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Abstract. The dielectric tensor for a multicomponent magnetized dusty
plasma, including the effect of capture of plasma electrons and ions by the dust
particles, is rewritten in order to provide expressions more suitable for
applications. We use this tensor to study the spatial absorption of a
magnetosonic wave, including effects up to second order in the Larmor radius.
We analyse the absorption of the wave due to the presence of dust particles with
variable charge and the modification of this absorption due to finite-Larmor-
radius effects.

1. Introduction

In a previous paper (de Juli and Schneider 1998, hereinafter referred to as paper
I), we developed a kinetic theory of a dusty magnetized plasma with variable
charge on the dust particles. The dielectric tensor was written as the sum of two
terms. One term has components εh h

ij
, and is formally identical with the dielectric

tensor of a homogeneous magnetized plasma, with the resonant denominator
modified by the addition of a purely imaginary term containing a frequency ν!βd
that characterizes the collisions between plasma particles and dust particles.
The other term, with components εN

ij
, is entirely dependent on the model used

to describe the charging process of the dust particles.
In this paper, we rewrite the components of this dielectric tensor in a new

form, using a convenient expansion of the Bessel functions, in order to deal
more easily with the different powers of the Larmor radius, which are essential
for the analysis of the effects of charge variation of the dust particles that are
included in εN

ij
.

We use this tensor to study the propagation of a magnetosonic wave in a
dusty magnetized plasma with the variation of the charge of the dust taken into
account, and to analyse how the spatial propagation of this wave is influenced
by the presence of the dust in the plasma and by the change in the dust charge.
We show that spatial absorption occurs owing to the charge variation of the
dust particles. This absorption is not significantly changed by contributions
connected with finite-Larmor-radius effects included in εN

ij
.

2. The dielectric tensor

In paper I, we obtained the components of the dielectric tensor for a
homogeneous dusty magnetized plasma. We consider again a homogeneous
plasma composed of particles of charge qβ and mass mβ, where the subscript
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β¯ e, i identifies electrons and ions respectively, in a homogeneous magnetic
field B

!
¯B

!
e
z
. In this magnetized plasma, we consider embedded spherical

dust grains with radius a and variable charge q ; the charge variation originates
from collisions between the dust particles and particles of species β. The
assumption of spherical dust grains is valid in the limit a'λ

D
'λ

mfp
, where λ

D

is the plasma Debye length and λ
mfp

is the mean free path of electrons and ions.
We are considering Larmor-radius effects arising from the motion of electrons

and ions and neglecting this kind of effect for the dust particles, since they are
assumed to be immobile because of their large mass. This assumption implies
that the regime in which our work is valid is such that ω(Ω

d
, where Ω

d
is the

cyclotron frequency of the dust particles.
At the same time, we neglect the influence of the external magnetic field in

the charging process of the dust particles, using a cross-section for this process
derived from the OML theory (Tsytovich 1997). This is based on a numerical
calculation by Chang and Spariosu (1993), which shows that the characteristics
of the dust-particles charging process are not significantly influenced by the
presence of an external magnetic field if the dust-particle radius a! ρ

G
, where

ρ
G

is the mean gyroradius of the electrons, given by ρ
G

¯ ("
#
π)"/#r

Le
, with r

Le
the

electron Larmor radius. For the parameter values used in this work, the relation
a! ρ

G
is always satisfied.

The components of the dielectric tensor are written as ε
ij
¯ εh h

ij
εN

ij
. The first

term is given by
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In these expressions, u¯p}mβ c, Xβ ¯ω#
pβ}ω#,ω#

pβ ¯ 4πnβ
!
q#β}mβ is the square

of the plasma frequency of particles of species β, nβ
!
and Fβ

!
are the equilibrium

density and the equilibrium distribution function respectively of particles of
species β,
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!
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with Ns ¯ ks c}ω, γβ being the relativistic factor, and

L(Fβ
!
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1
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Also,

D
nβ ¯γβ01i

ν!βd
ω 1®Ns us®nYβ, (2.5)

where

ν!βd
¯πa#n

d!
c
u#Ch β

u
H(u#Ch β), Ch β 3

2Z
d
eqβ

amβ c#
,

®Z
d
e being the equilibrium charge of the dust particle and H the Heaviside

function, and Yβ ¯Ωβ}ω where Ωβ ¯ qβ B
!
}mβ c is the cyclotron frequency of
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particles of species β. The Rnβ

ij
are combinations of Bessel functions with

argument bβ ¯Nv uv}Yβ, where Nv ¯ kv c}ω, and their derivatives. Full
expressions for the Rnβ

ij
are given in Appendix A.

The second term of the tensor is given by

εN
ij
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In these expressions,

ν!
d
¯®c3

β

qβ& d$uσ!β uFβ
!
, (2.9)

where σ!β(u)3 (¦σβ}¦q) r
q=−zd e

, and the charging cross-section is given
(Spitzer 1978) by
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Also,
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¯ ic3
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ω
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(bβ)
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where

gβ 3γβ01i
ν!βd
ω 1®Ns us.

This form of the dielectric tensor is very general, under the assumptions that
we have made, and was used in paper I to study the propagation of a
magnetosonic wave perpendicularly to the external magnetic field. In doing
this, in order to evaluate the integrals in the u variable, we make an expansion
of the denominator that occurs in them, and which is very common in the
literature (Vladimirov 1994; Prasad 1998). This kind of expansion is good if the
involved frequencies are sufficiently high that ωCω

pe
(max(kv

Te
, ν!

d
, ν!βd)

(Vladimirov 1994), and has as consequence that only a few terms need be
retained. If the frequency is lowered, we must retain more and more terms in
the expansion, which turns out to be algebraically very expensive. A better
approach is to rewrite the general dielectric tensor in a form that is more
convenient for regimes with lower frequencies and that at the same time takes
care of powers of the Larmor radius in an easy way.
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In order to rewrite this tensor in a more suitable form for application, in all
these expressions the summation over n from minus to plus infinity is
transformed into a summation running from zero to infinity, and the
combinations of Bessel functions and their derivatives are expanded in the
following way (Abramowitz and Stegun 1970):

J#
n
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¢
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for n" 0, with the convention 1}(®m) !¯ 0.
Then all the components of the dielectric tensor for the wavevector k in the

(x, z) plane can be written in terms of integrals of the form

Ih β(n,m, h, s ;G)3
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Using (2.12)–(2.14), the components εh h
ij

and εN
ij

of the dielectric tensor can be
written as series in powers of Nv}Yβ, where in each term we have an integral of
the type (2.17). The full expressions for εh h

ij
and εN

ij
are given in Appendix B.

3. The magnetosonic wave

The dispersion relation for the magnetosonic wave, which propages perpen-
dicularly to the external magnetic field (Ns ¯ 0), can be written formally as

Λ3N#®
ε
xx

ε
yy

®ε
xy

ε
yx

ε
xx

¯ 0. (3.1)

We shall use for the equilibrium distribution functions of electrons and ions,
Maxwellian distribution functions
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where µβ ¯mβ c#}Tβ, Tβ being the temperature of particles of species β, with
T
e
¯T

i
¯T. The following approximations are made in the calculation of the

components of interest of the dielectric tensor presented in Sect. 2: relativistic
effects are neglected, which means that γβ E 1; in each component of the
dielectric tensor, we retain only contributions up to order N#, which implies
retaining only the lowest-order contributions in the finite Larmor radius. We
obtain all the necessary components of the dielectric tensor in terms of the
integrals
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where A3πa#n
d!

c}ω. The dielectric tensor components of interest for the
dispersion relation under consideration, written as ε

ij
¯ εh h
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εN
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, will be rewritten

in such a way as to make clear the dependence on N#. The terms εh h
ij

are given
by
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are given in Appendix
C.
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is the Kronecker delta, and
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The full expressions for the FR
ij

and FI
ij

are given in Appendix D.

4. Numerical results

In this section, we present a numerical analysis of the effects of the dust
particles with variable charge on the propagation properties of the magneto-
sonic wave. The two main effects to be investigated are those due to the
modelling of the charge variation of the dust particles and those due to finite-
Larmor-radius effects of electrons and ions. The plasma parameters will be
chosen in the range of typical values for laboratory and astrophysical plasmas.

We recall that in paper I, we also analysed the propagation properties of the
magnetosonic wave, but restricted to the cold-plasma limit, and using a real
wavector k and a complex frequency ω. In the application developed in paper
I, very early on we made the assumption that ω'Ω

i
, and also made several

expansions of denominators of integrands that occur in the components of the
dielectric tensor and are currently used in the literature (Prasad 1998). In the
present paper, these expansions are not made, and we are interested also in
making a comparison between the two ways of calculating the dielectric tensor.
The expressions obtained in the present paper for the dispersion relation of the
magnetosonic wave are valid for ω(Ω

d
, because the motion of the dust

particles is not considered in the model here proposed.
We note that in Figs 1–6, the frequencies are in the range Ω

d
'ω!Ω

i
,

because we are mainly interested in the magnetosonic wave without the effects
of finite ion-cyclotron frequency being taken into account; in Figs 7 and 8 we
use the range Ω

d
'ω% 2Ω

i
, because we are interested in the behaviour of the

refractive index for frequencies near the ion-cyclotron frequency.
Initially, we show the results obtained using the cold-plasma approximation

and the technique of expansion of the denominators used in paper I, assuming
real ω and complex k.

In Figs 1 and 2, we show the real part of the refractive index, N
r
¯ ck

r
}ω, and

the complex part, N
i
¯ ck

i
}ω, respectively, as functions of the wave frequency
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Figure 1. N
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as a function of ω}Ω

i
, calculated as in paper I, for several values of T¯T

e
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T
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. Curves (a), (b), (c) and (d) correspond to T¯ 0±25, 1, 2 and 3 eV respectively. The fixed

parameters are n
i!

¯ 10) cm−$, a¯ 10−% cm, n
d!

¯ 10% cm−$ and B
!
¯ 0±2 T. The curve N!

r

correspond to the refractive index in the absence of dust particles.
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Figure 2. N
i
as a function of ω}Ω

i
, calculated as in paper I, for several values of T¯T

e
¯

T
i
. Curves (a), (b), (c) and (d) correspond to T¯ 0±25, 1, 2 and 3 eV respectively, and the

other parameters are the same as in Fig. 1.

normalized to the ion-cyclotron frequency ω}Ω
i
, for several values of the

temperature T¯T
e
¯T

i
. Curves (a), (b), (c) and (d) correspond to T¯ 0±25, 1,

2 and 3 eV respectively. The fixed parameters are n
i!

¯ 10) cm−$, a¯ 10−% cm,
n
d!

¯ 10% cm−$ and B
!
¯ 0±2 T. These figures are obtained from the following

expressions derived from paper I:
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and
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The cutoff of the real part of the refractive index, which appears in Fig. 1,
occurs when F(ω)¯ 1, which gives for the cutoff frequency ω

c
the value

0ωc

Ω
i

1#¯
##®"#

!#Ω#
i

. (4.7)

Because in this expression only " depends on the temperature and this
dependence is approximately proportional to 1}T, when T increases, "
diminishes and ω

c
increases, in agreement with Fig. 1.

When the dust particles are absent (n
d!

¯ 0) or when their charges are fixed
("¯ 0), we have

N!
r
¯!"/#E 01

4πc#n
i!

m
i

B
!

1"/#, (4.8)

where N!
r
indicates the real part of the refractive index in the absence of dust.

In Fig. 1, we see that at high frequencies, N
r
tends to N!

r
. In this case, N!

i
¯ 0,

as expected.
The inclusion of charged dust particles with variable charge in the plasma

results in N
i
1 0 and N

i
" 0, which implies that the wave is spatially absorbed

when travelling in the plasma.
We have also estimated the dependence on temperature of quantities that

play an important role in the physical description of the process we are
studying. The frequencies ν

ed
and ν

id
, characterizing the rate of capture of

electrons and ions respectively by dust particles in the equilibrium state, and
also Z

d
, increase with temperature, but n

e!
and the charging frequency ν!

d

decrease with temperature. For the parameters used in Figs 1 and 2, the values
of ν!

ed
}Ω

i
and ν!

d
}Ω

i
are always localized to the left of the corresponding cutoff

frequency. In other words, for ω!ω
c
, we have the possibility that ω can be less

than ν!
d

and ν!βd
, which implies that in this range of frequencies, the condition

ω(max(kv
Te

, ν!
d
, ν!βd) is not fulfilled. Then the expansion of denominators that

has been made is very bad in this region of the frequency spectrum, and
probably leads to the cutoff obtained.

In Figs 3 and 4, we compare numerical results obtained using the expressions
for the refractive index of the magnetosonic wave from paper I with those
obtained in this paper, in the cold-plasma approximation.

In Fig. 3, the real part of the refractive index in the cold-plasma model is
plotted as a function of ω}Ω

i
using the two procedures for the calculation. The

straight line shows N
r
¯N!

r
in the cold-plasma model for a plasma without dust.

Curve (a) shows N
r

calculated using the procedure developed in this paper;
curve (b) shows N

r
as calculated in paper I. The parameters used are a¯
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¯ 0±2 T and T¯ 1 eV. Curve (a) was calculated
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Figure 4. N
i
as a function of ω}Ω

i
, using the cold-plasma model, for the same parameters

and situations presented in Fig. 3.

10−% cm, n
i!

¯ 10) cm−$, n
d!

¯ 10% cm−$, B
!
¯ 0±2 T and T¯ 1 eV. For this set

of parameters, we see that the cutoff, which originates from the formulation
developed in paper I, does not occur in the region Ω

d
}Ω

i
'ω}Ω

i
' 1 when we

use the procedure developed in this paper. We can say that the approach of
paper I is satisfactory for situations where the temperature is not very high,
and that the region of agreement between the two methods of calculating N

r

increases as the temperature is lowered.
N

r
obtained from the calculations of this paper, represented by curve (a),

departs from the value of N!
r
when ω}Ω

i
increases. The results from paper I are

unable to represent this feature, because we have assumed from the start that
ω}Ω

i
' 1, in order to make the expansions of the denominators.

In Fig. 4, we present, for the same parameters and situations used in Fig. 3,
N

i
as a function of ω}Ω

i
. The cutoff exhibited by N

r
generates a forbidden region

of values of N
i
in curve (b) obtained from paper I, which does not exist in curve



66 M. C. de Juli and R. S. Schneider

1.28

1.27

1.26

1.25

1.24

1.23

1.22

1.21
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Nr

x
Xi

Figure 5. N
r
as a function of ω}Ω

i
, including Larmor-radius effects. The parameters used are

n
d!

¯ 10% cm−$, n
i!

¯ 10) cm−$, a¯ 10−% cm and B
!
¯ 0±2 T. The same curve is obtained for

T¯ 0±06, 0±25 and 1 eV.

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Ni

x
Xi

(c)

(a)(a)(a)
(b)(b)(b)

Figure 6. N
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, including Larmor-radius effects, using the same parameters

as in Fig. 5. The curves labelled by (a), (b) and (c) correspond to T¯ 0±06, 0±25 and 1 eV
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(a). We notice that this result comes from a formulation in which the expansion
of the denominators has not been introduced, and in which, therefore, the
effects of charge variation are dealt with in a more complete way. Figure 4
shows that the charge variation of the dust particles is more important for lower
values of ω}Ω

i
.

In Figs 5 and 6, we show N
r
and N

i
as functions of ω}Ω

i
, calculated using the

procedure developed in this paper and including Larmor-radius effects of
electrons and ions, for Ω

d
'ω!Ω

i
. The parameters used are n

d!
¯ 10% cm−$,

n
i!

¯ 10) cm−$, a¯ 10−% cm and B
!
¯ 0±2 T, and the temperatures are (a)

T¯ 0±06 eV, (b) T¯ 0±25 eV and (c) T¯ 1 eV.
We see in Fig. 5 that for this set of temperature values, we obtain

approximately the same curve for N
r
, which departs only slightly, for low values

of ω}Ω
i
, from the straight line that characterizes the plasma without dust. We

can say that N
r
is not very sensitive to the charge variation of the dust particles,

which is influenced by the temperature, which in turn modifies the frequencies
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Figure 7. N
r
as a function of ω}Ω

i
, using the expressions developed in this paper: curve (a)

includes Larmor-radius effects ; curve (b) is for the cold-plasma model. The parameters used
are n

i!
¯ 10) cm−$, a¯ 10−% cm, n

d!
¯ 10% cm−$, T¯ 100 eV and B

!
¯ 10−$T.
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Figure 8. N
i
as a function of ω}Ω

i
for the same situations and parameters as in Fig. 7.

related to the charging process and also the charging time. We expect that in
the frequency region where ω'Ω

d
, N

r
will be altered more significantly when

the temperature is changed, because it is in this region that the characteristic
charging frequencies are localized. Also in this frequency region, new wave
propagation modes (Rao 1995) will arise owing to the inclusion of the motion
of dust particles.

In Fig. 6, we see that for fixed values of ω}Ω
i
, N

i
increases with increasing

temperature. For ω}Ω
i
" 0±2, the values of N

i
are approximately equal and very

small. Again we observe that the influence of the charge variation of the dust
particles is enhanced at low frequencies. We remark that when ω increases
relative to the charging frequency ν!

d
, the importance of the charge variation of

the dust particles decreases, and accordingly N
i
must decrease, because it is

directly connected with charge variation.
From the numerical calculation, we observe that the Larmor-radius effects

included are negligible in the range of frequencies Ω
d
'ω!Ω

i
.

In Figs 7 and 8, we extend the region of variation of the frequency to include
frequencies above Ω

i
, and compare, using the procedure developed in this paper
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to calculate the dielectric tensor, the situation of a cold plasma with a situation
where Larmor-radius effects are retained.

In Figs 7 and 8, we show N
r
and N

i
respectively as functions of ω}Ω

i
, with

curve (a) corresponding to the situation with Larmor-radius effects included
and curve (b) to the cold-plasma limit. The parameters used are n

i!
¯ 10) cm−$,

a¯ 10−% cm, n
d!

¯ 10% cm−$, T¯ 100 eV and B
!
¯ 10−$ T.

We observe that in the range of frequencies ω!Ω
i
, Larmor-radius effects

are unimportant, but in the range ω&Ω
i
, they start to contribute significantly,

because for each component of the dielectric tensor, the quantities χ!R
ij

}χ"R
ij

and
χ!I
ij

}χ"I
ij

, which characterize the relative importance of powers of the Larmor
radius, are proportional to Yβ 3Ωβ}ω.

From the numerical calculation, we observe that the dominant contributions
of the Larmor radius arise from the ‘homogeneous’ part of the dielectric tensor
(εh

ij
). The contributions of order N# arising from εN

ij
are, for the situations tested,

negligible – essentially because the coefficient C, which is a multiplicative factor
for all components, is very small.

5. Conclusions

Although in the present paper we have concentrated on the study of a
magnetosonic wave, which implies perpendicular propagation, the results of
Sect. 2 apply to all directions of propagation. We expect that the contributions
due to the charge variation of the dust particles of order N#, included in εN

ij
, can

be relevant for parallel propagation of the wave.
Also, if we include the effects of inhomogeneities in the dielectric tensor, we

can study the influence of the dust particles with variable charge on Alfve! n-
wave resonant absorption and in its conversion to a kinetic Alfve! n wave. The
modification of the Alfve! n resonance absorption mechanism due to the presence
of charged dust grains was considered by Cramer and Vladimirov (1998).
Damping due to the charging of the grains was included in such a way that this
corresponds only to the effects included in the part εh h

ij
of the dielectric tensor,

presented here. For instance, Hasegawa (1976) pointed out that in regions near
the resonant point, Larmor-radius effects become important. This suggests that
the effects of the charging of the grains included in the part εh N

ij
of our tensor

would be essential in studying Alfve! n resonance absorption. We intend to
include the effects of inhomogeneities in our tensor and to apply it to this topic
in the future.

Appendix A

In Appendix A of paper I, we presented the quantities Rnβ

ij
in their general form,

as functions of ψ, the angle between the vector kv and the x axis. For the case
of ψ¯ 0, considered in the present paper, the quantities Rnβ

ij
assume the

following forms:

Rnβ

xx
¯

n#

b#β
J#
n
(bβ), (A 1)

Rnβ

xy
¯®Rnβ
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¯ i

n
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J
n
(bβ)J!

n
(bβ), (A 2)
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¯®iJ

n
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Rnβ

zz
¯J#

n
(bβ), (A 6)

where bβ ¯ kv cuv}Ωβ.

Appendix B

The components of the dielectric tensor ε
ij
¯ εh h

ij
εN

ij
, in terms of the integrals

Ih β(n,m, h, s,G), are given in the following. The εh h
ij

components are written as
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and εh h
ji
¯ (εh h

ij
)*.

Similarly, the εN
ij

components are written as
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The parameter ν
"

is given by
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and ν!

d
is given by (2.9).

Appendix C

The expressions for χ!R
ij

, χ!I
ij

, χ"R
ij

and χ"I
ij

are as follows:
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Appendix D

The full expressions for the FR
ij

and FI
ij

are as follows:

FR
ij

¯uR
i
sR
j
®uI

i
sI
j
, (D 1)

FI
ij
¯uR

i
sI
j
uI

i
sR
j
, (D 2)

with

uR
x

¯
ω#
pi

µ$/#
i

Y
i

[(1Y
i
) I(1, 5)®(1®Y

i
) I(®1, 5)]


ω#
pe

µ$/#
e

Y
e

[(1Y
e
)E(1, 5)®(1®Y

e
)E(®1, 5)], (D 3)

uI
x
¯®A(ω#

pi
µ$/#
i

Y
i

[I(1, 6)Ch
i
I(1, 4)®I(®1, 6)®Ch

i
I(®1, 4)]


ω#
pe

µ$/#
e

Y
e

[E(1, 6)Ch
e
E(1, 4)®E(®1, 6)®Ch

e
E(®1, 4)]* , (D 4)

sR
x

¯
ω#
pi

µ&/#
i

Y
i

²(1Y
i
) [I(1, 7)Ch

i
I(1, 5)]

®(1®Y
i
) [I(®1, 7)Ch

i
I(®1, 5)]´


ω#
pe

µ&/#
e

Y
e

²(1Y
e
) [E(1, 7)Ch

e
E(1, 5)]

®(1®Y
e
) [E(®1, 7)Ch

e
E(®1, 5)]´, (D 5)

sI
x
¯®A(ω#

pi
µ&/#
i

Y
i

[I(1, 8)2Ch
i
I(1, 6)Ch #

i
I(1, 4)

®I(®1, 8)®2Ch
i
I(®1, 6)®Ch #

i
I(®1, 4)]


ω#
pe

µ&/#
e

Y
e

[E(1, 8)2Ch
e
E(1, 6)Ch #

e
E(1, 4)

®E(®1, 8)®2Ch
e
E(®1, 6)®Ch #

e
E(®1, 4)]* , (D 6)

uR
y

¯
ω#
pi

µ$/#
i

Y
i

[2I(0, 5)®(1Y
i
) I(1, 5)®(1®Y

i
) I(®1, 5)]


ω#
pe

µ$/#
e

Y
e

[2E(0, 5)®(1Y
e
)E(1, 5)®(1®Y

e
)E(®1, 5)], (D 7)



74 M. C. de Juli and R. S. Schneider

uI
y
¯®A(ω#

pi
µ$/#
i

Y
i

²2[I(0, 6)Ch
i
I(0, 4)]®I(1, 6)®Ch

i
I(1, 4)

®I(®1, 6)®Ch
i
I(®1, 4)´


ω#
pe

µ$/#
e

Y
e

²2[E(0, 6)Ch
e
E(0, 4)]®E(1, 6)®Ch

e
E(1, 4)

®E(®1, 6)®Ch
e
E(®1, 4)´* , (D 8)

sR
y

¯
ω#
pi

µ&/#
i

Y
i

²®2[I(0, 7)Ch
i
I(0, 5)]

(1Y
i
) [I(1, 7)Ch

i
I(1, 5)](1®Y

i
) [I(®1, 7)Ch

i
I(®1, 5)]´


ω#
pe

µ&/#
e

Y
e

²®2[E(0, 7)Ch
e
E(0, 5)]

(1Y
e
) [E(1, 7)Ch

e
E(1, 5)](1®Y

e
) [E(®1, 7)Ch

e
E(®1, 5)]´,

(D 9)

sI
y
¯®A(ω#

pi
µ&/#
i

Y
i

²®2[I(0, 8)2Ch
i
I(0, 6)Ch #

i
I(0, 4)]

I(1, 8)2Ch
i
I(1, 6)Ch #

i
I(1, 4)

I(®1, 8)2Ch
i
I(®1, 6)Ch #

i
I(®1, 4)´


ω#
pe

µ&/#
e

Y
e

²®2[E(0, 8)2Ch
e
E(0, 6)Ch #

e
E(0, 4)]

E(1, 8)2Ch
e
E(1, 6)Ch #

e
E(1, 4)

E(®1, 8)2Ch
e
E(®1, 6)Ch #

e
E(®1, 4)´* . (D 10)

References

Abramowitz, M. and Stegun, I. A. 1970 Handbook of Mathematical Functions. Dover, New
York.

Chang, J. S. and Spariosu, K. 1993 Dust particle charging characteristics under a
collisionless magneto-plasma. J. Phys. Soc. Japan 62, 97.

Cramer, N. F. and Vladimirov, S. V. 1998 The resonance absorption of wave energy in a
dusty plasma. Physica Scripta T45, 213.

de Juli, M. C. and Schneider, R. S. 1998 The dielectric tensor for dusty magnetized plasmas
with variable charge on dust particles. J. Plasma Phys. 60, 243.

Hasegawa, A. 1976 Kinetic processes in plasma heating by resonant mode conversion of
Alfve! n wave. Phys. Fluids 19, 1924.

Prasad, P. V. S. R. 1998 Acoustic modes in a dusty plasma. Phys. Lett. 239A, 378.

Rao, N. N. 1995 Magnetoacoustic modes in a magnetized dusty plasma. J. Plasma Phys. 53,
317.

Spitzer, L. J. 1978 Physical Processes in the Interstellar Medium. Wiley, New York.

Tsytovich, V. N. 1997 Dust plasma crystals, drops and clouds. Soviet Phys. Usp. 40, 53.

Vladimirov, S. V. 1994 Propagation of waves in dusty plasmas with variable charges on
dust particles. Phys. Plasmas 1, 2762.


