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ABSTRACT

Recently, a few works have started proposing the use of graph neural networks (GNNs)

to embed knowledge of gene interactions in machine learning models and thus produce

more robust classifiers for genomic classification tasks. GNNs, however, produce em-

beddings for each gene in the biological network, and these embeddings must then be

summarized into a single representation that can be used to produce a classification for

the entire network - a process commonly referred to as pooling. Although previous works

have achieved encouraging results, there is a lack of studies that aim to understand the

effects of the choice of GNN architecture, biological network, and, in particular, the pool-

ing approach. Therefore, this work aims to explore the impact that these alternatives have

on the performance and interpretability of the resulting models. Our findings highlight

SAGPool’s superior predictive power and GraphSAGE’s robustness across most pooling

methods. We also showed that a preprocessing technique could offer enhanced perfor-

mance for certain pooling methods, providing favorable trade-offs in predictive perfor-

mance and computational resources. Despite challenges in identifying biomarker genes

through saliency maps, we were able to identify genes like ADAM33 and DNASE1L3

that correlate with breast cancer. We conclude that the choice of the right architecture

significantly impacts model performance and resource utilization, underscoring its im-

portance in GNNs studies.

Keywords: Graph neural networks. Pooling. Interpretability. Genomics.



Um estudo sobre redes neurais em grafos para tarefas de classificação e

interpretabilidade de modelos em conjuntos de dados genômicos

RESUMO

Recentemente, alguns trabalhos começaram a propor o uso de redes neurais de grafo

(GNNs) para incorporar o conhecimento das interações genéticas nos modelos de apren-

dizado de máquina e, assim, produzir classificadores mais robustos para tarefas de clas-

sificação genômica. No entanto, as GNNs produzem embeddings para cada gene na rede

biológica, e esses embeddings devem então ser resumidas em uma única representação

que possa ser usada para produzir uma classificação para toda a rede - um processo comu-

mente referido como pooling. Embora trabalhos anteriores tenham alcançado resultados

encorajadores, há uma falta de estudos que visem entender os efeitos da escolha da arqui-

tetura da GNN, da rede biológica e, em particular, da abordagem de pooling. Portanto,

este trabalho tem como objetivo explorar o impacto que essas alternativas têm no de-

sempenho e na interpretabilidade dos modelos resultantes. Nossos resultados destacam o

poder preditivo superior do SAGPool e a robustez do GraphSAGE em relação à maioria

dos métodos de pooling. Também demonstramos que uma técnica de pré-processamento

pode oferecer um melhor desempenho para certos métodos de pooling, proporcionando

compensações favoráveis em poder preditivo e recursos computacionais. Apesar dos de-

safios em identificar genes marcadores através de mapas de saliência, fomos capazes de

identificar genes como ADAM33 e DNASE1L3 que se correlacionam com o câncer de

mama. Concluímos que a escolha da arquitetura correta impacta significativamente o de-

sempenho do modelo e a utilização de recursos, destacando sua importância em estudos

de GNNs.

Palavras-chave: graph neural networks. pooling. interpretabilidade. genômica.
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1 INTRODUCTION

Cancers, a diverse group of diseases, pose a major global health challenge. They

are characterized by the uncontrolled growth and spread of abnormal cells, which can

infiltrate and destroy healthy tissues, eventually disrupting vital bodily processes. In 2022,

cancer was the second leading cause of death in the United States, with 607,790 deaths,

just behind heart disease (AHMAD et al., 2023). In 2023, the expected number of new

cases is projected to exceed 1.9 million, with an anticipated 609,000 fatalities (SIEGEL

et al., 2023). Breast cancer, a principal contributor to this factor, represents the most

common cancer diagnosis among women. Recent statistics indicated that in 2023, there

would be more than 297,00 new cases of invasive breast cancer, which is expected to

result in over 43,000 deaths (SIEGEL et al., 2023). These statistics not only reveal the

widespread impact of breast cancer but also highlight the need for progress in its detection

and in understanding the disease’s underlying mechanisms.

The sharing and analysis of omics data has shown promising results in the fight

against breast cancer. By examining the genomic, transcriptomic, and proteomic pro-

files of the disease, researchers can obtain a comprehensive understanding of the dis-

ease’s patterns and characteristics. The TCGA (standing for The Cancer Genome Atlas)

project1 has been a key player in this scenario, providing an extensive repository of over

2.5 petabytes of publicly available omics data. However, the complex nature of omics data

sets a challenge, requiring advanced computational techniques and strategies for analysis

and interpretation. Machine learning, a field of artificial intelligence, plays a key role in

tackling this problem by providing computers with the ability to learn from the data, iden-

tify patterns, and then make predictions without being directly programmed, empowering

researchers to analyze massive amounts of omics data rapidly.

In the past, traditional machine learning models like linear regression and support

Vector Machines (SVM) were used to approach this problem. Nevertheless, these models

struggled with the high dimensionality and complexity inherent to omics data, requir-

ing advanced feature selection and engineering techniques to minimize those problems,

and yet could result in information loss and limited generalizability (ALBARADEI et al.,

2021). With the advances in computing and computers getting more powerful to accom-

modate vast amounts of data and processing, neural networks have risen in popularity to

tackle these challenges. In the genomic field, it’s no different, researchers started to ap-

1https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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ply neural networks to omics data for classification tasks as in (WU et al., 1995). More

recently, a particular type of neural network, called graph neural network, has started

to get the attention of researchers. This attention is driven by its unique ability to han-

dle data that are naturally represented as graphs, like molecular structures and biological

pathways.

A lot of effort has been put into modeling omics data. One way to do it is using

Protein-Protein Interactions (PPIs), i.e., the physical or functional interactions between

two or more proteins that embody complex biological functions and can elucidate the

molecular basis of diseases (GONZALEZ; KANN, 2012). One can integrate PPI net-

works with various omics data types at DNA and RNA levels to get a better understanding

of gene expression to protein interactions.

A GNN mechanism called pooling is particularly important when working with

omics data. That is because pooling allows the node embedding information to be sum-

marized into a single final embedding for the genomic network, which is essential since

most of the genomic tasks involve some type of graph-level classification, such as the one

in this study.

Traditional pooling methods are generally global, i.e., they aggregate information

from the entire graph to form a single representation and can capture the overall structure

and properties of the network. However, hierarchical methods, such as DiffPool(YING

et al., 2019) and Self Attention Graph Pooling (LEE; LEE; KANG, 2019), are growing

in popularity because of their capability of capturing both local and global features of the

network, and because the possibility of gaining cluster insights at each network level.

Incorporating hierarchical pooling into graph neural networks for genomic analy-

ses enables a more granular examination of the network interactions. By examining the

outputs of these methods, one can gain possible comprehension of the gene expressions

and also identify local patterns in their interactions.

In this work, our objectives are structured as follows: (i) Analyze the efficiency of

pooling methods using a synthetic dataset; (ii) evaluate the performance of various GNN

architectures in classifying cancer-related genetic data, specifically focusing on analyzing

breast cancer PPI data from the TCGA database; (iii) provide an interpretability analysis

of the most effective GNN architecture identified in our study.

The work is organized as follows. Chapter 2 contains the necessary background

for understanding our work. Chapter 3 contains the reviewed literature that is most similar

to ours. Chapter 4 presents our adopted methodology for all of our experiments. Chapter
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5 is the place where we discuss our results. Chapter 6 concludes the study.
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2 BACKGROUND

2.1 Biological Background

This section is dedicated to reviewing the essential concepts of genomics and gene

expression data, especially the RNA-seq data.

2.1.1 The Genome

A genome refers to the entirety of an organism’s DNA. It encompasses all the

details, the structure, function, development, and reproduction of that organism, where

every cell within an organism’s body possesses a replica of its genome (National Human

Genome Research Institute, 2023). DNA, the molecule that carries genetic information

in living organisms, is composed of nucleotides, each consisting of a phosphate group, a

sugar group, and one of four nitrogen bases: adenine (A), thymine (T), guanine (G), and

cytosine (C). The different sequences can determine traits like eye color and height but

can also determine deficiencies. The DNA’s instructions are transformed into RNA. RNA

plays a role in converting these instructions into proteins, which are necessary for various

cell functions.

The synthesis of proteins occurs in two primary steps: transcription and transla-

tion. Transcription is the first step in gene expression, where cells interpret sections of

DNA referred to as genes to generate RNA molecules, most specifically messenger RNA

(mRNA) molecules. The second step in gene expression is translation. In this step, the

mRNA molecule is read according to the genetic code, which translates the sequence of

DNA bases into the corresponding amino acid sequence in proteins (BROWN; CLANCY,

2008).

However, not all genes are active at all times, their level of expression can vary

depending on factors such as the type of cell the stage of development, or even external

signals. This change in expression is what allows different types of cells in an organism

to perform different functions even though all cells contain the same set of genes. Also,

this change allows scientists to study the expression patterns at different times in the

same individual to help identify diseases and potentially produce new treatments since

the dysregulation of gene expression is an indicator of many diseases, such as cancer.
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Figure 2.1: Typical RNA-Seq pipeline

Source: Lowe et al. (2017)

2.1.2 RNA-Seq data

The transcriptome of a cell is the set of all its RNA molecules at a given time and is

the subject of transcriptomics. Currently, two techniques of analyzing the transcripts are

dominant: RNA-Seq and Microarrays. Microarrays are a technique that involves multiple

pre-determined microscopic slides, also known as gene chips. These chips are then intro-

duced with complementary nucleic acids in a process known as hybridization, where the

sample DNA or RNA binds with the chip sequences to show gene expression. RNA-Seq

is a newer technique that overcomes the limitations of microarrays relying on the existing

pre-determined sequences, isolates the RNA, and breaks it into small fragments, known

as reads.

To get the gene expression data with the RNA-Seq technique, the common pipeline

is shown in Figure 2.1. It starts by generating the mature mRNA within the organisms

by transcribing and splicing the genes. Then, the mRNA is fragmented and converted

into double-stranded DNA to facilitate the sequencing, as the cDNA is more stable for

such technologies. Finally, the cDNA is sequenced using high-throughput sequencing

techniques and is aligned to a reference genome. The result of this pipeline is raw read

counts.
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To normalize these raw read counts, we have used the Genomic Data Commons

(GDC) pipeline. Specifically, the Fragments Per Kilobase of transcript per Million mapped

reads upper quartile (FPKM-UQ) technique was used to normalize the gene expression.

The formula for the expression of gene g is given by:

FPKMg =
RMg

RM75Lg
× 109 (2.1)

Here, FPKMg is the expression level of gene g, RMg represents the number of reads

mapped to gene g, indicating the raw count of sequencing fragments that align with the

gene. The term RM75 is the 75th percentile of read counts mapped to all genes, which

is used as a normalization factor to account for the depth of sequencing data. The gene

length in base pairs is denoted byLg and is essential for also normalizing the values within

the sample, which helps to reduce the effect of longer genes having more reads and small

genes having fewer reads. The whole process can be found in more detail on the GDC

website 1.

2.2 Graph Neural Networks

Graph neural networks (GNN) consist of an adaptation of deep neural network

models but are designed for working with graph-structured data (HAMILTON, 2020). As

of this moment, it appears that the message passing framework (GILMER et al., 2017) is

the most common approach for analyzing GNNs. The message passing framework can

be decomposed as two operations at each iteration: an aggregate function and an update

function (HAMILTON, 2020).

The embedding of each node u is updated according to its previous value and

to the previous values of its neighbors N (u) through the AGGREGATE(k) function, as

expressed in the equation:

h(k+1)
v = UPDATE(k)

(
h(k)v ,AGGREGATE(k)

({
h(k)u ,∀u ∈ N (v)

}))
(2.2)

where h(k)u denotes the embedding of node u at step k and h(0)u is defined as the

input features of node u.

Many GNN architectures are elaborated from this framework, such as the three

14https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
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selected for this study: GCN, GraphSAGE, and GAT. These architectures were selected

because they provide both a sparse and dense, which will be explained in more detail

in Section 2.7, implementation, which allows the comparison of the different pooling

methods.

2.3 GCN - Graph Convolutional Networks

Following the principles of graph neural networks and message passing, Graph

Convolutional Networks (GCN), proposed by Kipf and Welling (2017), have proved to be

one of the most popular and effective baseline GNN architectures (HAMILTON, 2020).

As the name suggests, GCN models represent an adaption of Convolutional neural net-

works(CNN) specifically designed for graph-structured data.

In GCNs, the heart of the message-passing framework is implemented through

its convolutional layers, designed to aggregate and process information from a node’s

immediate neighbors. Mathematically, the convolutional layer is expressed as:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
(2.3)

where, H(l) represents the node features at layer l, Ã is the adjacency matrix with self-

connections, D̃ is its degree matrix, W (l) denotes the layer-specific weight matrix, and σ

is a non-linear activation function.

Equation 2.3 can be seen as a composition of three core operations: normalization,

feature transformation, and non-linear function. The normalization factor D̃−
1
2 ÃD̃−

1
2

is reponsible for scaling node features. The feature transformation is represented by

H(l)W (l), analogous to convolution in CNNs. It aggregates features from the local neigh-

borhood and enables the network to develop complex feature representations. Lastly, the

output matrix is passed to a non-linear activation function σ, which helps capture patterns

in the graph data.

2.4 GraphSAGE - Graph Sample and Aggregate Networks

Another popular GNN architecture is GraphSAGE (HAMILTON; YING; LESKOVEC,

2018). Unlike GCN, which uses the entire node neighborhood to calculate the node’s

feature vector, GraphSAGE introduces a novel approach based on sampling the neighbor-
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hood to propagate information. In addition to that, GraphSAGE also proposes a gener-

alized neighborhood aggregation function instead of averaging the information as in the

GCN architecture.

The GraphSAGE algorithm can be mathematically seen as a combination of two

steps: The aggregation of neighbor features and the subsequent update of node features.

The aggregation step in the GraphSAGE algorithm is expressed as:

hNk (v) = AGGREGATEk
{
huk−1 | ∀u ∈ N(v)

}
(2.4)

In this formula, hkN (v) is simply the aggregated features of the neighbors of the

node v at layer k. The function AGGREGATEk takes the features hk−1u of each neighbor u

in the neighborhoodN (v) from the previous layer k−1. AGGREGATEk can be different

functions such as a mean, LSTM, pooling, or any other custom method.

The second step of GraphSAGE updates the features of each node, concatenating

the computed aggregated features of layer k with the features of layer k − 1, which is

mathematically represented as:

hkv = σ
(
W k · CONCAT

(
hk−1v , hkN (v)

))
(2.5)

A weight matrix W k is then used to transform the concatenated output by multiplying it.

Similar to the GCN, a non-linear activation function is applied to this transformed output,

making it capable of learning the graph patterns.

2.5 GAT - Graph Attention Networks

The third GNN architecture explored in this work was the Graph Attention Net-

works (VELIčKOVIć et al., 2018). The key component introduced in GAT was the atten-

tion mechanism, which computes attention coefficients for each neighbor, indicating the

importance of that neighbor’s features for the update operation of the node. The coeffi-

cient that represents the attention given to the edge connecting nodes i and j is designated

as αij and is defined by the following equation:

αij =
exp

(
LeakyReLU

(
aT [Whi ‖Whj]

))∑
k∈N (i) exp (LeakyReLU (aT [Whi ‖Whk]))

(2.6)
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Here, Ni represents the set of nodes adjacent to node i, a refers to a learnable weight

vector that is useful for the model’s adaptive learning, while W denotes the shared linear

transformation matrix. The node’s output features are then computed as follows:

hi = σ

(∑
j∈Ni

αijWhj

)
Where, as in the other architectures, the non-linear activation function is applied to the

transformed feature output, which in this case is the summation weighted by attention

coefficients αij .

The GAT layer can be extended for k separated heads, which means that the graph

attention mechanism can be applied to k different subgraphs of the input graph, each

of which is assigned a separate attention head. This allows the model to learn different

representations of the graph and can be useful for graph representation learning. The final

GAT layer can be expressed as:

hi = σ

 1

K

K∑
k=1

∑
j∈N(i)

αkijWkhj

 (2.7)

2.6 Training a Graph Neural Network

Training a Graph Neural Network (GNN) is similar to training neural networks.

However, adjustments need to be made to account for the graph data, as within networks,

the goal is to optimize a set of parameters (w) in order to minimize a loss function. The

loss function measures the difference between the network’s predictions and the actual

data. While the Euclidean structure of data facilitates effective learning in classical deep

learning models, the inherent variability in node connectivity and graph size within graph-

structured data presents some subtleties during the training process of GNNs.

In a scenario where we are classifying graphs, the dataset consists of a collection

of graphs, such asG1 G2... GN . Each graph, represented byGi is assigned a label denoted

as ti. These graphs are composed of nodes that contain feature vectors. The objective is

to train the Graph Neural Network (GNN) to associate these graph structures with their

classes.

When it comes to the loss function, we often use cross-entropy, which is calculated
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over graphs. It can be represented by the equation:

E(w) = −
N∑
i=1

K∑
k=1

tik ln yk(Gi, w), (2.8)

Here N represents the number of graphs K represents the number of classes tik repre-

sents the class of graph i and yk(Gi, w) symbolizes the predicted probability that graph i

belongs to class k. This prediction is based on factors such as the structure of the graph,

node features, and network parameters represented by w.

Typically, when optimizing the network parameters w, we use gradient descent

methods. This involves updating the parameters in a step-by-step manner to minimize the

loss. The update rule can be expressed as follows;

w(τ+1) = w(τ) − η∇E(w(τ)) (2.9)

In this equation, η represents the learning rate, and ∇E(w(τ)) represents the gradient of

the loss function with respect to the parameters. Backpropagation enhances this procedure

by efficiently computing the gradient ∇E(w(τ)). It functions by propagating the error in

reverse from the output layer to the input layer, enabling parameter adjustment using the

descent method. This iterative process plays a role in refining the network performance.

Another common approach is to use a batch of graph examples in the training

process instead of one at a time. The batch size is a crucial hyperparameter throughout

the training process. While a larger batch size can provide more accurate estimations of

the error function, it can also be computationally demanding and slow down the training.

Conversely, a smaller batch size may lead to suboptimal error function estimates and

convergence issues. The training process is typically iterative, containing multiple epochs,

where an epoch is defined as one pass through the entire training dataset.

However, a significant challenge in this learning process is overfitting, where the

model performs well on training data but poorly on unseen data. Many Techniques were

designed to mitigate this effect, like dropout and early stopping, collectively known as

regularization (GOODFELLOW; BENGIO; COURVILLE, 2016). Dropout (SRIVAS-

TAVA et al., 2014) is a simple technique that changes the input signals of nodes to zero,

removing the connections with this node, given a dropout probability of p. Early stopping

is a regularization technique that returns to the best parameters of the network at the point

in time with the lowest validation set error after running the training for p epochs, where p
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is the patience, i.e., the number of times to observe worsening validation set error before

stopping the training.

2.7 Graph Pooling

In the context of GNNs designed for graph classification tasks, the process re-

ferred to as graph pooling is crucial to summarize the embeddings produced by the GNN,

thereby obtaining a single representation of the whole graph. As shown by Grattarola et

al. (2022), graph pooling can be seen as the union of 3 operations: selection, reduction,

and connection (SRC).

In the SRC framework, each of those three operations plays a different role in the

process. The selection operation selects specific nodes from the input graph to form what

is known as supernodes in the pooled graph. Essentially, a supernode, represented as Sk,

is a subset consisting of input nodes (xi, si) assigned to sets S1, S2, . . . , SK in the pooled

graph, where si represents how much each node xi contributes to the supernode. The re-

duce operation aggregates the node attributes of a graph G selected in each supernode Sk.

Lastly, the connection operation is responsible for determining the presence or absence of

an edge between each pair of supernodes.

Another contribution of Grattarola et al. (2022) was the definition of a pooling

taxonomy. They propose that graph pooling methods were based on four categories:

Trainability, Density of the supernodes, Adaptability of K, and Hierarchy.

Trainability refers to whether or not the method has parameters that are learned by

optimizing a task-driven loss function. Trainable methods are a novel research area and

were specifically designed for GNN with the intuition of not relying on prior assumptions

of the network. In contrast, non-trainable methods are generally used for coarsening the

graph based on certain assumptions, such as sorting nodes by their structural roles and

clustering by the graph’s community structures.

The density of the supernodes is related to the size of the supernodes after the

selection operation. A method is called dense when the selection operation yields supern-

odes Sk with a cardinality ofO(N), meaning the size of each supernode is proportional to

the total number of nodes in the graph N . Sparse methods, on the other hand, are termed

this way when the supernodes have a constant cardinality of O(1), meaning the selection

operation consistently picks a fixed number of nodes to form each supernode, irrespective

of the overall size of the graph.
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Adaptability of K is concerned with the number of nodes K of the pooled graph.

A method is classified as fixed when K is a hyperparameter of the pooling operator, is

always constant, and is unrelated to the graph size. Conversely, the method is classified

as adaptative if the number of supernodes is a function K(G) of the input graph G.

Hierarchy is a crucial aspect of graph pooling methods. A method is called hi-

erarchical if it can iteratively coarsen the graph into a smaller-sized one while aiming to

preserve the hierarchical graph’s structural information. On the other hand, a method is

called global if it generates graph-level representations in a single step, reducing the graph

to a single representation. Hierarchical methods yield multi-resolution graph representa-

tions, allowing GNNs to extract high-level properties, whereas global methods directly

compute graph embeddings for integration with traditional vector-based layers. It is also

important to highlight that both types of methods can participate in the same GNN archi-

tecture.

Furthermore, Liu et al. (2022) proposed to divide the hierarchical pooling methods

into two sub-categories: Node Drop Pooling and Node Clustering Pooling. Methods that

fit in the node clustering category treat graph pooling as a node clustering issue, where

nodes are mapped into clusters that form the new nodes of a coarsened graph. In contrast,

node drop pooling methods delete nodes with lower significance scores.

2.7.1 Pooling Layers

In this section, we will introduce the idea behind each pooling layer used for

comparison in this work.

We made an effort to select methods that belong to different categories. The meth-

ods we chose were DiffPool (YING et al., 2019), SAGPool (LEE; LEE; KANG, 2019),

MincutPool (BIANCHI; GRATTAROLA; ALIPPI, 2020), TopKPool (GAO; JI, 2019),

Graclus (DHILLON; GUAN; KULIS, 2007), SortPool (ZHANG et al., 2018), and Set2Set

(VINYALS; BENGIO; KUDLUR, 2016). Additionally, we also tested LaPool, EdgePool,

and MVPool but found that the former was very slow for our settings, while EdgePool

and MVPool exceeded our GPU’s memory capacity.

Table 2.1 presents a breakdown of the selected methods with their respective cat-

egories, using abbreviations for clarity. The table is separated by trainability (T for train-

able, nT for non-trainable), density (D for dense, S for sparse), adaptability (F for fixed,

A for adaptable), and hierarchy (H for hierarchical, G for global).
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Table 2.1: Taxonomy of the chosen pooling methods. T: Trainability, nT: Non-trainable.
D: Density, S: Sparse. F: Fixed, A: Adaptable. H: Hierarchical, G: Global.

Method T nT D S F A H G
DiffPool, MincutPool X X X X
TopKPool, SAGPool X X X X
Graclus X X X X
SortPool X X X X
Set2Set X X X X

Source: Adapted from Grattarola et al. (2022)

2.7.1.1 DiffPool

Proposed by Ying et al. (2019), DiffPool was the first algorithm that offers a learn-

able hierarchical representation of graphs. DiffPool addresses the limitations of traditional

GNNs explained earlier by providing a general framework to construct deep multi-layer

learning models with a differentiable module that can hierarchically pool graph nodes.

Given a graph represented as G = (A,F ), where A is the adjacency matrix and

F is the node feature matrix, DiffPool aims to generate a hierarchical representation of

the graph, which is done by stacking multiple GNN modules and learning to assign nodes

to clusters at each layer. The main idea behind DiffPool is to use a learnable assignment

matrix in each layer to coarsen the graph representation with a smaller number of nodes.

The assignment matrix S(l) is learned using a separate GNN, which uses the node embed-

dings generated by the first GNN and the adjacency matrix for computing this assignment

matrix.

2.7.1.2 MinCutPool

The Mincut Pooling algorithm (BIANCHI; GRATTAROLA; ALIPPI, 2020) is a

graph pooling method inspired by the minCUT problem in graph theory.Given a graph

G = {V,E}, the goal is to partition V into K disjoint subsets. This partitioning is

achieved by minimizing the volume of edges removed, which can be viewed as:

K∑
k=1

∑
i,j∈Vk Ei,j∑

i∈Vk,j /∈Vk Ei,j

Mathematically, the mincut problem is expressed as:

maximize
1

K

K∑
k=1

CT
k ACk

CT
k DCk
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subject to C ∈ {0, 1}N×K and C1K = 1N , where C represents the cluster assignment

matrix, D is the degree matrix, and A is the adjacency matrix.

MinCutPool employs a continuous relaxation of this problem where the critical

element being optimized is the cluster assignment matrix C. This optimization aims to

capture the solution typically identified by Spectral Clustering (SC) and incorporates node

features to discern clusters. Its unsupervised loss function is composed of two terms: the

cut loss, which drives strongly connected nodes to cluster together, and the orthogonal-

ity loss, which promotes cluster orthogonality and uniform cluster sizes and is essential

to make the clusters as distinct from each other as possible. The cut loss achieves its

maximum value of 0 when cluster assignments are orthogonal with the goal of achiev-

ing optimal partitioning. After these losses are computed, they are then combined with a

specific-task loss, such as graph classification in our case. This approach helps the pool-

ing operation to preserve the graph community structures and achieve the task-specific

objectives.

2.7.1.3 TopKPool

TopK pool (GAO; JI, 2019) is a learnable node-drop algorithm that uses a projec-

tion vector to transform nodes into scores. The idea is to select just the TopK scores nodes

in the current layer along with their edges to get the results and use them at the next layer.

Additionally, TopK pooling uses a trainable projection vector p to compute the

scores of the nodes as yi =
x>i p

‖p‖ where yi measures how much information of node i

can be retained when projected onto the direction of p. After the computation, a ranking

function is employed and retrieves the indices of the top-scoring nodes. Finally, these

scores ŷ serving as a gate defined by ŷ = sigmoid(y(idx)), will be used to obtain the node

feature in the next layer X`+1 = X̃`� (ŷ1>). This gate mechanism is an essential part of

the process, enabling differentiability and compatibility with existing GNN architectures.

As a sorting method, TopK Pool doesn’t have an unsupervised loss to train on.

That’s because there’s no obvious unsupervised loss for the ranking function. This means

that TopKPool uses the task-specific loss to train the model.

The whole process can be seen in the figure 2.2 extracted from the original paper

(GAO; JI, 2019)
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Figure 2.2: Overview of TopKPool Method

Source: Gao and Ji (2019).

2.7.1.4 SAGPool

The self-attention graph pooling(SAGPool) (LEE; LEE; KANG, 2019) algorithm

is also a learnable node-drop and sort-based method. The main idea is to employ a GNN

to compute the self-attention scores, focusing on the entire graph topology as well as node

features instead of independent node features such as TopK Pool.

Given a graph represented as G = (A,X), where A is the adjacency matrix and

X is the node feature matrix, the self-attention score Z is calculated by the GCN as Z =

σ
(
D̃−

1
2 ÃD̃−

1
2XΘatt

)
, where σ is the activation function, Ã ∈ RN×N is the adjacency

matrix with self-connections, D̃ ∈ RN×N is the degree matrix of Ã, X ∈ RN×F is the

input features of the graph with N nodes and F -dimensional features, and Θatt ∈ RF×1

is the parameter of the SAGPool layer. In the same way that TopKPool, the scores are

used to select the indices of the k best-scoring nodes, where k is a hyperparameter that

determines the number of nodes to keep.

idx = top-rank (Z, [kN ])

.

The authors also provide a comprehensive schema of the architecture, shown in

Figure 2.3

2.7.1.5 Graclus

An older approach to hierarchical clustering is Graclus (DHILLON; GUAN; KULIS,

2007). This method introduces a multilevel algorithm for graph clustering, focusing on

optimizing weighted graph clustering objectives.

Given a graph represented as G=(V,E,A), where V represents vertices, E edges,
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Figure 2.3: Overview of SAGPool Method

Source: Lee, Lee and Kang (2019)

and A the adjacency matrix, Graclus assigns a weight wi for each node i and each cluster

Vc ⊆ V , the total weight of the cluster is calculated by the formula w(Vc) =
∑

i∈Vc wi.

This formula sums the weights wi of all nodes i that belong to the cluster Vc.

By coarsening the graph at each level without the need for eigenvector compu-

tation, Graclus shows that the algorithm can be efficient for large-scale graphs and yet

provides good clustering quality.

2.7.1.6 Set2Set

Based on the concept of global representation in graph neural networks, Set2Set

(VINYALS; BENGIO; KUDLUR, 2016) makes use of a sequential mechanism that ag-

gregates the feature representation of each node into a single graph representation. Set2Set

is a technique that effectively captures the overall context of the graph by generating an

order invariant embedding for its nodes.

In other words, the algorithm starts with an initial query vector and updates it using

an LSTM at every step, according to graph nodes. Softmax product of node features xi

and the query vector qt results in an attention score that leads to a context vector rt that

represents a weighted sum of node features. The attention score is defined by

αi,t = softmax(xi · qt)

and the context vector rt by the weighted sum of the node features:

rt =
N∑
i=1

αi,txi

The final embedding for the graph is the concatenation of the series of query and con-
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text vectors across the steps, which captures the essential graph features. This process

is iteratively refined through training, resulting in the production of interpretable graph

embeddings suitable for the given task.

2.7.1.7 SortPool

Another global pooling algorithm is SortPool (ZHANG et al., 2018). The main

idea of this method is to sort the feature descriptors, each of which represents a vertex,

to later pass them into traditional 1-D convolutional and dense layers. SortPool employs

the Weisfeiler-Lehman (WL) graph labeling method as a preprocessing step to sort the

graphs based on their structural roles within the graph.

Mathematically, the SortPool method process can be represented as:

Zsorted = Sort(Z1:h, Zh)

Where Zsorted is the reordered tensor after SortPooling, with Z1:h being the input tensor

of vertex feature descriptors and Zh the sorting key-based on the last graph convolution

layer’s output, which the authors also indicate that signifies the most refined continuous

Weisfeiler-Lehman (WL) colors. After that, the method adjusts the sizes of the output

tensors from the original size n to a kernel size k, with the intention of unifying graph

vertice sizes.

2.8 Saliency Maps

Proposed by Simonyan, Vedaldi and Zisserman (2014), saliency maps based on

gradients are a baseline approach for computing input attribution, thereby offering a way

to model explainability. Saliency examines the outputs of the model, which, in classifi-

cation models, are the scores for each target class, specifying the probability of the input

belonging to each class. It uses the first-order approximation of the score Sc, where Sc is

the the score for a class c. Mathematically, the score Sc given an input x0 can be viewed

as:

Sc(x0) ≈ wTx0 + b (2.10)
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where w is given by :

w =
∂Sc
∂x

∣∣∣∣
x0

(2.11)

We can then use these scores to consider what are the most important features of

the model since the gradients are the coefficients of each feature, and the absolute value

of these coefficients can be taken to represent feature importance and seen as a measure of

how little certain features need to change to alter the output of the network significantly.
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3 RELATED WORK

In this chapter, we analyze the related works that approached graph neural net-

works for genomic classification tasks. The goal here is to overview the methodology and

results found by other works in the same field. Besides that, we contrast the lack of focus

on the choice of the pooling algorithm.

Recently, there has been a significant increase in the application of graph neural

network models for various cancer-related classification tasks. Ramirez et al. (2020) in-

vestigate graph convolutional neural networks for expression-based cancer type classifica-

tion. The authors used two types of graphs for the GCNN models: co-expression graphs

based on gene expression correlations and Protein-Protein Interaction (PPI) graphs de-

rived from the STRING database, with both models having a version with singletons, i.e.,

nodes that have no neighboring nodes, and a version removing singletons. Their approach

was relatively close to ours: They applied a convolutional layer followed by a pooling

layer that was then passed to a single dense, fully connected neural network. However,

they restricted the model to one layer, and the chosen pooling method was a greedy al-

gorithm that chose an unselected node to be paired with another unpaired neighbor node.

Additionally, they applied an in silico gene perturbation, where they evaluated the genes

that most changed the accuracy when perturbed as the most discriminative genes.

Later, the same authors integrated a clinical layer for cancer survival prediction

(RAMIREZ et al., 2021). A similar approach was implemented, using a Cox layer instead

of a fully connected neural network to predict patient risk scores. To interpret the model

this time, the authors utilized their GCNN model to get significant nodes in the hidden

layer that affect the risk score, which is the final prediction of the Cox layer, and examined

the relationship between gene expression levels and these nodes.

Li, Wang and Nabavi (2021) and Li et al. (2022) proposed graph convolutional

networks for multi-omics data. The former applied a GNN model based on a convolu-

tional layer, in which they used a ChebNet layer. Following the results of the GNN layer,

they apply a pooling mechanism that is then concatenated with a two-layer FC network

that is trained in parallel with the GNN since the authors argue that this approach helps the

framework better extract the overall sample feature representation. The concatenated vec-

tor is then passed to a classification layer to get the final prediction. The latter used a sim-

ilarity network fusion to construct a patient similarity network (PSN) that was then used

as input to a convolutional layer, in which they used the classic GCN proposed by Kipf



30

and Welling (2017) followed by a classification layer, without the intermediary pooling

layer. Subsequently, the same authors in Li, Wang and Nabavi (2021) did a comparative

analysis of graph-attention-based models using the GAT layer and the well-established

GCN models in Li and Nabavi (2023) wherein they concluded that the GAT models work

better for smaller graphs while GCN models for larger graphs.

Another work that employed graph convolutional networks for genomic classifi-

cation tasks was proposed by Hayakawa et al. (2022). The authors produced a framework

using KEGG pathways to classify subtypes of diffuse large B-cell lymphoma. The GCN

model consisted of two convolutional layers followed by one pooling layer, which was

an average pooling, and similar to the other works, the resultant vector was passed to a

fully connected network to make the final prediction. The authors also did a feature im-

portance analysis using the SHapley Additive exPlanations (SHAP) (LUNDBERG; LEE,

2017), where they summarized the shapley values across samples to get the pathways’

importance.

Chereda et al. (2021) also proposed a graph convolutional network applied to

breast cancer data for metastasis prediction using a ChebNet convolutional layer followed

by a max-pooling and a two-layer fully connected network. The innovative approach

comes in how the post-training explainability is done using the Graph Layer-wise Rel-

evance Propagation (GLRP) algorithm, which, in the end, generates explanations in the

form of relevant subgraphs for each data point and allows an interpretation of the molec-

ular subnetworks that are individual for each patient.

Distinct from the previous works, the studies in Wang, Bai and Nabavi (2021)

and Yin et al. (2022) explored a related but yet different area, which is the classification

of cell types. Using single-cell RNA sequencing (scRNA-seq), the authors in Yin et al.

(2022) craft a framework consisting of a GRAPHSAGE convolutional layer to generate

the embeddings that are then concatenated and passed to a two-layer neural network to

predict the cell type. Wang, Bai and Nabavi (2021) work is quite similar to their previous

work in Li, Wang and Nabavi (2021), where they also make use of a parallel neural

network together with a GCN, but this time for classifying cell types with scRNA-seq.

Furthermore, Grattarola et al. (2022) proposed a formal characterization for pool-

ing methods based on three operations: selection, reduction, and connection (SRC). The

authors categorize more than thirty existing pooling methods under this framework and in-

troduce a taxonomy based on specific properties of the SRC functions. Additionally, they

also provided benchmarks on established graph classification datasets such as Protein and



31

Mutagen. Liu et al. (2022) also studied pooling in graph neural networks, proposing a tax-

onomy including flat and hierarchical pooling, with hierarchical pooling further divided

into node clustering and node drop pooling.
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4 METHODOLOGY

This work is divided into three different kinds of experiments. Experiment one re-

lates to an investigation of the scalability of pooling methods due to the number of nodes

in the graph, specifically examining how increased node counts affect computational de-

mands and algorithmic efficiency. This experiment explores how larger graphs can result

in higher computational costs, challenging the scalability of different pooling methods

approaches. Experiment two analyzes the predictive power of various GNN architectures

by varying pooling methods and convolutional layers and interpreting results. The goal

here is to discern how these variations affect the overall performance of the models in a

genomic environment, aiming to optimize the GNN design. In experiment three, we an-

alyze the saliencies of the graph neural network to try to understand which features were

most important to the model making the prediction. In the next sections, we will describe

in more detail the data and models used for each experiment.

4.1 Experiment One - Time and Memory Usage Analysis

As commented in Section 2, pooling methods can be divided into categories,

where the form that each of these methods handles the graph changes significantly. To

analyze the impact of these changes, We conducted an experiment to measure the impact

of increasing graph nodes in terms of memory usage and time consumption. An algorithm

was used to generate the synthetic data with the same number of nodes at each graph, and

a fixed GNN model architecture was used to maintain consistency in the results.

4.1.1 Synthetic Data Generation

In this work, the synthetic data is obtained through a fixed graph topology, em-

ploying the Erdős-Rényi (ERDöS; RéNYI, 2006) model as the foundational framework

to mimic the characteristics of real-world PPI network data, similar to the data used for ex-

periment two. The Erdős–Rényi model is a classic approach for creating random graphs.

It starts with a set of isolated nodes and then connects each pair of nodes with a pre-

determined probability. This process results in a graph where the presence of an edge

between any two nodes is equally likely, reflecting a purely random network structure.
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The model is instantiated with a predefined number of graphs set at 500 and an edge

creation probability of 0.05. Furthermore, we create graphs with 100, 300, 500, 700,

1000, 3000, 5000, 7000, 8000, and 9000 nodes using this framework to test the scaling of

pooling methods.

As our objective with this experiment was to see the impact on memory and time

rather than predictive power, we generated a one-dimensional feature vector with random

values ranging from zero to one, again mimicking the real data. Besides that, we made

it a binary graph-level classification task by assigning a label to each graph based on the

mean value of its random feature vector.

4.1.2 Network Architecture

To ensure consistency, we used a fixed GNN architecture and only modified the

pooling method for each comparison. The architectural configuration is adjusted to align

with the categories of the pooling method employed, global or hierarchical. Global pool-

ing methods are designed to aggregate information on the entire graph, focusing on cap-

turing a representation of the graph’s overall structure, while hierarchical methods allow

the graph to be coarsened multiple times.

The architecture with global pooling methods was set to three convolutional lay-

ers, each followed by a non-linear function. After these layers, a single global pooling

operation selects the nodes, which are then flattened and fed into a single-layer fully con-

nected network with 256 hidden units, batch normalization, and dropout rate of 0.1. The

whole process can be seen in Figure 4.1

In hierarchical pooling architectures, unlike the straightforward three-layer convo-

lutional structure followed by global pooling, the architecture integrates three coarsening

layers. The coarsened layer is composed of a convolutional layer followed by a non-

linear function and a hierarchical pooling operation to extract features at each level. The

hierarchical model architecture can be seen in 4.2.

As a convolutional layer, we used GCN, which is a well-established baseline

model (HAMILTON, 2020). The number of hidden units on the convolutional layer was

set to 32, and the fully connected network is the same as the global pooling.

We tested this architecture using various pooling methods, including DiffPool,

MincutPool, TopkPool, SAGPool, Graclus, SortPool, and Set2Set, as discussed in Section

2.7.1.
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Figure 4.1: Global Pooling Architecture
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Figure 4.2: Hierarchical Pooling Architecture
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4.1.3 Training and Metrics

For each graph size in the range of 100 to 9000 nodes, we conducted three inde-

pendent runs to ensure that small computational fluctuation would not affect the correct

evaluation. We trained the model for 30 epochs. Training time and peak GPU memory us-

age were recorded for each run and graph size using Python’s Time and Pytorch libraries,

respectively.

4.2 Experiment Two - Predictive Power on Genomic Data

In this experiment, our focus shifted to evaluating the impact of different pooling

methods on the performance of graph neural networks in the context of genomic data.

Specifically, we examined RNA-seq data for Breast Invasive Carcinoma (BRCA) from

The Cancer Genome Atlas (TCGA). The main objective was to investigate how different

pooling methods and convolutional layer choices affect the model’s performance. We

aimed to enhance our comprehension of the relationship between GNN pooling methods,

convolutional layers, and their effectiveness in genomic data to advance GNN applications

in biological research.

4.2.1 Data

The data used for this experiment was RNA-seq data for Breast invasive carci-

noma (BRCA) from The Cancer Genome Atlas (TCGA), choosing specifically the upper-

quartile FPKM (UQ-FPKM) data provided via Xena (GOLDMAN et al., 2020). The data

were normalized with the GDC pipeline, explained in Section 2.1.2, and then we elimi-

nated any genes and samples that had over 20% missing values. We also normalized our

features to follow a Gaussian distribution using a log transformation to the FPKM values.

After the transformation, the dataset has graphs containing 14133 genes, and a

sample of the data can be seen in Figure 4.3, where the rows are the samples from the

TCGA database and the columns represent each gene expression value. Furthermore, we

used one more preprocessing step to make the comparison tests for all pooling methods

possible regarding time and memory. A heavy-edge matching algorithm was used to

coarsen the graph by half two times, thus making the final graph containing 3534 genes.
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Figure 4.3: Sample of the dataset. The rows represent samples from the TCGA database,
and the columns represent the gene expression values

Gene 1
Expr

Gene 2
Expr

TCGA-3C-
AAAU-01A 0.220 -1.467

TCGA-5L-
AAT0-01A

0.200 -0.940

TCGA-A2-
A0CQ-01A 1.644 -0.377

Gene 14132
Expr

Gene 14133
Expr

0.979 -1.035

-0.246 0.980

0.118 -0.0693

Source: The Authors

The heavy-edge matching algorithm works by taking the edges of a graph and forming

pairs of nodes based on the weight of these edges. It identifies the heaviest edges that

connect nodes not already part of a pair and merges their connected nodes into single

nodes, generating a coarsened graph with 50% of the original size.

However, we also tested how this preprocessing step, which acts as a fixed pooling

layer previous to the model, impacts the performance of the model. For methods that

we could test, which were TopK, SAG, Sort, and Set2Set2, different numbers of times

that we applied the preprocessing step, resulting in graphs with 14133 nodes with no

preprocessing step, 7067 nodes with one step, 3534 nodes, which was the number that we

used for all methods, 1767 nodes with three steps, and 884 nodes with four steps of the

heavy-edge matching algorithm.

4.2.2 Network Architecture

Experiment two’s network architecture is almost identical to experiment one net-

work architecture, except for the variation in the convolutional layer, which was fixed in

the previous experiment Section (4.1) and the number of hidden units on the convolutional

layer that was set to 16 due to the larger number of edges in the TCGA data when com-

pared to the synthetic data, which caused an increasing in memory and thus we reduced

the number of hidden units. In this experiment, we used GraphSAGE, GCN, and GAT as

convolutional layers and combined them with our selected pooling methods so we could

evaluate their impact on the overall performance.

The network was repeated for each level of the coarsening layer to assess the

impact of varying coarseness on our model’s performance. In this context, levels represent

distinct degrees of data coarsen within the coarsening layer, each providing a different
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resolution or granularity of the genomic data. By experimenting with these various levels,

we aimed to understand how changes in data coarseness influence the model’s ability to

learn and predict. The final architecture can be seen in Figure 4.4.

Figure 4.4: Model Architecture for Experiment Two
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(b) Model Architecture for Global
Pooling Methods

Source: The Authors

4.2.3 Training and Metrics

The training process was also similar to 4.1 but a bit more complex due to the type

of analysis we conducted and to ensure that we could get the best performance for each

model we trained.

The chosen loss function was the well-known cross-entropy loss but with a slight

modification to adjust to our problem. A weighted version of the cross-entropy loss was

implemented for the experiment due to the imbalance between the classes, which is com-
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mon in genomic datasets. This can be seen as a form of regularization, as the mistakes in

the minority classes have a higher penalty that is proportional to the inverse of their sizes.

The weight for a class c ∈ 1, ..., C is wc = N
CNc

, where N represents the total count of

samples in the dataset, andNc indicates the number of samples in the specific class c. The

weighted cross-entropy loss formula is given by:

Lce = −
N∑
n=1

wyn ·

(
yn log

(
exp(hn,yn)∑C
c=1 exp(hn,c)

))
(4.1)

Where yn represents the true class label for sample n, with yn ∈ {1, . . . , C}.

It is important to note that for pooling methods with secondary losses, we added

them to the weighted cross-entropy loss to train the model.

The selected optimizer was AdamW (LOSHCHILOV; HUTTER, 2019) and the

scheduler for updating the learning rate dynamically while training was done with cosine

annealing without warm restarts (LOSHCHILOV; HUTTER, 2017). The AdamW opti-

mizer was selected for its approach concerning weight decay regularization, implement-

ing a variation from the traditional Adam optimizer by decoupling weight decay from

gradient updates with the promise of improving training performance in deep learning

models. Complementing this, the learning rate was dynamically adjusted using a cosine

annealing scheduler without warm restarts, which decreases the learning rate following a

cosine curve at each epoch, enhancing the convergence by avoiding an abrupt change in

the learning rate.

As in Section 4.1, we have used 30 epochs to train the model. Furthermore, we

have used 3-times stratified repeated holdouts for evaluating performance. Stratified hold-

out is a method of cross-validation used in machine learning where the dataset is split into

training and testing sets multiple times in a way that maintains the same proportion of

classes or characteristics in each split as in the entire dataset. This approach ensures that

each class or characteristic is represented in both the training and testing sets, making

the evaluation more robust and reliable. The split between the train and test set at each

holdout was settled as 80% for training and 20% for testing.

On top of that, 20% of the training set was designated for the validation set, which

was used for tuning the hyperparameters. The hyperparameters selected for tuning the

model were just the learning rate and the weight decay, given that the cost of tuning

the hyperparameters was very high for some pooling methods, so we decided to tune

the essential hyperparameters. Note that we just tuned the hyperparameters in the first
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holdout run out of the three holdout runs and used them for the other two because of this

cost issue.

When evaluating the performance of our models, we focused on the F1 score. We

opted for the Macro version since we are dealing with a multi-class scenario. The Macro

F1 score calculates the individual F1 scores for each class. Then, it averages them to

provide a balanced measure that takes into account all classes equally. The formula for

the Macro F1 score is:

Macro F1 Score =
1

C

C∑
i=1

2× Precisioni × Recalli
Precisioni + Recalli

(4.2)

Here Precisioni is calculated as the ratio of positives (TPi) to the sum of positives and

false positives (TPi + FPi) while Recalli is calculated as the ratio of true positives to the

sum of true positives and false negatives (TPi + FNi).

Furthermore, we compare the results with a baseline model, which is the same

single-layer fully connected network model with 256 hidden units but without any convo-

lutional or pooling layer in the middle.

4.3 Experiment Three - Interpretability

Experiment three is an implementation of the saliency algorithm explained in Sec-

tion 2.8 on the best model architecture seen in experiment two. We used the final model

in the first run, where we tuned the hyperparameters to perform the saliency analysis.

We then get the saliency values for each target class and proceed to identify the 15

most significant features. This is achieved by calculating the median of the normalized

saliency values across all samples for each feature. The median, rather than the mean, is

chosen as the measure of the central tendency to minimize the impact of outliers, thereby

providing a more robust representation of feature importance.

Following the identification of the top 15 features based on median saliency val-

ues, we proceed to map back these features to their corresponding genes and then review

the literature to understand the role these genes have played in previous BRCA research.
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5 RESULTS

In this chapter, we present our findings, addressing three key questions raised in

this work: How is the scalability of the current pooling methods, how do different pooling

strategies and the choice of convolutional layers affect the performance of the GNN on

genomic-related data, and how is explainability incorporated and evaluated within these

models. Section 5.1 details the results for the first question and analyzes how the different

categories impact the scalability of the selected pooling methods. Section 5.2 describes

the results of the impact of modifying the GNN architecture, most specifically, the pool-

ing method and convolutional layer, in the Breast Cancer dataset constructed over the

STRING network. Additionally, in Section 5.3, we provide the analysis of the most im-

portant genes found within the model outputs and their previous correspondence in the

literature.

5.1 Experiment One - Time and Memory Usage Analysis

As seen in Section 2.7, pooling is a fundamental component of GNN models, and

studies as Grattarola et al. (2022) and Liu et al. (2022) have proposed different criteria

for categorizing these methods. Thus, this experiment focuses on the scalability of those

methods concerning time and memory usage by incrementing the number of nodes of

the input graph. As explained in chapter 4.1 the data was artificially generated using

the erdős-rényi method. The training was done with a 24GB GPU server hosted by the

PCAD1 infrastructure at INF/UFRGS, and with the pytorch geometric version2 of the

methods. Figure 5.1 summarizes the experiment.

1http://gppd-hpc.inf.ufrgs.br
2https://github.com/pyg-team/pytorch_geometric
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Figure 5.1: Training Time and Memory Usage Experiment
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Figure 5.2 shows the memory usage of all seven selected methods. Up to about

1000 nodes, the memory allocation for all methods is relatively similar. The most con-

suming method at this point was Mincut, with almost 0.5 GB of memory consumed, while

SAG and TopK consumed the least memory, using just 0.13 GB, indicating that at smaller

scales, the choice between those may not significantly impact memory usage. However,

both DiffPool and MinCut diverge from the rest by showing a much more abrupt increase

in memory usage, getting up to 15 GB and 23 GB, respectively, at 7000 nodes, while the

other methods keep the memory usage around 6 GB.

Referring back to Table 2.1, we can see that both DiffPool and MinCut are dense

methods, along with Set2Set. Set2Set and Sort are a special case where it is classified as

dense but does not need the input data to be dense as they only use dense operations in-

ternally, this way not consuming as much memory as DiffPool and Mincut. This suggests

that while methods that require the input data in a dense format might be manageable for

small to medium-sized graphs, their memory consumption becomes very massive as the

graphs get larger. On the other hand, the sparse methods kept their memory usage increas-

ing at a much slower rate, which makes them more suitable for computational biology and

other domains where networks can grow to thousands of nodes.

The higher memory usage of dense methods like DiffPool and MinCut is largely

due to their memory complexity, which comes from maintaining large dense matrices in

the GPU’s memory. In DiffPool, the assignment matrix is used for clustering nodes into

supernodes scales with O(N×M), where N is the number of nodes and M is the number

of supernodes, which is huge in large graphs. Similarly, MinCut also constructs a form of
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Figure 5.2: Average peak memory usage by the number of nodes on the input graph across
three executions
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an assignment matrix but consumes more memory due to the calculation of regularization

losses, which necessitate storing extra parameters related to the graph’s connectivity and

cluster assignments. In contrast, sparse methods maintain a more consistent and lower

memory complexity, typically O(1) per supernode, making them more manageable and

efficient for large graph structures.

Specifically, the SAG and TopK, which are both node-dropping methods accord-

ing to Liu et al. (2022) classification, demonstrate the most efficient use of memory among

the sparse methods, highlighting their potential utility in scenarios where the input data is

large. Besides that, we see that Mincut exploded our GPU memory limit at 7000 nodes,

while DiffPool with 8000 nodes.

The results were consistent across all pooling methods with almost zero difference

in execution results.

Figure 5.3 provides the results of the average training time of various pooling

methods concerning the number of nodes within the graph data. Up to the threshold of

1000 nodes, the pooling methods are again very close and maintain a relatively low and

stable training time.

Mincut, represented by the green line, shows a dramatic increase in training time,
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outpacing the other methods as the number of nodes grows, going from 16 seconds at

1000 nodes to 200 seconds at 3000 nodes and 2700 seconds at 7000 nodes, displaying

very limited scalability in this aspect. Another method that stands out is Graclus, which

is an older pooling method compared to others, and although it has a lower increase rate

than Mincut, it can get to almost 1500 seconds of training time in scenarios with graphs of

9000 nodes. The remaining methods showcase a more gradual increase in training time,

especially SAG, Set2Set, Sort, and TopK, with most methods having a maximum training

time of about 200 seconds. Zoomed Figure 5.3 displays the granular difference between

them, with TopK in particular, showing a little increase in training time, making it the most

scalable method in this comparison, followed by Set2Set, SAG, and Sort. Nonetheless,

all four of them are suitable for large graphs concerning the time taken to train the model.

Furthermore, there are no apparent categories that influence training time, which indicates

that the intrinsic characteristics of each method are the most determinant factor.

The difference in results between the executions was, again, negligible, as it was

very close to zero for all pooling methods.

In the next section, we will present the results of using those methods on GNN

architectures with breast cancer data and discuss whether the scalability characteristics

and limitations of these approaches yield a significant impact on the model performance.
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Figure 5.3: Average training time in seconds by the number of nodes on the input graph
across three executions
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Figure 5.4: Zoomed average training time in seconds by the number of nodes for SAG,
Set2Set, Sort, TopK across three executions
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5.2 Experiment Two - Predictive Power on Genomic Data

In this section, we discuss the model’s performance assessment concerning the

different GNN architectures on the BRCA dataset. We focus on how the pooling meth-

ods and convolutional layers affect the model’s performance. Specifically, we focus on

the hierarchical pooling methods evaluating the performance of the models using 1 to 6

coarsening layers and comparing them with global pooling methods using 1 to 6 convo-

lutional layers. Figure 5.5 summarizes the experiment.
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Figure 5.5: Experiment performed on the influence of the GNN architecture on the results
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Figure 5.6 shows the F1 score for each pooling layer and convolutional layer on

the three holdouts runs at each level. At first glance, we can see that the SAG method

outperforms the other methods by a considerable margin with the best F1 score of 0.834

with SAGE architecture and two levels, being the only method that comes close to the

single-layer fully connected neural network used as the baseline that has a value of 0.859.

Table 5.1 displays in more detail the average f1 macro score as well as the standard devi-

ation of the three holdout runs with the best F1 score at each level highlighted in green.

The results reinforce the advantage of SAG, especially with the SAGE architecture being

the best combo in 5 out of the six levels and the best overall. In the case of the GCN

convolution, the SAG pooling method again showed superior performance at most levels,

with average F1 scores like 0.833 at level 2 and 0.810 at level 1, but drastically falling

in performance with four or more levels. The GAT architecture had significantly lower

performance and more variability at the best pooling method in the experiments, which

could be due to the fact that we used just one attention head since increasing the number

of heads made the model out of memory. For instance, at level 1, the SAG pooling method

had the highest average F1 score of 0.582, at level 2 the Mincut pooling method led with

a F1 score of 0.476, and at level 3, the Graclus method was the best with a F1 score of

0.336.

The results with SAGE showed that adding a second coarsening layer performed

better than with just one layer. However, a downtrend is observed when we increase the



48

number of coarsening layers after two for almost all pooling methods, except Graclus and

Sort, the last, nonetheless, has a big variance in the performance across the holdout runs.

Going back to table 2.1, we see that both Graclus and Sort are non-trainable methods,

and both take advantage of increasing the number of coarsening layers, while trainable

methods’ performance starts to decrease after the first or second coarsening layer.

Another interesting aspect is that, despite having the same pooling taxonomy, Top-

K did not perform as well as SAG, according to their F1 scores. This finding is significant

because it shows that just because two methods are similar in theory, it doesn’t mean they

will work the same way in practice.

Comparing the results in this section with the results of Section 5.1, it is clear that

the investment for both training time and memory usage does not result in a good perfor-

mance. Especially, the mincut method, which is the higher memory and time-consuming

method, yields a maximum average F1 score of 0.582, which puts it in the intermediary

performance category together with Sort, but far below the SAG method that achieved at

best a 0.834 average F1 score, and has a faster training and consumes less memory.
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Figure 5.6: Boxplot of F1 Test Score with different convolutional layers

1 2 3 4 5 6
Coarsening Levels

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1 

M
ac

ro
 S

co
re

SAGE 
Pooling Method

DiffPool
Graclus
Mincut
SAG
Set2Set
Sort
TopK
Baseline

(a) Boxplot of Test F1 Macro Score for each pooling method with SAGE architecture, at
each coarsening level
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(b) Boxplot of Test F1 Macro Score for each pooling method with GCN architecture, at
each coarsening level
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(c) Boxplot of Test F1 Macro Score for each pooling method with GAT architecture, at
each coarsening level
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Table 5.1: Average Test F1 score (Standard Deviation)

Coarsening Level 1 2 3 4 5 6

Pooling Method Convolution Layer

DiffPool GAT 0.378 (0.062) 0.339 (0.036) 0.149 (0.159) 0.258 (0.084) 0.120 (0.063) 0.084 (0.040)

GCN 0.316 (0.042) 0.273 (0.008) 0.246 (0.043) 0.140 (0.060) 0.147 (0.011) 0.126 (0.031)

SAGE 0.480 (0.053) 0.472 (0.007) 0.442 (0.024) 0.450 (0.048) 0.352 (0.089) 0.339 (0.055)

Graclus GAT 0.292 (0.083) 0.344 (0.052) 0.336 (0.039) 0.328 (0.053) 0.385 (0.048) 0.357 (0.081)

GCN 0.273 (0.011) 0.316 (0.008) 0.266 (0.033) 0.225 (0.063) 0.283 (0.031) 0.236 (0.037)

SAGE 0.409 (0.068) 0.504 (0.027) 0.500 (0.059) 0.476 (0.025) 0.526 (0.003) 0.532 (0.059)

Mincut GAT 0.511 (0.060) 0.476 (0.018) 0.180 (0.217) – – –

GCN 0.517 (0.029) 0.511 (0.027) 0.479 (0.057) 0.469 (0.069) 0.414 (0.113) 0.439 (0.052)

SAGE 0.448 (0.034) 0.518 (0.028) 0.458 (0.052) 0.488 (0.062) 0.445 (0.064) 0.320 (0.232)

SAG GAT 0.582 (0.138) 0.425 (0.019) 0.299 (0.075) 0.392 (0.104) 0.379 (0.086) 0.359 (0.092)

GCN 0.810 (0.043) 0.833 (0.018) 0.673 (0.278) 0.366 (0.101) 0.633 (0.129) 0.391 (0.120)

SAGE 0.828 (0.039) 0.834 (0.034) 0.659 (0.292) 0.821 (0.009) 0.720 (0.067) 0.563 (0.233)

Set2Set GAT 0.365 (0.033) – – – – –

GCN 0.276 (0.044) 0.263 (0.032) 0.274 (0.032) 0.253 (0.053) 0.270 (0.048) 0.200 (0.054)

SAGE 0.474 (0.016) 0.492 (0.053) 0.496 (0.012) 0.320 (0.021) 0.366 (0.054) 0.334 (0.027)

Sort GAT 0.405 (0.086) – – – – –

GCN 0.344 (0.262) 0.539 (0.171) 0.265 (0.033) 0.170 (0.014) 0.173 (0.012) 0.132 (0.063)

SAGE 0.449 (0.193) 0.512 (0.139) 0.602 (0.173) 0.432 (0.159) 0.526 (0.160) 0.546 (0.199)

TopK GAT 0.377 (0.050) 0.330 (0.037) 0.199 (0.103) 0.149 (0.071) 0.191 (0.107) 0.129 (0.000)

GCN 0.342 (0.020) 0.383 (0.013) 0.177 (0.083) 0.129 (0.000) 0.146 (0.093) 0.129 (0.000)

SAGE 0.362 (0.022) 0.333 (0.047) 0.328 (0.028) 0.293 (0.030) 0.179 (0.133) 0.156 (0.111)
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We also wondered whether the previous preprocessing with heavy-edge matching

affected the results. We then tested the pooling methods that can use a big input graph

without the preprocessing step, with one more layer of this preprocessing step, resulting

in graphs with 1767 nodes and two more layers, resulting in graphs with 884 nodes. The

methods that were compared were SAG, TopK, Sort, and Set2Set, all four with the SAGE

architecture that showed a better performance in the previous experiment. Figure 5.7

gives an outline of this second part of the experiment.

Figure 5.7: Experiment performed on the influence of the preprocessing step on the results
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Figure 5.8 provides an overview of the experimental outcomes. We again saw that,

regardless of whether or not a preprocessing step is applied, the SAG method outperforms

the other methods by a considerable margin. The average F1 scores for SAG at level on

the test set are as follows: 0.833 for graphs with 14,133 nodes, 0.822 for 7,067 nodes,

0.834 for 3,534 nodes, 0.8324 for 1,767 nodes, and 0.819 for 884 nodes, while the second

best method being Sort 0.598, 0.538, 0.511, 0.661, 0.712, respectively at level 2. Set2Set,

the other global pooling method together with Sort in this experiment, showed a similar

trend, whereas the performance dropped in smaller graph sizes, going from 0.423 at 14133

nodes to 0.319 at 884 nodes, but yet an inferior performance overall. TopK, although the

same taxonomy as SAG, again did not stand out at any graph size, being the worst method

for almost all graph sizes, except at 884 nodes, where it had an intermediary performance

with 0.488 at level one.
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In summary, the result of this experiment stands out as two characteristics of the

pooling methods. First, hierarchical methods tend to decrease the performance as we

increase the number of coarsening layers. This could be due to the loss of information

by coarsening the graph multiple times, while global pooling does not appear to have this

tendency, depending on the intrinsics operations of the individual methods. The second

refers to hierarchical methods that could benefit from a prior preprocessing, which can

be seen as a fixed pooling operation, to increase the performance and also reduce the

complexity of the problem, demanding less computational and time resources.
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Figure 5.8: Boxplot of F1 Test Score with different graph sizes
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(a) Boxplot of Test F1 Macro Score for each pooling method with 884 nodes at each
coarsening level
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(b) Boxplot of Test F1 Macro Score for each pooling method with 1767 nodes at each
coarsening level
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(c) Boxplot of Test F1 Macro Score for each pooling method with 3534 nodes at each
coarsening level
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(d) Boxplot of Test F1 Macro Score for each pooling method with 7067 nodes at each
coarsening level
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(e) Boxplot of Test F1 Macro Score for each pooling method with 14133 nodes at each
coarsening level

Source: The Authors

5.3 Experiment Three - Interpretability

Understanding the output of models in machine learning, particularly in the con-

text of genomic data, is essential for the identification and validation of biomarkers.

Model interpretability helps link genomic patterns to biomarkers, enabling informed de-

cisions by researchers and clinicians. Hence, we analyzed the model’s saliencies to un-

derstand which genes were more important for each target class. We decided to analyze

the model architecture with SAGPool, SAGE at level two with graphs of 3534 nodes, as

it was the best performer for this level and has a good overall balance of prior process-

ing, nodes selected at the final output, and performance. Figure 5.9 gives an overview of

experiment three.
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Figure 5.9: Model interpretability using saliency maps experiment
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Figure 5.10 shows the top 15 features based on our dataset’s saliency score for

each target label. The results demonstrate that the model’s decision is very complex, as

the medians of the feature saliencies are very close to each other, which makes the analysis

of the outputs much harder. Figure 5.11 shows the t-SNE visualization of the embeddings

of the saliencies, in which we can observe an intersection of the subtypes Her2, LumA,

and LumB.

An explanation for that is that the model might rely on a complex interaction of

features rather than individual features, meaning that no single feature stands out as par-

ticularly influential, but rather, the interaction of features is what might drive the model’s

decisions. Another plausible explanation is that we found that SAGPool was giving the

maximum score for a good amount of features, which suggests that the model perceives a

wide array of features as significantly relevant and also distributes the importance across

them, making the saliency of each feature very close to each other.

We also noticed the complexity of the analysis when researching the top 2 features

of each target label in the literature to check if those were previously studied as biomark-

ers in breast cancer. Remembering Section 4.2.1, the data for the model analyzed was

preprocessed two times with a greedy cluster algorithm, thus one node in the processed

graph represents a supernode of four nodes at the original graph. Table 5.2 displays the

genes selected and their presence in the literature.

The results show that 15 out of 40 genes were previously associated with breast

cancer in other studies. Apart from index 1692 in Basal, at least one gene in the other su-

pernodes was researched and in some way related to breast cancer carcinoma. For Basal,

we found that index 1116 had three genes researched: SLC25A32 was found to reduce

median survival of breast cancer patients by 42 months when highly amplified (SAN-

TORO et al., 2020), ISG20L2 was cited as a novel diagnostic and prognostic biomarker

for breast cancer in Yin et al. (2021), and FLAD1 was found overexpressed in breast can-

cer (JIA et al., 2019). In Her2, the up-regulation and down-regulation of the ORMDL3

gene were correlated with bad prognosis (ZHANG et al., 2019), while ADAM33 was

identified as a novel predictive biomarker in BRCA (MANICA et al., 2017). Additionally,

RGS19 was discovered as an upregulation factor of the Nm23-H1 gene (LI et al., 2017),
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which was studied as a suppressor of breast cancer metastasis (KIM; LEE, 2021). The

most important genes that we found correspondence for LumA was only GPS2, whose

lower expression correlates with poorer survival (CHAN et al., 2021), while for LumB

the gene FXYD2 was seen downregulated (ZHANG et al., 2022), TRPM6 was also down-

regulated in breast cancer (QIN et al., 2020) and DNASE1L3 was studied as a possible

prognostic marker in breast cancer and other types of cancer (DENG et al., 2021). For the

control target label, Normal, the genes previously researched were GRIN3B, NLRP12,

PYCARD, and NAIP. GRIN3B was studied along GRIN2B; both were noticed as being

highly expressed, but the former did not show any correlation with cancer patient survival,

while the latter did (GALLO et al., 2022). NAIP was shown overexpressed in patients

with unfavorable prognostic factors(CHOI et al., 2007), while the inhibited expression of

NLRP12 affected the triple-negative breast cancer (KUANG et al., 2023). PYCARD was

also conferred poor outcomes in multiple breast cancer data sets along with other genes

(DAIRKEE et al., 2009).

Table 5.2: Selected genes and their previous literature correspondence in BRCA studies
Label Index STRING Protein Id Gene Literature

Basal 1116 ENSP00000399979 SLC52A1
ENSP00000297578 SLC25A32 X
ENSP00000323424 ISG20L2 X
ENSP00000292180 FLAD1 X

Basal 1692 ENSP00000221954 CEACAM4
ENSP00000245620 LILRB3
ENSP00000043402 RTN4R
ENSP00000247271 OMG

Her2 1530 ENSP00000479816 DENND1B
ENSP00000287008 PCDH1
ENSP00000377724 ORMDL3 X
ENSP00000348912 ADAM33 X

Her2 1227 ENSP00000319254 GIPC3 X
ENSP00000365637 KIAA1217
ENSP00000378483 RGS19 X
ENSP00000359795 GIPC2

LumA 1061 ENSP00000360398 SLC25A27
ENSP00000406546 SLC23A3
ENSP00000260505 TTLL7
ENSP00000359892 SLC44A5

LumA 1202 ENSP00000301039 PROCA1
ENSP00000370104 GPS2 X
ENSP00000272430 RTKN
ENSP00000221459 LIN7B

LumB 871 ENSP00000326070 SLC41A3
ENSP00000292079 FXYD2 X
ENSP00000258538 SLC41A2
ENSP00000354006 TRPM6 X

LumB 837 ENSP00000378053 DNASE1L3 X
ENSP00000249014 CDC42EP1
ENSP00000334665 FSCN2
ENSP00000297157 RP9

Normal 1408 ENSP00000234389 GRIN3B X
ENSP00000264833 OLFM2
ENSP00000272133 CNIH3
ENSP00000355155 GRIN3A

Normal 1564 ENSP00000375653 NLRP12 X
ENSP00000247470 PYCARD X
ENSP00000219596 MEFV
ENSP00000428657 NAIP X

Source: The Authors
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Figure 5.10: Normalized saliencies over samples for each gene
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Figure 5.11: t-SNE visualization of the embeddings saliencies produced by the model
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6 CONCLUSION

The integration of genomics and Graph Neural Networks (GNNs) has emerged as

a significant development in the realm of computational biology, revolutionizing the way

we approach and interpret complex biological data. In this work, we have explored how

the choice of the GNN architecture affected the model efficacy in a multi-label classifica-

tion scenario, with a particular emphasis on the convolutional layers and pooling methods

for RNA-Seq data in breast cancer. Additionally, we present a comprehensive evalua-

tion of the performance and resource utilization of various pooling methods. Finally, we

enhance our study with an explicability analysis of the best GNN architecture, utilizing

saliency maps.

In our experiment regarding the performance and resource utilization for various

pooling methods, we have shown that methods that require a dense adjacency matrix as

input instead of a sparse matrix have poor scalability and consume much more memory

when the number of nodes in the graph is increased. When we analyzed the time taken

to train the model, we could not find a relationship between the taxonomy proposed by

(GRATTAROLA et al., 2022) and the results, which means that this factor is mainly

affected by the internal characteristics of the chosen method.

In our second experiment, we examined various GNN (Graph Neural Network) ar-

chitectures, leading to notable findings. Firstly, we have shown that SAGPool (LEE; LEE;

KANG, 2019) performed significantly better than the other methods in terms of predictive

power. Second, we showed that GraphSAGE (HAMILTON; YING; LESKOVEC, 2018)

performed better for the majority of pooling methods, while the GCN (KIPF; WELLING,

2017) had a decent performance when compared to the GCN but seemed to be more af-

fected by the increase in numbers of the coarsening layers than GraphSAGE and GAT

(VELIčKOVIć et al., 2018), the latter, however, performed poorly for all pooling meth-

ods. Additionally, we explored the impact of preprocessing on model performance. Our

results suggest that for certain methods, such as SAG and Sort (ZHANG et al., 2018), the

balance between predictive performance and computational resource requirements could

be advantageous.

The third experiment was designed to explain the model outputs using saliency

maps. However, throughout the experiment, we found that the importance of the features

was very close to each other, which made the task of analyzing the possible biomarkers’

genes more difficult. Nevertheless, we researched the top two most important genes and
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found some previous studies that related them to breast cancer, such as ADAM33 and

DNASE1L3.

Therefore, our work has demonstrated the significant influence that the choice of

Graph Neural Network (GNN) architecture can have on model performance, and we en-

dorse researchers to meticulously test different architectures to advance understanding and

develop robust models. However, the study also opens up several opportunities for future

research. One area of interest is understanding how increased computational resources

might affect model performance, especially with the potential application of dense matrix

methods across the entire graph. Additionally, the possibility of adapting pooling meth-

ods that require dense matrix formats to sparse formats, which could address a potential

constraint against these methods, would be another opportunity for future studies. Finally,

exploring how different explainer methods impact the interpretability of pooling methods

represents another promising research direction.
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VELIčKOVIć, P. et al. Graph Attention Networks. 2018.

VINYALS, O.; BENGIO, S.; KUDLUR, M. Order Matters: Sequence to sequence for
sets. 2016.

WANG, T.; BAI, J.; NABAVI, S. Single-cell classification using graph convolutional
networks. BMC Bioinformatics, BioMed Central, v. 22, n. 1, p. 364, 2021. Available
from Internet: <https://doi.org/10.1186/s12859-021-04278-2>.

WU, C. et al. Neural networks for molecular sequence classification. Mathematics and
Computers in Simulation, v. 40, n. 1, p. 23–33, 1995. ISSN 0378-4754. Available from
Internet: <https://www.sciencedirect.com/science/article/pii/0378475495000164>.

YIN, J. et al. Cenpl, isg20l2, lsm4, mrpl3 are four novel hub genes and may
serve as diagnostic and prognostic markers in breast cancer. Scientific reports,
v. 11, n. 1, p. 15610, August 2021. ISSN 2045-2322. Available from Internet:
<https://europepmc.org/articles/PMC8328991>.

YIN, Q. et al. scGraph: a graph neural network-based approach to automatically identify
cell types. Bioinformatics, v. 38, n. 11, p. 2996–3003, 04 2022. ISSN 1367-4803.
Available from Internet: <https://doi.org/10.1093/bioinformatics/btac199>.

YING, R. et al. Hierarchical Graph Representation Learning with Differentiable
Pooling. 2019.

ZHANG, M. et al. An end-to-end deep learning architecture for graph classification.
Proceedings of the AAAI Conference on Artificial Intelligence, v. 32, n. 1, Apr. 2018.
Available from Internet: <https://ojs.aaai.org/index.php/AAAI/article/view/11782>.

ZHANG, M. et al. Identifying genes with tri-modal association with survival and tumor
grade in cancer patients. BMC Bioinformatics, v. 20, 01 2019.

ZHANG, Z. et al. Downregulation of fxyd2 is associated with poor prognosis and
increased regulatory t cell infiltration in clear cell renal cell carcinoma. Journal of
Immunology Research, v. 2022, p. 1–19, 10 2022.

http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1186/s12859-021-04278-2
https://www.sciencedirect.com/science/article/pii/0378475495000164
https://europepmc.org/articles/PMC8328991
https://doi.org/10.1093/bioinformatics/btac199
https://ojs.aaai.org/index.php/AAAI/article/view/11782

	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 Biological Background
	2.1.1 The Genome
	2.1.2 RNA-Seq data

	2.2 Graph Neural Networks
	2.3 GCN - Graph Convolutional Networks
	2.4 GraphSAGE - Graph Sample and Aggregate Networks
	2.5 GAT - Graph Attention Networks
	2.6 Training a Graph Neural Network
	2.7 Graph Pooling
	2.7.1 Pooling Layers
	2.7.1.1 DiffPool
	2.7.1.2 MinCutPool
	2.7.1.3 TopKPool
	2.7.1.4 SAGPool
	2.7.1.5 Graclus
	2.7.1.6 Set2Set
	2.7.1.7 SortPool


	2.8 Saliency Maps

	3 Related Work
	4 Methodology
	4.1 Experiment One - Time and Memory Usage Analysis
	4.1.1 Synthetic Data Generation
	4.1.2 Network Architecture
	4.1.3 Training and Metrics

	4.2 Experiment Two - Predictive Power on Genomic Data
	4.2.1 Data
	4.2.2 Network Architecture
	4.2.3 Training and Metrics

	4.3 Experiment Three - Interpretability

	5 Results
	5.1 Experiment One - Time and Memory Usage Analysis 
	5.2 Experiment Two - Predictive Power on Genomic Data
	5.3 Experiment Three - Interpretability

	6 Conclusion
	References

