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[9] ——, Supermodularity and ComplementarityPrinceton, NJ: back and observer based output feedback are stated. In [7], the notion
Princeton Univ. Press, 1998. , ~ of an operator for modeling the amplitude and the rate saturation is
[10] féé\évﬁ;cfo'iggtéékﬁzng'f}é‘ﬁ“.tr‘;céEr?;";(;_cggt’rgi)a"ggzt_hﬁi’f(,’\;l:’r'_rel'ntroduced. Based on this modeling, a low and high gain approach is
2001. used for addressing the problem of semiglobal output regulation via
[11] R. D. Yates, “A framework for uplink power control in cellular radio both state and dynamic output feedback. In [8], the problem of external
systems,IEEE J. Select. Areas Commuwol. 13, pp. 1341-1347, Sept. L,-stabilization with internal global stabilization via a scheduled low
[12] égg(z'o “S-modular games with queueing applicatiofi@feueing Syst ga?n (saturation is.avoided) s.tate. fegdback Is gddressed. It should .be
vol. 21’, pp. 449-475, 1995. i pom_ted out that, since the objectlye is the semiglobal or global stabi-
lization, these results can be applied only when the open-loop system
is null-controllable (i.e., all the poles are in the closed left half plane).
On the other hand, we can identify some works dealing with local
stabilizing solutions (see, among others, [9]-[12]). In [9], a method for
designing dynamic output controllers based @osition type feedback
Local Stabilization of Linear Systems Under Amplitude modeling of the rat_e sat_ura_tion and the use ofthe po_sitive re_al_ler_nmg is
and Rate Saturating Actuators prop_osed. The main objectlye pu_rsu_ed in that paperis th_e_ m|n|m_|zat|on
of a linear quadratic Gaussian criterion. A region of stability (region of
Jodo Manoel Gomes da Silva, Jr., Sophie Tarbouriech, and attraction) is associated to the closed-loop system. However, it should
Germain Garcia be pointed out that the size and the shape of this region are not taken into
account in the design procedure which can lead to very conservative
domains of stability. Furthermore, the controller is computed from the
Abstract—This note addresses the problem of local stabilization of linear solution of strong coupled equations which, in general, are not simple
systems subject to control amplitude and rate saturation. Considering the to solve. A different modeling for the actuator, subject to both rate and

actuator represented by afirst-order system subject to inputand state satu- 5, )i de fimitations, is considered in [10] and [12]. In these papers,
ration, a condition for the stabilization of an a priori given set of admissible

initial states is formulated from certain saturation nonlinearities represen-  the actuator is modeled by a pure integrator: the control rate appears
tation and quadratic stability results. From this condition, an algorithm  as the system input and the original control signal becomes a state of
based on the iterative solution of linear matrix inequalities-based problems  the system. The physical meaning of this kind of modeling is not clar-

is proposed in order to compute the control law. ified in these papers. Parallel to these works, in [11], the problem of
Index Terms—Constrained control, control saturation, linear matrix in-  disturbance attenuation in the presence of rate and amplitude actuator
equality (LMI), stabilization. saturation is addressed. In that paper, however, no explicitely consider-

ation is made about the region of attraction associated to the controller.
Since we also aim to consider strictly unstable systems, our note fig-
ures in the context of local stabilization of linear systems subject to
Physical and technological constraints do not allow that contrbbth actuator amplitude and rate saturation. In this case, two objectives
actuators provide unlimited amplitude signals neither react unlimitede quite natural: the control law should guarantee a certain time-do-
fast. The negligence of both amplitude and rate control boundsin performance for the closed-loop system and the associated region
can be source of limit cycles, parasitic equilibrium points and evei attraction should be as large as possible. Regarding these objectives,
instability of the closed-loop system. In particular, the problem af fundamental issue is whether the use of effective saturating control
stabilization of linear systems only with amplitude saturation has bekws can be advantageous or not. In a recent work considering only
exhaustively addressed in the literature (see, among others, [1]-48jplitude saturation [13], it was shown that, at least in some cases, the
and the references therein). On the other hand, the rate saturatiea of the saturating control laws does not help in obtaining larger re-
problem has first received a special interest in the aeronautic fiefipns of stability. Itis, however, very important to highlight that no con-
where the tradeoff between high performance requirements and #i&ints concerning neither the performance, nor the robustness, were
use of hydraulic servos presenting rate limitations is always preseéaien into account in this analysis. In this case, although the optimal
(see, for instance, [4], [5], and the references therein). region of stability is obtained with a linear control law, the closed-loop
Studies addressing the stabilization in the presence of both the gmles associated to this solution can be very close to the imaginary axis,
plitude and the rate saturation, as a more generic problem, have stawaith implies a very slow behavior.
to appear in the last few years. In [6] and [7], the semiglobal stabi- The objective of this note is then to propose a method for computing
lization of linear systems with both amplitude and rate constraints state feedback saturating control laws, that ensure both asymptotic sta-
addressed. Considering a low-gain approach (the actuator does nob#ity of the closed-loop system with respect to a given set of admissible
fectively saturate), in [6], solutions to the problem via both state feenhitial conditions, and a certain degree of time-domain performance in
a neighborhood of the origin. We also aim to emphasize the compro-
mise between performance and the size of the region of attraction. As
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[12], our approach allows to reduce, considerably, the number of ver-Remark 1: The model of rate-limiting we consider, is known as the

tices tests. It should be pointed out that, unlike [6], [8], and [10], inlassicalrate limiter and can be viewed as a position-feedback-type

our approach effective saturation is allowed and no open-loop stabilityodel with speed limitation [9]. As pointed in [9], fat;) — oo,

assumptions are made. this model corresponds to the ideal rate limiter of Simulink. This case
Notations: For any vector: € R", x »= 0 means that all the com- corresponds also to the rate operator defined in [7].

ponents of:, denoted:;), are nonnegative. For two vectarsy of ",

the notation: > y means that ;) — y;) > 0,Vi = 1,...,n. The I1l. SYSTEM REPRESENTATION
elements of a matrid € R™*" are denoted by, ), i = 1,...,m, In order t " lution to Problem 1. in thi . q
I =1,...,n. Ay denotes théth row of matrixA. For two symmetrlc n orderto carry out a solution to Froblem 1, In this section we de-

duce alocally valid representation for system (4). The first step consists
in rewriting the saturation terms as varying parameters that depend on
the state of the system at each instant. For this, consider

matrices,A andB, A > B means thatl — B is positive definite AT
denotes the transpose df Forz € R™, D(z) = diagz) € ™"
denotes a diagonal matrix obtained from veatgre.,d; iy (z) = 2(;.
Co{-} denotes a convex hull,,, denotes an-dimensional vector of ~ * @ vectora(t) € R™ with a(; ()= min(L, py /| Ko ya(t) +

ones, i.e.l,,2[11,...,1]" € R™. Kugu®)])i=1,...,m;
» avectorg(t) € R™ with 3¢, (¢ ) mm(l E( /= Teyu(t) +
Il. PROBLEM STATEMENT Tiysat, Kya(t) + Kou(t)]) i = 1,...,
. - . . From these definitions, it follows that
Consider the following linear continuous-time system: aty (0(1)) _ D(a(t)(K.a(t) + Keu(t)) and
#(t) = Aw(t) + Bu(t) @) sat(=Tu(t) + Tsaty(K,x(t) +  Kuu(f)) =

' _ D(B(t))(=Tu(t) + TD(a(t))(K.z(t) + K.u(t))). Hence, the
wherez(t) € R" andu(t) € R™ are, respectively, the state vectorclosed-loop system (4) is equivalent to the following one:
and the control vector. Matriced and B are real constant matrices

of appropriate dimensions. The pait,(B) is supposed to be control- i) = (A(B(1) + B(B(1))D(a(t) K) 2() 5)
lable. Each control actuator is supposed to be a first-order system, thﬁt
presents both position and rate limitations, thavis= 1,...,m we
have o A B
3(t)) =

| ACO=[3 o]

aiy (t) = sato(i) (700 (—ue (8) +saty( (v (1)) (2) o
wherev(;y andu(; are, respectively, the input and the output (state) B(p(t) = D(8(t)T
of the actuator—7;; < 0, corresponds to the pole of the actuator, K =[K. K]

L=y Iy

AL . A . .
sat,.(;y(.)=sign(.) min(&gy, |.|), saty,(;y (.)=sign(.) min(p,y, |.])
with &) and p(;) denoting, respectively, the rate and amplitude In particular, if z(¢) belongs to the linearity regio®,, it follows

bounds. thata(t) = 4(¢) = 1., and the behavior of the system is given by the
Consider now a state feedback defined as follows: linear equation
v(t) = Ko2z(t) + Kou(t). (3) i(t) = (A+ BK)=(t) (6)
LetT € ®™™ be a diagonal matrix wherg, ;) = 7, i = 4 B 0
1,...,m. The closed-loop system can be described by with A = [0 T andB = Tl
#(t) = Az(t) + Bu(t) Consider now that(t) belongs to some region in the state space, not

contained inR;,, such that

w(t) = saty (=Tu(t) + Tsaty (Kx(t) + Kyu(t))). (4)

Define the regiond?r, and Ry, respectively, as the region where 0< h’ < B )( ) < 1 i=1,....m @)
there is no occurrence of amplitude saturation and the region where
there is no occurrence of rate saturation wherea;, and g . are lower bounds for () and 3 (t). From
N . ) > convexity arguments for all(¢) belonging to the considered region
RBp= qev € R u e R [K, K] " 2 It fOllOWS that: D(a(t)) € Co{Di(a),D:(a),..., ,Dom ()} and
/ 3(t)) € Co{Di(3),D2(3),...,D2m(3)} whereD;(a) (respec-
R..2 {z e R, ueR™; |-Tu+Tsat, (K. 2+ K,u)| <&} t|ve|y D,(3)) are the vertices of a polytope of diagonal matrices
whose dlagonal elements can assume the valueq. p(respectively,
It follows that R, = RLP N Ry is the region of linear behavior of 3, ) i =1,...,m. Fromthe matrice®, (), j = 1,...,2™, define
(1), i.e., where no saturation occurs. A B 0

Define now the augmented state vect()t)é[jgfg] e R Let Ai(B) = {0 D '(ﬂ)T] andB;(8) = [[D »(,’3)T]'
2, be a set of admissible initial states in the state spRice™ . This set Now, from the ereWous definitions, we sjtaTe a lemma that, as we
can be viewed as thene of operationf (4). From the aforementioned will see in the next section, will allow to use a mixed polytopic/norm-

definitions and considerations, the problem we intend to solve is statgslinded differential inclusion in order to conclude about the local sta-

as follows. bility of (4).
Problem 1: Find matriced{, andX’, such that the following hold. = Lemma 1: Consider a vector € ®™ and a vectog € R"™ whose
1) System (4) is locally asymptotically stable if, that is, components;,( i =1,...,m belong tothe interval (0,1], and

= [+(0)" «(0)"]" € Zo, the corresponding trajectoriesdefine the foIIowmg polyhedral sets:
converge asymptotically to the origin. ntm

2) When the system operates inside the linearity regigna cer- Rrp(a { eR ®)
tain time-domain performance specification is satisfied. RL,«(,(_) = ﬂj:l RLT(E)]' 9
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where Rr,r(@,é{z € Rt |[TDj (K, (=T + Proposition 1: If there exist a matrixi¥ = WT > 0, W ¢

N ) . A (n+m)*(n+m) ; : mxm ;
TD;(a)K.)]z| = E8)}  with  peiy(@)=(peiy/agy), 5)? m*<n+”§)a diagonal matr|x9m> 0,/5 € 5R , @ matrix
. ('B)é(g VB =1 . Ye®xR , and vectory € R™ andj3 € R™, satisfying the
S (0= /B Ve =1, ...om. following matrix inequalities:

If =(t) € Rr,(a) N Ry.(5), thenz(t) can be computed as

o j\,]]- * . m.
ym i) Dy(a)Y 5} >0,j=1,...,2™;
SN GO) [(A(8)+B; (BT (0)K) +B,(3)D (6(1)K] =(t) iy | } >0i=1,....m:
7= Lo Y pey
(20) 17 % S0 s o
With T () 2D(0.5(1m+0)), [0y ()] < 0.5(1—ap)), A (1) 2 0, D |y, g | 2 008 = Lo
Vji=1,....2" and})?", Aj(=(t)) = 1. y W * } i1
Proof: For all zj(t) € Rpy(a) N Rr.(8), one sat- ) =_[0T(z)]W:+Q(i)T(i)Y (E(i)/ﬁ(,' 2| =Y seees My
isfies (7). Consider now an auxiliary vectof(¢) such that v) W * 'T>0 i=1 e
H(i)(t) = Of(i,)(f) -1+ 0~5(1 - Q(i)) ¢ = 1,...,m. Hence, »—[0 T(l')]ﬂ’r-FT(i)}f (ﬁ(i)/ﬁ(i))z = e

Vz(t) € Rrp(a), it follows that [0 (t)] < 0.5(1 — ag;) vi {0 <o < 1i . .

and we can conclude that(t) can be computed by:(t) = 0<f, <1 o

(AB() + BBE)T()K)z(t) +  B(B(t)D(6(t))K=(t) Vi) iy WA gy (AW 4 BY ) 4 gy (AW + BY)! <0

D(af(t)) — D(6(t)). o I
(Cons)iderin(g(the matrice®,(3), defined from the vector3, wherejl/fj =—WA _BJ'FI(Q)X_A]'W_} "Ti()B; _ABjSBjj ’

it follows that the matricesA;(3) and 5;(3) are the vertices I'1(2)=D(0.5(1n +a)), T2(a)=D(0.5(1,, — a)), thenK =Y W~

of convex polytopes of matrices. It follows that at instaptif Solves Problem 1.

i A n+m - A H
(t) € Rppla) N Rp.(8) there exist scalars,(z(t)) > 0,  Proof. Consider the sef={z € R Z.TPZ < 1} with
Vji=1,...,2", %" \j(z(t)) = 1, such that(¢) can be computed P=W~! and the regions., (a) and R, (3) defined, respectively,
by (10). © = in (8) and (9). Consider alsk = YW1,

Satisfaction of conditions i)—vii) leads to the following facts.

IV. MAIN RESULTS 1) Pre- and postmultiplying i) by

In order to solve Problem 1, we should compute a state feedbackthat x — yw~—! and applyingTSch
(

o Il considering
ur's Cf)mplement it follows that
uarantees the local stability of system (4) in a region that contains the . . L,-K ST T ()X PB;

9 y o1 sy “) 9 i) is equivalent to| ~’ K T2(a)57 Tz(a)k B’] 0,

set Z,. Furthermore, when this system operates in the region of lin- B/ P St

earity, i.e., the closed-loop system is described by (6), a certain degree  where L, = —(A; + B;I1(a)K)"P — P(4; +
of time-domain performance should be guaranteed. This kind of speci- B,T(a)K). Since i) holds forj = 1,...,2™, by
fication can, in general, be achieved by placing the polésiof BK) convexity one obtains ijl N (2TL;z + TPByg +

in a suitable region of the half left complex plane. Hence, consider the qTBJTpZ_ P J(,.)[ZTQU);C(TMK',U)Q@Z — q&{.)]) > 0,

following data: Vz,qand); > 0,j = 1,...,m, such thatZiZl A= 1,
* asetofinitial Conditi0n§0 defined byapolyhedral Setilﬁ”+”’ with o) denoting ’[hel'”l diagona] component os_l and
described by its vertices By = 0.5(1 = ;).
2) i) and iv)~vi) ensure thaf C Rr,(a) N Ry,(3) [15], [16].
ZoéCO {v1,.stn, b vs € R Vs=1,...,n,, (11) 3) iii) ensures tha, C & [16].
4) vii) ensures that the poles i + BK') are placed in the region

« aregionD,, contained in the left-half complex plane D, defined in (12) [14].
From Lemma 1, ifz(t) € (Rry(a) N Rr.(F)), then there
D,2{seC (H+sG+5G)<0} (12) existA; > 0,j = 1....2™ with Y27 A, = 1, such that

Z(t) can be computedy by (10) withv(;)(t)| < €. Suppose
whereH = H™ € ®'*', G € ®™" ands is a complex number NOW that z(t) € Z,. Since ii)-v) are verified, we have that
with its conjugates. This is an LMI region as defined in [14]. We #(f) € € C (Rr,(2) N R (), andlb) (1)] < 6,0 = 1.....m.
assume that if the poles 6f + BK) are located in the region Therefore, 2(#) can be computed by (10). Consider now that
D,, the time-domain performance specifications in the Iinearit‘gz(t)TI TTD(?(t),)KZ(t)- Sln;:e Bay (] < ), it follows that
region of (4) are satisfied. 2(1) 8y Ky Kyl 2(t) 2 q(,)(t). Hence, from fact 1) and taking

; . gm T

Hence, considering this data, if we are able to find a mafjixec- INto account thatri;y > 0, one obtains) 7_, A;=(#)" L;=(t) —

om om

torsa, 3, and a sef in the state—space such that the&és contrac-  =(¢)" P > =1 i DO(t)K=(t)—=(t)" K ' D(8(1)) dimt \; B}

tive with respect to the trajectories of the differential inclusion (10)?=(¢t) > 0. Therefore, from (10), one has(t)” Pz(t) +
andZ, C & C (Rrp(a) N Re-(B)), then we can conclude that all = ()" P:(t) < 0.

the trajectories of the saturated system (4) startirfy(and, in conse-  Since this reasoning is valid:(t) € £, we can conclude that is
quence, all the trajectories starting4f3) converge asymptotically to a positively invariant and contractive set w.r.t (5) [or, equivalently, (4)]
the origin. In this case, the sétis adomain of asymptotic stabilifipor ~ andV (z(t)) = =T (¢)Pz(t) is a strictly decreasing Lyapunov function
(4). If, in addition, the poles dfA+ BK) are contained i, , Problem for (5) [or, equivalently, (4)]. Hence, we can conclude that if condi-
1 is solved. These ideas are formalized in the following propositiotions i)-vi) are satisfied witthC = YW, it follows thatVz(0) € 2,

For notational simplicity we consider;(3) = A;, B;(3) = B; and the corresponding trajectory does not le§vend converges asymptot-
i (2(1) = A, B B ically to the origin. Furthermore, the poles(of 4 BK) are placed in
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D, guaranteeing the performance specification in the linearity regi@ne simple way of handling these issues is to apply trial and error
Ry,. Problem 1 is then solved if conditions i)—vii) are fulfilled.o procedures. In particular, for the single-input case, it is possible to seek
Remark 2: Proposition 2 gives only a sufficient condition for thethe optimal solution of (13) over a grid am and 3. For the general
solution of Problem 1. The main sources of conservatism here are theltiple-input case, we can seek for a suboptimal solution by using an
use of quadratic Lyapunov functions and the modeling of the systétarative algorithm, where in each step, two or three variables are fixed
by a differential inclusion. Note that all the trajectories of (4fimre and a convex optimization problem with LMI constraints is solved.
trajectories of (10) but the converse is not true. Algorithm 1:
Remark 3: Although our mgin concern ig to ensure stability when Step 1 Fix a and/3, solve (13) forlV, Y, S, ands.
the actuators_saturate, acertain degree oftlme-d_omaln perf_ormance_can Step 2 Fix 4 andY, solve (13) forlV, S, a, ands.
be also considered when the system operates in the nonlinear region, Step 3 Fix W,

: ) ) N Y, S, anda solve the following optimization
For example, it can be considered an eigenvalue shift in i) in order to

roblem:
ensure a convergence rate and improve robustness. However, it should P
be pointed out that it is not realistic to impose the same performance m
requirements for the system over the linear and the saturated actuator min Z g(‘) (14)
. g —(2
region. L —

subject to
i),iv),v), and vi) of Proposition 1

V. COMPUTATION OF THE CONTROL LAW _ _ ) _
The iteration between these three steps stops when a desired preci-

The variables to be found by applying Proposition 1 HfeY, S, sionforé is achieved. Ib* > 1, it means that it is possible to stabilize
a andg. Due to terms involving products between these variables, itd) for all initial conditions inZ, by considering the pole placement
equalities i), ii), iv), and v) of Proposition 1 are nonlinear, whereas relaf (A + BK) insideD,. In particular, all intermediate solutions with
tions iii), vi), and vii) are linear (i.e., they are LMIs). This fact implies > 1 are solutions to Problem 1. In this case, another optimization
that the attempt to compuié by solving constraints i)—vii) directly as scheme can be used in order to select a gain, under a performance cri-
a feasibility problem, in the variabld¥, Y, S, o, and3, is very diffi-  terion (see, for example, [3]). Although conservative (in the sense that,
cult (it is an NP-hard problem) or even impossible. in general, the optimal solution is not achieved) this kind of approach

A way to overcome this problem is to fig, priori, the value of the Solves, in part, the problem of the choice of vecterandg by using
components of [11], [15] andS. In this case, all inequalities becomerobust and available packages to solve LMIs [17]. Furthermore, it is
LMIs and, given €o, Dy), it is possible to solve constraints i)—vii) of worth noticing that since pait4, B) is controllable, there will always
Proposition 1, as a feasibility problem, with efficient numerical algeexist a solution for (13) for = 3 = 1,,. Hence, if we start the al-
rithms [16]. Of course, considering the fixed vectarandj3 and the gorithm witha = 3 = 1,,, the convergence to a solutiof (", Y,
given data, it may actually be impossible to find a feasible solution. ", a*, 3*, 6*) is ensured. This follows from the fact that an optimal
fact, considering a scaling factér § > 0, the maximum homothetic Solution for one step, is also a feasible solution for the next step. Of
set toZ,, denoteds* 2, that can be stabilized using the proposed agFourse, taking different initial vectorsand;3, the proposed algorithm
proach, considering the fixed and3, can be obtained by solving the can converge to different values o (", Y*, 5*, o™, 8%, 7). Fur-

following convex optimization problem with LMI constraints: thermore, other relaxation schemes can be considered. For example, a
fourth step considering the minimization of the sumugf;, could be
max added to the algorithm.
subject to Remark 4: Although we claim that the fact of taking smaller values
sul 0 Vs — 1 (13) forag, andg, , canlead to obtain largerin the presence of the pole
v, W > T T placement constraint, it does not mean that the componentsaofi
i),ii),iv),v), and vii) of Proposition 1. A can be indefinitely decreased. In fact, consideringnd 3 as free

variables in (13), the optimalis not obtained for;, — 0 andg,, —

Hence, if the optimal value df, 6, is greater or equal to 1, it meansy (see examples in Section VI). Furthermore, note thatif and3 .
that it is possible to find a solution considering the fixe@nd/ for  are excessively reduced, (13) may be not feasible. This can be justified
the given dataZ,, D,). by the following.

If a linear solution for Problem 1 is desired, that is, if one does not
want to excite the saturation nonlinearities, it suffices to consider
3 = 1. in the optimization problem (13). In this casd, = A,
B; =B, Vj=1,....,2™ I'1(a) = I,, I's(a) = 0 The optimal
solution for (13) obtained withk = 3 = 1,,, corresponds then to the
largeré achievable with a linear controller, i.e., the larger regiGh, o ) S
for which it is possible to ensure quadratic stability with a linear control that the globa! stabilization cannot be achieved. Considering
law v() = K=(f) = YW™"=(£). On the other hand, we conjecture % — U andg,; — 0, Fr(a) N Fr would approach the
that the choice of the components @fand 5 smaller than 1 can be whole state-space, however the region of attraction would be
useful in order to obtain a greater value fdn (13). In other words, the limited.
degree of freedom in the choice@fand3 can be explored to stabilize  Remark 5: It should be pointed out that, during the review process
larger domains of admissible initial states in the presence of the polethis note, a conference paper addressing the problem of linear sys-
placement constraints (see the numerical example). In fact, smallert@ms with nested saturations has been published [18]. It appears that the
the components of andg, larger is the regioi R, (a) N R7,(3)) approach proposed in that paper (similar, in the principle, to our first re-
where the invariant ellipsoid containirg can be included. sults concerning the rate saturation problem published in [19]) can pro-

In this case, two issues arise: how to choose the initial veotarsd vide a way of avoiding the nonlinearities and the relaxation schemes,
3 and how exactly to decrease the components afidj (if 6* < 1). by a direct LMI formulation.

» We consider a differential inclusion for representing the behavior
of the nonlinear system. Hence, implicitly, we are somewhat
dealing with the stabilization of an uncertain system. In this case,
the uncertainty degree is greater for smadier, and3 e

Considering strictly unstable open-loop systems it is well known
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TABLE |
p=1¢ =10
bl oun | @ | B 0 €igmaz
0 | 0.044 | 1 | 0.4 | 0.047 ~0.345
T | 0.034 | 0.8 | 0.4 | 0.046 —1.44
5 | 0.010 | 0.7 | 0.4 | 0.014 | —7.14 £ 1.27

VI. EXAMPLES AND CONCLUDING REMARKS

Example 1: Let (1) be described by the following matrices:

0

T = 20.
1 0

0 0.1 0.2 03 04 05 06 0.7 08

0 1
A—Lo —0.1} B=

Let the set of admissible initial conditions be given by an hypercube iy 1. simulation results consideringz(0) = [0.0326 —
R*: Zo={z € R’ -1 < z; <1, Vi=1,...,3}. Given these 0.2803 1.2994]” (dashed—dotted)z(0) = [—0.0028 0.0306 —
data, the objective is to solve Problem 1. We consider that the perfdf0440]” (continuous).

mance specification in the linearity region was translated as the place-
ment of the poles of A + BK) in the regiorD,, = {s € C; Re{s} <

—u, u > 0}. Notice that the greater js, the farther from the origin

TABLE 1
NO-RATE CONSTRAINTS p = 1

are the poles af A + BK), and greater tends to be the speed of the con- m Bin o 5 Cigman
vergence of the trajectories to the origin inside the region of linearity. 0 100653 | 1 0.0653 —0.0001
Consideringg = 1, £ = 10 and the scaling factat, Table | shows 1 [ 0.0494 | 0.76 | 0.0653 —1.005
the value ofé(é;,) obtained in the linear case (i.e. far = 1 and 5 | 0.0133 | 0.49 | 0.0266 | —5.08 & 53.09
3 = 1), and optimal values aof (a*), 3(3*) ands(6*), obtained from
the solution of (13) considering different values fareigmay denotes TABLE Il
the maximal eigenvalue df4 + BK) corresponding to the optimal ALGORITHM PERFORMANCE
solution? T T 5T 5 -
The following facts can be notlcgd. . . 5 10.’20 T ~ :[1 ) 040 —0.001 ;;0_47
— If no performance constraint is considefgd= 0), the best §3 [ 2.93 1 0.952],{0.847 0.208 3.60 ~0.31 & j0.08
value ofé is obtained. However, the poles@fl + BKX) are 0.5 | 1.27 1 0.935],]0.831 0.323 1.54 —0.52 £ 50.15
very close to the imaginary axis. 1 0.34 1 0.954],{0.763 0.425] | 0.397 | —1.02 £ ;0.32

Foru # 0, the best solution is obtained in the saturated case.
Note that the optimal values fer and3 are smaller than 1.
For instance, the optimélobtained forx = 5 is about 40%

Example 2: Consider the matrices of the system given by [12]

larger than the one obtained in the saturation avoidance case [—0.0366 0.0271  0.0188  —0.4555
(i.e., fora. = 1 andB = 1). This means that the proposed 0.0482 —1.0100 0.0024 —4.0208
approach allows to obtain solutions to Problem 1 for larger | 0.1002 0.2855 —0.7070 1.3230
sets of admissible initial states when performance (or robust- L 0 0 1.0000 0
ness) constraints are considered. T 0.4422  0.1761
Considering the case witth = 0.5, one obtains 5 3.0447 —7.5929
0.0048 —0.0238 0.0501 _5'2200 4'4(?00
W= |-0.0238 0.1381 —0.4387|. y
0.0501 —0.4387 3.1613 T= {200 105} .

Fig. 1 depicts the control response for this case considering two initialNotice that matrix4 is unstable (the eigenvalues.éfare:—1.9809,
conditions belonging to the stability sgtlt can be noticed the effective —0.3340,0.2807 & j0.0952). Consider that the bounds on the control
saturation ofi(t) andu(t). are given byp = [5 2] and¢ = [2 5]* and the set of admissible
Consider now the case without rate saturafios= co). Table Il de- injtial conditions is an hypercube " : Zo = {z € R, u = 0;
picts the optimal values for the optimization problem (13). The max=1 < z(;, < 1, Vi = 1,...,4}. LetD, be defined as in Example 1.
imum é is obtained for the linear cage. = 1) with 4 = 0. This is in Considering the aforementioned data, Table Ill shows the final
accordance with the result of [13]. Note, however, that in this case th@ues ofa, 3 andé obtained from the iterative algorithm proposed
eigenvalues of the linear system are very close to the imaginary axigSection V for differenf:, considering the initialization of and3
Considering: # 0, the best is achieved considering saturation, i.e.as[1 1]7. &, corresponds to the best solution considering the linear
a # 1. case(a = 5 = [11]7).
Regarding Table IIl, the same comments done in the previous ex-
ample apply now for the multiple-input case. Note that for= 0,
the best solution is obtained for the linear case. However, the poles of
(A + BK) are in this case very close to the imaginary axis. On the

1Since the system is single-input the optimal solution can be approached vAiner hand, it can be noticed that fer# 0, by allowing saturation, it
a desired precision by a gridding procedure. is possible to stabilize the system for a larger set of initial conditions.
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