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Abstract. We construct, for each irrational number α, a minimal C1-diffeomorphism of the
circle with rotation number α which is not ergodic with respect to the Lebesgue measure.

1. Introduction
A diffeomorphism f of the circle T = R/Z is ergodic with respect to the Lebesgue
measure if there is no f -invariant Borel set with Lebesgue measure strictly between zero
and one. In [1], Denjoy proved that a C1-diffeomorphism with bounded variation derivative
is ergodic. In the other direction, Denjoy constructed examples of C1-diffeomorphism in
any rotation class with invariant Cantor sets of positive measure. These examples, having
wandering intervals, are not minimal. In this paper we construct, for each irrational number
α ∈ (0, 1), an orientation preserving C1-diffeomorphism of the circle which is minimal,
i.e. has every orbit dense, but is not ergodic.

Given an orientation preserving C1-diffeomorphism f : T → T, to define its rotation
number, ρ(f ), lift f to f̃ : R → R and take

ρ(f ) := lim
n→∞

f̃ n(x) − x

n

for x ∈ R, where f̃ n, n ∈ Z, denotes the iterates of f̃ . An equivalent, more enlightening,
combinatorial definition can be found in de Melo and van Strien [4, p. 33]. If ρ(f ) = α

and f is minimal then f is conjugated to the rotation Rα : x ∈ T �−→ x + α ∈ T.
This means that there is an orientation-preserving homeomorphism h : T → T such that
h ◦ Rα = f ◦ h.

To construct f , we go the other way around; we construct an homeomorphism h such
that f := h ◦ Rα ◦ h−1 is a C1-diffeomorphism with the required properties. We define h
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FIGURE 1.

first as an order-preserving map on O, the non-negative orbit of 0 = 1 under Rα , in such a
way that h(O) is dense in T. Then, it is immediate, h extends to T as an homeomorphism.
To define h on O we need to understand the relationship between the dynamical and linear
orders on O, an information which is encoded in the continued fraction expansion of α.
We recall this classical formalism in a way that fits our needs in §2. In §3 we collect the
lemmas we will need to prove, in §4, the following theorem.

THEOREM 1. Given an irrational number α, 0 < α < 1, there is a minimal orientation-
preserving C1-diffeomorphism, f : T −→ T, which is not ergodic with respect to
Lebesgue measure and such that ρ(f ) = α.

2. Continued fractions and towers
Fix α ∈ (0, 1) as irrational and let a1, a2, a3, . . . be the sequence of its partial quotients
and pn/qn be the sequence of its approximants. Let {T }, T = T (aqn+1 + qn), be the set
of partitions of T by intervals with extremes

{Ri
α(0)}aqn+1+qn−1

i=0 ,

for n ≥ 1 and 1 ≤ a ≤ an+2, well ordered by the relation of refinement.
For easy reference it is convenient to stack the intervals of T into a pair of towers so

that we get from T to its next refinement, T̃ , by the process of ‘cutting and stacking’. This
procedure is explained in detail in [3, Appendix 1] (actually, Katznelson and Ornstein work
with ‘towers with balconies’ separating balconies from towers give our towers). Figure 1
shows, T (qn+1 + qn) for n even. In this figure the integer k at the side of a level stands for
Rk

α(0). In general, T (aqn+1 + qn) has a left tower made of left intervals or L-intervals

{Ri
α[R(a−1)qn+1+qn

α (0), 0]}qn+1−1
i=0
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and a right tower made of R-intervals

{Ri
α[0, Rqn+1

α (0)]}(a−1)qn+1+qn−1
i=0

for n odd; for n even change left for right.
The idea for constructing h, and therefore f , is very simple: at each stage in the process

of forming towers, points of T fall either in a L- or R-interval. Suppose we choose a side,
say right, for a fixed increasing subsequence Tk of the above sequence of towers, which, it
should be emphasized, is entirely determined by (the continued fraction expansion of) α.
The set of points S which are not in the orbit of zero but which are in an interval of the
right side of Tk for k arbitrarily large is clearly Rα-invariant. We are going to construct
h in such a way that 1 > µ(h(S)) > 0 where µ is the Lebesgue measure. This is
easily done. We just have to imitate the construction of the Cantor map and conveniently
distort the intervals in the right side as they appear in the process of refinement. If we
do that, then f := h ◦ Rα ◦ h−1 is a homeomorphism but, of course, not, in general, a
C1-diffeomorphism. Our task is then to show that we can accomplish this change of lengths
and also get a diffeomorphism. To control those distortions we will need the following
lemma.

LEMMA 2. Let T be a tower of Rα . Denote the L-intervals of T by Li and the R-intervals
by Ri . Cut and stack T to get a new tower T̃ . Denote the intervals in the left tower of
T̃ by lj and similarly define the intervals rj . These smaller intervals decompose each left
interval of T into nl and ml intervals, respectively. Analogously they decompose the right
intervals of T into nr and mr intervals, respectively. Then, cutting and stacking, we get
infinitely often pairs of towers T̃ such that

1

5
<

mlr

nll
< ρ := (ml + mr)r

(nl + nr)l
<

mrr

nr l
< 5.

Proof. Since our thesis is invariant under scaling, we can consider the rescaled first return
map to the bottom of the towers and assume the initial towers with height one. Cut and
stack T to get T̃ with nl , nr , ml and mr . Then mr + ml is the height of the right tower
of T̃ and nr + nl the height of its left tower. We can take these quantities as large as we
please since, say, nr/nr +nl goes to α as we cut and stack, by the unique ergodicity of Rα .
We have (

L

R

)
=

(
nl ml

nr mr

) (
l

r

)
and nlmr − nrml = 1 since this matrix is a product of the matrices(

1 1
0 1

)
or

(
1 0
1 1

)
,

we have mlr/nl l < mrr/nr l. We will show that by further cutting and stacking of T̃ we

can get ˜̃T such that 1
2 ≤ ρ ≤ 4, δ− and δ+ ≤ 1

4 , where

δ− = ρ − mlr

nll
= 1

nl(nr + nl)

r

l
and δ+ = mrr

nr l
− ρ = 1

nr(nr + nl)

r

l
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which will prove the lemma. Consider two cases: either an = 1 for n large enough or
an > 1 for n arbitrarily large. Since our thesis is invariant by flipping sides, left and right,
we can suppose, without loss of generality, that r > l and nr +nl < mr +ml . If the second
possibility holds, cut and stack T to get T̃ critical immediately preceding the appearance

of a partial quotient an = [r/ l] > 1. Cut and stack T̃ a := [an/2] ≥ 1 times to get ˜̃T .
We have

L = nll + mlr = (nl + mla)l + ml(r − al)

R = nr l + mrr = (nr + mra)l + mr(r − al)

and therefore

ρ = (mr + ml)(r − al)

((nr + mra) + (nl + mla))l
= an + f − a

(nr + nl)/(mr + ml) + a

where f is the fractional part of r/ l. Thus

an − a

1 + a
≤ ρ ≤ an − a + 1

a

and, using the definition of a, we have

1

2
≤ a

1 + a
≤ ρ ≤ a + 3

a
≤ 4

as required. For δ+ we have

δ+ = 1

(nr + mra)(nr + mra + nl + mla)

r − al

l

= 1

(nr + mra)(mr + ml)

(r/ l) − a

(nr + nl)/(mr + ml) + a

≤ 4

mr + ml
≤ 1

4

and similar estimates hold for δ−.
Now suppose an = 1 for n large enough. Cut and stack T to get T̃ as the partial

quotients an converge to 1. Cut and stack T̃ twice to get ˜̃T . We have

L = (nl + ml)(2l − r) + (2ml + nl)(r − l)

R = (nr + mr)(2l − r) + (2mr + nr)(r − l)

and therefore

ρ = (2mr + nr + 2ml + nl)(r − l)

(nr + mr + nl + ml)(2l − r)
=

(
1 + mr + ml

nr + mr + nl + ml

)
(r − l)

(2l − r)

which shows that 1 ≤ ρ ≤ 4 as required, since 0 ≤ r−l < l, 0 ≤ l−(r−l) = 2l−r < r−l

and 0 ≤ (r − l)− (2l − r) < 2l − r . As for, say, δ+ we have, using the above inequalities,
that

δ+ = 1

(nr + mr)(nr + mr + nl + ml)

r − l

2l − r
<

1

4
. ✷
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3. Pl towers
Now take a pair of towers T of Rα and change the lengths of their intervals except for
the top and bottom ones. This change is subject only to the condition that the sum of the
lengths of all intervals is one. The new pair of towers, T̃ , with its scheme of mappings
and identifications, defines, in the obvious way, a unique (modulo rotations) piecewise (pl)
homeomorphism of the circle, f , and a pl conjugacy, h, between f and Rα . We just have
to take every map in sight as orientation preserving and affine. More precisely we consider
towers, which we shall call pl towers, such that:
(1) the combinatorics of the towers are the combinatorics of some Rα tower;
(2) the maps one floor up are affine;
(3) the top and bottom levels are the same as in the correspondingRα tower and therefore

the top to bottom maps are the same isometries as for Rα .
Since an orientation-preserving affine homeomorphism between intervals is unique, any

diagram of such maps commutes and we have a pl conjugacy, h, between f and Rα on the
mid levels. As the top and bottom levels were unchanged the same holds there and the
conjugacy thus defined ensures that ρ(f ) = α and the minimality of f . Therefore h is
affine on all levels and, in fact, the identity on the top and bottom levels, the iterates of 0
under f coincide with the corresponding ones of Rα on the top and bottom levels and are
an affine image of them on the other levels.

Observe that if we have one of these towers and we cut and stack its intervals
(as prescribed by the pl homeomorphism f it defines) any number of times and change
their lengths in the allowed way, we still get a tower of the same sort which defines a pl
homeomorphismf with rotation numberα. Also, if we take one of these towers and start to
cut and stack, the maximum length of the intervals in the towers goes down monotonically
to zero since the cutting orbit is dense in T.

The derivative of a pl homeomorphism defines a positive step map ϕ which, by
definition, is a real-valued map defined on T such that there are distinct points
p0, p1, . . . , pk = p0 ∈ T, indexed in the counterclockwise sense, such that ϕ is constant
in each interval [pi−1, pi). If p is a point in T we define the jump of ϕ at p as

J (ϕ, p) =
∣∣∣ lim
x→p+ ϕ(x) − lim

x→p− ϕ(x)

∣∣∣.
If ϕn is a sequence of step maps, satisfying:
(i)

∑n ‖ϕn+1 − ϕn‖ < ∞ where ‖ϕ‖ is the supremum norm of ϕ;
(ii) maxp∈T1 J (ϕn, p) → 0 as n → ∞;
then clearly ϕn converges uniformly to a continuous map ϕ. Integrating we get the
following lemma.

LEMMA 3. Let fn be a sequence of pl homeomorphisms of T converging pointwise to a
pl homeomorphism f . Suppose the sequence of derivatives ϕn = Dfn satisfies (i) and
(ii) above and is uniformly bounded away from zero. Then f is a C1-diffeomorphism and
Df = ϕ where ϕ = limϕn.

Let I1 and I2 be two intervals, and f : I1 → I2 be the affine orientation-
preserving homeomorphism between them. Let T1 = {p1j }kj=0 be a partition of I1 and
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T2 = f (T1) = {p2j }. Fix two indices 1 < k1 < k2 < k and move the points of T1 without
changing their relative order to form a new partition T̃1 = {p̃1j } of I1 and do the same
for T2 thus getting T̃2 = {p̃2j }. We are no longer assuming that T̃2 = f (T̃1). Consider
f̃ : I1 → I2 as the orientation-preserving pl homeomorphism defined by the partitions T̃1

and T̃2. Suppose the change is such that:

(1) p̃ik1 = pik1 and p̃ik2 = pik2 , i = 1, 2, i.e. the marked points are unchanged;
(2) f̃ is affine in the intervals [p̃11, p̃1k1 ] and [p̃1k2, p̃1k−1];
(3) the intervals of T1 (respectively T2) in [p̃1k1, p̃1k2 ] (respectively [p̃2k1, p̃2k2])

are partitioned in three groups of intervals C1, E1 and Q1 (their image by f

being respectively C2, E2 and Q2). Denoting the corresponding intervals of T̃1

(respectively T̃2) by adding ˜ we assume that the intervals of C̃1 (respectively C̃2)
are contracted by a factor of λ1, 0 < λ1 < 1 (respectively λ2, 0 < λ2 < 1). The
intervals of Q̃1 (respectively Q̃2) remain with length equal to their counterparts in T1

(respectively T2). The remaining intervals in Ẽ1 (respectively Ẽ2 ) are, consequently,
expanded. We assume this expansion is uniform.

LEMMA 4. Under the above hypothesis, defining c = µ(∪C1), e = µ(∪E1), s = µ(∪Q1),
κ = max{c/e, e/c} and

r = max

{
p̃i1 − pi0

pik1 − pi0
,
pik − p̃ik−1

pik − pik2

∣∣∣∣ i = 1, 2

}
,

and assuming r < 1/2, we have

‖Df̃ − Df ‖ ≤
{
κ |λ2/λ1 − 1|‖Df ‖, for intervals in [p̃1k1, p̃1,k2 ]
4r‖Df ‖, for intervals in [p̃11, p̃1k1] or [p̃1k2, p̃1k−1].

Proof. For an interval [p̃1j−1, p̃1j ] in C̃1 we have

‖Df̃ − Df ‖ =
∣∣∣∣λ2

λ1
− 1

∣∣∣∣ p2j − p2j−1

p1j − p1j−1
≤

∣∣∣∣λ2

λ1
− 1

∣∣∣∣ ‖Df ‖.

If [p̃1j−1, p̃1j ] is in Ẽ1 we have in the same way

‖Df̃ − Df ‖ ≤
∣∣∣∣ν2

ν1
− 1

∣∣∣∣ ‖Df ‖

where νi is the expansion undergone by the intervals in Ẽi , i = 1, 2. Now c + e + s =
p1k2 − p1k1 = λ1c + ν1e + s and a(p1k2 − p1k1) = p2k2 − p2k1 = λ2ac + ν2ae + as,
where a = |I2|/|I1|. Then c + e = λ1c + ν1e = λ2c + ν2e from which we get∣∣∣∣ν2

ν1
− 1

∣∣∣∣ =
∣∣∣∣ [(c + e)/c] − λ2

[(c + e)/c] − λ1
− 1

∣∣∣∣ = |λ1 − λ2|
[(c + e)/c] − λ1

≤ c

e

∣∣∣∣λ2

λ1
− 1

∣∣∣∣ ≤ κ

∣∣∣∣λ2

λ1
− 1

∣∣∣∣ .
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For intervals in [p̃11, p̃1k1 ] (or [p̃1k2, p̃1k−1]) we have

‖Df̃ − Df ‖ =
∣∣∣∣p2k1 − p̃21

p1k1 − p̃11
− p2k1 − p20

p1k1 − p10

∣∣∣∣
=

∣∣∣∣p2k1 − p20 − (p̃21 − p20)

p1k1 − p10 − (p̃11 − p10)
− p2k1 − p20

p1k1 − p10

∣∣∣∣
≤ 2

(p1k1 − p10)(p̃21 − p20) + (p2k1 − p20)(p̃11 − p10)

(p1k1 − p10)2

≤ 2

(
p̃21 − p20

p2k1 − p20
+ p̃11 − p10

p1k1 − p10

)
p2k1 − p20

p1k1 − p10
≤ 4r‖Df ‖. ✷

Using that Df is a step map and the triangle inequality we have

|JDf̃ (p̃)| ≤


2κ |λ2/λ1 − 1|‖Df ‖, for p̃ ∈ (p̃1k1 , p̃1k2),

(κ |λ2/λ1 − 1| + 4r)‖Df ‖, for p̃ = p̃1k1 or p̃ = p̃1k2,

|Df̃ (p10) − Df (p10)| + 4r‖Df ‖, for p̃ = p̃11,

|Df̃ (p1k) − Df (p1k)| + 4r‖Df ‖, for p̃ = p̃1k−1.

Since the hypothesis is symmetric we have similar estimates for Df̃ −1 and JDf̃ −1,
changing λ2/λ1 to λ1/λ2.

Let T = T (aqn+1 + qn) be a pl tower defined by a pl homeomorphism f , ρ(f ) = α.

Denote its intervals by {Li}hl−1
i=0 and {Ri}hr−1

i=0 , where the heights are, say, hl = aqn+1 + qn

and hr = qn+1, indexed from bottom to top, and define S = ∪Ri . Fix positive integers
0 < h < min{hl, hr }, h̃ and qr ∈ R0, ql ∈ L0 so close to zero that R−1

α (0) ∈
f hr−1[qr, f hl

(ql)] ∪ f hl−1[f hr
(qr), ql] but not in the Rα-orbit of zero.

Cut and stack T to a tower T̃ = T̃ (̃aqñ+1 + qñ) and define l- and r-intervals, nl,ml, nr

and mr as in Lemma 2. We suppose 0 < h̃ < h̃l/2 and h̃r/2, the heights of T̃ , where we
have started to use the convention of adding˜to the names of objects referring to T̃ . Define
X = X (h) as the set of intervals on the first or top h levels of T and D̃ = D̃(qr , ql) as the
complement of the set of intervals in T̃ whose projections on the bottom of T are contained
in [qr, f hl

(ql)]∪[f hr
(qr), ql]. Define also F = X∪D̃ and P = Fc. See Figure 2. Denote

by llij a generic l-interval that decomposes Li , where the superscript refers to the side, left,

of the interval, Li . A missing l or r refers to either l or r . Define similarly lrij , rlij and
rrij . Since the towers are affine the l-intervals that enter into the decomposition of a fixed

interval, say Li , all have the same length which we denote by lli (respectively for lri , rli
and rri ). Since T is affine we have

nllli

Li

= nl lli

Li

= nl
ll0

L0
,

which shows that this quantity (respectively for mlrli /Li , nr lri /Ri and mrrri /Ri ) depends
only on the corresponding Rα-tower. Thus using Lemma 2, we can assume from now on
that

1

5
<

mlrli

nl lli

<
mrrri

nr lri
< 5. (1)
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FIGURE 2.

Let {pl
ij }k

l

j=0, where kl = nl + ml , be the extreme points of the partition of Li by the
l- and r-intervals. In a similar way define pr

ij partitioning Ri . Now take kr
1 such that

pr
0kr1

< qr ≤ pr
0kr1+1. Since ‖T̃ ‖ → 0, as we cut and stack, on account of f being minimal,

we see that kr
1 → ∞ and pr

0kr1
→ qr . In a similar way take positive integers kr

2, kl
1 and kl

2

such that pl

0kl1
< f hr (qr) ≤ pl

0kl1+1
, pl

0kl2−1
< ql ≤ pl

0kl2
and pr

0kr2−1 < f hl (ql) ≤ pr
0kr2

,

respectively.

Fix 0 < ξ < 1. We are going to change T̃ to a pl tower, ˜̃T = ˜̃T (h, h̃, qr , ql, ξ),
defining a pl homeomorphism f̃ by contracting the intervals lrij and rlij inside the intervals
of T . We change the lengths of the l- and r-intervals by moving slightly the point pij to a
point p̃ij . Start by changing the position of the points f i(pr

01), for i = 0, 1, . . . , hr +hl−1
(which are equal to pr

i1 or pl
i−hr1), taking p̃r

01 = pr
01 and moving the point f i(pr

01), i > 0,
to the point at distance (pr

01 − pr
00)g

r
00g

r
10 . . . gr

i−10 from the nearest extreme (respectively
pr
i0 or pl

i−hr0) where gr
s0 = √

D+f (pr
s0)D

−f (pr
s0) is the geometric mean of the lateral

derivatives at the extreme points of the intervals. This changes the points next to the lower
extremes of the L- and R-intervals. The points next to the upper extremes f i(pl

0kl−1
), for

i = 0, 1, . . . , hr +hl−1, are similarly moved. Since we have kept the extremes of the large
intervals fixed and changed the length of the small intervals next to them in order that both
lateral derivatives are now equal to the geometric mean of the previous lateral derivatives, it

follows that ˜̃
f agrees with f and is smooth at the extremes of the intervals of T . To move

the remaining points pr
ij and to define the one-floor-up maps in S, we use the previous

lemma hr − 1 times taking I1 = Ri , I2 = Ri+1, k1 = kr
1, k2 = kr

2, Q = X̃ = X̃ (̃h) and C
the remaining lrij intervals. The contraction λr

i will change as we move in the levels of the
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right tower as follows:

λr
i =


ξ i , for i = 0, 1, . . . , h − 1,

ξhr−i−1, for i = hr − h, hr − h + 1, . . . , hr − 1,

ξh, otherwise.

To move the points in the left tower of T we proceed in the same way, only now
contracting the intervals rlij not in X̃ . Note that λi+1/λi is either 1 or ξ±1 and 0 < 1 − ξ ≤
ξ−1 − 1.

Using (1) we see that we can take κ = 6 in Lemma 4. In fact, take T̃ further down in
the sequence of pairs of towers, if necessary, in order to keep the ratios µ(∪C)/µ(∪E) in
(1/6, 6) ⊇ (1/5, 5) which is possible since

µ(∪X̃ ) ≤ 4h̃‖T̃ ‖
and ‖T̃ ‖ → 0.

To define the top-to-bottom maps of ˜̃T we use Lemma 4 again on the intervals I1 =
Lhl−1, I2 = f (Lhl−1) (respectively I1 = Rhr−1, I2 = f (Rhr−1)) with the k’s as before
and the partitions given by the points pij where we omit the points 0 = pr

00 = pl
0kl

, which

has no pre-image, and f ãqñ+1+qñ−1(0), which has no image in the stretch of trajectory from
0 to ãqñ+1 + qñ − 1 which we are considering. The sets C and Q will not, in fact, matter

since we are going to take, as we must, λ1 = λ2 = 1 because we need ˜̃f to be an isometry
near R−1

α (0) in order to keep the rotation number the same. Recall that in Lemma 4 the
points pik1 and pik2 are unchanged and from the definition of the q’s and ki’s we have

R−1
α (0) ∈ f hr−1[pr

0kr1
, pr

0kr2
] ∪ f hl−1[pl

0kl1
, pl

0kl2
].

The definition of ˜̃T is now complete and we have the following lemma.

LEMMA 5. Given T , f , such that 1/2 < ‖Df ‖ < 2, with h, h̃, ql and qr and ξ as
above, there are towers T̃ , infinitely often in the sequence of towers, which deformed to˜̃T = ˜̃T (h, h̃, qr, ql, ξ) as described satisfy:
(a) ‖Df̃ − Df ‖ ≤ max{ 2

3‖JDf ‖, 4r‖Df ‖, 6(ξ−1 − 1)‖Df ‖};
(b) ‖JDf ‖ ≤ max{ 2

3‖JDf ‖ + 4r‖Df ‖, (6(ξ−1 − 1) + 4r)‖Df ‖, 12(ξ−1 − 1)‖Df ‖};
(c) µ(S̃ − S) ≤ µ(∪F) + ξhµ(S) + µ(∪X̃ );
(d) µ(S̃) ≥ (1 − ξh)µ(S) − µ(∪F) − µ(∪X̃ );

(e) ρ( ˜̃f ) = α and ˜̃f i
(0) = f i(0), i = 0, . . . , aqn+1 + qn − 1;

where

r = max

{
p̃i1 − pi0

pik1 − pi0
,
pik − p̃ik−1

pik − pik2

}
,

with the maximum taken over all intervals in T . (a) and (b) hold for Df̃ −1.

Proof. (e) is obvious from the choice of the points q and from the definition of the new top
to bottom maps. (a) and (b) follow easily from Lemma 4 and its following remark plus the
easy fact that the geometric mean,

√
ρλ, of two numbers ρ and λ in the interval (1/2, 2)
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satisfy
√

ρλ − ρ < 2/3(λ − ρ) and λ − √
ρλ < 2/3(λ − ρ). (c) follows from

µ(S̃ − S) =
∑
i,j

r̃ l
ij ≤ µ(∪F) +

∑
r̃ l
ij∈P

r̃ l
ij ≤ µ(∪F) + ξhµ(S) + µ(∪X̃ )

and (d) from

µ(S̃) =
∑
i,j

r̃ l
ij +

∑
i,j

r̃ r
ij ≥

∑
i,j

r̃ r
ij = µ(S) −

∑
i,j

l̃rij

≥ µ(S) − µ(∪F) −
∑
l̃rij∈P

l̃rij ≥ µ(S) − µ(∪F) − ξhµ(S) − µ(∪X̃ ). ✷

4. Proof of Theorem 1
We use the notation of Lemma 5. Fix ν, 0 < ν < 1/2, and make σ0 = 0 and σn = ∑n

i=1 νi .
Take a and b, 0 < a < 1/6 and 5/6 < b < 1, and fix a positive integer n0 such that
a + νn0 < 1/6, b + νn0 < 1 and 2νn0 < ν. Take a sequence xn, n = 0, 1, 2, . . . , such that
0 < xn+1 < xn and 3/4 xn < xn+1, ∀n and

∑
xn = 1. Define positive integers

hn = 1 +
[

ln(νn+n0(ν − 2νn0))

ln(100 + xn+1/2) − ln(100 + xn+1)

]
, n = 0, 1, 2, . . . .

Then there is a sequence fn, n = 0, 1, 2, . . . , of pl homeomorphisms defined by a sequence
of pairs of towers Tn such that, denoting by Sn the union of the intervals in the right tower
of Tn, we have:
(1) ρ(fn) = α,∀n ≥ 0;
(2) fn = fn−1 on the extremes of Tn−1,∀n ≥ 1;
(3) ‖Dfn − Dfn−1‖ and ‖Df −1

n − Df −1
n−1‖ ≤ xn,∀n ≥ 1;

(4) ‖JDfn‖ and ‖JDf −1
n ‖ ≤ xn,∀n ≥ 1;

(5) a + νn+n0 ≤ µ(Sn) ≤ b + νn0σn,∀n ≥ 0;
(6) µ(Sn − Sn−1) ≤ νn+n0 ,∀n ≥ 1;
(7) hl

n and hr
n > 2hn, ∀n ≥ 0, where hl

n and hr
n denote the heights of the left and right

towers of Tn, respectively;
(8) µ(∪X (hn)) ≤ 1

2ν
n+2n0 ,∀n ≥ 0;

(9) ‖Tn‖ ≤ xn,∀n ≥ 0.
We construct the sequences fn and Tn by induction on n = 0, 1, . . . .

For n = 0 we take a tower T0 of Rα . More precisely, according to Lemma 2,
constructing the towers of Rα, we obtain 1/5 < (1−µ(S0))/µ(S0) < 5 or 1/6 < µ(S0) <

5/6 infinitely often, where S0 is the union of the intervals in the right tower of T0. Fix one
of these towers that is high and thin enough to satisfy (7), (8) and (9) as T0.

Now suppose we have constructed towers T0,T1, . . . ,Tn defining f0 , f1, . . . , fn,
respectively, pl homeomorphisms satisfying (1) to (9). (3) implies

‖Dfn‖ and ‖Df −1
n ‖ ≤ 1 +

n∑
i=1

xi < 2.

Define Tn+1 = ˜̃T given by the previous lemma where we take T = Tn, h = hn,
h̃ = hn+1, ξ = (100 + xn+1/2)/(100 + xn+1) (then ξ−1 − 1 < xn+1/100 and
ξhn < νn+n0(ν − 2νn0)), ql and qr so close to zero that
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(i)

µ(∪D(ql, qr)) <
1

2
νn+1+2n0 and |q| < xn+1

2hl
n+hr

n

,

and T̃ so high in the sequence of towers that
(ii)

‖T̃ ‖ < min

{
xn+1,

νn+1+2n0

8hn+1

}
,

(iii) h̃l and h̃r > 2hn+1,
(iv)

max

{
pi1 − pi0

pik1 − pi0
,
pik − pik−1

pik − pik2

}
<

xn+1

100
2−2(hr

n+hl
n),

for both right and left p’s. This is possible since, for instance, pl
i1 → pl

i0 and pl

ikl1
→

f hr+i (qr) as we move up in the sequence of towers:
(v) µ(∪X̃ (hn+1)) ≤ 1

2ν
n+1+2n0 .

Using (iv) and the definition of the points p̃ij next to the extremes we see that

r = max

{
p̃i1 − pi0

pik1 − pi0
,
pik − p̃ik−1

pik − pik2

}
<

xn+1

100

since, for instance,

p̃r
i1 − pr

i0

pr
ik1

− pr
i0

= (pr
01 − pr

00)g
r
00g

r
10 · · · gr

i−10

pr
ik1

− pr
i0

= pr
01 − pr

00

pr
0k1

− pr
00

√
D−f i(pr

00)√
D+f i(pr

00)

≤ xn+1

100
2−2(hr

n+hl
n)22i <

xn+1

100
.

We check that the assertions (1)–(9) hold. (1) and (2) follow from (e). (3) is obtained
from Lemma 5(a) since

2
3‖JDfn‖ ≤ 2

3xn < xn+1

4r‖Dfn‖ ≤ 8r ≤ xn+1

6(ξ−1 − 1)‖Dfn‖ ≤ 12(ξ−1 − 1) < xn+1.

(4) follows from Lemma 5(b) and the definitions. The same estimates hold for Df −1
n+1 and

JDf −1
n+1.

Checking (6) we have

µ(Sn+1 − Sn) ≤ µ(∪Fn) + ξhnµ(Sn) + µ(∪Xn+1)

≤ µ(∪D) + µ(∪Xn) + ξhn + µ(∪Xn+1)

≤ 1
2ν

n+1+2n0 + 1
2ν

n+2n0 + νn+2n0(ν − 2ν2n0) + 1
2ν

n+1+2n0 < νn+1+n0 .

The second inequality of (5) is easy to prove:

µ(Sn+1) ≤ µ(Sn) + µ(Sn+1 − Sn) ≤ b + νn0σn + νn+1+n0 = b + νn0σn+1.
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The first is a bit longer:

µ(Sn+1) ≥ µ(Sn) − µ(∪Fn) − ξhnµ(Sn) − µ(∪Xn+1) ≥ a + νn+n0

− ( 1
2ν

n+1+2n0 + 1
2ν

n+2n0 + νn+2n0(ν − 2ν2n0) + 1
2ν

n+1+2n0)

≥ a + νn+1+n0 .

Condition (7) is (iii) and (8) is (v).
(9) is clearly true for the l- or r-intervals outside the intervals [p̃ik1, p̃ik−k2 ] since, for

example,

p̃r
ik1

− p̃r
i0 < f i

n(q
r) − pr

i0 = Df i
n(p00)(q

r − p00) < 2i |qr |
which is less than xn+1 by (i), and also for the intervals there which are contracted or
remain with the same length on account of (ii). If the interval is expanded, say an interval
rrij in Ri , denoting this expansion by νi we have Mνir

r
i < Ri ≤ ‖Tn‖ ≤ xn, where M is

the number of intervals expanded, but then νir
r
i ≤ xn/M

r < xn/2 < xn+1, completing the
induction.

Now (2) implies that hn converges pointwise on O to an order-preserving map h and,
similarly, fn converges on h(O), a set dense in T

1, to an order-preserving map f . Using
Herman’s Lemma 3.3 [2, p. 140], these maps extend to homeomorphisms of T

1, also
denoted by h and f , respectively, such that h ◦ Rα = f ◦ h. That f is C1 follows from
Lemma 3 and (3) and (4). It remains to see that f is not ergodic. Denote by T 0

n the
pair of towers of Rα corresponding to Tn and, similarly, write S0

n = h−1
n (Sn) = h−1(Sn)

as its right tower. The set S = ⋂∞
n=0

⋃∞
k=n S0

k is Rα invariant and therefore h(S) =⋂∞
n=0

⋃∞
k=n Sk is f invariant. But

µ(h(S)) = lim sup
n→∞

(µ(Sn) + µ(Sn+1 − Sn) + · · · )
≤ lim sup

n→∞
(µ(Sn) + νn+1+n0 + · · · )

≤ lim sup
n→∞

µ(Sn) ≤ lim sup
n→∞

b + νn0σn < b + νn0 < 1.

On the other hand,

µ(h(S)) = lim
n→∞ µ

( ∞⋃
k=n

Sk

)
≥ lim inf

n→∞ µ(Sn) ≥ lim inf
n→∞ a + νn+n0 = a > 0. ✷
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