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STRUCTURAL STABILITY AND HYPERBOLIC ATTRACTORS 

BY 

ARTUR OSCAR LOPES 

ABSTRACT. A necessary condition for structural stability is presented that in 
the two dimensional case means that the system has a finite number of 
topological attractors. 

Introduction. One of the basic questions in Dynamical System Theory is the 
characterization and the study of the properties of structurally stable systems 
(vector fields or diffeomorphisms). The standing conjecture about charac- 
terization, first formulated by Palis and Smale [2], is that a system is 
structurally stable if and only if it satisfies Axiom A and the strong transver- 
sality condition. That these conditions are sufficient was proved by Robbin 
[8] and Robinson [9], [10] after a series of important results in this direction. 
It is also known that in the presence of Axiom A, strong transversality is a 
necessary condition for stability. Therefore the open question is whether 
stability implies Axiom A. Relevant partial results were obtained by Manei [3], 
[4] and Pliss [5], [6]. Pliss [5] showed that C'-stability of a diffeomorphism 
implies that there is only a finite number of attracting periodic orbits (all 
hyperbolic). The purpose of this work is to show, generalizing this last result, 
that C "structurally stability of a diffeomorphism implies that there is only a 
finite number of hyperbolic attractors. This result is a well known fact for 
Axiom A diffeomorphisms (Smale [11]). 

We will now explain some facts about our result. 
Let M be a C '-manifold without boundary and Diffr(M) be the space of 

Cr-diffeomorphisms of M with the Cr-topology, r > 1. A diffeomorphism 
f E Diff`(M) is Cr_structurally stable if there exists a neighborhood U of f in 
Diffr(M), such that if g E U there exist a homeomorphism h of M satisfying 
f = hg. Such a diffeomorphism f has the property that all diffeomorphisms 
sufficiently near to it have the same orbit structure. 

We will call a point x E M nonwandering for f when V U neighborhood of 
x in M there exist n E Z - {0}, such that f (U) n U #0. We will denote 
such a set by R(f). 

A closed subset A of the nonwandering set Q(f) is called an attractor when: 
(1) A is f-invariant (that is, f(A) = A). 
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(2) 3L neighborhood of A in M such that n, ncEz fn(L) = A. 
(3) f is transitive. 
A subset A c M is called hyperbolic for a diffeomorphism f E Diffr(M) 

when 
(1) A is f-invariant. 
(2) There exist continuous bundles Es(x) and E"(x) (x E A) that are 

invariant by Df and such that Es(x) E E"(x) = TMX, Vx E A. 
(3) 3K > 0, 3X, 0 < A < 1, such that 

II(Df )n,Es (X) 11 < K n, 

II(Df) nIEu(x)II < KXn Vx E A, Vn E Z+. 

Our purpose in this work is to prove the following: 

THEOREM. The number of hyperbolic attractors in a C'-structurally stable 
diffeomorphism is finite. 

In the study of Cr_structurally stable diffeomorphisms the following 
definitions were introduced (Smale [11]): 

AXIOM A. We will say that a diffeomorphism f E Diff(M) satisfies the 
Axiom A when: 

(1) the periodic points are dense in the nonwandering set, 
(2) the nonwandering set of the diffeomorphismf is hyperbolic. 
STABLE (RESPECTIVELY UNSTABLE) MANIFOLD. For a diffeomorphism f E 

Diffr(M) and a point x E M we will call stable (unstable) manifold of x the 
following set: Ws(x) = {y E MIdn, .(fn (X),fnf(y)) -_0) (Wu(x) = {y E 
Mld o(f 

-n 
(X),f 

-n 
(y)) ___}0). 

It can be proved [1] that if f satisfies Axiom A then for any x E Q(fl, 
Ws (x) (Wu (x)) is a 1-1 immersed manifold in M and 

U Ws(x)= U Wu(x) = M. 
x E Q(f) x ES2(f) 

STRONG TRANSVERSALITY. We will say that a diffeomorphism f E Diff (M) 
satisfies the strong transversality condition when: 

(1) f satisfies Axiom A, 
(2) the intersections between stable and unstable manifolds of any pair of 

points in the nonwandering set are transversal. 
In the direction of the characterization of the Cr_structurally stable 

diffeomorphisms there exists the following conjecture: 
CONJECTURE 1. A diffeomorphism f E Diffr (M) satisfies the Axiom A and 

the strong transversality condition if and only if it is Cr-structurally stable. 
It is a well known fact (Smale [11]) that a diffeomorphism satisfying Axiom 

A and strong transversality conditon has a finite number of hyperbolic 
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attractors. A complete proof of this conjecture would therefore contain our 
result. 

We point out that from Mafin [4] it follows that if A is an attractor of a 
diffeomorphism C'-structurally stable in a manifold of dimension two, then 
A is hyperbolic. Therefore in dimension two our main result can be stated in 
the following way. The number of attractors in a C'-structurally stable 
diffeomorphism is finite. 

The proof of our result will be done in the following way: in ? 1 we relate 
and explain some known facts, mainly from [4] and [5]. In ?2 we demonstrate 
some preliminary lemmas that we will lead in ?3 to our objective. 

This paper is the author's doctoral thesis at IMPA under the guidance of J. 
Palis. I wish to thank him and R. Mafie for many helpful conversations. 

1. For Axiom A diffeomorphisms there exists a generalization of stable 
(unstable) manifolds for periodic points to the points of the nonwandering set 
[1]. This generalization allows us to deal with a continuous family of discs 
that have some interesting properties. We will call this family local stable 
(unstable) manifolds and we will enumerate some of its properties in Lemmas 
1.1 and 1.2. 

For C'-structurally stable systems we do not have "a priori" this nice 
structure of discs, that are defined by the hyperbolicity of the nonwandering 
set. However another continuous family of discs was introduced by Mane [4] 
for C '-structurally stable diffeomorphisms, that has some but not all 
properties of the family of local stable (unstable) manifolds. We will call this 
new family of discs the family of pseudo-stable (pseudo-unstable) manifolds. 
We notice that these two kind of families stable and pseudo-stable (unstable 
and pseudo-unstable) coincide in the case where f satisfies Axiom A. 

In this section we will remember some of the properties of this two families. 
In Lemmas 1.1 and 1.2 we will talk about stable (unstable) manifolds, in the 
hyperbolic case. In Lemmas 1.3 through 1.8 we will be interested in the 
pseudo-stable (pseudo-unstable) manifolds of a C '-structurally stable 
diffeomorphism. We will just give the proofs of Lemmas 1.5 and 1.8 because 
the others are proved in [4]. 

In Lemma 1.9 we relate the two splittings that are associated with these two 
families in the case of a hyperbolic attractor of a C '-structurally stable 
diffeomorphism. 

Finally in Lemma 1.11 we will discuss the use of techniques introduced by 
Pliss in [5] applied to the pseudo-stable manifolds of a C '-structurally stable 
diffeomorphism. 

We will give before Lemma 1.11 an idea of where we will use all this 
machinery to prove the main result of this work. 

In the rest of this work we will consider a Cx compact n-dimensional 
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manifold M without boundary and Diff'(M) the set of diffeomorphisms of M 
with the C '-topology. We will consider d (, ) a fixed metric on M. 

LEMMA 1.1. For x in a hyperbolic set A with the periodic points dense in A, 
there exists an unstable (respectively stable) manifold of x denote by Wu (x) 
(Ws (x)) with the following properties: 

(a) Wu(x) = {y E Midn,(f -'(x), ff`(y)) } 0) (Ws(x) = {y E 

Mld,,(f (x), fn(y)) -O 0)) is a 1-1 immersed plane with the same dimension 
as Eu(x) (Es(x)), 

(b) Eu(x) (Es(x)) is the tangent plane of Wu(x) (Ws(x)) at x, 
(c) f ( W(x)) = Wu (f (x)) (f ( W (x)) = Ws (f (x))), 
(d) if A is a hyperbolic attractor then Wu (x) c A c Q(f) for all x E A. 

PROOF. It appears in [1]. 
DEFINITION 1.1. Let A be a hyperbolic set and x E A, we will define the 

u-metric in Wu (x) and the s-metric in Ws (x) in the following way: 
du'(v, z) = inf{lengths in the metric d on M of the paths contained in 

Wu(x) that begins in v and ends in z} and 
dx (v, z) = inf{lengths in the metric d on M of the paths contained in 

Ws (x) that begins in v and ends in z}. 
DEFINITION 1.2. Let A be a hyperbolic set and x E A, we will define Wue(x) 

the ball of center x and radius - in Wu(x) in metric du. Similarly for WJS(x). 

LEMMA 1.2. Let A(f) be a hyperbolic set with the periodic points dense in 
A(f) and E > 0. Then for any 8 > 0 there exists an N > 0 such that 
f -n(Wu(x)) c Wu(f -n(x)), Vn > N. 

PROOF. Suppose K and A as in the definition of hyperbolicity in the 
introduction. Given 8 take n such that KXne < 3. Now using (3) on the 
definition of hyperbolicity, Lemma 1.2 follows. 

In the next lemmas we will be interested in the family of pseudo-unstable 
(pseudo-stable) manifolds that exists for C '-structurally stable 
diffeomorphisms. 

We will call Perj(f) the set of peridoic points of the diffeomorphismf that 
has stable dimensionj. Let Aj(f) be the closure of the set Perj(fl. We will use 
the notation IF(M) to indicate the interior in Diffl(M) of the set of 
diffeomorphisms whose periodic points are all hyperbolic. 

It is easy to see that all C 1 structurally stable diffeomorphism is in CY(M). 
We point out that Mafie [4] proved that if f E '5Y(M) then it follows that 

Per(J) = U(f) 
We will always suppose in this work the condition f E 'Y(M) instead of f 

C '-structurally stable. 
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LEMMA 1.3. Let f E 'F(M) with the periodic points dense in Aj 0 O, for some 
0 <j < dim M. Then there exists a continuous splitting TM/Aj = Es $ EU 
and constants 0 < X < 1, K > 0 such that 

(a) (TflE5 = Es, dim Es = j, (TfEU = Eu 
(b) if x E Perj(f) and m is the period of x, then 

||( Tf )ylpxsl < Am |(Tf )-nIE-u|| < KXm 

(c)forallx E Aj(f)andm E Z 

||m TfIS1 )Exl- 11m T )- !LEu( )11 < KA 

PROOF. It appears in [3]. 
Let f E 'Y(M). Given 0 < j < dim M let A = Aj(fl and Es, Eu be the 

subbundles of TM/A given in Lemma 1.3. Denote by EmbA(Di, M) the 
space of C' embeddings /B: Di -- M, where Di = {x E Ri lxII < 1), such 
that /3 (0) E A. Consider EmbA(Di, M) endowed with the C topology. Then 

so: EmbA(Di, M) -- A defined by vr( /8) = 3 (0) is a fibration. 

LEMMA 1.4. There exist sections ps: A -- EmbA(Di, M), 9p u: A 
EmbA(Ddim M-j, M) and E > 0 such that defining 

Wes(x) = W s(x)DJ,, W,u(x) = WU(x)DdimM-j, 

we have the following properties: 
(a) TxW,s(x) = Es, TxWeu(x) = EX. 
(b) If we define ds (a, b) = inf {length of a (t), where a: [0, 1] - Ws(x) is 

such that a (O) = a, a (1) = b} for x E A, a, b E Ws(x), and define Bs(x) = 

{a E Ws (x)Ids (a, x) < E}, then B5s(x) = Ws(x). 
(c) There exists a power g = fN of f such that for all 0 < -1 < 1 there exists 

0 < C2 < 1 satisfying 

g (W..s,(x)) C W.el,( g W)) W.-,( g (x)) C g( weul(x)) 

for all x E A. 

REMARK. We call WJs,(g(x)) the set Bes(g(x)). 
PROOF. It appears in [4]. 

The corresponding properties are true for Bu(x) = Wu(x) and g = f -N, 

N > 0. 
These two families of discs will be called, respectively, pseudo-stable and 

pseudo-unstable manifolds for x E Aj(f). 
REMARK 1. These concepts are "a priori" different from the stable and 

unstable manifolds defined in Lemma 1.1. 
These two lemmas (1.3, 1.4) allow us to use a continuous structure of discs 

that has some interesting properties. These properties will appear in Lemmas 
1.5 through 1.8. This structure however does not have in general the uniform 
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property that appears in the hyperbolic case of Lemma 1.2. 
As Lemma 1.3 shows, the We"(x) correspond to the linear invariant part of 

f. 
REMARK 2. We point out the following invariant properties of the pseudo- 

unstable family: for any E > 0 there exist a 8 > 0 such that Vx E Aj, 
f -I( WJu(x)) c Wu7(f -(x)). Suppose now that p is a periodic point, take 8 
such that 

f-' ( Wiu (p)) c WeU (f ' (p))9 VO < i < ?(P), 
where 7r(p) is the period of p. Although in general f 7r(P)(WWU(p)) Lz wu(p), 
for such 8 > 0 we have f -17(P)( Wu (p)) C Wu (p). We use here the uniformity 
of K of Lemma 1.3(b). Remark 2 corresponds to the corollary of Proposition 
2.4 in [4]. 

LEMMA 1.5. Let E > 0 be as in Lemma 1.4 and x E Perj(f) n A1 hyperbolic, 
then there exist eI > 0 such that Weu (X) = Wu (x) (we recall that Wu (x) is the 
unstable manifold of the hyperbolic periodic point x of size e1). 

PROOF. Suppose x is fixed for f (otherwise take n such that fn (x) = x). Let 
U be the neighborhood of x of size e2 given by Hartman's theorem (see [1] for 
reference); that is, f is conjugate to TfX in U. By Remark 2 we can take 
O < E1 < e2 such thatf -l(Wu(x)) C We'(x). By uniqueness of the Wu(x), this 
property just happens for one disc of dimension j, the We,u(x) disc. Then it 
follows that We"(x) is equal to W,(x). 

We point out that this el depends on x. 
DEFINITION 1.3. For x, y E Aj we define <x,y> = W,s(x) n Wue(y). 

LEMMA 1.6. There exists E > 0 such that if x E Aj(f), y E A,(f) and 
d (x, y) < e then <x, y> is one point and 

f(<x,y>) = Kf(x),f(y)), f'- (<x,y>) = (f'- (x),f'- (y)). 

PROOF. It appears in [4]. 

LEMMA 1.7. 3e1 > 0, ml > 0, 0 < A < I and K > O such that: 
_(a) If x E Perj(j) has period > ml, then du(fn(x), fn(y)) < El for all n > 0 

(dj,(fn(x), fn (y)) < E, for all n < 0) impliesy = x. 
(b) If xi E A>(f), i = 1, 2,y E M, N > O andy = <x1, x2> 

ds (fn (x )fn (y)) < El, du (fn (X2) fn (Y)) <I 

for all 0 < n < N then: 

ds (fn (xI), fn (y)\) -nd d(fn (X2), fn y)X 
< K X 

df (xl y) du (X2l Y) 

for all O < n N. 
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PROOF. It appears in [4]. 
Lemma 1.8 relates the property that we will really use, and it is a 

consequence of Lemma 1.7(b). Lemma 1.8 says, informally speaking, that if 
the images of the positive iterates of WU(x) are bounded, then the positive 
iterates of We5(x) are limited too, for any x E Aj. 

LEMMA 1.8. Suppose that for E1 > 0 small enough like in Lemma 1.7 and 
a, b E A such that a E Weu(b), du(a, b) = EI and 

Ju fn(a), f(b)) < V1 n E- Z+ 

then 3E2 > 0 such that Vy E W,(b) 

d, (fn (b), fn (y)) < E1 Vn E- Z+. 

PROOF. Let no be such that KXno d,(a, b)/du(a, b) < 1 where K and X are 
the constants that appear in Lemma 1.7. Let e2 be such that 

d5(fn(y),fn(b))< Ve n nO < n < n0, Vy E Ws2 (b)- 

Then by Lemma 1.7: 

d5du (ff (a), fn (b)). ds (y, b) 
d5(fn (y), fn (b)) < KXn. e, Vn, n > no. 

du (a, b) 

Then Lemma 1.8 follows. 
The next lemma (Lemma 1.9) studies the relation, in the case of an 

hyperbolic attractor, between the splitting Es(x) ff Eu(x) (given by hyperbo- 
licity) and the splitting Es(x) f Eu(x) (from Lemma 1.3) for x in the 
attractor. For the last splitting to make sense of course we consider the 
attractor contained in Aj for some O < j < dim M. 

LEMMA 1.9. Let be A c Aj for some 0 < j < dim M, A a hyperbolic attrac- 
tor for f E 6Y(M) and the periodic points dense in A. Then the subspace EU (x) 
(respectively Es (x)) and the subspace E(x) (Es (x)) are the same for x E A. 

PROOF. We will just consider EU and EU, because the other case, that is, Es 
and Es, is similar. Let E such that f-n(Wj(A)) C We'(A), Vn E Z+. The 
existence of such E follows from the uniformity of the hyperbolicity (of 
inequality II(Tf)-nEu(x)II < KXm, Vm E Z+). From Lemma 1.5 we have 
that if E is small then Weu (x) = Wiu (x), for any x periodic in A. The tangent 
planes of such manifolds are the same in the periodic points x. Now using the 
fact that the bundles Eu and Eu are continuous, and the periodic points are 
dense in A, Lemma 1.9 follows. 

Lemma 1.10 is a well known fact about hyperbolic attractors. 
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LEMMA 1.10. Let A be a hyperbolic attractor and c E A such that f(c) = c. 
Then for all x, y E Wu (c), the sequence du (f' (x), f' (y)) -oo when n- oo 
Therefore Wu (c) is not bounded for the metric duc. 

PROOF. Let a: [0, 1] -> Wu(c) be such that a(O) = fn(x), a(1) = ff(y). As 

f -(a(t)) is in A, we have: 

J II((-n o a)(t))'IIdt = f|(Df)j7nn(a(t)) (a'(a(t)))V| dt 

< KXJ II a'(a(t))I dt 

where K and X are the hyperbolic constants for A. 
Since f is a diffeomorphism, all paths between fn(x) and ff(y) are fn of 

some path between x and y. Therefore: du(x, y)/KXn < du(fn(x), fn(y)). 
Then Lemma 1.10 follows and consequently Wu(c) is not bounded for d". 
We can give now an idea of the proof of our main result. This program will 

be carried out in detail in ?2 and ?3. 
First of all, let us recall the work of Pliss about periodic atrattractors in [5]. 

(for a C '-structurally stable diffeomorphism there are just a finite number of 
periodic attractors points): he finds 8 > 0 as small as he wants, and attracting 
periodic points pi E An (with period '7(pi)) such that there are jumps of 
constant ki-size 

1 2 3 ... ki ki+ * ... 2k * 3ki ..(. 7(pi) 

such that fk ( Ws (flk (pi))) c Was (f (l+ l) (pi)) is a uniform contraction by 1/4. 
Here l > 0 are integers such that 1ki < g7(p1). He can make ki and the biggest 
of such l arbitrarily big, taking '7(pi) big enough. Therefore if there exists an 
infinite number of attracting periodic points, we can take pi with a large 
number of elements in the above sequence of ki-size jumps (that is, the 
biggest of such 1, can be taken arbitrarily big). Since M is compact, two of 
such elements of a sequence must be at a distance less than 8/2; that is, there 
exist integers mi > ni > 0 such that 

d(f`,k, (pi), fnk (pi)) < a/2 

and m,k, - n,k, < 7(p,). Well fml"- is a contraction of Ws(f";(pi)) in 

W814( fml&;( pi)); thus f(m?A;I 
- k(Pi) has just one fixed point in W8s(f'0;,(pi)) and 

different from p, because miki - niki < 7(pi). Thus he reaches a contradic- 
tion, and so it follows that the number of periodic attractors is finite. 

REMARK 3. Pliss in [5] did not explicitly use pseudo-stable manifolds, but 
the neighborhoods of the points pi that he considered correspond to these 
manifolds. 



STRUCTURAL STABILITY AND HYPERBOLIC ATTRACTORS 213 

Let us now see our program for proving that if f E CF(M) then f has only a 
finite number of hyperbolic attractors. 

Suppose to the contrary that there exists an infinite number of hyperbolic 
attractors in A. Take pi a periodic point in each attractor, such that pi have 
minimum period in the attractor. 

First we notice that, with the same arguments as in [5], one can get the 
existence of ki-jump sequences as above for the periodic pointspi with stable 
dimension j, 0 < j < dim(M). This fact will be formally stated in Lemma 
1.11. 

Another basic fact that is needed, which is Lemma 2.5 proved in ?2, is the 
following. For some big N > 0, f -r is a contraction of W (ff (pi)) in WaU(pi) 
for r > N; then as in the picture below we will have a new periodic point in 
W,u (fn, k'(pi)) X Wg (fQ (pi)) if we take f(^4-QL) for miki - ni ki > r. 

W.4(fniki(p)) f fiki(pi) 

ffniki(pi) 

W s(ikilpi)) ' 

Thus this new periodic point has period less than period of Pi,. Therefore we 
will have a contradiction if we prove (and we will do it in ?3) that this new 
periodic point is in the same attractor as pi. This is obviously not possible 
because pi has minimum period in its attractor. 

We will finish ?1 with the new formulation of Pliss' lemma on jump 
sequences mentioned above. The proof is the same as in [5]. 

LEMMA 1.11. Let f E 6C(M) and a sequence pi E Perj(p), that is, pi is a 
sequence of periodic points with stable dimension 0 < j < dim M. Suppose that 

?Ti--*0(pi) - , where 7r(pi) denotes the period of pi. 
Then 380 > 0 such that VS < 80, VN > 0, 3i E Z, Ski > O, 3m, > ni > 

O such that 

(1) r(pi) > miki - niki > N > 0, 
(2) d (f' (Pi), f '(Pi)) < 8 /2, 
(3) f(m; ')k is a contraction of Wa(f?Wk(pi)) in Wg(ffl`(pi)), with constant of 

contracton smaller than 1/4. 
In particular f(m -nI)k( W;s(f1kQ(p ))) C Wys,,(fmk (P)) 
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PROOF. Similar to [5]. 
We point out that the corresponding result for WU is true, but 

unfortunately we cannot obtain simultaneously both results for the same 
periodic point pi. 

2. We will consider in this sectionf E 6Y(M) with the periodic points dense 
in Q(f). In the last section we saw that for every p E Per(J) there exists a 
8 (p) > 0 such that 

m(p)(p) = Wa'(p,. 

Our main purpose in the present section is to obtain a univeral 8 > 0 so that 
WV,6(x) = W,6(x) for all x E AH' where AH denotes the union of all hyper- 
bolic attractors for f (Lemma 2.7). Moreover we will exhibit an integer N > 0 
so thatf-N is a uniform contraction of W^'(x) in W,4(f -N(X)) for all x AH 
and the same 8 (Lemma 2.5). 

Of course these facts would be easily verified if we had only a finite 
number of attractors for f. The problem here is that with an arbitrary number 
of hyperbolic attractors we may not have uniformity in the constants of 
hyperbolicity. 

Let E > 0 be as in Lemma 1.4; such E will be used throughout this section 
in the following way: everywhere we mention WU(p) or W,r(p) for some 
r > 0, it is implicit that r < e. 

LEMMA 2.1. Let p E AH n Per(f) nA and EO be such that Vq E WeO(p), 
d (f -' (q), f -n (p)) < E, Vn > 0; then Wu (p) = Wu (p). 

PROOF. Let r(p) be the period of p, therefore by Remark 2 we have 
f -'(P)(W JuJQ(p)) c Weu(p). We know that there exists by Lemma 1.5 a 8(p) > 
0 such that Wau(p) = wau(p. 

Suppose to the contrary Weu (p) =# Weu (p), and take y on the boundary of 
Wuo (p) n Wuo(p). Let V be a neighborhood of y in Wu(p). There exist an n 
such that 

f-n(p)(V) c JTi(p)(p) = JI(p)(P). 

As fn1v(P)(f-nv(P)( V)) c WS because f(j Wu) (pA(p) c Wuo(p), we have a con- 
tradiction with the way we took y. Therefore W,Uo(p) = W,Uo(p). 

REMARK 4. The bundle EU is uniformly continuous, therefore 3e4 such that 
if d(x,y) < e4 the angle between Eu(x) and EU(y) is smaller than 1/4. We 
will consider in the rest of this work the e of Lemma 1.3 as being smaller than 
this e4. 

LEMMA 2.2. Let p E Per(f) n AH n Aj, q E Aj, e as in Remark 4 and 
suppose Weu(q) c Aj, then there exists an e5 such that if d(p, q) < e5 then 
Wu(p) n WS(x) 7# 0, Vx E Weu(q). 
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PROOF. First of all note that there exists an e5 < e such for any surface V of 
dimension j which is not limited has the following property: If the tangent 
planes of V and Eu(y), Vy c Weu(q) are smaller than 1/4 and there exist 
z E V, d (z, q) < e5, then V is the graph of some function of WU"(q) to R. 
Therefore V n Wes(x) #0 for any x c W"u(q) such that d(x, q) < e. We 
just have to show that WU (p), Vp c Perf n AH n Aj, satisfies the 
conditions of V. Remember that by Lemma 1.10, W"(p) is not limited and by 
Lemma 1.1(d), Wu(p) c Aj. Now by Lemma 1.9 Eu(z) = Eu(z), then for 
y E We" (q) and z C Wu (p) the angles between EU (y) and EU (z) are smaller 
than 1/4 by the way we took e (see Remark 4). Therefore Lemma 2.2 is true. 

REMARK 5. Let e5 be fixed satisfying the conditions of Lemma 2.2. Then 
there exists a C > 0 such that for p c Perjf n AH n Aj, d(p, q) < e5, the 
distance between x and y in the same connected component of W" (p) n 
(Ws (q) X Wi" (q)) is uniformly bounded by C. The reason is that the angles 
between Eu(x) and Eu(z) are limited for all x c W"(p) and z E Weu(q), 

d(p, x) < e. 
We will suppose in the rest of this work the e of Remark 4 smaller than this 

fixed e5. 
The following Lemmas 2.3 and 2.4 are just for periodic points but they are 

the central point of ?2. 
The main purpose of this section, Lemmas 2.5 and 2.7, will follow by the 

continuity of W,U (x) in Aj n AH. 
In the next lemma (Lemma 2.3) we will obtain a property that is very easy 

to prove for just one hyperbolic attractor (Lemma 1.2). 
The problem here is that we could have an infinite number of attractors 

and therefore the constants K can be arbitrarily close to 0. 

LEMMA 2.3. 3e0 > 0 such that VE6, 0 < E6 < e0, 36 > 0 such that 
f-n(Wu(p)) c Wuf -n(p))for alip c AH n Per(f n A>, Vn c Z+. 

PROOF. Let e0 = e5 as in Remark 5 after Lemma 2.2. Forp E A. we define 
SP = {0a E W6uId(f-n(vp)f-n(a)) < e6, Vn E Z+) and p = 

d((p, 0), We6(p) - Sp), Ve6 < e' 
Notice that by Lemma 1.3(b) we have that if 7 (p) is big enough 

f-T(p)(WaU(p)) c W"(p), u p E Per(f) n A1. Thus Sp > 0 always. Also if 
x E W,U(p) then d(f-(p),f (X)) S e6 for all n > 0. 

Suppose to the contrary there exist an = Sp" -0,Pn (E Perj(J) n AH n Aj. 
Let qn E Aj n W,6;'(P,1) 0 < Mn < 'n(Pn), d(f - "(qn), f -"(P)) = '6* It is clear 
that mn - oo because as f is C 1 and M is compact, the derivative of f is 
uniformly bounded. 

Let a = limf- "(qn) E Aj, b = limf- "(pn) E Aj. We will show that 
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Let BA(x) = {y E MId(x,y) < }. Suppose to the contrary that 3no > 0 
such that d(f fo(a), ffno(b)) > e6. 

Let Al such that Vx E BA(fflo(a)), Vy e Bal (fno(b)) we have d (x, y) > e6. 
Let now A2 be such that Vx E B,2(a), Vy e B,2(b) we have 

fno (x) (= BA, (fno (a)), fno (y) E BA (fno (b)). 

Let pn, qn be such that d(f-"2(qj), a) < A2, d(f ""(p), b) < A2i mn > no. 
Thus 

d (f -mtk +nO ( pn), f - nk + no (qn)) >e66s 

but this is a contradiction with the fact that qn e W (Pn. Therefore Vn E 

Z+, d (fn (a), f (b)) < e6. 
We point out that by the way we take a and b we have that a E W,6(b). 

Let now c E AH some periodic point of the sequence f-"(pn). By Lemma 
2.2 if c is close enough of b then we have the following: there exists an a1 in 
the intersection W,(a) nW U(c) and a b1 in the intersection of Ws(b) n 
wU(c). 

Now by Lemma 1.8 if d(al, a) < e2 and d(bl, b) < e2 for some e2 > 0 then 
d(fn(a1), f(b1)) < e6, V n E Z +. It is clear that we can take aI near a and bI 
near b by taking c near b. Thus d(fn(a,),fn(b1)) <K 6 for all n > 0 and 
a,,b1E Wu(c). 

We will show finally that this will imply that duc (fn (a1), fn(b1)) is limited, 
and therefore by Lemma 1.10 we will have a contradiction. The distance 
du (ff (a,), ffn (b1)) is limited by C (see Remark 5 of Lemma 2.2) because 

d(fn (a), fn (bl)) < E6 < e5. 

Therefore with this contradiction we conclude that Lemma 2.3 is true. 

LEMMA 2.4. Let e0 be as in Lemma 2.3. There exists an 0 < E7 < eo such that 

Fn (p) = diam f - e7 ( We (p)) converges uniformly to zero for p C AH n Per(f) 
n Aj when n - oo. 

PROOF. We have to prove the following: Ve3 > 0, 3N > 0 such that for all 
p in AH n Perj(f) n Aj, Vn > N,fj (We(p))c W-(f-(p)). 

Let 7 > 0 be such that f-n(Weu(p)) c u W -(fn(p)), Vn c Z+ as in 
Lemma 2.3. Given e3 > 0 and e3 < e7, again by Lemma 2.3 there exists 8 > 0 
such thatfn(W8u(p)) C W63(f -n(p)), Vn E Z+, Vp c (Aj n Perj(f) n AH). 

Suppose to the contrary that 3nk sequence in Z+ nk - oo such that 

Flk(Pk) > e3 for some fixed e3. Let qk E We"(pk) be such that 

d(f -k(qk), fk (pk)) = C3 

It is clear that d(f -j(qk), f -j(Pk)) > 6, Vj, 0 < i < nk, by the way we took 8. 
Let now a = lim f-nk(qk) and b = limf-nk(pk) where nk is the smallest 
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integer larger than 2 nk. Note that by the way we took e7, d(fJ(qk), 
f (Pk)) < eo,j,0 <Vj < nk/ 

Using the same arguments of Lemma 2.3 we have that 8 < d(fn (b), fn (a)) 
< o. 

Again (as in Lemma 2.3) by remarks of Lemma 2.2 we conclude that 
du(fn(aj),fn(bj)) is bounded for n C Z+, c as Lemma 2.3. As c E AH this 
last sentence is in contradiction with Lemma 1.10. Therefore our first 
assumption in the proof of this lemma is false, and consequently Lemma 2.4 
is true. 

LEMMA 2.5. Let C0c, C-7 and Fn(p) as in Lemma 2.4, then Fn(p) converges 
uniformly to zero when n - oo for all p E AH n Aj. 

PROOF. Suppose to the contrary that Lemma 2.5 is false, therefore 3C3 > O, 

3Xk C AH n A>, 3Yk C We (x) and nk -o o, such that 

d (f-nk (x), f-nk (y)) = 2C3. 

For each k, take pk E AH n Perj f n Aj and qk E Wu7(Pk) sufficiently close 
respectively to x andy, using the continuity of the pseudo-unstable families in 
Aj. If these distances d(x, Pk) and d(y, qk) are small, then 
d (f Ik(pk), f -fI(qk)) > 63 As nk -o o this last sentence is in contradiction 
with Lemma 2.4. Therefore Lemma 2.5 is true. 

LEMMA 2.6. There exists a constant 8 such that WO (p) = W,6u(p) for all 
p E AH n Per(f) n A4. 

PROOF. Let 8 be obtained as in Lemma 2.3 for the '6 = 6 < C. 

As we have seen in Lemma 2.3, f-n(Wu (p)) C Wu (fn (p)), n > 
Therefore Vp C Perf n AH n Aj, f -(P)(W,u(p)) c W6u(p) by Remark 2 
before Definition 1.3. We conclude then by Lemma 2.1 that Wsu (p) = 

Wu (p). 

LEMMA 2.7. The constant 8 of Lemma 2.6 is such that W^u(p)= W=;u(p), 

Vp E AH n Aj. 

PROOF. The points p C Perf n AH n Aj are dense in each attractor in 
AH n Aj. Therefore by Lemma 2.6, and by the continuities of the pseudo- 
unstable manifold family in Aj and unstable manifold family in an attractor 
in AHI we have that for any q E AH n Aj, W^u(q) = W^u(q). 

REMARK 6. We point out that if we take C3 < 8, C3 < C7/4 and N > 0 as in 
Lemma 2.5, then we will havef-N a contraction in WU(p) for allp E AH n 
Aj. In this case the constant of contraction is smaller than 1/4. The reason is 
that any q c WU(p) is in Aj n AH, and therefore W,,u(q) = W^"(q). Thus as 
f-N(wu(q) cf W (fN(q)),fN is a contraction of WU(p) in Wu(f -N(p)), 

Vp E AH n Aj. 
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3. 

THEOREM. If M is a compact C manifold without boundary and f is 
C '-structurally stable, then the number of hyperbolic attractors is finite. 

PROOF. It is enough to prove that the number of hyperbolic attractors for f 
in Aj is finite. We point out that each attractor is completely contained in 
some Aj, and there is just a finite number of Aj. 

All we will need for the proof is that f E 'F(M) and that the periodic 
points are dense in Q(f). 

For each hyperbolic attractor A in Aj we will define 

i(A) = min{per(x)Ix E Perj(f) n A n A>}. 

Suppose to the contrary that there exists an infinite number of attractors, so 
that i(A) is not bounded as A varies in AH (all periodic points are hyperbolic). 

Take pn a periodic point with minimum period in each attractor in Aj. It is 
clear that 'V(Pn) -> 0. 

Now using Lemma 1.1 1 for (pn), and 8/2 (8 as in Lemma 2.7 we will have 
the following: 3pi in the sequence (pn) such that f(? (-72)` is a contraction of 

W,&(fnA(p1)) in Ws (f'"k(pi)) with constant of contraction smaller than 1/4. 
As we have seen in Lemma 1.1 1, (mi - ni)ki can be taken as large as we want, 

d (f'k' (pi), ffnik (pi)) < a/2 

and 0 < (mi - ni)ki < 7(pi). 
If (mi - ni)ki is large enough then by Lemma 2.5, we will have that 

f 4 is a contraction of W (f'lu(p1)) with constant of contraction 
smaller than 1/4. 

Let A be the hyperbolic attractor such that pi E A. Now let 

S = ws (f0kt (Pi)) n (U wsu (X)) 

Now we will define the map g: S -> S by 

g(x) = ws (f,,k (pi)) n wsu (f(m,-n)k'(x)). 

This map is well defined by Lemma 2.7. We point out that S is a complete 
metric space for the induced metric of Ws(fPk(pi)). As we have seen by 
Lemma 2.5, g is a contraction in S. Take x the fixed point of g and we will 
have that f-("I `k is a contraction of W4 (x) in Wu (x). Therefore there 
exists a periodic point with period (mi - ni)ki in A, but this is impossible 
because (mi - ni)ki < v(pi). 

The conclusion is that there exists only a finite number of attractors in Aj. 
As there is a finite number of Aj and their union is the whole Q(f), we 
conclude that there exists just a finite number of hyperbolic attractors. 
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