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Abstract: Paracoccidioidomycosis (PCM) is a systemic mycosis that is diagnosed by visualizing
the fungus in clinical samples or by other methods, like serological techniques. However, all PCM
diagnostic methods have limitations. The aim of this study was to develop a diagnostic tool for
PCM based on Fourier transform infrared (FTIR) spectroscopy. A total of 224 serum samples were
included: 132 from PCM patients and 92 constituting the control group (50 from healthy blood donors
and 42 from patients with other systemic mycoses). Samples were analyzed by attenuated total
reflection (ATR) and a t-test was performed to find differences in the spectra of the two groups. The
wavenumbers that had p < 0.05 had their diagnostic potential evaluated using receiver operating
characteristic (ROC) curves. The spectral region with the lowest p value was used for variable
selection through principal component analysis (PCA). The selected variables were used in a linear
discriminant analysis (LDA). In univariate analysis, the ROC curves with the best performance were
obtained in the region 1551–1095 cm−1. The wavenumber that had the highest AUC value was
1264 cm−1, achieving a sensitivity of 97.73%, specificity of 76.01%, and accuracy of 94.22%. The total
separation of groups was obtained in the PCA performed with a spectral range of 1551–1095 cm−1.
LDA performed with the eight wavenumbers with the greatest weight from the group discrimination
in the PCA obtained 100% accuracy. The methodology proposed here is simple, fast, and highly
accurate, proving its potential to be applied in the diagnosis of PCM. The proposed method is more
accurate than the currently known diagnostic methods, which is particularly relevant for a neglected
tropical mycosis such as paracoccidioidomycosis.

Keywords: paracoccidioidomycosis; Fourier transform infrared spectroscopy; photodiagnosis; ROC
curve; linear discriminant analysis; systemic mycosis

1. Introduction

Paracoccidioidomycosis (PCM) is a systemic granulomatous mycosis caused by ther-
modimorphic fungi of the genus Paracoccidioides. PCM is endemic in Latin America, from
Mexico to Argentina. Approximately 80% of cases occur in Brazil, which has areas of
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high endemicity in the Southeast, South, and Center-West regions, with progression in
the North region [1,2]. For many years, it was believed that the genus Paracoccidioides
was composed of just one species, P. brasiliensis. However, with the advent of molecular
techniques, it became clear that the genetic diversity of the genus was much greater than
initially speculated. Therefore, it is currently thought that there are at least five species
of the genus Paracoccidioides that can cause PCM: P. brasiliensis, P. lutzii, P. restrepiensis,
P. venezuelensis, and P. americana [3,4]. P. brasiliensis is the most widely distributed species
on the South American continent, followed by P. lutzii and P. americana. P. restrepiensis and
P. venezuelensis have a more restricted distribution, mainly in Colombia and Venezuela,
respectively, with some scattered cases in Argentina, Brazil, Peru, and Uruguay [5].

These fungi grow saprophytically as mycelium in the soil; however, due to the diffi-
culty of their isolation from nature, their habitat is little known. The infection is acquired by
inhaling fungal propagules present in the bioaerosol, which pass through the respiratory
tract and reach the lungs, one of the main organs affected in PCM. If the immune response
is insufficient, the fungus proliferates and spreads to other organs in the body via the
lymphatic system and the hematogenous route. Other areas of the body commonly affected
are the mucous membranes of the upper aerodigestive tract, the skin, and the adrenal
glands [1,2].

The diagnosis and adequate treatment of PCM are essential, as it is highly related
to several sequelae. It is estimated that at least 60% of patients with the chronic form of
PCM will develop pulmonary fibrosis, the main sequela related to PCM [6]. The “gold
standard” for PCM diagnosis is the visualization of the fungus in clinical samples, especially
through direct examination with microscopy [7]. Other possibilities are through biopsy and
histopathology and/or the isolation and cultivation of the fungus from clinical samples.
However, these methods of conventional microbiological diagnosis from clinical samples
may present low sensitivity and be time-consuming, in addition to the frequent difficulty in
obtaining samples [8]. Another possibility is serological diagnostics, performed mainly with
the double immunodiffusion (DID) technique. However, the lack of standardization of the
technique and of the preparation of the antigens leads to discordant results. Furthermore,
it is known that different species of the genus Paracoccidioides have different antigenic
profiles; however, most tests are performed with P. brasiliensis antigens, which can lead to a
considerable number of false negative results [9,10]. Last but not least, there is the possibility
of a cross-reaction with other systemic mycoses such as histoplasmosis, aspergillosis, and
cryptococcosis, with false positive results for PCM [11]. This risk can be minimized, but
not excluded, with the standardization of the antigens used in tests [1].

Therefore, there is a need to develop new diagnostic methods, with an emphasis on
some technologies, such as Matrix-Assisted Laser Desorption Ionization Time Of Flight
Mass Spectrometry (MALDI-TOF) and Fourier transform infrared spectroscopy (FTIR).
MALDI-TOF has a wide possibility of use in infectious diseases, and is used for identifying
different species of bacteria and fungi [12]. For PCM, MALDI-TOF has already been
successfully used to differentiate between the species P. brasiliensis and P. lutzii [13]. In
addition to MALDI-TOF, FTIR has gained prominence in medicine for the diagnosis of
several diseases. This technique provides qualitative and quantitative information on
the compounds present in a sample, through the interaction of infrared radiation with
the chemical bonds present in these compounds. In this way, a spectrum is generated
that contains the fingerprint of the sample [14]. To validate FTIR data as a diagnostic
tool, complex tools based on multivariate statistics (chemometrics) are mostly used, with
the use of supervised classification methods [15]. FTIR has already been used for PCM
diagnosis, using the machine learning algorithms discriminant analysis (DA), k-nearest
neighbor (KNN), support vector machine (SVM) [16], and orthogonal partial least squares
discriminant analysis (OPLS-DA) [17].

Here, we are proposing the use of FTIR spectroscopy, univariate statistics, and linear
discriminant analysis (LDA) to differentiate the serum of patients with PCM from that of
healthy individuals and patients with other systemic mycoses, in the same model. The
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main advantage here in relation to other studies that have already used FTIR to diagnose
PCM is the careful selection of variables for multivariate modelling, developing a more
robust model and showing its potential as a rapid diagnostic tool for PCM.

2. Materials and Methods
2.1. Serum Samples

A total of 224 retrospective serum samples from a repository at the School of Medicine
of Botucatu, Universidade Estadual de São Paulo (UNESP), were analyzed. Of these,
132 samples were from patients with paracoccidioidomycosis treated at the Infectious
Diseases Service of the School of Medicine of Botucatu (UNESP), from the Botucatu region,
São Paulo, Brazil. The cases were confirmed and diagnosed after clinical suspicion, followed
by visualization of the fungus of the genus Paracoccidioides in clinical samples, by direct
mycological examination and/or culture and/or histopathology and/or cytopathology by
cyto-inclusion [1]. These 132 samples constituted the group called PCM.

The other 92 serum samples consisted of the control group: 50 from healthy blood
donors without suspected PCM at the Botucatu Blood Center, from the same region of
origin as the PCM patients; 24 from patients with aspergillosis; 10 from patients with
cryptococcosis; and 8 from patients with histoplasmosis. These other systemic mycoses can
be confused with PCM in diagnostic tests that use serum, which justifies the importance of
their inclusion in this study in the control group.

2.2. FTIR/ATR Analysis

Serum samples were analyzed in triplicate by attenuated total reflection (ATR) on
a Spectrum 400 FT-IR/FT-NIR (Perkin Elmer, Waltham, USA) spectrometer, coupled to
standard a Universal ATR Sampling Accessory (UATR, Perkin-Elmer Inc.; Registration
number L1250050). Triplicates of 1 µL of each sample were deposited on the crystal of the
instrument and dehydrated in an airstream (60–65 ◦C) for one minute. The acquisition
range was from 4000 to 650 cm−1 using the spectral resolution of 4 cm−1 and 8 scans.
Between the spectral acquisitions of each of the serum samples and their triplicates, a blank
acquisition was performed under the same conditions.

2.3. Statistical Analysis

For univariate analyses, the average spectrum of each serum sample was obtained after
vector normalization of the replicates in a Microsoft Excel spreadsheet (2019). The analyses
were conducted in the software OriginPro 2018 (OriginLab, Northampton, MA, USA).

Initially, a t-test with a significance level of 0.05 was performed between the PCM group
and the control group, to determine which wavenumbers differentiate the serum of patients
with PCM from the other serum samples [18]. To verify its diagnostic potential, receiver
operating characteristic (ROC) curves were generated for all wavenumbers individually, in
the segments of the spectra that presented p < 0.05 in the t-test. The ROC curves with the
best performance were chosen by analyzing the values of the area under the curve (AUC).
The optimal cut points of the chosen ROC curve were determined according to the Youden
index (J) [19], and the sensitivity and specificity parameters were determined considering
these cut points.

For multivariate analyses, the average spectrum of each serum sample was obtained
after the application of the 1st derivative (5 points), followed by vector normalization [15].
The analyses were conducted in the software The Unscrambler® X 10.4 (Camo Analytics,
Bedford, MA, USA).

Initially, a principal component analysis (PCA) with mean-centering was performed to
reduce data dimensionality and select variables. For PCA, instead of using the full spectrum,
a spectral range of 1551–1095 cm−1 was used, which was selected in the univariate analysis
because it presented the highest AUC values in the ROC curve analysis. Therefore, PCA
was used as a second step for variable selection. The wavenumbers that best discriminated
the groups (PCM and control) in the PCA loadings were selected for the development of a
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classification model based on linear discriminant analysis (LDA). For LDA, the total dataset
(n = 224) was systematically divided into a 1:1 ratio into a training set and prediction
set, resulting in 112 serum samples in each set. The performance of the LDA model for
diagnosing PCM was evaluated by parameters of sensitivity, specificity, and accuracy,
obtained through the classification of the samples from the prediction set.

3. Results

The average spectra of the serum samples from the patients with PCM and the control
group are shown in Figure 1. The main regions of the spectra are related to proteins and
lipids, and the main bands are amide I and amide II, at approximately 1652 cm−1 and
1543 cm−1, respectively [20].

Figure 1. Average Fourier transform infrared (FTIR)/attenuated total reflection (ATR) spectra of
serum from the 92 samples of the control group and from the 132 samples of the paracoccidioidomy-
cosis (PCM) group. Averaging from each group was obtained by calculating the arithmetic mean of
absorption for each frequency of the three vector-normalized spectra from each sample, followed by
the arithmetic mean of all the samples from the group. The colors represent broad examples of blood
serum constituents, based on Gray et al. (2018) [21]; they are not necessarily the only components
that show absorption in that region of the spectrum.

Several wavenumbers of the spectra had statistically significant differences (p < 0.05)
in terms of their absorbance in the two groups analyzed (Figure 2A). The main regions, with
the lowest p values, were 3700–2965 cm−1, mainly related to proteins, and 1551–1095 cm−1,
mainly related to proteins, lipids, and phospholipids (Figures 2B and 2C, respectively).
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Figure 2. t-test performed between the averages of the spectra of the 92 serum samples of the
control group and the 132 serum samples of the paracoccidioidomycosis (PCM) group, showing the
main differences between the groups. Averaging from each group was obtained by calculating the
arithmetic mean of absorption for each frequency of the three vector-normalized spectra from each
sample, followed by the arithmetic mean of all the samples from the group. (A) Spectrum regions that
had p < 0.05 in the t-test; (B) 3700–2965 cm−1 region enlarged, showing the differences between the
two groups and the main bands found; (C) 1551–1095 cm−1 region enlarged, showing the differences
between the two groups and the main bands found.
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The diagnostic potential of the wavenumbers with p < 0.05 was evaluated using
the ROC curve. This curve is a graphical plot of the sensitivity versus the (1-)specificity,
determining several possible cut points for the test. The AUC is equivalent to test accuracy;
the closer to 1, the greater the accuracy. From the ROC curve, it is possible to determine
a cut point that maximizes the accuracy of the diagnostic test [22]. The ROC curves with
the best performance were obtained in some of the wavenumbers in the region from 1551
to 1095 cm−1. All other spectral regions, even with p < 0.05 in the t-test (Figure 2A), had
low AUC values, indicating that they do not have a good diagnostic potential for PCM
(Table 1).

Table 1. Area under the curve (AUC) obtained in the individual ROC curves developed with all
wavenumbers which had p < 0.05 in the t-test, comparing the spectra of the 92 serum samples from
the control group and the 132 samples from the paracoccidioidomycosis (PCM) group. The control
group is composed of serum from 50 healthy blood donors, 24 patients with aspergillosis, 10 patients
with cryptococcosis, and 8 patients with histoplasmosis. Data are represented in spectrum ranges
and AUC ranges for better data visualization.

Interval (cm−1) AUC–ROC Curve (Range)

3813–2965 0.11512–0.47785
2932–2908 0.62459–0.65514
2869–2843 0.65201–0.68248
1752–1742 0.60713–0.62731
1726–1686 0.35787–0.48271
1664–1638 0.61421–0.73814
1630–1594 0.21665–0.50091
1571–1556 0.31308–0.48295
1551–1095 0.57617–0.94219
1041–1032 0.39295–0.40110
1027–846 0.29076–0.37039
830–715 0.32633–0.37788

Abbreviations: AUC—area under the curve; ROC—receiver operating characteristic.

In the region of 1551–1095 cm−1, the wavenumber that had the highest AUC value was
1264 cm−1, with an AUC of 0.94219 and p < 0.0001. The optimal cut point was defined at
≤0.02433, resulting in a sensitivity of 97.73%, specificity of 76.01%, and accuracy of 94.22%
(Figure 3).

In the multivariate analysis, a total separation of the groups was obtained in the PCA
performed with a spectral range of 1551–1095 cm−1 (Figure 4A). PC1 and PC2 represented
99% of the variance of the original data, with PC1 alone representing 97% of the variance,
due to the high correlation of the original variables in the spectral range used. PC1 was
responsible for separating the groups, and the variables with the greatest weight in group
discrimination were 1490, 1491, 1497, and 1498 cm−1 for PCM and 1405, 1406, 1407, and
1488 cm−1 for the control group (Figure 4B).

Linear discriminant analysis (LDA), performed with the eight wavenumbers with
the greatest weight from the group discrimination in the PCA, obtained 100% sensitivity,
specificity, and accuracy, both in the training set and in the prediction set (Figure 5A,B).
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Figure 3. Potential of the wavenumber 1264 cm−1 to differentiate between the spectra of the serum
samples from the control group (92 samples) and the serum samples from the paracoccidioidomycosis
(PCM) group (132 samples). (A) Receiver operating characteristic (ROC) curve developed considering
the wavenumber 1264 cm−1, with its respective parameters, including the area under the curve (AUC);
the dot represents the selected cut point, defined based on the Youden index (J); (B) classification of
samples from the control group (n = 92) and from the paracoccidioidomycosis (PCM) group (n = 132),
considering a cut point ≤ 0.02433.
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Figure 4. Principal component analysis (PCA) of the region 1551–1095 cm−1, performed with the
spectra of the 92 serum samples of the control group and the 132 serum samples of the paracoccid-
ioidomycosis (PCM) group. The control group is composed of serum from 50 healthy blood donors,
24 patients with aspergillosis, 10 patients with cryptococcosis, and 8 patients with histoplasmosis.
This region was chosen because it was the interval with the largest area under the curve (AUC)
to discriminate between PCM and the control group. (A) Scores (PC1 × PC2) with 99% explained
variance. (B) Loadings (PC1 × PC2) indicating the variables with the greatest weight in group
discrimination. The four wavenumbers (cm−1) most associated with the control and the four most
associated with PCM are highlighted.
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Figure 5. Linear discriminant analysis (LDA) used to discriminate between the spectra of the 92 serum
samples of the control group and the 132 serum samples of the paracoccidioidomycosis (PCM) group.
The model was constructed using the eight wavenumbers with the highest loadings in the principal
component analysis (PCA) (1405, 1406, 1407, 1488, 1490, 1491, 1497, and 1498 cm−1) and obtained
100% accuracy both in the training set (A) and in the prediction set (B).

4. Discussion

The sensitivity and specificity parameters of routine PCM diagnostic methods vary
significantly, depending mainly on the clinical sample used. In addition, these parameters
are little discussed in the literature. An evaluation of the routine diagnostic methods in
a university hospital over 34 years showed that direct mycological examination has a
sensitivity ranging from 63% (from sputum) to 82.6% (from skin and mucous membrane
samples). Histopathology reached a sensitivity of 96.7%; however, for none of the methods
was the specificity discussed. Serological methods had better performances, with 90%
sensitivity and 100% specificity [23]. However, the lack of standardization is a serious
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problem in the serological diagnosis of PCM, leading to discordant results that can even
affect the patient’s treatment [24]. In addition, there is the possibility of cross-reaction with
sera from patients with other mycoses, which may eventually reduce the specificity of the
test [25].

Thus, the importance of developing new diagnostic methods for PCM is highlighted,
even though it is considered a neglected tropical disease [26]. FTIR spectroscopy is a
promising methodology, due to its ease of use, cost-effectiveness, and speed of analysis
for a variety of clinical samples, with an emphasis on serum [27]. In the present study, we
proposed two methods that use FTIR spectroscopy and serum for the diagnosis of PCM:
one based on a univariate analysis, with 94% accuracy; and another based on a multivariate
analysis, with 100% accuracy.

This was the first study to propose the use of FTIR and univariate analysis for the
diagnosis of PCM, considering specific vibrational modes in the serum that differentiate
these patients from healthy individuals and from patients with other systemic mycoses.
The association of FTIR spectra with univariate analysis, to determine the vibrational
modes capable of being used as diagnostic tools, has been little explored in the literature.
Studies were found that used this type of analysis for the diagnosis of breast cancer in
saliva, obtaining an accuracy that ranged from 77% to 83.5% [28]; for the diagnosis and
monitoring of diabetes mellitus in nail clippings, obtaining an accuracy of 92% [29]; for
monitoring diabetes mellitus during treatment with insulin, in saliva, obtaining an accuracy
of 98.8% [30]; and for the diagnosis of chronic kidney disease (CKD) in saliva, obtaining an
accuracy of 82% [31]. These studies demonstrate that univariate analyses of FTIR spectra
are simple and fast methods that can achieve high levels of accuracy.

We confirmed the diagnostic potential of the wavenumber 1264 cm−1 from a ROC
curve, which graphically demonstrated the rate of true positives (sensitivity) versus the
rate of false positives (1-specificity) (Figure 3) [22]. For each absorbance value at this
wavenumber, the sensitivity and specificity are shown graphically on the ROC curve,
considering the objective of the analysis (in the case of the present study, differentiating
PCM samples from samples from the control group). The goal is to find a value that
maximizes the true positive rate while minimizing the false positive rate. Therefore,
the objective is to find the value that best differentiates the samples and, consequently,
maximizes accuracy (represented in the ROC curve by the area under the curve—AUC).
The point that maximizes the accuracy is calculated using the Youden index [22], which
determines, therefore, the ideal cutoff point to, in the case of the present study, classify the
samples into each of the groups (PCM and control).

However, univariate analysis has its limitations, as it is subject to experimental varia-
tions and does not consider the dependencies between wavenumbers, which makes the
developed model less robust [18]. In addition, despite having shown high sensitivity,
greater than 97%, the specificity was lower, 76%. High sensitivity is an optimal feature for
screening tests, while high specificity is an optimal feature for confirmatory testing [22].
Considering that the diagnosis of PCM is usually initiated by the identification of clinical
symptoms, and that these symptoms can be confused with other diseases [1,7], specificity
is also important. Thus, we also proposed a diagnostic method based on multivariate
analysis, which considers multiple variables for the outcome of interest [32]. We used LDA,
which is a powerful methodology, to perform class separation [18].

For LDA, the number of variables cannot be greater than the number of samples.
Thus, it is often used together with some method of dimensionality reduction and variable
selection, such as PCA [33]. Here, we started the analysis with univariate statistics and,
based on this, selected a relevant spectral region for the performance of PCA. Thus, the
PCA showed high variance (97% in PC1) and we achieved a complete separation of the
groups. This allowed us, instead of using the PC1 and PC2 scores, to select from the PC1
loadings the most relevant wavenumbers to be used in the LDA. As an advantage, the
variables were already selected and it is not always necessary to perform a PCA before
applying the LDA.
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The diagnosis of PCM based on FTIR and multivariate analysis methods has already
been proposed in two other studies, which obtained 91.67% accuracy [16] and 100% ac-
curacy [17]. The first [16] showed three main limitations in relation to the present study:
(1) a small number of samples (only 20 samples from patients with PCM and 20 control
subjects), (2) the model was only tested by cross-validation, without external validation,
and (3) samples from patients with other systemic mycoses were not included. The second
was developed by our research group, using OPLS-DA and considering the complete
spectral region (4000–650 cm−1) [17]. Even having already obtained 100% accuracy in this
previous model, in the present work we proposed a simpler model, with the use of LDA
coupled to a variable selection method, which made it possible to replace the use of the
total spectrum with only eight variables. This increases the robustness of the diagnostic
model, maximizing the chance of a correct prediction of new external samples and making
the model less sensitive to interference from environmental noise.

Thus, we identified some serum ATR/FTIR spectral biomarkers for PCM screening.
Serum is a complex biofluid that perfuses organs throughout the body, bringing information
about intra- and extracellular events [34]; therefore, it is useful for the diagnosis of various
diseases. For PCM, the spectral biomarker in serum that showed the highest potential
in univariate analysis was the 1264 cm−1 vibrational mode, with a significantly lower
absorbance in PCM patients (Figures 3B and 4B). This region of the spectrum is mainly
associated with asymmetrical vibrations of PO4−, which is attributed to phosphate [25].
PCM patients may have reduced serum phosphate levels [1], which could explain the
potential use of these vibrational modes for PCM diagnosis. The eight wavenumbers used in
LDA, between 1500 and 1400 cm−1, mainly involve the carbon bonds present in lipids [35].
Different sphingolipids, such as cerebroside D, have already been selected as potential
diagnostic biomarkers of PCM in serum through high-resolution mass spectrometry [36].
These sphingolipids participate in the antigenicity of Paracoccidioides spp., which could
explain their potential as biomarkers [37]. However, fungal diseases are still poorly explored
using FTIR spectroscopy, and the physiological explanation of these potential biomarkers
still needs to be better explored.

5. Conclusions

Here, simple and low-cost diagnostic methods for PCM, based on FTIR, were proposed.
Its main advantages over existing methods are its speed of analysis, the minimal generation
of waste, and the use of serum, a minimally invasive sample that is easily collected from
most patients. LDA modeling was highlighted, which achieved 100% accuracy, showing a
better performance than routine PCM diagnostic methods. In addition, it was possible to
identify spectral biomarkers that differentiate the serum from patients with PCM from that
from patients with other systemic mycoses, which can be confounded by clinical signs and
serology. In this way, we have proved the potential of the methodology proposed here to
be applied to the diagnosis of PCM.
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