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ABSTRACT. We prove that Julia sets are uniformly perfect in the sense of Pom- 
merenke (Arch. Math. 32 (1979), 192-199). This implies that their linear 
density of loganthmic capacity is strictly positive, thus implying that Julia sets 
are regular in the sense of Dinchlet. Using this we obtain a formula for the 
entropy of invanant harmonic measures on Julia sets. As a corollary we give a 
very short proof of Lopes converse to Brolin's theorem. 

Let C be the Riemann sphere. As usual we say that a set A C C is an 
annulus if there exists, for some O < r < 1 ,  a conforma1 representation of 
{z E Clr < 1 z 1 < 1) onto A . The number log(1 /r)  is called the modulus of A . 

Given a set K c C ,  we say that an annulus A divides K if K n A = 0 and 
K intersects both connected components of the complement AC of A .  

In [6] Pommerenke introduced the following definition: a set K c C is 
said to be uniformly perfect if it contains more than one point and there exists 
m > O such that every annulus that divides K has modulus 5 m . In particular, 
connected sets satisfy this definition since no annulus can divide them thus 
making the condition vacuous. 

A uniformly perfect set K is always regular (in the sense of Dirichlet), i.e., for 
every continuous function yl: K .+ R there exists a continuous function v*: C -+ 

R such that yl*/K = yl and yl is harmonic in K C .  The function yl* (that is 
unique) will be called the harmonic extension of yl . In fact Pommerenke proved 
in [6] a much stronger property, namely, that denoting d(. , e )  the spherical 
metric on C and denoting y (S) the logarithmic capacity of a compact set S , a 
compact set K c C is uniformly perfect if and only if there exists 6 > O such 
that for a11 a E K and r > O 

y({z E Kld(z,  a )  < r)) > ar. 

It is well known that this property implies the regularity of K (see, for 
instance, [8]). 

Our first objective is to prove the following result that answers positively a 
question posed by Pommerenke in [7]. Aftenvards we shall apply it to give 
a formula for the entropy of harmonic measures on Julia sets through which 
we shall recover, with much shorter proofs, some already known results relating 
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harmonic measures with the maximizing (i.e., the entropy maximizing) measure 
of a rational map. 

Theorem. The Julia set J( f )  of a rational map f:  C t' is unformly perfect. 
Proof. Supposi, by contradiction, that there is a sequence of annuli A, , n = 
1 , 2 ,  . . . , dividing K such that lirn,,,, mod(A,) = cc . This property im- 
plies that for each n ,  a connected component K, of AC, can be chosen so 
that lim,,,, diam K, = O. Denote by K; the other connected component 
of A*, . Then infn,o diam Kn > O because othenvise we could take a subse- 
quence {KnJ) ; with limj,+, diam KkJ = O and points pj  E KnJ n J( f )  , 
Pj E KnJ n J( f )  converging to points p' and p in J( f )  , and then, from 
limj,+, diam Kn = limj,+, diam KnJ = O and J( f )  c KnJ u KnJ for a11 j , it 
follows that J( f )  = {p) U {p') , which is impossible. Denote D = {z E C1 1 z 1 < 
1) and let 9,: D -+ A, U K, be a conforma1 representation with p,(O) E K, . 
Then mod(D - 9;' (K,)) = mod(A,) . Hence lirn,,,, diam p; (K,) = O be- 
cause lim,,+, mod(A,) = m .  Take 1 > r, > p, > 2diam(Kn) satisfying 
lim,,+,r, = O, lim,,,,p,/r, = O. Set DI, = {zl lzl < p,). The family of 
functions v,: D -+ C is normal because inf, diam p, (D)C = inf, diam Kn > 0 .  
Hence lim,,,, diam p,(Dn) = O . But p,(Dn) is an open set containing points 
of J( f )  . Therefore the classical theory of Julia sets implies that there exist in- 
tegers t ,  > O such that f t n  (p,(DI,)) 3 J( f )  . Take O < c < diam J( f )  , and let 
m, be the minimum positive integer such that diam f mn(pn (Dn)) 2 c .  Since 
lim,,+, diam p,(DI,) = O, it follows that lirn,,,, m, = +m . Moreover, 
since diam f m n - l  ( ~ , ( D I , ) )  < c , it follows that diam f mn (p, (Dn)) < Lc , where 
L is the Lipschitz constant of f .  Let S be a set of four different points in 
J( f )  . Take c so small that every set of diameter < Lc cannot contain two of 
them. Then f mn (p,(DI,)) does not cover three points of S .  Define iy,: D -+ C 
by iy,(z) = f mnpn (r,z) . Let us show that the family {v,) is normal. It 
suffices to show that for a11 n , iy,(D) does not cover three points (that may 
depend on n) of S . If p,/2rn < 1 zl < 1 then p,/2 < I r, z 1 < r, and, since 
diam p; (K,) 5 p,/2 , it follows that r,z 6 p; (K,) and p,(r,z) 6 K, . Then 
vn(rnz) # J(f) because Kn = J(f) n pn(D).  Hence vn(z) = fmnpn(rnz) 6 
f m n ( J ( f ) )  = J ( f ) .  Therefore iy,(z) 6 S when pn/2rn < lzl < 1.  On the 
other hand, if lzl 5 pn/2rn , it follows that Irnzl 5 pn/2 5 pn and then 
vn (z) = f mn p, (r, z) E f mn p, (Dn ) that does not cover three points of S . This 
proves the normality of the family {h). Then, given E > 0 ,  there exists a 
neighborhood V of O such that diam y/,(V) 5 E for a11 n . But for n suffi- 
ciently large, V 3 {zl 1 zl < p,/r,) . 

E 2 diam vnv,(V) > diam y/,({zl lzl < pn/rn>) 
= diam f mn p,(Dk) > c. 

Since E > O is arbitrary, this is a contradiction that proves the theorem. 

Let us show some applications of the regularity of the Julia set. Recall that, 
given a regular compact set K C C and a point p E C ,  the harmonic measure 
pp is defined as the probability on the Borel o-algebra of K such that the 
integral with respect to pp of a continuous function p: K -+ R is given by 
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where p*: C -+ R is the harmonic extension of p . If p 6 K the support of 
yp is obviously the boundary of the connected component of KC that contains 
p , and it is well known that if p and q are in the same connected component 
of KC then yP and y ,  are equivalent and the Radon-Nykodim derivative 
d,up/dy,  is bounded and has a strictly positive infimum. 

Observe that if f :  C is a rational map and p: J (  f )  -+ R is continuous, 
then ( p o f ) *  = p* o f because p* o f is harmonic on the complement of J (  f )  
and (v* o f ) l J ( f )  = ( v o f ) l J ( f )  - Then 

because 

J ( r  o / ) d l i P  = ( ~ o f ) * ( p )  = (r* o f ) ( p )  = c * ( ~ ( P ) )  = J p d l < f ( p ) .  

Hence, yp is f -invariant if and only if f ( p )  = p . 
Given an attracting fixed point p of f ,  define its basin W S ( p )  as the set 

of points z such that lim,,,, fn(z) = p and its immediate basin B S ( p )  as 
the connected component of W S ( p )  that contains p . Then yp is an invariant 
probability of f whose support is the boundary d B S ( p )  of B S ( p )  . 
Corollary 1. Zf f :  C +J is a rational map and p is an attractingfied point of 
f , the entropy h,, ( f )  of f with respect to yp is given by 

where the points x E f- '  ( p )  are repeated according to its multiplicity. 
Proof. Define J :  d Bs (p )  -+ R by 

Let us prove that J is the Jacobian of yp , i.e., that 

for every Borel set A C d B S ( p )  such that f / A  is injective. Once this is proved, 
the corollary follows from the formula 

proved in [ 5 ] .  To prove ( I )  denote C O ( d B S ( p ) )  and cO(BS(p)) the spaces 
of continuous functions of dB"p) and BS(p) on R endowed with the norm 
of the supremum. Given a function p : d B s ( p )  i R (resp. p : B S ( p )  i R ) ,  
define 2 ( p ) :  d B S ( p )  -+ R (resp. 2 ( p ) :  B S ( p )  -+ R )  by 2 ( p ) ( x )  = Cy p ( y )  
where the sum is taken over a11 the y 's in f -' ( x )  n d B S ( p )  (resp. y E f -' ( x )  n 
B S ( p ) )  repeated according to its multiplicity. Observe that 2 maps continuous 
functions in continuous functions. Then if p E c O ( d ~ ~ ( p ) )  then the harmonic 
extension ( 2 ( p ) ) *  E cO(BS(P)) of 2 ( p )  satisfies ( 2 ( p ) ) *  = 2 ( p * )  . TO see 
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this observe that Pi.(q*) is harmonic in the complement of the critica1 values 
of f because there it is locally the sum of the harmonic function q* composed 
with the holomorphic branches of (f 1 BS @))-I . Moreover Pi.(q*) is obviously 
continuous; hence 9 ( q * )  is harmonic. Clearly we have Pi.(q*)/dBs(p) = 
9 q .  Hence Pi.(q*) = (Pi.(q))* . Then, if q E CO(dBS(p)), 

From this equality it follows, by standard methods, that 

for every bounded measurable q: dBS(p) i R .  Apply it to the case when q is 
the characteristic function of a Borel set A c d BS(p) such that f /A is injective. 
Then P ( q )  is the characteristic function of f (A) . Hence 

completing the proof of the corollary. 

For the next corollary recall that [4, 2, 51 if deg( f /BS(p)) denotes the degree 
of f /BS(p) (i.e., the number of preimages in BS(p) of any x E BS(p) counted 
with multiplicity) then the topological entropy of f ldBs(p) is log deg( f 1 BS(p)) 
and there exists a unique probability y on d BS(p) , invariant under f ldBS(p) , 
such that h,(f) = logdeg(flBS(p)). 

Corollary 2. h,, ( f )  = log deg( f 1 BS(p)) ifand only if f -' (p) n Bs(p) = p . 
Proof. If f -'(p) n BS(p) = p then the formula of Corollary 1 immediately 
implies h,, (f)  = log deg BS (p) because dy, Idy, 1 for a11 x E f - ( p ) n ~ ~ ( p )  . 
To prove the converse property observe that by Jensen inequality 

and the equality holds if and only if 
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pp-almost everywhere. Denote m = deg( f  lBS(p) )  and let S be the set of points 
in f  -' ( p )  n B S ( p )  repeated according to its multiplicity. Then 

for every V )  E C O ( d B S ( p ) )  because 

Let us show that ( 2 )  implies that x  E S implies x  = p .  Without loss of 
generality we shall assume that co E J (  f )  . First we shall prove that ( 2 )  implies 

Suppose that this is false. Then we can take a linear function iy: = C + R 
such that 

Given integers n > O, k > 0 ,  define q,,k E c O ( d ~ ~ ( p ) )  by 

V)n,k(z)  = ~ ( z )  when - k < i y ( z )  < n ,  

V)n,k(z)  = n when i y ( z )  2 n ,  
y n ,  ( z )  = - k when i y ( z )  < -k. 

Then for each k , {V),,  k ) ,  is an increasing sequence and for each n , {V) ,  , k ) k  is 
a decreasing sequence. Hence the same properties hold for { V ) ; ,  k ) n  , { V ) ; ,  k ) k  . 
Then, using that iy is harmonic, it is easy to see that 

iy = lim lim V);, k .  
k++m n++m 

Then 

for n , k sufficiently large, contradicting ( 2 )  and proving (3 ) .  But ( 3 )  implies 

for every Moebius map T :  C t. such that T-I (co) E J (  f )  because T  f  T-'  
has T ( p )  as an attracting fixed point whose preimages in this immediate basin 
are the points { T ( x ) l x  E S )  and co E J ( T f  T - l )  (by the property ~ - ' ( c o )  E 
J (  f ) )  , and then, ( 3 )  implies (4). In particular ( 4 )  implies 



for a11 zo E J( f )  (taking T as T(z) = ( z  - zo)-I) . The number of values of 
zo E C for which this equality holds is either finite or holds for every zo E C .  
In the first case, since J( f )  is infinite, we can take zo E J( f )  violating (5) and 
thus proving Corollary 2 by contradiction. In the second case, the left and right 
sides of (5) are identical as functions of zo E C .  But the left side function has 
a unique pole at zo = p , and the right side has poles at a11 the x 's in S .  Then, 
to be identical, we must have p = x for a11 x E S , proving the corollary. 

Finally recall that a rational map f:C e of degree d > 1 has topological 
entropy logd and a unique invariant probability ymax (the maximizing mea- 
sure) for which h,,,( f )  = logd ([4, 2, 51). When f is a polynomial, m is 
an attracting fixed point and f-'(cc) = {m) (with multiplicity d )  . Hence, by 
Corollary 1, h,, ( f )  = log d . We have thus proved the result of Brolin [ I ]  stat- 
ing that for polynomials the maximizing measure is the harmonic measure with 
respect to cc . Using Corollaries 1 and 2 we can also prove the converse prop- 
erty (due to Lopes [3]): if for a rational rnap f: C e its maximizing measure 
coincides with its harmonic measure with respect to m then f is a polynomial. 
To prove this observe that ymax = y, implies that y, is f-invariant. Hence 
f ( m )  = m .  If m E J(f) then y, is the Dirac 6 at cc and h,,( f )  would 
be O. Hence cc 6 J( f )  . Being a fixed point, the property m 6 J( f )  implies 
that it is either an attracting fixed point, or the center of a Siegel disk. In the 
first case, from Corollary 1 and Jensen's inequality, it follows that 

log d = h,- (f) L log deg( f 1 BS (m)) L log d.  

Hence, a11 the equalities hold, implying that the number of points in f-' (cc) n 
BS (m) counted with multiplicity is d (because log deg( f 1 BS(cc)) = log d )  and, 
by Corollary 2, f -' (m) n BS(m) = {m) (because log deg( f 1 BS (m)) = h,- (f) )  . 
Since f - ' (m) contains d points (counted with multiplicity), it follows that 
f-'(cc) = {m) , which proves that f is a polynomial. When m is the center 
of a Siegel disk, h,, (f)  = O .  This follows, for instance, from observing that 
the formula in Corollary 1 holds also (without changing the proof) replacing 
BS(p) by a Siegel disk with fixed point p . But since in this case f- ' (p) inter- 
sected with the Siegel disk contains only p , it follows that h,, (f) = O. Hence 
h,, ( f )  = O, obviously contradicting h,, (f)  = log d . 
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