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Statistical Model for the Circuit Bandwidth
Dependence of Low-Frequency Noise in

Deep-Submicrometer MOSFETs
Gilson I. Wirth, Member, IEEE, Roberto da Silva, and Ralf Brederlow, Senior Member, IEEE

Abstract—This paper covers measurement, analytical analysis,
and Monte Carlo simulation of the frequency and bandwidth
dependence of MOSFET low-frequency (LF) noise behavior. The
model is based on microscopic device physics parameters, which
cause statistical variation in the LF noise behavior of individual
devices. Analytical equations for the statistical parameters are
provided. The analytical model is compared to experimental data
and Monte Carlo simulation results.

Index Terms—Analog circuits, low-frequency (LF) noise, MOS
transistors, noise modeling, RF circuits, variability.

NOMENCLATURE

Ai Amplitude coefficient of the Lorentzian power
spectrum of the ith trap.

〈A2〉 Mean value of the squared amplitude
coefficients Ai.

〈A4〉 Mean value of A4
i .

fi Corner frequency of the Lorentzian power spec-
trum of the ith trap.

fL, fH Lower and upper boundaries of the bandwidth of
interest in a given circuit design, respectively.

fmin, fmax Lower and upper boundaries delimiting the fre-
quency window in which random telegraph signal
(RTS) is the origin of the low-frequency (LF)
noise, respectively.

L Device channel length.
Ndec ln 10 Trap density per unit area and frequency decade.
Ntr Actual number of traps in a particular device.
N = 〈Ntr〉 Average number of traps in an ensemble of de-

vices, with corner frequencies fi lying between
fmin and fmax.
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npBW Noise power integrated over the bandwidth of
interest in a given circuit design.

S(f) Noise power spectral density at frequency f .
W Device channel width.
σnp Standard deviation of npBW.
σS(f) Standard deviation of S(f).

I. INTRODUCTION

PREVIOUS works show that the low-frequency (LF)
noise performance of modern small-area MOS devices

is dominated by random telegraph signal (RTS) fluctuations
[1]–[8]. Their origin is the capture and subsequent emission of
charge carriers at discrete trap levels near the Si−SiO2 interface
[3]–[9]. For deep-submicrometer devices, the number of traps
with energy within a few kT close to the surface Fermi level
is small [8]. As both the number of traps and their position
over the channel are random variables, noise performance
may strongly vary between different devices on one chip and,
moreover, even between different operation points of a single
device [2], [8].

In a previous work by the same authors, an analytical
modeling approach, which is based on microscopic instead of
distributed quantities, was presented [2]. This paper advances
statistical modeling by including Monte Carlo simulation, ex-
perimental data, and detailed modeling of noise behavior de-
pendence on circuit bandwidth. Experimental data and Monte
Carlo simulations for the dependence of statistical noise be-
havior on frequency are also presented with comparison to
analytical model equations.

This paper is organized as follows: In Section II, the analyti-
cal statistical modeling approach presented in [2] is extended to
include the frequency dependence of statistical noise behavior.
In Section III, Monte Carlo simulations that corroborate the
results of the analytical analysis are presented, and the model is
compared to experimental data from three different technology
nodes. Finally, in Section IV, the paper is concluded.

II. MICROSCOPIC STATISTICAL LF NOISE MODELING

Traps located in the gate oxide near the interface to the
silicon capture and reemit some of the carriers responsible for
the current flowing between the source and the drain of the
device [3]–[10]. The resulting LF noise power spectrum may
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be written as the summation of the contribution of each one of
the Ntr traps found in the device [2], [11], i.e.,

S(f) =
Ntr∑
i=1

A2
i

1
fi

1

1 +
(

f
fi

)2 . (1)

The Lorentzian spectrum of each trap corresponds to the
Fourier transform of the autocovariance of the time-domain
RTS [12]. The parameter fi defines the corner frequency of the
Lorentzian spectrum of the ith trap. Please note that Ai is
the amplitude coefficient of the Lorentzian power spectrum of
the ith trap (in frequency domain) and not the amplitude of the
voltage δVG or current δID fluctuation of the time-domain RTS.
Ai is related to the time-domain RTS parameters amplitude
and β = τc/τe, where τc is the electron capture, and τe is the
emission time constant, as discussed in [2].

N = 〈Ntr〉, the average number of traps with corner fre-
quency fi lying between the frequencies fmin and fmax, which
delimit the frequency interval in which RTS is the origin of the
LF noise, is then proportional to the active device area W × L
and equal to [2], [8]

N = Ndec ln
(

fmax

fmin

)
WL (2)

where Ndec ln 10 is the trap density per unit area and frequency
decade.

The LF noise is modeled as the superposition of individual
Lorentz spectra that sum up to yield device noise behavior as
given by (1).

The average value of the noise power spectral density 〈S(f)〉
evaluated by calculating the average value of (1) over Ai, fi,
and Ntr, is [2]

〈S(f)〉 =
〈A2〉NdecWL

f

π

2
(3)

where 〈A2
i 〉 = 〈A2〉 is the average of the squared amplitude

coefficients. This equation shows the commonly known 1/f
behavior. The details of the derivation are found in [11].

Evaluation of the standard deviation of S(f) leads to [2]

σ2
S(f) =

〈A4〉NdecWL

2
1
f2

(4)

where 〈A4
i 〉 = 〈A4〉. The normalized standard deviation then

amounts to

σS(f)

〈S(f)〉 =
√

2

π
√

NdecWL

√
〈A4〉
〈A2〉2 . (5)

Here, the contributions due to scattering of the parameters
Ai, Ntr, and fi are all taken into account.

As can be seen in (5), the normalized standard deviation of
the LF noise power spectral density σS(f)/〈S(f)〉 depends on
variations in the amplitude coefficients Ai of individual traps,
as given by (〈A4〉/〈A2〉2)0.5, and on the trap density and de-
vice geometry after (NdecWL)−0.5. The normalized standard
deviation does not depend on frequency f . The dependence

on device geometry after (NdecWL)−0.5 is a property of the
Poisson statistics. Ntr is assumed to be Poisson distributed
[2]. The (〈A4〉/〈A2〉2)0.5 dependence shows that variations
on the amplitude coefficients Ai of the contribution of a trap
are relevant for statistical variations in the LF noise behavior.
Furthermore, since the amplitude coefficients Ai may show
strong bias point dependence, the standard deviation of the LF
noise power may depend on bias point, as discussed in [2].

Earlier in this paper, the modeling of noise amplitude at a
given frequency f and its standard deviation were presented.
However, often, the noise power integrated over the circuit
bandwidth npBW and its related standard deviation are of even
higher interest to the circuit designer. This parameter is given
by the integration of (1) from fL to fH , which are the lower
and upper boundaries of the bandwidth of interest in a given
circuit design, as follows:

npBW =

fH∫
fL

S(f) df. (6)

Inserting (1) in (6) leads to

npBW =

fH∫
fL


Ntr∑

i=1

A2
i

1
fi

1

1 +
(

f
fi

)2


 df (7)

and finally [2], [11]

〈npBW〉 = 〈A2〉π
2

ln
(

fH

fL

)
NdecWL. (8)

The normalized standard deviation of the noise power spec-
tral density in the frequency band between fL and fH is
evaluated as being [2], [11]

σnp

〈npBW〉 =

√
〈np2

BW〉 − 〈npBW〉2
〈npBW〉

=
2

π
√

NdecWL

√
〈A4〉
〈A2〉2

×

√√√√√√
fH∫
fL

fH∫
fL

1
(f ′2−f2) ln

(
f ′

f

)
df df ′

ln2 fH

fL

. (9)

The integral in the aforementioned equation has no known
analytical solution. It is important to note that the last square
root in the aforementioned equation, which contains the integral
with no analytical solution, contains only terms in frequency f .
Hence, the bandwidth dependence is described by the terms in
this square root, as will be discussed later in this paper.

In [2], a simplification was introduced to allow the analytical
evaluation of 〈np2

BW〉, leading to an approximation for the
standard deviation of the noise power in the bandwidth of
interest [2, eq. (67)]. The simplification was to convert the
average of a product into a product of averages in [2, eq. (63)].
In this paper, this simplification is removed, and the dependence
of noise behavior on circuit bandwidth is discussed in detail.
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Fig. 1. Fitting function g(fH/fL) for the integral with no analytical solution
in (9). The squares are the results from the numerical integration of the term
with no analytical solution in the last square root on the right-hand side of
(9). The full line is the fitting function g(fH/fL) for this term (10). A good
agreement between numerical integration and fitting function is found.

The first important observation is that the integral in the
square root of (9) does not depend on the absolute values of
fL and fH , but only on the ratio fH/fL. Furthermore, this is
the only term in (9) that contains dependence on frequency.
Therefore, a single variable fH/fL can be introduced to
describe the bandwidth dependence. Starting from this
observation, curve-fitting techniques may be applied in order
to find an appropriate fit for (9) [11]. Hence, we have

σnp

〈npBW〉 =
2
π

1√
NdecWL

√
〈A4〉
〈A2〉2 g

(
fH

fL

)

≈ 2
π

1√
NdecWL

√
〈A4〉
〈A2〉2

b(
fH

fL

)c . (10)

Here, the fitting function g(fH/fL) = b/(fH/fL)c, where
b = 0.74 and c = 0.05, describes the dependence on circuit
bandwidth. It is a simple power law. This fitting is compu-
tationally efficient and suitable for modeling and simulation
purposes in integrated circuit design. This power law fit has
a fit error of order 10−3, compared to a fit error of order
10−4 for the Boltzmann fit, as discussed in [11]. However, the
power law is simpler than the Boltzmann fit, and its accuracy is
appropriate for modeling and circuit simulation purposes. Fig. 1
compares the numerical solution of the term with no analytical
solution in (9) with the fitting equation g(fH/fL). A very good
agreement between the numerical solution and the analytical
fitting equation is found.

III. MONTE CARLO SIMULATIONS AND

EXPERIMENTAL RESULTS

In order to explore the LF noise behavior of small-area de-
vices and validate the analytical equations derived in Section II,
a comparison of model equations to Monte Carlo simulations
and to experimental data is done in this section. The normalized

standard deviation of the noise power σS(f)/〈S(f)〉 depends
on Ai, Ndec, and the transistor area WL. The normalized
standard deviation of the integrated noise power σnp/〈npBW〉
depends on Ai, Ndec, the transistor area WL, and the frequency
bandwidth defined by fH and fL. The dependence of both
σS(f)/〈S(f)〉 and σnp/〈npBW〉 on Ndec and the transistor
area WL has been studied in previous works [2], [11]. In this
paper, it is verified by experimental results and Monte Carlo
simulation that σS(f)/〈S(f)〉 does not depend on frequency f .
The dependence of σnp/〈npBW〉 on the frequency bandwidth
defined by fH and fL is also verified by experimental results
and Monte Carlo simulation. Furthermore, the dependence of
σS(f)/〈S(f)〉 and σnp/〈npBW〉 on Ai is verified by Monte
Carlo simulation.

The LF noise behavior of three different CMOS technolo-
gies was experimentally characterized. The minimum transistor
sizes for the 0.25-µm node are W = 0.30 µm and L = 0.25 µm
(tox = 5 nm, nominal supply voltage Vdd = 2.5 V). For the
0.13-µm node, the minimum sizes are W = 0.16 µm and L =
0.13 µm (tox = 2.2 nm, Vdd = 1.5 V), and for the 0.09-µm
node, the minimum sizes are W = 0.12 µm and L = 0.09 µm
(tox = 1.6 nm, Vdd = 1.2 V). For the experimental results
shown here, a total of 127 transistors were measured in the
0.13-µm technology node. For the 0.25- and 0.09-µm technol-
ogy nodes, a total of 30 and 18 transistors were experimentally
characterized, respectively. The details of the measurement
setup are described in [13].

For model parameter extraction, first, the average number of
traps per device in the measurement frequency range 〈Ntr〉 is
extracted, as described in [1] and [2]. For the 0.25-, 0.13-, and
0.09-µm technology nodes, 〈Ntr〉 is 9.0, 2.7, and 1.8, respec-
tively. The measurement frequency range for the evaluation of
〈Ntr〉 is 1 Hz to 10 kHz.

After the extraction of N = 〈Ntr〉, (NdecWL)0.5 is calcu-
lated using (2). The term (2/π) · (〈A4〉/〈A2〉2)0.5 is then the
only unknown term in (5) and (9) and is evaluated to bring
model and experimental data into agreement. For the minimum-
size transistors in the 0.25-, 0.13-, and 0.09-µm technology
nodes, the term (NdecWL)−0.5 is found to be equal to 1.01,
1.85, and 2.26, respectively. The term NdecWL ln 10 is then
the average number of number of traps per frequency decade
in the device active area. The average number of traps per
device in the measurement frequency range is then given by
〈Ntr〉 = NdecWL ln(104).

Monte Carlo simulation of the LF noise behavior of small-
area MOSFETs as the superposition of different RTS, as given
by (1), is performed using the following algorithm.

1) First, an array of 268 frequency values equally spaced in
a log scale is generated. Each frequency value is indexed
with an index numbered from 1 to 268. The value of fmin

is chosen to be 1/1024 Hz, and fmax is 10.9 MHz. The
ratio of the geometric progression is 2(1/8).

2) Simulations with different average values for number of
traps 〈Ntr〉 are carried out.

3) For each sample, the number of traps in that particular
sample is chosen by lot according to a Poisson distribu-
tion with an average equal to 〈Ntr〉.
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4) A random ensemble with the amplitude coefficient Ai of
each trap is generated. Simulations are carried out for
ensembles with different standard deviations in Ai, i.e.,
different values for (〈A4〉/〈A2〉2)0.5.

5) The corner frequency fi of each trap in a given sample
is chosen by lot according to a uniform distribution
for the 268 frequency indexes. Since the corresponding
frequency values are distributed in a log scale, they will
be distributed according to [2, eq. (27)].

6) To allow the evaluation of the average values and the stan-
dard deviations, an ensemble of 620 samples (MOSFETs)
is simulated for each pair 〈Ntr〉 and (〈A4〉/〈A2〉2)0.5.

7) S(f) corresponding to each sample is calculated after (1).
8) 〈S(f)〉2 and 〈S(f)2〉 are evaluated.
9) σ(S(f)) is then evaluated.

10) Next, the noise power npBW and the squared noise
power np2

BW in each of the 620 samples are numerically
integrated over 11 different circuit bandwidths, i.e., for
11 different pairs fL and fH , after (7) and [2, eq. (63)],
respectively.

11) Finally, the mean values 〈npBW〉 and 〈np2
BW〉, as well

as the standard deviation σnp, are evaluated for the 11
different circuit bandwidths.

In order to verify the correctness of the derived analytical
model equations, the dependence of 〈S(f)〉, σS(f), 〈npBW〉,
and σnp on the parameters Ndec, W , L, A, and f was compared
to the Monte Carlo simulation results. A very good agreement
between Monte Carlo simulations and the analytical model was
found. To keep the paper compact, only the most relevant results
are explicitly shown here, together with experimental data. The
bias point dependence of LF noise behavior is discussed in
[1] and [2].

For the minimum-size transistors operated in satura-
tion, the experimental value for σS(f)/〈S(f)〉 at frequency
f = 4 Hz is 5.4 for the 0.13-µm technology node and 5.1 for the
0.09-µm technology node. The standard deviation of measure-
ment accuracy is 0.3 and 0.45, respectively. The experimental
values for σnp/〈np〉 at fH/fL = 104 Hz/1 Hz are 1.9, 3.6,
and 3.5 for the minimum-size transistors of the 0.25-, 0.13-,
and 0.09-µm technology nodes, respectively. The respective
values for the standard deviation of measurement accuracy are
0.3, 0.3, and 0.45. The factor (2/π) · (〈A4〉/〈A2〉2)0.5 is then
evaluated to be equal to 4.02, 4.08, and 3.30 for the 0.25-, 0.13-,
and 0.09-µm technology nodes, respectively. Please note that
a normalized standard deviation greater than one, as obtained
for the minimum-size devices, does not mean that one can get
negative noise power, as discussed in [2].

Fig. 2 shows analytical model results, Monte Carlo simula-
tion results, and experimental data for the normalized standard
deviation of the noise power σS(f)/〈S(f)〉 as a function of fre-
quency f for minimum-size transistors from the 0.13-µm tech-
nology node biased in saturation at strong inversion with drain
voltage equal to 0.85 V and gate voltage equal to 0.85 V. Monte
Carlo simulation is performed according to the aforementioned
algorithm for 〈Ntr〉 = 2.7 (i.e., for (NdecWL)−0.5 = 1.85) and
(2/π) · (〈A4〉/〈A2〉2)0.5 = 4.08. The new experimental data
and Monte Carlo simulation results show that the normalized

Fig. 2. Normalized standard deviation of the noise power (σS(f)/〈S(f)〉)
as a function of frequency f for minimum-size transistors from the 0.13-µm
technology node (W = 0.16 µm/L = 0.13 µm). The triangles are the mea-
surement results for transistors biased in saturation. The error bars are the 2σ
values of measurement accuracy. The circles are the Monte Carlo simulation
results. The solid line corresponds to the analytical results, as predicted by (5).

Fig. 3. Dependence of the normalized standard deviation of integrated noise
power (σnp/〈npBW〉) on bandwidth for fL = 1 Hz. The full line shows
results from (9), which were obtained by numerical integration of the integral
with no analytical solution; the circles are the Monte Carlo simulation results;
the triangles show the experimental results for the transistors from the 0.13-µm
technology node (W = 0.16 µm/L = 0.13 µm) operated in saturation; the
error bars are 2σ values of measurement accuracy.

standard deviation of the noise power σS(f)/〈S(f)〉 is the same
at all frequencies f . This behavior, predicted by the model
presented in [2], is now confirmed by experimental data for
different frequencies f and Monte Carlo simulations. Despite
limited measurement accuracy, the analytical model, Monte
Carlo simulation, and experiment show good agreement.

Fig. 3 shows model results, Monte Carlo simulation results,
and experimental data for the dependence of the normalized
standard deviation of noise power integrated over the circuit
bandwidth σnp/〈npBW〉 on circuit bandwidth. The triangles
are the experimental results for minimum-size transistors from
the 0.13-µm technology node operated in saturation at strong
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Fig. 4. Dependence of the normalized standard deviation of integrated noise
power (σnp/〈npBW〉) on variability in the amplitude coefficient Ai of the
Lorentzian corresponding to a trap. The full line shows results from (10);
the circles are the Monte Carlo simulation results according to the algorithm
presented in Section III. The analytical model and Monte Carlo simulation show
good agreement.

inversion with drain voltage equal to 0.85 V and gate voltage
equal to 0.85 V. In the limit fH = fL, (5) and (9) become the
same, since the last square root in (9) becomes 2−0.5. Hence,
the value shown in Fig. 3 for fH/fL = 1 is the experimental
data for σS(f)/〈S(f)〉. The circles are Monte Carlo simulation
results for 〈Ntr〉 = 2.7 (i.e., for (NdecWL)−0.5 = 1.85) and
(2/π) · (〈A4〉/〈A2〉2)0.5 = 4.08. The full line is the result,
as predicted by (9). In order to evaluate (9), the integral in
the square root of this equation was numerically calculated
(see Fig. 1). A good agreement between experimental data,
numerical simulation, and model (9) is found.

Finally, Fig. 4 describes in detail the noise behavior depen-
dence on the amplitude coefficients Ai of trap contribution.
As described earlier, a random ensemble with the amplitude
coefficients Ai of the different traps is generated. Different dis-
tributions with different standard deviations were assumed for
generating the ensembles of random variables Ai; for instance,
normal, log-normal, Poisson, and uniformly distributed. This
allows studying the dependence on Ai independent of hypoth-
esis about the actual distribution of the amplitude coefficients
Ai. After the random ensembles for Ai are generated, the cor-
responding values of (〈A4〉/〈A2〉2)0.5 are calculated. Results in
Fig. 4 are for NdecWL = 0.6237 and fH/fL = 104 Hz/1 Hz.
The Monte Carlo simulations confirm that σnp/〈npBW〉 de-
pends on the variability in amplitude coefficients Ai of trap
contribution after (〈A4〉/〈A2〉2)0.5.

Please note that in all the Monte Carlo simulations run,
Ai, fi, and Ntr are random variables not identically distrib-
uted. In model derivation and Monte Carlo simulations, Ntr is
assumed to be Poisson distributed, fi is uniformly distributed
on a logarithmic scale, and no hypothesis is made about the
actual distribution of Ai [2], [11]. As an example of possible
distributions for Ai, Fig. 5 shows a numerically generated log-
normal distribution of an ensemble of 1000 values for Ai that
leads to (2/π) · (〈A4〉/〈A2〉2)0.5 = 4. It is important to notice

Fig. 5. Histogram of a numerically generated log-normal distribution
for 1000 Ai values as an example of a distribution leading to (2/π) ·
(〈A4〉/〈A2〉2)0.5 = 4.

that Ai is not the time-domain RTS amplitude but the amplitude
coefficient of the Lorentzian power spectrum.

IV. CONCLUSION

This paper presents a model for the statistical behavior of LF
noise performance of CMOS devices in modern technologies.
The developed modeling approach includes the modeling of
statistically relevant effects based on microscopically discrete
quantities. The model is derived from device physics and is
therefore scalable with MOSFET scaling. The analytical formu-
lation is validated through comparison to numerical simulation
and experimental results, including the analysis of frequency
dependence. For the first time, a formulation for the standard
deviation of noise power as a function of circuit bandwidth is
provided.
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