assumption, but small stochastic deviations in
the point positions must be accommodated (jitter). This
latter condition excludes methods that only apply to exact
point pattern matching problems (like [48]). The technique
proposed in this paper is precisely designed for this case:
We make the rigid body assumption (isometric assumption)
but jitter is allowed.

1.3 Related Literature

Several approaches have been proposed to solve the inexact
point pattern matching problem. Major classes of solutions
are based on spectral methods [4], [5], [37], relaxation labeling
[28], [29], [30], [33], [34], [35], and graduated assignment [13],
[49]. The first compares the eigenstructure of proximity
matrices of the point sets. The second defines a probability
distribution over mappings and optimizes using a discrete
relaxation algorithm. The third combines the “softassign”
method [50] with Sinkhorn’s method [51] to optimize the
mapping. All these approaches can be seen as using optimal
representations (complete data models) and approximate
inference procedures. Spectral methods use the spectrum of
the full adjacency matrix, but it is well-known that different
graphs can be cospectral [52]; probabilistic relaxation
labeling typically uses compatibility functions defined over
all points, but the optimization procedure is iterative and
known to be convergent to local minima [29]; graduated
assignment also uses the entire set of pairwise compatibil-
ities, being a continuous relaxation of the original combi-
natorial problem, which aims at tractability but is also only
convergent to local minima [13]. These sources of approx-
imation affect performance in various ways. For example, it
has been frequently reported that spectral methods are not
robust to structural corruption nor to matching patterns of
very different sizes [4], [5]. Relaxation methods degrade
with significant increases in point set sizes [13]. Graduated
assignment, although extremely robust with respect to jitter,
has a number of heuristic parameters that need to be tuned
and, more importantly, is very sensitive to matching sets of
significantly different sizes [13], [53]. All these methods are
polynomial time approximations that do not guarantee
global optimization.

1.4 The Proposed Technique

In this paper, we propose a conceptually different approach
that overcomes many of the limitations of previous
techniques. Rather than using a complete data model and
an approximate inference algorithm, we do the opposite:
We approximate the representation but show how optimal
polynomial time algorithms can be applied to the approxi-
mated data model. However, the hallmark of this approach
is that the “approximated” data model can be proven to be

equivalent to the complete data model in the limit case of
exact matching. This will ultimately allow us to obtain
optimal polynomial time solutions in representations that
are themselves optimal. This translates directly to optimal
solutions to the original problem itself.

More specifically, our formulation is based on first
posing the problem of deriving the best assignment as a
graph matching problem and then solving, with an optimal
algorithm, “approximate” versions of this graph matching
problem, which only include a particular subset of the edge
weights. This is indeed an abstraction from the original
point matching task but, at the end, there will be a one-to-
one correspondence between solutions of the abstracted and
original problems. The motivation for this particular type of
abstraction comes from the fact that such “approximations”
to the graph matching problem have a strong theoretical
justification. Many edge weights in the resulting graphs are
in some sense “redundant,” which allows us to prove—in a
key part of this paper—that in the limit case of no jitter there
is no approximation at all: The weights which are thrown
away are completely irrelevant. It turns out that such
redundancies can be naturally formulated in mathematical
terms as conditional independence assumptions if the nodes of
the first graph are seen as random variables (thus, inducing
a probabilistic graphical model in the first graph [54]). If the
nodes of the other graph are seen as possible realizations for
these random variables, the graph matching problem
becomes a problem of finding the optimal joint realization
for the random variables in the graphical model, or the
MAP estimate. Remarkably, the resulting “sparse” graphi-
cal model—without redundant edges—has sufficient struc-
ture to permit exact MAP computation in polynomial
time—a computation that is intractable in the fully con-
nected model. This allows us to obtain an optimal algorithm
that runs in polynomial time over an optimal representa-
tion. The result is a globally optimal solution to the original
problem, which is computable in polynomial time.

The resulting technique will be shown to be robust with
respect to size increases in the point patterns, as well as with
respect to significant differences in their sizes. It is also robust
to moderate point jitter. Moreover, contrary to heuristic
formulations, it is derived from first principles using Markov
random field theory: The technique is noniterative and has a
single parameter to be tuned (the only parameter involved
being inherent to all techniques that aim to cope with jitter).
To the best of our knowledge, this constitutes the first
provably optimal polynomial time algorithm for exact point
set matching in IRn that is also applicable to inexact matching
(optimal algorithms which are exclusive to the unrealistic
exact case do exist [48]). For the realistic problem of matching
noisy point patterns, we present experimental results
comparing the proposed algorithm with well-known alter-
native methods. Our results show that the proposed
technique offers accuracy improvements, particularly when
matching patterns of different sizes.

2 POINT MATCHING AS A WEIGHTED GRAPH

MATCHING PROBLEM

We start by showing how point pattern matching can be
formulated as a weighted graph matching problem. Assume
we have two point sets in IRn (n 2 IN), named T for
“template” and S for “scene,” with cardinalities T and S,
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respectively. The idea is that some noisy instance of T
(denoted T 0) is present in S, up to an isometric
transformation. Our goal is to find this instance T 0 in S and,
moreover, determine a map f : T 7! S that maximizes some
“global similarity measure” between T and T 0. The only
restriction we impose on f is that it must be a function: Every
point in T must map to some point in S. This is in contrast to
one-to-one mapping [13], which considers a smaller class of
solutions. We find this assumption of many-to-one mappings
to be required in the present formulation, for reasons to be
explained later in the next section. It is natural to understand
T as the point set corresponding to a “model” and S as the
point set obtained from a “scene” wherein we want to find
some instance of the model.

Here, we will refer to the template pattern as a “domain
pattern” and the scene pattern as a “codomain pattern” in
analogy to their roles played with respect to the mapping
function f . The ith point in the domain pattern is denoted
by di, whereas the kth point in the codomain pattern is
denoted by ck. The Euclidean distance between di and dj is
denoted by ydij and that between ck and cl is denoted by yckl.

The key idea for modeling point pattern matching as a
weighted graph matching problem is as follows: Recall
that an isometry exists between two point sets if and only
if they have the same Euclidean Distance Matrix [55]
(EDM) under some permutation [56]. Consequently, an
isometry can be tested by comparing all the permutations
of two EDMs entrywise. In our case, we would like to
handle inexact matching, which means we must also
accommodate noisy situations and sets of different sizes.
Thus, we define the matching problem as finding the map
f that minimizes the cost

UT ðfÞ ¼
XT
i¼1

XT
j¼1

Dðydij; ycfðiÞfðjÞÞ; ð1Þ

under the constraint that the map is a function (many-to-
one mapping). Here, UT ðfÞ is the “total” cost to be
minimized (the reason for calling it “total” will be clear
later), and Dð�; �Þ is some dissimilarity measure between
distances. Note that the arguments of Dð�; �Þ represent the
entries in the EDMs under the permutation induced by f .

This definition is equivalent (apart from f being many-
to-one instead of one-to-one) to that of the weighted graph
matching problem of [13], where edge weights are restricted
to be relative Euclidean distances between points corre-
sponding to the respective vertices embedded in IRn. (Note
that since all distances are taken into account, the graphs
are fully connected.) Equation (1) actually represents an

instance of the quadratic assignment problem which, in
general, is known to be NP-complete [13]. Due to this graph
matching formulation, we will refer to the “domain graph”
Gd and the “codomain graph” Gc as the graph abstractions
of the point sets. This gives the formulation of our problem
as a “Euclidean” weighted graph matching problem.

3 WEIGHTED GRAPH MATCHING AS A MAP

PROBLEM IN A GRAPHICAL MODEL

This problem can be further reformulated as finding a
maximum probability (MAP) configuration in a probabil-
istic graphical model [57], [58], [59], [60]. Before presenting
our formulation, we briefly review the main ideas about
graphical models that will be required in our exposition.

3.1 Graphical Models

Graphical models are graphical representations for families
of probability distributions [54], [57], [59], [61]. We will be
considering exclusively undirected graphical models,
sometimes referred to as Markov random fields in certain
application domains. (In this paper, “graphical models” and
“Markov random fields” are complete synonyms.) A graphi-
cal model is, essentially, a graph where nodes represent
random variables and the edge pattern represents a set of
conditional independence assumptions made among the
random variables.1 If a subset of nodes B separates (in the
graph-theoretic sense) the set of nodesA from the set of nodes
C, then this means, in graphical model formalism, thatA and
C are conditionally independent on B; that is,
pðACjBÞ ¼ pðAjBÞpðCjBÞ. For examples of graphical models
that induce different sets of conditional independence
assumptions among their variables, see Fig. 1.

Fig. 1 shows three graphical models. Each node, Xi, in a
model corresponds to a random variable, which can assume
a set of different realizations (in our context this set will be
discrete). A fundamental result about graphical models is
the Hammersley-Clifford (HC) theorem, which states that
any strictly positive probability distribution that respects
the set of conditional independencies implied by a graph
can be written in a factored form, namely, as a product of
functions over the maximal cliques2 [57], [59]:

pðxÞ ¼
Y
c2C

 cðxcÞ=Z; ð2Þ
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Fig. 1. Examples of three undirected graphical models. (a) Every conditional independence assumption holds. (b) Some conditional independence

assumptions hold, some do not. (c) There are no conditional independence assumptions.

1. All our statements about graphical models in this paper will be
restricted to discrete random variables.

2. Recall that a clique is a complete subgraph and a maximal clique is a
clique which is not a proper subset of another clique.



where c is a maximal clique, C is the set of all maximal
cliques, and xc is the restriction of x to the clique c. Z is the
normalization constant that renders

P
X pðxÞ ¼ 1. The

nonnegative function  cðxcÞ is called the potential function,
which, in our case, will be a table with the dimensionality of
xc. From this theorem, it is clear that all we need to specify a
probability distribution is a connectivity pattern for the
graphical model and a set of potential functions.

The basic “query” that we are then interested in
answering about a graphical model is the following: what
is the most likely joint realization of all the random
variables? In other words, what is the mode of the joint
probability distribution defined by a graphical model and
its potential functions? This is known as the MAP
(maximum a posteriori) problem in a graphical model.
For fully connected models, like the one in Fig. 1c, this
problem is intractable (for discrete random variables). For
completely independent models, like that in Fig. 1a, this
problem is trivial: The joint mode can be obtained by
computing each of the individual modes independently.
Models that lie between these two extremes, of which the
one in Fig. 1b is an example, can be either tractable or not.

At this point, it is important to state what determines
the tractability of the model. The fundamental algorithm
for exact inference in graphical models is the junction tree
algorithm [54], [55], [56], [57]. It works by creating a
hypergraph (a “junction tree”) from the original graph
and then running a dynamic programming algorithm on
this hypergraph. However, junction trees can only be
created for triangulated3 (i.e., chordal) graphs [57], [58], so
the effective computational complexity depends on trian-
gulated versions of the original graph.4 In general, there
are many possible triangulations for a given graph. The
exponential complexity of the MAP computation for a
given graphical model will be determined by the mini-
mum size, taken over all possible triangulations, of the
maximal clique in the triangulation. If this exponent
grows with the size of the graph, then the model is
intractable; otherwise, it is tractable. For example, a fully
connected graph is triangulated with a maximal clique
size equal to the size of the graph itself, which
immediately implies intractability. Naturally, in practice,
one requires the exponent to be not only fixed, but also
small. Notice also that, if a graph is already triangulated,
other triangulations will only increase the size of the
maximal clique, so the exponential complexity will be
given directly by the size of the maximal clique of the
graph, without any need for triangulation. Since the
problem of finding a triangulation that has a minimal
maximal clique size is NP-complete [59] (one calls it an
“optimal triangulation”), the “ideal” scenario would be
one in which the graph is already triangulated. We exploit
this fact below by identifying a triangulated graphical
model structure for our problem that has a small
maximum clique size.

Next, we show how the point pattern matching problem
can be formulated as a MAP problem in a graphical model.

Although, in the initial formulation, the graphical model
will be fully connected (and thus intractable), we will show
afterward how we can obtain the same MAP solutions with a
sparse, tractable model.

3.2 Formulation

The key idea for modeling weighted graph matching as a
MAP problem in a graphical model is as follows: Assume
that each vertex in the domain graph is a random variable
Xi and that each such random variable has a finite set of
possible realizations coinciding with the set of vertices in
the codomain graph. This means that a particular realiza-
tion xk of a random variable Xi corresponds to a particular
map between the point di in the domain pattern and a point
ck in the codomain pattern. Thus, a joint realization x ¼
fxkg of the set of variables X ¼ fXi; 8ijdi 2 T g corresponds
to a particular match between the point sets T and S.

In this spirit, one can define a probability distribution
such that the most likely joint realization of the variables
(the MAP configuration) corresponds to the minimum
of (1).

In order to accomplish this, we specify a Markov random
field based on edgewise potentials over the fully connected
graph. Let  ij denote the local potential function for edge
ði; jÞ. Then, the joint probability distribution over the
pairwise Markov random field is

pðX ¼ xÞ ¼ 1

Z

Y
ði;jÞ

 ijðXi ¼ xi;Xj ¼ xjÞ

¼ 1

Z
exp �

X
ði;jÞ

VijðXi ¼ xi;Xj ¼ xjÞ

0
@

1
A;

ð3Þ

where VijðXi;XjÞ ¼ � logð ijðXi;XjÞÞ and Z is a global
normalization constant determined by summing the pro-
duct of potentials over all possible joint realizations x. For
clarity, in (3), we have used standard notation where xi
denotes a generic realization of Xi (i.e., any realization, not
one in particular indexed by i). In the context of this paper,
we find it more convenient to modify this notation such that
Xi is still the random variable, but xfðiÞ is now the specific
realization indexed by fðiÞ.

To relate this problem to (1) (and, here, we use the new
notation), all we have to do is specify appropriate
potentials. In particular, define

VijðXi ¼ xi;Xj ¼ xjÞ ¼ Vij di 7! cfðiÞ; dj 7! cfðjÞ
� �

: ¼ D ydij; y
c
fðiÞfðjÞ

� �
:

The resulting model becomes

pðfÞ ¼ 1

Z
exp �

XT
i¼1

XT
j¼1

D ydij; y
c
fðiÞfðjÞ

� � !

/ exp �UT ðfÞð Þ:
ð4Þ

Thus, maximizing pðfÞ is equivalent to minimizing UT ðfÞ.
Note that we now write the realization X ¼ x in the form of
a map f : Each random variable Xi, which corresponds to a
point di, will “map” to a realization xfðiÞ, which corresponds
to point cfðiÞ (note the new notation).

The reason why we require the whole class of many-to-one
matches is that, in general, one cannot prevent two random
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3. A graph becomes triangulated (or, equivalently chordal) by adding
edges in such a way that all cycles of length greater than 3 have a chord. A
chord is an edge that does not belong to the cycle but connects two nodes in
the cycle.

4. Note that “transforming” a graph by triangulating it is not restrictive,
since triangulation can only add edges and, therefore, only reduces the set
of conditional independence assumptions implied by the original graph.



variables from having the same realization—unless they are
in the same clique.5 PRL-based approaches also behave in this
way [33], [34]. In general, this can be seen as a limitation,
because in many cases (and certainly in exact point set
matching) ideal solutions are one-to-one. One exception
when one-to-one approaches will fail to provide the ideal
interpretation is in cases where two points in one pattern are
actually superimposed on the second pattern. However, it is
fair to acknowledge that, in general, a one-to-one version of
the proposed algorithm would be not only desirable but
invaluable since, in most cases, many-to-one matches may
appear artificial. This is a current limitation of the present
algorithm which, as of this stage, we cannot see how to
overcome. Nevertheless, as will be shown, the experimental
results indicate that this assumption has not prevented the
proposed algorithm from improving the matching accuracy
over the competing ones in many operating regions (that is,
every one-to-one solution is also tested in our algorithm and, if
any of them turns out to have a cost which is smaller than the
costs over all other solutions, this will be the selected
assignment).

Returning to (4), although the equivalence betweenfinding
the MAP solution and minimizing the energy function is
important, it does not immediately yield a useful approach to
solving the problem because MAP computations over a fully
connected Markov random field are intractable. The key
idea in this paper is to approximate UT ðfÞ in such a way that
only a subset of all the pairwise cliques in the fully connected
model is taken into account. This will eventually lead us to a
graphical model that is tractable. However, the hallmark of
the particular model that we will obtain is that its
MAP solutions can be proven to be the same as those of the
fully connected model in the noiseless case. This makes the
“approximation” exact.

4 THE MODEL

To construct a sparse alternative to the fully connected
graphical model given in (4), we need to specify 1) a set of
potential functions that will define the function D and 2) a
connectivity pattern that will define the subset C2 of edges
on which we will define potentials.

First, to specify the potentials, consider the local “kernel”
structure of our model shown in Fig. 2. Generally speaking,
a potential function associates a nonnegative real number to
each element of the sample space [57], [59]. In our model,
potentials will be defined on edges, where each node
contained in an edge (a random variable) represents one of
the T vertices in Gd, which, in turn, can assume a set of S
possible realizations (which correspond to vertices in Gc).
Thus, the sample space for each edge has S2 elements, and
we can specify the potential function for an edge (i.e., a pair
fXi;Xjg in Gd) by an S � S compatibility matrix of the edge:

 ijðXi;XjÞ ¼
Hðydij; yc11Þ . . . Hðydij; yc1SÞ

..

. . .
. ..

.

Hðydij; ycS1Þ . . . Hðydij; ycSSÞ

0
B@

1
CA; ð5Þ

where ydij denotes the edge weight between vertices with
indexes i and j in graph Gd (which corresponds to the
Euclidean distance between points di and dj). An analogous
notation holds for yckl. H is a function that measures how
similar these arguments are.

To measure compatibility in the exact matching case (no
noise), we can simply use the indicator function

Hðydij; ycklÞ ¼ 1ðydij ¼ ycklÞ �
1; if ydij ¼ yckl

0; if ydij 6¼ yckl:

8<
: ð6Þ

For inexact matching, where we assume jitter in the point
positions (typical in practice), we need a more general
“proximity measure” to cope with uncertainty. Thus, in these
cases, we measure compatibility using the Gaussian kernel6

Hðydij; ycklÞ ¼ exp � 1

2�2
ydij � yckl
��� ���2� �

: ð7Þ

Other similarity measures could be chosen, but we do not
focus on this issue here.7 Note that any technique for matching
noisy patterns requires some soft similarity measure, includ-
ing the methods we compare to in this paper (where we use
the same kernel). For example, relaxation labeling [13] and
graduated assignment [13] both use a compatibility measure
between pairs of assignments to score any putative matching.
These scores use a parameter to adjust for the level of position
jitter in the data. Thus, the single parameter in (7) is not itself
an artifact of our method, but a necessary element in any
matching model that aims to cope with noise.

Having specified the potential functions, it remains to
determine the connectivity of the graphical model. Here, we
will simply propose the graphical model structure shown in
Fig. 3 and assert that this graphical model structure preserves
the MAP solutions of the fully connected model, a fact we will
verify in Section 5 below.

Before proceeding with the proof of its optimality, we
make a few remarks about this model. First, Fig. 3 illustrates
a model that is specifically constructed for matching in IR2.
For matching in IRk�1, an analogous topology can be used:
Instead of a three-clique in the upper layer, one simply uses
a k-clique, and each of the other T � k nodes is then
connected to each of these k nodes. For any k (and T > k),
this generic model topology has two important features:
1) it is already triangulated and 2) the size of the maximal
clique is kþ 1, independent of both the number of nodes T
and of the number of possible realizations S. As explained
in Section 3, because it is triangulated, we know that this
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Fig. 2. Local “kernel” structure of the graphical model. Each random

variable can assume S possible realizations, so that the sample space

for two connected variables has S2 elements.

5. If they are in the same clique, one can design a potential of zero for any
joint assignment to the same realization.

6. In the exact matching case, the Gaussian kernel actually gives identical
results to the indicator, since its maximum is attained uniquely at an exact
match. However, the indicator makes the upcoming theoretical results
clearer.

7. An early attempt to evaluate different measures is reported in [62].



model has a junction tree and, because it has a bounded
maximal clique size, the “junction tree algorithm” has
polynomial complexity in this model. That is, for models
like the one in Fig. 3 the exact MAP solutions can be
computed in polynomial time.

It might sound artificial to define the “candidate”
topology as a triangulated graphical model with a fixed
maximal clique size (which together form sufficient condi-
tions for polynomial time complexity). However, in the next
section, we show that this topology is not postulated, but
derived from first principles, which reveals a subtle
connection between exact inference in graphical models
and the “global rigidity of graphs.”

5 OPTIMALITY OF THE MODEL

In this section, we present theoretical results that lead to a
special kind of graph: a “k-tree.” The properties of this graph
will allow us to draw a connection to the problem of exact
inference in graphical models and will ultimately lead us to
prove that the model shown in Fig. 3, although sparse and
computationally tractable, yields equivalent results to the fully
connected model in the limit case of exact matching.

5.1 A Relevant Lemma

We start by presenting a lemma that will be necessary to
obtain the subsequent results:

Lemma 1. Let S1; S2; . . . ; Snþ1 be ðnþ 1Þ spheres in IRn

whose centers are in general position (do not lie in a

ðn� 1Þ-dimensional vector subspace). Then, the intersection

set \nþ1
i¼1 Si is either a single point or the empty set.

Proof. See Appendix A. tu
Another way to see this result is the following: if the

distances from an unknown point to nþ 1 known points in
IRn are determined, then this point is unique—provided the
nþ 1 points are in general position. In order to see this fact,

note first that the unknown point is clearly in the inter-
section of the spheres whose centers are the nþ 1 fixed
points and the radii are the respective distances between
their centers and the unknown point. Second, note that
Lemma 1 states that the intersection is either a single point
or empty (which is not the case because we have assumed
the existence of this unknown point). This implies that the
point is unique. This result will be used in the following in
order to obtain another result concerning the “global
rigidity of graphs.”

5.2 Global Rigidity of k-trees

Here, we use Lemma 1 to infer a second result that will
ultimately lead us to obtain the main theorem about the
topology of the graphical model. The theory of graph
rigidity, although mathematically rich and sophisticated
[63], involves concepts that are easy to understand. Strictly
speaking, we talk about the rigidity of graph embeddings in
IRn, where the edges are straight lines (these embeddings
are called frameworks). Simply put, we say that a framework
is globally rigid if the lengths of the edges uniquely
determine the lengths of the “absent edges” (the edges of
the complement graph).

To present the key result about the global rigidity of a
special kind of framework—a k-tree—we start by reviewing
some basic definitions from graph theory [64]. In what
follows, a complete graph with n vertices is denoted as Kn

and a k-clique is a clique with k vertices. Also, recall that a
framework is a straight line embedding of a graph.

Definition 1 (k-tree, base k-clique). A k-tree is a graph that
arises from Kk by zero or more iterations of adding a new
vertex to the graph and connecting it with k edges to an
existing k-clique in the previous graph. The k-cliques defined
by the new vertices are called base k-cliques.

Fig. 4 shows the process of creating a k-tree, in the
particular case where k ¼ 3. We start with a K3 graph. Then,
we add vertex 4 and connect it to every vertex of the (so far
unique) base 3-clique. Vertex 5 is then added and is
connected, in this example, to the same base 3-clique.
Vertex 6 is then added and connected to another base 3-
clique, formed by vertices 2, 3, and 4. Note that all
intermediate graphs generated in this way are themselves
legitimate 3-trees. Also note that, in general, the resulting
graph is sparse (the graph with five nodes is the first to
present sparseness, since the edge (4-5) is absent).

A careful examination reveals that the size of the
maximal clique of a k-tree with n vertices is precisely k if
n ¼ k and precisely kþ 1 if n > k. (This is easy to see
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Fig. 3. A model for matching in IR2. The topology of the model
corresponds to that of a 3-tree graph, whose maximal clique size is 4
(thus independent on T , the number of nodes, and S, the number of
possible realizations for each random variable).

Fig. 4. The process of constructing 3-trees. At each step, a new node is added and connected to all nodes of an existent 3-clique (which is then

called a “base 3-clique”).



because every time a new vertex is added, it is connected to
exactly k vertices of a k-clique, forming a ðkþ 1Þ-clique.

We are now equipped to present the second result:

Lemma 2. A k-tree framework with all base k-cliques in general
position in IRk�1 is globally rigid in IRk�1.

Proof. See Appendix A. tu
The direct implication of this result is that the k-tree

framework, from the perspective of pairwise distances, has
exactly the same information content as a fully connected
framework. We now show, using this fact, that our sparse
model yields equivalent results to the fully connected
model in the noiseless case.

5.3 Equivalence of k-tree versus Full Model

To present the main theoretical result, we add some new
terminology to that established in Section 2. We specifically
analyze the noiseless case, where T and T 0 are related by an
isometry. Consider the domain and codomain graphsGd and
Gc defined in Section 2. DefineGkt

d ¼ ðVd; Ektd Þ as a graph with
the same nodes as Gd but with edge connectivity given by a
k-tree whose base k-cliques are in general position in IRk�1. Let
Gkt
c ¼ ðVktc ; Ektc Þbe the subgraph ofGcwhose nodes are those to

which the nodesVd map under an optimalmapf . We define as
�Gkt
d ¼ ðVd; �Ektd Þ the complement graph of Gkt

d , while �Gkt
c ¼

ðVktc ; �Ektc Þ is the complement graph ofGkt
c .

Now, if we choose the edge set of the model (the set of
pairwise cliques C2) to be a k-tree, the “approximated”
optimization problem over this k-tree graph Gkt

d can be
defined as one of minimizing the following “partial” cost
function over f (as opposed to the “total” cost UT from (1):

UGkt
d
ðfÞ ¼

X
i;jjdij2Ektd

Dðydij; ycfðiÞfðjÞÞ; ð8Þ

where dij is the edge between vertices di and dj in Gd and
Ektd is the edge set of graph Gkt

d .
We can now state our main result.

Theorem 1. In the exact matching case, a mapping function f
which minimizes UGkt

d
ðfÞ also minimizes UT ðfÞ.

Proof. See Appendix A. tu

Note now that the model shown in Fig. 3 has the
topology of a k-tree (a 3-tree). As a result, the solution
obtained by the junction tree algorithm over this model will
minimize not only the cost function UGkt

d
ðfÞ, but also the cost

function of a complete model, UT ðfÞ (1). This is our main
theoretical result.

Actually, other models can be used, as long as they have
the topology of a k-tree. The specific choice of 3-tree for
Fig. 3 was made simply because it has a single base 3-clique
and, therefore, only requires these 3 points to be noncol-
linear (the points corresponding to random variables
X1; X2, and X3).

In the case of exact matching, as long as these points are
not collinear, any choice can be made and Theorem 1 will
still hold. However, when there is position jitter, different
choices can give different results and the variance of the
results over different selections of the reference points will
increase with jitter (experimental evidence of this fact will
be provided). A principled way of selecting the reference
points in this case is still an open problem which we are
currently investigating and for the purposes of the experi-
ments presented in this paper, the selection of the reference
points is made randomly.

6 INFERENCE

Given the k-tree model, we must solve the MAP problem,
i.e., determine the most likely joint realization of the
random variables in the model. This is done with the
junction tree algorithm. In this section, we describe how the
junction tree algorithm is applied to our particular case (for
details of the general case, see [59], [57], and [58]). For
simplicity of exposition, we describe inference in a 3-tree
(matching in IR2), but the procedure is analogous for
arbitrary k.

The junction tree for the model shown in Fig. 3 is given
in Fig. 5.

The tree in this case is actually just a chain. The maximal
cliques in the junction tree are denoted by circles, called
“clique nodes,” whereas the set of variables common to
adjacent clique nodes are represented by rectangles, called
“separator nodes.” The junction tree algorithm is a dynamic
programming procedure that systematically changes the
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Fig. 5. The junction tree for the model in Fig. 3. Circles (“clique nodes”) correspond to the maximal cliques of the original graph, whereas rectangles

(“separator nodes”) correspond to the intersection between adjacent clique nodes. Nonfilled arrows correspond to the first message-passing,

whereas filled arrows correspond to the second. The value adjacent to an arrow denotes the order in which the corresponding message is passed.

Dashed arrows correspond to (9), whereas solid arrows correspond to (10).



potentials in the clique nodes and separator nodes in a two-
way “message-passing” scheme, similar to the Viterbi
algorithm for MAP computation in Hidden Markov Chain
models [65].

Just like the Viterbi algorithm, which after the forward and
backward operations delivers the individual MAP distribu-
tions (also called “max-marginals” [58]) for each node, the
junction tree algorithm delivers the MAP distribution for
each clique node (up to a normalization constant Z—see
Appendix B for details). The final MAP distribution for each
individual node Xi can then be computed by “maximizing
out” the remaining individual nodes within the clique node
[57], [59]. For example, the final MAP distribution for nodeX1

in Fig. 5 can be computed by

pðx1Þ ¼ max
x2

max
x3

max
x4

pðx1; x2; x3; x4Þ:

This operation is clearly exponential on the number of
variables in the clique node, and that is one of the reasons
why the junction tree algorithm is only efficient for graphs
with a small maximal clique size.

The message-passing scheme works as follows. First, we
initialize the potential functions for one of the clique nodes by
combining the pairwise potential functions from Section 4:

�ðx1;x2; x3; x4Þ ¼
 ðx1; x2Þ ðx1; x3Þ ðx1; x4Þ ðx2; x3Þ ðx2; x4Þ ðx3; x4Þ:

For the other clique nodes, the terms  ðx1; x2Þ,  ðx1; x3Þ and
 ðx2; x3Þ are not included, since they already have been,
and the general form for i > 4 is

�ðx1; x2; x3; xiÞ ¼  ðx1; xiÞ ðx2; xiÞ ðx3; xiÞ:

The separator nodes are all then initialized to 1 [59]. After
that, we perform message-passing: Starting with a clique
node V that is a leaf of the chain, we compute

��S ¼ max
V nS

�V ð9Þ

��W ¼
��S
�S

�W; ð10Þ

where W is the clique node to which V is “sending a
message.” This “message” actually consists of two updates:
1) substituting the potential in the separator S by computing
the MAP of clique node V with respect to the nodes that are
common with the separator and 2) reweighting the potential
in clique node W by the ratio between the new and the
previous separator potentials. This local operation is then
propagated until the other leaf is reached, after which it is
repeated in the reverse direction. Once the message-passing
is completed, the joint distribution has been preserved, and
the marginalization property, (9), has now been established
between every clique node and its separators. This ensures
that we have obtained the desired MAP distribution at each
clique node [59], as mentioned above.

To compute the messages, note that each potential � is a
4D table, with S bins per dimension; see Fig. 5.

Thus, the maximization operation in (9) runs over the
dimension of the 4D table, �V , that is not common to the
3D table, �S . Similarly, the division and multiplication
operations of (10) are performed entrywise in the tables.

Fig. 5 shows details of how the overall dynamic
programming procedure works. As mentioned above, after
the two-way message-passing is finished, local maximiza-
tion yields the final MAP distributions of the singleton
nodes Xi from which the mode indicates the point in the
codomain pattern that matches the point in the domain
corresponding to Xi.

The complexity of computing each of the messages (9),

(10) is OðS4Þ, since the largest tables (�s) are four-

dimensional with S bins per dimension. There are, in total,

2ðT � 2Þ messages, so that the overall computational

complexity for this model is OðTS4Þ, which is polynomial

in the size of the domain pattern (T ) and in the size of the

codomain pattern (S). Note that there is no iterative

procedure involved, and no concept of “initialization” is

present. The algorithm runs in precisely 2ðT � 2Þ steps and

will always deliver the same result for the same input. This

is because the algorithm is strictly deterministic, based

solely on the dynamic programming principle [54], [57],

[59]. Since the dynamic programming finds the global

optimum for the given model and the model itself is optimal

in the noiseless case, we have an algorithm for point pattern

matching that has polynomial complexity and is provably

optimal in the limit case of exact matching. Aiming at

clarifying in detail the full inference procedure, we present

a fully worked out example of the junction tree algorithm

for a simple graphical model in Appendix B. Algorithm 1

shows a pseudocode for our algorithm in the general case of

matching in IRk�1.

Algorithm 1. Point Pattern Matching in IRk�1

Data: Domain point set T , Codomain point set S, �

Result: Assignment vector v

begin:

Select, from T , k points in general position

Construct a k-tree with these k points constituting the

unique base k-clique

for every edge of the k-tree do

compute compatibility matrix (5) with regard to S
using (7) with provided �;

Select an arbitrary maximal clique of the k-tree

for every one of its edges do

replicate its compatibility matrix across the

k� 1 remaining dimensions (thus obtaining a

ðkþ 1Þ-D compatibility array)

Assemble the ðkþ 1Þ-D potential of the maximal clique
by entrywise multiplication of the ðkþ 1Þ-D
compatibility arrays

for every other maximal clique do

for every edge not belonging to the base k-clique do

replicate its compatibility matrix across the

k� 1 remaining dimensions (thus obtaining a

ðkþ 1Þ-D compatibility array)

Assemble the ðkþ 1Þ-D potential of the maximal
clique by entrywise multiplication of the ðkþ 1Þ-D
compatibility arrays

Construct a junction tree from the maximal cliques (see

Fig. 5 for k ¼ 3 example)

Initialize the potentials of the maximal cliques as the
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assembled ðkþ 1Þ-D potentials

Initialize the potentials of the separators to 1

Perform propagation (9), (10) from one end to the other

and then back

for every maximal clique of the junction tree do

Compute the max-marginal distribution of the

single variable not present in the separators by
maximizing over the other k variables

for an arbitrary separator do

for every variable do

Compute its max-marginal distribution by

maximizing over the other k� 1 variables

for every (ith) max-marginal distribution do

Compute the argument that maximizes it, and store

it in vðiÞ
end

7 EXPERIMENTS AND RESULTS

One obvious shortcoming of this theory is that it only
addresses the exact matching case. For inexact matching,
the theoretical guarantee that the minimum of (8) equals the
minimum of (1) no longer holds. However, there remains
value to the framework: In the noisy case, one can still run
the junction tree algorithm with the compatibility measure
of (7) to cope with approximate matches, requiring the same
polynomial time. The only question is: How significantly
does the quality of the approximate match degrade? To
evaluate this question, we conducted a number of experi-
ments to compare our method (denoted simply as JT) to
standard techniques in the literature, including probabilistic
relaxation labeling (PRL), as described in [28], the spectral
method (SB) presented in [37], and Graduated Assignment
(GA) [49]. Note that these methods encode all pairwise
distances in their objectives, whereas our method only
encodes those distances that correspond to the k-tree
topology. On the other hand, our approach uses an optimal
noniterative algorithm, whereas the others are based on

approximate heuristic algorithms. None of the standard
approaches—PRL, SB, or GA—have any optimality guar-
antees, even in the noiseless case. The experiments involve
matching tasks in IR2, so we use the 3-tree model of Fig. 3.

7.1 Synthetic Data

To compare techniques across a range of problem condi-
tions, we generated random points according to a bivariate
uniform distribution in the interval x ¼ ½0; 1�, y ¼ ½0; 1�. We
conducted two sets of synthetic experiments: 1) point sets S
and T of equal sizes comparing JT, GA, PRL, and SB and
2) point sets S and T of different sizes comparing JT, GA,
and PRL (SB is not suited for different graph sizes). In order
to compute the similarity measure between pairwise
assignments, we use the same Gaussian kernel with � ¼
0:4 for all methods (see Section 4). This is the only
parameter involved in our method, but is also necessary
in the other ones. The problem of selecting � is far from
trivial [5], and, in this paper, we do not aim at optimizing
over this parameter. See [62] for tentative experiments in
this sense. We basically choose a value that we know will
not underflow the kernel computation in the case of
extremal differences between the argument and the mean
of the Gaussian function. For the construction of the 3-tree,
the three reference points were selected randomly. Also,
since all algorithms exclusively use distance features (which
are isometry-invariant and, as a result, do not depend on
rotations, translations, or reflections in the patterns), it is not
necessary to evaluate performance across several isometries
since, by construction, the results will be the same up to
numerical errors. Here, we simply generated random
isometries for every trial.

In the first experiment, we used patterns of size (10; 10),
(20; 20), (30; 30), and (40; 40) points. For each of these four
instances, we perturbed the codomain pattern with pro-
gressive levels of noise, from small levels (std = 0 to 1) to
moderate levels (std = 2), to high levels (std = 4). The
quantity “std” is 256 times the real standard deviation used
(i.i.d. Gaussian noise). Fig. 6 shows typical instances of
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Fig. 6. Instances of patterns when different levels of jitter are introduced. Circles correspond to the jittered pattern, whereas “plus” corresponds to the

original pattern. (The patterns were superimposed for the purpose of visual comparison; in practice, as should be clear from the text, they may be

translated/rotated/reflected with respect to each other and may also have different cardinalities.)



patterns perturbed with jitter of std = 1 (Fig. 6a) and
std = 4 (Fig. 6b). Fig. 7 shows the obtained curves under
these experimental conditions. Each point in a graph
corresponds to the average over 300 trials.

The graphs show that JT, GA, and PRL are much more
robust under jitter than SB, confirming the known fact that
spectral methods are very sensitive to structural corruption
(which is one of the reasons why significant research effort
has been recently dedicated to alleviating this problem with
spectral techniques [4], [5], [40], [53]). The graphs also show
that, when the pattern sizes are increased, GA and PRL are
still very robust across the whole range (the curves are
almost horizontal), whereas JT is more sensitive to high
jitter. However, it is clear that JT is competitive for small to
moderate jitter (std = 0-2). The curves for GA and PRL
essentially just undergo a change in offset for different
pattern sizes, which reveals decreasing performance in the
low jitter region. PRL is particularly more sensitive than GA
for large matching problems, as reported in [13].

In the second experiment, we held the size of the domain
pattern T constant (10 nodes) and varied the size of the

codomain pattern S (from 10 to 35 nodes in steps of 5) for

various jitter levels (std = 1; 2; 3; 4). In this experiment, we

compared JT, GA, and PRL only, since SB is not suited for

graphs with different sizes. Fig. 8 shows the results of this

experiment. Each point in a graph corresponds to the

average over 300 trials. Clearly, the accuracy of JT does not

degrade significantly for larger codomain patterns, even

under high jitter, whereas the performances of GA and PRL

begin to fail dramatically.
Overall, it is possible to summarize the results as follows:

JT always outperforms SB and PRL in all the operating

regions described in the experiments. When comparing JT

to GA, the only case where GA outperforms JT is for

patterns of equal sizes and moderate to high jitter. In all

other cases—when 1) the patterns have equal sizes and

noise is small, or 2) the patterns have different size,

regardless of jitter—JT outperforms GA. Note in particular

the outstanding performance of JT for patterns of different

size (Fig. 8): in this case, the advantage over all the

competing techniques, including GA, is dramatic.
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Fig. 7. Comparison of JT, GA, PRL, and SB in matching equal-sized point sets under varying jitter. Results shown for (a) 10, (b) 20, (c) 30, and

(d) 40 node graphs. Error bars correspond to standard errors.



7.2 Image Data

We also conducted experiments on image data to evaluate

the techniques on a realistic computer vision problem. In

the real-world experiments, we used the CMU house

sequence available at http://vasc.ri.cmu.edu/idb/html/

motion/house/index.html. This database consists of

111 frames of a moving sequence of a toy house.
We matched all images spaced by 10, 20, 30, 40, 50, 60, 70,

80, 90, and 100 frames and computed the average correct

correspondence. Since there are 111 frames, note that the

number of image pairs spaced by these numbers of frames

are, respectively, 101, 91, . . . , 11.
Fig. 9 shows typical images separated by these quantities

of frames.
Since all the images have size 384� 576 (contrary to the

synthetic experiments, where the point sets lay on

x; y ¼ ½0; 1�), we need to use, accordingly, a large value for

� (see (7)) that does not underflow the kernel computation

for very large deviations in the pairwise assignments. Here,

we used � ¼ 150. Also, as in the synthetic experiments, the
three reference points for the 3-tree were selected randomly.

In total, 30 landmark points were manually marked in

each of the images. We then conducted four different

experiments. We matched 15 against 30, 20 against 30, 25

against 30, and, finally, 30 against 30 points for every image

pair in the experimental setting defined above. This allows

us to evaluate how the techniques perform in a real problem

with different point set sizes. For the 30� 30 case, we ran all

four techniques (JT, GA, PRL, and SB), whereas, for the

remaining cases, SB was not used since it is not suitable for

patterns of different sizes, as already mentioned.
Fig. 10 shows the results for these experiments. The

average value is taken over different spacings between
image pairs in the frame sequence.

Here, we observe that, as the relative sizes of the patterns
become progressively different, the advantage of JT over the
other techniques increases, which agrees with the results
from the synthetic experiments. For the reported values of
different pattern sizes, JT performs significantly better than
the competing methods, even for a wide baseline. Although
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Fig. 8. Comparison of JT, GA, and PRL for matching under varying relative sizes. Results for various levels of jitter ((a) std ¼ 1, (b) std ¼ 2,

(c) std ¼ 3, (d) std ¼ 4). Error bars denote standard errors.



the isometric assumption clearly does not hold for a wide
baseline, we note that the same pairwise distances were
used as features in every algorithm, so we expect this to be a
fair comparison.8 For the experiment with patterns of the

same size (30� 30), JT has similar performance to GA and

PRL when the baseline is increased. For the narrow baseline

case, JT slightly outperforms the competing methods.
Our results in the real-world experiments lead us to

conclude that, in the particular real-world problem of stereo

correspondence, JT finds its best applicability in the narrow

baseline case for patterns of different sizes where the
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Fig. 9. Images from the CMU house sequence. (top) Frames 1, 11, . . . , 41. (bottom) Frames 51, 61, . . . , 91.

Fig. 10. Performances of JT, GA, PRL, and SB in the CMU houses sequence for increasing baselines (10 to 100 frame separation) and different

domain/codomain sizes ((a) 15/30, (b) 20/30, (c) 25/30, and (d) 30/30). Error bars correspond to standard errors.

8. It should be clear that, in real problems, any of these approaches, since
they rely exclusively on distance features, will only be competitive in the
narrow baseline case.



isometric assumption holds (apart from jitter, of course).
This finding agrees with the results on synthetic data.

Given the positive results on both synthetic and real-
world experiments where there is a narrow baseline, we
expect that, in other applications, like those involving
matching of star constellations, flexible ligands, and protein
motifs (where the isometric assumption also holds with
good approximation), the proposed technique should per-
form similarly well.

7.3 Empirical Performance Evaluation for
Varying k-trees

We mentioned previously that there is a theoretical problem
that remains unsolved in this framework: how to select the
k-tree when there is position jitter. When there is no jitter,
any k-tree will find the same—optimal—solution. However,
when jitter is present, different k-trees could result in
different degrees of accuracy. Here, we provide empirical
evidence of this fact by measuring the variance of the
performance of a matching task over a range of possible
choices of k-trees.

We used the same setting of the previous synthetic
experiments: random point patterns in ½0; 1�2. We randomly
generated 100 domain-codomain pairs in this range, each
with 20 points. For each of these 100 configurations, we
randomly selected 100 3-trees for the domain pattern.
Finally, the JT algorithm was run in each of these 100 3-trees,
and the standard error for the fraction of correct corre-
spondences recorded. This allows us to measure the
performance variability within the same pair domain-
codomain over a wide selection of 3-trees. In order to
compute the aggregate over the 100 configurations, we
simply averaged the standard errors. This whole procedure
was performed for jitter levels of std = 0, 1, 2, 3, and 4. The
final average standard errors were, respectively, 0, 0.001,
0.003, 0.007, and 0.011 (measured in fractions of correct
correspondences, which vary from 0 to 1). This indicates, as
expected, that the influence on the choice of k-tree becomes
more significant as jitter increases (in particular, it is zero
when there is no jitter, confirming the theoretical results).

7.4 Processing Times

The computational complexity of the proposed method is
higher than in the other approaches. Spectral, graduated
assignment, and relaxation methods are, respectively, OðT 3Þ
(S ¼ T ), OðT 2S2Þ, and OðT 2S3Þ, while the proposed junction
tree approach is OðTS4Þ (for matching in IR2). However, the
graphs showing real processing times (see Fig. 11) indicate
that, even for a reasonable size, like 40, the actual running
time is just twice that of PRL and four times that of GA. For
graphs with about 30 nodes, the technique is about as fast as
relaxation labeling.

8 DISCUSSION AND FUTURE WORK

A matching algorithm should, ideally, present high robust-
ness with respect to jitter as well as with respect to size
increases of the patterns. Our experiments revealed
essentially two findings. First, for matching patterns of the
same size, the proposed method is very robust to small and
moderate position jitter and reasonably robust to high
position jitter. Second, and more important, the method is
extremely robust to increasing differences in the pattern

sizes. In experiments where the sizes of the two patterns are

significantly different, the performance of JT is by far

superior to that of the alternative methods. This is an

important result because in many relevant application

domains, the problem of finding a “small” model within a

“large” scene is of primary concern. (A typical such scenario

that arises in computer vision is model-based object

recognition in cluttered scenes.) We believe that the

approach presented in this paper indicates a new direction

in the search for robust algorithms for subgraph matching,

where the sizes of the graphs can differ significantly.

There are several ways in which the current work can be

extended. First, by considering higher-order potentials, one

might be able to cope with more complex invariances, such

as invariance under affine transformations. Second, non-

rigid matching might be attainable by augmenting the

clique potentials with terms that allow for some kind of

nonlinear transformation. Third, theoretical results on the

accuracy of the method for the noisy case can be

investigated. Fourth, the framework should be extended

to deal robustly with outliers. Also, a deeper understanding

of the noisy case might lead to a principled technique for

the k-tree selection problem.

9 CONCLUSION

This paper proposed a new solution to the rigid point

pattern matching problem where jitter is allowed. The

approach consisted of modeling the point matching task as

a weighted graph matching problem and solving it using

exact probabilistic inference in an appropriately designed

graphical model. By using graph rigidity arguments, we

showed that this graphical model, while allowing for exact

MAP computation in polynomial time, still remains equiva-

lent to the fully connected model in the noiseless limit.

Contrary to many alternative heuristic approaches, the

method we obtain is built from first principles, is non-

iterative, obtains results independent of initialization, and

provably finds a global optimum in polynomial time in the

exact matching case. For inexact matching, our experiments

indicate that the proposed technique is more accurate than

standard methods when matching patterns of different sizes.
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Fig. 11. Processing times for JT, GA, PRL, and SB, all in MATLAB

implementations running on a 3.2 GHz Pentium with 1 GB of RAM.



APPENDIX A

Proof of Lemma 1. We use induction over n. Recall that a

sphere in a vector space is the set of points equidistant

from a fixed point.
The Lemma obviously holds for the base case when

n ¼ 1.

Now, let S1 \ S2 ¼ I1. Then, I1 is an ðn� 2Þ-sphere

lying in an ðn� 1Þ vector subspace Q. (We use the

convention of topology, which states that an ðn�
2Þ-sphere is spanned necessarily by a complete basis in

IRn�1. For example, the 3D sphere in IR3 is a 2-sphere, not

a 3-sphere.) Let Ii ¼ Siþ1 \Q for i ¼ 2; 3; . . . ; n. Then,

I1; I2; . . . ; In are n spheres in Q ffi IRn�1 (ffi denotes

congruency) and, obviously, \nj¼1Ij ¼ \nþ1
i¼1 Si. Given the

above definitions, the natural induction hypothesis that

arises is: If the centers of the spheres I1; I2; . . . ; In do not

lie in an ðn� 2Þ vector subspace, then the intersection of

these spheres consists of at most a single point. Since

\nj¼1Ij ¼ \nþ1
i¼1 Si, we have, from the hypothesis, that

\nþ1
i¼1 Si consists of at most a single point. So, what is left

to prove is that the centers of the spheres S1; S2; . . . ; Snþ1

do not lie in an ðn� 1Þ-dimensional vector space (i.e., are

in general position). Let ðx1; x2; . . . ; xnÞ be the coordi-

nates of IRn. Let ðai1; ai2; . . . ; ainÞ be the center of Si.

Without loss of generality, we may assume that Q is

given by x1 ¼ 0. Then, Q ffi IRn�1 is parameterized by

ðx2; x3; . . . ; xnÞ. The center of Ij�1 has coordinates

ðaj2; aj3; . . . ; ajnÞ, j 	 2. The centers of I1; I2; � � � ; In are

in general position if and only if the matrix

a22 a23 . . . a2n 1
a32 33 . . . a3n 1

..

. . .
. ..

. ..
. ..

.

anþ1;2 anþ1;3 . . . anþ1;n 1

2
6664

3
7775 ð11Þ

is invertible, i.e., has maximal rank.
But, this matrix is precisely the n� n lower-right

submatrix of the following matrix:

a11 a12 . . . a1n 1
a21 a22 . . . a2n 1

..

. ..
. . .

. ..
. ..

.

anþ1;1 anþ1;2 . . . anþ1;n 1

2
6664

3
7775; ð12Þ

which is the analogous matrix for the centers of

S1; S2; . . . ; Snþ1. By subtracting the second row from the

first row of (12), we obtain

a11 � a21 0 . . . 0 0
a21 a22 . . . a2n 1

..

. ..
. . .

. ..
. ..

.

anþ1;1 anþ1;2 . . . anþ1;n 1

2
6664

3
7775: ð13Þ

Note that Q ¼ fx1 ¼ 0g implies that

ða12; a13; . . . ; a1nÞ ¼ ða22; a23; . . . ; a2nÞ;

which creates the zeros in the first row. It is evident that

(13) is invertible if and only if a11 6¼ a21 and (11) is

invertible, which is the induction hypothesis. This

implies that the centers of Si do not lie in an ðn� 1Þ
vector subspace in IRn, which completes the proof. tu

Proof of Lemma 2. We use induction on the number of

vertices n in the k-tree framework. For n ¼ k, the result is

obvious because the graph is simply a k-clique, which is

fully connected and, by definition, is globally rigid. Now,

assume the lemma is true for some n > k. First, choose a

fixed (but arbitrary) coordinate system S. If the lemma

holds for some n > k, then all the points in the frame-

work are determined in S. Now, include a new vertex

with given distances from all the k vertices of any

existent base k-clique in general position. By drawing

edges corresponding to these known distances, we

generate a new framework with nþ 1 vertices. But, since

the inserted vertex has determined distances from all

vertices of a base k-clique, which is in general position, its

position is determined in S by virtue of Lemma 1. If its

position is determined in S, then the positions of all

vertices in the new framework are determined in S

(because the previous framework was globally rigid by

the induction hypothesis). If all the positions are

determined in S, all pairwise distances are determined

(irrespectively of S). This guarantees that the new

framework is globally rigid in IRk�1, which completes

the proof. tu
Proof of Theorem 1. If we define a cost function over the

complement graph of Gkt
d ( �Gkt

d ),

U �Gkt
d
ðfÞ ¼

X
i;jjdij2 �Ektd

D ydij; y
c
fðiÞfðjÞ

� �
; ð14Þ

we have

UT ðfÞ ¼ UGkt
d
ðfÞ þ U �Gkt

d
ðfÞ: ð15Þ

In the noiseless case, the dissimilarity function Dð�; �Þ
associated with a particular match is described simply in
terms of an indicator function (6):

D ydij; y
c
fðiÞfðjÞ

� �
¼ 1� 1 ydij ¼ ycfðiÞfðjÞ

� �
: ð16Þ

The optimal matching function f is such that
UT ðfÞ ¼ 0. Obviously, from (15), it holds that

UT ðfÞ ¼ 0) UGkt
d
ðfÞ ¼ 0;

since UGkt
d
ðfÞ and U �Gkt

d
ðfÞ are nonnegative because Dð�; �Þ

is nonnegative (8) and (14). Our purpose is to prove the

converse, i.e., that UGkt
d
ðfÞ ¼ 0) UT ðfÞ ¼ 0. According to

(15), in order to do so, it suffices to prove that

UGkt
d
ðfÞ ¼ 0) U �Gkt

d
ðfÞ ¼ 0:

Here, we use Lemma 2, which asserts that if the
distances corresponding to the edges of a k-tree frame-
work whose base k-cliques in general position are
determined, then all the remaining distances between
vertices not connected by an edge are determined.

Let us write this result symbolically, for a k-tree in the
domain graph, as
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fydij ¼ constdij;8i; jjdij 2 Ektd g )
fydij ¼ constdij; 8i; jjdij 2 �Ektd g;

ð17Þ

where constdij is a constant for fixed i and j.

Since UGkt
d
ðfÞ ¼ 0, every term of the sum in (8) must be

zero, since they are nonnegative:

Dðydij; ycfðiÞfðjÞÞ ¼ 0; 8i; jjdij 2 Ektd : ð18Þ

However, from the definition of Dð�; �Þ for exact
matching (16), this means that

ydij ¼ ycfðiÞfðjÞ; 8i; jjdij 2 Ektd : ð19Þ

Notice that the statement (17) holds for any k-tree
whose base k-cliques are in general position, so it holds for
Gkt
c in particular. (Recall that Gkt

c has its base k-cliques in
general position in IRk�1 because it is assumed isometric
to Gkt

d , which, by assumption, has its base k-cliques in
general position and, so, is globally rigid.) Therefore, we
conclude

fycfðiÞfðjÞ ¼ constcfðiÞfðjÞ; 8i; jjdfðiÞfðjÞ 2 Ektc g )
fycfðiÞfðjÞ ¼ constcfðiÞfðjÞ; 8i; jjcfðiÞfðjÞ 2 �Ektc g:

ð20Þ

Notice that (19) implies that the left-hand sides of
implications (17) and (20) are equivalent. As a result,
their right-hand sides are equivalent and we obtain

ydij ¼ ycfðiÞfðjÞ; 8i; jjdij 2 �Ektd : ð21Þ

Substituting this into (14) yields

U �Gkt
d
ðfÞ ¼ 0; ð22Þ

which was what we wanted to prove. tu

APPENDIX B

Fig. 12 shows a very simple instance of a point pattern

matching problem, a corresponding 3-tree selection, and the

associated junction tree. In this appendix, we are going to

present a detailed description of the proposed algorithm

when applied to this specific instance, for didactic pur-

poses. This is one of the simplest types of examples that we

can show, since five points in the domain is the minimal

amount required to motivate the use of our algorithm (in

the four-point case, a 3-tree is the fully connected graph and

the algorithm reduces to a brute-force approach). The

correct correspondence in this case is

fI 7!3; II 7!1; III 7!2; IV 7!5; V 7!6g:

Node 4 in the codomain is the only difference between the
two patterns and no point in the domain should map to it.

The first step of the algorithm consists in selecting a

3-tree for the domain graph. This is done randomly,
provided that nodes II, III, and V do not constitute the base
3-clique (since they are collinear). A possible 3-tree is shown

in Fig. 12c. The second step of the algorithm consists in
constructing the junction tree and the potential functions for
the graphical model induced by the 3-tree. The junction tree

is shown in Fig. 12d. A potential function will associate a
nonnegative real number to each possible instantiation of

the four variables in a maximal clique (i.e., a “score” for the
corresponding 4-wise map). This potential function is built
from pairwise potential functions by combining their

scores. For example, the pairwise potential function  I;II
would have the following form (we use � ¼ 1=

ffiffiffi
2
p

in (7) for
simplicity and the unit length is the side of an elementary

square in the grids of Fig. 12):

 I;II ¼

exp �

ð
ffiffiffi
10
p
�0Þ2 ð

ffiffiffi
10
p
�
ffiffi
2
p
Þ2 ð

ffiffiffi
10
p
�
ffiffiffi
10
p
Þ2 ð

ffiffiffi
10
p
�3Þ2 ð

ffiffiffi
10
p
�
ffiffiffi
10
p
Þ2 ð

ffiffiffi
10
p
�2
ffiffi
2
p
Þ2

ð
ffiffiffi
10
p
�
ffiffi
2
p
Þ2 ð

ffiffiffi
10
p
�0Þ2 ð

ffiffiffi
10
p
�2
ffiffi
2
p
Þ2 ð

ffiffiffi
10
p
�
ffiffi
5
p
Þ2 ð

ffiffiffi
10
p
�2Þ2 ð

ffiffiffi
10
p
�
ffiffi
2
p
Þ2

ð
ffiffiffi
10
p
�
ffiffiffi
10
p
Þ2 ð

ffiffiffi
10
p
�2
ffiffi
2
p
Þ2 ð

ffiffiffi
10
p
�0Þ2 ð

ffiffiffi
10
p
�1Þ2 ð

ffiffiffi
10
p
�2
ffiffi
5
p
Þ2 ð

ffiffiffi
10
p
�
ffiffiffi
10
p
Þ2

ð
ffiffiffi
10
p
�3Þ2 ð

ffiffiffi
10
p
�
ffiffi
5
p
Þ2 ð

ffiffiffi
10
p
�1Þ2 ð

ffiffiffi
10
p
�0Þ2 ð

ffiffiffi
10
p
�
ffiffiffi
13
p
Þ2 ð

ffiffiffi
10
p
�
ffiffi
5
p
Þ2

ð
ffiffiffi
10
p
�
ffiffiffi
10
p
Þ2 ð

ffiffiffi
10
p
�2Þ2 ð

ffiffiffi
10
p
�2
ffiffi
5
p
Þ2 ð

ffiffiffi
10
p
�
ffiffiffi
13
p
Þ2 ð

ffiffiffi
10
p
�0Þ2 ð

ffiffiffi
10
p
�
ffiffi
2
p
Þ2

ð
ffiffiffi
10
p
�2
ffiffi
2
p
Þ2 ð

ffiffiffi
10
p
�
ffiffi
2
p
Þ2 ð

ffiffiffi
10
p
�
ffiffiffi
10
p
Þ2 ð

ffiffiffi
10
p
�
ffiffi
5
p
Þ2 ð

ffiffiffi
10
p
�
ffiffi
2
p
Þ2 ð

ffiffiffi
10
p
�0Þ2

0
BBBBBBBB@

1
CCCCCCCCA

2
666666664

3
777777775
;

ð23Þ

where expðMÞ is the exponential of the elements of M (not
the matrix exponential). For example, entry ð5; 6Þ in  I;II is
the “likelihood” of the pairwise map fI 7! 5; II 7! 6g. This
entry must be smaller than, say, entry ð1; 5Þ, because the
distances dI;II and d5;6 are more different (

ffiffiffiffiffi
10
p

and
ffiffiffi
2
p

,
respectively) than the distances dI;II and d1;5 (

ffiffiffiffiffi
10
p

and
ffiffiffiffiffi
10
p

).
In summary,  I;II has higher values in those entries whose
correspondent points are separated by a distance which is
more similar to the distance between I and II (i.e.,

ffiffiffiffiffi
10
p

).
This reflects the idea that, in rigid point pattern matching,
pairwise maps should preserve the distance between
points. The same type of table is constructed for all the
other pairs in the domain which correspond to an edge of
the 3-tree, not only for the pair I-II. (Here, we can observe
that, even for the trivial example shown, the number of
numeric values involved is still very large, which prevents
us from displaying all the numeric details of the computa-
tions that follow.) Once all the required pairwise tables have
been constructed, one must assemble the potentials of the
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Fig. 12. A simple example of point pattern matching. (a) The domain pattern. (b) The codomain pattern. (c) A possible 3-tree in the domain pattern.

(d) The resulting junction tree.



maximal cliques, which are those to be used in the
propagation phase. These are given by

 I;II;III;IV ði; j; k; lÞ ¼
 I;IIði; jÞ I;IIIði; kÞ I;IV ði; lÞ II;IIIðj; kÞ II;IV ðj; lÞ III;IV ðk; lÞ

and

�I;III;IV ;V ði; j; k; lÞ ¼  I;V ði; lÞ III;V ðj; lÞ IV ;V ðk; lÞ

(or the other way around: the choice of which 4-wise

potential has six factors is arbitrary). This operation can be

understood in a vectorized form as simply replicating the

2D tables (like those in (23)) across the two lacking

dimensions and then performing an entrywise multiplica-

tion of all the resulting 4D tables. Once the potentials for the

maximal cliques are initialized, we initialize the potential

for the separator as simply being �I;III;IV ði; j; kÞ ¼ 1, for

all i; j; k.
The next step in the algorithm is the propagation phase.

Notice that, at this point, one has three tables: �I;II;III;IV ,
�I;III;IV ;V , and �I;III;IV . Each � indicates an initial “guess”
of the likelihood of every one of the 64 possible instantia-
tions that its four variables may assume. However, at this
stage, the two �s may be inconsistent. That is why the
propagation phase must be run, which will change these
potentials so that they become consistent. The entire
propagation algorithm for this simple example reduces to
merely applying (9) and (10). For example, we may first
update �I;III;IV ;V by doing

��I;III;IV ¼ max
II

�I;II;III;IV ; ð24Þ

��I;III;IV ;V ¼
��I;III;IV
�I;III;IV

�I;III;IV ;V ; ð25Þ

and then update �I;II;III;IV by doing

���I;III;IV ¼ max
V

��I;III;IV ;V ; ð26Þ

��I;II;III;IV ¼
���I;III;IV
��I;III;IV

�I;II;III;IV ; ð27Þ

where all operations are entrywise in the tables (3D �s are
replicated across the lacking dimension after the quotient is
computed, so that they can be entrywise multiplied by the
4D �s).

After this propagation algorithm has run, one is assured
that the final clique potentials ��I;II;III;IV and ��I;III;IV ;V are
equal to the max-marginal distributions over the four
respective variables (apart from a common constant factor).
What this allows us to do is to simply compute the modes of
the individual max-marginals by local maximization within
the cliques. For example, one can compute the correct
assignment IIy for point II by

IIy ¼ arg max
II

max
I;III;IV

��I;II;III;IV ð28Þ

and the correct assignment V y for point V by

V y ¼ arg max
V

max
I;III;IV

��I;III;IV ;V : ð29Þ

The correct assignment for the remaining 3 points in the
domain pattern can be computed by marginalizing over

either one of the �s, since they are present in both. This

results in the final correct assignment

fI 7! 3; II 7! 1; III 7! 2; IV 7! 5; V 7! 6g:
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