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PRIME IDEALS IN POLYNOMIAL RINGS 
IN SEVERAL INDETERMINATES 
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ABsTrRAcr. If P is a prime ideal of a polynomial ring K[xJ, where K is a field, 
then P is determined by an irreducible polynomial in K[x]. The purpose of this 
paper is to show that any prime ideal of a polynomial ring in n-indeterminates 
over a not necessarily commutative ring R is determined by its intersection 
with R plus n polynomials. 

INTRODUCTION 

Let K be a field and K[x] the polynomial ring over K in an indeterminate x. If 
P is a prime ideal of K[x], then there exists an irreducible polynomial f in K[x] 
such that P = K[x]f. This result is quite old and basic; however no corresponding 
result seems to be known for a polynomial ring in n indeterminates x1, ..., xn over 
K. Actually, it seems to be very difficult to find some system of generators for a 
prime ideal of K[xl,...,Xn]. 

Now, K [x1, ..., xn] is a Noetherian ring and by a converse of the principal ideal 
theorem for every prime ideal P of K[x1, ..., xn] there exist n polynomials fi, f..n 

such that P is minimal over (fi, ..., fn), the ideal generated by { fl, ..., f}n ([4], 
Theorem 153). Also, as a consequence of ([1], Theorem 1) it follows that any prime 
ideal of K[xl, X.., Xn] is determined by n polynomials. However it is not clear in [1] 
how to find these polynomials and no converse result is proved. The purpose of 
this paper is to show a result which in particular implies that every prime ideal of 
K[xi, ..., xn] is determined by a sequence of n polynomials which is in some sense 
irreducible, and such that the converse is also true. 

In general, let R be any prime ring. If P is a nonzero prime ideal of the polyno- 
mial ring R[x] with P n R = 0 (an R-disjoint prime ideal), then P = Q[x]fo n R[x] 
where Q is a ring of right quotients of R and fo E C[x] is an irreducible polynomial, 
C being the extended centroid of R ([2], Corollary 2.7). This characterization has 
the problem that we have to compute Q to have a prime ideal determined. A better 
way (an intrinsic one) to determine an R-disjoint prime ideal has been given in [3]. 
We proved that every R-disjoint prime ideal P of R[x] is determined by just one 
polynomial in P which is in some sense irreducible ([3], Theorem 1.4). 
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The purpose of this paper is to extend the above result. We show that any prime 
ideal P in a polynomial ring in n indeterminates is determined by its intersection 
with R plus n polynomials in P. Moreover, these polynomials define a sequence 
which has some irreducibility property and will be called completely irreducible 
(mod P n R). The converse is also true, i.e., for any prime ideal Q of R and 
any completely irreducible sequence (mod Q), there exists a unique prime ideal 
determined by them. It turns out that there exists a one-to-one correspondence 
between prime ideals of Rf[xi, ..., Xn] and equivalence classes of tuples (Q, fi, ..., fn) 
where Q is a prime ideal of R and (fi, ..., fn) is a completely irreducible sequence 
(mod Q). 

Throughout this paper R is any ring with an identity element. If f E R[x], then 
8f (resp. lc(f)) denotes the degree (resp. leading coefficient) of f. The leading 
coefficient of the zero polynomial will be defined as the identity of R. Finally, the 
notation D means strict inclusion. 

1. PRIME IDEALS IN R[x] 

Throughout this section Q denotes a prime ideal of R. We will describe all 
the prime ideals P of R[x] such that P n R = Q. The results can be obtained 
by factoring out from R and R[x] the ideals Q and Q[x], respectively, and then 
applying the results of [2] and [3]. However we will give here direct arguments for 
the sake of completeness. 

We define 

FQ = If c R[x]: arf-fra C Q[x],for allr C Rf f74 ,anda = lc(f) 0 Q}. 

The definition of FQ intends to give an extension of the definition of 1R in [2], 
Section 1. Thus they should coincide when Q = 0. However they are slightly differ- 
ent. In fact, we exclude here nonzero constant polynomials. Also, the convention 
lc(0) = 1 allows us to assume always that lc(f) , Q. Note that the zero polynomial 
belongs to 1Q. 

For f E EQ with a = lc(f), define 

[Q, f] = Ig E Rf[x]: there existse > Owithg(fRa)e C Rf[x]f + Q[x]}. 

We can easily see that [Q, f] is an ideal of R[x] containing f and Q[x]. 
In the rest of the section we denote by a and b the leading coefficients of f and 

g, respectively. We begin with the following. 

Lemma 1.1 (cf. [2, Lemma 1.1]). Assume that f E rQ. If g E [Q, f] and 6g < 8f, 
then g E Q[x] . In particular, [Q, f] n R = Q. 

Proof. Note that a 0 Q. So by assumption, there exists an ideal H g Q of R such 
that for every r c H there is k = Xmbm + ... + bo C R[x] with gra = kf + h, where 
h e Q[x]. We have bma C Q and for s E R, grasa = kfsa + hsa = kasf + hsa + 1, 
for some 1 z Q[x]. 

Assume, by induction, that bia C Q for i = m, ..., m - t + 1. Then from the above 
relation we get bm-tasa E Q, for every s E R. It follows that bm-ta E Q because 
a 0 Q. Hence bia E Q for i = 1, ..., m, and so gHaRfa C Q[x]. Thus g E Q[x] since 
Q[x] is a prime ideal of R[x]. The proof is complete. 
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Note that the definition [f] R in [2] also looks different than our definition here 
of [O, f], for f E FO. However we see they coincide. In fact, put 

I = {g E R[x]: there exists H < R, H g Q, such that gHa C R[x]f + Q[x]}. 

Lemma 1.2. [Q, f] = I. 

Proof. If f = 0, then [Q, f] = Q[x] as well as I = Q[x], since Q[x] is a prime ideal. 
In general, it is clear that [Q, f] C I. Assume that g E I, 6g = m. If m < 8f = n 
we prove as in Lemma 1.1 that g E Q[x] C [Q,f]. Suppose g = rn. We have 
gra - brf E I, for any r E R, and 8(gra - brf) < n. Hence gra - brf E Q[x] 
and it follows that gRa C R[x]f + Q[x]. Finally, assume by induction that m > n 
and for any h E I with 8h < m we have h(Ra)m-n C R[x]f + Q[x]. For r E R 
put 1 = gra - xm-nrbf E I. Applying the induction assumption to I we easily get 
g(Ra)m-n+1 C R[x]f + Q[x]. The result follows. 

Now we prove the following key result. 

Proposition 1.3. Assume that f,g E FQ and g E [Q,f]. Then [Q,g] C [Q,f]. 
Also, [Q, g] = [Q, f] if and only if 8g = 6f. 

Proof. Take h E [Q, g]. By Lemma 1.2 there exists an ideal H' of R with H' V Q 
such that hH'b C R[x]g + Q[x]. Also, by assumption there exists H < R with 
H E Q and gHa C R[x]f + Q[x]. Thus hH'bHa C R[x]f + Q[x] and it follows that 
h E [Q, f] since H'bH V Q. The first part follows. 

Assume 8g = 8f. For every r E R, frb - arg E [Q, f] and 8(frb - arg) < n. 
Then frb - arg E Q[x] by Lemma 1.1. Therefore ffRb C R[x]g + Q[x] and thus 
f E [Q, g]. Using the first part we get [Q, g] = [Q. I]. 

The converse follows easily from Lemma 1.1, since f, g ' Q [x]. 

Remark 1.4. We can define [Q., f] in a dual way. In fact, denote by [Q. f]' the ideal 
of R[x] defined as [Q, f], but with the condition (aR)eg C fR[x] + Q[x] instead 
of the condition g(Ra)e C R[x]f + Q[x]. As in Lemma 1.1 we can prove that if 
g E [Q, f]' and 8g < 8f, then g E Q[x]. Actually, it is not hard to show that 
[Qf] = [Qf]'. 

Corollary 1.5 (cf. [2, Corollary 1.3]). Assume that f,g E FQ. Then [Q,f] = 

[Q, g] if and only if gra - brf E Q[x] for every r E R. 

Proof. If [Q, f] = [Q, g] we have 8f = 8g by Proposition 1.3. Hence we easily obtain 
gra - brf E Q[x] for all r E R. Conversely, if gra - brf E Q[x], for every r E R, we 
have gRa C Rf[x]f + Q[x] and so g E [Q, f]. In particular, 8g > 8f since g ' Q[x]. 
Also, bRf C gR[x] + Q[x] and it follows that f E [Q, g]'. Hence 8f > 8g by Remark 
1.4. It follows that 8f = 8g and Proposition 1.3 gives [Q f I] = [Q, g]. 

The following is well-known (or can easily be obtained by factoring out Q and 
Q[x] from R and R[x], respectively). 

Lemma 1.6. Let P be an ideal of R[x]. Then P is prime if and only if P n R is 
a prime ideal of R and either P = (P n R) [x] or P is maximal amongst ideals I of 
R[x] such that I n R = P 0 R. 

Now we extend the definition of F-completely irreducibility (see [3], Definition 
1.2). 
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Definition 1.7. We say that a polynomial f E EQ is EQ-completely irreducible if 
the following condition is satisfied: 

If there exist b e R, g E EQ, and h E R[x] such that f b f' Q[x] and f b-hg C Q[x], 
then 6g = &f. 

Note that the above definition is vacuously true for f = 0. So we may consider 
the zero polynomial as a EQ-completely irreducible polynomial. 

Remark 1.8. Assume that f E EQ. Then we can easily see that if b , Q we have 
f b e EQ and [Q, f] = [Q, f b] (use Proposition 1.3). 

Now we can prove the main result of this section. 

Theorem 1.9 (cf. [3, Theorem 1.4]). Let R be any ring. Then an ideal P of R[x] 
is prime if and only if Q = P n R is prime and there exists a EQ -completely 
irreducible polynomial f E R[x] such that P = [Q, f]. Moreover, the polynomial f 
can be chosen to be any polynomial in P which is of minimal degree with respect to 
the condition lc(f) 0 Q. 

Proof. If P is a prime ideal, then Q = P n R is prime. In case P = Q[x] we take 
f = 0 and so P = [Q, f] follows. Assume P D Q[x] and take any polynomial f E P 
of minimal degree n with respect to the condition a = lc(f) 0 Q. For any r c R, 
fra - arf E P and 6(fra - arf) < n. It follows that f E EQ. We show that 
P = [Qf]. 

Suppose g E P, 6g = m. If m < n we have g C Q[x] by minimality of n. 
Repeating the arguments of the proof of Lemma 1.2 we show, by induction, that 
g c [Q, f]. Consequently P C [Q, f] and Lemma 1.6 gives P = [Q, f]. 

Assume that for some b c RI g e EQ, and h c R[x] we have f b , Q[x] and 
fb- hg E Q[x]. By Remark 1.8 and Proposition 1.3 we have P = [Q, f] = [Q, f b] C 
[Q, g]. It follows that [Q, f] = [Q, g] by maximality of P and hence &f = 8g. 
Consequently f if EQ-completely irreducible. 

Conversely, assume that Q is prime and P = [Q, f] for some f E EQ which is 
EQ-completely irreducible. If f = 0 we clearly have P = Q[x] and so P is prime. 
Suppose f =h 0 and take an ideal M of R[x] which is maximal with respect to the 
conditions M D P and M n R = Q. Then M is prime and it follows from the 
first part that M = [Q, g] for some g c EQ. Since f E P there exists e > 0 with 
f (Rb)e C R [x]g + Q[x]. Using now the irreducibility property of f we easily obtain 
that 6f = 6g and consequently P = M, by Proposition 1.3. Hence P is a prime 
ideal and the proof is complete. 

Let P be the set of all the pairs (Q, f) where Q is a prime ideal of R and f C EQ 
is a EQ-completely irreducible polynomial. We define an equivalence relation by 
saying that (Q, f) (Q', g) if and only if Q = Q' and frb - arg E Q[x], for every 
r c Rf where a = lc(f) and b = lc(g). By Corollary 1.5, (Q, f) (Q', g) if and only 
if [Q, f] = [Q', g]. We clearly have 

Theorem 1.10. Let R be any ring and let P be the set of all the pairs as above. 
Then the mapping sending (Q, f) to [Q, f] defines a one-to-one correspondence 
between the set of all the equivalence classes in P and the set of all the prime ideals 
of R[x]. 
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2. PRIME IDEALS IN R[xi, ..., Xn] 

The purpose of this section is to extend the results of the former one. We prove 
similar results for a polynomial ring in n-indeterminates. We begin with a technical 
lemma. 

Let R be a ring, T = R[xl, ..., Xn] the polynomial ring over R in n-indeterminates 
xl, ..., nI, and S = T[t] the polynomial ring over T in an indeterminate t. 

If f E S we consider f as a polynomial in t with coefficients in T and we denote 
by 6f (resp. a) the degree (resp. leading coefficient) of f with respect to t. 

For a polynomial h E T, Ah denotes the total degree of h as a polynomial in the 
indeterminates xl, ..., Xn. Also, for g = amtm + ... + ao E S, aj E T for 0 < j < m, 
Ag is defined as max{Aao, ..., Aama. 

Let P be a prime ideal of S andQ = P nT. Assume that P D Q[t] and f E P 
is a polynomial of minimal degree u with respect to the condition a = lc(f) ' Q. 
Put Af =v. 

In the next lemma b denotes the leading coefficient of g E S and (f) the ideal of 
S generated by f. We have 

Lemma 2.1. Under the same notation as above, given an integer m > u, for every 
g E P with 8g < m, and for every r0,rl, ...,rmn in R, there exists h E (f) such 
that I = groarla...rmna - h E Q[t] and Al < w + (m - u + 1)v, where w = Ag. 

Proof. If m = u and 6g < u we have g E Q[t]. So it is enough to take h = 0 in this 
case. If 6g = u, then gra - brf E Q[t], for every r E R, since gra - brf E P and 
6(gra - brf) < u. Also A(gra - brf) < max{A(gra), A(brf)} < w + v. 

By induction, assume that m > u and the result is true for any polynomial 
p E P with 6p < mr-1. Let g be a polynomial of degree m in P with Ag . 
w. For ro E R put gro = groa - tm-ubrof E P. Then Ygro < m and Ag,0 < 
max{A (groa), A (tm-ubrof)} < w + v. 

Therefore, for any ri, , rm-n E R there exists h E (f) such that 

= groria--rm-na - h E Q[t] 

and 
Al < w+v+(m-u)v=w+(m-u+1)v. 

Hence groaria...rm-na-h' E Q[t], where h' = h+tm-ubrofrla.. .rm-na E (f), and 
the proof is complete. 

For a subset B C S, 6B (resp. AB) denotes sup{6h: h E B} (resp. sup{Ah 
h E B}). The following is clear. 

Corollary 2.2. Under the same notation as above, if B C PF 6B < m, and AB < 
w, for every h E B(Ra)m-u+l there exists h' E (f) such that h - h' E Q[t] and 
A(h-h') < w+ (m-u+l)v. 

Now we change notations. Let R be any ring and S = R[x1, ..., xn] a polynomial 
ring over R in n indeterminates Xi, ...,Xn 

We fix the natural order in the variables. Denote by Ri the polynomial ring 
R[x, ...,xi]. If fi E Ri we consider fi as a polynomial in xi with coefficients in 
Ril and denote by 8fi (resp. ai) its degree (resp. leading coefficient) with respect 
to xi. Also, A/if denotes the total degree of fi as a polynomial in xi, ..., xi. 

Let Q be a prime ideal of R and put Q[x] = Q[xl,...,xn]. We denote by Y 
(resp. Fi) the set of all the sequences (fi, ..., fn) (resp. (fi, ..., fl)), where fj E Rj, 



72 MIGUEL FERRERO 

1< j < n. If f = (fl,...) is a sequence in F (resp. .i), then (f) (resp. (f)) 
denotes the ideal of S (resp. Ri) generated by {fi, ..., f,-} (resp. {fi , f,}). For 
f C F we put 

A fl -I fn] = {g E S: there exist e1> 0, 1 < i < n, such that 

g(Ran)en.. .(Ra)el c Q[xl + (f)}. 

Note that if g(Ran)en ... (Ral)e1 C Q[x] + (f), then g(Ra7)dn...(Ral)d1 C Q[x] + 
(f), for every sequence of integers (dj)ly?~n with di > ej for 1 < i < K. Then it 
follows easily that [Q, fl,..., n] is an ideal of S. 

Now we can prove the main result of this paper. It shows that every prime ideal 
of S is completely determined by its intersection with R plus n polynomials in S. 

Theorem 2.3. Let P be a prime ideal of S with P n R = Q. Them there exist n 
polynomials fi, ..., f, in S such that (fl, ..., fu) C F and P = [Q, fi, .fnl] - 

Proof. Put Pi = P n Ri, 1 < i < n. If P1 = Q[xi] we take fi = 0 (so a1 = 1). 
If P1 D Q[xi], take a polynomial fl of minimal degree in P1 with respect to the 
condition a1 f Q. It follows that P1 = [Qfl], by Theorem 1.9. Moreover, if 
B C P1 and 6B < in for some integer m, then there exists e1 > 0 such that 
B(Ral)el C Q[xi] + (f)i, by Corollary 2.2 (with n = 0 and t = x1). 

We continue the construction by induction. Assume there exists a sequence 
(fl, ,fi-1 ) C .Fi-l such that Pi1 = [Q, f.l.., f-il]. Moreover, if B C Pi-1 and 
Ai-,B < m for some integer m, there exist el,...,ei-1 > 0 such that 

B(Rail)e2-- ...(Ral)el C Q[X1 I, I.xi-l] + (f)A-. 

If Pi = Pi-,[xi] we take f; = 0. If Pi2 D Pi[xi] we take a polynomial fi C Pi of 
minimal degree with respect to the condition ai f Pi-1. Applying again Theorem 
1.9 we have Pi = [Pi-1, fi]. It remains to show that [Q. f1, f.., Li Pi and complete 
the proof of the induction argument. 

If g e [Q. fl, , fi, then g(Ra)ei ...(Ral)el C Q[xl,...,xi] + (f)i C Pi, for some 
integers e1, ..., ej > 0. Since Pi is prime and aj f Pi, for 1 < j < i, it follows that 
g C P. 

Conversely, assume that C C Pi and zXiC < m. Then we have 6C < m and 
XilC < m. By Corollary 2.2 there is an integer I > 0 such that for every 

h G C(Rai)m- ui[l there exists h' C (fi) with h-h' C Pi-1[xi] and Ai-1(h-h') < 1, 
where (fi) denotes the ideal of Ri generated by fi and ui = &fi. By the induction as- 
sumption there exist integers e1, ...,ei11 > 0 such that (h-h')(Ra1) ei-1...(Rai)e1 
C Q[xl,...,xi] + (f)i, for every such a deference h - W'. Since h' C (f)i we obtain 
h(Rai_ )ei1. .(Ral)el C Q[x, 7...,xi i- + (f)i. Hence 

C(Rai)m-ui+l(Raii-)ei- . (Ral)e' c Q[xi, ...,xi] + (f)i, 

and the proof is complete. 

Definition 2.4. Let f = (fi, fn) C F. We say that f is completely irreducible 
(mod Q) if fi+? is Pp-completely irreducible as a polynomial in xi+,, for every 
0 < i < n-1, where Po = Q and Pi = [Pi-1,f ]. 

Note that if f is completely irreducible (mod Q), then fl E EQ is EQ-completely 
irreducible as a polynomial in R1 and so P1 = [Q, fl] is a prime ideal of R1. It 
follows by induction that Pi is prime, for every i < n. 
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By the construction in Theorem 2.3 and the results of Section 1, the sequence 
f eE F such that P = [Q, fl, ..., f?,] is completely irreducible (mod Q). Therefore, 
for every prime ideal P of S with P n R = Q there exists a sequence in .F which 
is completely irreducible (mod Q) and which determines P. The converse is also 
true. 

Theorem 2.5. Let Q be a prime ideal of R and (f,..., fn) C Y a completely 
irreducible sequence (mod Q). Then P = [Q, f,..., fn] is a prime ideal of S such 
that Poft= Q. 

Proof. By Definition 2.4, Pi = [Pi-1, fi] is a prime ideal of Ri with PinRi-1 = Pi-, 
for 1 < i < n, where Ro = R and Po = Q. So P = Pn is a prime ideal of S with 
P n Ri = Pi, for 1 < i < n. Also, by Lemma 1.1, fi ? Pi is either zero or 
a polynomial of minimal degree in Pi with respect to the condition ai 0 Pi-,, 
according to Pi = Pi1-[xi] or Pi D Pi1-[xi], respectively. It follows as in Theorem 
2.3 that P = [Qfi ...f fn] 

Denote by 27 the set of all the sequences (Q, fl, ..., fn), where Q is a prime ideal of 
R and (fi, ..., fin) E F is a completely irreducible sequence (mod Q). Two sequences 
(Q, fi, I... fin) and (L, hi, ..., hn) of I7 are said to be equivalent if and only if Q = L 
and (Pi-1, fi) (Pi'-1, hi) in the sense defined in Section 1, for every 1 < i < n, 
where Po = Po - Q, Pi_ 1 = [Pi-2, fi- 1], and Pi' = [P'2,hi1], for i > 2. It is 
clear that (Q, fi, ..., fn) (L, hI, ..., hn) if and only if [Q, fi, ..., fn] = [L, hi, ..., hn]. 
Therefore we have the following. 

Theorem 2.6. There is a one-to-one correspondence between the set of all the 
prime ideals of S and the set of all the equivalence classes of I module the equiva- 
lence relation . 

Remark 2.7. Perhaps is useful to point out that if R = K is a field, then for every 
prime ideal P of S = K[xi, ..., xn] there exists a sequence (fi, ..., fn) of polynomials 
in P such that P = [fi, ..., f7n], where 

fit, f n]= {g C S: there exist e,..., en > 0withga". .. aln C P}. 

It should be convenient to find an algorithm to determine 0-completely irreducible 
sequences in this case. 

Example 2.8. Assume that R is a ring and Q is a prime ideal of R. Let fi be 
a polynomial of degree one in Z(R)[xi] with lc(fi) 0 Q, where Z(R) denotes the 
center of R. Then fi is a polynomial in FQ which is FQ-completely irreducible. 
Thus P, = [Q, fi] is a prime ideal of R[xi]. Take a polynomial f2 of degree one 
in Z(R) [xi, X2] such that its leading coefficient with respect to X2 is not in P1. 
Repeating the argument we determine a completely irreducible sequence (mod Q) 
(fi, n, f) in Rf[x, , xn] and a prime ideal P = [Q. f, ., fn]. 

We give a concrete example (cf., [3], Example 4.1). Let R be the integral domain 
of all the power series of Q[[t]] having the coefficient of t equal to zero. Consider 
the polynomials fi = t2X _ti+2 1 < i < n. Then P = [0, fl, ..., fn] is a prime ideal 
of R[xl, ..., xn] which is not generated by the polynomials fi,..., fn (in general, if 
every fi is monic, then [Q, fl, ..., fn] equals the ideal Q[x] + (fi, , fn) generated 
by Q and fi,... nJ) 
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Remark 2.9. The method given in this paper can easily be extended to describe 
prime ideals of polynomial rings in any number of indeterminates. In fact, choosing 
a well order for the indeterminates we can proceed by transfinite induction. Thus 
prime ideals will be described by sequences corresponding to the number of indeter- 
minates. Finally, since every centred extension of a ring R which has a commuting 
centralizing generator set is a factor ring of a polynomial ring over R, this gives 
also a description of prime ideals in this kind of centred extensions. 
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