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Abstract. In this paper we analyze the transition from coherent to incoherent wave
dynamics in a broad-band triplet interaction, where, in contrast to previous models,
wave vector selection rules are imposed on the nonlinear terms of the governing
equations. As a general rule, nonlinear terms induce coherence via a phase-locking
process. However, wave vector spread also results from nonlinearity and can affect
coherence when resonant modes are excited.

1. Introduction

Nonlinear wave dynamics can be frequently modeled by the interaction of a few
monochromatic modes (Weiland and Wilhelmsson 1977; Thornhill and ter Haar
1978; Shukla et al. 1986). In many cases the dynamics involves three higher-
amplitude modes in which case one refers to the model as the triplet wave inter-
action. Triplet interaction is one of the most significant forms of wave interaction,
presenting the most prominent nonlinear features in wave systems. It comes in
several versions, and the version we examine here is the conservative regime. A large
variety of situations can be described by the conservative triplet interaction as, for
instance, decay instabilities in laser—plasma interactions, three mode interaction in
nonlinear optical systems and other nonlinear cases (Shukla et al. 1986; Kivshar
and Malomed 1989; Chian and Alves 1988; Gratton et al. 1997; Frichembruder et al.
2000). The governing equations of the classic pure triplet can be fully integrated
and the modes can be shown to undergo a periodical energy exchange among
themselves (Weiland and Wilhelmsson 1977). Now, a question analyzed by a number
of researchers concerns the preservation of this kind of periodic behavior when
each of the three single modes of the classic picture is replaced with a narrow
comb of many modes (Weiland and Wilhelmsson 1977; Martins and Mendonga 1988;
Robinson and Drysdale 1996; Drysdale and Robinson 2002; Rizzato et al. 2003).
If the multitude of modes in each comb acts coherently as a single mode, one
can expect to see periodicity. Otherwise, when coherence is lost, more complicated
behaviors are likely. The former situation is known as the fixed-phase regime of
the nonlinear interaction and the latter is known as the random-phase regime.
Given a physical problem, one generally makes an a priori choice based on the
environmental conditions and exclusively uses either the fixed-phase or the random-
phase approach. Our interest here nevertheless is to examine the transition from
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one regime to another based on a more microscopic view. A precise and detailed
answer to the problem is involved. However, some clear analytical estimates and
results are provided for the class of interaction where any mode j in one comb,
say comb ‘1°, interacts democratically with all modes [, m of the other two combs
following a general rule dy; ~ Zl,m a2;a3,,. Here the double summation over [ and
m is unrestricted and one arrives at well-defined rules relating the threshold field
for the transition from coherence to incoherence, and the width of the combs. The
basic result is that coherence is preserved as long as the wave amplitudes are large
enough that they create a strong mean field trapping all modes in a phase-locking
state (Robinson and Drysdale 1996; de Oliveira et al. 2002; Drysdale and Robinson
2002; Rizzato et al. 2003). On the other hand, if field amplitudes are small, phase-
locking is absent and coherence is lost. In this case the interaction is best described
in terms of random-phase approximations.

Unrestricted summation can be partly justified, and should be seen as an approx-
imative approach, if spatial resolution is poor (Weiland and Wilhelmsson 1977).
Then one can perform partial summations over subsets of microscopic modes to
arrive at this type of nonlinear term. In the present work, we examine the problem
without performing the summation over the subsets of microscopic modes. In
other words, we keep our analysis more aligned with the spirit of conventional
Fourier transforms adopting the more usual shape for the nonlinear terms d; ~
Z;,m G213, . where the now primed summation obeys a selection rule of the general
symbolic form j = j(I,m). In addition to that, we allow for the gradual inclusion
of modes as demanded by the dynamics; in previous works the number of modes
of each comb is held fixed. This particular analysis of the coherence-incoherence
transition has not been performed and generalizes the previous analysis based on
unrestricted summations. The idea is to see if the transition maintains the overall
properties. As a preview of our results, one can say that in general terms we shall
see that the basic features detected previously can still be observed, although in a
modified form.

The paper is organized as follows: in Sec. 2 we introduce the relevant governing
equations, in Sec. 3 we make use of stationary-phase approximations to produce
some estimates on the number of involved modes for a given field amplitude, in
Sec. 4 we perform a series of numerical simulations to analyze dynamical evolution
and the final saturated states of the interaction, and in Sec. 5 we conclude the work.

2. Governing equations

Given three combs of modes, ‘17, ‘2°, and ‘3, the unrestricted version of the nonlinear
interaction takes the form

.. 1

idy;(t) — (Q1 + vy, kj)ar; = N Zaglagﬂm (2.1
Im

.. 1 . .

idp;(t) — (Q2 + vyykyj)ag; = N Z a1z, (2.2)
l,m

.. 1 . .
idz;(t) = (Qs + vggtj)as; = & > anas;,, (2.3)
l,m
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with dots indicating time derivatives and with j, [, m as integers denoting any of the
N modes within each comb (Martins and Mendonga 1988; Robinson and Drysdale
1996; de Oliveira et al. 2002). Note that in this unrestricted case, the summation is to
be performed disjointedly over [ and m. We introduce k; = —A+(j—1)/(N—1)2A,
so the average ; = (1/N) Zj kj = 0. Now if one discards nonlinear terms, a,; ~
exp(—iﬂpjt) with €, = @ + vy K; and Q—pj =Q, (p = 1,2,3). Given all these
facts, €2, can be thus seen as the central frequency of each comb and v, x; as a
spectral quantity describing a narrow frequency broadening of width 2vgpA. Vg, in
fact scales the broadening of each comb.

We now undo the approximations leading to (2.1)—(2.3), transforming the non-
linear terms according to the rules:

(1/N)Za2[(13m - Z 2143, (24)

l,m Kithm =K;

(1/N)Zalla3:n - Z a1,a3,,, (2.5)
l,m

K —Km =HK;

(1/N)Za1la2’;n—> Z a1az;,. (2.6)

lm Kl —Km =K;

In addition, we consider large enough values of N and A such that even modes not
present in the original combs at t = 0 may be excited along the dynamics. With this
model of interaction the nonlinear term can be seen as the usual Fourier transform
of a local interaction, a feature we explore in the following. Let us first rewrite the
governing equations in the final form

Zal](t) - Uglﬁjalj = Z a21A3m,;, (27)
Ki+Em =Kj

itz (t) — vgyhjaz; = Z 1143, (2.8)
Kl —Km =Kj

idg;(t) — vgyjas; = Z 1102y, (2.9)

Ri—Rm =Kj

where the central frequency of each comb has been removed through the redefini-
tions ap; = apje_mpt, and where the frequency matching condition Q; = Qo453 is
chosen to enhance the interaction. Now we introduce the spatial representation of
an arbitrary quantity g as g(x,t) = >_; g;(t)e™5* within a spatial region of length
L =27/(2A/N) = N7m/A to rewrite set (2.7)—(2.9) in its space—time form

(0 + vglé‘x)al = asas, (2.10)
(¢ + vyy0z)ag = arag, (2.11)
(¢ + vy302)a3 = aras, (2.12)

which is meaningful when the spectra ap; fall fast enough with ;. The set of
equations (2.10)—(2.12) governs the nonlinear interaction of a triplet of waves where
each mode is allowed to develop spatiotemporal modulations. The set may be used
to describe three wave dynamics related to Langmuir and electromagnetic decays
in plasmas (Wong and Quon 1975; Zakharov et al. 1985), three wave interaction in
nonlinear optics (Ablowitz and Segur 1981), and several other three wave settings,
whenever spatial localization is a relevant feature. The set (2.10)—(2.12) is known,
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but the novelty here is that we use it to establish the boundaries between coherent
and incoherent dynamics in the case where summations involving nonlinear terms
obey selection rules imposed by proper Fourier transform as represented in (2.7)—
(2.9). This sort of analysis has not been done before and we compare our results
with those obtained when selection rules are relaxed, as in the set (2.1)—(2.3). The
scale factors Uy, CAN NOW be seen as group velocities, and their influence on the
transition to incoherence is critical as we shall see below.

3. Case of equal group velocities and test mode calculations

We first investigate the case analyzed elsewhere (Robinson and Drysdale 1996)
where equal group velocities are assumed: vy, = vy, = vy, =v,. This situation serves
as the basis for our analysis, and can be physically realized in the dispersionless case
of Alfvén waves, where two transverse Alfvén modes have the same group velocity
(Sagdeev and Galeev 1969). In the Alfvén case the third mode moves with a different
velocity (it is a longitudinal mode), but this velocity deviation is precisely the
generic effect we intend to investigate in our next step. While in the unrestricted case
one may have either coherent or incoherent dynamics for this setting, depending
on the chosen field amplitudes, in the present restricted case the system behaves
coherently as we shall now see. Indeed, if one looks at (2.10)—(2.12) with equal
group velocities and introduces new variables according to ¢t — t, x — v,t — x, the
set can be rewritten in the form

i@tal = apas, (31)
iOrag = ajas, (3.2)
iOraz = aiay, (3.3)

which is independent of spatial derivatives and the corresponding frequency broad-
enings. The set (3.1)—(3.3) not only represents the case of equal group velocities,
but also serves as the basis of a perturbative calculation for more generic situations
where group velocities differ slightly from each other. In this latter case, one regards
(3.1)—(3.3) as generating unperturbed bulk solutions which shall drive the perturbed
modes seen as test modes. If test modes keep close resemblance to their unperturbed
counterpart, solutions of (3.1)—(3.3) may be expected to represent the dynamics
well. Otherwise, the system behavior is expected to undergo considerable changes.

Now, in the absence of linear broadening one might suspect that coherence would
be dominant. However, this is not at all guaranteed. The situation here contrasts
largely with the unrestricted case (2.1)—(2.3) where the nonlinear term is exactly
the same for all modes in one comb. In the present analysis, given the selection
rules of all summations of (2.7)—(2.9), each mode is driven by a different subset of
the modes contained in the other combs and this asymmetry gives no guarantee
that all modes will vibrate synchronously. One must therefore verify whether or not
coherence really sets in, in the absence of linear frequency broadening. If coherence
is present in this situation, we can expect it to remain present even when a small
broadening is included into the problem; transition to incoherence could be thus
seen as resulting from the competition between linear broadening and nonlinear
phase-locking, just as in previous studies (Robinson and Drysdale 1996; de Oliveira
et al. 2002). Let us examine the issue.
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We can invoke techniques of nonlinear wave analysis and separate each field in the
set (3.1)—(3.3) in the form a,(z,t) = pp(x,t) exp(igy(x,t)). To simplify the analysis
we look for steady-state solutions characterized by the condition p, = 0. This is not
the more general solution, but it contains all the relevant ingredients we are seeking
(Robinson and Drysdale 1996; de Oliveira et al. 2002). In addition, it represents
reasonable experimental conditions where one looks for stationary interaction. The
time independence of the amplitudes p,, is achieved when (Weiland and Wilhelmsson
1977):

pa(x) = ps(x) = \2p1(x), (3.4)
da(z,t) + d3(x,t) — P1(2,t) =0 = 0. (3.5)

There are similar fixed points like one at © = 7, but the results are equivalent to
the © = 0 case we scrutinize here. In any case, one sees that even at fixed points the
phases ¢ are not time independent. As a matter of fact, the corresponding solutions
in our study read

d1(z,t) = =2p1(2)t,  P23)(2,t) = —pr1(2)t, (3.6)

$1.2,3( = 0) = 0, which tells us that there is a time dependent driver capable
of affecting coherence when the linear frequencies Uy, Kj are re-inserted into the
left-hand sides of (2.7)—(2.9) as mentioned earlier.

We now analyze mode dynamics in the Fourier space to see if it indeed displays
coherence when frequency broadening is absent; we insist that up to this point we
have no guarantee that coherent behavior is actually present. Take for instance
modes in the first comb. We shall examine how a mode a;; with wave vector k;
moves under the action of the driver force-field formed by as and as3. The expression
for a1; can be written in the form

ai;(t) = %/al(amt)e_i"j” dx = %/pl(x) expli(—2p1(x)t — kjz)] dz,  (3.7)

which can be converted into the form
o1 .
a;(t) = ziat/exp[—z@pl ()t + kjz)] d. (3.8)

The evaluation of a, . thus involves integrals of the form I = [ (@) dx, which
can be approximately calculated with help of saddle point (or stationary-phase)
methods: T ~ e™(*0) /27i /4" where x is such that ¢’ (2¢) = 0, primes indicating
space derivatives. Translating these rules to our problem yields

NG [e—_ippl(%)m’%]l (3.9)

BT R ST

where the coordinate xg of the saddle point is to be determined from
201 (xo)t = —k;. (3.10)

In terms of wave packets, for most of the applications curve Qp;j VETSUS Kj displays
a bell-shaped format with maximum at x; = 0. The curve p, = p,(z) is likewise
typically bell-shaped which we assume to be centered at x = 0, with the absolute
value of the derivatives pj, presenting a maximum on each side of the origin. In the
case of comb ‘1’, at any time satisfying ¢ > t; = |k;|/(2]p] lmax) the wave vector x;
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satisfies the saddle condition for some xg. Then, as time grows, the saddle point
moves towards g — 0 such that p| — 0 and the asymptotic form for mode a1
becomes

ﬁ e~ H2p1(0)t—m/4]
L p1(0)I¢
which suggests that all modes tend to vibrate similarly in asymptotic regimes,

under the action of a single nonlinear frequency

Qu = —2p1(0). (3.12)

a1 ~ P1 (0> = QGanalytical (p/l/(o) = _|p/1/ (O)|) (3]])

We point out that @.naiytical does not depend on the mode index. Given the bell-
shaped curve for p)(z), there are two other saddle points approaching zg — +oo,
but both can be discarded in view of the fact that the corresponding amplitudes,
proportional to p; or its derivatives, vanish.

The important saddle property analyzed above indicates that as long as linear
broadening remains not significant, phase-locking involving the modes prevails, and
this represents the same kind of dynamics seen in previous papers (Robinson and
Drysdale 1996; de Oliveira et al. 2002). As a matter of fact, and now looking at
the problem from the perspective of a test mode calculation, given continuity we
expect to observe phase-locking even if a narrow broadening is added to the right-
hand sides of (3.1)—(3.3). Phase-locking would be expected to be operative while
in terms of absolute value the nonlinear frequency €2, stays much larger than the
linear frequency vy, ; of the largest active test mode j (Robinson and Drysdale
1996; de Oliveira et al. 2002). On the other hand, if the resonance condition

Qn] - _’Uglfih (313)

is met for a resonant mode k,, unlocking and incoherence are expected to set in.
We conclude that the overall dynamics are likely to develop essentially along the
following possible lines.

(i) None of the original modes meets the resonant criterium initially. In this case,
one would first see a gradual inclusion of modes into the overall dynamics
according to the linear rule (3.10) derived earlier

K = £2|p lmaxt- (3.14)

If dissipation and dispersion—the latter being represented by higher order
space derivatives—are ignored as we do in the present analysis, wave vector
spread would proceed until such a time when a resonant mode &, satisfying the
resonant condition (3.13) is excited. Then the mode would grow independently
and coherence would be lost. From the perspective of test mode calculations,
one has an approximate equation for a test mode aff:

|

id} = vg rjar) + (a8 a§")y, . (3.15)

The nonlinear source is calculated under the approximation vy, = 0, and vy, =
Vg, = 0 is assumed. If one subtracts from (3.15) the corresponding equation
with broadening suppressed, one obtains

iédlj = vy kj0a1; + ’Ugllija,l(o), (3.16)

J
(©

I ai; ). When the source frequency becomes equal to the linear

with da; = aij
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frequency of the oscillator described by (3.15) at a resonance j = r, one can use
a slow modulational approach and write day, = dai, exp(—ivy,,t) to obtain

6fa\1/,. ~ vglf@'rah(.o) with the oscillatory factor factored out of the source which
therefore grows monotonically for a short period of time after it is excited. One
thus sees that the amplitude of the resonant mode, once excited, accompanies
the source, growing monotonically. This growth arrests when the collective
dynamics departs appreciably from the coherent behavior seen in the previous
case. Of course, if field amplitudes are such that the resonant wave vector k,
is larger either than the dissipative or dispersive scales, coherence is likely to
be preserved throughout the dynamics because dissipation and dispersion may
arrest the spread.

(if) One of the originally present modes already satisfies the resonance condition
(3.13). In this case there is in fact no coherent dynamics at all, even for small
times, and this is the case classified as incoherent in previous works (Robinson
and Drysdale 1996; de Oliveira et al. 2002).

As a final issue, we observe the following. In the regime where the resonant wave
vector k, lies outside the initial spectral distribution used to construct functions
ap(z,t = 0), coherence time approximately coincides with the transit time of the
first comb relative to the others. Indeed, the resonant time ¢, can be written from
expressions (3.13) and (3.14), as mentioned above, in the form ¢, = |k,|/|20] |max ~
(po/vgy)/(po/d) = d/vg, which means vyt ~ d, indicating that as resonance is
approached, the first comb moves away from the interaction region.

All the previous comments of course only form a rough theoretical view of the
problem and must be supplemented with the appropriate numerical analysis. This is
our next task where we focus on case (i); case (ii) can be obtained as the appropriate
limit when the resonant wave vector &, is very small.

4. Wave simulations

We now proceed to simulations of the complete wave set described by (2.10)—(2.12).
Simulations are done with a pseudo-spectral method involving N = 2! modes. In
all runs we take vy, = vy, = 0. In other words, we assume that the group velocities
of combs ‘2" and ‘3’ are the same, and that we are working in the reference frame
where both velocities vanish. This only means that we have made a transformation
of variables of the type leading to set (2.10)—(2.12) where t — t and x — v, t — z,
vg now representing either vy, or vg,. In this case vy, represents the group velocity
of the first comb relative to the other two and this suffices for our analysis. The
theory, either in the transformed or original variables, produces the same physical
results. In addition to that, we take the following initial conditions for our combs
in the space—time representation

al (l‘, O) = pOeimz/dza a’(2,3) (xa O) = ﬁpoeixz/d? (41)

From that we obtain the initial spectral distribution a,; = 1/L [ ap(z)e™ " dz
used in the simulations, which can be approximately written as

d\ .= d\ _« ;
a1 = ﬁpo (f) e ?d2/47 a(2,3); = 27 po (f) e/ (+2)
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Figure 1. (a) Wave vector spread as a function of time. (b) Comparison of the analytical
model @apayticat and mode simulations, with all modes progressing to phase-locking. vy, = 0
in both cases with other parameters as listed in the text.

if L>d; in all numerical runs we take L/60 = d = pg = 1. From (4.1), the
nonlinear frequency (3.12) is estimated as —2pg and from (4.2) the initial extreme
linear frequencies of the comb are estimated as Fv,,27/d. corresponding to the
extreme wave vectors +r4 = +27/d contained in the original spectrum at ¢t = 0.
Let us start with the case where vy, is set to zero. This is the situation where
the linear frequency broadening is absent and is the crucial case to test our ideas
on phase-locking and coherence. One way to investigate the issue is to produce a
three-dimensional plot of the amplitudes |a1 ;| versus time and wave vector x. This

is shown in Fig. 1(a), where we readily see wave vector spread as a function of time
as predicted by our saddle point calculations. The spread is linear, following the
law k ~ +2(pg/d)t. Not only that, but the spread also displays the decay feature
represented by our numerical factor (|p}(z = 0)[t)~'/2 observed in expression (3.11).
That coherence gradually dominates the dynamics can be observed in Fig. 1(b),
where we compare the dynamics of the real part of the function @anaiytical calculated
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Figure 2. (a) Resonance interrupting regular wave vector spread, vy, =0.1. (b) and
(c) Resonance effects destroying phase-locking of modes, v,, =0.1in (b) and v,, =0.05 in (c)

Other parameters as listed in the text.
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earlier with the simulated modes a1;—1, a1;—[x,/x,], Where [[] denotes integer part
and kK, = 27/L = 2A/N is the basic wave vector of the system. Even with
both simulated modes starting from distinct initial conditions as a result of the
considerable difference of mode indexes (the second mode sits at the border of the
original group of wave vectors), the dynamics become asymptotically the same,
tending to Ganalytical- As time evolves, more and more modes become involved,
all progressing to the same predicted oscillatory regime. With the insertion of
a small linear broadening represented by a group velocity vy, the time history
undergoes the changes anticipated before. If one takes vy, = 0.1, then £, ~ 20 and
the time to attain resonance is ¢, ~ 10. Fig. 2(a) displays the three-dimensional
plot [ay;(t)|. similar to Fig. 1(a), but now for vy, = 0.1. One clearly sees that
the previous symmetric aspect of Fig. 1(a) is changed. Modes with positive x are
more strongly excited than modes with negative values of this quantity, due to
signs of 2, and (3.13). By the time one reaches and advances beyond the resonant
time ¢,, the three-dimensional plot becomes heavily changed if compared with that
plot in Fig. 1(a). We point out that after resonant modes are excited, wave vector
spread ceases, which is a result of the relative drift of the combs as observed earlier.
The wave vector distribution is, however, only slightly affected by resonant effects
while t<t,, according to all predictions. To complement the information contained
in Fig. 2(a), in Fig. 2(b) we depict the real part of modes ai;—1, a1;—[x,/3x,] and
A1j=[r,/ry]- Apart from the j = 1 mode and the resonant mode r,, we choose a
more internal mode k = K4/3 than the border Kk = k4 represented in Fig. 1(b) to
make the locking—unlocking feature clear. Indeed it is not difficult to appreciate
the linear growth of the resonant mode, and that phase-locking and coherence are
lost when the resonant mode is strongly excited. For small times prior to resonance
all modes tend to phase-lock, but the process is broken when resonant effects start
to take over. The same kind of analysis is repeated for v,; = 0.05 in Fig. 2(c), where
the resonant mode is now the one associated with this new group velocity. It is
seen that unlocking and resonance are both twice as delayed as in the case of the
larger group velocity. It is still worth mentioning that this locking—unlocking kind
of behavior is radically different from linear systems where modes never tend to
locking states; in linear cases with frequency broadening, phase slippage is always
present at any time.

5. Conclusions

In this paper we have analyzed microscopic details of the transition from coherence
to incoherence in nonlinear wave systems. We have extended previous results to
examine models where nonlinear terms must satisfy selection rules. Specifically,
we demand wave vector selection rules, which are not considered in earlier works,
and find that the basic features are somewhat similar to those models where selec-
tion rules are absent: if the nonlinear frequencies are much larger than the linear
frequencies of the involved modes, phase-locking is present and the dynamics are
coherent. On the other hand, when the linear frequencies become of the same order
of magnitude as the nonlinear frequency, phase-locking ceases and the transition
to incoherence may be observed. In contrast to previous models, however, wave
spread is present and gradually involves a larger and larger number of modes.
Whilst frequency broadening is much smaller than field amplitudes, the dynamics
are coherent, but transition to incoherence is to be expected when the resonant
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mode is excited at ¢, ~ d/v, as calculated before. We expect that terms left aside
from our analysis, as dispersive terms, may be responsible for arresting wave vector
spread. At the present point we do not have a precise answer regarding this issue,
but if dispersion actually arrests the spread it might eventually produce a compact
packet of coherent wave modes exactly as in the unrestricted case.
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