
Design for Yield and Reliability

50 0740-7475/05/$20.00 © 2005 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

THE TECHNOLOGICAL EVOLUTION of the IC fabri-

cation process, consisting of device shrinking, power sup-

ply reduction, and increasing operating speeds, has

significantly reduced the manufacturing yield and relia-

bility of very deep-submicron (VDSM) ICs when various

noise sources are present, as recent roadmaps (the

International Technology Roadmap for Semiconductors,

Medea, and IEEE Design & Test) have demonstrated. As

a result, more and more applications must be robust in

the presence of multiple faults. Consequently, fault toler-

ance in storage devices such as high-density and high-

speed memories operating at low voltage, is a main

concern nowadays and thus the focus of this work.

Faults can occur during the fabrication process, with

direct consequences in terms of yield and memory

operation. Using VDSM technologies increases the

chances of manufacturing defects. It is important to

design fault-tolerant mechanisms to ensure that a mem-

ory operates correctly, even in the presence of defects

such as open and short gates and connections that can

result in stuck-at faults or coupling faults

in memory cells.1

During the memory’s lifetime, anoth-

er type of fault can affect its correct oper-

ation. This fault, known as a single event

upset (SEU) or soft error, characteristi-

cally is a bit-flip in the memory cell as a

result of a transient current pulse gener-

ated by ionization. Charged particles

coming from sun activity and neutrons

that collide with the material can cause

this ionization.2 More than one SEU can occur at the

same time in a memory array because of the nanome-

ter dimensions. This phenomenon, called multiple bit

upset (MBU), can result from a high-energy particle

(most likely causing double bit upsets) or a low inci-

dent angle (striking many cells in a row).3 Experiments

using proton and heavy-ion fluxes calculate the proba-

bility of a single ion provoking MBUs.4-6

Error detection and correction code (EDAC) is a

well-known technique for protecting storage devices

against transient faults because it is implementable in

a high-level design step without changes in the mask

process (that is, it has low nonrecurring engineering

cost). There are examples of software7 and hardware8

that perform SEU mitigation using EDAC. An example

of EDAC is the Hamming code, which is useful for pro-

tecting memories against SEU because of its efficient

ability to correct single upsets per coded word with

reduced area and performance overhead.9 There are

commercial memories that use Hamming code for high-

An Automatic Technique for
Optimizing Reed-Solomon
Codes to Improve Fault
Tolerance in Memories
Gustavo Neuberger, Fernanda Gusmão de Lima
Kastensmidt, and Ricardo Reis
Federal University of Rio Grande do Sul

Editors’ note:
Modern SoC architectures manufactured at ever-decreasing geometries use
multiple embedded memories. Error detection and correction codes are
becoming increasingly important to improve the fault tolerance of embedded
memories. This article focuses on automatically optimizing classical Reed-
Solomon codes by selecting the appropriate code polynomial and set of used
symbols.

—Dimitris Gizopoulos, University of Piraeus; and
Yervant Zorian, Virage Logic

reliability applications (EDAC or error-correcting code

memories) to increase yield or fault tolerance.10

However, Hamming code is not able to ensure the reli-

ability of VDSM memories when manufacturing defects

and MBUs from the environment are present.

There are alternatives to EDAC, like Bose-Chaudhuri-

Hocquenghem (BCH) and Reed-Solomon (RS) codes,

based on finite-field (also known as Galois field) arith-

metic, which can cope with multiple faults. BCH codes

can correct a given number of bits at any position,

whereas RS codes group the bits in blocks to correct

them. Their disadvantages are that they have complex

and iterative decoding algorithms, and use tables of

constants in the algorithm. However, studies have

proven that eliminating the tables of constants can sim-

plify RS codes,11 and that the decoding algorithm is sim-

pler in the case of single-block correction. For these

reasons, we chose RS instead of BCH and similar codes.

This article shows new techniques to further improve

the RS core by individually optimizing the multipliers

used in the RS algorithm. Recent publications in finite-

field arithmetic show that the smallest multipliers are

always the same for a given size of operands.12 It’s true

that a best multiplier always exists for generic operands;

but in the RS code algorithm, the multipliers are not

generic because one of the operands is always a con-

stant, which necessitates optimizing the multipliers for

specific constants. This distinction completely changes

the paradigm. The results we present here will show that

the choice of the best multipliers is not generic, but

depends on these constants and the target platform.

Basic concepts of RS code
RS is an error-correcting code designed to correct

multiple errors. The specification of an RS code is RS(n,

k). Each symbol (block of bits) has s bits. The total num-

ber of symbols used in the code is n, and the number of

symbols used to store useful information is k.

Consequently, the number of bits of information to be

protected equals s × k. The remaining symbols, (n − k),

are the parity symbols. Parameter n has a maximum

value of 2s – 1 for a given symbol width. The code can

correct number of symbols t equal to the number of par-

ity symbols divided by two, where 2t = n – k, as Figure

1 illustrates. If the code can correct only one symbol (t

= 1), two symbols are necessary for parity (n – k = 2).

Mathematically, the theory of RS codes is based on

finite-field arithmetic.

The finite field is a sequence of numbers created

from a generator polynomial (GP). It adheres to the fol-

lowing rules:13

■ This arithmetic executes all operations as modulo 2,

which means that exclusive-OR (XOR) gates physi-

cally implement the addition and, consequently,

subtraction operations.

■ The finite field in which the operations take place

bounds all operations.

GPs must be primitive. To be primitive, they must be

irreducible. A polynomial is irreducible if you cannot

factor it into nontrivial polynomials. For example, the

polynomial x2 + x + 1 is irreducible, but x2 + 1 is not,

because (x + 1)(x + 1) = x2 + 2x + 1 = x2 + 1 (modulo 2).

However, not all irreducible polynomials are primitive.

Their order must equal 2 raised to its degree minus 1,

where the degree is the value of the most significant

index of the polynomial, and the order is the smallest

integer e for which the polynomial divides xe + 1. For

example, x2 + x + 1 has order 3 and is primitive, because

(x3 + 1) / (x2 + x + 1) = x + 1.

There are different ways to represent the polynomi-

al, such as binary or decimal notations. All the nota-

tions in the following sequence denote the same

polynomial:

x5 + x2 + 1 = 1001012 = 3710

The following example illustrates the RS algorithm

with 4-bit symbols. The GP defines a finite field over

which all the operations that are calculable in the fol-

lowing way take place: Taking a small field defined as

GF(24), use a polynomial—in this case, x4 + x + 1 = 0.

The term GF(24) means that the finite field has 16 ele-

ments. The field’s calculation starts with primitive ele-

ment α, which in this case is 2 or 0010 (x). An increasing

power of α represents each successive member of the

field; hence, we call α the primitive root because its

powers represent all the field’s nonzero members. Table

1 shows the calculation of the field elements.

After defining the finite-field elements, it’s useful to

51January–February 2005

Parity

Data

… k symbols

n symbols

s bits

2t symbols

Figure 1. Reed-Solomon code word.

delineate the most important operations that are per-

formable on finite-field elements. As we already men-

tioned, addition operations are the same as subtraction

operations, and they work as XOR gates of the elements’

numeric values. For example, α5 + α6 = 0110 XOR 1100

= 1010 = α9. Multiplication and division are only addi-

tion or subtraction of the elements’ powers, remem-

bering that α15 = 1. For instance, α2 × α4 = α6; α13 × α9 =
α22 = α15 × α7 = α7; α4 / α2 = α2.

Another fixed parameter to set in the RS code is t, the

maximum number of symbols with errors that are cor-

rectable, which always equals one for this algorithm.

For this example, the total number of symbols (n) is 15,

and consequently, the number of information symbols

(k) is 13. A single-symbol error-correcting code can cor-

rect any number of bit errors within a single symbol.

When a single error occurs, there are two unknowns:

the symbol position of the error within the message, and

the error’s bit pattern. Solving these two unknowns

requires developing two simultaneous equations. In the

example of GF(25), the block will comprise 15, 4-bit sym-

bols. We call the first 13 symbols A0, A1, A2, ... ; they rep-

resent 52 bits of data (13, 4-bit symbols). We call the last

two symbols R and S. These are our RS symbols, which

are as yet unknown. We then generate two simultane-

ous equations:

A0 + A1 + A2 + A3 + ... + R + S = 0

αA0 + α2A1 + α3A2 + α4A3 + ... + α14R + α15S = 0

First, we solve the equations to find R and S:

R = αA0 + α5A1 + α11A2 + α13A3 + ...

S = α4A0 + α10A1 + α12A2 + α6A3 + ...

To decode and correct the possible received errors, we

calculate the two syndromes, S0 and S1:

S0 = A0 + A1 + A2 + A3 + ... + R + S

S1 = αA0 + α2A1 + α3A2 + α4A3 + ... + α14R + α15S

If both S0 and S1 are 0, there are no errors. Otherwise, we

can find error bit pattern ε and error location k as follows:

ε = S0

k = S1 / S0

To correct the error, we add the pattern ε to the

received symbol, in the location specified by k.

Previous work: The RS core and its
application

An RS code can correct multiple faults, but its algo-

rithm makes extensive use of tables. In our previous

work,11 we developed an efficient RS core in terms of

area and timing for high-density memories. The solution

removed the tables using a multiplier that multiplied

numeric values instead of adding the powers of the ele-

ments. We divided the multiplication of numeric values

into two steps:

■ multiplying the numeric values modulo 2, and

■ simplifying the result by substituting extra bits with

the equivalent based on the GP.

The multiplier consists of a modulo-2 multiplier and

extra AND gates and an XOR gate, depending on the

polynomial used. The techniques we have developed

to optimize the RS core are based on this implementa-

tion of the finite-field multiplier.

In that work,11 we also proposed an application for

the core—a memory that combines the developed RS

core with Hamming code to protect 100% of double bit

upsets and a large amount of MBUs. Although the

results we achieved in that work were satisfactory for

ICs, we noticed that we could improve the RS core with

a more exhaustive optimization.

Design for Yield and Reliability

52 IEEE Design & Test of Computers

Table 1. Calculation of the elements of GF(24).

Numeric

Power Calculation value

α = x x 0010 (2)

α2 = x × x x2 0100 (4)

α3 = x × x × x x3 1000 (8)

α4 = α × α3 x4 = x + 1 (using the GP x4 + x + 1 = 0) 0011 (3)

α5 = α × α4 x5 = x2 + x 0110 (6)

α6 = α × α5 x6 = x3 + x2 1100 (12)

α7 = α × α6 x7 = x4 + x3 = x3 + x + 1 1011 (11)

α8 = α × α7 x8 = x4 + x2 + x = x2 + 1 0101 (5)

α9 = α × α8 x9 = x3 + x 1010 (10)

α10 = α × α9 x10 = x4 + x2 = x2 + x + 1 0111 (7)

α11 = α × α10 x11 = x3 + x2 + x 1110 (14)

α12 = α × α11 x12 = x4 + x3 + x2 = x3 + x2 + x + 1 1111 (15)

α13 = α × α12 x13 = x4 + x3 + x2 + x = x3 + x2 + 1 1101 (13)

α14 = α × α13 x14 = x4 + x3 + x = x3 + 1 1001 (9)

α15 = α × α14 x15 = x4 + x = 1 0001 (1)

Optimization
techniques

The main part of the RS

encoding and decoding

circuits is based on multi-

plications by several con-

stants using the multiplier

from our previous work.11

Consequently, the effort to

decrease the overhead in

the overall circuit must

pay special attention to

the multipliers. There are

two possible optimizations

that are performable in the

multiplier: choosing the

most appropriate GP, and

choosing the most appro-

priate constants for the multipliers.

Choosing the most appropriate GP
Assume that the user only needs to specify the num-

ber of bits to protect and the symbol width of the code.

A possible optimization that a tool can perform auto-

matically is to search all possible polynomials, create

the corresponding multiplier for each polynomial, and

evaluate the multipliers created in terms of area and

performance. It’s likely that this process will choose the

simplest polynomial, because it will simplify the multi-

plier more than the others will. For example, to create

a 5-bit multiplier, two usable polynomials are x5 + x2 +
1 and x5 + x4 + x3 + x2 + 1.

For the first polynomial, the constants are 00101,

01010, 10100, and 01101, whereas the constants in the

second polynomial will be 11101, 00111, 01110, and

11100. The first option has a total of 11 zeros, where-

as the second option has only seven. With more zeros,

the first polynomial will result in a better simplifica-

tion of the multiplier, because it will eliminate more

AND gates.

Recent publications in finite-field arithmetic show

that the smallest multipliers are based on trinomials

(polynomials with fewer nonzero coefficients).12 Chiou

et al. evaluated the cost of a multiplier by the number

of gates, finding the best option for a generic one. The

problem with this approach is that the RS algorithm uses

several multipliers, where one of the operands is always

constant, and the chosen polynomial changes depend-

ing on these constants. The number of constants

depends on the size of the word to be protected. In

addition, the best choice of polynomial varies accord-

ing to the platform target: FPGA or ASIC.

Choosing the most appropriate constants for
the multipliers

The standard implementation of the RS code uses

the maximum word size, s × n bits, to protect the infor-

mation of s × k bits. Sometimes, however, the code

word does not use all of the available s × n bits. For

example, to protect 128 bits of information with a 5-bit

symbol, there are 145 bits (29 symbols) available; but

the code word uses only 26 of them to store the infor-

mation. When a code with a smaller word is necessary,

the user can use the original code and erase the extra

symbols at the end of the word by replacing the exceed-

ing bits with zeros, as Figure 2 shows.

For larger values of s, more symbols remain unused.

This allows for choosing the best constant for the mul-

tipliers from the used symbols as well as the unused

ones. Thus, instead of using the first symbols in order

and replacing the others with zeros, the search must

take into account the unused symbols to find the best

constants that will generate multipliers with less area,

as Figure 3 shows.

We will later show that this optimization technique

by itself does not always generate the best results; it

must work in conjunction with the technique for choos-

ing the best polynomial (which we discussed earlier)

to achieve the most optimized core. Because of the

many possible combinations that can provide an opti-

mal solution, we developed an optimization and gen-

eration tool, RS-OPGE, to evaluate the multipliers for

53January–February 2005

0 0 0 0 0 0 0 0 0 0

Figure 2. Simplified code without optimization.

0 0 0 0 0 0 0 0 0 0

Figure 3. Simplified code with optimization.

all possible symbols and to choose the ones with the

best results.

Developing an automatic approach to
optimizing and generating RS codes:
The RS-OPGE tool

We implemented an automatic approach to opti-

mizing RS cores using the techniques we discussed ear-

lier. The RS-OPGE software allows the specification of

the number of bits to protect, the number of bits per

symbol, the polynomial to be used, and the target plat-

form (ASIC or FPGA). The user can select from a list of

possible polynomials for the given symbol width or

allow the software to automatically calculate the best

polynomial. Based on all parameters, the software

builds the multiplier structures in the memory, propa-

gates the possible constants to simplify them, and eval-

uates the circuits for an ASIC or FPGA. At the beginning

of the evaluation, the software creates general multipli-

ers for all possible polynomials for the given symbol

width. It creates the multipliers using a cell-gate-net

model. The cells represent logic cells like AND and

XOR, as well as inputs and outputs. The nets represent

wires interconnecting the cells. The gates don’t have a

physical representation, but they interface one cell with

one net to facilitate manipulating the circuit in the pro-

gram memory and to decrease the computation time.

After creating the general multipliers, RS-OPGE uses

instances of them to propagate the available constants.

It then evaluates the final circuits. For an ASIC target, it

computes only the logic cells used, counting the num-

ber of transistors required to implement the logic. For

example, for each 2-input AND cell in the circuit, the

algorithm adds 6 transistors to the count; for a 3-input

XOR cell, it counts 12 transistors, reducing the cell into

two 2-input XORs. For each polynomial, the software

chooses the constants that generate multipliers with the

fewest transistors required for implementation. RS-OPGE

uses the polynomial with the lowest final transistor

count for generating VHDL code.

When the chosen target is FPGA instead of ASIC, the

steps are almost the same, but the function that evalu-

ates the multipliers with propagated constants is differ-

ent. Instead of counting the number of transistors, it

counts the number of 4-input lookup tables (LUT4s)

used to implement the logic. The way to compute the

cost for an FGPA has some peculiarities, because the

implementation of a very simple logic can consume the

same number of LUT4s as a very complex logic. This

happens because a LUT4 can implement any logic con-

sisting of 4 inputs and 1 output, regardless of the com-

plexity. To compute it, the generator looks at the num-

ber of inputs and outputs in the multiplier circuits and

computes the number of LUT4s to implement the logic,

without evaluating the circuit’s complexity.

The software then generates a VHDL description for

the RS code implementation that is the most area effi-

cient for the chosen target.

Results
The RS-OPGE tool allowed for more accurate com-

parisons between previously manually implemented

cores and more complex optimized cores; this capability

permits us to evaluate the proposed techniques’ efficien-

cy. We base our results on the synthesis of the generated

VHDL code into a VirtexE 600 FPGA from Xilinx. We mea-

sured the area cost in lookup tables, the smallest logic

units presented in the FPGA. The FPGA characterizes four

LUTs combined with two flip-flops and a set of small glue

logic as two slices presented in one configurable logic

block (CLB). The performance estimation comes from the

timing report. The delay depends on the number of slices

(LUTs) in cascade and the routing.

RS code cost improvement based on proposed
optimization techniques

The first experiment aims to show that the best choice

of polynomial is not always based on the simplest trino-

mial—for example, the polynomial 131. We performed

an experiment with different word sizes, using the same

number of bits in the symbols, to check whether the cho-

sen polynomial is the same in each case, and whether the

polynomial optimization technique matters in the final

result. Table 2 shows the chosen polynomials for each dif-

ferent word size to achieve the best result in terms of area.

We obtained these results using RS-OPGE. In about half

the cases, RS-OPGE chose the simplest trinomial (131) that

generates the best cost for a generic multiplier. However,

for many other word sizes, other polynomials can yield

lower cost for the multipliers, depending on the word size.

This leaves open the possibility of better solutions, includ-

ing the search for the best polynomial.

As explained earlier, there are two optimization tech-

niques that we can apply to RS code to reduce multi-

plier cost: finding the best polynomial, and finding the

best constant for the multipliers. We applied these opti-

mization techniques to case studies of RS codes that do

not use the maximum word size, which leaves symbols

unused and allows a higher flexibility of optimization.

Table 3 shows the results.

Design for Yield and Reliability

54 IEEE Design & Test of Computers

The first technique shown in Table 3 uses the simplest

trinomial (131), the second one chooses the best poly-

nomial, the third one chooses the best constants among

the symbols, and the last technique combines the pre-

vious two techniques (A and B). Some results show that

using the simplest trinomial achieved the best area cost,

whereas other cases show that combining techniques A

and B (as shown in Table 3) achieved the best trade-off.

Note that combining the techniques considerably

reduces the area. Although it seems that using only the

simplest trinomial achieved the best results in three of

the eight cases (always in decoders), the tool always has

the best results for the sum of encoder and decoder

results of the same code, which is the optimization goal.

This observation shows the efficiency of the proposed

technique and the importance of having the RS-OPGE

tool optimize and generate the RS core. In summary,

there is a margin in each RS code implementation for

optimization, and the RS-OPGE tool provides a way to

easily test and generate the best approximate result,

which manual methods could not achieve in most cases.

To show that the RS-OPGE tool’s achieved results are

correct and similar to a manual optimization, we com-

pared previously manually optimized RS cores with the

RS-OPGE results. Table 4 shows these implementation

results in the case study of an RS code using 7-bit sym-

bols in a 112-bit word. The first version of the RS code

is the one presented in our previous work;11 the results

for this initial version appear in Table 3 of this earlier

work, labeled as NEU03. We used this version in the

final implementation of an MBU-tolerant memory and

designed it manually, without optimizations. The sec-

55January–February 2005

Table 2. Polynomials chosen for different word sizes

using a Reed-Solomon code with 7-bit symbols.

No. of

Word size (bits) constants Polynomial

7 3 193

14 6 193

28 12 193

56 24 131

112 48 131

224 96 131

350 150 131

700 300 131

875 375 137

Table 3. Comparison of optimization techniques in Reed-Solomon codes using the RS-OPGE tool.

 Optimization techniques

Using Choosing Choosing Combining

 simplest trinomials polynomial (A) constants (B) techniques A and B

No. of LUTs/ No. of LUTs/ No. of LUTs/ No. of LUTs/

RS codes* Polynomial Delay (ns) Polynomial Delay (ns) Polynomial Delay (ns) Poly Delay (ns)

5, 32, ENC 37 45 / 7.0 41 41 / 6.0 37 33 / 5.7 37 33 / 5.7

5, 32, DEC 37 110 / 14.5 41 113 / 13.9 37 114 / 15.9 37 114 / 15.9

ENC + DEC

(area only) 37 155 / NA 41 154 / NA 37 147 / NA 37 147 / NA

5,64, ENC 37 75 / 7.1 47 77 / 8.1 37 75 / 7.1 47 71 / 7.2

5,64, DEC 37 186 / 16.6 47 174 / 17.3 37 185 / 15.5 47 175 / 17.0

ENC + DEC

(area only) 37 261 / NA 47 251 / NA 37 260 / NA 47 246 / NA

7, 64, ENC 131 98 / 9.1 137 90 / 10.6 131 65 / 6.0 131 65 / 6.0

7, 64, DEC 131 267 / 18.3 137 256 / 18.3 131 276 / 18.4 131 276 / 18.4

ENC + DEC

(area only) 131 365 / NA 137 346 / NA 131 341 / NA 131 341 / NA

7, 128, ENC 131 151 / 11.3 137 167 / 10.5 131 150 / 7.0 137 153 / 7.2

7, 128, DEC 131 434 / 20.1 137 400 / 19.6 131 434 / 22.5 137 415 / 19.0

ENC + DEC

(area only) 131 585 / NA 137 567 / NA 131 584 / NA 137 568 / NA

* RS codes are denoted by symbol width (bits), word size (bits), and mode (encoder, decoder, or both).

ond version (also generated manually) evolved from

the first one. We carefully chose the constants used,

reducing area overhead using the concept that polyno-

mials with more zero constants generate a more opti-

mized core. We designed these two versions using the

same polynomial (137). Using that same polynomial,

the RS-OPGE tool automatically generated the third ver-

sion. The constants that the tool chose were not the

same as those for the manually designed second ver-

sion; it seemed possible to achieve a reduction in area

with the RS-OPGE tool. The fourth version was also auto-

matically generated, but without the restriction of using

the same polynomial. In this case, the tool chose 131

(the simplest trinomial). This choice represented the

best trade-off between the polynomial and the constants

for the multipliers in the RS code.

Table 5 shows the results of using the maximum

word size. In this case, it is necessary to use all available

constants, leaving the best-polynomial search as the

only optimization. The table shows manually imple-

mented versions with 5- and 7-bit symbols; they use the

polynomials 37 and 137. The 5-bit version has 145 infor-

mation bits, and the 7-bit version, 875. In this case, the

only technique that you can use to optimize the code is

to search all possible polynomials. The RS-OPGE has

automatically chosen the polynomials 47 and 157.

The automatic approach successfully generated bet-

ter results for both encoder and decoder blocks of the 5-

bit version, as Table 5 shows. However, the manual opti-

mization method achieved better results for the decoder

block of the 7-bit version. This happened because the

RS-OPGE tool accounts for only the multiplier costs, leav-

ing the other circuitry out of the evaluation process. For

the encoder block, this approximation is very good,

because the only components unaccounted are XOR

gates at the multiplier outputs, which have the same cost

in all encoders. The decoder block needs one divider

circuitry after these XOR gates, which can have different

costs for each chosen polynomial. The RS-OPGE tool

estimates a similar area for different chosen polynomi-

als. Computing the divider circuitry in the optimization

process can produce even better results. We will con-

sider this in the next version of the tool.

Evaluating the time complexity of the RS-OPGE
tool’s algorithm

To evaluate the speed of the algorithms, we con-

ducted two experiments. The first one changes the sym-

bol width, which represents the order of the polynomial

for a fixed word size; and the second one changes the

word size for a fixed symbol width. Tables 6 and 7 show

the execution times.

These tables show that the increase in execution time

arises mainly from symbol width s. However, even for a

Design for Yield and Reliability

56 IEEE Design & Test of Computers

Table 4. Area and performance comparison between codes generated manually and automatically. We evaluate area in terms of the

number of lookup tables (LUT4s) and the reduction percentage; we evaluate performance in terms of delay and the number of slices in

the critical path.

Manually RS-OPGE tool (free

 NEU03 optimized RS-OPGE tool choice of polynomial)

Parameter Encoder Decoder Encoder Decoder Encoder Decoder Encoder Decoder

No. of LUT4s 215 538 140 402 134 392 129 370

Difference from NEU03 (%) NA NA −35 −25 −37 −27 −39 −31

Delay (ns) 7.25 47.6 7 30.5 7 30.5 6.9 30.4

No. of cascaded slices 9 33 8 22 8 22 8 22

Table 5. Comparison between codes generated manually and automatically (using the RS-OPGE tool) for the maximum word size.

 Manually optimized RS-OPGE tool

 5 bits 7 bits 5 bits 7 bits

Parameter Encoder Decoder Encoder Decoder Encoder Decoder Encoder Decoder

No. of LUT4s 194 358 2,161 2,809 184 347 2,152 2,832

Delay (ns) 9.2 20.7 9.6 29.9 9.2 20.7 9.46 30.5

No. of cascaded slices 7 13 8 22 7 13 8 22

symbol width of 10 bits, the time is less

than 20 minutes. That width can protect

up to 10,000 bits per word—much more

than current applications demand. The

generation time is also considerably less

than the time required for synthesizing

the generated VHDL code in a commer-

cial synthesis tool.

Comparing commercial RS code
and RS-OPGE-generated cores

We compared a commercial RS core

with the proposed algorithm implemented in the RS-

OPGE tool. The commercial core is the Xilinx Reed-

Solomon Encoder and Decoder Logicore version 4.1.

The first difference between the cores is that the Xilinx

core operates in serial mode (it receives one symbol per

clock cycle and calculates the result using several clock

cycles), whereas the developed core operates in paral-

lel mode (it receives all data and calculates the result

in the same cycle). Consequently, the Xilinx core has

few changes in area for the different codes, but it has

drastic increases in computation times. In the devel-

oped core, the area varies between the codes, but the

computation time is almost the same, which represents

a big benefit.

Table 8 shows a comparison of three different codes.

In general, the Xilinx core optimizes area, and our solu-

tion optimizes performance. We evaluate performance

by the total computation time each approach achieves,

which in fact gives the total time required to encode or

decode a given word. The delays in this case are only

considered to measure the maximum clock cycle. For

small RS codes with word sizes less than 200 bits, the

proposed RS-OPGE-optimized RS code core has an area

comparable to that of the commercial core and a much

higher performance. For larger codes, there is a trade-

off between area and performance. For example, in the

last code presented in the table, 7-bit symbols and an

875-bit word, the proposed RS-OPGE-generated code

has a 7 times larger area then the Xilinx core, but the

computation time is more than 60 times faster.

FUTURE WORKS INCLUDE the development of tech-

niques to compare the overhead for codes with differ-

ent parameters, allowing a higher flexibility to the user,

and also the inclusion of other EDAC codes for auto-

matic generation and comparison with existing codes.

Modern ICs will have to incorporate these complex

codes to give the degree of reliability needed in secure

systems designed in VDSM technologies. ■

57January–February 2005

Table 6. Execution times for variable

symbol width and fixed word size.

Symbol width (bits) Time (s)

5 6

6 6

7 21

8 35

9 226

10 1,039

Table 7. Execution times for fixed symbol

width and variable word size.

Word size (bits) Time (s)

28 16

56 20

112 22

224 28

448 71

875 81

Table 8. Comparison of codes automatically generated using the Xilinx code generator and the RS-OPGE tool. We measure area by

number of LUTs and number of slices, and evaluate performance by computation time. To calculate CT, we multiply the delay of each

cycle by the number of cycles for encoding and decoding.

 Xilinx core generator RS-OPGE tool

 Area Computation Area

(no. of (no. of Delay No. of time (no. of (no. of Delay = CT No. of

RS codes* LUT4s) slices) (ns) cycles (ns) LUT4s) slices) (ns) cycles

5, 145, ENC 80 61 7.41 32 237.12 184 92 9.2 1

5, 145, DEC 348 213 12.33 50 616.5 347 174 20.7 1

7, 112, ENC 88 68 7.61 19 144.4 129 65 6.9 1

7, 112, DEC 469 292 13.31 37 492.47 370 185 30.4 1

7, 875, ENC 90 69 7.61 128 974.08 2,152 1,076 9.46 1

7, 875, DEC 456 281 13.31 146 1,943.26 2,832 1,416 30.5 1

* RS codes are denoted by symbol width (bits), word size (bits), and mode (encoder, decoder).

Acknowledgments
We thank CNPq Brazilian Agency for their support

of this work.

References
1. S. Hamdioui, Testing Multi-Port Memories, Theory and

Practice, PhD thesis, Dept. Computer Eng., Delft Univer-

sity of Tech., 2001.

2. A. Johnston, “Scaling and Technology Issues for Soft

Error Rates,” Proc. 4th Ann. Research Conf. on Reliabili-

ty, Stanford Univ., 2000;

http://parts.jpl.nasa.gov/docs/Scal-00.pdf.

3. R.A. Reed et al., “Heavy Ion and Proton Induced Single

Event Multiple Upsets,” IEEE Trans. Nuclear Science,

vol. 44, no. 6, Dec. 1997, pp. 2224-2229.

4. F. Wrobel et al., “Simulation of Nucleon-Induced Nuclear

Reactions in a Simplified SRAM Structure: Scaling Effects

on SEU and MBU Cross Sections,” IEEE Trans. Nuclear

Science, vol. 48, no. 6, Dec. 2001, pp. 1946-1952.

5. K. Johansson et al., “Neutron Induced Single-Word Mul-

tiple-Bit Upset in SRAM,” IEEE Trans. Nuclear Science,

vol. 46, no. 6, Dec. 1999, pp. 1427-1433.

6. S. Buchner et al., “Investigation of Single-Ion Multiple-Bit

Upsets in Memories on Board a Space Experiment,”

IEEE Trans. Nuclear Science, vol. 47, no. 3, June 2000,

pp. 705-711.

7. P. Shirvani, N. Saxena, and E. McCluskey, “Software

Implemented EDAC Protection Against SEUs,” IEEE

Trans. Reliability, vol. 49, no. 3, Sept. 2000, pp. 273-284.

8. G. Redinbo, L. Napolitano, and D. Andaleon, “Multibit

Correcting Data Interface for Fault-Tolerant Systems,”

IEEE Trans. Computers, vol. 42, no. 4, Apr. 1993, pp.

433-446.

9. R. Hentschke et al., “Analyzing Area and Performance

Penalty of Protecting Different Digital Modules with Ham-

ming Code and Triple Modular Redundancy,” Proc. 15th

Symp. Integrated Circuits and Systems Design (SBCCI

02), IEEE CS Press, 2002, pp. 95-100.

10. K. Gray, “Adding Error-Correcting Circuitry to ASIC

Memory,” IEEE Spectrum, vol. 37, no. 4, Apr. 2000, pp.

55-60.

11. G. Neuberger et al., “Multiple Bit Upset Tolerant SRAM

Memory,” ACM Trans. Design Automation Electronic

Systems, vol. 8, no. 4, Oct. 2003, pp. 577-590.

12. C. Chiou et al., “Low-Complexity Finite Field Multiplier

Using Irreducible Trinomials,” Electronics Letters, vol.

39, no. 24, Nov. 2003, pp. 1709-1711.

13. A.D. Houghton, The Engineer’s Error Coding Handbook,

Chapman & Hall, 1997.

Gustavo Neuberger is a PhD stu-
dent at the Institute of Informatics of
the Federal University of Rio Grande
do Sul in Porto Alegre, Brazil. His
research interests include fault toler-

ance, radiation effects, DFT, and SRAM memories.
Neuberger has a BS in computer engineering from the
Federal University of Rio Grande do Sul. He is a mem-
ber of the ACM.

Fernanda Gusmão de Lima
Kastensmidt is a professor at the
Institute of Informatics of the Federal
University of Rio Grande do Sul in
Porto Alegre, Brazil. She is also a col-

laborative professor in the Department of Digital
Systems Engineering at State University of Rio Grande
do Sul. Her research interests include VLSI testing
and design, fault effects, fault-tolerant techniques,
and programmable architectures. Kastensmidt has a
BS in electrical engineering, and an MS and a PhD in
computer science and microelectronics from the
Federal University of Rio Grande do Sul. She is a
member of the IEEE.

Ricardo Reis is a professor at the
Institute of Informatics of the Federal
University of Rio Grande do Sul, and
the Latin America liaison for IEEE
Design & Test. His research interests

include VLSI design, CAD, physical design, design
methodologies, and fault-tolerant techniques. Reis has
a BSc in electrical engineering from the Federal
University of Rio Grande do Sul, and a PhD in com-
puter science and microelectronics from the Institut
National Polytechnique de Grenoble, France. He is a
vice president of the International Federation for
Information Processing and a member of the IEEE.

Direct questions and comments about this article
to Gustavo Neuberger, Av. Venâncio Aires 177/605,
Bairro Cidade Baixa, Porto Alegre – RS – Brazil,
90040-191; neuberg@inf.ufrgs.br.

For more information on this or any other computing topic,

visit our Digital Library at http://www.computer.org/

publications/dlib.

Design for Yield and Reliability

58 IEEE Design & Test of Computers

