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ABSTRACT. We obtain a sharp L2 estimate for the maximal operator associated 
with uniformly distributed directions on a curve of finite type in Rn. 

INTRODUCTION 

Let y: [0, 1] - n- be a smooth curve crossing each hyperplane of Rn a 
finite number of times. If giN denotes the family of all cylinders in Rn having 
eccentricity N and direction in y, it is proved in [C] that the maximal operator 

MNf(x)= supR 
I 
If(y)Rdy 

XERE-VN I|RI 

satisfies the estimate 

(1) IIMNfIIL2 < CY(logN)2 Ilf IIL2 

where Cy is independent of N. 
The purpose of this note is to show that by imposing an additional condition 

on y one can prove a stronger result. 
Let y be a smooth curve satisfying 

(*) For all t E [0, 1], the set {2y(W(t)}o1<j<, spans Rn. 

For a positive integer m let Wm denote the family of all cylinders in Rn 
pointing in the direction of y(j/2m) for some 0 < j < 2m. let Y4f(x) = 

SUPXEREA (1 /IR ) fR If(y) dy . Then we will prove the following: 

Theorem. If y satisfies (*) then 

(2) 14lemflIL2 < CymHIfHIL2 

where Cy is independent of m. 

If n = 2 or if y is contained in a 2-dimensional subspace, (2) is known to be 
true (see [S] or [B]). Also, since 'm dominates M2m, (2) implies an improved 
version of (1). 

In what follows all the constants are independent of m. 
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AUXILIARY LEMMAS 

We will now prove some consequences of (*) that will be used to prove the 
theorem. 

A simple compactness argument shows that if y satisfies (*), then there exist 
an integer L and c > 0 such that for all E E Sn-I and t E [0, 1] 

L 

(3) E 14. y(i)(t)l , C 
i=O 

For j = 0, 1, 2 let lj = {(, t) E Sn-I X [0, 1]: g * y(l)(t)l < c2-(1+) for 
/ < j}. Then we have 

Lemma 1. There exist 3j > 0 and c; > 0 such that for all (E, t) E Wj 

(4) Is - t < ?j X * (Y(U)(s) - y(j)(t))I > cjIs - tLij. 

Proof. If the lemma is false, we can find sequences Ck -- 0, 3k -? 0, (4k, tk) E 
sn-I x [O, 1], and Sk such that Sk - tkI < 3k and 

(5) 4k (Y U)(Sk) -y(j)(tk))I < gk ISk - tkIL i. 

Since Wj is compact, by passing to a subsequence, we can assume that (4k, tk) 

converges to (4, t) E Wj. By Taylor's theorem (5) implies that 4 * y(l)(t) - 0 
for I = j + 1, ..., L. This contradicts (3). 

Lemma 1 implies that there exist integers Nj ( 3J-1) such that for all 4 in 
Sn-1 the function 4 * y(i)(t) has at most Nj zeros on {t E [0, 1]: I. * y(')(t)l < 
c2-(1+I) for 0 << j - 1}. 

For 4 E Sn-I let ve(t) = ,*y(t), 21 = {t E [0, 1]: lv(t)l > c/2}, and 
72 = {t E [0, 1]:lv~(t)l < c/2 and lv<(t)l > c/4}. Since 21 and 22 are 

open (in [0, 1]) and disjoint, we can write each J as a countable union of 
disjoint intervals. Since between each two intervals of 21 there exists a t for 
which either v~(t) = 0 or v<(t) = 0, Lemma 1 implies that 21 is the union of 
at most No + N1 (independent of 4) intervals. A similar argument applied to 
22 in the complement of 2 1 together with the fact that, on the complement of 
21 U 2, v<:(t) has at most N2 zeros shows that the complement of 21 U 2 
can be written as a union of no more than 2(No + N1 + N2) closed intervals 
where, on each of these, v<(t) is monotonic. Let I = [a, b] be one such 
interval, and let to E [a, b] be such that Iv'(to)l = min, Iv'(t) I. Then we have 

VlI(t) =eU4 E (to)( - t )i +Rt (t) 
=o0 

= pf (t) + Rto(t) where IRto(t)l < CIt - toIL. 

Thus if 37 = 1/2min{minj 6j, c,C-1} we have for It - tol < by and t $& to 

Ps (t) 1 I C|t-tolL 1 
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which implies 

lp(t) < I lv(t)l I' 2Ip'(t) 1. 

If we let p'(t)-v'(to) = q (t), we have by Lemma 1 that there exist cq > 0 such 
that Iq(t) cI t tolk for It- tot < 6, and for some k with 1 < k < L- 1 . If 
t - tol > 3, and t E I, Lemma 1 implies that Iv (t)l > C1fL-1 . Since v (t) has 

at most two zeros on I, we can divide {t E I: It-toI < 3y} in no more than four 
intervals where v (t) is monotonic and of constant sign satisfying estimates like 
the above. Thus, if we let N, = IO(No +N1 + N2) and cy = min{c/4, c1tL-1}, 
we obtain 

Lemma 2. There exist an integer N, and c, > 0 such that for all 4 in Sn- 
we have 

[0, 1] = U U ... U 
N 

UV,U . VM U WJ1 U...U WI, 

where Ng + MX + Ke < N, and where the U, 's, J'i 's, and W'1 s are closed 
intervals with disjoint interiors for which 

(i) Ijv(t)c > C on Ui Q , 
(ii) IV'(t)I > Cy on Ui V1i, and 
(iii) for each i < Ke there exist cE > 0, to E Wi, and k = kX, ,to with 

1 < k < L such that 

v to(to) + C It-totk and Iv'(t)| Ckklt - toik-1. 

Proof of Theorem. The proof is based in a square function argument following 
the ideas in [W, NSW]. 

Let p E Co??(R) be nonnegative, with p 1 on [-4, 4] and such that 
fo (o(t) dt = 1 . For h > 0 let (Oh(t) = h- p(h-1t) and let wj = (j2-m). 

For 0 < i < 2m let 
p00 

Ttmf(x) = I f(x-tW1)ph(t)dt, Tmf(x) = sup IThm1f(x). 
J-00 h,j 

Then a simple geometric argument shows that it suffices to prove that 

(6) ItTmf|IL2 < CYmIIfIIL2 for f > 0. 

For m = 1, (6) follows from the boundedness of the one-dimensional Hardy- 
Littlewood maximal operator. Suppose (6) is true for m = 1. Then for f > 0 

Tmf(x) < Tm-lf(x) + sup IThm2f(x) -T 
(7) h,J 

= Tmf(x) + sup H*m (x 
h,j 

and (6) will follow if we can show that 

(8) supHj f ? CHj fj 2. 
h,Jih 

f < C1fI2 

For j = 1, ..., 2m, let li' be the cone {I E Rn: j. *oj I> c12-mLI t} and let 
Kj be the complement of Fj7,andfor j = 1, ..., 2m-1, let f(x) = fj(x)+rj(x) 
where rj(4) = XK2jUK2j_, (4)f (4) . denotes the Fourier transform. 
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An argument similar to the one in [W, p. 88] shows that 

sup Hhm f(x) < C(gl(f )(x) + g2(f )(x)) 
h,j 

where 

gi(f)(x) = ( (sup Th, 2j I ri (X) + sUPTh, 2j - I ri (X)l)) 

0.2`1 
1 /2 

g2(f)(X) = ( mT~ ~X 1 fX) 12dh)12 g2(f)(X = (/0 I Th, 2jfj (X) -Th,2j_lfj() h) 

Thus (8) and hence the theorem will be a consequence of the following two 
estimates: 

(9) H gl(f )||L2 < CyIlfIIL2, 

(I10) 1g2(f)H|L2 < CYIIAL2. 

Proof of (9). By the boundedness of the one-dimensional Hardy-Littlewood 
maximal operator and Plancherel's theorem, one has 

2m- 1 2m- 1 

(11 ) lgi (f ) l12 < C I rj (x) 12 dx = C f K2j UK2j _I (j) l =() l d1. 

Since the Kj 's are conic, it is enough to prove that no 4 E Sn-I belongs to 
more than Cy of the Kj 's. Given 4 in Kjo we have jv(t)j < ci2-mL. By 
(4), if k > cl IL, then 4 does not belong to Kjo?k . Thus 4 does not belong to 
more than Nycl IL of the Kj 's. 
Proof of (10). Plancherel's theorem implies that 

(12) g2(f)jI2 = )ZI2(h1121 q(f. ~ ll2g[L2 =h | E 1(h42j)- O(h4cOJ2j-1)I lj )2d dhd 
( 12) Rn j= 1? 

= j m(,)If(,) 12 d4, 
Rn 

where 

2m- dh 
(13) m(,)=Z j 

t (hX (1)2j)- @(hX W2j- 1)X2r2jnr2j-l( )I 

and we are left to prove that m(,) < Cy. This is accomplished by dividing the 
curve y in pieces where one has control over the decay of O(hX * 1j) in 4 and 
j in estimating (13). The details are below. 

By Lemma 2 we can, for each , split the sum in (13) in no more than Ny 
sums of the form Ej2-Mreu, Ej2-mEV, and Ej2-mEWi Thus the theorem 
will follow if we can show that each of these sums is bounded with bound 
independent of m apd . By homogeneity we only need to consider 4 E Sn-I . 
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Since 14 ?ojl > c, for j2-m E U, and since 0 is a Schwartz function, 
we have that 1(hX * Ctj+i) - 0(h^ * twj)12 < Ch2w1tj+l - wtjJ2 I'(hX *uj)12 with 

* uj1 > c . This implies 

(14) E j (h* c wj+i) - @(h* j)l 2dh < C7. 
j2-Erll 

We now prove a similar estimate for WJi. There is no lack of generality in 

assuming that WI= [0, e] and that v~(O) = 0. Lemma 2 implies that for 

j2-m E WE, 

(15) (wt)2j -C2j -1)l < CCqjk-I2-mk 

( 16) g. C)ji| >~ Ccok2-mk. 

Since 0 is smooth and rapidly decreasing, by (15) and (16) we obtain 

(17) 1 @ (hX * wJ2j) - (h^. *w2j_ 1)12 < CC2j2(k-1)2-2mkh2 

(18) |@(hX * wtj)12 < Caq2aj-2ka2-2mkah-2a. 

Spliting each integral in foaJ + fa where the aj 's are to be determined later 

and using (17) and (18) on each integral respectively we obtain that EJ2-mEWL 

is dominated by 

(1 9) Cc 2j2(k-1)2-2mkkaJ + Ca C2aj-2ka2-2mkaa-2a 

j 2- mEW, 

To finish, put ,B = k - ,1 a = 3, and let aj = cq1lj-I2mk in (19) obtaining 

2m1 00 

(20) < C j j2(k-fi-1) + j2ac(f-k) < C j-3/2 

j2-mEW' 1 1 

The terms Ej2-meV, can be handled similarly with k = 1. 

Since (20) is independent of 4 and m, the proof is complete. 
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