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ABSTRACT

Neural networks have grown more and more popular in the last few years as an effec-

tive tool for the task of image classification due to the impressive performance they have

achieved on this task. In image classification tasks, it is common to use data augmentation

strategies to increase the robustness of the trained networks to changes in the input im-

ages and to avoid overfitting. Although data augmentation is a widely adopted technique,

the literature lacks a body of research analyzing the effects data augmentation methods

have on the patterns learned by neural network models working on complex datasets. The

primary objective of this work is to propose a methodology and set of metrics that may

allow a quantitative approach to analyzing the effects of data augmentation in convolu-

tional networks applied to image classification. An important tool used in the proposed

approach lies in the concept of class activation maps for said models, which allow us to

identify and measure the importance these models assign to each individual pixel in an

image when executing the classification task. From these maps, we may then extract met-

rics over the similarities and differences between maps generated by these models trained

on a given dataset with different data augmentation strategies. Experiments made using

this methodology suggest that the effects of these data augmentation techniques not only

can be analyzed in this way but also allow us to identify different impact profiles over the

trained models.

Keywords: Artificial Intelligence. Machine Learning. Convolutional Neural Networks.

Data Augmentation. Explainability. Image classification.



Uma abordagem baseada em mapas de ativação de classe para investigar os efeitos

de aumento de dados em redes neurais para classificação de imagens

RESUMO

Redes neurais têm, nos últimos anos, crescido cada vez mais como ferramentas efetivas

para a tarefa de classificação de imagens devido à alta performance que têm obtido nesta

tarefa. Nessas tarefas de classificação, é comum o uso de estratégias de aumento de da-

dos. Elas aumentam a robustez dos modelos contra variações nas imagens de entrada e

ajudam a evitar overfitting. Embora aumento de dados seja uma técnica amplamente ado-

tada, a pesquisa na área ainda falta com trabalhos que analisem os efeitos que métodos de

aumento de dados têm nos padrões aprendidos por redes neurais trabalhando sobre data-

sets complexos. O principal objetivo deste trabalho é propor uma metodologia e conjunto

de métricas que permitam uma abordagem quantitativa para a análise dos impactos que

aumento de dados têm sobre redes neurais convolucionais na tarefa de classificação de

imagem. Uma ferramenta importante utilizada nesta proposta de abordagem é o mapa

de ativação de classes para os modelos de redes neurais, que nos permitem identificar e

mensurar a importância que esses modelos dão para cada píxel individual numa imagem

quando executam a tarefa de classificação. A partir destes mapas, podemos então extrair

métricas sobre as similaridades e diferenças entre mapas gerados por modelos treinados

em datasets com diferentes estratégias de aumento de dados. Experimentos feitos com

esta metodologia sugerem que os efeitos destas diferentes técnicas de aumento de dados

não apenas podem ser analisados desta maneira, mas também nos permitem identificar

perfis de impacto diferentes sobre os modelos.

Palavras-chave: Inteligência Artificial. Aprendizado de Máquina. Redes neurais convo-

lucionais. Aumento de dados. Explicabilidade. Classificação de imagens.
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1 INTRODUCTION

Neural networks have been demonstrating surprising performance in various data-

processing tasks over the last decade, especially in the field of image classification (TODESCATO

et al., 2023; TODESCATO et al., 2024; PULS; TODESCATO; CARBONERA, 2024).

Their high performance and capacity to learn complex patterns from training data are im-

pressive, and both their customizability and ease of use help make them a highly active

field of research.

When engaging with image classification problems, it is common to use data aug-

mentation techniques to increase the robustness of the model to changes in the input im-

ages and also to avoid overfitting (WON; BAE; KIM, 2023; SHORTEN; KHOSHGOF-

TAAR, 2019). This increased robustness often means an increase in performance, making

a model effective against a larger pool of input data. However, even with data augmenta-

tion being a widely adopted technique, there still lacks a body of research investigating the

effects of data augmentation methods on the patterns learned by neural network models,

especially those models working on more complex datasets. As such, understanding how

data augmentation may alter the classification process of a neural network model may

help us to select suitable data augmentation strategies for a given use case, or to provide

insights for creating more robust and effective data augmentation techniques.

Analyzing the effects of data augmentation techniques, however, is not an easy

nor straightforward task. Due to the nature of neural networks themselves, the process

by which models learn to identify patterns in images, and how they use these patterns

to classify the image, works in a manner that is hard to interpret. It is possible to ana-

lyze the weights inside the model (which may number in the millions) but they do not

directly provide methods to comprehend the inner workings of neural networks and gen-

erate human-interpretable explanations for their choices. This makes analyzing neural

networks a non-trivial task and a significant challenge in the field (ANGELOV; SOARES,

2020), lending it a reputation for working in a manner akin to a black box.

This black box property of neural networks has, in recent years, steadily given

rise to the field of neural network interpretability, or explainability (ZHANG et al., 2021;

LIU; WANG; MATWIN, 2018). One of the goals in this field is to understand why neural

network models provide a given output in a given context and strive to make a model’s

choices explainable to humans. These challenges also relate directly to the trustworthi-

ness of neural network models in society; as their adoption in various fields increases, so
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do the burdens in guaranteeing accountability for the choices they make (LIU; WANG;

MATWIN, 2018; HAAR; ELVIRA; OCHOA, 2023; ZHANG et al., 2021). Work in the

field is ongoing, however, and there are still no out-of-the-box, easy-to-use methods to

interpret neural networks and their choice patterns (FAN et al., 2021; MUHAMMAD;

YEASIN, 2020; OLAH et al., 2018).

Similarly, understanding how data augmentation itself may affect neural networks

is still a complex issue (TANG; SHARMA; ZHANG, 2020; WON; BAE; KIM, 2023).

Most works in this field are interested in discerning the impact of data augmentation in the

performance of the models, comparing performance metrics such as accuracy and recall

to measure their effectiveness concerning classification tasks. However, due mainly to

the difficulties in interpreting neural networks, it is not trivial to determine how different

techniques of data augmentation may affect the way neural networks work (SANTOS et

al., 2022), and especially to do so at scale.

When analyzing data augmentation techniques, it is common to evaluate their im-

pacts in one of two ways: either by considering performance metrics of models trained on

differently augmented datasets in a given classification task (O’GARA; MCGUINNESS,

2019; NANNI et al., 2021; PEREZ; WANG, 2017; LI et al., 2018; CHEN et al., 2020), or

by qualitative image analysis by applying semi-supervised analysis techniques over arti-

facts generated by explainability techniques (CAO et al., 2022; WON; BAE; KIM, 2023;

UDDIN et al., 2020).

The first type of analysis compares the performance metrics (accuracy, F1-score,

etc.) of models trained on differently augmented datasets. It investigates the impact that

data augmentation techniques have quantitatively and at scale, but can only measure im-

pact as understood by classification performance. This fact means it cannot offer insights

into how the application of data augmentation impacted how the model processed each

image during classification.

The second type of analysis works through the visual identification of important

image regions. Through explainability techniques, such as class activation maps (CAM)

(SELVARAJU et al., 2017), we may generate artifacts that can help us understand how

an image is being used in a classification task by a neural network. This method by itself

is usually adopted in a qualitative approach where a human must visually compare the

artifacts for models with and without augmentation to determine the most important re-

gions for both models, given an input image. An alternative technique involves manually

annotating input images to provide some ground truth for region importance. A signifi-
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cant drawback to this type of technique, however, is its difficulty in scaling up. Analyzing

hundreds or thousands of images would take an unreasonable amount of human effort in

visually analyzing CAM pairs or annotating input data.

Considering the limitations present in both common types of approaches, we iden-

tify a lack of scalable methods to obtain a more general and quantitative perspective of

how different strategies of data augmentation impact the patterns a neural network learns

while processing images, especially one that may apply to large image datasets without

the need for human supervision.

In this work, we propose a methodology that combines the advantages of both

of these common analysis types. The proposed approach uses explainability techniques,

such as CAMs, to compare how the application of (or lack thereof) augmentation tech-

niques affects the attribution of importance by a model to different image regions, doing

so at scale and without the need for extensive human intervention. We hypothesize that

by analyzing CAMs not in isolation but instead comparing maps generated by a baseline

model against those generated by differently augmented models, we may be able to de-

velop and use similarity metrics that help measure these differences in a scalable way.

This approach should allow for a quantitative, scalable way to analyze the impacts of data

augmentation on model behavior by comparing CAMs.

The results we obtained using the methodology proposed in the following chap-

ters are promising. Although there remains difficulty in obtaining clear-cut answers using

the metrics we chose, we can garner some insights about the models trained with aug-

mented data. Additionally, investigating the correlations between the metrics of different

augmentations also suggests the existence of separate profiles of impact across the data

augmentation techniques we chose. In essence, this work attempts to tackle a single ques-

tion: how can one use CAMs to automatically and quantitatively analyze the effects of

data augmentation on a neural network model?

This work furthers the research into that question by proposing a basic, generi-

cally structured methodology to quantitatively evaluate the impacts of data augmentation

in convolutional neural networks dealing with image classification tasks. Additionally,

this work contributes by proposing an initial set of metrics that may be used within that

methodology, as well as demonstrating the application of the methodology for a specific

selection of metrics and augmentations, using the Grad-CAM (SELVARAJU et al., 2017)

method of generating CAMs, applied to the CIFAR-10 dataset (KRIZHEVSKY; HIN-

TON et al., 2009) and adopting the EfficientNet B0 (TAN; LE, 2019) neural network
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architecture. Another quality of this methodology is its extensibility; future works may

also expand on this methodology, including but not limited to using more complex metrics

and proposing new ways to analyze said metrics, or modify aspects of this methodology

to fit other image-classification-related needs.

This work is structured as follows. In Chapter 2, we will expand on fundamental

concepts to the understanding of the proposed methodology. In Chapter 3, we discuss

works related to our goals. In Chapter 4, we present the proposed methodology, covering

its’ steps and their explanations. In Chapter 5, we discuss how the proposed methodol-

ogy was applied in a specific context, as well as showcasing and analyzing our obtained

results.
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2 BACKGROUND

The main concepts needed to understand the methodology proposed in this work

are covered in the following sections. First, we will introduce the concepts of machine

learning and neural networks (Section 2.1). Then, we will cover the topics of data aug-

mentation (Section 2.2) and model performance metrics (Section 2.3). Finally, we will

explain the concept of CAMs (Section 2.4), a central concept in our work.

2.1 Machine Learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that focuses on

developing algorithms capable of improving their performance through experience and

learning from data (MITCHELL, 1997). Traditionally, ML is divided into three broad cat-

egories: Supervised learning, unsupervised learning, and reinforcement learning (MUR-

PHY, 2012). This work focuses on supervised learning. In supervised learning, there are

two main types of tasks: regression and classification. Regression tasks involve training a

model to learn a mapping function between input data and continuous output values based

on labeled input-output pairs (PATTERSON; GIBSON, 2017). Classification tasks, which

are the focus of this work, have the objective of finding a mapping function between input

data and discrete target labels (PATTERSON; GIBSON, 2017).

For our work, the input data we want to classify are images, and the labels are the

different types of entities (objects, animals, etc) represented in the images. To do this, we

make use of artificial neural networks.

Artificial Neural Networks, or simply Neural Networks, constitute a specific ap-

proach to ML. They consist of algorithms inspired by the structure of human brains, fol-

lowing a hypothesis that the layered, neuron-based structure of the human brain may be

an effective structure for mimicking intelligent behavior (MURPHY, 2012). Neural net-

works are part of a broad family of techniques for machine learning called Deep Learning,

in which hypotheses take the form of complex algebraic circuits with tunable connection

strengths (RUSSELL; NORVIG, 2020). In this sense, artificial neural networks are struc-

tured as interconnected layers of simple processing units (which represent neurons) that

have weights associated with the connections between units of adjacent layers. Each node

in a layer is capable of processing inputs and producing outputs which may then be sent

to nodes further in the chain of layers, similar to how, in the human brain, a signal may
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travel through a chain of neurons. In practice, however, the actual resemblance between

neural networks and neural cells and structures is only superficial (RUSSELL; NORVIG,

2020).

Training artificial neural network models commonly involves applying three main

steps: forward propagation, back-propagation, and gradient descent. Forward propagation

consists of the process of passing the information through the layers of nodes, processing

the initial input (images in our case) until it arrives at the final layer (GOODFELLOW;

BENGIO; COURVILLE, 2016). Each layer of the neural network applies linear and non-

linear transformations to the data it receives, propagating the processed signal forward

until the final output is produced. From this final output, we determine the error produced

between the expected value and the value obtained by the model. Determining the error

is done by a cost function (also known as loss function) that measures this difference in

some way, and many cost functions may be used for this purpose.

Back-propagation refers to the algorithm that is executed after the final layer out-

put is generated. It propagates backward the cost function gradients in relation to the

model parameters (the weights between nodes and biases associated with each node).

These gradients may be understood as the contribution of each parameter to the final error

produced by the model, or the sensibility of the network to that parameter; the higher, the

more it is considered to have contributed to the error, and the more its value needs to be

adjusted (GOODFELLOW; BENGIO; COURVILLE, 2016).

Gradient descent is then applied after the parameter gradients have been set. It

consists of an optimization algorithm used to adjust the parameters of the model in the

opposite direction to the gradients calculated during back-propagation (the gradients may

also be understood as first-order derivatives), intending to minimize the cost function

(GOODFELLOW; BENGIO; COURVILLE, 2016).

Specifically, in this work, we use a kind of artificial neural network called Con-

volutional Neural Networks (CNN). A CNN is a network that contains spatially local

connections, at least in the early layers, and has patterns of weights that are replicated

across the units in each layer (RUSSELL; NORVIG, 2020). A pattern of weights that is

replicated across multiple local regions is called a kernel and the process of applying the

kernel to the pixels of the image (or to spatially organized units in a subsequent layer) is

called convolution (RUSSELL; NORVIG, 2020).
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Figure 2.1 – Example of affine transformation augmentation.

Figure 2.2 – Example of cutmix augmentation.

2.2 Data Augmentation

Data augmentation is one of the fundamental techniques this work is based on.

They refer to a subset of regularization techniques, which work by introducing additional

information to the ML model to better capture some properties of the problem being

modeled (KHALIFA; LOEY; MIRJALILI, 2022). Image data augmentation, in particular,

involves introducing variability in the training dataset itself, generating new data based

on the original training images. This is done to increase the robustness of the model to

variations in the input data.

In the realm of data augmentation, several different techniques may be used to

generate augmented images from training images. As it would be prohibitively time-

consuming to test all of the most popular data augmentation techniques for this work,

we decided to focus on seven techniques that represent a wide variety of different data

augmentation approaches. These are:

• Affine transformation, which involves applying various linear and non-linear trans-

formations (rotation, translation, scaling, shearing) in conjunction to one image. An

example can be seen in Figure 2.1.

• Cutmix, which involves cutting a section of an image B with class Y and mixing

it with an image A, which has a class X. The resulting image is then considered as

having class X. An example is shown in Figure 2.2.
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Figure 2.3 – Example of color jitter augmentation.

Figure 2.4 – Example of elastic transformation augmentation.

• Color Jitter, which randomly changes the brightness, contrast, saturation and hue of

an image. An example is shown in Figure 2.3

• Elastic transforms, a transform that works based on displacement vectors applied

on all pixels. An example is shown in Figure 2.4.

• Equalization, in which the histograms of each color channel of an image are equal-

ized. Example in Figure 2.5

• Gaussian Blur, which applies Gaussian blurring to an image. An example is shown

in Figure 2.6

• Random Cropping, which crops the input image at a random location and resizes

the cropped area to be the same size as the input image’s. An example is shown in

Figure 2.7

Figure 2.5 – Example of equalization augmentation.
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Figure 2.6 – Example of Gaussian blur augmentation.

Figure 2.7 – Example of random cropping augmentation.

2.3 Performance Metrics

To evaluate the performance of CNNs, it is common to track metrics related to

the correct and incorrect predictions made by the model. To track the performance of the

models used in this work, we use accuracy, precision, F1-score and recall. As we are

dealing with a multi-class problem, we use the macro averages of these metrics.

Accuracy, precision, F1-score, and recall are calculated based on the confusion

matrix resulting from model inferences. Confusion matrices refer to the relationship be-

tween ground truth labels and predicted labels in classification problems. To trace these

relationships, we rely on the concepts of true positives (TPs), true negatives (TNs), false

positives (FPs) and false negatives (FNs). In classification tasks with only two target

classes, positive represents the presence of a characteristic, and negative represents the

lack of said characteristic. TPs refer to instances where the model predicts positively and

the correct label is also positive; TNs refer to cases where the prediction was negative and

the correct label was also negative; FPs refer to the model predicting positively but the

correct label being negative; and FNs referring to cases where the model predicted neg-

atively but the correct label is positive. By counting the number of instances of each of

these cases, we may create a confusion matrix (FACELI et al., 2021). In multi-class prob-

lems with N classes, such as the one we are tackling, this matrix has an N by N shape,

where the N lines and columns represent each of the N classes. The macro-average for a
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given metric is taken by averaging the sum of that metric over all N classes.

• Accuracy measures how often a classification ML model makes correct predictions

overall.

Accuracy = TP+TN
TP+TN+FP+FN

• Precision measures the ratio of correct positive predictions made against all positive

predictions made by the model.

Precision = TP
TP+FP

• Recall measures the ratio of correct positive predictions made against all instances

that possess the characteristic.

Recall = TP
TP+FN

• F1-Score combines precision and recall into a single metric, providing a way to

assess the impact of both false positives and false negatives simultaneously.

F1− Score = 2×(Recall×Precision)
Recall+Precision

2.4 Grad-CAM and Class Activation Maps

Explainability is still a significant challenge for neural networks. When models are

trained, the patterns they learn are represented by the internal weights of the model, which

may number in the millions or even billions. This makes analyzing image classification

outputs of a model prohibitively complex if one were to inspect only a model’s weights.

As tools to alleviate this problem, many techniques have been developed over the

years. Deconvolutional neural networks, for example, can provide dense activation maps

of an image by applying deconvolution operations and unpooling layers to the features

extracted by CNNs (HAAR; ELVIRA; OCHOA, 2023); layer-wise relevance propaga-

tion (LWRP) can provide activation maps that not only indicate which parts of an image

were important for classification but also which pixels support a different classification

(HAAR; ELVIRA; OCHOA, 2023); and inversions allow recreation of the most impor-

tant parts of an image by inverting what each layer of a model filters out to see what it

considered important at that layer (HAAR; ELVIRA; OCHOA, 2023).

Amongst these, one of the most commonly used techniques to explain neural net-

work classifications is that of CAMs. CAMs are a type of explainability method, com-
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monly considered a specific type of saliency map, that indicates the discriminative image

regions used by the neural network to identify that category (ZHOU et al., 2016). This

explainability technique attributes the importance or contribution of each pixel of an in-

put image to the final classification generated by the neural network. CAMs help estab-

lish how neural network models attribute importance to the different regions of an image

(ZHOU et al., 2016), allowing visual analysis of what models consider important image

regions.

There are many ways of generating CAMs, such as Score-CAM (WANG et al.,

2020), LayerCAM (JIANG et al., 2021), and Eigen-CAM (MUHAMMAD; YEASIN,

2020), but the method we will be using in this work is the Gradient-Weighted Class Ac-

tivation Map (Grad-CAM) (SELVARAJU et al., 2017). Grad-CAM uses the gradients of

any target label (for example ‘dog’ in a classification network) flowing into the last con-

volutional layer of a model to produce a CAM highlighting the important regions in the

image for predicting the label. Given an image, a target layer, usually (but not necessarily)

the final convolutional layer, and a target class, it forward-propagates the input through

the CNN part of the model and obtains the raw score for the target category. The gradi-

ents of all outputs are then set to zero except for the desired class, which is set to 1. The

result obtained by forward-propagation is then back-propagated up to the target layer that

has the convolutional feature maps of interest, which are then combined to compute the

coarse Grad-CAM localization. This localization represents which areas the model most

strongly influences it to make a particular decision, meaning that a disturbance in that area

would more strongly affect the model outcome for that class. Another interpretation of

CAMs is that they represent the areas of the image the model is the most sensitive to for

a given class. Lastly, as the visualization generated is coarse, it is upscaled to the image

size by pointwise multiplication with guided back-propagation to generate the final class

activation map. The resulting mappings will have pixels normalized in the [0, 1] range.

An example of this type of CAM can be seen in Figure 2.8. These maps will be one of

the main tools utilized in this work.
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Figure 2.8 – Example of CAM generated by Grad-CAM using the baseline model we trained as
the selected model, the last convolutional layer as the target layer, and the predicted class as the

target class.
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3 RELATED WORKS

Although the fields of neural network explainability and data augmentation have

become increasingly popular over time, the literature still lacks a body of work analyzing

how data augmentation may affect explainability. Among those works that exist, here are

a few that explore a field of research similar to ours.

Firstly, there is (TANG; SHARMA; ZHANG, 2020), which inspired our work and

whose investigations on data augmentation and explainability we follow up on. Their

work explores the impact of five different data augmentation methods on the CAMs of

the models trained with augmented data in an image classification task. Their process is

similar to ours, conducting an initial foray in constructing quantitative methods for eval-

uating data augmentation impacts, but doing so in a more specific way. The work made

by (TANG; SHARMA; ZHANG, 2020) has its limitations, however. The authors selected

MNIST, a simplistic grayscale dataset as the basis of their analysis. They also only trained

one model per augmentation, subjecting the results to higher statistical randomness re-

lated to the impacts of starting states for the augmentation methods and neural networks.

Our work improves on their initial exploration by using a more varied set of similarity

metrics between CAMs; adopting CIFAR10 (KRIZHEVSKY; HINTON et al., 2009), a

significantly more complex colored dataset, as the basis for the experiments; and training

multiple models per augmentation to ensure higher statistic robustness of the results. Our

work also expands on theirs by using more augmentation methods and measuring other

similarity metrics between CAMs, as well as analyzing correlations between the metrics

taken as they covary over the test dataset. Our work also differs from theirs by providing a

structured methodology that may be applied to a large variety of image datasets, methods

of generating CAMs, sets of augmentations, sets of similarity metrics between CAMs,

and CNN architectures, the choice of architectures being limited by compatibility with

CAMs.

In (WON; BAE; KIM, 2023), the authors also investigate the impacts of data aug-

mentation on the interpretability of the models generated, but using a different method-

ology. It uses Grad-CAM and Information Bottlenecks through Attribution (SCHULZ et

al., 2020) to generate attribution maps for images, which are then used to compare the

CAMs generated by the different augmentation qualitatively to one another. Though it is

thematically very close to our work, their work is interested in measuring how data aug-

mentation affects interpretability as understood by qualitative measures (Human-model
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alignment, Faithfulness, and Human-understandable concepts,) whereas our work is in-

terested in the use of quantitative measures that may be applied automatically over large

datasets in order to compare the impacts of different augmentations.

Other related works cover only tangentially the matter of analyzing image data

augmentation impact and explainability. In (UDDIN et al., 2020), for example, the au-

thors investigate differences between the CAMs of different augmentations, analyzing

their performance while introducing their own augmentation method. However, it is dif-

ficult to find works where the main focus is specifically on explainability with data aug-

mentation, as a majority of articles that analyze and compare data augmentation methods

are more interested in comparing their performances, such as (CHEN et al., 2020; RAD-

HAKRISHNAN et al., 2017; YANG et al., 2022).
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4 PROPOSED METHODOLOGY

In this chapter, we explain our proposed methodology for generating quantita-

tive analyses from CAMs in image classification tasks. For clarity and brevity purposes,

from here on out we will be referring to the models trained on augmented datasets as

’augmented models’, and the model trained on the original CIFAR10 dataset (without

applying any kind of augmentation) as ’baseline model’. Our main objective with this

methodology is to propose a series of steps to analyze the impact of data augmentation

on models trained on augmented data. To clarify, we are not interested in analyzing these

augmented models or their artifacts in isolation, but rather by evaluating these models

relative to the baseline model. Our intended analysis consists of comparing how data

augmentation affects models in comparison to a baseline. In this way, our focus is on

evaluating how the augmented models diverge from and co-vary with the baseline model.

This approach allows us to collect metrics related to how the augmented models’ CAMs

diverge from the ones generated by the baseline model, and thus provide a quantitative

analysis of their divergences.

The methodology consists of the following steps:

1. Select a set of data augmentation techniques A to be analyzed, and a set of starting

states X . A starting state may be understood as some selection of variables or

parameters that results in a specific initial configuration for the data augmentation

methods, such as the seed given to a random number generator in the case of a

data augmentation method that uses randomness. Note that the actual parameters

of the augmentation itself (such as size of the crop for Random Cropping, standard

deviation and kernel size for Gaussian blur, or the alpha and sigma for the Elastic

Transformation method) should be the same across the |X| states.

2. Select a CNN architecture and base dataset.

3. Select a method for generating CAMs.

4. Select a set of metric functions ME to be applied to the baseline and augmented

CAMs.

5. Select a set of methods to be applied to the metrics for analysis.

6. Separate the dataset into training, test, and validation sets. The training, test and

validation sets must be stable across all models. For clarity in later definitions,

define the test set as I .
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7. Train baseline model B of the selected CNN architecture based on the selected

training and validation sets. The validation sets are used to monitor the model

training and extract the version of the model with the best performance against the

validation set across all epochs, and they are used this way for every single model.

8. Train |X| versions of the chosen architecture for each augmentation, each of the

|X| models for a given augmentation a with starting state x ∈ X , and training on

their respective augmented dataset. This will result in |X| × |A| augmented models

Ma,x, a ∈ A, x ∈ X . All models, including the baseline, should be instantiated

with the same starting weights. This step is done to eliminate other sources of im-

pact from the model results such that the differences between the models are borne

uniquely from the application of different augmentations. The set of augmented

models will be defined as MAug = Ma,x, ∀a ∈ A, ∀x ∈ X , and the set of all

models as M = MAug ∪B.

9. Collect performance metrics (precision, recall, etc) for each of the models.

10. Generate CAMs according to the selected method, generating augmented model

CAM sets Sm,∀m ∈ M . Defining the CAM-generating function as f which takes a

model m and test image i ∈ I , a single CAM will be defined as sm,i = f(m, i),m ∈

M, i ∈ I . The target layer for all models will be the last convolutional layer of

the chosen architecture, and the target class will be the class predicted by the model

for the respective test image. The CAM set Sm for model m will be defined as

Sm = sm,i,m ∈ M, ∀i ∈ I , meaning every individual CAM will be based off a

different image in the test set, covering all of the test set.

11. Generate similarity metrics model_metrics_setme,m,∀me ∈ ME, ∀m ∈ MAug

between the augmented CAM sets Sm,m ∈ MAug and baseline CAM set SB. To

do this, define the metric function me ∈ ME between two individual CAMs as

me(sm,i, sB,i),m ∈ MAug, i ∈ I . The set of metrics model_metrics_setme,m be-

tween the CAMs of a given augmented model m and those of baseline model B for a

given metric type me will be defined as model_metrics_setme,m = me(sm,i, sB,i),me ∈

ME, m ∈ MAug, ∀i ∈ I .

12. Average the metrics for each augmentation a ∈ A. The previous step generates |X|

values for a metric me, for each augmentation a, for a specific image i ∈ I . In this

step, we aggregate these values in a mean, such that the value result for an aggregate

metric function meaggr(a, i) based on metric function me for a given augmentation

method a and test image i is defined by meaggr(a, i) =
∑

x∈X me(sMa,x,i, sB,i) ÷
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|X|, a ∈ A, i ∈ I . The set of aggregate metric values for an augmentation method a

and metric type me is defined as aug_method_metrics_setme,a = meaggr(a, i),∀i ∈

I . These aggregate values are used to give a better perspective on the mean dif-

ferences of importance in image regions between augmented and baseline model

CAMs, as interpreted by the metric me.

13. The last step consists of using the selected methods to generate a quantitative anal-

ysis of the metrics to determine the impacts each augmentation has when compared

to the baseline model, and then go over the generated analysis.

This methodology, as previously mentioned, is based on (TANG; SHARMA;

ZHANG, 2020), but here we provide a structured set of steps that applies to different

architectures, datasets, metrics, augmentation techniques, and CAM generation methods.

For the exploration made in this work, we also provide a richer set of metrics between

CAMs, each of them described in the following Section (Chapter 5).
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5 EXPERIMENTS

In this chapter, we will discuss how we applied the methodology, delineating our

choice of augmentations, metrics, and datasets in Section 5.1, as well as discussing our

choices and showing the results we obtained using it in Section 5.2.

5.1 Experiment Design

In the first part of this section, we discuss our choices for dataset and base archi-

tecture. After that, we will expand upon important details concerning how datasets were

pre-processed and how training was conducted. Lastly, we will discuss the metrics we

used between CAMs, and briefly examine other important details of our application.

When considering our choice of dataset for this experiment, we found it impor-

tant to find one that struck a balance between complexity, to allow for rich analysis, and

training time. Considering this, we used CIFAR-10 (KRIZHEVSKY; HINTON et al.,

2009), an image classification dataset with 60,000 images. It has properties that favor

a richer analysis and more complex challenge than the MNIST dataset used by (TANG;

SHARMA; ZHANG, 2020), and is also commonly used in the literature (INOUE, 2018;

CUBUK et al., 2019; RATNER et al., 2017; LIU; DENG, 2015; HUSSAIN; BIRD;

FARIA, 2019). CIFAR-10 has a relatively small set of classes at 10 labels, colored images

representing relatively complex and varied patterns, a balanced distribution of samples

in each class, and relatively low image resolution, making it an adequately challenging

dataset for our image classification purposes.

To determine which base architecture to use, we selected three commonly used

architectures in the literature (EfficientNet B0 (TAN; LE, 2019), ResNet-18 (HE et al.,

2016), DenseNet-121 (HUANG et al., 2017)) and measured their performances in image

classification with CIFAR-10. To compare them, we ran training routines for the three

architectures for 30 epochs over the CIFAR-10 dataset and measured their test accuracy,

precision, F1-score, and recall for each epoch. After obtaining the results for the model

trainings (Figure 5.1 for accuracy, Figure 5.2 for precision, Figure 5.3 for recall, Fig-

ure 5.4 for F1-score, and Figure 5.5 for training time), we chose EfficientNet B0 for its

balance between training time and performance.

As mentioned in Section 2.2, we chose seven data augmentation methods that

we felt best represented a wide spread of different augmentation techniques, which would
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Figure 5.1 – Evolution of the accuracy on the test set across 30 training epochs for the three
candidate architectures.

Figure 5.2 – Evolution of the precision on the test set across 30 training epochs for the three
candidate architectures.

Figure 5.3 – Evolution of the recall on the test set across 30 training epochs for the three
candidate architectures.
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Figure 5.4 – Evolution of the F1-score on the test set across 30 training epochs for the three
candidate architectures.

Figure 5.5 – Comparison of the amount of time necessary to train each of the candidate
architectures over 30 epochs.
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provide a richer ground for data augmentation analysis. The methods we chose were affine

transformations, cutmix, color jitter, equalization, elastic transforms, random cropping,

and gaussian blurring.

For the train-validation-test split, as CIFAR10 comes with a train-test split dataset,

with 50,000 images for training and 10,000 images for testing, the only further modifica-

tion we needed was a train-validation split. For that purpose, we decided on using random

stratified sampling with 90% train to 10% validation split, with the same 45,000 base im-

ages for training and 5,000 for validation in all models. We do not use the validation set

for hyperparameter optimization. We instead use the validation set to select the version

of the model with the highest accuracy against it across all epochs. For the augmented

datasets, we generated one augmented image for each training image, resulting in 90,000

total images for each augmented dataset. These augmentations are done online during

batch fetching. For the training process, we adopted the cross-entropy loss as our loss

function and adopted the Adam optimizer, with a learning rate at 1e−3 and weight decay

at 1e − 5. For training, validation, and testing routines, we used batch sizes of 32, and

trained all models for 30 epochs each.

To control the impact that the order of image batches could have during training,

it was important to manage, across all augmented datasets, the order in which images are

fed to the models during training. We discuss more of how this was achieved in Appendix

B. The core idea was to guarantee, as much as possible, that the placement order for all

augmented and unaugmented images in a dataset would be the same across all augmented

datasets. For the unaugmented images, following this requirement meant placing them

in the same order across augmented datasets. For the augmented images, we met this

requirement through a different method. Instead of guaranteeing that the same augmented

image appears in the same ordering position across datasets (which would be impossible

as each combination of augmentation method and starting state applied over the same

source image produces a different augmented image,) we instead use the source of the

augmented images to order them. We guarantee that the source image for an augmented

image at a specific position in the dataset will be the same across datasets and do the same

for all augmented images.

Additionally, regardless of augmentation, all images were resized to 224 × 224

pixels (while preserving the aspect ratio) to fit the input format of EfficientNet B0 and

normalized in order to improve results. To normalize the dataset, we calculate the mean

and standard deviation of each color channel across all images in the dataset. From the
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mean and standard deviation, we alter the value of each RGB channel of a pixel by sub-

tracting the respective color channel’s mean from the pixel value of the channel and then

dividing the result by that color channel’s standard deviation. By doing this, every pixel’s

color channel value will have a mean of 0 and a standard deviation of 1 across the entire

dataset. This significantly reduces the variability range of the dataset, accelerating the

training convergence time.

Another important detail to cover is how we define the starting states X . Here,

we choose three different states X = [Seed1, Seed2, Seed3] for each augmentation, with

each state representing a unique seed fed to all random generation libraries involved in

the training of the respective augmented model. It is important to note that these states

are stable across all augmentations, meaning that the seed used as the starting state for

MRandCrop,Seed1 is the same as that of MCutmix,Seed1, which is the same as MAffine,Seed1,

and so on.

For the CAM generation, as detailed previously, we chose the default Grad-CAM

algorithm. In order to generate CAMs with this algorithm we must provide a target class

alongside a model, the target layer of said model, and the input image. This is necessary

as the CAM is a measure of which areas of an image the CNN model is the most sensible

to with regard to a specific class. Another interpretation of CAMs is that regions with

high values are regions where a change in image pixel values would significantly impact

a model’s output with regard to the given class. For the choice of target label, we used

the model’s predicted class for the respective test image. An alternative to this choice

would’ve been to use the ground truth label instead of the predicted class, which would

show us what the CAM would look like for a given label even if the model itself would not

have made that classification choice. The problem with this lies with the usage of a CAM

with a target class that the respective model would not have predicted, which would mean

we are not analyzing the final decision-making process of the model representative of the

patterns it has learned, but instead how the model would act if it had perfect performance.

The upside to that approach, however, would be that the baseline and augmented model

CAMs would always have the same class, and thus would theoretically make analysis

easier and more straightforward. Both approaches have their own merits and it is not

clear which of them is the ideal approach. Due to our interest in analyzing the behavioral

patterns ultimately learned by the models, we decided to use the predicted label instead

of the ground truth as the target class for CAM generation, even if the behavioral patterns

they exhibit involve wrong classifications or classifications that differ between baseline
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and augmented models.

To evaluate the differences between the CAMs generated by the baseline and

those generated by the different augmented models, we used the following metrics be-

tween CAMs: Mean Absolute Difference (MAD), Mean Squared Difference (MSD),

Pearson Correlation, Spearman Correlation, and Overlap Rate. Additionally, we also

use Kullback-Leibler Divergence (KLD) between the class predictions for each image,

which here we will call Class Prediction Kullback-Leibler Divergence (Class-KLD). The

discrete probability distributions used to calculate Class-KLD are explained ahead in Sec-

tion 5.1. Each metric is explained as follows:

Mean Absolute Difference (MAD): It is the mean absolute error (MAE) metric applied

between two CAMs. We reinterpret this error that MAE measures as being the mean

pixel difference between the two CAMs. With this metric, we are purely interested

in the magnitude of the difference between the maps, so this reinterpretation does

not introduce any unintended problems in analyzing this metric. Although this

metric has no specific unit, considering the range of values [0, 1] a pixel can take, the

maximum mean difference is 1, indicating that baseline and augment images have

the maximum possible difference, and the minimum is 0, indicating two identical

maps. This metric may be interpreted as a measure of the mean magnitude of

the differences between a pair of CAMs, and can also be viewed as a degree of

dissimilarity. Considering a pair of CAMs P and Q, and pixel indexes j for source

image J with the total number of pixels N = |J |, where Pj represents the activation

of pixel j in the CAM P, MAD is defined as

MAD(P,Q) = 1
N

∑
j
|Pj −Qj|

Mean Squared Difference (MSD): It follows the same logic as MSD, but squaring the

difference instead of taking the absolute of the difference. We use this metric in

case it may exacerbate large differences between CAMs and aid in analyzing the

magnitudes of differences from another perspective. MSD is defined as

MSD(P,Q) = 1
N

∑
j
(Pj −Qj)

2

Pearson Correlation Coefficient: Pearson Correlation is a metric used to measure the

linear relationship between two variables, reflecting the strength and direction of

this relationship (BYLINSKII et al., 2018). It can be understood as a measuring of

the degree to which two variables covary while maintaining a reasonably constant

proportion. To use it, we flatten both CAM images into 1D vectors and then measure
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their covariance, using the baseline as P and augmented as Q. It is defined as

Pearson(P,Q) = cov(P,Q)
σ(P )×σ(Q)

where cov(P,Q) is the covariance between P and Q, and σ(P ) and σ(Q) are the

standard deviation of P and Q, respectively.

Spearman Correlation: Spearman follows in the same steps as Pearson, but as this met-

ric weighs monotonicity more heavily than proportionality. That is, it measures how

well the relationship between two variables can be described using a monotonic (but

not necessarily linear) function. Alongside Pearson, it helps paint a clearer picture

of the way baseline and augmentation covary. It is defined as

Spearman(P,Q) = cov(R(P ),R(Q))
σ(R(P ))×σ(R(Q))

where R(P ) and R(Q) refer to the rank-variable versions of P and Q, meaning P

and Q transformed into a weak-ordering vector where any two items necessarily

have a ’higher than’, ’lower than’ or ’equal to’ relationship.

Overlap Rate: It is a specialization of the metric Intersection over Union (REZATOFIGHI

et al., 2019) as applied to a specific selection of pixel regions. Intersection over

Union works by analyzing two regions of an image and taking a ratio of the intersec-

tion between these regions over the union between these regions (REZATOFIGHI

et al., 2019). Overlap Rate follows the same idea, but selects the region automati-

cally by using the Y% pixels with the highest activations in the CAM, meaning the

pixels with the highest value. This gives us an idea of how the important areas differ

in spatial distribution, which will complement the information gained from MSD

and MAD regarding the magnitude of their difference. It is important to note, also,

that the percentage is not referring to a threshold of Y% of population, but rather

to a threshold based on the value of the Y -th population percentile; this means that

if Y = 10 and the 10th percentile highest value is 0.7, we will select all pixels

with threshold value equal to or higher than 0.7. This may result in selecting more

than 10% of the population if there should be multiple values equal to 0.7 in the

population.

Class Prediction Kullback-Leibler Divergence: Class-KLD follows a different idea from

the others. While the other metrics are applied directly between the CAMs, we ap-

ply Kullback-Leibler Divergence to the prediction matrix made by model Ma,x as

compared to the prediction made by the baseline model B. KLD is defined as an

information-theoretic measure of the difference between two probability distribu-
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tions (BYLINSKII et al., 2018). The idea behind the use of this metric is to measure

how different the predictions made by the two models are for a test image. Between

class prediction vectors P and Q, KLD is defined as

KLD(P,Q) =
∑

i Qilog(ϵ+
Qi

Pi
)

where, in our application, i refers to class in the vector of predictions, and ϵ is a

regularization constant.

Having defined the base architecture, dataset, augmentations, and metrics, the ap-

plication of the methodology is straightforward. First, we train the baseline and aug-

mented models and then use Grad-CAM to generate CAM sets for all the models. From

there, we collect the metrics between each augmented model’s CAM set and the baseline

model B’s CAM set, considering all the images in the test set. After averaging the |X|

models’ metrics for each augmentation, we then analyze these metrics.

To analyze the results we obtained, we adopted the following approaches:

• Analysis of performance metrics between the models. Although this is not the main

focus of our work, determining their differences in effectiveness at the classification

task is relevant information.

• Analysis of the similarity metrics value distribution over the test image set for every

augmentation. Using boxplots, we inspect properties of the metric value distribu-

tions of the augmentations, which may be able to establish trends in the collected

data. This analysis, however, is aggregative in nature; it does not permit an individ-

ual investigation into how each augmentation behaves for each test image.

• Correlation analysis for each metric across augmentations. By correlating the met-

ric values across augmentations, we view another aspect of the behaviors between

augmentations. For each metric me ∈ ME, we take the average metrics sets

aug_method_metrics_setme,a for all augmentations a ∈ A and analyze how these

sets of metric correlate with one another across augmentations. This analysis en-

ables us to understand how the metrics covary between augmentations across the

test image set, allowing us to make more nuanced observations about changes in

behavior induced by the augmented dataset.

From these analyses, our objective is to build a comprehensive view of how the

different models behave. The metric distribution plots, performance metric comparisons,

and correlation maps are shown in Section 5.2, and the results as a whole are analyzed in

Section 5.2.6.
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Figure 5.6 – Bar plot of the accuracy performance metric for all models over the test image set.

5.2 Results

Below are the metric results taken between the baseline and augmented models.

Firstly, we will analyze performance metrics related to the augmentations. Secondly,

we will show the boxplot and correlation map results for every metric, analyzing them

individually. Afterward, we will inspect the results more generally, making observations

on trends we see and interpreting the results.

5.2.1 Performance Metrics

To measure model performance, we tracked, as previously mentioned, the accu-

racy, F1-measure, recall, and precision of all the models. Below are the results of these

metrics over the test set for all augmentations, with the mean performance of the |X|

models being shown for each augmentation. Figure 5.6 shows the average test accuracy

between the models, Figure 5.7 shows the average test precision, Figure 5.8 shows the

recall comparison, and Figure 5.9 shows the F1-score comparison.

The results are consistent across metrics, implying that none of the models suffer

particularly from the impact of false positives or false negatives. Additionally, although

not an unexpected result, we note that utilizing any of the seven augmentation methods

results in increased performance over the baseline model. All models display similar
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Figure 5.7 – Bar plot of the precision performance metric for all models over the test image set.

Figure 5.8 – Bar plot of the recall performance metric for all models over the test image set.
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Figure 5.9 – Bar plot of the F1-score performance metric for all models over the test image set.

performance to one another, with affine transforms achieving the best performance across

all performance metrics.

Also, as expected, it is hard to draw any conclusions about the impact of data

augmentation by inspecting only performance metrics; to that end, we will have to analyze

the CAM metrics. In the following sections, we will inspect these metrics individually.

5.2.2 Overlap Rate (Top 20, Top 10, Top 5)

In this section we will show boxplot and correlation map results for the overlap

rate metric. In Figure 5.10, we show the results for overlap rate with a threshold of

Y = 20, and in Figure 5.11 we show the correlation map across augmentations for overlap

rate with Y = 20. We do the same for Y = 10 (Figure 5.12 for the boxplot, Figure 5.13

for the correlation map) and for Y = 5 (Figure 5.14 showing the boxplot, Figure 5.15

showing the correlation map).

Analyzing the differences between overlap rate boxplots, we can see that as the

importance threshold increases (and Y lowers from 20 (Figure 5.10) to 10 (Figure 5.12)

to 5 (Figure 5.14)), the observed overlap rate lowers for all augmentations. This behav-

ior indicates that, although the augmented models may consider similar image regions

to be similarly important overall, they focus on different parts of the image as we filter

out the less important regions of the CAMs. This result is not necessarily unexpected,
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Figure 5.10 – Boxplot for overlap rate with threshold Y = 20, showing the distribution of the
metric values over the test set for each augmentation.

Figure 5.11 – Correlation map for overlap rate with threshold Y = 20, showing the correlation of
the metric between augmentations over the test set.
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Figure 5.12 – Boxplot for overlap rate with threshold Y = 10, showing the distribution of the
metric values over the test set for each augmentation.

Figure 5.13 – Correlation map for overlap rate with threshold Y = 10, showing the correlation of
the metric between augmentations over the test set.
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Figure 5.14 – Boxplot for overlap rate with threshold Y = 5, showing the distribution of the
metric values over the test set for each augmentation.

Figure 5.15 – Correlation map for overlap rate with threshold Y = 5, showing the correlation of
the metric between augmentations over the test set.
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but it is worth noting as it quantitatively confirms that when considering the most signifi-

cant minutiae of an image, augmented models consider different image regions as highly

important towards their classification compared to the baseline.

When compared to the Top 20% correlation map (Figure 5.11), we can also see

that the Top 5% overlap rate correlation map (Figure 5.15) has lower correlation values

across augmentations, with the majority of them being at or below 0.5. This observation

may indicate that not only do augmented models look at different regions to the baseline

model, but how these important regions overlap with the baseline may also differ between

augmentations. This observation is supported by the fact that if all augmented model

CAMs were to, on average, differ from the baseline ones in the same ways, we could

expect their correlation levels to be significantly higher, which does not happen. This

observation could be made qualitatively by inspecting many different samples of CAMs,

but through this method, we can confirm that this analysis holds throughout the entirety

of the dataset in a quantitative manner without the need for a human to compare the maps

individually.

5.2.3 Pearson and Spearman correlations

In this section, we will present and discuss boxplot and correlation map results

across augmentations for the Pearson and Spearman correlation metrics. Figure 5.16

shows the boxplot for Pearson correlation, and Figure 5.17 shows the correlation map for

the metric across augmentations. Figure 5.18 shows the distribution plot for Spearman

correlation, and Figure 5.19 shows its correlation map.

For the Spearman and Pearson metric distributions (Figure 5.18, Figure 5.16), we

notice a moderate correlation between the baseline and augmented CAMs. Note that

while a large portion of the population presents correlations between baseline and aug-

mented CAMs above 0.5 for both the Pearson (Figure 5.16) and Spearman (Figure 5.18)

boxplots, the median line for all augmentations is below that value, indicating only mod-

erate correlation. We also note that a significant amount of augmented model CAMs have

an inverse correlation to baseline CAMs, which indicates that, for those images, when

the activation for a region rises in baseline, the activation for that region lowers in the

augmented model, and vice versa. One notable observation from the correlation map for

Pearson across augmentations (Figure 5.17) is that all augmentations have lower Pear-

son correlation metric values across augmentations on average compared to their Spear-
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Figure 5.16 – Boxplot for Pearson Correlation Coefficient, showing the distribution of the metric
values over the test set for each augmentation.

Figure 5.17 – Correlation map for Pearson Correlation Coefficient, showing the correlation of the
metric between augmentations over the test set.
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Figure 5.18 – Boxplot for Spearman Correlation Coefficient, showing the distribution of the
metric values over the test set for each augmentation.

Figure 5.19 – Correlation map for Spearman Correlation Coefficient, showing the correlation of
the metric between augmentations over the test set.
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Figure 5.20 – Boxplot for Mean Absolute Difference, showing the distribution of the metric
values over the test set for each augmentation.

man correlation metrics (Figure 5.19). This can also be evidenced in the, on average,

lower values between the Pearson metric distributions (Figure 5.16) and their Spearman

metric counterparts (Figure 5.18). This observation indicates that the correlation these

augmented model CAMs have to baseline is more alike in monotonicity than in terms of

linear relationship.

5.2.4 Mean Absolute Difference and Mean Squared Difference

In this section, we share the results for the MAD e MSD metrics. Figure 5.20

shows the boxplot of MAD, while Figure 5.21 shows the correlation map for MAD. For

MSD, Figure 5.22 shows its boxplot and Figure 5.23 shows its correlation map.

We can discern from the MSD (Figure 5.22) and MAD (Figure 5.20) boxplots that

when the CAMs differ between baseline and augmentation, the average magnitude of the

pixel value difference follows similar trends throughout augmentations. None of the aug-

mentations show a significant increase or decrease in their metric distributions compared

to the others. One observation to note is that all the augmentation pairs in the correlation

maps across augmentations (Figure 5.21 for MAD, Figure 5.23 for MSD) present moder-

ate correlations (around 0.5 and 0.6), which implies that the magnitude of difference be-

tween CAM and baseline maps is correlated throughout the augmentations. Considering

both observations, they indicate that, in general, the mean magnitude of pixel activation
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Figure 5.21 – Correlation map for Mean Absolute Difference, showing the correlation of the
metric between augmentations over the test set.

Figure 5.22 – Boxplot for Mean Squared Difference, showing the distribution of the metric
values over the test set for each augmentation.
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Figure 5.23 – Correlation map for Mean Squared Difference, showing the correlation of the
metric between augmentations over the test set.

differences between baseline and augmented model CAMs is not high across all augmen-

tations for each test image. Moreover, considering these two metrics for each image, we

note that these values covary positively and with moderate force between augmentation

pairs.

5.2.5 Class Prediction Kullback-Leibler Divergence

Lastly, we display the results for the Class-KLD metric. Figure 5.24 shows the

boxplot for the metric and Figure 5.25 shows its correlation map.

Class-KLD proved a hard metric to interpret. Due to the large amount of outliers,

the visual density of the outliers, and most of the prediction metric values falling very

close to one another, the boxplot (Figure 5.24) becomes convoluted and hard to analyze.

An observation we can make from the boxplot is that most of the values for all augmenta-

tions tend to fall within the 0 to 1 range, which indicates that the class predictions made by

the augmented models do not stray very far from those of the baseline models on average.

We note that although augmentation methods alter the importance attributed by
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Figure 5.24 – Boxplot for Class-KLD, showing the distribution of the metric values over the test
set for each augmentation.

Figure 5.25 – Correlation map for Class-KLD, showing the correlation of the metric between
augmentations over the test set.
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the last convolutional layer to the image pixels, the resulting models generate classifi-

cation probability distributions that, in general, have a Class-KLD value in a relatively

small range (even if the outliers are numerous). To examine this fact and the previous

observation, it is important to remember that the final convolutional layer of our chosen

architecture is followed by classification layers. This aspect of EfficientNet B0 suggests

that these classification layers can approximate the resulting probabilities of the network

in a relatively similar way between baseline and augmented models, even with the differ-

ences observed in the final convolutional layer through some of the CAM metrics (such

as the overlap rate with a threshold of Y = 5 as seen in Figure 5.14 and Figure 5.15). We

also note that this behavior holds across all augmentations for Class-KLD due to the high

correlation values between all augmentation pairs (Figure 5.25).

5.2.6 General Analysis

As we can see from the metric distribution boxplots (Figure 5.10, Figure 5.12,

Figure 5.14, Figure 5.16, Figure 5.18, Figure 5.20, Figure 5.22, Figure 5.24), although

they enable general analyses of the behavior of all augmentations, their individual results

are similar across augmentations. This fact makes it challenging to discern meaningful

differences between the behaviors of the augmentations by visual analysis of the boxplots

alone; this is partly due to the boxplot distribution analysis not lending itself to image-

by-image metric comparisons between the augmentations, but allowing only aggregate

analyses. The augmentations behave very similarly to one another in these aggregate

comparisons, and the correlation maps do not immediately provide much direct insight

either. We also investigated segmenting the metric results for each augmentation, seg-

menting them by cases where both baseline and augmented models predicted the target

label correctly, cases where both models classified the image incorrectly, and cases where

one model predicted correctly while the other predicted an incorrect class. We did not

identify any tendencies that could help us further differentiate behavior between augmen-

tations through this method. A discussion about and some examples of these investiga-

tions can be found in Appendix C.

In the course of this work, we also conducted qualitative explorations into the

CAMs across augmentations. The purpose was to gain a better idea of what the extremes

for each metric would look like but they ultimately did not contribute insights to the

analyses we made in our experiment, even if they do provide a good visualization of
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what differences in CAMs can look like. Some of the results we obtained can be seen in

Appendix A.

Although hard to analyze, the differences in correlation across augmentations im-

ply that augmentations present different behaviors. For example, the correlation for over-

lap rate with higher granularity (Figure 5.15) is significantly lower than for lower granu-

larity (Figure 5.11). This observation indicates that this aspect of the relationship between

augmentations follows less of a linear relationship than MAD (Figure 5.21), MSD (Fig-

ure 5.23), Pearson (Figure 5.17), and Spearman (Figure 5.19) correlation maps would

indicate. In fact, as mentioned earlier, when focusing on general differences between

CAMs, the correlation between augmented models and baseline is higher, but when fo-

cusing on the most significant regions for each augmentation, their correlation score is

lower, which could indicate different patterns of behavior at scale.

We note that when analyzing the correlation maps in absolute terms, we observe

that the correlation values are not significantly different across pairs. MAD’s correlation

map (Figure 5.21), for example, has a minimum correlation between augmentations of

0.58 and a maximum of 0.67, which means the range of variation between correlation

values is low. Additionally, in most metrics, the correlation maps score above 0.5, indi-

cating moderate correlations between augmentations for those metrics.

Even though the absolute correlation values are not remarkably different, another

analysis we can attempt is a relative one. By evaluating which pairs of augmentations

are the most and least correlated across all metrics, supposing the existence of behavior

profiles, then specific augmentation pairs should consistently score highly, while oth-

ers would consistently score lower. To measure this, we count the number of times an

augmentation pair is among the most strongly or most weakly correlated pair of augmen-

tations across the correlation maps for each metric. For each CAM metric, if we count

the four most and least correlated pairs for each metric’s correlation map across aug-

mentations and then aggregate the number of times those pairs appear across all metrics’

correlation maps, we will have a relative analysis of the correlations. Following these

steps, we get Table 5.1 for the count of strongest pairs, and Table 5.2 for the count of

weakest pairs.
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Table 5.1 – Frequency table counting how many times each pair of augmentations appeared in the
top four most strongly correlated augmentation pairs across all metrics’ correlation maps

Color Jitter - Affine Transform 6
Cutmix - Affine Transform 6
Cutmix - Color Jitter 5
Gaussian Blur - Elastic Transform 5
Color Jitter - Elastic Transform 3
Gaussian Blur - Random Cropping 2
Color Jitter - Equalization 1
Gaussian Blur - Elastic Transform 1
Random Crop - Affine Transform 1
Random Crop - Equalization 1
Random Crop - Elastic Transform 1

Table 5.2 – Frequency table counting how many times each pair of augmentations appeared in the
top four most weakly correlated augmentation pairs across all metrics’ correlation maps

Gaussian Blur - Cutmix 8
Cutmix - Equalization 7
Affine Transform - Equalization 5
Gaussian Blur - Affine Transform 3
Cutmix - Elastic Transform 2
Cutmix - Random Cropping 2
Gaussian Blur - Equalization 2
Cutmix - Color Jitter 1
Cutmix - Affine Transform 1
Color Jitter - Affine Transform 1

Analyzing the table for strongest correlations (Table 5.1), we can tell that Cutmix-

Affine appears in the top 4 most strongly correlated for 6 out of 8 metrics, Cutmix-Color

Jitter appears 5 out of 8 times, and Color Jitter-Affine Transform appears 6 out of 8 times,

with Gaussian Blur-Elastic Transform appearing 7 out of 8 times as well. This data points

to Cutmix, Affine Transform, and Color Jitter having stronger correlations across the trio,

possibly suggesting the existence of a sort of cluster of augmentation behaviors and that

Gaussian Blur and Elastic Transform constitute another cluster or profile of impact. An-

alyzing the most weakly correlated pairs (Table 5.2), Gaussian Blur-Cutmix and Cutmix-

Equalization are the least correlated pairs, with Gaussian Blur-Cutmix appearing 8 out of

8 times, Cutmix-Equalization appearing 7 out of 8, and Affine Transform-Equalization 5

out of 8 times. This observation supplements the earlier observation by suggesting that

this Cutmix cluster and the Gaussian cluster have the weakest correlation among them
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and additionally implying that Equalization may be its own cluster due to it appearing in

the four most weakly correlated pairs with both Gaussian and Cutmix 3 and 7 times out

of 8, respectively.
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6 CONCLUSION

In this work, our goal was to investigate a possible methodology to work with

CAMs at scale for the purpose of data augmentation impact analysis. By proposing a

generic series of steps and then applying them to a specific set of configurations, we have

shown an initial exploration of how one may utilize this methodology, as well as the type

of results it may be able to generate.

Metric distribution plots and correlation plots, for our specific selection of met-

rics, seem apt for generating data about the augmentations as a group. We find that for

overlap rate, the metric values get lower as the augmented models become more sensitive

to different regions of the test images. The models also do not correlate strongly with each

other through their overlap rate, and the correlation diminishes with an increase in region

importance. Through MSD and MAD, we note that the average difference between aug-

mented and baseline CAMs tends to follow the same distribution for all augmentations.

They also present a moderate correlation (roughly in the range of 0.5 to 0.6) between aug-

mentations and indicate that the augmentations are alike in the magnitude of differences

between augmented and baseline CAMs. The Pearson and Spearman metrics show a me-

dian correlation at or below the moderate correlation zone for all augmentations, meaning

more than half of the CAMs do not have evidence of significant correlation or similarity

between augmented and baseline model CAMs, but neither do they have evidence of low

or insignificant correlation. They have some correlation, but it is hard to extract informa-

tion from this observation alone. Lastly, although Class-KLD metric distributions strug-

gle to yield observations by themselves, when combined with the Class-KLD correlation

maps they suggest that the dense classification layers of a model are able to approximate

the image classification probability distribution in a similar way across augmentations

and test images, even if the final convolutional layer contributes different importances for

image regions between augmentations.

Although these techniques may be able to produce observations on the behavior

of augmentations as groups, they struggle to generate observations about the behaviors

of individual data augmentation methods. We note that there are indications of clusters

of techniques with higher correlations with one another, but the absolute differences in

the correlation values are small. It may be the case that the set of metrics we chose may

not fully capture some significant aspect of the differences between CAM or that the data

augmentation techniques themselves have a harder-to-measure impact on model behavior
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than other aspects of model training. Additional work could also be conducted with our

experiment to analyze and gauge possible impacts of image bias in the model CAMs

induced by the CIFAR-10 dataset, as we did not test the models against other datasets.

The methodology presented in this work provides an initial, generic, scalable se-

ries of steps that allow for quantitative exploration of behavioral aspects in the relationship

between data augmentation techniques. Impacts on model behavior, in general, are not

trivial to analyze. Although our work struggled to investigate the effects of data augmen-

tation on an individual level, the steps delineated in this work constitute a method usable

with other metrics, other augmentation methods, other datasets, and for purposes other

than analyzing the impact of data augmentation. The purpose of the methodology is to

provide a modifiable way to investigate model behavior through CAMs that also provides

adaptability to examine other sources of impact different from data augmentation.

Future works could expand on this work and its methodology by focusing on dif-

ferent aspects of it. Utilizing other analysis techniques over the metrics, such as clustering

analysis techniques, we may consider characteristics of the augmentation methods as fea-

tures to investigate groupings of methods with similar characteristics. Another type of

future work would be to use datasets that have some ground truth for important image

regions, allowing the analysis of differences between CAMs and ground truth. Other

works could explore different convolutional architectures and datasets, other techniques

to determine the importance of pixels and investigate the impact of applying multiple data

augmentation techniques used in conjunction instead of individually, comparing CAMs

between augmented models directly instead of through a baseline, or other analysis met-

rics to measure CAM similarities. These investigations can reveal different insights into

the relationships between important image regions and different aspects of the learning

process for CNNs.
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APPENDIX A — CAM EXAMPLES

In this section, we share some of the CAMs we obtained after training. To gener-

ate these qualitative analyses of CAM images, we analyzed the metric values of all aug-

mentations to find the test images whose CAM metrics had the highest mean or standard

deviation across augmentations. These grid comparisons between CAMs help us visual-

ize the extremes for each metric, as well as have a better idea of what CAM differences

might visually look like.

Figure A.1 shows the CAM comparison for the image with the highest mean for

overlap rate (20), Figure A.2 for highest standard deviation for overlap rate (20), Fig-

ure A.3 for highest mean for overlap rate (10), Figure A.4 for the highest standard devi-

ation for overlap rate (10), Figure A.5 for highest mean for overlap rate (5), Figure A.6

for the highest standard deviation for overlap rate (5), Figure A.7 shows this comparison

for the image with highest mean Pearson Correlation, Figure A.8 does so for the highest

standard deviation for Pearosn Correlation, Figure A.9 for highest mean Spearman Corre-

lation, Figure A.10 for highest standard deviation for Spearman Correlation, Figure A.11

shows the same comparison for the image with the highest mean MAD, Figure A.12 does

so for the highest standard deviation for MAD, Figure A.13 shows the comparison for

highest mean MSD, Figure A.14 does so for the highest standard deviation for MSD,

Figure A.15 shows the comparison for highest mean Class-KLD, and Figure A.16 shows

the CAM comparison for the image with highest standard deviation for the Class-KLD

metric.
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Figure A.1 – Grid comparing the model CAMs for the test image that produced the highest mean
for the overlap rate (20) metric across all test images and augmentations.
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Figure A.2 – Grid comparing the model CAMs for the test image that produced the highest
standard deviation for the overlap rate (20) metric across all test images and augmentations.
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Figure A.3 – Grid comparing the model CAMs for the test image that produced the highest mean
for the overlap rate (10) metric across all test images and augmentations.
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Figure A.4 – Grid comparing the model CAMs for the test image that produced the highest
standard deviation for the overlap rate (10) metric across all test images and augmentations.
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Figure A.5 – Grid comparing the model CAMs for the test image that produced the highest mean
for the overlap rate (5) metric across all test images and augmentations.
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Figure A.6 – Grid comparing the model CAMs for the test image that produced the highest
standard deviation for the overlap rate (5) metric across all test images and augmentations.
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Figure A.7 – Grid comparing the model CAMs for the test image that produced the highest mean
for the Pearson Correlation metric across all test images and augmentations.
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Figure A.8 – Grid comparing the model CAMs for the test image that produced the highest
standard deviation for the Pearson Correlation metric across all test images and augmentations.
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Figure A.9 – Grid comparing the model CAMs for the test image that produced the highest mean
for the Spearman Correlation metric across all test images and augmentations.
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Figure A.10 – Grid comparing the model CAMs for the test image that produced the highest
standard deviation for the Spearman Correlation metric across all test images and augmentations.
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Figure A.11 – Grid comparing the model CAMs for the test image that produced the highest
mean for the MAD metric across all test images and augmentations.
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Figure A.12 – Grid comparing the model CAMs for the test image that produced the highest
standard deviation for the MAD metric across all test images and augmentations.



71

Figure A.13 – Grid comparing the model CAMs for the test image that produced the highest
mean for the MSD metric across all test images and augmentations.
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Figure A.14 – Grid comparing the model CAMs for the test image that produced the highest
standard deviation for the MSD metric across all test images and augmentations.
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Figure A.15 – Grid comparing the model CAMs for the test image that produced the highest
mean for the Class-KLD metric across all test images and augmentations.
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Figure A.16 – Grid comparing the model CAMs for the test image that produced the highest
standard deviation for the Class-KLD metric across all test images and augmentations.
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APPENDIX B — CONTROLLING UNDESIRED SOURCES OF IMPACT

As we are interested solely in analyzing the effects of data augmentation, part of

our work consisted of controlling for undesired sources of impact during the construction

of the augmented datasets and the training of our models, such that the impact differences

we observed would come only from the data augmentation methods.

To accomplish this, we first needed to ensure that the algorithms from the neu-

ral network libraries we used behaved deterministically. To do so, we explicitly turned

off non-deterministic behavior in both PyTorch and CUDA libraries, but to guarantee

that other random generation functionality present in the augmentations behaved deter-

ministically, we also manually seeded Numpy, Random, Torch, and Torchvision libraries

wherever needed, including during the instantiation of the initial weights for the mod-

els. Additionally, when using Torch dataloaders to load batches of data from the datasets,

the shuffle functionality was turned off, guaranteeing that models would load batches of

images in the order they appear in the respective dataset.

After ensuring that these impact sources were controlled for, the next element that

needed looking into was the construction of the augmented datasets and the ordering of

the images therein. Although it would be impossible to control the image content of the

datasets, as each augmentation will generate its own set of augmented images, it was

important to control the order in which the images were ordered inside of the dataset.

As mentioned previously, every model uses the same train-validation split based

on the training part of the CIFAR10 dataset. Of the 50,000 training images, 45,000 are

used for training and 5,000 for validation of each epoch. Once we establish the baseline

train dataset, an initial, purely augmented dataset is instantiated from the baseline dataset

by generating one augmented image for every baseline image.

This process generates images in the order they appear in the baseline dataset,

such that the 45,000 augmented images follow the same indexing order as the baseline,

making it so that an image with index 42 in the augmented dataset will use the image with

index 42 of the baseline dataset as the source for its augmentation.

For each augmentation method, we then concatenate the augmented images onto a

copy of the baseline dataset for a total of 90,000 training images in this augmented dataset.

After this, we shuffle the 90,000 images according to a specific, separate, stable seed. The

seed used for this sampling is the same for every augmentation method, ensuring that the

image index order will be the exact same across all augmented datasets. Note that the
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sampling seed is separate from the starting state seeds.
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APPENDIX C — SEGMENTED RESULTS

Segmentation of the metric results was motivated by an issue we predicted could

arise from the choice of using the predicted label for Grad-CAM instead of the ground

truth label. Given that it would be reasonable to suppose each class has its own potentially

distinct identifying features, if two different models predicted different labels for a given

image, then it would be reasonable to expect their CAMs to be more dissimilar than

they would be if they’d both predicted the same class. This case would be worrisome

insofar as it could add hard-to-interpret data points into the CAM metric distributions. If,

for example, two models predicted a large number of test images incorrectly, and both

models made different predictions from one another at every step, then we could expect

the metric results to be significantly different from each other, and it could become hard

to analyze the differences in their patterns.

To measure the impact of these cases, we ran experiments segmenting our results

into combinations of both models being correct, one model predicting correctly and the

other being wrong, as well as both being wrong and found the impact of these cases on

the metric distributions to be minimal for all metrics. As the boxplots for these results are

numerous and do not show different patterns across metrics, we show a selection of these

segmented boxplots for one specific metric and all augmentations.

Figure C.1 shows the segmented boxplot for affine transform method, Figure C.2

shows it for color jitter, Figure C.3 for cutmix, Figure C.4 for elastic transform, Figure C.5

for equalization, Figure C.6 for Gaussian blur, and Figure C.7 for random cropping



78

Figure C.1 – Segmented boxplot for Affine Transform and Overlap Rate (20), showing the
distribution of the metric values across segmentations.

Figure C.2 – Segmented boxplot for Color Jitter and Overlap Rate (20), showing the distribution
of the metric values across segmentations.
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Figure C.3 – Segmented boxplot for Cutmix and Overlap Rate (20), showing the distribution of
the metric values across segmentations.

Figure C.4 – Segmented boxplot for Elastic Transform and Overlap Rate (20), showing the
distribution of the metric values across segmentations.
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Figure C.5 – Segmented boxplot for Equalization and Overlap Rate (20), showing the distribution
of the metric values across segmentations.

Figure C.6 – Segmented boxplot for Gaussian Blur and Overlap Rate (20), showing the
distribution of the metric values across segmentations.
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Figure C.7 – Segmented boxplot for Random Cropping and Overlap Rate (20), showing the
distribution of the metric values across segmentations.
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