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ORTHOGONALITY AND THE HAUSDORFF DIMENSION 
OF THE MAXIMAL MEASURE 

ARTUR OSCAR LOPES 

ABSTRACT. In this paper the orthogonality properties of iterated polynomials are 
shown to remain valid in some cases for rational maps. Using a functional equation 
fulfilled by the generating function, the author shows that the Hausdorff dimension 
of the maximal measure is a real analytical function of the coefficients of an Axiom 
A rational map satisfying the property that all poles of f and zeros of f'(z) have 
multiplicity one. 

Here we will consider f a rational map such that the Julia set (see [1]) is bounded 
and f is of the form f(z) = P(z)(Q(z))-', where P(z) = zn + ani zn- 
+ +a1z + ao, Q(z) = bdzd + bdlzd-i + +b z + bo, where ai E C, bj E 

C, 1bd =O, n > 2, and d < n. 
In [6, 8, and 10] it was shown that for f a rational map there exists just one 

f-invariant probability measure u such that, for any continuous function 4), 

4)(x) du(x) = n-' E ?(zi(x)) du(x), 

where zi(x), i E {1, .. ., n }, are the roots of f(z) = x, counted with multiplicity, 
and this is the measure of maximum entropy. This measure is called the maximal 
measure, and it has entropy log n. For f such that f(ox) = cx and J(f) bounded, 
this measure is the equilibrium measure for the logarithm potential if and only if f is 
a polynomial [1, 9]. 

Let F(z) be the only one such that F(z)/z is analytic near x, F(z) - z as 
z -b o, and 

F'(z)F(z)i = J (z - x)-ldu(x) = z-1( E MmZ -), 

where Mm = Jxm du(x) for m E N (see [2]) are the m-moments of u. 
Note that Mo = 1, and the expansion is valid only when the Julia set is bounded, 

which implies either d < n - 1 or d = n - 1, and I bdI < 1 or IbdI = 1, and there is a 
Siegel disk around infinity. 
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We will consider d = n - 1 in Theorems 1 and 2 just to simplify the formulas. 
The same result can be easily obtained in the same way in the general case d < n. In 
Theorems 3 and 4, the interesting case is for d = n - 1, and the formulas of 
Theorem 1 will be used there. 

THEOREM 1. Let sm = E:,, p y  and tm = E;=, qj", where d = n - 1 and p, and q, 
are respectively the zeros of P and Q. Let a r  be the coefficient of z - ~  in the Laurent 
series in oo of f ( L ) - "  where m ,  k E N, then Mm is obtained recursively by 

I m-1 m- j  

( 1 )  M,  = ( n  - a:)-' sm + E M, E aL- , ( s ,  - t i )  
,=i 

PROOF. The following functional equation was obtained in [9]: 

To obtain the Laurent series in oo of 

f f ( z ) /  - x ) - ' d u ( x )  = f f ( z ) / ( z ) - '  f ~ m f ( z ) - ~ ,  
m=O 

we have to obtain the Laurent series of Mm f f ( z )  f (z)-("+') .  This series is obtained 
in the following way: 

We point out that a r  = (bd )m  for m >, 0, the first term in the above expression is 
Mmb,"(so - t,)z-("+I), and we have ( s ,  - t o )  = n - d = 1. 

The Laurent series in oo of f f ( z )  j( f ( z )  - x)-' d u ( x )  is 

The Laurent development of 
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Therefore 
m - 1  m - j  i nMm - tm = (s, - t,) + M,a," + E M, E aL_,(si - ti) . 
j=l i=o  i 

Finally, M, can be obtained inductively by 

DEFINITION 1. f is expanding if there exists a k E N such that I( f k)'(x)l > 1 for 
any z in the Julia set. 

DEFINITION 2. The Hausdorff dimension of a measure u is the inf{Hausdorff 
dimension of A for a11 measurable sets such that u(A) = 1). 

Ruelle [12] showed that the Hausdorff dimension of the Julia set of an expanding 
rational map is a real analytic function of the coefficients. Here we will show 

THEOREM 2. Suppose f A  is a family of expanding rational maps with coefficients 
depending analytically on X E R such that fA(z) has a11 poles and f,'(z) has a11 zeros 
with algebraic multiplicity one. Then Hausdorff dimension of the maximal measure of f, 
is real analytic with respect to the parameter A. If a11 zeros and a11 poles are 
respectively in the same component of C - J(fA), then the condition on the zeros and 
poles is unnecessary. 

PROOF. By [ l l ]  the Hausdorff dimension of u satisfies 
-1 

HD(U) = entropy of u( /  loglff(x) I du(x)) 

where ri and v, are resepctively the zeros and poles of f '  counted with multiplicity. 
Since logIF(z)l = / loglz - xldu(x), we have 

We claim that the coefficients of the Laurent series of F(z) depend analytically on 
the coefficients of f(z). From [7, Theorem 17.3.21 the coefficients of F(z) depend 
analytically on the moments M,. Now, by (I), each moment M, is a finite sum of- 
s,, t,, a:, which are themselves analytic on the coefficients of f(z). Therefore the 
claim is proved. 

Now since the sum of the values of an analytic map in the roots of a polynomial is 
an analytic function of the coefficients of the polynomial, we conclude that the 
Hausdorff dimension of the maximal measure is a real analytic function of the 
coefficients of f (x). 

Consider the sequence { f "(z)), n E N,  where f '(L) = z and f "(z) = f 0 f "-l(z). 
In [2] conditions were given for the orthogonality of the sequences { f ") with respect 
to the measure u when f is a polynomial (that is, / f ,(L) f "(L) du(z) = O for 
m # n). See also [3,4 and 51. 
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Here we are using a nonhermitian scalar product similar to the one used in [2]. 
EXAMPLE. For f ( z )  = zn  the maximal measure is Lebesgue measure on the unit 

circle, and orthogonality is a consequence of the orthogonality of the Fourier series. 
For f a rational map such that f ( m )  = m ,  the interesting case is obtained when 

d = n - 1 by the following theorem. 

THEOREM 3. Let f ( z )  = ~ ( z ) Q ( z ) - ' ,  where P ( z )  = Z" + a n - l ~ " - l  + . . - +a0,  
Q ( z )  = bn- ,z "-.I + + b,, bn-I # 0, and the Julia set bounded. Then 

1 f " " ( z )  f " ( z )  d u ( z )  = n-l(bn-,M2 + a,-,M1) 

with 
1 

Ml = - ( n  - bnPl)-  
1 

M2 = ( n  - b:-1)-1(s2 - anWl (n  - bn-l)- (bn-2 - an-lbn-l + ( S I  - t l ) b n - l ) ] .  

PROOF. By the f-invariance of u we have 

= n-l(bn-,M2 - an-,M1),  

and the theorem follows from (1). 
REMARK 1. This theorem gives us necessary and sufficient conditions for 

/ f m ( z )  f " ( z )  d u ( z )  = O for m > n in terms of the coefficients of f "-" ,  as explained 
by the next theorem. 

THEOREM 4. Let f ( z )  be a rational map as above such that a,-, = a,-, = 0, 
bn-I # n ,  b iP1  # n. Then { f n ( z ) )  satisfies/fm(z)fn(z)du(z) = O form Z n. 

PROOF. Since s,  = -an-,  and s2 = a:-, - 2an-,, we have from (1)  that M, = O 
and M2 = O. For m > n ,  f "-" and f have the same maximal measure [6]. 
Therefore, using the same argument as for Theorem 3, 

1 f " ( z )  f " ( z )  d u ( z )  = 1 f " - n ( z ) z d u ( z )  = 1 (cz  + d ) z d u ( z )  

= c M 2 + d M l ,  w h e r e c , d ~ C .  

Since M,  = M2 = 0, the proposition follows. 
REMARK 2. If one considers the case of real rational maps such that the Julia set is 

contained on R, one recovers orthogonality with respect to the usual inner product. 
Note that bn-, # n and b:-, # n are automatically satisfied when J( f )  is bounded. 
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