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Abstract—This paper presents a new topological methodology
for critical measurements identification in observable networks. A
measurement is said to be critical, in an observability sense, if its re-
moval from the measurement set makes the associated system lose
observability. The proposed methodology is based on the proper-
ties of both, observable measurement subnetworks (OMS) and re-
dundant branch sets (RBS), for the first time proposed. To reduce
the combinatorial bluster, the proposed method divides the mea-
surements into two groups and classifies them into two phases. It al-
lows identifying the critical measurements without any numerical
calculation. Indeed, it is simple and fast. To clarify the proposed
method and to demonstrate its simplicity, two examples are pro-
vided. The proposed method is successfully tested in the IEEE-14
bus system as well as in two realistic systems of Brazilian utilities.
The first is a 121-bus system by ELETROSUL, and the other is
a 383-bus system by Companhia Hidroelétrica do São Francisco
(CHESF).

Index Terms—Critical measurements, graph theory, network
observability, state estimation.

I. INTRODUCTION

THE performance of power-system control actions depends
mainly on the process of state estimation. On the other

hand, the performance of the state estimator depends on the
quality and availability of the existing measurements. From the
point of view of measurement availability, it is necessary to
know if the available measurements are enough to obtain an es-
timation of all the system states. In this case, the system is said
to be observable. Otherwise, it is unobservable.

Although the observability of the system is a necessary condi-
tion to obtain a state estimation, it is not sufficient to guarantee a
reliable state estimation. From the quality point of view, in order
to obtain a reliable state estimation it is necessary to guarantee
that the estimation is not affected by gross errors in the mea-
surements. Thus, the ability to detect measurements with gross
errors is one of the most important functions of the state estima-
tion process.
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The identification of the critical measurements in a measure-
ment set is very important basically due to two aspects: the
unavailability of a critical measurement, if it exists, make the
system unobservable and the fact that it is impossible to detect
gross errors in critical measurements [1].

Therefore, it is a good practice to allocate new measurements
in the network in order to transform the existing critical mea-
surements into redundant ones.

To guide this reinforcement of the measurement set, several
methods to identify critical measurements have been reported in
literature. In a general way, they can be divided in two groups:
the topological [1]–[4] and the numerical methods [5], [6].
Those of the first group are based in graph concepts and have
combinatorial nature, while those of the second group are based
on statistical concepts and are conceptually simpler, but need
some computer work and also may present some numerical
difficulties, since they require the analysis of the measurement
residuals.

The method to identify critical measurements as proposed in
[7] is a mixed numerical–symbolic method based on both a re-
duced model [8] and graph theory. In [9] using information con-
cepts, a mapping of the system states is made, finding a new
state space where the identification of critical measurements is
obtained in a quite straightforward manner. In these methods,
the numerical calculation required to identify the critical mea-
surements is reduced.

In this paper, a fast and simple topological method that allows
the identification of critical measurements requiring no numer-
ical calculation is proposed. The idea is to explore the intrinsic
nature of the measurements (flows or injections) in such a way
that the number of search possibilities is dramatically reduced,
mitigating the problem of combinatorial explosion. The method
was tested and has shown to be suitable for application in sys-
tems of large dimension.

This paper is organized as follows. Section II presents a re-
view of some topological concepts. The method, the algorithm,
and two examples are in Section III. Section IV presents the per-
formed tests, and the conclusions are reported in Section V. In
Appendixes A and B, the theoretical support of the proposed
method is developed.

II. TOPOLOGICAL CONCEPTS REVIEW

Remark 1: Some of the nomenclature and definitions pre-
sented in this paper are borrowed from [1].
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Let be a measured network, that is, a power system with a
specified measurement set; is the graph of the l-line dia-
gram, denotes the set of nodes of (or buses of )
and denotes the set of edges or branches of (lines
or branches of ). In the same way, the measurement set
on the measured network may be described by the union of

and , where denotes the set of nodes
of at which the real and reactive bus injection powers
are measured and denotes the set of branches of
on which the real and reactive flow powers are measured. The
nodes of are called measured nodes, and the branches
of are called measured branches.

Definition 1: The tree of the measured network is a
subgraph of that is connected and loop-free. Tree

is called a spanning tree if contains every node of :
.

Definition 2: A measurement assignment “ ” on a spanning
tree of is a function that associates a measurement of

to each branch of and that satisfies the following
three conditions:

1) .
2) If is an injection measurement, the node at which

occurs is an end point of branch .
3) If is a flow measurement, then .

Definition 3: A measured network is said to be topologically
observable if there exists a spanning tree of and a measure-
ment assignment “ ” associated to .

Definition 4: A measurement “ ” of is a critical
measurement of if is made unobservable when “ ” is
deleted from . If “ ” is not critical, then it is said to be
redundant.

Topologically, a measurement “ ” is critical if every mea-
surement assignment “ ” for each tree of assigns a branch
to “ ”.

Definition 5: A measured subnetwork of the measured net-
work is described by a subgraph of and a subset
of measurements of that satisfies the following
properties:

1) Each flow measured branch “ ” of is a branch of
.

2) Each measured node “ ” of is a node of .
3) Every branch “ ” of that is incident to a measured

node of is a branch of .

Definition 6: A measurement assignment on a fundamental
loop is a function “ ” that associates a measurement of
to each branch of and that satisfies the following properties:

1)
2) If is an injection measurement, the node at which

occurs is an end point of branch .
3) If is a flow measurement, then .
4) The elimination of one branch of loop generates a path

with a measurement assignment which is part of some
measurement assignment on a spanning tree .

Remark 2: Property 4) guarantees that every measurement
which is assigned to any branch of the fundamental loop is
redundant.

III. PROPOSED METHOD

The main difficulty of the existing topological methods to
identify critical measurements is their combinatorial nature,
which makes these methods unsuitable for application in very
large systems. Aiming at the reduction of this combinatorial
explosion, a methodology is proposed in this paper. Consid-
ering that the system in analysis is observable, the proposed
methodology reduces the combinatorial bluster by dividing the
measurements into two groups and the analysis into two phases.

In the first phase, the criticality of the injection measure-
ments is analyzed through the concept of observable measured
subnetworks (OMS). In the second phase, the criticality of the
flow measurements is analyzed through the concept of redun-
dant branch sets (RBS). Thus, before presenting these phases, it
is necessary to know the following definitions.

Definition 7: A measured subnetwork of the measured
network is an observable measured subnetwork (OMS) if it
is composed of a connected subgraph of and there
exists a spanning tree of and a measurement assignment
“ ”, formed only with measurements of associated to .

Definition 8: A redundant branch set (RBS) is a measured
subnetwork composed of a connected subgraph of
and a subset of redundant measurements of that
satisfies the following properties:

1) Each branch of is either a flow measured branch of
or a branch incident to an injection measurement

of .
2) Every branch which is incident to some measurement of

belongs to .
3) contains all the nodes which are end points of

.
The RBS is a concept originally created in this paper. To

clarify what an RBS is, let us identify the RBSs associated to
the 6-bus power system with the measurement set as indicated
in Fig. 1.

Considering that M1, M2, M3, M5, and M7 were previously
classified as redundant measurements, there are three RBS as-
sociated to that system:

(RBS 1):
—
— – – –
—
—

(RBS 2):
—
— –
—
—

(RBS 3):
—
—
—
— .

Remark 3: Unlike OMSs, the redundant branch sets can form
unobservable measured subnetworks (see Fig. 2).

The following Lemma demonstrates some important proper-
ties of the branches of an RBS.
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Fig. 1. RBSs of the 6-bus power system.

Fig. 2. RBS that forms an unobservable measured subnetwork.

Lemma 1: Every branch contained in a redundant branch set
is said to be a redundant branch and satisfies one or both of the
following properties:

1) The branch can be assigned to two or more redundant
measurements.

2) The branch can be put into a fundamental loop with a
redundant associated measurement assignment.

Proof: Every branch “ ” of an RBS is incident to at least
one redundant measurement “ ” of . Therefore, the mea-
sured network remains observable even after the elimination
of “ ”, which means that there exists a measurement assign-
ment on a spanning tree which does not assign “ ” to any
branch.

If the spanning tree contains the branch in analysis, another
measurement different from the eliminated one will be assigned
to this branch.

On the other hand, if the spanning tree does not contain
the branch in analysis, there will exist a path in whose two
end nodes are the end nodes of the branch in analysis. Each
branch of this path is assigned to a measurement, therefore, it
is possible to associate the measurement “ ” to the branch in
analysis forming a measurement assignment on a fundamental
loop .

Remark 4: Buses which are not incident to any redundant
branch are considered to be an RBS composed of only one bus.

The advantage of using the OMSs and the RBSs is the dra-
matical reduction of the number of searches in the algorithm.
This occurs because the OMSs and RBSs can be roughly viewed
as supernodes which contain many nodes of the network. As a
consequence, the search effort to verify the connection of the
network is much less than the search effort to verify the net-
work connection through all the nodes.

A. Phase 1

At the beginning of this phase, the OMSs are built using only
the flow measurements. During the process, the OMSs are up-
dated through the injection measurements as shown in the algo-
rithm below.

The advantage of this phase is that, in order to build the
spanning tree of , each OMS is considered a supernode
of .

The algorithm of phase 1 tries to classify as many measure-
ments as possible in the first five steps of the algorithm. These
steps are easily carried out and the searches involved are very
simple. In general, most measurements of a measured network
are classified into these five steps. As a consequence, a small
number of injection measurements remains to be classified in
Step 6, which requires a more complex search. Therefore, this
algorithm reduces significantly the problem of combinatorial
explosion.

1) Algorithm (Phase 1):

Step 1) Form all the possible OMSs using all the flow mea-
surements (see Remark 5).

Step 2) (Lemma 2) Classify every nonclassified injection
measurement which relates only nodes of a unique
OMS as redundant. If there is any nonclassified in-
jection measurement, go to the next step. Otherwise,
stop; the analysis is complete.

Step 3) (Lemma 3) Let be the number of OMSs. If there
still are nonclassified injection measurements,
all these injection measurements are classified as
critical. The analysis is complete. Otherwise, go to
the next step.

Step 4) (Lemma 4 and Remark 6) If there still exists some
OMS that is incident only to one nonclassified in-
jection measurement, this injection is classified as
critical. The corresponding OMS is coalesced with
an OMS connected to it through the measurement in
consideration in a unique OMS, and go to Step 2.
Otherwise, go to the next step.

Step 5) (Lemma 4 and Remark 6) If there still are two or
more nonclassified injection measurements which
relate nodes from only two OMSs and , then
coalesce and into a unique OMS and return to
Step 2. Otherwise, go to the next step.

Step 6) (Lemma 5) Connect all the remaining OMSs using
only nonclassified injection measurements
without forming loops. The nonclassified injection
measurements not used to connect the OMSs are
classified as redundant. As these measurements are
redundant, the branches incident to them are redun-
dant branches. Thus, the OMSs connected by these
branches are coalesced into a unique OMS. Return
to Step 2.

Remark 5: An isolated bus, i.e., a bus which is not an end
point of any flow measurement, will be considered as an OMS
composed of one bus only.

The Lemmas and Remarks mentioned in the algorithm are
presented in Appendix A.
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B. Phase 2

In Phase 2, all the injection measurements have already been
classified. Now the information about the redundancy of these
measurements will be used for the analysis of the flow measure-
ments. To carry out this phase, the RBSs are formed. First, these
RBSs are formed using only the injection measurements classi-
fied as redundant in Phase 1.

At the beginning, two buses connected by a branch will be-
long to the same RBS if there is a redundant injection measure-
ment in at least one of them. The main idea of this phase is to
form redundant branch sets and to augment them every time two
or more flow measurements that connect two or more RBSs are
classified as redundant.

Through Definition 4, it can be verified that the critical mea-
surements are incident neither to branches that can be assigned
to more than one measurement, nor to branches that can be put
into a fundamental loop which has a measurement assignment
associated to it. Based on these properties and the properties of
Lemma 1, the proposed method analyzes the criticality of the
flow measurements.

Similarly to Phase 1, the Phase 2 algorithm tries to classify as
many measurements as possible into the first three steps. Step 4
requires a more complex search algorithm.

1) Algorithm (Phase 2):

Step 1) Form the RBSs using only the injection measure-
ments previously classified as redundant (see Re-
mark 3 and 4). Go to the next step.

Step 2) (Lemma 6, 7, and 8) Classify all the nonclassi-
fied flow measurements incident only to nodes of
a unique RBS as redundant. If there is any non-
classified flow measurement, go to the next step.
Otherwise, stop; the analysis is complete.

Step 3) (Lemma 9) If there are two or more flow measure-
ments incident only to two RBSs and , coalesce
these RBSs into a unique larger RBS and return to
Step 2. Otherwise, go to the next step.

Step 4) (Lemma 10) Let be RBSs. Try to find
flow measurements which relate nodes from only

these RBSs and try to assign these measurements
to branches in such a way the

RBSs are connected through these branches into a
loop. If this is possible, coalesce into a
larger RBS and return to Step 2. Otherwise, go to the
next step.

Step 5) All unclassified flow measurements are critical ones.
The analysis is complete.

The theoretical background of the previous algorithm is pre-
sented in Appendix B.

C. Example 1

In this example, the proposed method is applied to the 6-bus
power system with the measurement set as indicated in Fig. 3.
Note that this system is observable with this measurement set.

Phase 1:

Step 1) Using the flow measurements, three OMSs are ob-
tained: [1, 2, 3]; [4, 5]; and [6].

Fig. 3. 6-bus system.

Step 2) The injection measurement M1 relates only nodes of
the OMS [1, 2, 3], so it is classified as redundant.

Step 3) There are three OMSs and two injection measure-
ments which are not classified yet. Thus, the injec-
tion measurements M4 and M6 are classified as crit-
ical and the analysis of Phase 1 is finished.

Phase 2:

Step 1) Through the injection measurement classified as re-
dundant, four RBSs are obtained: [1, 2, 3]; [4]; [5];
and [6].

Step 2) The flow measurements M2 and M3 are incident
only to nodes of the RBS [1, 2, 3]. Thus, these mea-
surements are classified as redundant.

Step 3) There are not two or more flow measurements which
relate only to two RBSs.

Step 4) It is not possible to form any fundamental loop
with the nonclassified flow measurement.

Step 5) The flow measurement M5 has not been classified
yet, thus this measurement is classified as critical.

The results obtained are:

— Critical measurements: M4, M5, and M6;
— Redundant measurements: M1, M2, and M3.

D. Structure of the Measurement Set

The method to identify critical measurements as previously
presented takes into account measurement sets formed only by
injection and flow measurements. Thus, it can be used only to
analyze the active model.

To analyze the reactive model, the proposed method trans-
forms the voltage magnitude measurements into equivalent flow
measurements. Those flow measurements are put on fictitious
branches that connect the ground to the buses having the voltage
measurement [10]. Another necessary change is to consider that
all reactive injection power measurements connect the buses
where they occur to the ground. With these adaptations, the
algorithm, as previously presented, can be applied to analyze
the reactive model. To clarify the method, the next example
is presented.

E. Example 2

The proposed method is applied to the 6-bus power system
with the measurement set as shown in Fig. 3, but now with re-
active power measurements. Consider also voltage magnitude
measurements at buses 3 and 5.
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Phase 1:

Step 1) Through the flow measurements, two OMSs are
formed (recall that the voltage magnitude mea-
surements are considered flow measurements that
connect the ground to the buses having the voltage
measurement): [1, 2, 3, 4, 5, G] and [6].

Step 2) The injection measurement M1 relates only nodes of
the OMS [1, 2, 3, 4, 5, G]. Thus, this measurement
is classified as redundant.

Step 3) There are two OMSs and two injection measure-
ments which are not classified yet. Go to the next
step.

Step 4) There is no OMS related only by one nonclassified
injection measurement.

Step 5) The injection measurements M4 and M6 relate nodes
from only the two OMSs. Thus, these OMSs are
coalesced into a unique OMS. Thus, now there ex-
ists only one OMS composed of all the buses of the
system. Return to Step 2.

Step 2) The injection measurements M4 and M6 relate
only nodes of a unique OMS. Thus, these measure-
ments are classified as redundant and the analysis of
Phase 1 is finished.

Phase 2:

Step 1) Through the injection measurements classified as re-
dundant, only one RBS is formed: [1, 2, 3, 4, 5, 6, G].

As all the buses of the system are in the same RBS, the flow
and voltage magnitude measurements will be identified as re-
dundant by the second step.

As a result, the proposed method identifies all measurements
as redundant.

IV. TESTS AND ANALYSIS OF RESULTS

To verify the efficiency of the proposed method, it was im-
plemented under the C compiler to UNIX on a Pentium 166 Hz
and applied to the IEEE-14 bus system and two realistic systems
of Brazilian utilities. One system is a 121-bus system by ELET-
ROSUL (Fig. 4), and the other is a 383-bus system by CHESF.

Using these systems, various scenarios were tested and their
results are given in Table I. They are as follows.

Scenario 1: The IEEE-14 bus system with nine injection
measurements of active power at buses 1, 2, 3, 4, 9, 11, 12, 13,
14, and six flow measurements of active power on branches
(1–2), (1–5), (4–7), (4–9), (7–8), (6–10).

Scenario 2: The IEEE-14 bus system with the measurement
set presented in case 1, but now as reactive power measure-
ments. Consider also 2-voltage magnitude measurements at
buses 8 and 10.

Scenario 3: The 121-bus system by ELETROSUL, consid-
ering 69 injection measurements and 65 flow measurements of
active power, as shown in Fig. 4.

Scenario 4: The 121-bus system by ELETROSUL, consid-
ering 69 injection measurements, 65 flow measurements of re-
active power, and eight voltage magnitude measurements, as
shown in Fig. 4.

Scenario 5: The 383-bus system by CHESF, with 132 injec-
tion measurements and 396 flow measurements of active power.

TABLE I
OBTAINED RESULTS

Scenario 6: The 383-bus system by CHESF, with 132 injec-
tion measurements, 396 flow measurements of reactive power,
and 19 magnitude voltage measurements.

The results obtained always indicated the correct answer, re-
quiring a short computing time and reducing dramatically the
number of search to classify the measurements. To illustrate this
reduction, consider the test related to Scenario 3. The proposed
method classifies all the injection measurements reaching Step 6
of Phase 1 only twice (this step requires a lot of search).

When the method reached that step by the first time, 36 in-
jection measurements had already been classified, which corre-
sponded to 52% of the number of available injection measure-
ments. The number of OMSs at this stage was 30, which means
a reduction of 75% of the system size (from 121 buses to 30
OMSs).

When that happened by the second time, 48 injection mea-
surements had already been classified and there were only 21
OMSs.

To check whether the results were correct, the observability
program developed by Bretas et al. [11] was used.

V. CONCLUSION

In this paper, a new topological method to identify critical
measurements in observable power networks was developed.
The proposed method does not require any numerical calcula-
tion and provides interesting performance in terms of speed, ef-
ficiency, and robustness.

The main advantage of the proposed method is to reduce the
combinatorial nature of the problem of identifying critical mea-
surements, dividing the measurements into two groups and the
analysis into two phases. As a consequence, the method is very
fast and of easy implementation.

These divisions are supported by a solid background on graph
theory.

Several new concepts were proposed and new results were
proved in order to justify both phases of the algorithm. The first
phase takes advantage of the properties of observable measured
subnetworks (OMS), while the second explores the properties of
redundant branch sets (RBS), for the first time proposed. Using
the OMSs and the RBSs, the search for verifying the network
connection is dramatically reduced.

Many networks available in literature and used as a test for
observability purpose were also tested in this research.

The proposed method can be useful to indicate to the system
operator the critical measurements in the monitoring scheme. It
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Fig. 4. 121-bus system by ELETROSUL (BRAZIL).

can also be applied for the design of a new measurement set, as
well as for the evaluation of an existent one.

APPENDIX A
PHASE 1

This Appendix aims to support theoretically phase 1 of the
algorithm proposed in this paper.

Lemma 2: Let be an observable measured subnetwork
composed of a connected subgraph of and a subset
of measurements of .

Suppose a measurement “ ” is added to the set and
suppose “ ” is incident only to branches of . Then the
pair , where , forms an ob-
servable measurement subnetwork (OMS) and “ ” is a redun-
dant measurement.

Proof: It is evident from the definition of measured sub-
network (Definition 5) that the pair and forms a

measurement subnetwork. As and forms an OMS,
there exists a measurement assignment on a spanning tree of

. It is clear that this tree is also a tree of the new measured
subnetwork and the same measurement assignment can be done
without using measurement “ ”. Then “ ” is a redundant mea-
surement and the new measured network is observable.

Lemma 3: Let be OMSs of an observable net-
work . If there are only measurements of pos-
sible to assign to branches of , in such a way that
all OMSs become interconnected, then measurements
are critical.

Proof: As are OMSs, then, for each , there
is a spanning tree , with a measurement assignment associated
to it. As these OMSs are subnetworks of an observable network

, there is a spanning tree with a measurement assignment
associated to that can be formed by , plus a set of
additional measurements connecting all the OMS.
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To connect those spanning trees, at least measure-
ments are necessary. As there are only additional mea-
surements possible to connect these spanning trees, is made
unobservable when any of these measurements is deleted.
Therefore all these measurements are critical.

Lemma 4: Let and be two OMSs of an observable
network . Suppose an injection measurement “ ” is incident
only to branches which connect a node of to a node of

and possibly incident to branches of or ,
then it is possible to obtain a greater observable measured sub-
network represented by

where is the set of all branches which connect to .
Proof: As and are OMSs, there are spanning

trees and with a measurement assignment associated.
The measurement “ ” can be assigned to one of its incident
branches which connect both OMSs. Let “ ” be this branch,
then forms a spanning tree for the larger measured
subnetwork and each branch of this tree has a measurement as-
signed to itself, therefore, the larger subnetwork is observable.

Remark 6: If two or more measurements are in
the situation of Lemma 4, then all these measurements are re-
dundant because one of them can be used to coalesce the OMSs
into a larger one while the others are redundant by Lemma 2.
As the choice of the measurement to coalesce the OMSs is ar-
bitrary, all of them are redundant.

Otherwise, if there is only a measurement in the situation
of Lemma 4, and there is no other path to connect the OMSs
and will be a critical measurement. This occurs because,
with the lost of the measurement “ ”, the spanning tree will
not exist any more, consequently the large OMS associated to

will be divide in two OMSs, the OMS and the OMS ,
and the network will be made unobservable.

Lemma 5: Let be observable measured subnet-
works. Consider the existence of additional measure-
ments , which are incident to branches
that connect a node of to a node of and inci-
dent to branches of . If it is possible to assign these

branches in such a way that all OMSs become intercon-
nected, then it is possible to obtain a greater observable mea-
sured subnetwork represented by

where is the set of all branches which connect to
.

Lemma 5 is a generalization of Lemma 4. The proof is very
similar, therefore, it will be omitted.

Fig. 5. Flow measurement incident to nodes which are incident to a unique
redundant injection measurement.

APPENDIX B
PHASE 2

This Appendix aims to support theoretically Phase 2 of the
algorithm proposed in this paper.

Lemma 6: The addition of a pseudo-flow in a redundant
branch does not change the criticality of any measurement.

Proof: In Lemma 1, it was proved that a redundant branch
satisfies one or both of the following properties:

1) The branch can be assigned to two or more redundant
measurements.

2) The branch can be put into a fundamental loop with an
associated redundant measurement assignment.

Thus, if a pseudo-flow is added to a redundant branch, there
will be an increase in the redundancy only of the redundant mea-
surements incident to this branch or of the redundant measure-
ments incident to branches that form a fundamental loop with
the redundant branch where the pseudo-flow was added.

Through the definition of critical measurement (Definition 4),
it can be verified that critical measurements are incident only to
branches that can be neither associated to more than one mea-
surement, nor put into a fundamental loop . Then the addition
of a pseudo-flow in a redundant branch does not change the crit-
icality of a critical measurement.

Lemma 7: If a flow measurement is incident to nodes that are
incident to a unique redundant injection measurement, then the
flow measurement is redundant (see Fig. 5).

Proof: First, note that the set of branches incident to the
redundant injection measurement plus the set of nodes inci-
dent to these branches constitute the more elementary redundant
branch set which can be formed with only redundant injection
measurements.

Consider now the flow measurement and suppose its as-
sociated measured branch belongs to . Then this branch
can be assigned to another measurement, as it was proved in
Lemma 1.

Now suppose the measured branch associated to this flow
does not belong to . For example, imagine that the flow
occurs at the branch , as shown in Fig. 5. It is necessary
to prove that there exists an alternative path to connect to
without using the flow measurement in consideration.

As proved in Lemma 6, the addition of a pseudo-flow to a
redundant branch changes the redundancy of only measure-
ments already redundant. Then, as the branches and
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Fig. 6. Flow measurement incident to nodes which are not incident to a unique
redundant injection measurement.

are redundant, one pseudo-flow can be added to
each one of these branches to verify the criticality of the flow
measurement .

Considering these two pseudo-flows, can be connected to
through the redundant branches and ,

without using flow . Then the flow measurement is redun-
dant and Lemma 7 is proved.

Lemma 8: If a flow measurement is incident to nodes
contained in the same RBS, then this flow measurement is
redundant.

Proof: Consider flow , shown in Fig. 6, that connects
node to node , which are contained in the same RBS. Note
that the branch in consideration does not belong to
this RBS and these nodes are not incident to the same injection
measurement, which was already proved in Lemma 7.

To prove that is redundant, it is necessary to demonstrate
that there exists at least one path to connect to without
using flow .

As nodes and are in the same RBS, there exists a path
formed only with redundant branches that connects to .
This path can be described by nodes , and .

Through Lemma 6, pseudo-flows can be added to redundant
branches without affecting the redundancy of the critical mea-
surements. Therefore, adding pseudo-flows to every redundant
branch of path , flow can be assigned
to a branch in a fundamental loop . Then this measurement is
redundant and Lemma 8 is proved.

Lemma 9: Let and be two RBSs of an observable mea-
sured network . If there are two flow measurements, and

, incident to branches that connect a node of to a node
of , as shown in Fig. 7, these measurements are redun-
dant and the two RBSs can be coalesced into a unique RBS rep-
resented by

Fig. 7. Two RBSs connected by two flows measured in two different branches.

where and are the branches that connect buses to and
to , respectively.

Proof: To prove this Lemma it is necessary to prove that
measurements and are redundant. First, measurement
will be analyzed.

To prove that is redundant, it is necessary to demonstrate
that there exists at least one path to connect to without
using measurement . As is an RBS, there exists at least
one path which connects nodes to without using flow .
In the same way, as is an RBS, there exists at least one path
to connect nodes to without using flow .

Therefore, through measurement , which connects node
of to node of , it is possible to obtain a path to
connect node of to node of , without using
measurement . Thus this measurement is redundant.

Following the same steps, it is possible to prove that is
also redundant.

As branches and are in a fundamental loop , they are
redundant branches and the RBSs and can be coalesced
into a unique RBS.

Lemma 10: Let be r RBSs of an observable mea-
sured network . If there are flow measurements, ,
which are incident to branches that connect the RBSs into a
fundamental loop , then these flow measurements are redun-
dant and the RBSs can be coalesced into a unique larger RBS
represented by

where B is the set of all branches which connect to
, and s are the flow measurements incident

to branches that connect the RBSs into a fundamental
loop .

Proof: As the RBSs are in a fundamental loop , the
branches and the flow measurements, used to connect these
RBSs are redundant branches and redundant measurements,
respectively. Thus, the RBSs can be coalesced in a unique
RBS.
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