UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE AGRONOMIA PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOTECNIA

CARACTERIZAÇÃO AGRONÔMICA, MOLECULAR, MORFOLÓGICA E DETERMINAÇÃO DO NÍVEL DE PLOIDIA EM UMA COLEÇÃO DE ACESSOS DE *Paspalum notatum* FLÜGGE

JULIANA MARIA FACHINETTO Bióloga (UFSM)

Dissertação apresentada como um dos requisitos à obtenção do Grau de Mestre em Zootecnia Área de Concentração Plantas Forrageiras

Porto Alegre (RS), Brasil Março de 2010 "Todo mundo ama um dia, Todo mundo chora. Um dia a gente chega E no outro vai embora. Cada um de nós compõe a sua história, Cada ser em si, carrega o dom de ser capaz, De ser feliz."

Almir Satter

Dedico, Aos meus pais, JANDIR e IRIA, por tudo o que sou. A minha irmã, ROSE, pelo exemplo, apoio e incentivo, Ao meu noivo, WAGNER, por todo seu amor.

AGRADEÇO

Primeiramente a Deus, por ter me dado a vida e criado um mundo tão perfeito!

Aos meus pais, Jandir e Iria, por todo o incentivo, amor incondicional, ensinamentos!

A minha irmã Rose, por ter se tornado um exemplo a seguir!

Ao meu noivo Wagner, por toda a compreensão, amor e cumplicidade!

A minha "filhota" Cindy, por seu amor, carinho e alegria intensa!

Ao meu orientador, Miguel Dall'Agnol, por sua confiança, amizade e principalmente por seus ensinamentos!

Aos meus colegas e amigos de Pós Graduação, bolsistas, funcionários da Estação, que tantas vezes me auxiliaram nos experimentos!

A todas as pessoas que de alguma forma contribuíram para que eu chegasse até aqui!

Ao CNPq, pela concessão da bolsa!

Obrigada!

CARACTERIZAÇÃO AGRONÔMICA, MOLECULAR, MORFOLÓGICA E DETERMINAÇÃO DO NÍVEL DE PLOIDIA EM UMA COLEÇÃO DE ACESSOS DE *Paspalum notatum* FLÜGGE¹

Autora: Juliana Maria Fachinetto Orientador: Miguel Dall'Agnol

Co-orientador: Maria Teresa Schifino-Wittmann

RESUMO

Paspalum notatum é uma espécie forrageira de ampla ocorrência no sul do Brasil. Esta espécie consiste de biótipos diplóides sexuais (P. notatum var. saurae), restritos à Argentina, e apomíticos poliplóides (P. notatum var. notatum). Este trabalho teve por objetivos a caracterização agronômica, molecular e morfológica, e determinar o nível de ploidia em uma coleção de acessos de P. notatum. O experimento foi implantado na Estação Experimental Agronômica da Universidade Federal do Rio Grande do Sul, em Eldorado do Sul, consistindo de 52 acessos de P. notatum, a cultivar comercial Pensacola e dois biótipos de P. guenoarum, Baio e Azulão. As avaliações foram realizadas em plantas individuais, em delineamento completamente casualisado, com cinco repetições durante os anos de 2008-2009. Houve variabilidade para todas as características morfológicas analisadas, com a formação de 16 grupos morfológicos. O hábito das plantas, pilosidade da bainha e das lâminas foliares foram os caracteres que mais contribuíram para a divergência genética, somando 55,16% da variação. Houve variação das produções forrageiras entre os diferentes acessos. A maioria dos acessos de P. notatum apresentou elevadas produções de matéria seca ao serem comparados com a cultivar Pensacola. Os acessos 48N, 95N, 70N e V4 apresentaram as maiores produções além de apresentarem persistência ao inverno da região. Na caracterização molecular, os oito marcadores SSR formaram nove grupos, com índice de similaridade média de 0,29, variando de zero a 0,83. O conteúdo de informação de polimorfismo variou de 0,41 a 0,69, com todos os locos polimórficos. Dos 25 acessos de P. notatum para os quais foi determinado o nível de ploidia, quatro acessos são diplóides (2n=2x=20 cromossomos) e os demais tetraplóides (2n=4x=40 cromossomos). Os quatro acessos diplóides são pertencentes à P. notatum var. saurae, e foram coletados na região de origem da Pensacola. Os resultados indicaram uma grande variabilidade em todas as análises realizadas, reforçando estudos realizados anteriormente para a espécie. A boa produção forrageira de alguns acessos e a detecção de acessos diplóides, aliado às informações de similaridade genética e morfológica obtidos com este estudo, pode ser de grande importância em futuros estudos de melhoramento genético com a espécie P. notatum.

Dissertação de Mestrado em Zootecnia – Plantas Forrageiras, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil. (133p.). Março, 2010.

AGRONOMIC, MOLECULAR, MORPHOLOGICAL CHARACTERIZATION AND DETERMINATION OF PLOIDY LEVEL OF A COLLECTION OF Paspalum notatum FLÜGGE ACCESSIONS¹

Author: Juliana Maria Fachinetto Adviser: Miguel Dall'Agnol

Co-adviser: Maria Teresa Schifino-Wittmann

ABSTRACT

Paspalum notatum is a forage species widely occurring in Southern Brazil. This species consists of sexual diploid (P. notatum var. saurae), restrict of the Argentina, and apomictic polyploid (P. notatum var. notatum) biotypes. This work has the objective to make the agronomic, molecular and morphological characterization, and to determine the ploidy level of the collection of P. notatum accessions. The experiment was carried out at the Experimental Agronomic Station of Universidade Federal do Rio Grande do Sul, in Eldorado do Sul, consisting of 52 accessions of P. notatum, the commercial cultivar Pensacola and two biotypes of P. guenoarum, Baio and Azulão. The assessments were performed in individual plants, in completely randomized design, with five replicates, during the 2008-2009 years. There was variation to the morphological characters analyzed with the formation of 16 morphological groups. The plants growth habit and the leaves pubescence were the characters with the major contribution to the genetic divergence, contributing with around 55,16%. There was variation of the forage production among the different accessions. Most accessions of *P. notatum* presented high yield when compared to the cultivar Pensacola. The accessions 48N, 95N, 70N and V4 showed high yield and also, showed persistence to the winter of the region. In the molecular characterization, the eight SSR markers formed nine groups, with a genetic similarity (Jaccard Index) of 0,29, ranging from 0,0 to 0,83. The polymorphism information content ranging 0.41 a 0.69, and all locus were polymorphic. The chromosome numbers were determined in 25 accessions of P. notatum, and four were diploids (2n=2x=20 chromosome) and 21 accessions were tetraploid (2n=4x=40 chromosome). The four diploids accessions belong to P. notatum var. saurae, and were collected in the region of origin of the Pensacola. The results showed variability in all analysis performed, in accord with previous studies to this species. The good forage production in some accessions and the detection of diploids accessions, associated with information of genetic and morphological similarity, can be important in futures studies of plant breeding in P. notatum.

-

¹ Master of Science Dissertation in Forage Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. (133p.). March, 2009.

SUMÁRIO

	Pagina
1. INTRODUÇÃO	1
2. REVISÃO BIBLIOGRÁFICA	4
2.1 O Gênero <i>Paspalum</i> L	4
2.2 A Espécie <i>Paspalum notatum</i> Flügge	6
2.3 Citogenética em Paspalum	8
2.4 Modo de Reprodução em <i>Paspalum</i>	9
2.5 Caracterização Morfológica em Paspalum	12
2.6 Avaliação Agronômica em Paspalum	15
2.7 Marcadores Moleculares em Paspalum	21
3. MATERIAL E MÉTODOS	25
3.1 Material Utilizado	
3.2 Avaliação Agronômica	
3.3 Caracterização Morfológica	
3.4 Produção de Matéria Seca e Análise da Persistência	
3.5 Análise Molecular	
3.6 Determinação do Nível de Ploidia	35
4. RESULTADOS E DISCUSSÃO	37
4.1 Caracterização Morfológica	37
4.2 Avaliação Agronômica	55
4.3 Análise Molecular	70
4.4 Determinação do Nível de Ploidia por Meiose	77
5. CONCLUSÕES	82
6. REFERÊNCIAS BIBLIOGRÁFICAS	83
7. APÊNDICES	89
8 ΜΙΤΔ	133

RELAÇÃO DE TABELAS

	Página
Identificação e local de coleta dos acessos de Paspalum notatum e P. guenoarum	J
Características morfológicas avaliadas nos diferentes acessos e forma de avaliação	. 29
3. Primers de microssatélites utilizados na amplificação de 53 acessos de Paspalum notatum	. 35
Características morfológicas dos acessos de <i>P. notatum</i> (m= média, s= desvio padrão)	. 39
Estatística descritiva obtidas pela análise da distância de Mahalanobis	. 42
6. Caracterização dos 16 grupos formados pelo Método de Tocher (valores médios, máximos e mínimos de cada grupo para as 14 variáveis).	. 43
7. Contribuição relativa dos caracteres para divergência, obtidas a partir do Método de Singh (1981)	. 53
8. Produção de MST e MSF em cada corte e o total acumulado do período de verão no primeiro período de avaliações (verão – 2009), em (g.planta ⁻¹).	. 56
9. Produção de MST e MSF dos acessos de <i>P. guenoarum</i> durante o inverno (2009), em g.planta ⁻¹	. 59
10. Produção de MST e MSF em cada corte e o total do segundo ano de avaliações (2009-2010), em g.planta ⁻¹	. 61
11. Produção de MST e MSF total, em g.planta ⁻¹ , e percentual de produção em relação à cultivar Pensacola (100%)	. 65
 Tamanho alélico (pb), número de alelos (A) e conteúdo de informação de polimorfismo (PIC), de cada um dos 8 marcadores de microssatélites analisados na caracterização de 53 acessos de <i>P. notatum</i>. 	. 71
13. Nível de ploidia dos acessos de <i>P. notatum</i>	. 79

RELAÇÃO DE FIGURAS

	Página
 A- Visão geral da área experimental na EEA em Eldorado do Sul/RS. Foto tirada em outubro de 2008. B- Foto tirada em novembro de 2009. 	. 28
2. Plantas de diferentes acessos de <i>Paspalum</i> , fotografadas em 16/11/2009. A – <i>P. guenoarum</i> , acesso Baio. B – <i>P. notatum</i> , acesso 48N. C – <i>P. notatum</i> , cultivar Pensacola	. 63
3. Gráfico com as produções de MST por avaliação, para a cultivar Pensacola, média dos 4 melhores acessos de <i>P. notatum</i> e de todos os acessos desta espécie e média dos acessos de <i>P. guenoarum</i>	. 68
4. Gel de agarose com fragmentos de DNA de DNA de 15 acessos de <i>P. notatum</i> em análise do <i>primer</i> de microssatélite M12-52	. 71
5. Dendrograma obtido com base na similaridade genética de 51 acessos de <i>P. notatum</i> , utilizando-se 8 marcadores microssatélites. A linha tracejada indica a distância média e o ponto de corte no dendrograma	. 73
6. Células meióticas. A - <i>P. notatum</i> 66N, diacinese, n= 2x= 10 cromossomos. B - <i>P. notatum</i> 92N, diacinese, n= 2x= 10 cromossomos. C - <i>P. notatum</i> 36N, anáfase I, n= 4x= 20 cromossomos	. 78

RELAÇÃO DE ABREVIATURAS

A: Número de Alelos por loco

AFLP: Polimorfismo de Comprimento de Fragmentos Amplificados

ANOVA: Análise de Variância BC: Comprimento da Bainha BCr: Coloração da Bainha BL: Largura da Bainha BP: Pilosidade da Bainha CMP: Células Mãe de Pólen

CN: Carlos Nabinger

DNA: Ácido Desoxirribonucléico

DPFA: Departamento de Plantas Forrageiras e Agrometeorologia

EEA: Estação Experimental Agronômica

FAI: Angulação de Inserção Foliar

FC: Comprimento Foliar

FCNC: Cor da Nervura Central Foliar FDA: Fibra em Detergente Ácido FDN: Fibra em Detergente Neutro

FL: Largura Foliar FP: Pilosidade Foliar

HFA: Altura das Hastes Floríferas

HP: Hábito da Planta

IAR: Angulação de Inserção dos Racemos

ICR: Comprimento dos Racemos

INR: Número de Racemos na Inflorescências ISSR: Intersequências Simples Repetidas LAG: Laboratório de Análise Genética

MD: Miguel Dall`Agnol MS: Matéria Seca

MSC: Matéria seca de Colmos MSF: Matéria Seca de Folhas

MST: Matéria Seca Total

N: Nitrogênio pb: par de base

PIC: Conteúdo de Informação de Polimorfismo

PB: Proteína Bruta

RAPD: Polimorfismo de DNA Amplificado ao Acaso

rpm: rotações por minuto RS: Rio Grande do Sul

SP: São Paulo

SSR: Simple Sequence Repeat

UFRGS: Universidade Federal do Rio Grande do Sul USDA: Departamento de Agricultura dos Estados Unidos

1. INTRODUÇÃO

As pastagens nativas do Rio Grande do Sul desempenham um papel importante na atividade pecuária, representando 76% da área pastoril utilizada (Nabinger, 2006). Desta forma, o conhecimento mais aprofundado de espécies que compõem o campo nativo torna-se necessário para que possam ser mais bem utilizadas e preservadas.

Dentre as gramíneas nativas do Brasil, as espécies do gênero Paspalum L. têm lugar de destaque, possuindo grande número de espécies, muitas delas com bom valor forrageiro. Segundo Prestes et al. (1976), o gênero Paspalum apresenta importante valor agronômico, servindo de base alimentar para bovinos além de que suas sementes são importantes fontes alimentares para pássaros.

No Rio Grande do Sul, *P. notatum* é frequente em todas as regiões fisiográficas, contribuindo com grande expressividade para a cobertura dos campos naturais (Canto-Dorow, 1993). Segundo Barreto (1974), esta espécie apresenta tendência a aumentar contínua e gradativamente nos campos, favorecida pelo seu hábito e pelo pastejo e pisoteio contínuo do gado. É considerada uma das forrageiras mais promissoras no Rio Grande do Sul.

Paspalum notatum exibe diferentes formas, que podem estar

associadas com a poliploidia apresentada nesta espécie e com seu modo de reprodução, o qual pode ser apomítico ou sexual, e estar ou não associado a esse mecanismo de evolução.

Estudos de caracterização morfológica têm demonstrado que esta espécie é polimorfa, sendo proposto a separação da espécie em variedades (Doel, 1877; Parodi, 1948; Rosengurt et al., 1970) . Entretanto, de acordo com Canto-Dorow (1993), existem apenas duas variedades, a sexual diplóide, *P. notatum* var. saurae e a tetraplóide apomítica, *P. notatum* var. notatum.

O melhoramento desta espécie tem sido historicamente limitado à identificação de ecótipos superiores. Entretanto, a descoberta de acessos diplóides sexuais de *P. notatum* var. *saurae*, bem como a duplicação cromossômica da cultivar Pensacola e posterior cruzamento com acessos superiores, tem auxiliado no progresso de programas de melhoramento de *P. notatum*.

A caracterização morfológica é uma das formas mais tradicionais de caracterização de germoplasma. Geralmente, é um dos passos iniciais em um programa de melhoramento, pois permite conhecer o material e observar a diversidade existente. Associar estas características com a produção agronômica e dados genéticos, obtidos por meio de marcadores moleculares, pode auxiliar na escolha de progenitores com características desejáveis e uma maior distância genética, resultando em um alto grau de heterose dos materiais formados. Isto, associado ao modo de reprodução apomítico, é de grande importância na fixação das características favoráveis à produção de forragem.

Estas análises morfológicas, agronômicas e moleculares são

fundamentais no direcionamento dos próximos passos de um programa de melhoramento, pois utilizadas em conjunto podem permitir uma melhor caracterização e diferenciação de germoplasmas.

Baseado nestas considerações, o objetivo deste estudo foi caracterizar uma coleção de acessos de *P. notatum*, sob o ponto de vista morfológico, agronômico e molecular, além de determinar o nível de ploidia dos materiais, auxiliando com o programa de melhoramento da espécie do Departamento de Plantas Forrageiras e Agrometeorologia (DPFA) da Universidade Federal do Rio Grande do Sul (UFRGS).

2. REVISÃO BIBLIOGRÁFICA

2.10 Gênero *Paspalum* L.

O gênero *Paspalum* (Poaceae: Panicoideae) é um dos mais importantes gêneros dentro da tribo Paniceae, devido ao elevado número de espécies que apresenta, a sua ampla distribuição geográfica e importância econômica de muitas delas. Em sua quase totalidade, são de origem americana e particularmente abundantes no Brasil, Paraguai, norte da Argentina e Uruguai (Barreto, 1974).

As diversas espécies do gênero ocorrem em praticamente todas as comunidades herbáceas de distintos ecossistemas do País, sendo dominantes e responsáveis pela produção da maior parte da forragem disponível (Canto-Dorow, 1993). No Rio Grande do Sul, as espécies do gênero *Paspalum e*stão distribuídas em todas as regiões fisiográficas e são componentes obrigatórios de todas as formações campestres (Barreto, 1974).

De acordo com Valls & Pozzobon (1987), *Paspalum* é o gênero brasileiro com o maior número de espécies com bom valor forrageiro, o que torna importante a realização de uma investigação abrangente que possibilite as caracterizações taxonômica, morfológica e citogenética, além do conhecimento do modo de reprodução de cada acesso disponível das espécies

do gênero.

Este gênero vem sendo estudado há décadas quanto ao potencial agronômico das espécies e a variabilidade genética, tanto ao nível citológico quanto morfológico, sendo notória a existência de distintos níveis de ploidia em algumas espécies com o modo de reprodução podendo estar associado a este fato (Valls & Pozzobon 1987; Pozzobon e Valls 1997).

As cultivares do gênero *Paspalum* são geralmente selecionadas baseadas em variabilidade genética natural, havendo necessidade de novas cultivares, assim como de hibridações intra e interespecíficas são desejáveis como meios de introgressão de genes. No entanto, diferenças no nível de ploidia entre os acessos e reprodução apomítica têm dificultado o desenvolvimento de novos híbridos (Adamowski, 2005).

A maioria das espécies de *Paspalum* são apomíticas tetraplóides, tendo co-específicos sexuais diplóides e auto-incompatíveis (Quarin & Normann, 1990). Do ponto de vista evolutivo, a ocorrência de apomixia e poliploidia nestas espécies fornecem bons modelos para investigação do papel evolutivo destes fenômenos (Moraes-Fernandes, 1971).

De grande interesse, principalmente para a área subtropical, o grupo Notata é composto de espécies diplóides, tetraplóides e hexaplóides, com ocorrência de apomixia e sexualidade, com várias espécies apresentando mais de um nível de ploidia (Valls & Pozzobon, 1987). No Rio Grande do Sul, o grupo Notata está representado por nove espécies, sendo que *P. notatum* e *P. pumilum* são as mais abundantes e as que apresentam a distribuição mais ampla (Canto-Dorow, 1993).

2.2 A Espécie Paspalum notatum Flügge

Paspalum notatum é uma gramínea rizomatosa nativa da América do Sul, sendo um importante componente das pastagens naturais da Argentina, sul do Brasil e Paraguai (Burton, 1948). A grande diversidade existente nos ecótipos sul-americanos sugere que a América seja o centro de origem da espécie (Burton, 1967).

P. notatum é frequente em todas as regiões fisiográficas do Rio Grande do Sul, contribuindo com grande expressividade para a cobertura dos campos naturais e é considerada a principal espécie do estrato herbáceo (Barreto, 1974). Segundo Pozzobon e Valls (1997), P. notatum é uma das espécies mais comuns deste gênero no sul do Brasil.

É utilizada como forrageira devido à boa qualidade, resistência ao pisoteio e crescimento favorecido pelo pastejo, sendo considerada por alguns autores como uma das forrageiras mais promissoras no Rio Grande do Sul (Barreto 1974; Canto-Dorow, 1993; Pozzobon e Valls, 1997).

P. notatum é classificada como uma espécie polimorfa, para a qual foram descritas três diferentes variedades, P. notatum var. latiflorum (Doel, 1877), P. notatum var. saurae (Parodi, 1948) e P. notatum var. notatum (Rosengurt e al., 1970). Entretanto, Barreto (1974) não aceitou delimitar a espécie nas variedades anteriormente descritas, por não encontrar caracteres fixos, dentro das diferentes variedades, mas aceitou P. saurae como uma espécie independente, conforme proposto por Parodi (1969). Posteriormente, Canto-Dorow (1993) propôs a existência de apenas duas variedades baseando-se no nível de ploidia, P. notatum var. saurae correspondente aos

acessos diplóides, e P. notatum var. notatum aos acessos tetraplóides.

P. notatum var. saurae (Pensacola) é nativa do leste da Argentina, onde é esparsamente distribuída nas Províncias de Santa Fé, Corrientes e Entre Rios (Burton, 1967). No Brasil, plantas diplóides nativas não têm sido encontradas (Pozzobon & Valls, 1997, Dahmer et al., 2008) e no Rio Grande do Sul está associada a ambientes modificados, provavelmente como escapes de cultivo da cultivar Pensacola (Canto-Dorow, 1993).

P. notatum var. notatum, tem seu centro de origem no sul do Brasil, norte da Argentina e Paraguai (Parodi, 1937). No Rio Grande do Sul, formas tetraplóides (muito provavelmente todas apomíticas) são predominantes (Pozzobon & Valls, 1997, Dahmer et al., 2008). Uma vez que a apomixia impede cruzamentos, o melhoramento das raças tetraplóides tem sido historicamente limitado à identificação e seleção de acessos superiores.

Daurélio et al. (2004) estudaram as variações genéticas e genotípica de três populações naturais de *Paspalum* do nordeste da Argentina, uma população natural de indivíduos diplóides sexuais e duas populações tetraplóides apomíticas, uma existindo em simpatria com a sexual e a outra em isolamento. A variação genotípica resultou em máxima para a população sexual, o que era esperado pelos autores, devido à espécie ser alógama e auto-incompatível. A população apomítica simpátrica apresentou valores de variação genotípica considerada intermediária, enquanto que a apomítica não simpátrica teve índices muito baixos, com todos os indivíduos considerados geneticamente idênticos. A partir da análise do agrupamento dos indivíduos, os autores demonstraram a formação de três grupos distintos em acordo com a

população a que pertencem, e que os dois grupos de tetraplóides são mais relacionados entre si do que com o grupo diplóide, sendo os valores da distância genética entre todos os tetraplóides menor que entre alguns dos diplóides.

A poliploidia notada em *P. notatum* é comum no gênero *Paspalum*, sendo a maioria das espécies tetraplóides e apomíticas. A poliploidia e apomixia são importantes mecanismos de evolução no gênero. A identificação de possíveis ecótipos diplóides silvestres em populações de *P. notatum* de outras regiões que não a de origem da Pensacola, abriria um leque de opções para pesquisa e utilização (Dahmer et al., 2008). No entanto, a escassez de uma coleção de germoplasma grande e bem caracterizado de genótipos tetraplóides apomíticos restringe as possibilidades de desenvolver programas de melhoramento genético adequado (Espinoza et al., 2006).

2.3 Citogenética em Paspalum

Praticamente todas as espécies de *Paspalum* têm números cromossômicos que são múltiplos de dez e por esta razão é suposto que este é o numero básico para o gênero, mas a derivação de um numero básico anterior de cinco não é excluída (Moraes-Fernandes, 1974). Segundo o mesmo autor, hibridização, alo e autopoliploidia acoplado com apomixia tem interagido na complexa via de formação destas espécies e formas de espécies de *Paspalum* no Rio Grande do Sul.

Diversos pesquisadores têm demonstrado que o nível tetraplóide é o mais comum nas espécies de *Paspalum*. De acordo com isto, pode-se citar o

estudo realizado por Adamowski (2005), onde dos 36 acessos de *Paspalum* analisados, um foi diplóide (2n=2x=20), 34 tetraplóides (2n=4x=40) e um hexaplóide (2n=6x=60). Em *P. nicorae*, todos os acessos analisados por Reis et al. (2008) foram tetraplóides (n=20, 2n=40).

Para *P. notatum*, Pozzobon & Valls (1997) demonstraram que mais de 90% dos acessos tiveram 2n=4x=40 cromossomos, e os demais 2n=2x=20. Outro estudo realizado com 92 acessos da espécie *P. notatum* indicou que 83 acessos foram tetraplóides, com 2n=4x=40. Os sete acessos de Pensacola, utilizados como testemunha, apresentaram 2n=2x=20, um acesso coletado como *P. notatum* var. *notatum* apresentou 2n=2x=20, possivelmente um escape de Pensacola, e um hexaplóide com 2n=6x=60 (Dahmer et al., 2008).

Todos os acessos diplóides encontrados no Rio Grande do Sul até o momento foram considerados escapes da Pensacola, já que a mesma é cultivada no Estado, e os citótipos diplóides selvagens são mais provavelmente restritos a região específica da Argentina, onde a Pensacola tem origem (Pozzobon & Valls, 1997; Dahmer et al., 2008).

Análises do comportamento meiótico em *P. notatum* demonstram que as configurações do pareamento em diacinese são bastante variáveis, principalmente nos acessos tetraplóides, com uni, bi, tri e quadrivalentes, mas com alta frequência de tétrades normais (Dahmer et al., 2008). O mesmo é descrito para outras espécies do gênero (Adamowski 2005; Reis et al., 2008).

2.4 Modo de Reprodução em *Paspalum*

Duas estratégias de reprodução assexuada são comumente

encontradas em angiospermas: propagação vegetativa (onde as plantas se reproduzem através de estolões, rizomas, bulbos, bulbilhos ou brotos de raiz) e apomixia (onde as sementes são produzidas sem redução meiótica anterior e fusão de gametas) (Laspina et al., 2008).

A apomixia é um tipo de reprodução assexuada na qual ocorre a formação de sementes sem que ocorra fertilização e formação do embrião por via sexuada. Os indivíduos resultantes são geneticamente idênticos à planta que os originou. A reprodução assexuada permite a fixação do genótipo e a manutenção dos caracteres desejáveis. Devido à ausência de recombinação, mantém a presença de blocos gênicos, genes ligados e a contínua exploração da heterose, além de eliminar a necessidade de isolamento de plantas para a produção de sementes. No entanto, as plantas que se reproduzem exclusivamente apomixia apresentam grandes dificuldades por melhoramento, pois este mecanismo impede a recombinação genética entre indivíduos com caracteres desejáveis, ficando altamente dependente de mutações para evidenciar variabilidade genética (Carvalho et al., 2008).

P. notatum tetraplóide apomítico é pseudogâmico, com fertilização efetiva dos dois núcleos polares e o desenvolvimento do endosperma ocorre independentemente da espécie ou do nível de ploidia do doador de pólen. No entanto, uma menor taxa de germinação das sementes é observada em cruzamentos interespecíficos, em comparação com autopolinização (Quarin, 1999).

Outro estudo realizado por Quarin et al. (1984) indicou que algumas plantas de *P. notatum* tetraplóide são apomíticas facultativas com uma

relativamente alta expressão de sexualidade, expandindo o seu uso num programa de hibridização como parental feminino, embora as formas apomíticas possam ser usadas como fonte de pólen.

Estudando o modo de reprodução em 18 acessos tetraplóides de *P. notatum* coletados na natureza, Espinoza et al. (2006) a partir de análises citoembriológicas, determinaram que todos os acessos são apomíticos obrigatórios ou facultativos, sendo a maioria facultativos com um grau variável de sexualidade residual, enquanto uns poucos acessos parecem ser apomíticos obrigatórios. Estes mesmos autores confirmaram que a apomíxia em *P. notatum* é dominante, pois cruzando genótipos sexuais e apomíticos, estes, na geração F₁, segregam para o modo de reprodução apomítico, e pela autopolinização das plantas sexuais F₁ produzem sempre sexuais F₂. Além do mais, pela análise por testes de progênie dos genótipos apomíticos facultativos, foi demonstrado que estes recuperam 100% de plantas assexuais tetraplóides em *P. notatum*, indicando que existe uma forte seleção natural contra plantas tetraplóides sexuais nas populações naturais. Estes dados podem explicar a escassa ocorrência de indivíduos diplóides naturais em *P. notatum*.

A descoberta do potencial de poliploidização da colchicina possibilitou a obtenção de plantas tetraplóides sexuais em *P. notatum*, a partir de plantas diplóides da cultivar Pensacola, o que pode ser uma poderosa ferramenta no melhoramento dessa espécie. Quarin et al. (2001) induziram duplicação cromossômica por tratamentos com colchicina em uma população sexual diplóide natural de *P. notatum*, obtendo três plantas individuais. Através de estudos embriológicos, estes autores demonstraram que uma das plantas

autotetraplóides induzidas reproduz-se sexualmente, enquanto que os outros dois tetraplóides são apomíticos facultativos. Segundo os mesmos autores, estes dados indicam que um gene não expresso para apomixia existe ao nível diplóide e que a expressão da característica é dependente do nível de ploidia, que pode agir através de algum fator de transcrição ou via *locus* secundário que requer uma quantia de alelos para afetar a expressão dos muitos *locus*.

Com o objetivo de criar um material tetraplóide sexual de cruzamento compatível com espécies apomíticas tetraplóides de *Paspalum* grupo Plicatula, foram induzidos indivíduos tetraplóides sexuais a partir de sexuais diplóides em *P. plicatulum*. Duas plantas tetraplóides foram obtidas da germinação de sementes diplóides tratadas com colchicina. Por meio de análises embriológicas e testes de progênies usando marcadores moleculares, estas plantas demonstraram reproduzirem-se sexualmente. Além disso, estes tetraplóides sexuais são altamente incompatíveis, como os diplóides, mas produzem sementes após cruzamentos recíprocos e com pólen de *P. guenoarum* tetraplóide apomítico. Os resultados indicam que as duas plantas tetraplóides obtidas neste estudo constituem um importante material para o melhoramento de plantas de *P. plicatulum* tetraplóide apomítico e possivelmente outras espécies apomíticas do grupo Plicatula (Sartor et al., 2009).

2.5 Caracterização Morfológica em *Paspalum*

A caracterização morfológica é considerada um dos passos iniciais em estudos de caracterização de espécies e em programas de melhoramento. Com o objetivo de conhecer o material que se deseja trabalhar e observar a diversidade existente, os próximos passos são associar estas características a condições ambientais e avaliações citológicas, agronômicas e genéticas.

P. notatum apresenta uma alta variabilidade morfológica, o que levou diferentes autores a estudar esta diversidade, a fim de caracterizar as diferentes formas desta espécie. Barreto (1974) destacou diferentes formas ocorrentes no Rio Grande do Sul, sem nível taxonômico definido, para P. notatum: Capivari (comum no litoral), a forma comum dos campos do Estado, a forma gigante (encontrada nos Campos de Cima da Serra e Planalto) e a forma Uruguaiana (ocorrente em toda a região da Campanha). Além disso, considerou como caracteres mais importantes para diferenciação das várias morfologias observadas o aspecto das plantas, vigor, dimensões e pilosidade das folhas, altura dos colmos floríferos, número e comprimento dos ramos da inflorescência, e dimensões e coloração das espiguetas.

Canto-Dorow (1993), ao avaliar diferentes acessos de *P. notatum* descreveu a existência de quatro biótipos. O biótipo A, caracteriza-se principalmente por apresentar lâminas foliares longas (maiores que 9,5 cm de comprimento) e largas (maiores que 5,0 mm de largura) e lema I com cinco nervuras. O biótipo B apresenta lâminas foliares longas e estreitas (menores que 5,0 mm), espiguetas estreitas (menores que 2,2 mm) e lema I com três nervuras. Neste último grupo estão inseridos os acessos diplóides. O biótipo C apresenta lâminas foliares glabras, curtas (menores que 9,5 cm de comprimento) e estreitas. No biótipo D estão inseridos os acessos com lâminas foliares pubescentes nas faces dorsal e/ou ventral, curtas e estreitas. Os

biótipos B e C foram considerados de ocorrência mais frequente. Neste mesmo estudo, os caracteres comprimento e largura da lâmina foliar, pilosidade da lâmina foliar, largura das espiguetas e número de nervuras do lema I foram considerados discriminatórios para os biótipos. Este mesmo autor considerou os diferentes tipos morfológicos de *P. notatum* como biótipos, pois foram observadas diferentes formas convivendo no mesmo ambiente, bem como formas semelhantes em ambientes diferentes que, quando cultivados sob as mesmas condições, mantém suas características diferenciais.

Um conjunto de características vegetativas e reprodutivas foram avaliadas em 41 acessos de *P. notatum* por Steiner (2005), resultando na formação de seis grupos distintos, onde o comprimento dos racemos foi a característica que apresentou a maior contribuição relativa para a divergência genética, seguido pelo comprimento das espiguetas e largura e comprimento das lâminas foliares.

Cidade (2006) realizou um estudo combinado de dados morfológicos com moleculares. Os resultados não confirmaram totalmente os biótipos propostos por Canto-Dorow (1993) e as formas apresentadas por Barreto (1974), pois a variação morfológica existente na espécie é superior a relatada por estes autores, formando oito grupos de acessos. Os caracteres que mais contribuíram para a formação destes grupos foram: altura do colmo florífero, o comprimento e largura da lâmina foliar e comprimento dos ramos da inflorescência. Além do mais, não houve uma clara relação geográfica dos acessos estudados com os dados moleculares obtidos, nem uma separação definida entre acessos diplóides e tetraplóides, sugerindo não ser possível

desmembrar a espécie em variedades distintas.

Outras espécies do gênero *Paspalum* também apresentam grande variação morfológica, como é o caso de *P. nicorae* Parodi. Em uma análise com 53 acessos desta espécie, foi possível formar três grupos morfológicos distintos, formados basicamente pela variação no tamanho das folhas (Reis, 2008).

2.6 Avaliação Agronômica em Paspalum

Devido ao fato do germoplasma nativo de *P. notatum* ser predominantemente tetraplóide e mostrar características apomíticas, genótipos de elite podem ser selecionados através de avaliação agronômica visando uma boa produção de forragem dos acessos (Pozzobon & Valls 1997).

A cultivar Pensacola, oriunda de populações advindas da Argentina introduzidas acidentalmente nos Estados Unidos, foi cultivada em grande escala no Rio Grande do Sul, principalmente na região do Plantalto. Esta cultivar, sob o ponto de vista de produção e valor forrageiro, pode ser comparada com os biótipos nativos (Steiner, 2005).

Ao comparar dois acessos nativos de *P. notatum* com a cultivar Pensacola, Prates (1977) observou que os materiais nativos foram superiores à Pensacola em produção de matéria seca, proteína bruta total e matéria seca de raízes. Soares et al. (1986) avaliou seis biótipos nativos de *P. notatum* em três regiões do Estado, Vacaria, São Gabriel e Tupanciretã durante três anos, em comparação à Pensacola. Os teores de proteína bruta obtidos por estes autores para os biótipos nativos variaram de 12,08 a 12,88% e 11,56% para a

Pensacola em Vacaria. Em São Gabriel, os teores de proteína bruta variaram de 11,87 a 13,01% e a Pensacola apresentou 11,50%. Em Tupanciretã, a variação foi de 11,62 a 12,10%, enquanto a Pensacola apresentou teores de 10,28%.

P. notatum constituía cerca de 80% das pastagens cultivadas da Flórida (EUA), sendo sua maior utilização em pastagens permanentes (Mott & Moore, 1977). De acordo com Mislevi & Dunavin (1993), 85 a 90% da sua produção anual ocorre nos meses de primavera e verão.

Segundo Sinclair et al. (2001), sob o efeito de fotoperíodo estendido no inverno, a cultivar Pensacola apresentou um aumento na produção de forragem de 3,6 vezes, em comparação com outros tratamento que não estabeleceram este mesmo efeito. Blount et al. (2001), estudando a resposta de acessos de *P. notatum* ao fotoperíodo, obtiveram resultados semelhantes. Estes estudos estão de acordo com Dall'Agnol & Gomes (1987), onde os autores sugerem que o maior determinante da diminuição da produção de forragem no inverno, em *P. notatum*, parece ser a dormência, induzida pela mudança no fotoperíodo.

Steiner (2005) avaliou a produção e a estacionalidade de produção de forragem de dois acessos de *P. guenoarum* (Azulão e Baio) e dois acessos de *P. notatum* (André da Rocha e Bagual), nativos no RS, em comparação com a cultivar Pensacola. As avaliações foram realizadas durante dois anos e demonstraram que as produções totais de matéria seca de folhas e matéria seca totais de *P. guenoarum* foram superiores as de *P. notatum*. No entanto, é importante ressaltar os acessos de *P. notatum*, Bagual e André da Rocha, que

apresentaram produções superiores e semelhantes a cultivar Pensacola, respectivamente. No primeiro ano, os valores da produção de matéria seca total chegaram a 18000 kg.ha⁻¹ para os acessos Azulão e Baio, Bagual com 14000 kg.ha⁻¹, André da Rocha e Pensacola com produções próximas a 9000 kg.ha⁻¹. No segundo ano, o acesso Azulão apresentou produções superiores a 11000 kg.ha⁻¹, e os demais acessos com produções próximas a 7000 kg.ha⁻¹. Com relação à estacionalidade de produção, um acesso de P. guenoarum apresentou maior produção de matéria seca no outono que os acessos de P. notatum, além de os dois acessos de P. guenoarum apresentarem menor crestamento por geadas que os de P. notatum, indicando uma maior tolerância ao frio. Segundo o mesmo autor, a análise bromatológica revelou teores de proteína bruta de 15,57% para a cultivar Pensacola, 15,36, 14,7, 14,49 e 14,26% para os acessos Bagual, Azulão, André da Rocha e Baio, respectivamente. Em relação ao teor de fibra em detergente neutro, os acessos apresentaram 68,78% (Azulão), 70,47% (André da Rocha), 70,55% (Baio), 70,6% (Bagual) e a cultivar Pensacola 70,64%. Para fibra em detergente ácido, foram encontrados teores de 38,07% (Pensacola), 39,11% (Bagual), 39,29% (André da Rocha), 40,35% (Azulão) e 43,24% (Baio).

Três espécies do gênero *Paspalum*, três genótipos de *P. urvilei*, dois de *P. guenoarum* e três de *P. notatum* foram avaliadas agronomicamente em duas estações de crescimento, na primavera e verão de 2005-2006 e 2006-2007 por Sawasato (2007). A partir deste estudo, o autor encontrou produções superiores a 14000 kg.ha⁻¹de matéria seca total para os genótipos de *P. urvilei* e *P. guenoarum*, enquanto que *P. notatum* produziu entre 9000 (Pensacola),

10000 (André da Rocha) e 12000 (Bagual) kg.ha⁻¹ de matéria seca total no primeiro ano de avaliação. A avaliação no segundo ano mostrou a tendência de bons níveis de produção de *P. notatum*, 7000 (Pensacola), 9000 (André da Rocha) e 10000 (Bagual) kg.ha⁻¹, e *P. guenoarum*, 10000 (Azulão) e 7000 kg.ha⁻¹ (Baio), enquanto que *P. urvilei* teve um decréscimo de produção, atingindo 3000 kg.ha⁻¹. Além do mais, este estudo demonstrou que a espécie *P. guenoarum* apresenta uma boa distribuição da produção abrangendo épocas de menores temperaturas, e que as espécies *P. guenoarum* e *P. notatum* tiveram boa persistência, sobrevivendo ao inverno do sul do Brasil.

Em outro estudo realizado com *P. urvilei*, este apresentou um máximo de 70 afilhos por planta, sendo 60% basilares. A área foliar atingiu até 7066 cm².planta⁻¹, com 250 folhas verdes/planta e altura mantendo-se em 50 cm. O florescimento foi precoce e longo, o que necessita de manejo, a fim de encurtar tal estágio e prolongar o período de produção de folhas (Scheffer-Basso et al., 2002).

Townsend (2008), comparando os biótipos Azulão e Baio (*P. guenoarum*), André da Rocha e Bagual (*P. notatum*) e *P. lividum*, submetidos à fertilização nitrogenada de 0, 60, 180 e 360 kg.ha.ano⁻¹, determinou que os biótipos de hábito rizomatoso (*P. notatum*) e cespitoso (*P. guenoarum*) foram mais produtivos que os biótipos de hábito estolonífero (*P. lividum*). Com exceção de *P. lividum*, que apresentou resposta quadrática à aplicação de nitrogênio para a produção de fitomassa aérea, com máximo em torno de 350 kg.ha.ano⁻¹ de N, todos os demais apresentaram resposta linear até a dose testada de 360 kg.ha.ano⁻¹, sendo estas respostas mais evidentes após o

primeiro ano. A partir destas avaliações, foi também possível identificar uma resposta mais pronunciada à fertilização em *P. notatum*, bem como uma menor estacionalidade de produção do biótipo Azulão, o qual manteve elevada produção no outono.

A cultivar Pensacola é uma das poucas alternativas de espécie cultivada de verão disponível por sementes. Entretanto, é importante ressaltar que praticamente todos os estudos realizados com a espécie *P. notatum* em comparação com a Pensacola, demonstram que os acessos nativos apresentam produções de matéria seca superiores a esta cultivar, apontando para a necessidade de explorar o potencial produtivo destes materiais nativos.

Pereira et al. (2008), avaliaram a produção de duas espécies nativas de *Paspalum*, *P. guenoarum*, acessos Azulão e Baio, e *P. notatum*, André da Rocha e Bagual, sob diferentes níveis de nitrogênio e consorciado com leguminosas. A partir deste estudo, os autores demonstraram que o acesso Azulão apresentou maior produção de matéria seca de folhas e total, independentemente do nível de nitrogênio aplicado. Além disso, os tratamentos consorciados com leguminosas foram semelhantes ao emprego de 360 kg.ha⁻¹.

Outras espécies de *Paspalum* também têm sido avaliadas quanto ao potencial agronômico de seus acessos. Em *P. paniculatum*, a análise do desenvolvimento morfológico demonstrou ser de médio porte (50 cm), clonal, com caules aéreos do tipo colmo, semi-eretos e os subterrâneos do tipo rizomas, com afilhos reprodutivos com mais de 100 cm de comprimento. A massa seca aérea na época do florescimento foi composta por colmos e folhas, numa relação 15,91%, totalizando 44,97% da massa seca na parte

subterrânea, folhas 21,89%, colmos 26,32% e inflorescências 6,83%. Os autores sugerem que essa expressiva alocação de massa seca na parte subterrânea pode indicar resistência ao pastejo e às condições climáticas adversas, além de possível aptidão para revegetação de áreas sujeitas à erosão (Baréa et al., 2006).

Quanto ao desenvolvimento morfológico de P. dilatatum biótipo Virassoro, este se caracterizou pela arquitetura caulinar, florescimento precoce e longo, estabilização do afilhamento no outono e inverno, com retomada do crescimento a partir da primavera, além de ser considerado tipicamente estival, com excelente tolerância à geada, vegetando vigorosamente com o aumento das temperaturas (Costa & Scheffer-Basso, 2003). A maior disponibilidade de massa seca ocorreu na primavera/verão (98g MS.planta-1), bem como os maiores teores de proteína bruta nas folhas (19,09%), fibra em detergente ácido (43%) e fibra em detergente neutro (62%) (Costa et al., 2003). Na produção de matéria seca, composição química e persistência em condições de campo avaliado em diferentes alturas (10 e 20 cm) e intervalos de corte (30 e 45 dias), o biótipo Virassoro não apresentou diferenças entre as alturas e intervalos de corte e nem mesmo entre as estações (primavera e verão) nos cortes a 10 cm, produzindo 997 g MS.linha⁻¹. Entretanto, na altura de 20 cm, a produção de matéria seca foi maior no verão (938 g MS/linha) quando comparado à primavera (761 g MS.linha⁻¹), e houve interação entre a produção de massa seca e altura de corte. No outono, a produção apresentou-se muito baixa (125 g MS.linha⁻¹). A produção de folhas aumentou sob cortes frequentes (30 dias) e intensos (10 cm). Além disso, nos cortes feitos a intervalos de 30 dias, o biótipo Virassoro apresentou maior teor de PB (14,7%) e menores teores de FDA (43,8%) e FDN (67,8%). Os cortes não evitaram o florescimento precoce, intenso e contínuo das plantas, que alocaram em média 27% de MS de folhas e 68% em caules + inflorescências (Baréa et al., 2007).

Analisando uma população de *P. plicatulum*, Scheffer-Basso & Gallo (2008) encontraram valores de 11 a 22% de proteína bruta, 39 a 46% de fibra em detergente ácido e 55 a 66% de fibra em detergente neutro. Além disso, os autores salientam boa tolerância à seca estival e produção de matéria seca durante a primavera-verão-outono, apresentando elevado potencial de afilhamento (105.planta⁻¹), touceiras compactas (circunferência 53 cm) com brotações basais e hábito cespitoso.

2.7 Marcadores Moleculares em *Paspalum*

As análises de diversidade entre e dentro das populações, e a caracterização genética de germoplasma de elite são requisitos fundamentais para o sucesso de um programa de melhoramento (Espinoza et al., 2006). Segundo Ferreira & Grattapaglia (1998), marcadores moleculares apresentam vantagens sobre os marcadores morfológicos pois geralmente são neutros em relação aos efeitos fenotípicos e o nível de polimorfismo para cada *loci* estudado é geralmente alto, além disso, facilitam a construção de mapas genéticos, pois a fonte de polimorfismo molecular em populações segregantes é teoricamente ilimitada.

Diferentes tipos de marcadores têm sido utilizados para caracterização de germoplasma e em estimativas de diversidade genética. Os

diversos tipos de marcadores moleculares diferenciam-se pela tecnologia utilizada, pela habilidade de detectar diferenças entre indivíduos, custo, facilidade de uso, consistência e reprodutibilidade. Entre os métodos mais utilizados em plantas, encontram-se os marcadores microssatélites ou polimorfismo de seqüências simples repetidas (SSR), o polimorfismo de comprimento de fragmentos amplificados (AFLP), o polimorfismo de DNA amplificado ao acaso (RAPD) e, mais recentemente, os marcadores baseados na variação de intersequências simples repetidas (ISSR) (Ferreira & Grattapaglia, 1998).

Os microssatélites são pequenas sequências de um a seis nucleotídeos de comprimento, repetidas em *tandem* ao longo da molécula de DNA, estando presente no genoma de eucariotos e procariotos (Tóth et al., 2000). Estas sequências estão sujeitas a elevadas taxas de mutação, sendo manifestadas principalmente através de alterações no número de repetições das sequências motivos dos SSR (Li et al., 2002).

Os SSR possuem expressão co-dominante, são somaticamente estáveis, multialélicos e altamente reprodutíveis. A elevada variabilidade entre os organismos relacionados faz com que estes marcadores sejam altamente informativos, possuindo o mais elevado conteúdo de informação de polimorfismo (*PIC, Polymorphism Information Content*) e sejam ideais para serem utilizados no mapeamento genético e físico de genomas, identificação e discriminação de genótipos, testes de paternidade e seleção assistida por marcadores (Faleiro, 2007).

A limitação desta técnica está na necessidade da utilização de

primers específicos para cada espécie, contendo as sequências que flanqueiam os SSR. No entanto, primers de espécies geneticamente relacionadas também podem fornecer bons resultados. Neste sentido, pode-se citar a utilização de primers desenvolvidos para trigo, milho e sorgo em P. vaginatum, obtendo uma taxa de transferência média de SSR de 61% entre as espécies (Wang et al., 2006). Além disso, estes mesmos primers discriminaram 64 acessos de P. urvilei, com a formação de sete grupos (Sawasato et al., 2008).

Diante da grande diversidade morfológica exibida pela espécie P. estudos com marcadores moleculares visando notatum, alguns caracterização e análise da diversidade genética de diferentes acessos da espécie podem ser destacados. Steiner (2005), utilizando marcadores RAPD, analisou 40 acessos de várias partes do Brasil, principalmente do Rio Grande do Sul. Os níveis de similaridade genética entre os acessos de P. notatum foram baixos, com similaridade média de 0,26 (Índice de Jaccard), variando de 0 a 0,80, revelando altos índices de variabilidade genética entre os acessos para os *primers* testados neste trabalho. Os acessos estudados foram reunidos em sete grupos distintos, os quais podem favorecer a seleção de genótipos para a formação de novas cultivares.

O uso de marcadores ISSR para um total de 95 acessos de *P. notatum* revelou um amplo polimorfismo, com apenas 2,2% dos fragmentos sendo monomórficos em todos os acessos. Neste estudo, o coeficiente de similaridade de Jaccard é considerado baixo, com uma média de 0,59, variando de 0,43 a 0,97. Os dados obtidos com estes marcadores indicam que há uma

grande variação genética entre os acessos, embora a diversificação da espécie seja recente e sua forma mais comum de reprodução é apomítica (Cidade et al., 2008).

A partir de marcadores AFLP, 42 acessos de *P. notatum* mostraram uma distancia genética de 0,36 (Espinoza et al., 2006). Além disso, os autores detectaram 11 fragmentos de DNA presentes em plantas apomíticas e que estavam ausentes nas sexuais, os quais podem estar ligados a regiões genômicas envolvidas no controle da apomixia.

Com o objetivo de analisar a presença de dois marcadores moleculares de RAPD ligados a apomixia em *P. notatum*, Martinez & Quarin (2000) demonstraram que os fragmentos de DNA ligados à apomixia foram amplificadas em todos os genótipos apomíticos e estiveram ausentes nos indivíduos sexuais, independente do número cromossômico de cada genótipo. Os autores reforçam que o descobrimento das regiões genômicas específicas em *P. notatum* abre a possibilidade futura de poder utilizar tais marcadores na seleção e melhoramento forrageiro dentro do gênero.

Espinoza et al. (2002) avaliaram o efeito do período de polinização na proporção de indivíduos sexualmente formados nas progênies de um genótipo apomítico facultativo de *P. notatum* de acordo com o período em que foi realizada a polinização (1-3 dias antes da antese, durante a antese e 2, 4 e 6 dias após a antese), por meio de marcadores RAPD. Os resultados indicaram que a polinização durante a antese possui um maior potencial para a sexualidade com 20% da progênie produzida sexualmente, e 3,4% na préantese. Após a antese, apenas plantas apomíticas foram formadas.

3. MATERIAL E MÉTODOS

3.1 Material Utilizado

Foram utilizados 25 acessos de *P. notatum*, na forma de sementes, provenientes do United States Department of Agriculture (USDA), coletados em diferentes locais do Sul do Brasil, Argentina, Uruguai e Paraguai, durante as décadas de 1950 a 1970 (Tabela 1). Em abril de 2008, cerca de 30 sementes de cada acesso foram colocadas para germinar em bandejas de isopor de 200 células (2cmX2cmX6cm) com substrato comercial e mantidas em casa de vegetação, no Departamento de Plantas Forrageiras e Agrometeorologia (DPFA) da Faculdade de Agronomia da Universidade Federal do Rio Grande do Sul (UFRGS), localizada no município de Porto Alegre - RS. Posteriormente, foi realizado o transplante desse material e a clonagem de 27 acessos de uma coleção mantida na casa de vegetação do DPFA da UFRGS, coletados em diferentes locais do Rio Grande do Sul, São Paulo, Uruguai e Argentina. Foram feitos clones também de dois acessos de P. guenoarum, Azulão e Baio, além da cultivar Pensacola, que foi utilizada como testemunha. Todas as plantas obtidas foram mantidas em vasos com substrato comercial em casa de vegetação até o plantio das mudas no campo, sendo periodicamente irrigadas e adubadas.

3.2 Avaliação Agronômica

Em 8 de outubro de 2008, o experimento foi estabelecido com mudas, na Estação Experimental Agronômica (EEA) da UFRGS, localizada no Município de Eldorado do Sul – RS, totalizando 55 acessos (25 do USDA, 27 do DPFA, Azulão, Baio e Pensacola) (Tabela1). O delineamento experimental utilizado foi completamente casualisado com cinco repetições e as plantas espaçadas 1m entre si. A disposição das plantas formou dez linhas com 28 plantas cada, totalizando 280m² de área experimental (Figura 1 A-B).

A EEA está localizada na região fisiográfica da Depressão Central, cujo clima da região é do tipo Cfa, subtropical úmido com verão quente, segundo a classificação de Köppen. As temperaturas médias mensais do ar variam de 9 a 25° C, sendo que os meses mais quentes são janeiro e fevereiro, e os meses mais frios junho e julho. Considerando dados de 30 anos (1970-2000), a média total anual de precipitação é de 1466 mm, enquanto que a média mensal é de 125 mm. O solo da unidade experimental pertence à Unidade de Mapeamento São Jerônimo, classificado como Argissolo Vermelho distrófico – Pvd (Streck et al., 2002).

Previamente à instalação do experimento, foi realizada uma adubação de base satisfazendo as condições mínimas para fósforo e potássio segundo recomendações, de acordo com a análise de solo feita para a área. Posteriormente, foram realizadas adubações em cobertura em doses fracionadas de nitrogênio após o plantio e cada um dos cortes realizados, sob a forma de uréia. A área foi irrigada por meio de asperssores, a fim de evitar déficit hídrico no período de avaliação.

TABELA 1: Identificação e local de coleta dos acessos de *Paspalum notatum* e *P. guenoarum.* EEA-UFRGS, Eldorado do Sul, RS, 2010.

/RS - Brasil a Rocha/RS – Brasil s/RS – Brasil /RS - Brasil /RS - Brasil déu - Uruguai asil /RS – Brasil é – Argentina ứCS – Brasil é – Argentina úcia – Uruguai es – Argentina rS – Brasil é – Argentina ucia – Uruguai es – Argentina rO – Uruguai e – Argentina e – Brasil e – Argentina e – Argentina e – Brasil
s/RS – Brasil /RS - Brasil déu - Uruguai asil (RS – Brasil é – Argentina (RS – Brasil é – Argentina úcia – Uruguai es – Argentina (RS – Brasil é – Argentina des – Argentina é – Argentina é – Argentina é – Argentina a – Argentina e – Argentina
/RS - Brasil déu - Uruguai asil /RS – Brasil é – Argentina /RS – Brasil é – Argentina úcia – Uruguai es – Argentina /RS – Brasil é – Argentina /RS – Brasil é – Argentina /RS – Brasil é – Argentina é – Argentina a – Argentina gro – Uruguai a – Argentina
déu - Uruguai asil /RS – Brasil é – Argentina /RS – Brasil é – Argentina úcia – Uruguai es – Argentina /RS – Brasil é – Argentina /RS – Brasil é – Argentina é – Argentina e – Argentina o – Uruguai a – Argentina a – Argentina
asil (RS – Brasil é – Argentina (RS – Brasil é – Argentina úcia – Uruguai es – Argentina (RS – Brasil é – Argentina é – Argentina é – Argentina o – Uruguai e – Argentina
RS – Brasil é – Argentina (RS – Brasil é – Argentina úcia – Uruguai es – Argentina (RS – Brasil é – Argentina é – Argentina é – Argentina jro – Uruguai a – Argentina
é – Argentina /RS – Brasil é – Argentina úcia – Uruguai es – Argentina /RS – Brasil é – Argentina é – Argentina gro – Uruguai a – Argentina
(RS – Brasil é – Argentina úcia – Uruguai es – Argentina (RS – Brasil é – Argentina é – Argentina gro – Uruguai a – Argentina
é – Argentina úcia – Uruguai es – Argentina 'RS – Brasil é – Argentina é – Argentina yro – Uruguai a – Argentina
úcia – Uruguai es – Argentina 'RS – Brasil é – Argentina é – Argentina é – Argentina Iro – Uruguai a – Argentina
úcia – Uruguai es – Argentina 'RS – Brasil é – Argentina é – Argentina é – Argentina Iro – Uruguai a – Argentina
es – Argentina /RS – Brasil é – Argentina é – Argentina é – Argentina ıro – Uruguai a – Argentina
/RS – Brasil é – Argentina é – Argentina é – Argentina _I ro – Uruguai a – Argentina
é – Argentina é – Argentina é – Argentina _I ro – Uruguai a – Argentina
é – Argentina é – Argentina _I ro – Uruguai a – Argentina
é – Argentina ro – Uruguai a – Argentina
ıro – Uruguai a – Argentina
a – Argentina
vinhos/SP – Brasil
es – Argentina
RS – Argentina RS – Brasil
es – Argentina
•
du – Uruguai
embó – Uruguai
é – Argentina
sus/RS – Brasil
es – Argentina
ana/RS – Brasil
o Quarai/RS – Brasil
i do Sul/RS – Brasil
Sol/RS – Brasil
RS – Brasil
RS – Brasil
i do Sul/RS – Brasil
o do Sul/RS – Brasil
o do Sul/RS – Brasil
do Sul/RS – Brasil
do Sul/RS – Brasil
va do Sul/RS – Brasil
S – Brasil
a Rocha/RS – Brasil
s/SP – Brasil
rja/RS – Brasil
06 – Argentina
07 – Argentina
12 – Argentina
las/RS - Brasil
ba/SP – Brasil
as – Argentina
sé do Hortênsio/RS –Brasil

 Continuação... Identificação e local de coleta dos acessos de Paspalum notatum e P. guenoarum. EEA-UFRGS, Eldorado do Sul, RS, 2010.

Espécie	Acesso	Identificação	Local de Coleta
P. guenoarum	Azulão	MD s/n	EEA – Eldorado do Sul/RS
_	Baio	MD s/n	EEA – Eldorado do Sul/RS

Acessos seguidos da letra N são provenientes do USDA. Acessos precedidos pela letra V são provenientes do DPFA.



FIGURA 1. Visão geral da área experimental na EEA em Eldorado do Sul/RS. A- Foto tirada em outubro de 2008. B- Foto tirada em novembro de 2009. EEA-UFRGS, Eldorado do Sul, RS, 2010.

3.3 Caracterização Morfológica

A caracterização morfológica foi realizada no estágio de florescimento pleno, no mês de janeiro de 2009, visando uma padronização da

avaliação. As medidas foram obtidas para os 53 acessos de *P. notatum*.

Foram avaliadas, em cada um dos acessos, as características descritas na Tabela 2. As medidas referentes às bainhas e lâminas foliares foram realizadas na primeira folha abaixo da folha bandeira, objetivando uma comparação padronizada entre os acessos.

TABELA 2. Características morfológicas avaliadas nos diferentes acessos e forma de avaliação. EEA-UFRGS, Eldorado do Sul, RS, 2010.

Característica		Forma de avaliação
Bainha	Comprimento (BC)	cm (régua)
	Largura (BL)	cm (régua)
	Coloração (BCr)	Notas visuais (1- esverdeada; 2- violácea)
	Pilosidade (BP)	Notas visuais (1- pilosa; 2- glabra)
Folha	Comprimento (FC)	cm (régua)
	Largura (FL)	cm (régua)
	Angulação Inserção	graus (transferidor)
	(FAI)	
	Cor da Nervura	Notas visuais (1- esbranquiçada; 2-
	Central (FCNC)	esverdeada)
	Pilosidade (FP)	Notas visuais (1- pilosa; 2- glabra)
Inflorescências	Número racemos (INR)	Número (2; 3)
	Comprimento	cm (régua)
	Racemos (ICR)	
	Angulação Rácemos	graus (transferidor)
	(IAR)	
Hastes Floríferas	Altura (HFA)	cm (régua)
Hábito da Planta	(HP)	Notas visuais (1- ereto; 2- intermediário; 3-
		prostrado)

As variáveis avaliadas foram submetidas à análise estatística pelo Programa Genes (Cruz, 2007), sendo os dados analisados pelo procedimento de análise multivariada, objetivando obter informações sobre a importância relativa dos caracteres avaliados e o grau de dissimilaridade genética entre os acessos na coleção. Para isso, foi gerada uma matriz de dissimilaridade pela distância de Mahalanobis, a qual padroniza os dados para estimar a variância. A importância relativa dos caracteres foi obtida pelo método de Singh (1981), a

partir das médias não padronizadas. A partir da matriz de dissimilaridade, foi procedido o método de agrupamento hierárquico de Tocher, de tal forma que existisse homogeneidade dentro do grupo e heterogeneidade entre os grupos. Também foi realizada análise de variância (ANOVA) para cada característica avaliada, por meio do mesmo programa estatístico.

3.4 Produção de Matéria Seca e Análise da Persistência

As avaliações foram realizadas em 20 de janeiro, 6 de março, 22 de setembro, 16 de novembro e 15 de dezembro de 2009 para todos os acessos (Tabela 1), respeitando o período de crescimento da espécie. A avaliação prevista para o mês de abril de 2009 foi perdida, devido à entrada de animais na área experimental. Em 15 de julho, foi realizada uma avaliação apenas para os acessos de *P. guenoarum*, Azulão e Baio, pois esta espécie apresentou um bom crescimento neste período em função da tolerância ao frio.

As avaliações foram feitas cortando-se todas as plantas, quando as mesmas apresentavam cerca de 20 cm de atura; a 5 cm do solo para os acessos de *P. notatum* e a 10 cm do solo para *P.* guenoarum. Cada planta individual foi considerada uma amostra, a qual foi separada nos seguintes componentes: lâminas foliares, colmos+bainhas+inflorescências, material morto e outras espécies. Após essa separação, o material foi seco em estufa com ar forçado a 60° C até peso constante. As amostras foram então pesadas em balança de precisão, obtendo-se os valores da produção de matéria seca de folhas (MSF) e matéria seca total (MSF + matéria seca de colmos (MSC)), por planta, para cada um dos diferentes acessos.

Os dados da produção de cada corte, bem como a produção em cada período avaliado e o total das avaliações foram submetidos à análise estatística de variância (ANOVA, 5%) e as médias comparadas entre si pelo teste de Scott & Knott, 5%, com o auxílio do Programa Genes (Cruz, 2007).

Em 16 de setembro de 2009, os acessos foram analisados para a avaliação da persistência. Todas as plantas foram avaliadas por meio de notas visuais, atribuindo-se valor 1 para as plantas que estavam vivas e 0 para as que haviam morrido. Após, foi criado uma matriz, e os dados submetidos à análise de variância (ANOVA, 5%), com o auxílio do Programa Genes (Cruz, 2007) e as médias comparadas entre si pelo teste de Scott & Knott, 5%.

3.5 Análise Molecular

A extração do DNA genômico e a análise molecular foram realizadas no Laboratório de Análise Genética (LAG) do DPFA da Faculdade de Agronomia da UFRGS. A caracterização molecular foi realizada para os 53 acessos de *P. notatum* relacionados na Tabela 1, com o auxílio de marcadores microssatélites (SSR).

O material foliar foi coletado do experimento a campo e levado em caixa de isopor com gelo até o LAG para posterior extração. Cada amostra foi constituída pela mistura (*bulk*) de folhas jovens e sadias das cinco plantas de cada acesso. A extração do DNA foi realizada segundo a metodologia descrita por Ferreira & Grattapaglia (1998) com modificações, conforme descrita a seguir.

Cerca de 200 µg de folha foi depositado em tubos de eppendorf de

1,5 mL e macerado em nitrogênio líquido. Ao material macerado foi adicionado 650 µL de tampão de extração CTAB (2% de CTAB, 1,4 mol de NaCl, 20 mmol de EDTA e 10 mmol de Tris base pH 8,0) previamente aquecido a 65° C, 14 µL de β-mercaptoetanol, 10 μL de proteinase K e 1% de PVP. O material macerado foi suspenso no tampão de extração com o auxílio de um agitador de tubos vórtex. As amostras foram levadas em banho-maria 65° C, onde permaneceram por 30 minutos, e após foram resfriadas no agitador por 30 minutos. Após, foram adicionados 650 µL de clorofórmio isoamílico (24 clorofórmio:1 álcool isoamílico), sendo as amostras novamente levadas ao agitador por 30 minutos. A suspensão foi então centrifugada por 15 minutos a 13.000 rotações por minuto (rpm), retirado o sobrenadante, transferido para um novo eppendorf e adicionado ao volume de DNA o mesmo volume de isopropanol gelado. Essa solução foi mantida a 4° C durante uma noite. No dia seguinte, os tubos foram centrifugados 13.000 rpm por 10 minutos, descartado o sobrenadante, acrescentado 500 µL da solução de lavagem (76% de etanol e 10 mmol de acetato de amônio) por 10 minutos e levados à centrifugação à 13.000 rpm por cinco minutos. Esse procedimento foi repetido, após, descartado o sobrenadante e os tubos foram mantidos invertidos para secagem dos pellets de DNA. Após a secagem, os pellets foram ressuspensos em 100 μL de TE pH 7,4 (10 mmol de Tris base pH 8,0 e 1 mmol de EDTA), sendo as amostras levadas ao banho-maria a 65° C por cinco minutos, reprecipitado com 50 µL de 7,5 mol de acetato de amônio e 375 µL de etanol absoluto. As amostras foram centrifugadas por 10 minutos a 13.000 rpm, descartado o sobrenadante e os tubos foram mantidos até secagem completa do pellet e

ressuspenso em 50 μL de TE pH 7,4. Os tubos foram mantidos por 24 h a 4° C e posteriormente armazenados a -18° C.

O DNA das amostras foi quantificado por meio do espectrofotômetro QubitTM fluorometer, da Invitrogen[®] e posteriormente uma alíquota de cada amostra foi diluída em TE pH 7,4 a uma concentração de 20 ng/µL, constituindo a solução de trabalho das amostras.

As reações da polimerase em cadeia (PCR) foram realizadas em um volume final de 15 μL, compostos por 2 μL da solução de trabalho de DNA (20ng/μL), 1,5 μL de tampão PCR 10X, 1 μL de MgCl₂ (50mM), 0,6 μL de 10mM de dNTP mix contendo 2,5mM de cada um dos quatro nucleotídeos (dATP, dTTP, dCTP, dGTP), 1,2 μL de *primer fovward* (10 μmol), 1,2 μL do *primer reverse* (10 μmol), 0,3 μL de *Taq* DNA polimerase Qiagen (5 U/μL) e água miliQ esterilizada para completar o volume.

Neste trabalho, foram testados 11 *primers* de acordo com trabalhos anteriormente realizados com *Lolium multiflorum* L. (Kubik et al., 2001), *Paspalum vaginatum* Sw. (Wang et al., 2006), *Trifolium repens* L. (Kölliker et al., 2001) e *Paspalum urvilei* St. (Sawasato et al., 2008) (Tabela 3).

As condições de amplificação de SSR foram baseadas em Wang et al. (2006), descrito a seguir: desnaturação a 94° C por 4 min, (primeiros 10 ciclos) 94° C por 1 min, 50° C por 30s, 72° C por 40s. A cada ciclo há incremento de 0,5° C na temperatura de anelamento. Nos 35 ciclos posteriores, 94° C por 1 min, 45° C por 30s, 72° C por 40s e por fim extensão a 72° C por 10 min e estoque a 4° C.

Os fragmentos amplificados foram visualizados em gel de agarose

4% corado com 0,08 μL/mL de brometo de etídio (10 mg/mL), submerso em tampão TBE 1X a uma corrente de 100 V por duas horas. Após a eletroforese, os géis foram visualizados em um transiluminador de luz ultravioleta (comprimento de onda de 260 nm) e fotografado para que os fragmentos das amostras fossem determinados por comparação a um padrão de 100 pares de bases (pb), por meio do programa Kodak EDAS 290 (*Electrophoresis Documentation and Analysis System*). Dos 11 *primers* testados, oito foram utilizados para análise de diversidade genética entre os acessos, por apresentarem boa amplificação dos fragmentos de DNA.

TABELA 3. *Primers* de microssatélites utilizados na amplificação de 53 acessos de *Paspalum notatum*. UFRGS, Porto Alegre, RS, 2010.

Primer	Sequência F (5' – 3')
	Sequência R (3' – 5')
*Pv-3	TATGGACCGACTGCATGATTCTT
	CTTACGGAGAGTGGATCGATG
*Pv-11	AGGTTTGTAGGTTGGGTGCAACTGA
	TAATGGGAGGCGGGGTT
Pv-35	TCGAAATCGAAAAAGAAGATCGTTC
	GATTGGAACATCGACCGCGG
Pv-51	TCCCATCATCAGTTCTTCCAATC
	TTCTACTACTTATTATCGTGTCCCG
*Pv-53	CTCGGAAACCGCAGCTCA
	ACCTTATCTCCTCCGCCTCG
*M4-213	CACCTCCCGCTGCATGGCATGT
	GGAACTGTACAGAACAT
[*] M15-185	GGTCTGGTAGACATGCCTAC
	CTTGGACGGACACGACCAT
[*] M16-B	TGCTGTGGCTCTTGTGAC
	AGCTCGACTCGGAGCCGA
M4-136	AGAGACCATCACCAAGCC
	GTTCCTTTAGAAGAAGGTCT
[*] M2-148	GCAACTTCTATCGAGTTG
	AGGCACTTCTAGCTCGGAG
[*] M12-52	CTACAATGCATTCGTGCA
	TCCCGCGCCCACGGAGAT

Primers que foram utilizados na análise de divergência dos acessos.

Por fim, foi construída uma matriz binária dos dados, onde foi atribuído o valor um para a presença e zero para a ausência de fragmentos de

DNA. A partir dessa matriz, com o auxílio do programa "Numerical Taxonomy and Multivariate Analysis System" NTSYSpc versão 2.1 (Rohlf, 2000) e utilizando o coeficiente de Jaccard, foi gerada uma matriz de similaridade comparando todos os genótipos.

Uma análise de agrupamento foi realizada utilizando o módulo SAHN do NTSYS e o método da média das distâncias (UPGMA, *Unweighted Pair-Group Method Using an Arithmetic Average*) assim construído um dendrograma de similaridade genética entre os genótipos.

Foi calculado o número de alelos por loco (A), as frequências genotípicas e alélicas e o conteúdo de informação de polimorfismo (PIC) para cada loco (PIC= 1 - ∑ pi², onde pi é a frequência do alelo i). O PIC fornece uma estimativa do poder discriminativo do marcador, variando de zero, para perfis monomórficos, até um para perfis altamente polimórficos.

3.6 Determinação do Nível de Ploidia

O nível de ploidia foi determinado para os 25 acessos de *P. notatum* provenientes do USDA (Tabela 1). O número cromossômico dos demais acessos avaliados neste trabalho foi previamente determinado por Dahmer et al. (2008).

A determinação do nível de ploidia foi realizada a partir do número cromossômico gamético, a partir de células mãe de pólen (CMP), analisadas em inflorescências jovens coletadas diretamente das plantas do experimento à campo. A coleta foi realizada em janeiro de 2010, sendo coletadas, de duas plantas aleatórias de cada acesso, inflorescências que ainda se encontravam

totalmente envolta pela folha bandeira. As inflorescências foram fixadas em Carnoy 3:1 (etanol: ácido acético) por 24 horas em temperatura ambiente (20 – 25° C) e após estocadas em álcool 70% a 4° C até a análise.

As lâminas foram preparadas isolando-se as anteras com auxílio de agulhas histológicas sob a lupa e posterior maceração das mesmas com uma gota de carmim propiônico 1% (Pagliarini et al., 2002; Simioni & Valle, 2009). Para análise das células, foi utilizado microscópio óptico com sistema de captação de imagem.

Cerca de dez células por acesso foram examinadas, sendo o número cromossômico gamético contado durante as fases de diacinese/ metáfase I e anáfase I da meiose, quando as mesmas apresentavam os cromossomos visíveis e adequadamente espalhados, sendo as melhores células captadas digitalmente. O nível de ploidia foi determinado levando em consideração x=10 cromossomos, descrito como número básico para o gênero (Moraes-Fernandes, 1974).

4. RESULTADOS E DISCUSSÃO

4.1. Caracterização Morfológica

Os valores médios e os desvios-padrões das características morfológicas avaliadas dos acessos encontram-se descritos na Tabela 4.

Com relação às bainhas foliares, o maior comprimento observado foi de 13,7 cm (s= 1,9), no acesso 83N, procedente de Corrientes, Argentina, enquanto que o menor valor, 3,6 cm (s= 0,5), para o acesso V47, de Arapei, Argentina. A largura das bainhas foliares variou de 1,3 cm (s= 0,1) no acesso 73N (Nova Ovinhos, SP) a 0,4 (s= 0) em 87N (Paysandu, Uruguai). Diversos acessos apresentaram coloração das bainhas violácea nas três plantas analisadas (m= 2,0, s= 0), Bagual, 36N, 49N, 66N, 67N, 89N, 93N, 95N, V10, V12, V23, V26, V27 e V66, assim como apenas coloração verde foi observada nos acessos 17N, 20N, 30N, 33N, 69N, 70N, 71N, 79N, 87N, V5, V9, V13, V24, V31, V35, V42, V47, V49, V50, V51, V69 (m= 1, s= 0), e os demais acessos apresentaram variação para esta característica. Todos os acessos apresentaram bainhas glabras (m= 2, s= 0), com exceção do V49, que apresentou bainhas completamente pilosas (m= 1, s= 0) e do V50, que apresentou variação nas plantas analisadas (m= 1,3, s= 0,6).

Para as lâminas foliares, o maior comprimento foi apresentado pelo

acesso 92N (Santa Fé, Argentina), com 24,6 cm e s= 1,4, enquanto que o menor comprimento observado foi do acesso 87N (Paysandu, Uruguai), com 4,8 cm e s= 0,5. A largura foliar variou de 1,5 cm \pm 0,2 (73N, Nova Ovinhos/SP) a 0,4 cm ± 0,1 (37N, Santa Lúcia, Uruguai). A angulação de inserção das folhas apresentou variação de 65° ± 21.8 no acesso 79N (Corrientes, Argentina) a 15° ± 13,2 em V24 (Eldorado do Sul, RS). A cor da base da nervura central variou de branca (m= 1, s= 0) em Pensacola, VAR, 13N, 16N, 17N, 30N, 33N, 36N, 48N, 51N, 66N, 67N, 70N, 80N, 83N, 89N, 92N, 95, V2, V4, V10, V12, V23, V26, V29, V30, V41, V47, V51 e V67, a verde (m= 1, s= 0) em 73N, 79N, 87N, 93N, V13, V49 e V50. Nos demais acessos esta característica foi variável. Para a presença de pilosidade nas lâminas foliares, 48 acessos foram glabros, três apresentaram variação para pilosidade e apenas V13 (Capivari do Sul, RS) e V49 (Mostardas, RS) apresentaram todas as plantas com lâminas completamente pilosas.

Em relação às inflorescências, a maior parte dos acessos apresentou dois racemos, mas três, quatro e até cinco racemos foram observados durante as avaliações, como nos acessos V13, 70N, 87N e 89N. O comprimento dos racemos variou de 14,7 cm (s= 0,4) em 92N (Santa Fé, Argentina) a 5,3 cm (s= 1,7) em V49 (Mostardas, RS). A angulação entre os racemos apresentou valor máximo de 93,3° (s= 40,1) em V5 (Capivari do Sul, RS) e mínimo de 18,3° (s= 5,8) em V4 (Barra do Quaraí, RS). As hastes floríferas foram avaliadas quanto à altura, e esta variou de 46,9 cm (s= 1,6) em 30N (Santa Fé, Argentina) a 14,9 cm (s= 3,1) em V47 (Arapei, Argentina).

TABELA 4. Características morfológicas dos acessos de *P. notatum* (m= média, s= desvio padrão). EEA-UFRGS, Eldorado do Sul, RS, 2010.

Acesso	В	2	В	SL.	В	Cr	В	P	F	2	F	L	F	AI	FC	NC	F	P	IN	IR.	IC	R	I.A	١R	HF	-A	F	IP.
	cn	n	С	m					cn	n	С	m	gra	aus							cn	n	gra	aus	CI	m		
	m	S	m	s	m	s	m	s	m	S	m	s	m	S	m	s	m	S	m	s	m	S	m	s	m	S	m	S
Pen	7,0	1,4	0,9	0,1	1,7	0,6	2,0	0,0	13,4	1,4	0,7	0,1	46,7	7,6	1,0	0,0	2,0	0,0	2,0	0,0	10,1	1,9	40,0	32,8	29,9	5,5	3,0	0,0
VAR	6,2	0,7	0,9	0,1	1,3	0,6	2,0	0,0	10,8	1,1	0,9	0,2	40,0	20,0	1,0	0,0	2,0	0,0	2,3	0,6	8,0	0,3	61,7	47,3	18,3	3,2	2,3	1,2
VBag	9,4	2,8	1,0	0,1	2,0	0,0	2,0	0,0	14,2	4,1	0,9	0,3	33,3	5,8	1,3	0,6	2,0	0,0	2,0	0,0	12,6	2,0	55,0	5,0	39,3	2,3	1,0	0,0
13N	9,3	2,5	0,8	0,1	1,3	0,6	2,0	0,0	17,5	7,0	0,5	0,1	30,7	5,1	1,0	0,0	2,0	0,0	2,0	0,0	9,9	2,3	51,0	24,6	34,2	8,5	1,0	0,0
16N	6,5	0,3	1,0	0,2	1,7	0,6	2,0	0,0	10,6	2,5	0,8	0,1	34,7	1,5	1,0	0,0	2,0	0,0	2,0	0,0	8,6	0,2	49,0	6,1	27,6	1,9	1,0	0,0
17N	5,6	1,0	1,0	0,2	1,0	0,0	2,0	0,0	12,5	3,0	1,0	0,1	55,0	30,4	1,0	0,0	2,0	0,0	2,0	0,0	8,8	0,0	58,3	5,8	28,2	3,7	1,0	0,0
20N	7,1	4,3	0,7	0,1	1,0	0,0	2,0	0,0	6,0	2,0	0,7	0,1	50,0	30,0	1,7	0,6	2,0	0,0	2,0	0,0	6,3	1,0	85,0	33,6	25,0	2,5	1,0	0,0
30N	9,5	0,5	0,9	0,3	1,0	0,0	2,0	0,0	17,7	0,6	0,9	0,3	45,0	22,9	1,0	0,0	2,0	0,0	2,0	0,0	13,9	1,5	70,0	0,0	46,9	1,6	1,0	0,0
33N	5,9	0,9	1,0	0,0	1,0	0,0	2,0	0,0	14,1	1,4	0,9	0,1	41,7	16,1	1,0	0,0	2,0	0,0	2,0	0,0	9,6	0,2	21,7	22,5	18,3	5,4	3,0	0,0
36N	7,9	0,8	1,1	0,1	2,0	0,0	2,0	0,0	18,1	1,4	1,0	0,1	45,0	8,7	1,0	0,0	2,0	0,0	2,0	0,0	11,6	1,3	56,7	10,4	37,7	2,6	1,0	0,0
37N	7,1	3,5	0,6	0,1	1,7	0,6	2,0	0,0	8,6	1,0	0,4	0,1	26,7	11,5	1,3	0,6	2,0	0,0	2,0	0,0	7,3	1,7	35,0	10,0	20,2	8,3	2,3	1,2
48N	11,0	0,5	1,0	0,1	1,3	0,6	2,0	0,0	19,5	2,6	1,0	0,1	38,3	7,6	1,0	0,0	2,0	0,0	2,0	0,0	14,2	1,4	38,3	10,4	42,2	4,0	1,7	1,2
49N	7,3	1,5	1,0	0,0	2,0	0,0	2,0	0,0	12,0	3,0	0,9	0,1	33,3	11,5	1,3	0,6	2,0	0,0	2,0	0,0	9,3	0,1	65,0	35,0	23,5	7,0	3,0	0,0
51N	6,0	0,9	1,0	0,1	1,3	0,6	2,0	0,0	11,6	1,2	0,9	0,1	35,7	9,3	1,0	0,0	2,0	0,0	2,0	0,0	9,2	1,1	76,7	42,5	25,9	7,5	1,0	0,0
66N	10,6	1,4	0,9	0,2	2,0	0,0	2,0	0,0	19,4	0,6	0,8	0,2	38,3	15,3	1,0	0,0	2,0	0,0	2,0	0,0	12,8	0,4	38,3	17,6	40,6	2,3	1,0	0,0
67N	11,4	1,1	0,8	0,1	2,0	0,0	2,0	0,0	18,0	2,7	0,6	0,1	30,0	13,2	1,0	0,0	2,0	0,0	2,0	0,0	11,9	1,3	40,0	10,0	34,9	10,2	1,0	0,0
69N	5,7	0,9	0,8	0,2	1,0	0,0	2,0	0,0	8,2	1,0	0,7	0,1	45,7	9,3	1,3	0,6	2,0	0,0	2,0	0,0	6,7	0,4	48,3	15,3	23,2	3,1	1,0	0,0
70N	9,4	0,5	1,2	0,1	1,0	0,0	2,0	0,0	22,6	2,8	1,2	0,1	30,0	5,0	1,0	0,0	2,0	0,0	2,7	0,6	10,7	1,9	63,3	43,1	38,0	2,7	1,0	0,0
71N	6,1	1,1	1,0	0,2	1,0	0,0	2,0	0,0	10,4	5,4	0,8	0,2	38,3	7,6	1,3	0,6	2,0	0,0	2,3	0,6	6,8	1,7	30,0	17,3	22,4	6,6	3,0	0,0
73N	6,7	1,8	1,3	0,1	1,3	0,6	2,0	0,0	14,4	1,9	1,5	0,2	43,3	14,4	2,0	0,0	1,3	0,6	2,0	0,0	10,4	0,6	45,0	39,7	22,3	1,5	3,0	0,0
79N	5,0	1,1	0,8	0,1	1,0	0,0	2,0	0,0	8,2	1,2	0,7	0,1	65,0	21,8	2,0	0,0	2,0	0,0	2,0	0,0	6,9	0,7	45,0	8,7	23,0	3,1	1,0	0,0
80N	6,8	1,5	1,0	0,0	1,7	0,6	2,0	0,0	12,8	1,9	1,0	0,1	45,0	5,0	1,0	0,0	2,0	0,0	2,0	0,0	9,2	0,2	50,0	10,0	27,2	8,0	2,3	1,2
83N	13,7	1,9	0,9	0,1	1,3	0,6	2,0	0,0	17,6	0,6	0,6	0,1	25,0	13,2	1,0	0,0	2,0	0,0	2,0	0,0	10,9	0,4	45,0	21,2	37,6	2,0	1,0	0,0
87N	4,8	0,5	0,4	0,0	1,0	0,0	2,0	0,0	4,8	0,5	0,7	0,1	30,0	17,3	2,0	0,0	2,0	0,0	2,0	0,0	6,1	0,6	41,7	17,6	21,8	1,6	1,0	0,0
89N	5,0	2,1	0,8	0,1	2,0	0,0	2,0	0,0	8,7	1,2	0,7	0,2	35,0	0,0	1,0	0,0	2,0	0,0	2,3	0,6	6,4	0,7	52,3	15,0	20,2	4,6	1,0	0,0
92N	11,8	2,2	0,8	0,1	1,7	0,6	2,0	0,0	24,6	1,4	0,6	0,1	23,3	7,6	1,0	0,0	2,0	0,0	2,0	0,0	14,7	0,4	43,3	2,9	45,0	6,9	1,0	0,0
93N	6,3	1,8	0,7	0,1	2,0	0,0	2,0	0,0	6,5	1,2	0,6	0,1	23,3	17,6	2,0	0,0	2,0	0,0	2,0	0,0	6,4	0,2	40,0	5,0	21,4	0,6	1,0	0,0
95N	7,6	2,1	1,0	0,1	2,0	0,0	2,0	0,0	20,3	4,3	0,9	0,1	60,0	15,0	1,0	0,0	2,0	0,0	2,0	0,0	12,2	1,4	60,0	8,7	39,7	1,5	1,0	0,0
V2	6,2	0,9	0,7	0,1	1,3	0,6	2,0	0,0	15,7	3,6	0,6	0,1	23,3	12,6	1,0	0,0	2,0	0,0	2,0	0,0	8,9	0,6	35,0	5,0	29,4	1,0	1,0	0,0
V4	8,1	1,9	1,2	0,1	1,7	0,6	2,0	0,0	18,3	1,3	1,1	0,2	55,0	20,0	1,0	0,0	2,0	0,0	2,3	0,6	13,2	0,9	18,3	5,8	33,0	8,1	1,0	0,0
V5	7,2	0,2	0,8	0,2	1,0	0,0	2,0	0,0	8,4	2,3	0,8	0,1	41,7	7,6	1,3	0,6	1,3	0,6	2,0	0,0	7,7	0,6	93,3	40,1	27,5	1,6	1,7	1,2
V9	8,0	4,4	0,8	0,1	1,0	0,0	2,0	0,0	12,6	3,6	0,8	0,2	36,7	23,1	1,7	0,6	2,0	0,0	2,0	0,0	9,6	3,1	45,0	14,1	23,2	13,9	2,3	1,2
V10	5,6	1,2	1,0	0,2	2,0	0,0	2,0	0,0	11,3	5,0	1,0	0,1	41,7	20,2	1,0	0,0	2,0	0,0	2,0	0,0	8,1	1,0	53,3	24,7	22,0	6,3	1,0	0,0
V12	9,4	0,8	0,9	0,1	2,0	0,0	2,0	0,0	12,3	2,8	0,6	0,1	36,7	5,8	1,0	0,0	2,0	0,0	2,3	0,6	9,9	2,2	23,3	5,8	30,7	4,6	1,0	0,0
V13	7,2	0,7	0,9	0,1	1,0	0,0	2,0	0,0	11,1	1,9	1,0	0,1	35,0	13,2	2,0	0,0	1,0	0,0	2,7	0,6	7,1	0,3	41,7	5,8	21,7	0,4	1,0	0,0
V23	5,4	0,3	0,8	0,1	2,0	0,0	2,0	0,0	7,3	1,4	0,6	0,1	26,7	10,4	1,0	0,0	2,0	0,0	2,0	0,0	6,6	1,1	28,3	7,6	22,1	3,2	3,0	0,0
V24	9,9	2,1	0,7	0,1	1,0	0,0	2,0	0,0	6,9	4,3	0,6	0,2	15,0	13,2	1,7	0,6	2,0	0,0	2,0	0,0	8,1	0,6	30,7	16,8	22,2	0,4	1,0	0,0

TABELA 4. Continuação... Características morfológicas dos acessos de *P. notatum* (m= média, s= desvio padrão). EEA-UFRGS, Eldorado do Sul, RS, 2010.

Ace	sso	В	С	Е	3L	В	Cr	E	3P	F	С		FL	F/	AI.	FC	NC	F	Р	11	NR	IC	CR	IΑ	١R	HF	Α	HF	5
		C	m	С	m					CI	n	(cm	gra	us							C	m	gra	aus	cr	n		
		m	S	m	S	m	S	m	S	m	S	m	S	m	S	m	s	m	S	m	S	m	S	m	S	m	S	m	S
V26	5,7	0,5	0,7	0,1	2,0	0,0	2,0	0,0	8,1	0,5	0,5	0,1	25,0	5,0	1,0	0,0	2,0	0,0	2,0	0,0	6,2	0,3	38,3	12,6	22,7	0,2	1,0	0,0	
V27	5,5	1,8	0,8	0,1	2,0	0,0	2,0	0,0	6,9	3,1	0,7	0,1	18,3	15,3	1,3	0,6	2,0	0,0	2,3	0,6	6,2	0,3	38,3	23,1	20,0	1,3	3,0	0,0	
V29	7,4	1,6	1,0	0,1	1,3	0,6	2,0	0,0	14,3	2,4	1,0	0,1	31,7	10,4	1,0	0,0	2,0	0,0	2,0	0,0	9,1	1,3	43,3	15,3	22,4	1,9	1,0	0,0	
V30	5,5	0,8	0,9	0,1	1,3	0,6	2,0	0,0	10,0	1,6	0,8	0,1	53,3	32,1	1,0	0,0	2,0	0,0	2,0	0,0	7,1	1,1	46,7	5,8	25,0	2,8	3,0	0,0	
V31	6,8	3,0	1,0	0,1	1,0	0,0	2,0	0,0	10,2	1,8	8,0	0,3	35,0	13,2	1,3	0,6	2,0	0,0	2,0	0,0	8,4	1,7	33,3	15,3	23,5	6,6	3,0	0,0	
V32	6,0	1,7	1,0	0,2	1,7	0,6	2,0	0,0	13,8	4,4	0,9	0,1	33,3	23,6	1,7	0,6	2,0	0,0	2,0	0,0	8,5	0,0	20,0	0,0	15,2	0,0	3,0	0,0	
V35	4,4	0,6	1,0	0,0	1,0	0,0	2,0	0,0	9,9	1,6	1,0	0,1	50,0	7,1	1,5	0,7	2,0	0,0	2,0	0,0	7,5	0,5	40,0	0,0	17,4	0,0	3,0	0,0	
V41	6,1	1,8	1,1	0,1	1,7	0,6	2,0	0,0	14,4	1,2	1,0	0,1	30,0	17,3	1,0	0,0	2,0	0,0	2,0	0,0	9,8	1,2	42,5	3,5	29,0	6,3	3,0	0,0	
V42	8,6	2,9	1,0	0,1	1,0	0,0	2,0	0,0	11,0	5,8	0,8	0,2	30,0	18,0	1,3	0,6	2,0	0,0	2,0	0,0	9,9	1,9	70,3	4,5	30,4	3,8	1,0	0,0	
V47	3,6	0,5	0,8	0,1	1,0	0,0	2,0	0,0	6,6	1,3	0,7	0,2	38,3	2,9	1,0	0,0	2,0	0,0	2,0	0,0	5,9	0,9	36,7	2,9	14,9	3,1	3,0	0,0	
V49	6,7	0,6	0,7	0,1	1,0	0,0	1,0	0,0	6,2	4,7	0,6	0,2	23,3	15,3	2,0	0,0	1,0	0,0	2,0	0,0	5,3	1,7	55,0	18,0	16,2	5,5	3,0	0,0	
V50	5.7	1,5	1,1	0,1	1,0	0,0	1,3	0,6	9,5	0.6	1,2	0,4	45,0	8.7	2.0	0,0	2,0	0,0	2,0	0,0	8,2	1,2	38.3	41,6	15.8	10,9	3.0	0.0	
V51	7,7	0,9	0,9	0,1	1,0	0,0	2,0	0,0	15,5	2,6	0,8	0,1	55,0	26,5	1,0	0,0	2,0	0,0	2,0	0,0	10,5	1,5	70,0	13,2	34,9	4,1	1,0	0,0	
V66	6,1	0,9	1,1	0,1	2,0	0,0	2,0	0,0	10,5	1,4	1,0	0,2	46,7	15,3	1,7	0,6	1,7	0,6	2,0	0,0	9,2	0,2	50.0	5.0	24,8	5,9	3.0	0.0	
V67	6,4	1,7	1,0	0,1	1,3	0,6	2,0	0,0	14,4	3,6	0,9	0,1	43,3	2,9	1,0	0,0	2,0	0,0	2,0	0,0	8,9	1,8	33,3	7,6	26,5	0,6	1,0	0,0	
V69	5,2	0,9	0,8	0,1	1,0	0,0	2,0	0,0	7,9	3,4	1,0	0,6	46,7	20,2	1,3	0,6	2,0	0,0	2,0	0,0	6,7	0,6	36,7	5,8	22,8	2,7	1,0	0,0	
MG	7,2	1,4	0,9	0,1	1,4	0,2	2,0	0,0	12,4	2,4	0,8	0,1	37,8	13,4	1,3	0,2	1,9	0,0	2,1	0,1	9,0	1,0	46,6	15,4	26,9	4,0	1,8	0,1	

BC (comprimento da bainha), BL (largura da Bainha), BCr (coloração da bainha; 1- violácea, 2- glabra), BP (pilosidade da bainha; 1- pilosa, 2- glabra), FC (comprimento da folha), FL (largura da folha), FAI (angulação de inserção da folha), FCNC (cor da nervura central da folha; 1- esbranquiçada, 2- esverdeada), FP (pilosidade da folha; 1- pilosa, 2- glabra), INR (número de racemos na inflorescência), ICR (comprimento dos racemos da inflorescência), IAR (angulação dos racemos na inflorescência), HFA (altura das hastes floríferas), HP (hábito da planta; 1- ereto, 2- intermediário, 3- prostrado).

Em relação ao hábito da planta, 30 acessos apresentaram hábito ereto, 17 hábito prostrado e em seis acessos variaram entre as plantas analisadas.

Considerando a média de todos os acessos, visando à caracterização geral dos materiais avaliados, as bainhas foliares possuíam 7,2 cm ± 1,4 de comprimento, com largura de 0,9 cm ± 0,1, com coloração variável (violácea ou esverdeada) e glabras. As lâminas foliares apresentaram comprimento de 12,4 cm ± 2,4, largura de 0,8 cm ± 0,1, com angulação de inserção de 37,8° ± 13,4, nervura central de cor esbranquiçada, podendo aparecer acessos com cor esverdeada e ausência de pilosidade. Os acessos apresentaram em média dois racemos, de 9,0 cm ± 1,0 de comprimento e angulação de 46,6° ± 15,4. As hastes floríferas possuíam altura de 26,9 cm ± 4,0 e as plantas apresentaram hábito de crescimento intermediário.

Os resultados da análise de divergência genética a partir da distância de Mahalanobis entre os acessos, com base nos caracteres morfológicos, considerando três repetições por acesso, encontram-se na Tabela 5 (Apêndices 1 e 2).

Pode-se observar que a característica que apresentou maior variância corresponde à angulação dos racemos (IAR s^2 = 243,72), com valor máximo de 93,33° e mínimo de 18,33°. Esta característica foi responsável por 53,4% da variância total observada. A angulação de inserção das folhas (FAI s^2 = 116,94) a qual variou de 65,0° a 15,0°, teve contribuição de 25,6% da variância. A altura das hastes floríferas (HFA s^2 = 63,62) com valores de 46,9 cm a 14,9 cm contribuiu com 13,9% da variância. Estas três características

representaram 92,9% da variância total observada para as 14 características avaliadas neste trabalho.

TABELA 5. Estatística descritiva obtidas pela análise da distância de Mahalanobis em relação às características morfológicas. EEA-UFRGS, Eldorado do Sul, RS, 2010.

Variável	Variância	Média	Máximo	Mínimo
BC	4,12	7,19	13,7	3,6
BL	0,26	0,91	1,27	0,4
BCr	0,17	1,43	2,0	1,0
BP	0,02	1,97	2,0	1,0
FC	21,06	12,37	24,6	4,8
FL	0,04	0,83	1,47	0,4
FAI	116,94	37,83	65,0	15,0
FCNC	0,13	1,26	2,0	1,0
FP	0,05	1,93	2,0	1,0
INR	0,02	2,06	2,67	2,0
ICR	5,42	9,02	14,68	5,28
IAR	243,72	47,15	93,33	18,33
HFA	63,62	26,95	46,9	14,9
HP	0,91	1,79	3,0	1,0

BC (comprimento da bainha), BL (largura da Bainha), BCr (coloração da bainha), BP (pilosidade da bainha), FC (comprimento da folha), FL (largura da folha), FAI (angulação de inserção da folha), FCNC (cor da nervura central da folha), FP (pilosidade da folha), INR (número de racemos na inflorescência), ICR (comprimento dos racemos da inflorescência), IAR (angulação dos racemos na inflorescência), HFA (altura das hastes floríferas), HP (hábito da planta).

Analisando os resultados do agrupamento pelo método de Tocher (Tabela 6), os acessos estudados formaram 16 grupos. Abaixo, é descrito os grupos obtidos neste trabalho.

Grupo 1: acessos 13N (Vacaria, RS), 49N (Guaíba, RS), 37N (Santa Lúcia, Uruguai) e 20N (Guaíba, RS). As bainhas foliares com comprimento de 9,3 a 7,1 cm, largura de 1,0 a 0,6 cm, variação para a cor e ausência de pilosidade. As lâminas foliares possuíam 18,0 a 6,0 cm de comprimento, 0,9 a 0,4 cm de largura, inserção da folha a 50,0 a 27,0°, variação na cor da nervura central e ausência de pilosidade. As inflorescências com dois racemos, comprimento de 9,9 a 6,3 cm, e angulação de 85,0 a 35,0° entre os racemos. As hastes floríferas com altura de 47,0 a 30,0 cm e o hábito das plantas foi variável.

TABELA 6. Caracterização dos 16 grupos formados pelo Método de Tocher (valores médios, máximos e mínimos de cada grupo pa<u>ra as 14 variáveis</u>). EEA-UFRGS, Eldorado do Sul, RS, 2010.

Grupos	Acessos		BC	BL	BCr	BP	FC	FL	FAI	FCNC	FP	INR	ICR	IAR	HFA	HP
1	13N, 49N,	Méd.	7,7	0,8	1,5	2,0	11,0	0,6	35,0	1,3	2,0	2,0	8,0	59,0	37,0	1,8
	37N, 20N	Máx.	9,3	1,0	2,0	2,0	18,0	0,9	50,0	1,7	2,0	2,0	9,9	85,0	47,0	3,0
•	1/00 001	Mín.	7,1	0,6	1,0	2,0	6,0	0,4	27,0	1,0	2,0	2,0	6,3	35,0	30,0	1,0
2	V29, 92N,	Méd.	7,5	1,0	1,5	1,9	15,0	0,9	37,0	1,1	1,9	2,1	9,7	55,0	26,0	1,5
	V27, 17N,	Máx.	12,0	1,2	2,0	2,0	25,0	1,2	60,0	2,0	2,0	2,7	15	77,0	41,0	3,0
	V49, 95N,	Mín.	5,5	0,7	1,0	1,0	6,2	0,6	18,0	1,0	1,0	2,0	5,3	38,0	16,0	1,0
	70N, 36N, 80N, 51N															
3	48N, 83N,	Méd.	10,0	0,9	1,8	2,0	16,0	0,8	32,0	1,3	2,0	2,0	11,0	41,0	26,0	1,0
	93N, 66N	Máx.	14,0	1,0	2,0	2,0	20,0	1,0	38,0	2,0	2,0	2,0	14,0	47,0	42,0	1,0
		Mín.	6,3	0,7	1,3	2,0	6,5	0,6	25,0	1,0	2,0	2,0	6,4	38,0	18,0	1,0
4	30N, 89N	Méd.	7,3	0,9	1,5	2,0	13,0	0,8	40,0	1,0	2,0	2,2	10,0	61,0	27,0	1,0
		Máx.	9,5	0,9	2,0	2,0	18,0	0,9	45,0	1,0	2,0	2,3	14,0	70,0	28,0	1,0
		Mín.	5,0	0,8	1,0	2,0	8,7	0,7	35,0	1,0	2,0	2,0	6,4	52,0	27,0	1,0
5	V5, V9,	Méd.	6,6	0,8	1,5	2,0	9,1	0,7	33,0	1,3	1,8	2,0	7,5	51,0	24,0	2,5
	V23, V26	Máx.	8,0	0,8	2,0	2,0	13,0	0,8	42,0	1,7	2,0	2,0	9,6	93,0	28,0	3,0
		Mín.	5,4	0,7	1,0	2,0	7,3	0,5	25,0	1,0	1,3	2,0	6,2	28,0	22,0	1,7
6	V32, V35,	Méd.	7,3	0,9	1,7	2,0	14,0	0,8	38,0	1,4	2,0	2,0	9,3	33,0	19,0	2,3
	67N	Máx.	11,0	1,0	2,0	2,0	18,0	1,0	50,0	1,7	2,0	2,0	12,0	40,0	24,0	3,0
		Mín.	4,0	0,8	1,5	2,0	9,9	0,6	30,0	1,0	2,0	2,0	7,6	20,0	15,0	1,0
7	Pensacola,	Méd.	6,4	0,9	1,4	2,0	11,0	0,8	37,0	1,2	2,0	2,0	8,4	41,0	26,0	1,7
	16N, V50,	Máx.	9,9	1,1	2,0	2,0	16,0	1,2	53,0	2,0	2,0	2,0	10,0	53,0	45,0	3,0
	V30, V2,	Mín.	5,2	0,7	1,0	2,0	6,9	0,6	15,0	1,0	2,0	2,0	6,7	30,0	26,0	1,0
	V24, V10,															
_	V41, V69															
8	André da	Méd.	8,1	1,0	1,4	2,0	12,0	0,9	34,0	1,2	2,0	2,1	10,0	62,0	31,0	2,1
	Rocha,	Máx.	9,4	1,0	2,0	2,0	14,0	0,9	40,0	1,3	2,0	2,3	13,0	70,0	40,0	3,0
	Bagual, V42	Mín.	6,2	0,9	1,0	2,0	11,0	0,8	30,0	1,0	2,0	2,0	7,9	55,0	21,0	1,0
9	V42 V4, 79N	Méd.	6,5	1,0	1,3	2,0	13,0	0,9	60,0	2,0	2,0	2,2	10,0	32,0	36,0	1,0
	•	Máx.	8,1	1,2	1,7	2,0	18,0	1,1	65,0	2,0	2,0	2,3	13,0	45,0	38,0	1,0
		Mín.	5,0	0,8	1,0	2,0	8,2	0,7	55,0	2,0	2,0	2,0	7,1	18,0	33,0	1,0
10	71N, V31	Méd.	6,5	1,0	1,0	2,0	10,0	0,8	37,0	1,3	2,0	2,0	7,6	32,0	29,0	3,0
	-	Máx.	6,8	1,0	1,0	2,0	10,0	0,8	38,0	1,3	2,0	2,0	8,4	33,0	35,0	3,0
		Mín.	6,1	1,0	1,0	2,0	10,0	0,8	35,0	1,3	2,0	2,0	6,8	30,0	24,0	3,0
11	33N, 87N	Méd.	5,4	0,9	1,0	2,0	11,0	0,8	36,0	1,5	2,0	2,0	7,9	37,0	26,0	2,0
		Máx.	5,9	1,0	1,0	2,0	14,0	0,9	42,0	2,0	2,0	2,0	9,6	42,0	28,0	3,0
		Mín.	4,8	0,7	1,0	2,0	8,2	0,7	30,0	1,0	2,0	2,0	6,1	33,0	23,0	1,0
12	69N, 73N	Méd.	6,2	1,0	1,2	2,0	11,0	1,1	45,0	1,7	1,7	2,0	8,5	58,0	25,0	2,0
		Máx.	6,7	1,3	1,3	2,0	14,0	1,5	46,0	2,0	2,0	2,0	10,0	68,0	26,0	3,0
		Mín.	5,7	8,0	1,0	2,0	8,2	0,7	43,0	1,3	1,3	2,0	6,7	48,0	23,0	1,0

TABELA 6. Continuação... Caracterização dos 16 grupos formados pelo Método de Tocher (valores médios, máximos e mínimos de cada grupo para as 14 variáveis). EEA-UFRGS, Eldorado do Sul, RS, 2010.

Grupos	Acessos		BC	BL	BCr	BP	FC	FL	FAI	FCNC	FP	INR	ICR	IAR	HFA	HP
13	V66,	Méd.	6,3	1,1	1,7	2,0	12,0	0,9	45,0	1,3	1,8	2,0	9,1	42,0	26,0	2,0
	V67	Máx.	6,4	1,1	2,0	2,0	14,0	1,0	47,0	1,7	2,0	2,0	9,2	50,0	27,0	3,0
		Mín.	6,1	1,0	1,3	2,0	11,0	0,9	43,0	1,0	1,7	2,0	8,9	33,0	25,0	1,0
14	V12,	Méd.	8,3	0,9	1,5	2,0	12,0	0,8	36,0	1,5	1,5	2,5	8,5	32,0	26,0	1,0
	V13	Máx.	9,4	0,9	2,0	2,0	12,0	1,0	37,0	2,0	2,0	2,7	9,9	42,0	31,0	1,0
		Mín.	7,2	0,9	1,0	2,0	11,0	0,6	35,0	1,0	1,0	2,3	7,1	23,0	22,0	1,0
15	V47	Méd.	3,6	0,8	1,0	2,0	6,6	0,7	38,3	1,0	2,0	2,0	5,9	36,7	14,9	3,0
16	V51	Méd.	7,7	0,9	1,0	2,0	15,5	0,8	55,0	1,0	2,0	2,0	10,5	70,0	34,9	1,0

BC (comprimento da bainha), BL (largura da Bainha), BCr (coloração da bainha; 1- violácea, 2- glabra), BP (pilosidade da bainha; 1- pilosa, 2- glabra), FC (comprimento da folha), FL (largura da folha), FAI (angulação de inserção da folha), FCNC (cor da nervura central da folha; 1- esbranquiçada, 2- esverdeada), FP (pilosidade da folha; 1- pilosa, 2- glabra), INR (número de racemos na inflorescência), ICR (comprimento dos racemos da inflorescência), IAR (angulação dos racemos na inflorescência), HFA (altura das hastes floríferas), HP (hábito da planta; 1- ereto, 2- intermediário, 3- prostrado). AR (André da Rocha), Bag (Bagual), Pen (Pensacola).

Grupo 2: acessos V29 (Mostardas, RS), 92N (Santa Fé, Argentina), V27 (Lavras do Sul, RS), 17N (RS, Brasil), V49 (Mostardas, RS), 95N (Corrientes, Argentina), 70N (Cordoba, Argentina), 36N (Santa Fé, Argentina), 80N (Guaíba, RS) e 51N (Santa Fé, Argentina). Foi o maior grupo formado. Este grupo foi caracterizado por bainhas de comprimento 12,0 a 5,5 cm, 1,2 a 0,7 cm de largura, variando para coloração e pilosidade. O comprimento das lâminas foliares foi de 25,0 a 6,2 cm e 1,2 a 0,6 cm de largura, inserida de 60, 0 a 18,0° e variação para cor da nervura central e pilosidade. Possuíam dois ou mais racemos na inflorescência, de comprimento 15,0 a 5,3 cm e angulação entre eles de 77,0 a 38,0°. A altura das hastes floríferas foi de 41,0 a 16,0 cm e hábito variável.

Grupo 3: acessos 48N (Mercedes, Argentina), 83N (Corrientes, Argentina), 93N (Bom Jesus, RS) e 66N (Santa Fé, Argentina). Caracterizou-se por bainhas de 14,0 a 6,3 cm de comprimento e 1,0 a 0,7 cm de largura, coloração variável e ausência de pilosidade. As lâminas foliares com 20,0 a 6,5 cm de comprimento e 1,0 a 0,6 cm de largura, inseridas de 33,0 a 25,0°, coloração da nervura central variável e ausência de pilosidade. As inflorescências possuíam dois racemos, com 14,0 a 6,4 cm de comprimento e 47,0 a 38,0° de ângulo entre os racemos. A altura das hastes floríferas foi de 42,0 a 18,0 cm, e o hábito das plantas ereto.

Grupo 4: acessos 30N (Santa Fé, Argentina) e 89N (Tacuarembó, Uruguai). As bainhas foliares tinham 9,5 a 5,0 cm de comprimento e 0,9 a 0,8 cm de largura, possibilidade de variação na cor das mesmas e ausência de pilosidade. As lâminas foliares tinham 18,0 a 8,7 cm de comprimento e 0,9 a

0,7 cm de largura, inseridas de 45,0 a 35,0°, com nervura central de cor branca e glabras. As inflorescências apresentaram dois ou mais racemos de comprimento 14,0 a 6,4 cm, com 70,0 a 52,0° de angulação entre eles. As hastes floríferas possuíam 28,0 a 29,0 cm e as plantas apresentaram hábito ereto.

Grupo 5: acessos V5 (Capivari do Sul, RS), V9 (Vale do Sol, RS), V23 (Eldorado do Sul, RS) e V26 (Lavras do Sul, RS). Apresentou bainhas de 8,0 a 5,4 cm de comprimento e 0,8 a 0,7 cm de largura, coloração variável e glabras. As lâminas foliares tinham 13,0 a 7,3 cm de comprimento e 0,8 a 0,5 cm de largura, angulação de inserção de 42,0 a 25,0°, variando a cor da nervura central e pilosidade. O número de racemos foi dois com 9,6 a 6,2 cm de comprimento e angulação de 93,0 a 28,0°. As hastes floríferas apresentaram 28,0 a 22,0 cm de altura e o hábito das plantas foi variável.

Grupo 6: V32 (Barretos, SP), V35 (São Borja, RS) e 67N (Santa Fé, Argentina). Caracterizou-se por bainhas de 11,0 a 4,0 cm de comprimento e 1,0 a 0,8 cm de largura, coloração variável e ausência de pilosidade. As lâminas foliares possuíam 18,0 a 9,9 cm de comprimento e 1,0 a 0,6 cm de largura, inseridas a 50,0-30,0°, com nervura central de cor variável e glabras. Com dois racemos nas inflorescências, de comprimento 12,0 a 7,6 cm e angulação de 40,0 a 20,0°. A altura das hastes floríferas foi de 24,0 a 15,0 cm e o hábito das plantas variável.

Grupo 7: acessos Pensacola (Viamão, RS), V50 (Piracicaba, SP), 16N (Montevidéu, Uruguai), V30 (Bagé, RS), V2 (Uruguaiana, RS), V24 (Eldorado do Sul, RS), V10 (Candói, RS), V41 (Arapei, Argentina) e V69 (São

José do Hortênsio, RS). Este se caracterizou por bainhas de comprimento 9,9 a 5,2 cm e 1,1 a 0,7 cm de largura, coloração podendo variar e ausência de pilosidade. As lâminas foliares com 16,0 a 6,9 cm de comprimento e 1,2 a 0,6 cm de largura, inseridas em angulação de 53,0 a 15,0°, nervura central de cor variável e ausência de pilosidade. Dois racemos por inflorescências de 10,0 a 6,7 cm de comprimento inseridos a 53,0 a 30,0°. Hastes floríferas possuíam 45,0 a 26,0 cm de comprimento e hábito variável.

Grupo 8: André da Rocha (André da Rocha, RS), Bagual (Missões, RS) e V42 (Arapei, Argentina), com bainhas foliares de 9,4 a 6,2 cm de comprimento e 1,0 a 0,9 cm de largura, coloração variável e ausência de pilosidade. As lâminas foliares possuíam 14,0 a 11,0 cm de comprimento e 0,9 a 0,8 cm de largura, inseridas a 40,0 a 30,0°, nervura central de cor variável e glabras. Racemos em número de dois ou mais, com 11,0 a 7,9 cm de comprimento e angulação de 70,0 a 55,0°. As hastes floríferas possuíam 40,0 a 21,0 cm de comprimento e hábito variável.

Grupo 9: V4 (Barra do Quaraí, RS) e 79N (Corrientes, Argentina). Caracterizou-se por bainhas de 8,1 a 5,0 cm de comprimento, 1,2 a 0,8 cm de largura, glabras e cor variável. As lâminas foliares possuíam 18,0 a 8,2 cm de comprimento e 1,1 a 0,7 cm de largura, inseridas em angulação de 65,0 a 55,0°, cor da nervura central verde e ausência de pilosidade. Inflorescências com 2 ou mais racemos de 13,0 a 7,1 cm de comprimento e angulação de 45,0 a 18,0°. Hastes floríferas de 38,0 a 33,0 cm de altura e plantas com hábito ereto.

Grupo 10: 71N (Montenegro, RS) e V31 (André da Rocha, RS).

Caracterizado por bainhas de 6,8 a 6,1 cm de comprimento e 1,0 cm de largura, de coloração esverdeada e ausência de pilosidade. Lâminas foliares com 10,0 cm de comprimento e 0,8 cm de largura, inseridas em 38,0 a 35,0°, variável para cor nervura central e ausência de pilosidade. Possuíam dois racemos com 8,4 a 6,8 cm de comprimento e 33,0 a 30,0° de angulação, hastes floríferas de 35,0 a 24,0 cm e hábito de crescimento prostrado.

Grupo 11: 33N (Guaíba, RS) e 87N (Paysandu, Uruguai). Apresentaram bainhas foliares de 5,9 a 4,8 cm de comprimento e 1,0 a 0,7 cm de largura, coloração esverdeada e ausência de pilosidade. Lâminas foliares de 14,0 a 8,2 cm de comprimento e 0,9 a 0,7 cm de largura, inseridas a 42,0-30,0°, com variação na cor de nervura central e ausência de pilosidade. Racemos em número de dois, possuíam 9,6 a 6,1 cm de comprimento e angulação de 42,0 a 33,0°. As hastes floríferas apresentaram 28,0 a 23,0 cm de comprimento e hábito de crescimento variável.

Grupo 12: 69N (Rio Negro, Uruguai) e 73N (Nova Ovinhos, SP), com bainhas foliares de comprimento 6,7 a 5,7 cm, e 1,3 a 0,8 cm de largura, apresentando variação na coloração e ausência de pilosidade. As lâminas foliares têm 14,0 a 8,2 cm de comprimento e 1,5 a 0,7 cm de largura, inseridas de 46,0 a 43,0°, variando a cor da nervura central e podendo ou não ter pilosidade. Possuíam dois racemos por inflorescência, comprimento de 10,0 a 6,7 cm e angulação de 68,0 a 48,0°. Hastes floríferas atingiam 26,0 a 23,0 cm de altura e hábito de crescimento apresentando variação.

Grupo 13: V66 (Uruguai) e V67 (Uruguai), com bainhas foliares de 6,4 a 6,1 cm de comprimento e 1,1 a 1,0 cm de largura, de cor variável e

glabras. Lâminas foliares possuem 14,0 a 11,0 cm de comprimento e 1,0 a 0,9 cm de largura, angulação de inserção de 47,0 a 43,0°, variação na cor da nervura central e na pilosidade. O número de racemos é dois, com 9,2 a 8,9 cm de comprimento e angulação de 50,0 a 33,0°. Hastes floríferas atingem 27,0 a 25,0 cm de comprimento e as plantas apresentaram hábito variável.

Grupo 14: acessos V12 (Candói, RS) e V13 (Capivari do Sul, RS). Caracterizou-se por ter bainhas foliares com 9,4 a 7,2 cm de comprimento e 0,9 cm de largura, coloração variada e glabras. Lâminas foliares possuíam 12,0 a 11,0 cm de comprimento e 1,0 a 0,6 cm de largura, inseridas a 37,0-35,0°, cor da nervura central e pilosidade podendo variar. Com dois racemos de 9,9 a 7,1 cm de comprimento, e angulação de 42,0 a 23,0°, hastes floríferas atingindo 31,0 a 22,0 cm de altura e hábito das plantas ereto.

Grupo 15: acesso V47 (Arapei, Argentina), apresentou bainhas foliares de 3,6 cm de comprimento e 0,8 cm de largura, cor esverdeada e ausência de pilosidade. As lâminas foliares possuíam 6,6 cm de comprimento e 0,7 cm de largura, inseridas a 38,3°, cor da nervura central esbranquiçada e ausência de pilosidade. Com dois racemos de 5,9 cm de comprimento, e angulação de 36,7°. A altura das hastes floríferas apresentou 14,9 cm e hábito prostrado.

Grupo 16: acesso V51 (Possadas, Argentina) é caracterizado por bainhas foliares com 7,7 cm de comprimento e 0,9 cm de largura, coloração esverdeada e ausência de pilosidade. As lâminas foliares possuíam 15,5 cm de comprimento e 0,8 cm de largura, inseridas a 55,0°, nervura central esbranquiçada e ausência de pilosidade. Inflorescências com dois racemos de

10,5 cm e angulação de 70,0°, com hastes floríferas de 34,9 cm de altura e hábito das plantas ereto.

Os maiores valores médio para o comprimento de bainhas foliares foram encontrados no grupo 3 (10,0 cm) enquanto que os menores, no grupo 14 (3,6 cm). Para largura de bainha, os grupos 1, 5 e 15 (0,8 cm) apresentaram os menores valores e o grupo 13 os maiores (1,1 cm). Os grupos 10, 11, 15 e 16 possuem somente bainhas esverdeadas e o restante dos grupos demonstraram variação para esta característica. O grupo 2 apresentou variação para a presença de pilosidade, enquanto nos demais grupos, as bainhas foliares apresentaram-se glabras.

Para as médias das lâminas foliares, o grupo 3 apresentou os maiores comprimentos (16,0 cm) e o grupo 15, os menores valores (6,6 cm) de comprimento. A largura das lâminas foliares apresentou valor máximo no grupo 12 (1,1 cm) e valor mínimo de 0,6 cm no grupo 1. Em relação à angulação de inserção da folha, os maiores ângulos foram observados no grupo 9 (60,0°), enquanto que os menores no grupo 3 (33,0°). A cor da nervura central foi esbranquiçada nos grupos 4, 15 e 16 e esverdeada no grupo 9, enquanto que nos demais esta característica apresentou-se variável. Nenhum grupo apresentou apenas lâminas foliares pilosas; entretanto, nos grupos 2, 5, 12, 13 e 14 pode aparecer pilosidade, enquanto que nos demais, as lâminas foliares foram glabras.

Em relação às inflorescências, a maioria apresentou dois racemos, e os grupos 2, 4, 8, 9 e 14 podem apresentar mais que dois racemos. Os valores máximos para o comprimento dos racemos foram observados no grupo 3 (11,0

cm) e os mínimos no grupo 15 (5,9 cm). A angulação entre os racemos apresentou maiores valores no grupo 16 ($70,0^{\circ}$) e os menores nos 9, 10 e 14 ($32,0^{\circ}$).

A altura das hastes floríferas apresentou os maiores valores no grupo 1 (37,0 cm) e menores no grupo 15 (14,9 cm). E quanto ao hábito das plantas, os grupos 3,4, 9, 14 e 16 tinham hábito ereto, os grupos 10 e 15, hábito prostrado e no restante esta característica foi variável.

A variabilidade de formas encontradas neste trabalho é maior que a encontrada por outros autores para esta espécie. Barreto (1974) descreveu quatro "formas" a partir de características relacionadas com aspecto, vigor, dimensões e pilosidade das folhas, altura dos colmos floríferos, número e comprimento dos racemos, dimensões e coloração das espiguetas. Entretanto, estabelecer uma relação entre as "formas" descritas por este autor com os grupos formados neste estudo torna-se difícil. Barreto (1974) analisou apenas plantas ocorrentes no Estado do Rio Grande do Sul e as características levadas em consideração para a delimitação das "formas" foram distintas das utilizadas neste trabalho.

Canto-Dorow (1993) descreveu quatro biótipos para *P. notatum*, sendo que as principais características que os diferenciam são o comprimento e largura das folhas, presença ou ausência de pilosidade, tamanho das espiguetas e número de nervuras no lema I. O biótipo A, caracterizado por plantas com lâminas foliares longas e largas está presente em todos os grupos formados neste estudo, exceto o grupo 15. O biótipo B, caracterizado por lâminas foliares longas e estreitas, está presente nos grupos 1 e 5. O biótipo C,

com lâminas curtas e estreitas, ocorre nos mesmos grupos que o biótipo B. Já o biótipo D, caracterizado pela pubescência das lâminas foliares, ocorre nos grupos 2, 5, 12, 13 e 14. O grupo 15 formado neste trabalho não se enquadra em nenhum dos biótipos, pois apresenta lâminas foliares consideradas por Canto-Dorow (1993) curtas e largas.

Steiner (2005) descreveu seis grupos morfológicos para os 41 acessos analisados. As características que mais contribuíram para a formação dos grupos foram comprimento e largura das folhas, comprimento dos racemos e das espiguetas. Ao grupo 1 descrito por este autor são encontradas características semelhantes nos grupos 6, 7, 9 e 11, e ao grupo 4, características ocorrentes nos grupos 7 e 9. Quanto aos grupos 2, 3, 5 e 6 formados por este autor, nenhum dos 16 grupos descritos aqui, enquadra-se em todas as características.

Outro estudo realizado por Cidade (2006), visando a caracterização morfológica a partir de oito caracteres de 95 acessos de *P. notatum*, permitiu a formação de oito grupos. As características com maior contribuição para a divergência entre os acessos foram a altura do colmo florífero, comprimento das lâminas foliares e dos racemos e largura das lâminas foliares. Ao grupo 1, caracteres similares são encontrados nos grupos 1, 2, 3, 7 e 15 aqui descritos. Ao grupo 2, características semelhantes são encontradas em todos os grupos formados neste trabalho, exceto nos grupos 6, 12, 13 e 15. Ao grupo 3, pertencem acessos dos grupos 2, 3 e 6. Ao grupo 6, apenas caracteres similares são encontrados no grupo 2. Ao grupo 7, caracteres similares estão nos grupos 2 e 3. Aos grupos 4, 5 e 8 não há nenhum grupo descrito aqui que

possa ser considerado correspondente.

O valor máximo de divergência foi observado entre os acessos V4 (grupo 4) e V49 (grupo 2) com valor de 497,51. O menor valor de divergência é observado entre os acessos 36N e 95N com valor de 2,24. Estes dois acessos pertencem ao grupo 2, ambos coletados na Argentina.

Outra observação importante é a contribuição que cada característica avaliada apresentou para a divergência entre os acessos estudados (Tabela 7). Neste caso, destacou-se o hábito das plantas, a pilosidade da bainha e pilosidade da folha, contribuindo com 30,90%, 13,95% e 10,31%, respectivamente, que somados, contribuíram com 55,16% para a divergência dos acessos.

TABELA 7. Contribuição relativa dos caracteres para divergência, obtidas a partir do Método de Singh (1981). EEA-UFRGS, Eldorado do Sul, RS, 2010.

Variável	Valor (%)
Comprimento da Bainha (cm)	1,36
Largura da Bainha (cm)	7,04
Cor da Bainha	4,36
Pilosidade da Bainha	13,95
Comprimento da Folha (cm)	4,06
Largura da Folha (cm)	3,50
Angulação da Folha (graus)	1,02
Cor da Nervura Central	4,31
Pilosidade da Folha	10,31
Número de Racemos	1, 42
Comprimento dos Racemos (cm)	8,56
Angulação dos Racemos (graus)	2,60
Altura das Hastes Floríferas (cm)	6,62
Hábito da Planta	30,90

As características que mais contribuíram para a divergência entre os acessos são as que merecem uma maior atenção na seleção dos materiais. Destas, o hábito das plantas poderia ser utilizado na seleção de acessos de

uma espécie forrageira. As plantas com hábito ereto teriam provavelmente uma maior produção de forragem, já que este é uma adaptação decorrente da competição por luz, além de as plantas eretas tenderem a uma altura maior. No caso da espécie *P. notatum*, a altura é, em geral, o comprimento das folhas e bainhas. Entretanto, as plantas com hábito prostrado podem ser mais adaptadas ao pastejo intenso, podendo ser utilizadas em sistemas de manejo contínuo, além de serem melhores colonizadoras de novos habitats.

A partir dos resultados apresentados, é possível verificar que há variabilidade para todas as características morfológicas analisadas, especialmente para a angulação entre os racemos e na inserção das folhas, além da altura das hastes floríferas.

Outra característica que apresentou variação é o número de racemos, sendo importante destacar que se trata de uma das variáveis usadas para caracterizar o grupo Notata, do gênero *Paspalum*. Variação para esta característica foi citada anteriormente por Canto-Dorow (1993) como sendo mais comum em plantas de *P. notatum* var. saurae.

A distância genética poderia ser usada para a escolha de progenitores que sejam geneticamente distantes, a fim de preservar a variabilidade existente e potencializar a heterose. Por outro lado, a caracterização morfológica auxiliaria na escolha de progenitores que reunissem características desejáveis, como folhas com maior comprimento e largura e hábito mais ereto como sendo as que apresentam maior produção de matéria seca.

Neste estudo, os grupos não apresentam relação clara com os locais

de origem e coleta, pois os acessos coletados na mesma região ou em regiões bastante próximas ficaram em grupos diferentes. Estes resultados possibilitam selecionar um grupo morfológico que apresente a maioria das características relevantes para os objetivos de um programa de melhoramento e ao mesmo tempo preservar a variabilidade genética destes materiais.

4.2 Avaliação Agronômica

Os resultados da produção de matéria seca (MS) dos cortes realizados durante duas estações de crescimento consecutivas encontram-se nas Tabelas 8, 9 e 10 (Apêndice 3).

No primeiro corte, as produções de MST variaram de 85 g (48N) a 2 g.planta⁻¹ (V2) e a análise estatística realizada possibilitou a divisão dos 55 acessos em quatro classes. Dois acessos de *P. notatum*, 48N e 95N, os quais produziram 85 (48N) a 73 g.planta⁻¹ de MST (95N), se igualaram em produção de MST com o acesso de *P. guenoarum* Baio que produziu 82 g.planta⁻¹ (grupo a). Ao outro acesso de *P. guenoarum* Azulão, que produziu 43 g, quatro acessos de *P. notatum* apresentaram produções MST semelhantes, 70N, 83N, 92N e 30N (grupo b), com 54, 53, 51 e 43 g.planta⁻¹, respectivamente. A comparação dos acessos de *P. notatum* com os de *P. guenoarum* foi realizada neste trabalho, pois Azulão e Baio são materiais que têm apresentado um excelente desempenho em vários trabalhos recentes do DPFA da UFRGS (Steiner, 2005; Sawasato, 2007; Townsend, 2008, Pereira, 2009). O acesso Bagual produziu 30 g.planta⁻¹ de MST e juntamente com nove outros acessos formaram o grupo c, com produções de 34 (13N) a 20 g.planta⁻¹ (V67).

TABELA 8. Produção de MST e MSF em cada corte e o total acumulado do período de verão no primeiro período de avaliações (verão – 2009), em (g.planta⁻¹). EEA-UFRGS, Eldorado do Sul, RS, 2010.

Acesso	Cort 20/01/			te 2 s/2009	Total Ac	umulado
	MST	MSF	MST	MSF	MST	MSF
	(g.planta ⁻¹)	(g.planta ⁻¹				
*Baio	82a	49a	156a	50a	238ª	99a
*Azulão	45b	27c	127b	35b	172b	62b
48N	85a	39b	99b	49a	184b	88a
95N	73a	35b	109b	54a	182b	89a
70N	51b	19d	56c	29b	106c	48b
83N	53b	16d	46c	29b	99c	44c
92N	54b	18d	40c	20b	94c	38c
30N	43b	23c	50c	27b	93c	51b
V4	26c	11d	63c	28b	88c	39c
Bagual	34c	15d	49c	22b	83c	37c
67N	25c	11d	40c	22b	64d	33c
17N	30c	16d	33c	24b	63d	40c
36N	34c	17d	28c	17c	62d	35c
73N	29c	16d	32c	16c	61d	32c
13N	34c	13d	25c	11c	60d	24c
66N	24c	11d	32c	20b	56d	31c
V42	18d	9d	33c	23b	51d	33c
V67	20c	11d	27c	19b	47d	30c
80N	17d	12d	30c	26b	47d	38c
V51	25c	13d	20d	16c	45e	29c
V29	14d	9e	28c	25b	42e	39c
V41	16d	7e	24c	16c	40e	22c
33N	15d	11d	24c	21b	39e	31c
49N	13d	8e	19d	17c	32e	25c
51N	19d	10d	12d	7c	31e	17d
V31	15d	9e	13d	10c	28e	19d
69N	15d	8e	12d	10c	26e	18d
V10	7d	4e	19d	18c	26e	22c
André da Rocha	9d	6e	16d	13c	25e	19d
V12	15d	5e	10d	5c	25e	10d
V27	11d	4e	13d	11c	24e	15d
79N	15d	8e	8d	7c	23e	16d
71N	12d	6e	11d	9c	23e	16d
16N	17d	8e	6d	4c	23e	12d
V50	9d	6e	14d	9c	22e	16d
V13	11d	8e	9d	7c	19e	15d
V23	13d	4e	7d	5c	19e	10d
V66	15d	6e	4d	3c	19e	9d
87N	11d	5e	7d	6c	18e	11d
20N	7d	4e	10d	7c	17e	11d
V30	9d	4e	8d	7c	17e	11d
93N	10d	3e	5d	4c	15e	7d
V24	11d	4e	3d	1c	13e	5d
V69	7d	3e	5d	4c	13e	8d
Pensacola	6d	3e	6d	4c	13e	7d
V32	6d	3e	6d	6c	12e	9d
V26	9d	3e	3d	3c	12e	5d
37N	4d	2e	6d	6c	10e	8d
V5	3d	2e	7d	5c	10e	7d
V9	8d	4e	2d	1c	9e	5d
89N	6d	3e	3d	3c	9e	6d
V47	4d	2e	3d	3c	8e	5d
V35	3d	2e	3d	3c	6e	5d
V49	4d	3	2d	2c	6e	4d
V2	2d	1e	2d	2c	4e	3d

Acessos pertencentes à espécie *P. guenoarum*.

Médias seguidas da mesma letra na coluna não diferem significativamente pelo teste do Scott & Knott.

O acesso André da Rocha, com 9 g.planta⁻¹, a cultivar Pensacola produzindo 6 g.planta 1 e os demais acessos formaram o grupo d, com as mais baixas produções, de 19 (51N) a 2 (V2) g.planta⁻¹ de MST. A cultivar Pensacola foi utilizada como testemunha, por ser um dos poucos materiais perenes de verão disponível por sementes, sendo por isso, uma das poucas alternativas para os produtores.

Para a produção de MSF do primeiro corte, foram obtidos cinco grupos de significância, sendo o grupo a formado apenas pelo acesso Baio (49 g.planta⁻¹). Os acessos 48N e 95N, com produções de 39 e 35 g.planta⁻¹ de MSF, respectivamente, formaram o grupo b. O acesso Azulão e 30N formaram o grupo c (27 e 23 g.planta⁻¹ de MSF). Bagual (15 g.planta⁻¹) e 16 outros acessos de *P. notatum* formaram o grupo d, com produções de MSF variando de 19 (70N) a 10 g.planta⁻¹ (51N). André da Rocha e Pensacola formaram o grupo com as menores produções, (6 e 3 g.planta⁻¹) juntamente com outros 31 acessos, que produziram 9 (V29) a 1 g.planta⁻¹ (V2) de MSF.

Em relação ao segundo corte, os dados obtidos seguiram a mesma tendência da avaliação anterior, formando quatro grupos de significância para MST. Destaca-se o acesso Baio, com produções de 156 g.planta⁻¹, seguido dos acessos Azulão, 95N e 48N, produzindo 127, 109 e 99 g.planta⁻¹, respectivamente. O acesso Bagual, com 49 g.planta⁻¹, juntamente com 17 outros acessos, produziram de 62 (V4) a 24 g.planta⁻¹ (V41), formando o grupo c. André da Rocha e Pensacola, com produções de 16 e 6 g.planta⁻¹ de MST, juntamente com os demais acessos, foram os menos produtivos, atingindo valores que variaram de 20 (V51) a 2 g.planta⁻¹ (V9). A produção de MSF agrupou os acessos em três níveis de significância. As maiores produções foram observadas para 95N, Baio e 48N, com valores de 54, 50 e 49 g.planta⁻¹.

Em sequência, 15 acessos, entre eles Azulão (35 g.planta⁻¹) e Bagual (22 g.planta⁻¹), apresentaram produções de 35 a 19 g.planta⁻¹ (V67), formando o grupo b. As menores produções de MSF variaram de 18 (V10) a 1 g.planta⁻¹ (V9) em 33 acessos, entre estes, André da Rocha (13 g.planta⁻¹) e a Cultivar Pensacola (4 g.planta⁻¹).

Um terceiro corte, programado para o início do mês de abril de 2009 foi perdido, devido à entrada acidental de animais na área experimental. Por isso, a produção de MST e MSF da espécie durante o verão do primeiro período de avaliação é obtida com base no primeiro e segundo cortes. Nesse período, o acesso Baio apresentou as maiores produções de MST (238 g.planta-1), seguido dos acessos 48N, 95N e Azulão, com valores de 184, 182 e 172 g.planta-1, respectivamente. Bagual, juntamente com outros cinco acessos, formaram o grupo seguinte em produção, variando de 106 (70N) a 83 g.planta-1 (Bagual). Formou-se um grupo d, com nove acessos, e as produções oscilaram de 64 (67N) a 47 g.planta-1 (80N). A cultivar Pensacola, produzindo 13 g.planta-1, o acesso André da Rocha, 25 g.planta-1, e o restante dos acessos foram os que apresentaram as menores produções nesse período (45 em V51 a 4 g.planta-1 em V2).

Ainda em relação ao período de verão do primeiro período, as produções de MSF destacaram três acessos: Baio, 95N e 48N, os quais produziram 99, 89 e 88 g.planta⁻¹, respectivamente. Estes três acessos foram seguidos de Azulão (62 g.planta⁻¹), 30N (51 g.planta⁻¹), 70N (48 g.planta⁻¹). O restante dos acessos formou dois outros grupos. A cultivar Pensacola apresentou as mais baixas produções de MSF (7 g.planta⁻¹), juntamente com

André da Rocha (19 g.planta⁻¹). Bagual, com valores de 37 g.planta⁻¹, foi mais produtivo que a cultivar, entretanto, sua produção foi inferior aos demais acessos citados anteriormente.

A partir da produção acumulada destas duas avaliações, foi possível observar que os dois acessos de *P. notatum*, 48N e 95N se igualaram em produções de MST aos dois acessos de *P. guenoarum*. Para a produção de MSF, quatro acessos de *P. notatum*, 48N, 95N, 70N e 30N apresentaram valores semelhantes aos de *P. guenoarum*.

Em 15 de julho de 2009 foi realizada uma avaliação apenas para os acessos de *P. guenoarum*, em função de serem os únicos materiais que apresentavam crescimento neste período (Tabela 9). Estudos realizados previamente com esta espécie demonstraram que a mesma apresenta boa tolerância ao frio e geadas, mantendo uma boa distribuição da produção, que abrange épocas de menores temperaturas (Dall'Agnol & Gomes, 1987; Steiner, 2005; Sawasato, 2007). Estes dados são confirmados neste trabalho, onde as produções no outono-inverno de MST foram de 86 e 63 g.planta⁻¹ e MSF de 84 e 62 g.planta⁻¹, para Baio e Azulão, respectivamente. Os dois acessos não diferiram estatisticamente.

TABELA 9. Produção de MST e MSF dos acessos de *P. guenoarum* durante o inverno (2009), em g.planta⁻¹. EEA-UFRGS, Eldorado do Sul, RS, 2010.

Acesso		orte 3 7/2009
	MST (g.planta ⁻¹)	MSF (g.planta ⁻¹)
Azulão	86a	84a
Baio	63a	62a
Mádiae considae da	mesma letra na colun	a não diferem

Medias seguidas da mesma letra na coluna nao diferem significativamente pelo teste do Scott & Knott.

Na Tabela 10 são apresentadas as produções dos acessos obtidas

no segundo período de avaliação. O primeiro corte deste período corresponde à produção de MST e MSF de todos os acessos durante o inverno. É possível observar que as produções de MST e MSF de cada acesso foram similares, sendo a matéria seca de colmo (MSC) pouco representativa neste período. O acesso Azulão apresentou os maiores valores de MST e MSF (55 e 49 g.planta⁻¹), seguido do acesso 48N (44 e 40 g.planta⁻¹). Os acessos Baio (31 e 28 g.planta⁻¹), 30N (27 e 26 g.planta⁻¹) e 95N (27 e 26 g.planta⁻¹) tiveram produções menores que os citados anteriormente, para MST e MSF, respectivamente. Bagual, com produções de 20 g.planta⁻¹ de MST e 18 g.planta⁻¹ de MSF, formou um grupo juntamente com outros quatro acessos, com produções variando de 23 (V42) a 18 g.planta⁻¹ de MST (V4) e 21 (V42) a 16 g.planta⁻¹ de MSF (36N). Pensacola, com produções de MST e MSF de 3 g.planta⁻¹, agrupada juntamente com André da Rocha, o qual produziu 3 g.planta⁻¹ de MST e 3 g.planta⁻¹ de MSF, novamente entre os menos produtivos (14 em V41 a 1 g.planta⁻¹ de MST em V2; e 13 em V41 a 1 g.planta⁻¹ de MSF em V49).

As produções da primavera estão representadas pelos cortes 2 e 3 do segundo período de avaliação (Tabela 10). As maiores produções de MST e MSF no segundo corte foram observadas para Azulão, com 160 e 132 g.planta⁻¹, respectivamente, seguidos do acesso Baio, com 108 e 83 g.planta⁻¹, respectivamente. Entre os acessos de *P. notatum*, os que apresentaram maiores produções foram 95N: produzindo 76 g.planta⁻¹ de MST e 70 g.planta⁻¹ de MSF, 48N, que produziu 67 g.planta⁻¹ de MST e 63 g.planta⁻¹ de MSF e 92N, com valores 62 g.planta⁻¹ de MST.

TABELA 10. Produção de MST e MSF em cada corte e o total do segundo ano de avaliações (2009-2010), em g.planta⁻¹. EEA-UFRGS, Eldorado do Sul, RS, 2010.

Acessos		te 1 0/2009		rte 2 /2009		rte 3 2/2009	То	tal
	MST	MSF	MST	MSF	MST	MSF	MST	MSF
	(g.planta ⁻¹)							
*Azulão	55 ^a	49a	160a	132a	197a	132a	412a	313a
48N	44b	40b	67c	63c	174b	136a	284b	239b
*Baio	31c	28c	108b	83b	119c	92b	258c	203c
95N	27c	26c	76c	70c	95d	87b	198d	183c
V4	18d	18d	45d	44d	107d	90b	169e	151d
30N	27c	26c	42d	39d	74e	63c	144f	128e
Bagual	20d	18d	37d	36d	53f	47d	110g	101f
36N	18d	16d	36d	34d	47g	39d	100h	90f
V41	14e	13e	41d	38d	38g	32e	93h	83f
V42	23d	21d	34d	34d	35g	31e	93h	86f
92N	10e	10e	62c	49d	18h	13f	91h	71g
70N	10e	10e	39d	37d	38g	31e	87h	78g
V10	7e	6e	34d	33d	43g	41d	83h	80g
83N	11e	10e	35d	33d	36g	23e	82h	66g
V51	19d	19d	24d	24e	33g	30e	77h	72g
80N	8e	8e	33d	32d	29g	28e	70h	68g
73N	10e	9e	17e	17f	40g	39d	67h	66g
67N	10e	9e	27d	17f	28g	17f	65h	44h
66N	9e	9e	28d	24e	16h	11f	53i	44h
V67	8e	8e	34d	34d	5h	4f	47i	45h
17N	9e	9e	20e	19f	17h	16f	46i	44h
André da Rocha	3e	3e	21e	20f	21h	20f	45i	43h
V12	6e	6e	21e	18f	14h	9f	41i	34h
51N	7e	7e	14e	13f	19h	14f	41i	35h
33N	6e	6e	10e	10f	22h	21e	39i	37h
13N	8e	7e	15e	13f	16h	12f	38i	32h
16N	8e	8e	23d	23e	6h	6f	38i	36h
V32	3e	3e	14e	13f	17h	16f	34i	33h
V69	5e	5e	15e	14f	12h	9f	32i	28h
87N	5e	5e	11e	11f	13h	10f	30i	27h
71N	6e	6e	8e	8g	14h	11f	29i	25h
V24	5e	4e	9e	8g	15h	12f	28i	25h
V66	4e	4e	14e	14f	9h	7 f	28i	26h
79N	8e	7e	12e	11f	7h	7 f	27i	25h
V47	2e	2e	12e	12f	11h	10f	26i	24h
V30	5e	4e	6e	6g	15h	12f	26i	22i
V50	2e	2e	14e	14f	8h	7 f	25j	23i
49N	6e	6e	15e	15f	1h	1f	23j	23i
V23	7e	7e	5e	5g	9h	7 f	21j	18i
V31	2e	2e	6e	6g	12h	10f	19j	18i
V13	5e	5e	7e	6g	7h	7 f	19j	18i
37N	3e	3e	5e	4g	11h	10f	18j	17i
20N	3e	3e	7e	6g	6h	5f	16j	15i
89N	5e	5e	10e	9g	1h	1f	16j	15i
69N	2e	2e	5e	5g	8h	6f	15j	13i
Pensacola	3e	3e	6e	6g	5h	5f	14j	13i
V27	3e	3e	2e	2g	8h	6f	13j	12i
93N	2e	2e	5e	5g	4h	4f	12j	11i
V35	2e	2e	5e	4g	4h	4f	10j	10i
V9	2e	2e	4e	3g	4h	3f	10j	9i
V2	1e	1e	3e	3g	5h	4f	9j	6i
V5	2e	2e	5e	5g	2h	2f	9j 7j	8i
V26	2e	1e	2e	2g	3h	3f	7 j	6i
V29	1e	1e	2e	1g	4h	3f	7 j	6i
V49	1e	1e	2e	2g	1h	1f	5j	5i

Acessos pertencentes à espécie *P. guenoarum*.

Médias seguidas da mesma letra na coluna não diferem significativamente pelo teste do Scott & Knott.

Os demais acessos foram divididos em dois grupos de significância

para produção de MST. Bagual, com produção de 37 g.planta⁻¹ de MST, inserido no grupo cujas produções variaram de 45 (V4) a 23 g.planta⁻¹ (16N).

A cultivar foi um dos acessos que apresentou menor produção, 6 g.planta⁻¹, não diferindo estatisticamente de André da Rocha, 21 g.planta⁻¹. Para a MSF, os demais acessos foram divididos em quatro níveis de significância, e a Pensacola produziu 6 g.planta⁻¹, sendo semelhante aos acessos com menores produções.

A Figura 2 demonstra a diferença da produção de material verde em alguns dos acessos estudados. Na Figura 2 – A, o acesso Baio, *P. guenoarum*, na Figura 2 – B, 48N, um dos acessos mais produtivos de *P. notatum*, e em 2 – C, a cultivar Pensacola. A partir desta Figura, é possível realizar uma comparação visual entre estes materiais na data da avaliação (16 de novembro de 2009), onde a produção de forragem é visivelmente mais elevada nos acessos Baio e 48N, quando comparadas à Pensacola.

Em relação ao corte 3 (Tabela 10), os acessos foram separados em oito níveis de significância para MST e seis para MSF. Azulão novamente foi o acesso com maiores produções de MST, 197 g.planta⁻¹, seguido de 48N, 174 g.planta⁻¹. Após estes, Baio, com valores 119 g.planta⁻¹, seguido de V4, 107 g.planta⁻¹ e 95N, 95 g.planta⁻¹. A produção de MSF foi maior nos acessos 48N e Azulão, 136 e 132 g.planta⁻¹, respectivamente, não diferindo estatisticamente. Após estes, os acessos Baio, V4 e 95N, com produções de 92, 90 e 87 g.planta⁻¹, respectivamente, seguidos de 30N (63 g.planta⁻¹). A Pensacola ficou novamente entre os que menos produziram MST e MSF, 5 e 5 g.planta⁻¹, respectivamente, não diferindo estatisticamente de André da Rocha, que

produziu 21 g.planta⁻¹ de MST e 20 g.planta⁻¹ de MSF. O acesso Bagual foi estatisticamente mais produtivo que a cultivar, com 53 g.planta⁻¹ de MSF e 47 g.planta⁻¹ de MSF.

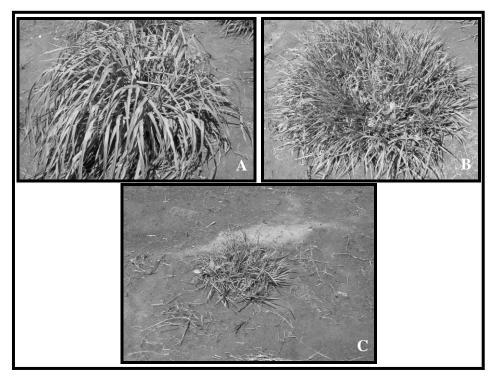


Figura 2 – Plantas de diferentes acessos de *Paspalum*, fotografadas em 16/11/2009. A – *P. guenoarum*, acesso Baio. B – *P. notatum*, acesso 48N. C – *P. notatum*, cultivar Pensacola. EEA-UFRGS, Eldorado do Sul, RS, 2010.

As produções acumuladas de MST do segundo período de avaliação (Tabela 10) variaram de 412 (Azulão) a 5 g.planta⁻¹ (V2) e os acessos foram separados em dez grupos. Azulão foi o acesso mais produtivo, com 412 g.planta⁻¹, seguido de 48N (284 g.planta⁻¹). Baio foi o terceiro acesso com maiores produções (258 g.planta⁻¹), seguido de 95N, o qual produziu 198 g.planta⁻¹. Após estes, V4, com 169 g.planta⁻¹, seguido de 30N (144 g.planta⁻¹). Bagual foi o sétimo acesso em produção de MST, com 110 g.planta⁻¹. André da

Rocha apresentou produções de 45 g.planta⁻¹, sendo mais produtivo que a Pensacola, a qual teve novamente os menores valores de produção, 14 g.planta⁻¹ de MST.

A produção de MSF acumulada de primavera do segundo período de avaliação variou de 313 (Azulão) a 5 g.planta⁻¹ (V49). O acesso Azulão foi seguido por 48N, 239 g.planta⁻¹. Baio e 95N foram os seguintes, com 203 e 183 g.planta⁻¹ MSF, não diferindo estatisticamente. Os acessos V4 e 30N também mostraram boas produções, 151 e 127 g.planta⁻¹ de MSF, respectivamente. Outros três acessos, 36N, V42 e V41 não diferiram estatisticamente do acesso Bagual (101 g.planta⁻¹), atingindo produções de 90, 86 e 83 g.planta⁻¹, respectivamente. A cultivar produziu 13 g.planta⁻¹, estando entre os acessos com menores produções de MSF.

As produções totais de MST e MSF obtidas em todas as avaliações realizadas no experimento estão descritas na Tabela 11 (Apêndice 3), bem como a porcentagem dessa produção em relação à Pensacola, considerando a cultivar como 100%.

As produções acumuladas de MST variaram de 670 (Azulão) a 11 g.planta⁻¹ (V49), sendo formados oito classes de significância. Já as produções acumuladas de MSF variaram de 459 a 9 g.planta⁻¹, para os mesmos acessos, também com oito classes de significância. A partir destes dados, pode-se verificar que a espécie estudada apresenta ampla variabilidade, não apenas morfológica, mas também em produção de forragem.

Considerando as produções totais, Azulão foi o acesso mais produtivo, chegando a produzir em MST cerca de 2500% a mais em relação a

cultivar e MSF de 2200% a mais.

TABELA 11. Produção de MST e MSF total, em g.planta⁻¹, e percentual de produção em relação à cultivar Pensacola (100%), EEA-UFRGS, Eldorado do Sul, RS, 2010.

Acessos	Produção Total		% em relação à Pensacola		
	MST (g.planta ⁻¹)	MSF (g.planta ⁻¹)	MST (%)	MSF (%)	
*Azulão	670a	459a	2502	2254	
*Baio	559b	363b	2089	1784	
48N	469c	327c	1752	1608	
95N	380d	272d	1420	1337	
V4	258e	190e	963	936	
30N	237e	178e	886	875	
Bagual	194f	138f	725	677	
70N	193f	126f	721	618	
92N	185f	110f	691	540	
83N	181f	110f	675	541	
36N	162g	124f	606	610	
V42	143g	119f	535	583	
V41	133g	105f	498	515	
67N	129g	77g	484	376	
73N	128g	98f	477	481	
V51	122g	101f	455	496	
80N	117g	106f	437	521	
17N	109g	84f	409	412	
V10	109g	101f	409	498	
66N	109g	75g	408	369	
13N	98h	56g	366	274	
V67	94h	75g	352	368	
33N	78h	69g	293	338	
51N	72h	51g	268	252	
André da Rocha	70h	62g	263	305	
V12	66h	44h	247	215	
16N	60h	48g	225	235	
49N	55h	48g	205	234	
71N	51h	41h	192	201	
79N	50h	41h	188	201	
V29	49h	40h	182	198	
87N	47h	37h	177	183	
V31	47h	36h	177	179	
V66	47h	35h	176	171	
V50	47h	38h	176	189	
V32	46h	41h	173	203	
V69	45h	35h	168	173	
V30	42h	33h	158	162	
V24	42h	30h	157	149	
69N	42h	31h	156	151	
V23	41h	28h	151	136	
V13	38h	33h	141	163	
V27	37h	26h	140	130	
V47	34h	29h	127	144	
20N	33h	26h	125	127	
37N	28h	25h	105	124	
Pensacola	27h	20h	100	100	
93N	26h	17h	98	85	
89N	25h	21h	93	102	
V9	19h	14h	72	67	
V5	19h	15h	70	74	
V26	19h	11h	69	56	
V35	16h	15h	61	73	
V2	14h	10h	51	51	
V49	11h	9h	41	45	

Acessos pertencentes à espécie *P. guenoarum*.

Médias seguidas da mesma letra na coluna não diferem significativamente pelo teste do Scott & Knott.

O segundo acesso com maiores produções foi o acesso Baio, sendo

cerca de 2000% e 1700% mais produtivo que a Pensacola em MST e MSF, respectivamente.

Estes dois acessos são pertencentes à espécie *P. guenoarum*, para os quais foi feito uma avaliação em julho, o que não ocorreu para os demais acessos de *P. notatum* avaliados neste estudo (Tabela 9). Esses dois acessos têm sido avaliados para a produção de MS e demonstraram elevadas produções, quando comparadas com outras espécies do gênero (Steiner, 2005; Sawasato, 2007; Towsend, 2008; Pereira, 2009).

Dezoito acessos de *P. notatum* tiveram produções de MST estatisticamente mais elevadas que a Pensacola. Quando apenas as produções de MSF são analisadas, 25 acessos foram estatisticamente mais produtivos que a cultivar. É importante ressaltar que entre os acessos de *P. notatum*, 48N e 95N, com produções totais de MST de 469 e 380 g.planta⁻¹, e produções de MSF de 327 e 272 g.planta⁻¹, respectivamente, foram estatisticamente os mais produtivos dentre os *P. notatum* em todos os cortes, sendo em alguns, semelhantes aos acessos de *P. guenoarum*. Em relação à Pensacola, 48N e 95N produziram 1700 e 1400% de MST e 1600 e 1300% de MSF a mais, respectivamente. Outros dois acessos que merecem destaque são V4 e 30N, que chegaram a produções de 258 e 237 g.planta⁻¹ de MST e 190 e 178 g.planta⁻¹ de MST, sendo cerca de 900% mais produtivos que a cultivar. Com exceção do acesso V4, que no primeiro ano não esteve entre os mais produtivos, os demais acessos, 48N, 95N e 30N, foram também os que mais produziram MS no verão do período ano de avaliações.

É importante salientar também que alguns materiais avaliados neste

estudo tiveram produções superiores aos acessos denominados Bagual e André da Rocha. Estes dois acessos já foram avaliados em outros estudos e apresentaram elevadas produções de MS, sendo considerados materiais de destaque da espécie (Steiner, 2005; Sawasato, 2007; Townsend, 2008).

A Figura 3 ilustra as produções de MST em cada corte realizado neste experimento, com os valores da produção da cultivar Pensacola e as médias de todos os acessos de *P. notatum*, dos quatro melhores acessos de *P. notatum* e dos acessos de *P. guenoarum*. É possível verificar que em todas as avaliações os materiais demonstram uma mesma tendência, onde a média dos acessos de *P. guenoarum* foram os mais produtivos, seguido dos quatro melhores acessos de *P. notatum* (48N, 95N, V4 e 30N). A média das produções de todos os acessos de *P. notatum* apresentou-se maior que as produções da cultivar Pensacola. Estes dados evidenciam o potencial forrageiro deste grupo de acessos avaliados neste trabalho, dos quais podem ser selecionados os melhores materiais e avaliados sob outras formas, como por exemplo, em parcelas, que leva em consideração, além do potencial de produção, a competitividade das plantas na parcela.

A partir dos resultados obtidos, pode-se observar que há uma grande variabilidade na produção de MST e MSF dos 53 acessos de *P. notatum* analisados neste trabalho, e muitos destes materiais superam a cultivar comercial disponível no mercado.

Os acessos que apresentaram as maiores produções no primeiro e segundo períodos de avaliação são materiais provenientes de diferentes locais da Argentina, Mercedes (48N), Corrientes (95N), Cordoba (70N) e Santa Fé

(30N). Apenas V4 é proveniente de Barra do Quaraí (RS). Com relação às características morfológicas, estes acessos acima citados apresentam médias de comprimento das lâminas foliares, entre 17,7 a 22,6 cm, o que pode justificar as maiores produções de MS. Além disso, estes acessos foram classificados como tendo hábito ereto, com exceção de 48N, que apresentou variação para esta característica. Em relação aos grupos morfológicos, 95N e 70N pertencem ao grupo 2, 48N ao grupo 3, 30N ao grupo 4 e V4 ao grupo 9.

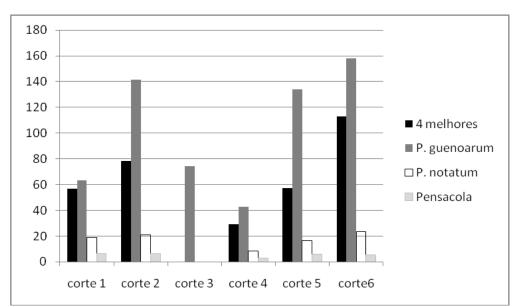


FIGURA 3 – Gráfico com as produções de MST por avaliação, para a cultivar Pensacola, média dos 4 melhores acessos de *P. notatum* e de todos os acessos desta espécie e média dos acessos de *P. guenoarum*. EEA-UFRGS, Eldorado do Sul, RS, 2010.

Ao analisar a produção de MS em uma coleção de acessos de *P. nicorae* e caracterizada morfologicamente por Reis (2008), Pereira (2009) salientou que os acessos com maiores produções de MS foram materiais que apresentaram altura e comprimento das folhas acima da média da coleção. Estes dados indicam que esta característica (comprimento das folhas) pode

estar estreitamente relacionada com a produção de MS.

Os resultados obtidos neste trabalho são semelhantes aos obtidos por outros pesquisadores, onde a cultivar Pensacola apresenta produção de matéria seca inferior aos materiais nativos (Prates, 1977; Steiner, 2005; Sawasato, 2007; Pereira, 2009).

Além disso, os dados aqui discutidos são semelhantes aos obtidos por Steiner (2005), que avaliou dois acessos de *P. guenoarum* (Baio e Azulão) e três acessos de *P. notatum* (Bagual, André da Rocha e Pensacola) em parcelas. O autor obteve valores de produção de MS dos acessos de *P. guenoarum* mais elevados que os de *P. notatum*. Dos três acessos de *P. notatum*, Bagual foi o mais produtivo e André da Rocha foi semelhante em produção à cultivar Pensacola.

De acordo com Sawasato (2007), as espécies de *P. guenoarum* e *P. notatum* tiveram boa persistência, sobrevivendo ao inverno do sul do Brasil. Neste trabalho, em relação à persistência dos materiais avaliados, que foi analisada logo após o término do inverno, houve diferença estatística, permitindo a formação de dois grupos. A maioria dos acessos pertence ao grupo que apresenta melhor persistência, dentre os quais, cabe destacar os acessos de *P. guenoarum* (Azulão e Baio) e os acessos 48N, 95N, V4, 30N, que são os materiais com produções mais elevadas de MS, além dos acessos Bagual e André da Rocha. Os acessos 37N, 89N, 93N, V2, V5, V9, V10, V13, V24, V26, V29, V31, V32, V35, V41, V49 e Pensacola são pertencentes ao grupo b, podendo ser considerados os menos persistentes.

Os resultados obtidos com a avaliação agronômica dos 53 acessos

de *P. notatum*, permitem destacar materiais com potencial forrageiro, os quais apresentam elevados valores de produção de MS além de apresentarem boa persistência ao inverno do sul do Brasil. Estes materiais, em função do modo de reprodução que apresentam, poderiam no futuro ser liberados como cultivares comerciais, desde que suas características se confirmem em outros trabalhos, aumentando em muito a disponibilidade de germoplasma para os produtores, além de ajudar na preservação de nossas espécies nativas. Além disso, devido à atual disponibilidade de acessos sexuais, seria possível a utilização destes materiais nativos como progenitores masculinos no programa de melhoramento genético da espécie existente no DPFA da UFRGS.

4.3 Análise Molecular

Na análise molecular foram testados 11 *primers* de SSR, dos quais oito foram utilizados nas análises de similaridade (Tabela 3). Os oito marcadores utilizados detectaram quatro alelos por loco, num total 32 fragmentos de DNA polimórficos, nos 53 acessos de *P. notatum* (Tabela 1). O número de alelos teve uma média de quatro. Os tamanhos alélicos variaram de 115 a 383 pares de bases (pb) (Tabela 12).

Neste trabalho, foram detectados fragmentos de DNA que não pertenciam à regiões de SSR amplificadas devido ao tamanho das mesmas. Estes fragmentos de DNA, provavelmente, são resultado do uso de *primers* heterólogos à espécie *P. notatum.* Para a análise dos géis, foram levadas em consideração apenas os fragmentos de DNA que se encontravam entre os marcadores de 100 e 400 pb, a fim de padronizar as análises e obter uma

estimativa da diversidade dos materiais confiáveis. Na Figura 4, o gel de agarose ilustra os fragmentos de DNA amplificados pelo *primer* M12-52 em 15 acessos de *P. notatum*. As setas estão indicando os quatro fragmentos de DNA utilizadas para avaliar o polimorfismo entre os materiais.

TABELA 12 – Tamanho alélico (pb), número de alelos (A), conteúdo de informação de polimorfismo (PIC) e heterosigosidade observada de cada um dos oito marcadores de microssatélites analisados na caracterização de 53 acessos de *P. notatum.* UFRGS, Porto Alegre, RS, 2010.

Primer	Tamanho alélico (pb)	Α	PIC	Но
Pv-3	115-364	4	0,41	0,32
Pv-11	135-255	4	0,42	0,46
Pv-53	118-289	4	0,65	0,69
M4-213	121-233	4	0,67	0,73
M15-185	169-330	4	0,56	0,89
M16-B	142-369	4	0,69	0,60
M2-148	144-383	4	0,54	0,72
M12-52	139-358	4	0,60	0,78
Total		32		
Média		4	0,57	0,65
Mín-Máx	115-383		0,41-0,69	0,32-0,89

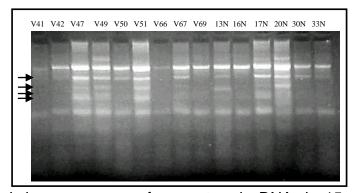


FIGURA 4 – Gel de agarose com fragmentos de DNA de 15 acessos de *P. notatum* em análise do *primer* de microssatélite M12-52. UFRGS, Porto Alegre, RS, 2010.

Os *primers* utilizados neste estudo foram desenhados para outras espécies, como milho (*Zea mays*), arroz (*Oriza sativa*) e sorgo (*Sorghum bicolor*). Wang et al. (2006) estudaram a transferibilidade destes marcadores de

SSR para *Paspalum*, e demonstraram uma taxa de transferência de 67,5, 49,0 e 66,8% respectivamente. Além destes autores, outros pesquisadores obtiveram dados satisfatórios ao utilizar estes marcadores (Kubik et al.,1999; Kölliker et al., 2001).

Sawasato et al. (2008), utilizando os mesmos *primers* avaliados neste trabalho em *P. urvilei*, também detectaram a presença de quatro alelos por loco, com 28 fragmentos de DNA polimórficos. Entretanto, Liu et al. (1995) avaliaram a diversidade genética em ecótipos de *P. vaginatum* e encontraram seis a 16 fragmentos de DNA, com uma média de 14 fragmentos de DNA por loco.

O conteúdo de informação de polimorfismo (PIC) variou de 0,41 a 0,69, com uma média de 0,57 (Tabela 5). Os baixos valores de PIC observados podem ser devido ao uso de *primers* heterólogos. Todos os locos foram polimórficos, variando de zero a quatro alelos por acesso de *P. notatum* analisado. Esse fato pode estar associado à heterozigose dos materiais, visto que o modo de reprodução é apomítico e os acessos são de locais de origem bastante diversificados.

Em relação à heterosigosidade observada, esta variou de 0,32 a 0,89, com uma média de 0,65 (Tabela 12). Estes resultados reforçam a hipótese de uma elevada heterose para os locos avaliados neste trabalho.

A similaridade média entre os genótipos analisados foi baixa (0,29), variando de zero (entre vários acessos) a 0,83 (entre V31 e V66) (Apêndice 4).

O baixo valor de similaridade média pode ser explicado pela grande diversidade morfológica, bem como pela grande variabilidade na produção de

MS. Dos 53 acessos de *P. notatum* estudados, dois acessos, V32 e 87N, não foram utilizados para a formação do dendrograma, pois a extração de DNA foi insatisfatória.

A similaridade média permitiu a formação de nove grupos. O grupo 1, com cinco acessos (Pensacola, V35, V29, V31 e V66). O grupo 2, maior grupo, com 18 acessos (V2, 80N, V5, V49, 20N, 30N, V13, 95N, 17N, V10, V69, V67, 33N, 16N, V12, 69N, V47, V51). O grupo 3, segundo maior grupo, é formado por 11 acessos (André da Rocha, Bagual, V24, V50, 49N, 73N, 79N, V26, 37N, V27, 83N) e o grupo 4 é formado pelos acessos V41, V42 e 13N.

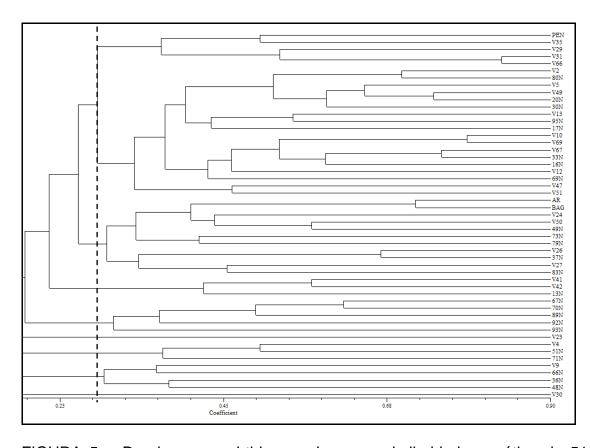


FIGURA 5 – Dendrograma obtido com base na similaridade genética de 51 acessos de *P. notatum*, utilizando-se 8 marcadores microssatélites. A linha tracejada indica a distância média e o ponto de corte no dendrograma. UFRGS, Porto Alegre, RS, 2010.

Ao grupo 5 pertencem os acessos 67N, 70N, 89N, 92N e 93N. O grupo 6 com apenas o acesso V23. No grupo 7 estão os acessos V4, 51N, 71N; o grupo 8 é formado pelos acessos V9, 66N, 36N e 48N e o grupo 9 com apenas o acesso V30.

O grupo 1, reúne a cultivar Pensacola e acessos de diferentes locais do RS, incluindo um do Uruguai. Quanto aos caracteres morfológicos, também não houve uma clara relação, onde cada acesso pertence a um grupo morfológico distinto. Entretanto, quanto à produção de MS, todos os acessos pertencem ao grupo que apresentou as menores produções acumuladas de MST e MSF.

O grupo 2 também não apresenta relação com os locais de coleta, apenas dois acessos de Capivari (RS) e três acessos de Guaíba (RS); os demais acessos foram coletados em diversas regiões do RS, além de acessos do Uruguai e Argentina. Os acessos deste grupo também não apresentaram características morfológicas semelhantes, com dez grupos morfológicos. Entretanto, os dois acessos pertencentes aos grupos morfológicos 14 (V12 e V13), bem como os grupos 15 e 16 representados pelos acessos V47 e V51, respectivamente, são pertencentes a este grupo molecular. Este grupo reúne, com exceção dos acessos 30N e 95N, genótipos que apresentam excelente produção de forragem. Os demais acessos pertencem aos dois grupos menos produtivos (g e h).

Ao grupo 3 pertencem os acessos André da Rocha e Bagual, além dos dois acessos coletados no Estado de SP, os dois de Lavras do Sul (RS); os demais acessos têm origem em diferentes locais. Quanto à produção de MS

dos acessos, com exceção de Bagual e 83N (grupo f), 49N e 73N (grupo g), os demais pertencem ao grupo com menores produções (grupo h). Dos 16 grupos morfológicos formados neste trabalho, os acessos deste grupo pertencem a oito distintos.

O grupo 4 reúne dois acessos de Arapei (Argentina) e um acesso de Vacaria. Cada acesso pertence a grupo morfológico distinto, tendo os valores de angulação de inserção das folhas e o comprimento dos racemos bastante semelhantes, 30° a 30,67° e 9,87 a 9,93 cm, respectivamente. Os dois acessos de Arapei apresentam produções MS bastante semelhante, pertencentes ao grupo g, e 13N pertence ao grupo h.

O grupo 5 reúne, com exceção de 93N coletado em Bom Jesus (RS), três acessos da Argentina e um do Uruguai. A produção acumulada de MS neste grupo é variada, com acessos dos grupos f, g e h. Embora todos os acessos pertencentes a este grupo apresentam hábito ereto, estão agrupados em quatro diferentes grupos morfológicos.

O grupo 6, formado apenas pelo acesso V23, de Eldorado do Sul (RS), pertence ao grupo morfológico 5 e apresenta produção de MS semelhante à Pensacola que pertence ao grupo h.

O grupo 7, formado por três acessos, dois do RS e um da Argentina, apresenta produções de MS variada, com o acesso V4 (grupo e) com boas produções, enquanto os demais acessos pertencem ao grupo h com as menores produções acumuladas. Além disso, este grupo reúne acessos de morfologia variada, onde cada acesso pertence a um grupo morfológico distinto.

O grupo 8 é formado por três acessos da Argentina e um acesso do RS (Vale do Sol). Estes acessos pertencem a três grupos morfológicos; quanto à produção de MS, este grupo reúne o acesso com maiores produções (48N), dois acessos do grupo g e um do grupo h.

O grupo 9, formado pelo acesso V30 coletado em Bagé (RS), apresentou baixas produções de MS acumulada e pertence ao grupo morfológico 7.

A variabilidade genética encontrada neste estudo é semelhante à descrita por alguns autores que estudaram esta espécie. Steiner (2005) utilizou marcadores RAPD para discriminar 40 acessos de *P. notatum*. Este autor encontrou valores de índice de Jaccard médio de 0,26, variando de 0 a 0,80 e a formação de sete grupos distintos.

Ao comparar com outros estudos, os valores de similaridade obtidos neste estudo foram menores. Isto pode ser devido à natureza co-dominante do marcador utilizado neste trabalho, o qual oferece mais informações de polimorfismo que os dominantes.

Cidade (2006), analisando 95 acessos de *P. notatum* por meio de marcadores ISSR, detectou um amplo polimorfismo, com apenas 2,2% de fragmentos de DNA monomórficos. O coeficiente de Jaccard variou de 0,43 a 0,97, com uma média de 0,59, formando seis grupos distintos, sugerindo uma considerável variação genética dentro da espécie.

Espinoza et al. (2006), com o auxilio de marcadores AFLP, obteve valores de distância genética que variaram de 0,01 a 0,36, indicando uma diversidade genética relativamente pequena. Estes valores podem ser

resultado do número de acessos estudados, onde o autor utilizou 42 materiais, bem como a técnica escolhida, com marcador dominante.

A formação de grupos distanciados geneticamente favorece a seleção de genótipos para a formação de novas cultivares, mantendo uma elevada heterose. A relação destes grupos formados por meio de marcadores SSR com os grupos morfológicos descritos anteriormente neste trabalho e a produção de MS, pode auxiliar na escolha de progenitores com boas produções de forragem que reúnam características morfológicas desejáveis e apresentem baixa similaridade genética, aumentando assim o vigor dos materiais.

4.4 Determinação do Nível de Ploidia por Meiose

O número cromossômico foi determinado a partir de células mãe de pólen (CMP) para os 25 acessos de *P. notatum* obtidos do USDA. Os demais acessos foram previamente determinados por Dahmer et al. (2008). O número cromossômico de todos os acessos pode ser verificado na Tabela 13.

Dos 53 acessos, seis acessos são diplóides (2n= 2x= 20 cromossomos), a Pensacola e V12 (Dahmer et al., 2008), 66N (Figura 6-A), 67N, 87N e 92N (Figura 6-B). O acesso V12, coletado em Candói, RS foi considerado pelo autor como um escape da Pensacola. Os demais acessos, 66N, 67N e 92N são provenientes de Santa Fé, Argentina e 87N é de Paysandú, Uruguai, e podem ser considerados diplóides selvagens, já que os locais de origem dos mesmos é considerada a região de origem de *P. notatum* var. *saurae*. O acesso V9, coletado em Vale do Sol, RS é hexaplóide (2n= 6x=

60 cromossomos) (Dahmer et a., 2008). Os demais acessos são tetraplóides (2n= 4x= 40 cromossomos) (Figura 6-C).



FIGURA 6 – Células meióticas. A - *P. notatum* 66N, diacinese, n= 2x= 10 cromossomos. B - *P. notatum* 92N, diacinese, n= 2x= 10 cromossomos. C - *P. notatum* 36N, anáfase I, n= 4x= 20 cromossomos. Escala: 10μm. UFRGS, Porto Alegre, RS, 2010.

Comparando-se as características morfológicas dos quatro acessos diplóides encontrados neste estudo com a Pensacola, os três acessos de Santa Fé, Argentina (66N, 67N e 92N) apresentam comprimento de bainha entre 10,57 a 11,80 cm, enquanto a Pensacola possui comprimento de 6,97 cm e 87N 4,80 cm. As lâminas foliares dos três acessos diplóides de Santa Fé também apresentam maior comprimento, variando de 18,03 a 24,60 cm; Pensacola com 13,43 cm e 87N com 8,20 cm. A bainha central das lâminas foliares é esbranquiçada para todos os acessos diplóides, exceto em 87N, onde se apresentou esverdeada. Em relação ao comprimento dos racemos, a Pensacola apresentou 10,20 cm, os três acessos de Santa Fé variaram de

11,90 a 14,68 cm, e 87N apresentou valores menores, 6,10 cm. A Pensacola foi classificada como tendo hábito prostrado, enquanto que os quatro acessos foram classificados como ereto (Tabela 4).

TABELA 13 – Nível de ploidia dos acessos de *P. notatum*. UFRGS, Porto Alegre, RS, 2010.

Acesso	Ploidia
*Pensacola	2x
*André da Rocha	4x
*Bagual	4x
13N	4x
16N	4x
17N	4x
20N	4x
30N	4x
33N	4x
36N	4x
37N	4x
48N	4x
49N	4x
51N	4x
66N	2x
67N	2x
69N	4x
70N	4x
71N	4x 4x
7 IN 73N	4x 4x
73N 79N	4x 4x
80N	4x
83N	4x
87N	2x
89N	4x
92N	2x
93N	4x
95N	4x
*V2	4x
*V4	4x
*V5	4x
*V9	6x
*V10	4x
*V12	2x
*V13	4x
*V23	4x
*V24	4x
*V26	4x
*V27	4x
*V29	4x
*V30	4x
*V31	4x
*V32	4x
*V35	4x
*V41	4x
*V42	4x
*V47	4x
*V49	4x
*V50	4x
*V51	4x
*V66	4x
*V67	4x 4x
*V69	4x 4x
V U 3	→^

*Nível de ploidia determinado por Dahmer et al. (2008).

Na formação dos grupos morfológicos (Tabela 6), Pensacola

pertence ao grupo 7, 66N no grupo 3, 67N no grupo 6, 87N no 11 e 92N no 2. Esta separação em diferentes grupos pode ser devido a maior variabilidade, já que provavelmente estes acessos são de reprodução sexual.

Na produção de MST acumulada, Pensacola e 87N ficaram agrupados juntamente com os acessos que apresentaram as menores produções (grupo h). Os genótipos 66N e 67N produziram mais MST e MSF acumulada que a Pensacola, pertencendo ao grupo g, produzindo cerca de quatro vezes mais que a cultivar. Já 92N pertence ao grupo f, produzindo cerca de sete vezes mais MST acumulada e cinco vezes mais MSF que a cultivar Pensacola (Tabela 11).

A análise molecular por SSR separou os acessos diplóides da cultivar Pensacola, que pertence ao grupo 1, 66N grupo 8 e 67N agrupou com 92N no 5. O acesso 87N não foi analisado pois a extração de DNA foi insuficiente para as análises (Figura 5).

P. notatum var saurae é nativa do leste da Argentina, onde é esparsamente distribuída nas Províncias de Santa Fé, Corrientes e Entre Rios (Burton, 1967). Tem folhas mais estreitas, espiguetas pequenas e mais racemos por inflorescência que os ecótipos tetraplóides (Quarin et al., 1984; Canto-Dorow, 1993). P. notatum var. saurae reúne os acessos com modo de reprodução sexual e, até o momento, todos os acessos diplóides encontrados, sejam selvagens ou cultivados, reproduzem-se sexualmente.

Estes acessos diplóides encontrados neste trabalho podem ser utilizados para a realização de cruzamentos com a Pensacola, sem a necessidade de duplicação dos cromossomos da cultivar, pois possuem o

mesmo nível de ploidia. Além disso, se for confirmado o modo de reprodução destes acessos como sexuais, pode-se utilizá-los no lugar da Pensacola no programa de melhoramento da espécie do DPFA, a fim de aumentar-se a variabilidade genética disponível para cruzamentos.

Os resultados obtidos neste estudo contribuem com o programa de melhoramento genético de *P. notatum* do DPFA da UFRGS, conferindo acessos com elevadas produções agronômicas, boa persistência às condições climáticas do sul do Brasil, além de quatro acessos diplóides, os quais podem ser utilizados para aumentar a variabilidade genética disponível para cruzamentos.

5. CONCLUSÕES

A coleção de acessos estudada apresentou variabilidade para todas as características morfológicas analisadas, com a formação de 16 grupos morfológicos.

As características morfológicas que mais contribuíram para a divergência genética foram hábito das plantas, pilosidade das bainhas e lâminas foliares.

As características que apresentaram maior variância foram angulação dos racemos, angulação de inserção das folhas e altura das hastes floríferas, representando 92,9% da variância total observada para as 14 características analisadas.

Os acessos 48N, 95N, 30N e V4 foram os acessos com maiores produções de forragem nos dois períodos de avaliação, superando em muito a cultivar Pensacola, além de terem persistido bem ao inverno.

Os marcadores SSR utilizados neste trabalho formaram nove diferentes grupos, com valores de similaridade genética variando de zero a 0,83, com média de 0,29.

Foram observados quatro acessos diplóides que podem ser utilizados como possível fonte de sexualidade.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- ADAMOWSKI, E.V.; PAGLIARINI, M.S.; BONATO, A.B.M. et al. Chromosome numbers an meiotic of some *Paspalum* accessions. **Genetics and Molecular Biology**, Ribeirão Preto, v. 28, n. 4, p. 773-780, 2005.
- BALBINOT, N.D. Variabilidade Citogenética em uma coleção de acessos de *Paspalum notatum* Flügge. 2007. 67f. Dissertação (Mestrado) Pós Graduação em Zootecnia, Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, Porto Alegre, 2007.
- BARÉA, K.; SCHEFFER-BASSO, S.M.; FAVERO, D. Desenvolvimento morfológico de *Paspalum paniculatum* L. (Poaceae). **Biotemas**, v. 19, n. 4, p. 33-39, 2006.
- BARÉA, K; SCHEFFER-BASSO, S.M.; DALL`AGNOL, M. et al. Manejo de *Paspalum dilatatum* Poir. biótipo Virassoro. 1. Produção, composição química e persistência. **Revista Brasileira de Zootecnia**, Viçosa, v. 36, p. 992-999, 2007.
- BARRETO, I.L. **O** gênero *Paspalum* (Gramineae) no Rio Grande do Sul. 1974. 258f. Dissertação (Livre-Docência Fitotecnia) Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1974.
- BLOUNT, A.R.; GATES, R.N.; PFAHLER, P.L. et al. Photoperiod response in Pensacola Bahiagrass. In: XIX International Grassland Congress. 2001. Rio de Janeiro. **Proceedings...** São Pedro, p. 487-488, 2001.
- BURTON, G.W. The method of reproduction of common bahiagrass, *Paspalum notatum*. **Journal American Society of Agronomic**, Madison, v. 40, p. 443-452, 1948.
- BURTON, G.W. A search for the origin of Pensacola bahiagrass. **Economic Botanic**, New York, v. 21, p. 319-382, 1967.
- CANTO-DOROW, T.S. Revisão taxonômica das espécies sulriograndenses de *Paspalum* L. (grupo Notata) Poaceae – Paniceae, com ênfase na análise da variação intra-específica de *Paspalum notatum* Flügge. 1993. 172f. Dissertação (Mestrado) Programa de Pós-Graduação em

- Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1993.
- CARVALHO, F.I.F.; LORENCETTI, C.; MARCHIORO, V.S. et al. **Condução de populações no melhoramento genético de plantas.** 2.ed. Pelotas, RS: UFPel Editora Universitária, 2008. 288p.
- CIDADE, F.W. Análise da variabilidade genética de *Paspalum notatum* Flügge (Poaceae, Panicoideae) com o uso de marcadores moleculares, morfológicos e citometria de fluxo. 2006. 75f. Dissertação (Mestrado) Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2006.
- CIDADE, F.W.; DALL'AGNOL, M.; BERED, F. et al. Genetic diversity of the complex *Paspalum notatum* Flügge (Paniceae: Panicoideae). **Genetics Resources Crop Evolution**, Dordrecht, v. 55, p. 235-246, 2008.
- COSTA, D.I.; SCHEFFER-BASSO, S.M. Caracterização morfofisiológica e agronômica de *Paspalum dilatatum* Poir. biótipo Virassoro e *Festuca arundinaceae* Schreb. 1. Desenvolvimento morfológico. **Revista Brasileira de Zootecnia**, Viçosa, v. 32, n. 5, p. 1054-1060, 2003.
- COSTA, D.I.; SCHEFFER-BASSO, S.M.; FAVERO, D. et al. Caracterização morfofisiológica e agronômica de *Paspalum dilatatum* Poir. biótipo Virassoro e *Festuca arundinaceae* Schreb. 2. Disponibilidade de forragem e valor nutritivo. **Revista Brasileira de Zootecnia,** Viçosa, v. 32, n. 5, p. 1061-1067, 2003.
- CRUZ, C.D. **Programa GENES:** aplicativo computacional em genética e estatística. Viçosa: UFV, 2007.
- DAHMER, N.; SCHIFINO-WITTMANN, M.T.; DALL`AGNOL, M. et al. Cytogenetic data for *Paspalum notatum* Flügge accessions. Scientia Agrícola, Piracicaba, v. 65, n. 4, p. 381-388, 2008.
- DALL`AGNOL, M.; GOMES, K.E. Avaliação inicial da matéria seca de espécies do gênero *Paspalum*. In: ENCONTRO INTERNACIONAL SOBRE MELHORAMENTO GENÉTICO DE PASPALUM, 1987, Nova Odessa. **Anais...** Nova Odessa: IZ, p. 51-55, 1987.
- DAURELIO, L.D.; ESPINOZA, F.; QUARIN, C.L.; et al. Genetic diversity in sexual diploid and apomictic tetraploid populations of *Paspalum notatum* situated in sympatry or allopatry. **Plant Systematics and Evolution**, New York, v. 244, p. 189-199, 2004.
- ESPINOZA, F.; PESSINO, S.C.; QUARÍN, C.L. et al. Effect of pollination timing on the rate of apomictic reproduction revealed by RAPD markers in *Paspalum notatum*. **Annals of Botany**, New York, v. 89, p. 165-170, 2002.
- ESPINOZA, F.; DAURELIO, L.D.; PESSINO, S.C.; et al.. Genetic

- characterization of *Paspalum notatum* accessions by AFLP markers. **Plant Systematics and Evolution**, New York, v. 258, p. 147-159, 2006.
- FALEIRO, F.G. Marcadores genético-moleculares aplicados a programas de conservação e uso de recursos genéticos. Planaltina, DF: Embrapa Cerrados, 2007. 102p.
- FERREIRA, M.E.; GRATTAPAGLIA, D. Introdução ao uso de marcadores moleculares em análise genética. 3.ed. Brasília, DF: Embrapa Cenargem, 1998. 220p.
- KÖLLIKER, R.; JONES, E.S.; DRAYTON, M.C. et al. Development and characterization of simple sequence repeat (SSR) markers for white clover (*Trifolium repens* L.). **Theoretical Applied Genetics**, Berlim, v. 102, p. 416-424, 2001.
- KUBIK, C.; SAWKINS, M.; MEYER, W.A. et al. Genetic diversity in seven perennial ryegrass (*Lolium perenne* L.) cultivars based on SSR markers. **Crop Science**, Madison, v. 41, p. 1565-1572, 2001.
- LASPINA, N.V.; VEGA, T.; SEIJO, J.G. et al. Gene expression analysis at the onset of aposporous apomixis in *Paspalum notatum*. **Plant Molecular Biology**, v. 68, p. 103-105, 2008.
- LI, Y.C.; KOROL, A.B.; FAHIMA, T. et al. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. **Molecular Ecology**, Oxford, v. 11, p. 2453-2465, 2002.
- LIU, W.Z.; JARRET, R.L.; KRESOVICH, L. et al. Characterization and analysis of simple sequence repeat (SSR) loci in seashore paspalum (*Paspalum vaginatum* Swartz). **Theoretical and Applied Genetic**, Berlim, v. 91, n. 1, p. 47-52, 1995.
- MARTINEZ, E.J.; QUARIN, C.L. Dos marcadores moleculares específicos de la apomixis em *Paspalum notatum*. **Comunicaciones Científicas y Tecnológicas**. Universidade Nacional Del Nordeste. 2000.
- MISLEVI, P.; DUNAVIN, L.S. Management and utilization of Bermudagrass and Bahiagrass in South Florida. 42 Florida Beef Cattle Short Course. **Proceedings...** Gainesville. 1993. IFAS, University of Florida. Gainesville, May, 1993, p. 84-95.
- MORAES-FERNANDES, M.I.B. **Genética e evolução do gênero** *Paspalum* **(Gramineae): contribuição ao estudo das espécies naturais do Rio Grande do Sul.** 1971. 193f. Tese (Doutorado) Pós-Graduação em Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1971.
- MORAES-FERNANDES, M.I.B; BARRETO, I.S.; SALZANO, F.M. et al.

Cytological and evolutionary relationships in brazilian forms of *Paspalum* (Gramineae). **Caryologia**, Firenze, v. 27, n. 4, p. 455-464. 1974.

MOTT, G.O.; MOORE, J.E. Existing and potential systems of finishing cattle on forages or limited grain rations in the tropical region of the south. In: STEUDEMANN, J.A. (Ed.). **FORAGE feed beef:** production and marketing alternatives in the south. Bull. 220 SCS. June, 1977, p. 419-450.

NABINGER, C. Manejo e Produtividade das Pastagens Nativas do Subtrópico Brasileiro. In: SIMPÓSIO DE FORRAGEIRAS E PRODUÇÃO ANIMAL, 2006, Porto Alegre. **Anais...** Porto Alegre, 2006. p. 25-76.

PAGLIARINI, M.S.; DEFANI, M.A.; MEIRELLES, W.F. et al. Recurrence of multiple meiotic abnormalities in maize genotypes from the same origin and their influence on productivity. **Crop Breeding and Applied Biotechnology**, Viçosa, v. 2, p. 355-360, 2002.

PARODI, L.R. Contribucion al studio de las gramineas del genero *Paspalum* de La flora Uruguaya. **Revista Museo de La Plata,** v. 1, p. 211-250, 1937.

PARODI, L.R. Gramíneas Argentinas nuevas o críticas. I. La Variación en *Paspalum notatum* Flügge. **Revista Argentina de Agronomia,** v. 15, p. 53-57, 1948.

PARODI, L.R. Estudios sistemáticos sobre las Gramineae-Paniceae Argentinas y Uruguayas. **Darwiniana**, Buenos Aires, v. 15, p. 65-109, 1969.

PEREIRA, E.A. Estudo da produção agronômica e utilização da análise de adaptabilidade e estabilidade como critério de seleção de uma coleção de acessos de *Paspalum nicorae* Parodi. 2009. 103f. Dissertação (Mestrado) – Programa de Pós Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2009.

PEREIRA, E.A.; BRANDOLI, M.A.A.; JANKE, A. et al. Rendimento de espécies nativas estivais sob diferentes níveis de nitrogênio e misturas com leguminosas. In: REUNIÓN DEL GRUPO TÉCNICO EM FORRAJERAS DEL CONO SUR, 22., 2008, Minas, Uruguai. **Memórias...** Montevidéu: Tradinco, 2008. 1 CD-ROM.

POZZOBON, M.T.; VALLS, J.F.M. Chromosome number in germoplasm accessions of *Paspalum notatum* (Gramineae). **Brazilian Journal of Genetics**, Ribeirão Preto, v. 20, n.1, p. 29-34, 1997.

PRATES, E.R. Efeito de nitrogênio e de intervalos de cortes sobre a produção e composição de dois ecótipos de *Paspalum notatum* Flügge e da cultivar Pensacola *Paspalum notatum* Flügge var. *saurae* Parodi. **Anuário Técnico do Instituto de Pesquisas Zootécnicas "Francisco Osório"**, Porto Alegre, v. 4, p. 267-307, julho 1977.

- PRESTES, P.J.Q.; FREITAS, E.A.G.; BARRETO, I.L. Hábito vegetativo e variação estacional do valor nutritivo das principais gramíneas da pastagem do Rio Grande do Sul. **Anuário Técnico do Instituto de Pesquisas Zootécnicas** "**Francisco Osório**", Porto Alegre, v. 3, p. 516-531, 1976.
- QUARIN, C.L. Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomitic *Paspalum notatum*. **Sexual Plant Reproduction**, Berlim, v. 11, p. 331-335, 1999.
- QUARIN, C.L.; NORRMANN, G.A. Interspecific hybrids between five *Paspalum* species. **Botanical Gazette**, Chicago, v. 151, n. 3, 366-369, 1990.
- QUARIN, C.L.; BURSON, B.L.; BURTON, G.W. Cytology of intra and interspecific hybrids between two cytotypes of *Paspalum notatum* and *P. cromyorrhizon*. **Botanical Gazette**, Chicago, v. 145, p. 420-426, 1984.
- QUARIN, C.L.; ESPINOZA, F.; MARTÍNEZ, E.J. et al. A rise of ploidy level induces the expression of apomixes in *Paspalum notatum*. **Sexual Plant Reproduction**, Berlim, v. 13, p. 243-249, 2001.
- REIS, C. Caracterização citogenética e morfológica de uma coleção de acessos de *Paspalum nicorae* Parodi. 2008. 143f. Dissertação (Mestrado) Programa de Pós Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2008.
- REIS, C.A.O.; SCHIFINO-WITTMANN, M.T.; DALL`AGNOLL, M. Chromosome numbers, meiotic behavior and pollen fertility in a collection of *Paspalum nicorae* Parodi accessions. **Crop Breeding and Applied Biotechnology**, Viçosa, v. 8, p. 212-218, 2008.
- SARTOR, M.E.; QUARIN, C.L.; ESPINOZA, F. Mode of reproduction of colchicine-induced *Paspalum plicatulum* tetraploids. **Crop Science**, Madison, v. 49, p. 1270-1276, 2009.
- SAWASATO, J.T. Caracterização agronômica e molecular de *Paspalum urvillei* Steudel. 2007. 109f. Dissertação (Mestrado) Programa de Pós Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2007.
- SAWASATO, J.T.; DALL`AGNOL, M. CONCEIÇÃO, D.P. et al. Utilização de microssatélites e RAPD na caracterização molecular de acessos de *Paspalum urvilei* Steudel. **Revista Brasileira de Zootecnia,** Viçosa, v. 37, n. 8, p. 1366-1374, 2008.
- SCHEFFER-BASSO, S.M.; GALLO, M.M. Aspectos morfofisiológicos e bromatológicos de *Paspalum plicatulum*. **Revista Brasileira de Zootecnia**, Viçosa, v. 37, n. 10, p. 1758-1762, 2008.

- SCHEFFER-BASSO, S.M.; RODRIGUES, G.L.; BORDIGNON, M.V. Caracterização morfofisiológica e anatômica de *Paspalum urvillei* (Steudel). **Revista Brasileira de Zootecnia**, Viçosa, v. 31, n. 4, p. 1674-1679, 2002.
- SIMIONI, C.; VALLE, C.B. Chromosome duplication in *Brachiaria* (A. Rich.) Stapf allows intraspecific crosses. **Croop Breeding and Applied Biotecnology**, Viçosa, v. 9, p. 328-334, 2009.
- SINCLAIR, T.R.; MISLEVY, P.; RAY, J.D. Short photoperiod inhibits winter growth of subtropical grasses. **Planta**, Heidelberg, v. 213, p. 488-491, 2001.
- SOARES, H.H.P.R.F. et al.. Avaliação de ecótipos de *Paspalum notatum* Flügge e *Paspalum nicorae* Parodi em comparação com Pensacola (*Paspalum saurae* Parodi). **Anuário Técnico do Instituto de Pesquisas Zootécnicas** "**Francisco Osório**", Porto Alegre, v. 13, p. 87-119, dez. 1986.
- STEINER, M.G. Caracterização agronômica, molecular e morfológica de acessos de *Paspalum notatum* Flügge e *Paspalum guenoarum* Arech. 2005. 138f. Dissertação (Mestrado) Programa de Pós Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2005.
- STRECK, E.V. et al. **Solos do Rio Grande do Sul.** Porto Alegre: EMATER/RS; UFRGS, 2002, 128p.
- TÓTH, G.; GÁSPÁRI, Z.; JURKA, J. Microsatellites in different eukaryotic genomes: survey and analysis. **Genome Research**, New York, v. 10, n. 7, p. 967-981, 2000.
- TOWNSEND, C. Características produtivas de gramíneas nativas do gênero *Paspalum*, em resposta a disponibilidade de nitrogênio. 2008. 255f. Tese (Doutorado) Programa de Pós Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2008.
- VALLS, J.F.M.; POZZOBON, M.T. Variação apresentada pelos principais grupos taxonômicos de *Paspalum* com interesse forrageiro no Brasil. In: ENCONTRO INTERNACIONAL SOBRE MELHORAMENTO GENÉTICO DE PASPALUM, 1987, Nova Odessa. **Anais...** Nova Odessa, 1987, p. 15-21.
- WANG, M.L.; CHEN, Z.B.; BARKLEY, N.A. et al. Characterization of seashore paspalum (*Paspalum vaginatum* Swartz) germplasm by transferred SSRs from wheat, maize and sorghum. **Genetic resources and Crop Evolution,** Dordrecht, v. 53, p. 779-791, 2006.

Apêndice 1. Medidas de Similaridade, Distância de Mahalanobis.

Programa GENES MEDIDAS DE DISSIMILARIDADE
Número de variáveis 14
Número de genótipos 53
Padronização dos dados Sim

DISTÂNCIA DE MAHALANOBIS

MATRIZ DE TRANSFORMAÇÃO DOS DADOS

VARIÂNCIA DAS VARIÁVEIS TRANSFORMADAS 21 2,938428 22 ,010745 23 ,108877 24 ,006277 25 7,569094 26 ,023662

 24
 ,00627

 25
 7,569094

 26
 ,023662

 27
 171,475351

 28
 ,090035

 29
 ,017707

 210
 ,047655

 211
 ,954033

 212
 290,919314

 213
 16,545164

 214
 ,080739

MÉDIAS DAS VARIÁVEIS NÃO CORRELACIONADAS - CONDENSAÇÃO PIVOTAL

4,064	8,669	3,284	25,618	4,288	2,723	4,404	4,235	15,036	7,576	13,321	-11,1 -4,487	8,269
3,617	8,706	2,334	25,618	3,471	4,483	3,899	4,763	15,352	9,297	11,955	-10,215 -6,543	5,408
5,464	8,876	4,061	25,649	4,296	3,879	4,073	5,777	15,066	7,702	15,181	-10,448 -3,472	1,492
3,617	6,134	2,682	25,521	5,317	2,911	2,436	4,211	15,217	7,822	11,547	-11,123 -4,072	1,013
4,725	11,188	2,847	25,728	5,905	4,827	4,52	4,837	15,312	8,563	15,891	-13,025 -4,552	1,44
4,22	7,37	1,416	25,589	2,628	3,824	4,767	6,006	10,409	8,135	10,689	-6,943 -4,916	4,391
4,686	7,654	1,309	25,61	4,075	3,661	4,14	7,063	15,638	8,004	12,72	-10,839 -6,131	5,836
3,267	9,7	4,272	25,631	3,503	4,408	3,721	4,428	15,152	7,639	12,128	-10,435 -6,244	1,238
5,464	7,911	4,191	25,613	3,638	2,704	4,668	4,411	14,701	9,304	12,609	-12,146 -4,014	1,599
4,2	8,337	1,288	25,625	3,604	4,775	3,812	8,39	8,459	11,159	10,059	-9,579 -5,995	3,241
3,131	7,46	4,594	25,544	2,138	2,822	3,245	4,032	14,923	8,116	10,985	-11,62 -5,255	8,281
5,795	6,598	1,289	25,595	1,878	2,709	3,866	7,098	15,418	8,43	11,54	-11,643 -5,607	1,263
3,325	6,479	4,698	25,512	2,423	2,698	3,271	4,029	14,834	8,216	10,144	-10,869 -5,089	
3,228	7,13	4,625	25,534	1,986	3,364	2,751	5,295	15,13	9,856	10,807	-11,157 -5,645	8,142
4,336	9,612	2,107	25,668	4,629	4,754	3,143	4,874	15,46	7,461	12,215	-11,163 -6,194	1,183
3,228	7,774	2,517	25,574	3,263	3,959	4,918	4,611	15,199	7,925	10,872	-10,716 -4,684	7,814
3,986	8,997		25,645	3,203	3,708	3,708	5,845	15,637	7,814	12,401	-11,705 -5,382	
		1,231										7,941
3,5	9,037	3,317	25,62	4,5	4,144	2,983	6,667	15,638	7,797	12,062	-12,044 -8,036	
2,508	9,441	1,388	25,629	3,368	4,73	4,015	5,863	15,808	7,805	12,167	-11,377 -6,66	7,722
3,539	9,999	3,181	25,657	4,681	4,465	2,554	4,505	15,42	7,406	13,402	-11,224 -4,945	8,15
5,017	9,234	1,047	25,677	3,441	3,345	3,764	5,926	15,561	7,719	13,349	-9,614 -4,411	,73
2,1	7,866	1,66	25,561	2,243	3,58	3,486	4,406	15,509	8,053	10,91	-11,424 -6,356	7,514
3,889	6,433	1,591	12,925	1,627	2,299	3,001	7,687	8,215	8,658	7,406	-3,885 -2,547	9,42
3,325	10,66	1,103	17,279	2,889	5,049	3,59	8,282	16,213	7,971	12,291	-8,722 -4,689	
4,511	8,311	1,246	25,631	5,15	3,854	5,031	4,848	15,317	7,524	13,062	-9,52 -3,47	,655
3,578	10,317	4,143	25,662	3,182	4,191	4,269	6,681	12,95	7,792	13,07	-10,043 -6,29	9,278
3,734	9,34	2,232	25,644	4,763	4,011	3,729	4,586	15,396	7,457	12,196	-11,6 -4,966	1,08
3,053	7,788	1,531	25,579	2,579	5,49	4,512	6,236	15,646	8,203	11,162	-11,58 -5,113	,617
5,425	7,271	2,263	25,604	5,697	2,193	3,632	4,368	15,046	7,525	11,629	-10,154 -3,343	1,239
3,811	9,012	3,275	25,626	3,272	3,735	3,619	4,472	15,183	7,727	12,478	-10,73 -4,702	1,022
3,267	9,378	1,285	25,644	4,202	4,898	4,535	4,919	15,564	7,57	12,527	-10,386 -4,496	, 5
4,122	6,092	1,603	25,539	1,783	3,849	5,794	7,198	15,412	8,6	10,31	-8,377 -4,83	,488
5,542	8,226	1,106	25,65	5,828	4,235	4,594	5,088	15,307	7,438	15,767	-9,819 -1,553	,673
3,461	9,362	1,258	25,647	4,758	4,226	3,449	4,701	15,603	7,457	13,088	-11,989 -6,863	8,031
4,589	10,234	4,006	25,681	5,789	4,085	3,873	4,479	15,104	7,181	14,01	-10,238 -3,638	1,406
4,161	5,124	3,748	25,487	2,58	2,22	3,956	5,311	14,923	8,467	10,67	-10,988 -5,928	8,411
6,417	9,441	1,824	25,707	6,248	4,207	4,237	5,077	15,213	7,185	15,582	-11,621 -2,888	3,784
4,259	9,297	4,181	25,638	3,659	4,262	3,597	5,669	15,228	7,77	12,855	-9,719 -6,501	8,46
3,52	9,357	2,261	25,64	3,748	4,263	3,34	4,644	15,441	7,621	13,146	-9,286 -5,401	,623
6,164	8,497	4,009	25,65	6,102	3,48	4,316	4,617	14,806	7,347	14,011	-11,176 -3,138	1,846
6,631	7,494	4,076	25,623	5,564	2,286	4,223	4,405	14,631	7,518	13,006	-10,849 -4,181	2,004
3,306	7,446	1,54	25,572	2,686	3,419	4,582	5,721	15,479	8,138	10,838	-10,582 -4,906	,615
5,484	11,447	,68	25,77	7,537	5,061	2,436	5,106	15,785	9,785	12,763	-10,316 -2,725	,667
3,578	9,031	1,286	25,637	3,417	3,718	3,709	5,768	15,67	9,323	11,049	-11,889 -4,915	7,739
	11,898											
3,909		1,861	25,744	4,674	6,829	3,474	8,687	11,251	7,525	13,607	-8,937 -7,832	9,863
2,897	7,479	1,595	25,564	2,715	3,432	5,838	7,926	15,753	8,364	11,31	-10,611 -5,286	,75
3,967	9,321	3,21	25,641	4,069	4,9	4,199	4,803	15,23	7,612	12,569	-10,761 -5,182	8,179
7,992	8,346	1,741	25,701	5,384	2,336	4,436	4,908	14,888	7,368	11,693	-10,677 -3,129	
2,8	3,628	2,13	25,417	1,585	4,978	4,013	8,328	15,696	9,203	10,659	-10,906 -5,245	,587
2,936	7,798	4,577	25,553	2,641	3,573	3,581	4,19	14,986	9,554	10,812	-10,397 -5,688	,949
6,884	7,473	3,032	25,635	7,999	2,633	3,093	4,505	14,91	7,162	14,704	-10,743 -2,566	1,828
3,695	6,77	4,605	25,531	1,787	3,029	3,481	7,553	15,333	8,619	10,752	-10,684 -5,792	1,474
4,434	9,604	4,114	25,654	6,634	3,849	4,774	4,394	14,999	7,143	14,05	-9,889 -3,348	1,42

ESTIMATIVAS DAS DISTÂNCIAS - MAHALANOBIS

GENÓTIPOS E DISTÂNCIAS					
DISTÂNCIAS EM	I RELAÇÃO AO GENÓTIPO	=> 1			
(0) 00 507171	(2) 57 00127	(4) (0 021600			
(2)23,527171 (5)72,397735 (6)73,59301 (9)53,294916 (10)123,005445	(3)57,29137 (7)23,907001 (11)16,700367	(4)68,031698 (8)61,039068 (12)80,244929			
(13)23,12455 (14)27,324566 (17)11,938216 (18)26,151988	(15)63,132508 (19)21,368749	(16)11,613694 (20)9,16121			
(21)69,953416 (22)23,367866 (25)68,915297 (26)22,921132	(23)329,988416 (27)57,697226	(24)112,282313 (28)84,062015			
(29)62,215533 (30)56,367251 (33)86,551383 (34)15,44381	(31)72,1291 (35)56,896506	(32)106,064187 (36)27,284588			
(37) 43,285349 (38) 13,000375	(39)68,554254	(40)52,645685			
(41)50,151071 (42)76,110416 (45)83,013439 (46)86,873449	(43)104,444337 (47)6,804381	(44)18,643665 (48)67,109912			
(49)127,467345 (50)73,555044 (53)59,024029	(51)72,418961	(52)79,527654			
MAIOR DISTÂNCIA : 329,988416 MENOR DISTÂNCIA : 6,804381	GENÓTIPO GENÓTIPO				
DISTÂNCIAS EM	I RELAÇÃO AO GENÓTIPO	=> 2			
(1)23,527171	(3) 46, 384096	(4) 43, 681525			
(5) 57,730737 (6) 48,219011 (9) 36,886872 (10) 74,815291	(7)12,77407 (11)26,809326	(8) 25, 359146 (12) 42, 449041			
(13)31,284404 (14)23,787552 (17)15,748618 (18)25,65952	(15)25,712271 (19)13,152583	(16)15,009839 (20)22,498487			
(21)37,835147 (22)14,677805	(23) 328, 612418	(24)100,318926			
(25) 43,536166 (26) 34,20142 (29) 46,731931 (30) 27,439514	(27)28,960107 (31)34,471482	(28)34,936224 (32)54,122707			
(33)77,115622 (34)18,402546 (37)52,256298 (38)17,884234	(35)44,908747 (39)30,190352	(36)33,880734 (40)50,995457			
(41) 45,390502 (42) 33,847351	(43)71,025808	(44) 14,650961			
(45) 78,878468 (46) 42,895112 (49) 70,267143 (50) 30,427611	(47)14,950234 (51)78,553187	(48)57,559531 (52)39,993424			
(53) 51, 331137					
MAIOR DISTÂNCIA : 328,612418	GENÓTIPO	: 23			
MENOR DISTÂNCIA : 12,77407	GENÓTIPO	: 7			
DISTÂNCIAS EM	I RELAÇÃO AO GENÓTIPO	=> 3			
(1)57,29137 (2)46,384096		(4)34,252557			
(5)21,054704 (6)78,963786 (9)17,486898 (10)109,752075	(7) 43,997753 (11) 85,695252	(8) 25, 488809 (12) 41, 93185			
(13) 93,708928 (14) 89,18105	(15) 25, 213101	(16)71,89699			
(17)66,302441 (18)92,324114 (21)16,305102 (22)88,732972	(19)77,284274 (23)405,940336	(20)60,644099 (24)145,453393			
(25)17,805149 (26)85,50799	(27)21,132076	(28) 40,826971			
(29) 25,619202 (30) 15,479432 (33) 17,595106 (34) 75,349871	(31)24,128813 (35)8,33414	(32)58,699779 (36)96,973631			
(37)18,087825 (38)66,137208 (41)15,202585 (42)38,195178	(39)19,633521 (43)45,046745	(40)7,78863 (44)75,468946			
(45) 142, 514597 (46) 44, 812223	(47)59,828796	(48)29,051601			
(49)80,751768 (50)41,15551 (53)11,39726	(51)24,458109	(52) 44,361195			
MAIOR DISTÂNCIA : 405,940336 MENOR DISTÂNCIA : 7,78863	GENÓTIPO GENÓTIPO				
	I RELAÇÃO AO GENÓTIPO	=> 4			
(1)68,031698 (2)43,681525 (5)59,045444 (6)73,768359	(3)34,252557 (7)47,658634	(8)28,22916			
(9)21,721978 (10)102,959354 (13)69,378994 (14)75,479342	(11)71,408776 (15)22,944504	(12)32,244643 (16)61,770991			
(17)70,498555 (18)93,887316	(19)78,679204	(20)73,501013			
(21)28,527487 (22)65,497664 (25)21,122995 (26)117,16726	(23)378,673438 (27)15,455923	(24)167,796911 (28)28,863577			
(29)8,506784 (30)16,440267	(31)24,849031	(32) 45,560248			
(33) 44,151045 (34) 76,246028	(35)30,893043	(36) 73,402222			

(37)52,103386 (38)85,764436 (39)23,829191 (40)26,521764 (41)20,204242 (42)19,004699 (43)54,375289 (44)67,910313 (45)188,217496 (46)38,363764 (47)73,353445 (48)31,728868 (49)49,424869 (50)22,471915 (51)33,963187 (52)33,490297 (53)31,880468

MAIOR DISTÂNCIA : 378,673438 GENÓTIPO : 23 MENOR DISTÂNCIA : 8,506784 GENÓTIPO : 29

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 5

(2)57,730737	(3)21,054704	(4)59,045444
(6)127,181552	(7)61,746583	(8)37,781295
(10)134,162997	(11)113,693213	(12) 72,906151
(14)119,881674	(15) 27, 688567	(16) 93, 557013
(18) 96, 065261	(19) 79, 167751	(20) 64,507407
(22)103,394518	(23)497,509062	(24) 166, 643713
(26)102,515153	(27)24,652174	(28) 55, 245217
(30)32,657277	(31)30,975883	(32)106,80371
(34)69,319277	(35)17,480071	(36)138,397651
(38)86,347152	(39)35,356946	(40)23,460407
(42) 63,388139	(43) 35, 24653	(44)82,608189
(46)70,141299	(47)70,567058	(48) 53, 320649
(50)66,563393	(51)42,688981	(52) 85,772685
	(6) 127,181552 (10) 134,162997 (14) 119,881674 (18) 96,065261 (22) 103,394518 (26) 102,515153 (30) 32,657277 (34) 69,319277 (38) 86,347152 (42) 63,388139 (46) 70,141299	(6)127,181552 (7)61,746583 (10)134,162997 (11)113,693213 (14)119,881674 (15)27,688567 (18)96,065261 (19)79,167751 (22)103,394518 (23)497,509062 (26)102,515153 (27)24,652174 (30)32,657277 (31)30,975883 (34)69,319277 (35)17,480071 (38)86,347152 (39)35,356946 (42)63,388139 (43)35,24653 (46)70,141299 (47)70,567058

MAIOR DISTÂNCIA : 497,509062 GENÓTIPO : 23 MENOR DISTÂNCIA : 17,480071 GENÓTIPO : 35

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 6

(1)73,59301	(2) 48,219011	(3)78,963786	(4)73,768359	
(5)127,181552		(7)54,174104	(8)67,898089	
(9)73,529957	(10)32,174805	(11)76,33961	(12) 65, 156492	
(13)70,163177	(14) 74, 149816	(15)72,343789	(16) 53,778409	
(17)70,191667	(18)98,035009	(19)74,409896	(20)87,72992	
(21)60,740217	(22) 67, 175418	(23)226,775406	(24) 137, 423196	
(25)61,564063	(26) 65, 303711	(27)72,719027	(28) 67,879238	
(29)63,709718	(30)62,310053	(31)67,266483	(32) 47, 564054	
(33) 97, 529731	(34)88,409106	(35)83,627821	(36) 68,24818	
(37) 97, 987689	(38)68,918624	(39)62,035079	(40)84,646812	
(41)71,81566	(42)54,366132	(43)116,632651	(44) 69,893189	
(45) 94, 90 9 1 5 8	(46)62,627003	(47) 68, 144704	(48) 72,260318	
(49)84,314027	(50)63,949519	(51)108,908349	(52)63,947853	
(53)84,288218				

MAIOR DISTÂNCIA : 226,775406 GENÓTIPO : 23 MENOR DISTÂNCIA : 32,174805 GENÓTIPO : 10

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 7

(1)23,907001	(2)12,77407	(3) 43, 997753	(4) 47, 658634
(5)61,746583	(6)54,174104		(8)45,021363
(9) 44, 120411	(10)80,949585	(11)38,588938	(12)31,60969
(13) 42,657591	(14) 35, 901926	(15) 34, 224714	(16)20,598452
(17)10,488035	(18)23,1796	(19)15,542112	(20) 28, 178542
(21) 35, 635722	(22)24,210514	(23) 330, 463535	(24) 94, 966912
(25) 43, 477104	(26) 37, 496507	(27) 36, 692764	(28) 40, 433228
(29) 45, 056883	(30)39,681943	(31)42,870406	(32)53,4616
(33)66,980325	(34)18,381122	(35)52,639636	(36)31,669892
(37)39,819596	(38)22,419352	(39)42,617917	(40) 48,12391
(41) 42, 460974	(42)38,399181	(43)77,917225	(44)16,160083
(45) 75, 417418	(46)37,608256	(47)20,296863	(48)47,655829
(49) 64, 050035	(50)55,145067	(51)65,889943	(52)42,449942
(53)56.920634			

MAIOR DISTÂNCIA : 330,463535 GENÓTIPO : 23 MENOR DISTÂNCIA : 10,488035 GENÓTIPO : 17

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 8

(1)61,039068	(2)25,359146	(3)25,488809	(4)28,22916
(5)37,781295	(6) 67, 898089	(7)45,021363	, , , ,
(9)23,08902	(10) 93, 737851	(11)63,476491	(12) 40, 491258
(13)70,29055	(14)67,015328	(15)8,432496	(16)55,935526

```
Apêndice
               1. Continuação... Medidas de Similaridade, Distância
                     Mahalanobis.
                                      ( 19 ) 54,780827
 ( 17 ) 60, 438001
                   ( 18 ) 70, 172777
                                                         (20)55,949361
                  ( 22 ) 56,031758
                                     (23)393,776486
(21)23,016364
                                                        (24)140,897369
(25)27,334232
                  (26)76,573689
                                     (27)9,39272
                                                        (28)21,601489
                  ( 30 ) 4,927056
                                     ( 31 )14,596939
 29 )33,098913
                                                         ( 32 ) 47, 215935
                  ( 34 )61,089932
                                                         ( 36 )83,218434
(33)60,018567
                                     ( 35 )18,077758
(37)55,544846
                  ( 38 )56,039664
                                     ( 39 )8,032381
                                                         ( 40 ) 32, 232098
(41)31,298651
                  ( 42 )20,824626
                                     ( 43 )57,833791
                                                         (44)62,151479
(45)133.078955
                  (46)33,264302
                                     (47)52,308276
                                                        (48)49,496505
(49)67,549689
                  (50)11,162907
                                     (51)64,249267
                                                         (52)26,758735
(53)25,314079
MAIOR DISTÂNCIA: 393,776486
MENOR DISTÂNCIA: 4,927056
                                               GENÓTIPO : 23
                                               GENÓTIPO: 30
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 9
(1)53,294916
                                       3 )17,486898
                  (2)36,886872
                                                         ( 4 )21,721978
                                     (7)44.120411
(5)35.733443
                  (6)73,529957
                                                        (8)23,08902
                                     ( 11 )60,807105
                  (10)93,165638
                                                         (12)26,542297
(13)64,966935
                  (14)63,606347
                                     (15)26,252997
                                                         (16)55,927661
                  ( 18 )87,08791
                                     ( 19 )74,397235
                                                         ( 20 ) 67, 132211
(17)61,679853
(21)26,521263
                  ( 22 ) 67, 933249
                                     ( 23 )391,231904
                                                         ( 24 ) 163, 246158
(25)25,507962
                  ( 26 ) 91, 220527
                                     (27)18,29826
                                                         (28)31,831526
(29)18,500008
                                     (31)29,132981
                  (30)12,631481
                                                         (32)47,994521
                  (34)73,829897
(33)43,376018
                                     (35)23,825777
                                                         (36)68,262205
(37)38,46824
                  (38)70,370882
                                     (39)28,582801
                                                         (40)15,282277
(41)10,860632
                  ( 42 ) 24, 35612
                                     ( 43 )58,385717
                                                         (44)59,046345
                                     ( 47 ) 60, 300666
( 45 )170,811799
                  (46)36,992049
                                                         ( 48 ) 23, 664104
(49)63,759064
                  (50)19,1884
                                     (51)38,211372
                                                        (52)29,051086
(53)26,643381
MAIOR DISTÂNCIA: 391,231904
                                               GENÓTIPO: 23
MENOR DISTÂNCIA: 10,860632
                                               GENÓTIPO: 41
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 10
                  ( 2 )74,815291
(1)123,005445
                                       3 )109,752075
                                                         (4)102,959354
(5)134,162997
                  ( 6 ) 32, 174805
                                     (7)80,949585
                                                        (8)93,737851
(9)93,165638
                                     ( 11 )120,133037
                                                         ( 12 )80,866224
( 13 )117,901702
( 17 )103,399922
                  ( 14 )102,236628
                                     (15)90,295664
                                                         (16)99,52444
                 ( 18 )117,147619
                                     (19)104,027685
                                                         (20)126,330666
(21)91,569956
                  ( 22 )105,889187
                                     (23)272,128326
                                                         ( 24 ) 171, 458537
 25 ) 99, 690687
                  (26)93,420646
                                     (27)94,703575
                                                         (28)81,633328
                  ( 30 )91,882054
(29)101,259429
                                     ( 31 )94,747829
                                                         ( 32 )80,00045
 33 )138,28812
                  ( 34 )120,391564
                                     (35)116,623709
                                                         (36)111,587173
                  (38)109,639403
(37)130,92583
                                     (39)95,060825
                                                         (40)116,767748
(41)106,923174
                  (42)80,139528
                                     (43)120,651907
                                                         (44)91,993799
(45)99,915942
                  (46)79,782224
                                     ( 47 )109,128537
                                                         (48)106,263319
(49)94,96599
                  (50)84,531072
                                     (51)144,773011
                                                         (52)79,428862
( 53 )121,819618
MAIOR DISTÂNCIA: 272,128326
                                               GENÓTIPO : 23
MENOR DISTÂNCIA: 32,174805
                                               GENÓTIPO : 6
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 11
                                     ( 3 )85,695252
(1)16,700367
                  (2)26,809326
                                                         (4)71,408776
(5)113,693213
                  (6)76,33961
                                     (7)38,588938
                                                         (8)63,476491
 9 )60,807105
                  ( 10 )120,133037
                                                         ( 12 ) 78,665616
 13 )2,426868
                  ( 14 )5,764088
                                     ( 15 ) 76, 642406
                                                         ( 16 ) 11,600762
 17 )22,75895
                  (18)28,492719
                                     ( 19 )28,323669
                                                         ( 20 ) 25, 352621
(21)93,038069
                  ( 22 ) 12,815665
                                     (23)310,407661
                                                         (24)127,389695
(25)98,407029
                  ( 26 ) 32, 512904
                                                         (28)82,585407
                                     ( 27 )72,38963
 29 )80,229185
                  (30)63,310348
                                     (31)91,406288
                                                         ( 32 )101,861613
 33 )135,41846
                  (34)32,301754
                                     (35)87,55291
                                                         ( 36 )11,029714
 37 )91,215698
                  ( 38 )20,928595
                                     ( 39 )83,552513
                                                         ( 40 )84,110565
(41)71,320673
                  (42)74,951368
                                     (43)145,537806
                                                         (44)21,792842
                                     ( 47 )19,250757
                                                         (48)94,815993
(45)109,086894
                  ( 46 ) 90, 228402
                 (50)58,649961
                                     (51)115,549847
(49)106,464213
                                                         (52)61,385248
(53)94,33034
MAIOR DISTÂNCIA: 310,407661
                                               GENÓTIPO : 23
MENOR DISTÂNCIA: 2,426868
                                               GENÓTIPO: 13
```

```
(1)80,244929
                   (2)42,449041
                                        3 ) 41, 93185
                                                           (4)32,244643
                   (6)65,156492
(5)72,906151
                                       (7)31,60969
                                                           (8)40,491258
  9)26,542297
                   (10)80,866224
                                       (11)78,665616
(13)80,047814
                   ( 14 ) 73, 15243
                                       (15)31,075943
                                                           ( 16 ) 65, 631118
( 17 )59,418003
                   ( 18 )87,730613
                                       ( 19 )70,579374
                                                           ( 20 ) 92,190011
(21)21,478232
                   ( 22 )63,916114
                                       (23)370,697445
                                                           (24)148,128497
( 25 ) 35,614652
( 29 ) 32,202656
                  ( 26 )107,239196
( 30 )26,797673
                                       (27)30,825548
                                                           (28)19,293001
                                       (31)34,643292
                                                           (32)21,602647
(33)64,223546
                   ( 34 )80,49342
                                       (35)59,737249
                                                           ( 36 ) 67, 461407
 37 )66,006319
                   (38)84,204966
                                       ( 39 )35,189452
                                                           ( 40 )50,235682
(41)37,224193
                   ( 42 )13,162536
                                       ( 43 )81,467115
                                                           (44)59,607557
(45)168,164231
                  (46)16,666423
                                      ( 47 )79,986011
                                                           (48)34,384642
(49)27,869805
                  (50)33,931216
                                      (51)72,037626
                                                           (52)17,56352
(53)67,266058
MAIOR DISTÂNCIA: 370,697445
                                                GENÓTIPO: 23
MENOR DISTÂNCIA: 13,162536
                                                GENÓTIPO: 42
                        DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 13
(1)23,12455
                   (2)31,284404
                                       (3)93,708928
                                                           (4)69,378994
(5)131,368678
                   ( 6 ) 70, 163177
                                       (7)42,657591
                                                           (8)70,29055
                   ( 10 )117,901702
( 14 )6,572009
(9)64,966935
                                       (11)2,426868
                                                           ( 12 )80,047814
                                       (15)84,108668
                                                           (16)12,932072
(17)30,857706
                   (18)36,720365
                                       (19)37,580159
                                                           (20)35,490761
(21)98,962721
                   ( 22 )17,203978
                                       (23)290,714448
                                                           ( 24 ) 134, 217516
( 25 )100,812442
                   ( 26 ) 41, 402113
                                       ( 27 ) 79, 441216
                                                           ( 28 )86,742409
( 29 )77,839565
                   ( 30 )69,243886
                                       (31)97,977632
                                                           (32)95,779012
                  (34)42,74544
(33)141,401208
                                      (35)95,662692
                                                           (36)6,892096
(37)101,837129
                  (38)26,920654
                                      (39)89,601845
                                                           (40)89,021296
                                      ( 43 )152,991997
(41)72,18121
                  (42)75,623624
                                                           (44)27,573103
                  ( 46 ) 92, 018122
                                                           ( 48 ) 94, 669572
(45)120,803091
                                      ( 47 )26,166519
(49)100,896757
                  (50)59,207139
                                       (51)117,521724
                                                           (52)60,633267
(53)100,08937
MAIOR DISTÂNCIA: 290,714448
                                                 GENÓTIPO : 23
MENOR DISTÂNCIA: 2,426868
                                                GENÓTIPO : 11
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 14
(1)27,324566
                   (2)23,787552
                                        3 )89,18105
(5)119,881674
                   ( 6 ) 74, 149816
                                       (7)35,901926
                                                           (8)67,015328
 9 ) 63, 606347
                   ( 10 )102,236628
                                       ( 11 )5,764088
                                                           ( 12 ) 73, 15243
( 13 )6,572009
                                       (15)79,539889
                                                           (16)16,961441
                   ( 18 )27,207538
(17)25.975234
                                       (19)29.803454
                                                           (20)32.868886
(21)94,0351
                   (22)16,420766
                                       (23)301,091775
                                                           (24)120,624917
 25 )104,129232
                  ( 26 ) 33, 941695
                                       (27)78,737028
                                                           (28)79,100873
 29 )87,273371
                   ( 30 )68,02392
                                       ( 31 ) 95, 484895
                                                           ( 32 ) 93, 044857
 33 )142,691236
                   ( 34 ) 39, 012644
                                       ( 35 ) 96, 450698
                                                           (36)10,951184
(37)101,251424
                  ( 38 )21,873393
                                      (39)85,978438
                                                           (40)93,323691
                   ( 42 ) 74, 251779
                                      ( 43 )142,526222
(41)79,400911
                                                           (44)20,071428
(45)103,128987
                  (46)84,327633
                                      (47)24,907962
                                                           (48)102,708296
                  (50)55,346603
                                       (51)125,464937
                                                           (52)52,41053
(49)90,30652
(53)104,552229
MAIOR DISTÂNCIA: 301,091775
MENOR DISTÂNCIA: 5,764088
                                                GENÓTIPO : 23
GENÓTIPO : 11
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 15
(1)63,132508
                   (2)25,712271
                                       ( 3 ) 25, 213101
                                                           (4)22,944504
                                      (7)34,224714
(5)27,688567
                   ( 6 ) 72, 343789
                                                           (8)8,432496
 9)26,252997
                   (10)90,295664
                                      (11)76,642406
                                                           (12)31,075943
 13 )84,108668
                   (14)79,539889
                                                           (16)59,036727
 17 )52,259563
                   ( 18 ) 67, 373005
                                       ( 19 )50,470935
                                                           ( 20 ) 54,025885
                                      (23)407,09333
                   ( 22 )57,890411
(21)13,759663
                                                           (24)136,057915
(25)18,247883
                   (26)86,092786
                                      ( 27 ) 3, 162191
                                                           (28)17,137903
(29)24,555714
                   (30)7,924114
                                       ( 31 )8,089099
                                                           (32)49,088454
                                       (35)17,403388
(33)44,473565
                   ( 34 )50,771047
                                                           (36)90,393571
                   ( 38 ) 62,119529
 37 ) 37, 971095
                                       ( 39 )7,224624
                                                           (40)26,876707
(41)28,123667
                   (42)19,098317
                                       (43)34,656953
                                                           (44)55,263377
( 45 )127,078358
( 49 )67,057776
                                                          ( 48 )33,740199
( 52 )37,06138
                  ( 46 )31,911433
                                      (47)53,225599
                   (50)24,849055
                                      (51)48,260228
(53)25,232014
```

MAIOR DISTÂNCIA: 407,09333 GENÓTIPO: 23
MENOR DISTÂNCIA: 3,162191 GENÓTIPO: 27

```
DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 16
                   (2)15,009839
(1)11,613694
                                       (3)71,89699
                                                          (4)61,770991
                                     ( 7 )20,598452
( 11 )11,600762
                  ( 6 )53,778409
(5)93,557013
                                                          (8)55,935526
 9)55,927661
                  (10)99,52444
                                                          (12)65,631118
(13)12,932072
                  ( 14 ) 16, 961441
                                      ( 15 )59,036727
 17 )10,807229
                  ( 18 )27,301578
                                      ( 19 )13,972536
                                                          ( 20 ) 20,518863
(21)68,758033
                  ( 22 )8,789211
                                      ( 23 )296,798712
                                                          ( 24 )102,915181
( 25 ) 66, 323114
                  (26)29,085992
                                      (27)54,679917
                                                          (28)59,703783
                                      (31)62,739832
(29)62,00456
                  (30)52,960732
                                                          (32)74,107078
(33)100,351187
                  (34)20,347872
                                      (35)70,436596
                                                          (36)16,705736
 37 )66,11749
                  (38)17,931815
                                      (39)65,069922
                                                          (40)68,591023
                                      ( 43 )110,343362
                                                          ( 44 ) 9,746276
 41 ) 61,777057
                  ( 42 )55,056149
( 45 )87,359869
                  ( 46 ) 64, 419022
                                      ( 47 )8,873118
                                                          (48)71,51275
                                      (51)96,925532
(49)90.528561
                  (50)57,772575
                                                         (52)61,283378
(53)72,913366
MAIOR DISTÂNCIA: 296,798712
                                                GENÓTIPO: 23
MENOR DISTÂNCIA: 8,789211
                                                GENÓTIPO: 22
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 17
(1)11,938216
                  ( 2 )15,748618
                                        3 )66,302441
                                                          (4)70,498555
(5)75,329121
                  ( 6 )70,191667
                                      (7)10,488035
                                                          (8)60,438001
                  ( 10 )103,399922
                                      ( 11 )22,75895
(9)61,679853
                                                          (12)59,418003
                  (14)25,975234
                                      (15)52,259563
(13)30,857706
                                                          (16)10,807229
                  ( 18 ) 15, 363601
                                      (19)5,425495
                                                          (20)12,355213
                                     (23)329,248324
(21)59,555166
                  ( 22 )11,746842
                                                          ( 24 ) 91, 158925
                  ( 26 ) 24, 68849
                                                          ( 28 ) 62,310595
(25)69,156711
                                      ( 27 )52,550535
(29)68,960468
                  ( 30 )55,615605
                                      ( 31 )62,450612
                                                          (32)89,02416
(33)93,7839
                  ( 34 )7,125665
                                      ( 35 )69,109303
                                                          (36)29,411694
( 37 )50,598771
                  ( 38 )15,201011
                                      (39)63,54983
                                                          (40)68,583617
                                     ( 43 ) 96, 626419
(41)65,829824
                  (42)61,923552
                                                          (44)4,594405
                  (46)67,319037
                                      ( 47 )8,618238
(45)66,778043
                                                          (48)70,32835
( 49 )101,538562
                 (50)73,609739
                                     (51)92,060808
                                                         (52)68,593612
(53)76,944914
MAIOR DISTÂNCIA: 329,248324
MENOR DISTÂNCIA: 4,594405
                                                GENÓTIPO : 23
                                                GENÓTIPO: 44
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 18
(1)26,151988
                  (2)25,65952
                                      ( 3 ) 92, 324114
                                                          (4)93,887316
                  ( 6 ) 98, 035009
                                      (7)23,1796
                                                          (8)70,172777
(5)96,065261
 9 )87,08791
                  ( 10 )117,147619
                                      ( 11 )28,492719
                                                          ( 12 )87,730613
( 13 ) 36,720365
                  ( 14 )27,207538
                                      ( 15 ) 67, 373005
                                                          ( 16 ) 27, 301578
(17)15,363601
                                      (19)11,593203
                                                          (20)18,494086
                  ( 22 ) 22, 944219
                                      (23)358,467005
(21)95,085654
                                                          (24)107,960665
 25 )107,401365
                  ( 26 ) 21, 318447
                                      (27)74,589663
                                                          (28)88,483854
                  ( 30 ) 79, 593833
 29 )101,160435
                                      (31)93,654761
                                                          (32)123,034347
 33 )142,383461
                  ( 34 )11,534339
                                      ( 35 )91,001236
                                                          ( 36 ) 34,684073
(37)82,127694
                  (38)12,115209
                                      (39)87,48583
                                                          (40)93,641998
( 41 )87,472959
( 45 )54,740498
                  ( 42 ) 92, 37749
                                      ( 43 )130,133857
                                                          (44)20,917146
                  (46)93,34309
                                      (47)16,564837
                                                         (48)108,075624
                                                          (52)78,460217
(49)123,504875
                 (50)87,528416
                                      (51)120,321151
(53)99,655636
MAIOR DISTÂNCIA: 358,467005
                                                GENÓTIPO: 23
MENOR DISTÂNCIA: 11,534339
                                                GENÓTIPO: 34
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 19
(1)21,368749
                   (2)13,152583
                                        3 )77,284274
                                                          (4)78,679204
                  ( 6 )74,409896
                                    ( 7 )15,542112
( 11 )28,323669
(5)79,167751
                                                         (8)54,780827
 9 )74,397235
                  ( 10 ) 104,027685
                                                         (12)70,579374
(13)37,580159
                  ( 14 ) 29, 803454
                                      ( 15 )50,470935
                                                          ( 16 ) 13,972536
( 17 )5,425495
                  ( 18 )11,593203
                                                          ( 20 ) 15, 34768
                  ( 22 ) 9,579335
(21)66,963349
                                      (23)342,664981
                                                          (24)89,580325
                                    ( 27 )53,718303
( 31 )60,530432
( 25 )75,995413
( 29 )83,69163
                                                         ( 28 )58,739132
( 32 )91,020285
                  ( 26 )23,888491
                  ( 30 )58,164898
(33)109,524466
                  ( 34 )6,310824
                                      (35)74,626683
                                                          (36)38,808398
( 37 )66,90355
                  (38)15,53242
                                     ( 39 )61,566534
                                                          (40)83,390489
```

```
(41)82,263887
                       (42)63,363494
                                             ( 43 ) 104 - 606856
                                                                    (44)9,331067
                    ( 46 ) 65, 867171
( 50 ) 71, 262009
                                            ( 47 )10,445474
                                                                  ( 48 ) 92,302651
( 52 ) 70,588349
(45)57,454086
(49)101,145304
                                            (51)113,815646
```

MAIOR DISTÂNCIA: 342,664981 GENÓTIPO : 23 MENOR DISTÂNCIA: 5,425495 GENÓTIPO · 17

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => (1)9,16121 (2)22,498487 3)60,644099 (4)73,501013 (6)87,72992 (5)64,507407 (7)28,178542 (8)55,949361 9) 67, 132211 (10)126,330666 (11)25,352621 (12)92,190011 (13)35,490761 (14) 32,868886 (15)54,025885 (16)20,518863 17)12,355213 (18)18,494086 (19)15,34768 (22) 25,619019 21)71,659485 (23)352,466747 (24) 102, 971693 (25) 75,776665 (26)21,858856 (27)54,556088 (28)82,75692 (30)56,837182 (31)68,808029 (32) 122, 457446 (29)73.990157(33)92,316455 (34)9,424197 (35)53,6352 (36)46,49202 (38)10,788146 (39) 63,53762 (37)44,415666 (40)59,698897 (43)88,986548 (44)19,499921 (42)84,243819 (41)64,25029 (45) 63, 361508 (46) 97, 361398 (47)5,047434 (48)81,281758 (50)77,883549 (51)80,121917 (49)137,107055 (52)87,159427 (53)61,256276

MAIOR DISTÂNCIA: 352,466747 GENÓTIPO : 23 MENOR DISTÂNCIA: 5,047434 GENÓTIPO: 47

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 21 (1)69,953416 (2)37,835147 3)16,305102 (4)28,527487 (6)60,740217 (5)36,561736 (7)35,635722 (8)23,016364 (9)26,521263 (10) 91, 569956 (11)93,038069 (12)21,478232 (13)98,962721 (14) 94, 0351 (15)13,759663 (16)68,758033 (18)95,085654 (17)59,555166 (19)66,963349 (20)71,659485 (22) 73, 788383 (23)382,052245 (24)131,09934 (25)8,179037 (26)98,121389 (27)12,846057 (28)21,587151 (29)19,318482 (30)11,09669 (31)9,094421 (32) 31,546009 (33)23,383108 (34)71,695371 (35)20,478199 (36)98,703954 (38)75,871601 (37)33,244735 (39)7,652659 (40)26,199397 (43) 35, 415952 (44)64,773872 (41)27,186916 (42)15,349412 (45) 144,619707 (46)23,090918 (47) 68, 189651 (48)23,513942 (49)61,359839 (50)35,030535 (51)42,739171 (52)37,26852 (53)26,522901

MAIOR DISTÂNCIA: 382,052245 MENOR DISTÂNCIA: 7,652659 GENÓTIPO : 23 GENÓTIPO: 39

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 22 (1)23,367866 (2)14,677805 (3)88,732972 (4)65,497664 (5)103,394518 (6)67,175418 (7)24,210514 (8)56,031758 (10)105,889187 (11)12,815665 9) 67, 933249 (12)63,916114 (14) 16, 420766 13)17,203978 (15)57,890411 (16)8,789211 (17)11,746842 (18)22,944219 (19) 9, 579335 (20)25,619019 (21)73,788383 (23)318,770138 (24)108,319713 (25)81,238072 (26)37,713499 (27)57,175149 (28)58,325372 (29)76,722282 (30)55,99101 (31)67,308577 (32)82,286322 (33)123,707626 (34)17,043391 (35)86,934302 (36)20,887585 (40) 91, 222365 37)87,253652 (38)24,906433 (39)65,570179 (43)124,884147 (47)19,03369 (41)80,624311 (42)55,213013 (44)10,990209 (46)66,824025 (48)93,334555 (45)93,956686 (50)56,563865 (51)121,824049 (49)87,632512 (52)60,550091 (53)94,996865 GENÓTIPO : 23 MAIOR DISTÂNCIA : 318,770138

MENOR DISTÂNCIA: 8,789211 GENÓTIPO · 16

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 23 (2)328,612418 (3) 405, 940336 (1)329,988416 (4)378,673438 (5)497,509062 (9)391,231904 (6)226,775406 (10)272,128326 (7)330,463535 (11)310,407661 (8)393,776486 (12)370,697445 (14)301,091775 (15)407,09333 (13)290,714448 (16)296,798712 (17)329,248324 (18)358,467005 (19)342,664981 (20)352,466747

```
Apêndice
               1. Continuação... Medidas de Similaridade, Distância
                     Mahalanobis.
                  ( 22 )318,770138
( 26 )299,731054
(21)382,052245
                                                          (24)167,626702
                                      ( 27 ) 404, 439055
(25)385,622956
                                                         (28)390,954107
(29)364,881475
                  (30)383,447942
                                      (31)401,347477
                                                         (32)335,145357
                  (34)367,910903
                                     ( 35 )414,05951
(33)433,190044
                                                         (36)290,308413
                  ( 38 ) 319, 329088
                                     ( 39 )389,471855
                                                          ( 40 ) 409, 434836
(37)421,933029
( 41 )383,776752
                  ( 42 ) 362, 796359
                                     ( 43 )448,320872
                                                         ( 44 ) 319, 733179
(45)327,90798
                  ( 46 ) 372, 433824
                                     (47)327,862447
                                                         (48)377,668438
(49)375,44002
                  (50)368,644727
                                     (51)429,508402
                                                         (52)350,699323
(53)413,343332
                                               GENÓTIPO : 5
MAIOR DISTÂNCIA: 497,509062
MENOR DISTÂNCIA: 167,626702
                                               GENÓTIPO: 24
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 24
(1)112,282313
                    2 )100,318926
                                      ( 3 )145,453393
( 5 )166,643713
                  ( 6 )137,423196
                                      (7)94,966912
                                                         (8)140,897369
(9)163.246158
                  (10)171.458537
                                      ( 11 )127,389695
                                                         (12)148,128497
                                      (15)136,057915
(13)134,217516
                  (14)120,624917
                                                         (16)102,915181
                  (18)107,960665
(17)91,158925
                                      (19)89,580325
                                                         (20)102,971693
(21)131,09934
                  ( 22 )108,319713
                                      (23)167,626702
 25 )146,2367
                  ( 26 ) 102, 689483
                                      ( 27 )140,590805
                                                         ( 28 ) 138, 646734
(29)161,645444
                  ( 30 )139,511729
                                      (31)136,553328
                                                         (32)151,458712
                                     (35)148,736501
                                                         (36)135,015931
(33)170,815907
                  ( 34 ) 105, 85565
(37)142,41509
                  (38)96,864081
                                     (39)135,751474
                                                         (40)162,534086
                                                         (44)94,864467
(41)166,674707
                  ( 42 )141,667701
                                     (43)165,927973
(45)123,234482
                  ( 46 )136,39773
                                     ( 47 ) 96, 648776
                                                         (48)164,862902
                                    (51)190,57952
(49)174,740756
                  (50)159,392936
                                                         ( 52 ) 145, 130409
(53)157.632748
MAIOR DISTÂNCIA: 190,57952
                                                GENÓTIPO : 51
MENOR DISTÂNCIA: 89,580325
                                               GENÓTIPO: 19
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 25
(1)68,915297
                  (2)43,536166
                                        3 )17,805149
                                                           4 )21,122995
(5)35,81886
                  ( 6 ) 61, 564063
                                      (7)43,477104
                                                         (8)27,334232
( 9 ) 25, 507962
                  ( 10 )99,690687
                                      ( 11 )98,407029
                                                         ( 12 ) 35,614652
( 13 )100,812442
                  ( 14 ) 104, 129232
                                      ( 15 )18,247883
                                                         ( 16 ) 66,323114
(17)69,156711
                  (18)107,401365
                                      (19)75,995413
                                                         (20)75,776665
                  ( 22 )81,238072
(21)8,179037
                                      (23)385,622956
                                                         (24)146,2367
                  ( 26 ) 109, 469271
                                      ( 27 )12,076089
                                                         (28)25,090541
(29)11,085204
                  ( 30 )14,288193
                                      ( 31 )7,105192
                                                          (32)34,590837
                  ( 34 )77,121726
( 33 )13,029296
                                      ( 35 ) 15,425725
                                                         ( 36 )102,319057
(37)28,274823
                  ( 38 )85,018025
                                      (39)11,954654
                                                         (40)17,470665
                  ( 42 ) 18,060707
                                     ( 43 )31,679582
( 47 )69,472536
                                                        ( 44 ) 72,305049
( 48 ) 19,79524
(41)21,209557
                  (46)28,118559
(45)160,84814
                                      (51)29,678378
(49)66,620091
                                                         (52)49,99953
                  (50)37,825444
(53)14,332352
                                               GENÓTIPO : 23
MAIOR DISTÂNCIA: 385,622956
MENOR DISTÂNCIA: 7,105192
                                               GENÓTIPO: 31
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 26
(1)22,921132
                  ( 2 )34,20142
                                      (3)85,50799
                                                         ( 4 )117,16726
                                     (7)37,496507
(5)102,515153
                  ( 6 ) 65, 303711
                                                         (8)76,573689
                                      (11)32,512904
                                                         (12)107,239196
 9 ) 91, 220527
                  (10)93,420646
( 13 )41,402113
                  ( 14 ) 33, 941695
                                      ( 15 )86,092786
                                                         ( 16 )29,085992
                  ( 18 )21,318447
                                                         ( 20 )21,858856
 17 )24,68849
                                      ( 19 )23,888491
(21)98,121389
                  ( 22 ) 37,713499
                                      (23)299,731054
                                                         (24)102,689483
(25)109,469271
                                      (27)90,079608
                                                         (28)105,64327
(29)112,161148
                  ( 30 )84,52711
                                      (31)101,420352
                                                         (32)125,787359
 33 ) 136, 576263
                  (34)29,146421
                                      (35)87,794279
                                                         (36)45,600238
 37 )82,22987
                  (38)9,270838
                                      (39)92,308794
                                                          (40)94,294463
( 41 ) 92, 691717
                  ( 42 )105,712359
                                      ( 43 )141,501537
                                                          (44)32,733875
(45)28,855495
                  (46)105,159616
                                     (47)15,26726
                                                         (48)113,671328
( 49 )148,118843
( 53 )94,772417
                  (50)96,524832
                                     (51)128,77571
                                                         (52)90,796667
MAIOR DISTÂNCIA: 299,731054
MENOR DISTÂNCIA: 9,270838
                                                GENÓTIPO: 23
                                               GENÓTIPO: 38
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 27
```

```
Apêndice
               1. Continuação... Medidas de Similaridade,
                                                                                Distância
                     Mahalanobis.
                   (2)28,960107
 (1)57,697226
                                       (3)21,132076
                                                          (4)15,455923
                                      (7)36,692764
                                                         (8)9,39272
(5)24,652174
                  (6)72,719027
(9)18,29826
                  (10)94,703575
                                     (11)72,38963
                                                         (12)30,825548
                                     ( 15 )3,162191
( 13 ) 79,441216
                  (14)78,737028
                                                         (16)54,679917
                  ( 18 ) 74,589663
                                     ( 19 )53,718303
                                                         ( 20 )54,556088
(17)52,550535
( 21 )12,846057
                  ( 22 ) 57, 175149
                                     (23)404,439055
                                                         (24)140,590805
(25)12,076089
                  ( 26 ) 90, 079608
                                                         (28)15,579298
( 29 )16,578292
( 33 )35,703909
                  ( 30 ) 4,551172
                                     (31)5,160642
                                                         ( 32 ) 46,721355
                  (34)54,063741
                                     (35)12,946304
                                                         (36)87,437858
(37)33,323705
                  ( 38 ) 67, 461925
                                     ( 39 )7,976638
                                                         ( 40 )19,956664
(41)22,378072
                  ( 42 ) 14,502259
                                      (43)33,397295
                                                         ( 44 ) 53,611384
                  (46)27,627135
(45)143,176648
                                     ( 47 )53,889717
                                                         (48)28,343982
(49)64,970322
                  (50)21,861469
                                     (51)40,501096
                                                         (52)36,046395
(53)18,115808
                                               GENÓTIPO : 23
MAIOR DISTÂNCIA: 404,439055
MENOR DISTÂNCIA: 3,162191
                                               GENÓTIPO: 15
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 28
(1)84,062015
                  (2)34,936224
                                         )40,826971
                                                           4 )28,863577
(5)55,245217
                  ( 6 ) 67, 879238
                                      (7)40,433228
                                                         (8)21,601489
                                      ( 11 )82,585407
(9)31,831526
                  ( 10 )81,633328
                                                         (12)19,293001
                  (14)79,100873
(13)86,742409
                                      ( 15 )17,137903
                                                         (16)59,703783
                                                         (20)82,75692
(17)62,310595
                  (18)88,483854
                                      (19)58,739132
(21)21,587151
                  (22)58,325372
                                      (23)390,954107
                                                         (24)138,646734
(25)25,090541
                  ( 26 ) 105, 64327
                                      ( 27 )15,579298
                  ( 30 ) 15,812516
( 29 ) 37,877783
                                      ( 31 )11,447414
                                                         ( 32 )21,219262
 33 ) 57, 714041
                  ( 34 ) 75,01611
                                      (35)44,2954
                                                         (36)87,695386
                                     ( 39 )19,661655
(37)66,41558
                  (38)84,713591
                                                         (40)50,559258
(41)50,199349
                  ( 42 )5,925011
                                     (43)62,797874
                                                         (44)58,718059
                 ( 46 )10,039718
( 45 ) 156, 652833
                                     ( 47 )71,086235
                                                         (48)51,913577
 49 ) 25, 358343
                  (50)22,248366
                                     (51)82,406109
                                                         (52)22,819991
(53)50,983043
MAIOR DISTÂNCIA: 390,954107
MENOR DISTÂNCIA: 5,925011
                                               GENÓTIPO : 23
                                               GENÓTIPO: 42
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 29
(1)62,215533
                  (2)46,731931
                                       3 ) 25, 619202
                                                         (4)8,506784
                  ( 6 ) 63, 709718
(5)53,23652
                                       7 ) 45, 056883
                                                         (8)33,098913
 9 )18,500008
                  (10)101,259429
                                      (11)80,229185
                                                         (12)32,202656
                  ( 14 )87,273371
( 13 )77,839565
                                      ( 15 )24,555714
                                                         ( 16 )62,00456
(17)68,960468
                  ( 18 )101,160435
                                      ( 19 )83,69163
                                                         (20)73,990157
                                      (23)364,881475
(21)19.318482
                  ( 22 ) 76,722282
                                                         (24)161.645444
                  ( 26 ) 112, 161148
(25)11,085204
                                      (27)16,578292
                                                         ( 28 ) 37,877783
                  (30)17,935269
                                      (31)23,740505
                                                         ( 32 ) 43, 245082
( 33 )28,738494
                  ( 34 ) 78, 731274
                                      ( 35 )22,097894
                                                         ( 36 ) 79, 766355
( 37 ) 35,733655
                  ( 38 )83,168138
                                      ( 39 )24,064519
                                                         (40)14,671042
(41)9,007949
                  ( 42 )22,554083
                                     ( 43 ) 41, 239468
                                                         (44)68,647053
(45)179,432216
                                     ( 47 )70,558465
                  (46)40,361587
                                                         (48)9,70619
                  (50)33,54058
                                     (51)19,468069
(49)69,495925
                                                         (52)43,274898
(53)20,897412
MAIOR DISTÂNCIA: 364,881475
                                               GENÓTIPO : 23
MENOR DISTÂNCIA: 8,506784
                                               GENÓTIPO: 4
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 30
                  (2)27,439514
                                       3 ) 15, 479432
(1)56,367251
                                                          4 ) 16, 440267
                  ( 6 ) 62, 310053
                                      (7)39,681943
(5)32,657277
                                                         (8)4,927056
                  (10)91,882054
                                                         (12)26,797673
 9 )12,631481
                                      (11)63,310348
(13)69,243886
                  (14)68,02392
                                      (15)7,924114
                                                         (16)52,960732
 17 )55,615605
                  ( 18 ) 79, 593833
                                       19 )58,164898
                                                         (20)56,837182
 21 )11,09669
                  ( 22 )55,99101
                                       23 )383,447942
                                                         ( 24 ) 139, 511729
                                      (27)4,551172
(25)14,288193
                  (26)84,52711
                                                         (28)15,812516
                                      (31)8,254219
(29)17,935269
                                                         (32)37,175299
(33)38,207893
                  (34)62,846958
                                      (35)13,328561
                                                         (36)79,120471
( 37 ) 40,550605
                  ( 38 )62,689091
                                      ( 39 )5,102341
                                                         (40)20,875986
 41 )20,495547
                  ( 42 )11,826839
                                      ( 43 ) 46, 112701
                                                         (44)57,059184
                  (46)25,786523
(45)147,634747
                                      (47)54,046321
                                                         (48)31,381453
(49)57,03703
                  (50)11,689925
                                     (51)46,265753
                                                         (52)24,222648
(53)19,64548
```

MENOR DISTÂNCIA: 4,551172 GENÓTIPO: 27

```
DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 31
(1)72,1291
                  (2)34,471482
                                      (3)24,128813
                                                         (4)24,849031
                  ( 6 ) 67, 266483
(5)30,975883
                                      (7)42,870406
                                                         (8)14,596939
(9)29.132981
                  (10)94,747829
                                     ( 11 )91,406288
                                                         (12)34,643292
(13)97,977632
                  (14)95,484895
                                     (15)8,089099
                                                         (16)62,739832
( 17 )62,450612
                  ( 18 ) 93, 654761
                                     ( 19 )60,530432
                                                         ( 20 )68,808029
 21 )9,094421
                  ( 22 ) 67, 308577
                                     (23)401,347477
                                                         ( 24 ) 136, 553328
                  ( 26 )101,420352
                                    ( 27 )5,160642
( 25 )7,105192
                                                         ( 28 ) 11, 447414
(29)23,740505
                  (30)8,254219
                                                         (32)35,521721
(33)29,246146
                  (34)67,239685
                                     ( 35 )17,837825
                                                         (36)104,934589
(37)39,499441
                  (38)79,595351
                                     (39)5,573447
                                                         (40)29,458734
                                                         (44)63,735831
(41)35,378252
                  (42)12,339265
                                     (43)33,346021
                  ( 46 )21,824704
( 45 )147,036631
                                     ( 47 ) 64, 037231
                                                         (48)36,261881
(49)59,802301
                  (50)27,924176
                                     (51)52,5191
                                                         (52)42,414945
(53)21,999483
MAIOR DISTÂNCIA: 401,347477
                                               GENÓTIPO: 23
MENOR DISTÂNCIA: 5,160642
                                               GENÓTIPO: 27
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 32
                  (2)54,122707
(1)106,064187
                                       3 ) 58, 699779
                                                          4 ) 45, 560248
(5)106,80371
                  ( 6 ) 47, 564054
                                     (7)53,4616
                                                         (8)47,215935
                  ( 10 )80,00045
(9)47,994521
                                      ( 11 )101,861613
                                                         ( 12 )21,602647
                  ( 14 ) 93, 044857
( 13 ) 95,779012
                                      (15)49,088454
                                                         (16)74,107078
                  (18)123,034347
                                      (19)91,020285
(17)89,02416
                                                         (20)122,457446
(21)31,546009
                  (22)82,286322
                                      (23)335,145357
                                                         (24)151,458712
                                                         ( 28 )21,219262
( 25 ) 34,590837
                  ( 26 ) 125, 787359
                                     ( 27 ) 46,721355
                  ( 30 ) 37, 175299
 29 ) 43, 245082
                                     (31)35,521721
 33 ) 73, 238546
                  (34)115,130398
                                      (35)71,882883
                                                         (36)86,952457
(37)98,545528
                  (38)103,143309
                                     (39)38,225711
                                                         (40)71,567922
(41)59,267528
                  ( 42 ) 12, 538392
                                     (43)97,455419
                                                        (44)84,180827
                                     (47)98,729599
(45)185,264403
                 (46)11,436016
                                                        (48)55,903547
                  (50)34,29519
                                     (51)100,410619
                                                         (52)23,226804
(49)21,015115
(53)72,830234
MAIOR DISTÂNCIA: 335,145357
MENOR DISTÂNCIA: 11,436016
                                               GENÓTIPO : 23
                                               GENÓTIPO: 46
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 33
                  ( 2 )77,115622
( 6 )97,529731
                                      ( 3 )17,595106
                                                         ( 4 ) 44, 151045
(1)86,551383
(5)34,036679
                                     (7)66,980325
                                                        (8)60,018567
 9)43,376018
                  ( 10 )138,28812
                                     (11)135,41846
                                                         ( 12 ) 64,223546
 13 )141,401208
                  ( 14 ) 142, 691236
                                      ( 15 ) 44, 473565
                                                         ( 16 ) 100, 351187
( 17 ) 93,7839
                  ( 18 )142,383461
                                     (19)109,524466
                                                         ( 20 ) 92, 316455
(21)23,383108
                  ( 22 )123,707626
                                     (23)433,190044
                                                         ( 24 ) 170, 815907
                  (26)136,576263
                                     (27)35,703909
(25)13,029296
                                                         (28)57,714041
(29)28,738494
                  (30)38,207893
                                     (31)29,246146
                                                         (32)73,238546
                  ( 34 )102,551594
                                     (35)22,514421
                                                         (36)141,157634
( 37 )17,875297
                  ( 38 )111,994409
                                      ( 39 )34,805415
                                                         ( 40 )18,900862
(41)32,836382
                  ( 42 )53,387771
                                     ( 43 ) 35, 21918
                                                        (44)103,321528
                  ( 46 ) 63,220699
(45)184,780646
                                     ( 47 )92,540499
                                                        ( 48 )31,418533
( 52 )88,790887
                                    (51)20,526218
(49)103,334172
                  (50)78,096641
(53)20,394345
MAIOR DISTÂNCIA: 433,190044
                                               GENÓTIPO: 23
MENOR DISTÂNCIA: 13,029296
                                               GENÓTIPO: 25
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 34
(1)15,44381
                  (2)18,402546
                                        3 )75,349871
                                                         (4)76,246028
                                      (7)18,381122
(5)69,319277
                  (6)88,409106
                                                         (8)61,089932
 9 ) 73, 829897
                  ( 10 )120,391564
                                      (11)32,301754
                                                         (12)80,49342
 13 ) 42, 74544
                  (14)39,012644
                                      (15)50,771047
                                                         (16)20,347872
                                      (19)6,310824
( 17 )7,125665
                  ( 18 )11,534339
                                                         (20)9,424197
                  ( 22 ) 17,043391
 21 )71,695371
                                      (23)367,910903
                                                         (24)105,85565
                                                         (28)75,01611
 25 ) 77, 121726
                  (26)29,146421
                                      ( 27 )54,063741
(29)78,731274
                  (30)62,846958
                                     (31)67,239685
                                                         (32)115,130398
(33)102,551594
                                     (35)69,426647
                                                        (36)43,423823
( 37 )52,466164
                  ( 38 ) 17, 112083
                                     (39)66,420529
                                                        (40)73,033037
                                   ( 43 ) 98, 10095
(41)72,353059
                  ( 42 )77,398707
                                                         (44)14,920875
```

 (45)62,501875
 (46)86,30383
 (47)10,355893
 (48)84,506745

 (49)126,392321
 (50)82,966974
 (51)93,311228
 (52)89,105932

 (53)76,532655

MAIOR DISTÂNCIA: 367 MENOR DISTÂNCIA: 6,3		GENÓTIPO GENÓTIPO		
	DISTÂNCIAS EM	RELAÇÃO AO GENÓTIPO	O => 35	
(5)17,480071 (9)23,825777 (13)95,662692 (17)69,109303 (21)20,478199 (25)15,425725 (29)22,097894 (33)22,514421 (37)20,062086 (41)17,474135 (45)140,409848 (49)103,094458 (2)44,908747 6)83,627821 10)116,623709 14)96,450698 18)91,001236 22)86,934302 26)87,794279 30)13,328561 34)69,426647 38)66,996245 42)41,097919 46)54,280493 50)39,65918	(3)8,33414 (7)52,639636 (11)87,55291 (15)17,403388 (19)74,626683 (23)414,05951 (27)12,946304 (31)17,837825 (39)15,141334 (43)29,992068 (47)56,505231 (51)23,549676	(4) 30,893043 (8) 18,077758 (12) 59,737249 (16) 70,436596 (20) 53,6352 (24) 148,736501 (28) 44,2954 (32) 71,882883 (36) 108,58623 (40) 7,619781 (44) 75,461804 (48) 30,015457 (52) 57,488306	
(53)2,243994 MAIOR DISTÂNCIA : 414 MENOR DISTÂNCIA : 2,2	•	GENÓTIP(GENÓTIP(
	DISTÂNCIAS EM	RELAÇÃO AO GENÓTIPO	O => 36	
(5)138,397651 (9)68,262205 (13)6,892096 (17)29,411694 (21)98,703954 (25)102,319057 (29)79,766355 (33)141,157634 (37)101,907006 (41)72,197181 (45)119,776051 (2)33,880734 6)68,24818 10)111,587173 14)10,951184 18)34,684073 22)20,887585 26)45,600238 30)79,120471 34)43,423823 38)30,512846 42)75,442939 46)84,001913 50)69,865905	(3)96,973631 (7)31,669892 (11)11,029714 (15)90,393571 (19)38,808398 (23)290,308413 (27)87,437858 (31)104,934589 (35)108,58623 (39)97,864658 (43)163,750992 (47)32,768729 (51)117,064466	(4)73,402222 (8)83,218434 (12)67,461407 (16)16,705736 (20)46,49202 (24)135,015931 (28)87,695386 (32)86,952457 (40)93,426291 (44)28,627425 (48)92,10559 (52)58,625085	
MAIOR DISTÂNCIA : 290 MENOR DISTÂNCIA : 6,8	•	GENÓTIPO GENÓTIPO		
	DISTÂNCIAS EM	RELAÇÃO AO GENÓTIPO	O => 37	
(5)19,835423 ((9)38,46824 ((13)101,837129 (2)52,256298 6)97,987689 10)130,92583 14)101,251424	(3)18,087825 (7)39,819596 (11)91,215698 (15)37,971095	(4)52,103386 (8)55,544846 (12)66,006319 (16)66,11749	

(18) 82, 127694 (22) 87, 253652 (20) 44, 415666 (17)50,598771 (19)66,90355 (23) 421, 933029 (21)33,244735 (24)142,41509 (27) 33,323705 (31) 39,499441 (35) 20,062086 (25)28,274823 (29)35,733655 (33)17,875297 (26)82,22987 (30)40,550605 (34)52,466164 (28) 66,41558 (32) 98,545528 (36)101,907006 (40)13,177884 (44)62,683683 (48)28,402439 (52)90,340735 (38) 64, 015134 (39)43,768144 (41)26,046394 (42)66,278864 (43)38,327395 (45)123,630918 (49)124,827751 (46)75,971595 (50)82,838156 (47) 47,831429 (51) 18,301641

(53)21,432055

MAIOR DISTÂNCIA: 421,933029 GENÓTIPO: 23
MENOR DISTÂNCIA: 13,177884 GENÓTIPO: 40

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 38

(1)13,000375	(2)17,884234	(3) 66, 137208	(4)85,764436
(5)86,347152	(6) 68, 918624	(7)22,419352	(8)56,039664
(9)70,370882	(10)109,639403	(11)20,928595	(12)84,204966
(13)26,920654	(14)21,873393	(15)62,119529	(16)17,931815
(17)15,201011	(18)12,115209	(19)15,53242	(20)10,788146
(21)75,871601	(22)24,906433	(23)319,329088	(24) 96, 864081

```
1. Continuação... Medidas de Similaridade, Distância de
 Apêndice
                     Mahalanobis.
 (25)85,018025
                   (26)9,270838
                                      ( 27 ) 67, 461925
                                                         (28)84,713591
                 ( 30 ) 62,689091
( 34 ) 17,112083
                                                        ( 32 )103,143309
(29)83,168138
                                     (31)79,595351
(33)111,994409
                                     ( 35 )66,996245
                                                        (36)30,512846
( 37 ) 64,015134
                                                        (40)71,370336
                                     ( 39 )68,321031
                                     ( 43 )115,455609
                                                        (44)22,900312
(41)67,190864
                 ( 42 )83,038355
( 45 ) 49,826059
                  ( 46 )88,269582
                                     ( 47 )5,725688
                                                        ( 48 )87,861358
                 (50)72,810562
(49)122,628088
                                     (51)99,041711
                                                        (52)70,86985
(53)73,570199
MAIOR DISTÂNCIA: 319,329088
                                               GENÓTIPO : 23
MENOR DISTÂNCIA: 5,725688
                                               GENÓTIPO: 47
                      DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 39
                                       3 )19,633521
(1)68,554254
                  (2)30,190352
                                                         (4)23,829191
(5)35,356946
                  ( 6 ) 62, 035079
                                     (7)42,617917
                                                        (8)8,032381
 9 )28,582801
                  ( 10 )95,060825
                                     ( 11 )83,552513
                                                        ( 12 ) 35, 189452
                  ( 14 )85,978438
                                     (15)7,224624
                                                        (16)65,069922
(13)89,601845
                  ( 18 )87,48583
                                     (19)61,566534
                                                        (20)63,53762
(17)63,54983
                  ( 22 ) 65,570179
(21)7,652659
                                     (23)389,471855
                                                        (24)135,751474
                  ( 26 ) 92, 308794
                                     ( 27 )7,976638
                                                        ( 28 ) 19,661655
( 25 )11,954654
 29 )24,064519
                  ( 30 )5,102341
                                     (31)5,573447
                                                        ( 32 ) 38,225711
(33)34,805415
                  ( 34 ) 66, 420529
                                    ( 35 ) 15, 141334
                                                        (36)97,864658
( 37 ) 43,768144
                  (38)68,321031
                                                        (40)29,303498
                                    ( 43 )39,932068
( 47 )62,069398
(41)31,013027
                  (42)16,287944
                                                        (44)67,86365
                 (46)28,934378
(45)139,763336
                                                        (48)39,782481
(49)64,025953
                  (50)20,931615
                                     (51)50,800636
                                                        (52)35,654281
(53)21,401088
MAIOR DISTÂNCIA: 389,471855
                                               GENÓTIPO : 23
MENOR DISTÂNCIA : 5,102341
                                               GENÓTIPO: 30
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 40
                  (2)50,995457
                                     (3)7,78863
(1)52,645685
                                                        (4)26,521764
                  ( 6 )84,646812
                                     (7)48,12391
(5)23,460407
                                                        (8)32,232098
                                     ( 11 )84,110565
 9 ) 15, 282277
                  ( 10 )116,767748
                                                        (12)50,235682
( 13 )89,021296
                  ( 14 ) 93, 323691
                                     ( 15 )26,876707
                                                        ( 16 ) 68,591023
                                     ( 19 )83,390489
                                                        ( 20 )59,698897
(17)68,583617
                  ( 18 ) 93, 641998
                                     (23)409,434836
(21)26,199397
                 ( 22 ) 91,222365
( 26 ) 94,294463
                                                        (24)162,534086
(25)17,470665
                                     (27)19,956664
                                                        (28)50,559258
                  ( 30 )20,875986
                                     ( 31 )29,458734
                                                        ( 32 )71,567922
 29 )14,671042
( 33 )18,900862
                  (34)73,033037
                                     ( 35 )7,619781
                                                        (36)93,426291
                  ( 38 )71,370336
                                     ( 39 )29,303498
( 37 )13,177884
( 41 )5,28646
                  ( 42 ) 44, 474995
                                     ( 43 )39,353802
                                                       (44)75,169407
(45)155,969592
                                                        ( 48 )16,078947
( 52 )57,52105
                 (46)57,631966
                                     (47)59.135323
                  (50)46,993541
(49)96,676192
                                     (51)9,390204
(53)6,873621
MAIOR DISTÂNCIA: 409,434836
                                               GENÓTIPO : 23
MENOR DISTÂNCIA: 5,28646
                                               GENÓTIPO: 41
                       DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 41
                  (2)45,390502
(1)50,151071
                                      ( 3 )15,202585
                                                         (4)20,204242
                                     (7)42,460974
( 5 ) 40,717099
                  ( 6 )71,81566
                                                        (8)31,298651
(9)10,860632
                  (10)106,923174
                                     (11)71,320673
                                                        (12)37,224193
(13)72,18121
                  ( 14 ) 79, 400911
                                     (15)28,123667
                                                        (16)61,777057
( 17 ) 65,829824
                  ( 18 )87,472959
                                                        ( 20 ) 64,25029
                                     ( 19 )82,263887
(21)27,186916
                  ( 22 )80,624311
                                     (23)383,776752
                                                        (24)166,674707
(25)21,209557
                  ( 26 ) 92, 691717
                                     ( 27 )22,378072
                                                        (28)50,199349
(29)9,007949
                  (30)20,495547
                                     (31)35,378252
                                                        (32)59,267528
(33)32,836382
                  (34)72,353059
                                     (35)17,474135
                                                        (36)72,197181
(37)26,046394
                  (38)67,190864
                                     (39)31,013027
                                                        (40)5,28646
                  (42)37,24769
                                     (43)54,498535
                                                        (44)70,932243
( 45 )162,593316
                  ( 46 )52,225271
                                     ( 47 )60,113282
                                                        ( 48 )11,392834
(49)84,577467
                  (50)37,330625
                                     (51)14,233999
                                                        (52)44,396844
(53)16,497994
MAIOR DISTÂNCIA: 383,776752
                                               GENÓTIPO: 23
MENOR DISTÂNCIA: 5,28646
                                               GENÓTIPO: 40
                      DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 42
(1)76,110416
                  (2)33,847351
                                     (3)38,195178
                                                        (4)19,004699
```

Apêndice 1. Continuação... Medidas de Similaridade, Distância Mahalanobis. (6) 54, 366132 (5)63,388139 (7)38,399181 (8)20,824626 (9)24,35612 (10)80,139528 (11)74,951368 (12)13,162536 (13)75,623624 (14)74,251779 (15)19,098317 (16)55,056149 (17)61,923552 (18)92,37749 (19)63,363494 (20)84,243819 (22)55,213013 (21)15,349412 (23)362,796359 (24)141,667701 (25)18,060707 (26)105,712359 (27)14,502259 (28)5,925011 (29)22,554083 (30)11,826839 (31)12,339265 (32)12,538392 (34)77,398707 (35) 41, 097919 (36)75,442939 (33)53,387771 (37)66,278864 (38)83,038355 (39)16,287944 (40)44,474995 (41)37,24769 (43)64,084328 (44)57,993872 (45)168,634831 (46)7,123544 (47)72,501432 (48)38,068473 (49)27,391638 (50)15,862246 (51)70,771705 (52)17,323849 (53)45,228038 MAIOR DISTÂNCIA: 362,796359 MENOR DISTÂNCIA: 5,925011 GENÓTIPO: 23 GENÓTIPO: 28 DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 43 (1)104,444337 (2)71,025808 3) 45, 046745 (4)54,375289 (8)57,833791 (5)35,24653 (6)116,632651 (7)77,917225 9)58,385717 (10)120,651907 (11)145,537806 (12)81,467115 (13)152,991997 (14) 142, 526222 (15)34,656953 (16)110,343362 (19)104,606856 (17)96,626419 (18) 130, 133857 (20)88,986548 (24) 165, 927973 (21)35,415952 (22) 124, 884147 (23)448,320872 (26)141,501537 25) 31, 679582 (27)33,397295 (28)62,797874 (29)41,239468 (30) 46, 112701 (31)33,346021 (32) 97, 455419 (34) 98, 10095 (35)29,992068 (33) 35,21918 (36)163,750992 (37)38,327395 (38)115,455609 (39)39,932068 (40)39,353802 (44)91,142573 (41)54,498535 (42)64,084328 (47) 96, 230374 (48)42,375733 (45)168,231977 (46)79,52002 (49)130,340296 (50)76,740727 (51)43,169774 (52)100,6045 (53)34,95352 MAIOR DISTÂNCIA: 448,320872 GENÓTIPO : 23 MENOR DISTÂNCIA: 29,992068 GENÓTIPO: 35 DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 44 (2)14,650961 (1)18,643665 3) 75, 468946 (4)67,910313 (6)69,893189 (7)16,160083 (5)82,608189 (8)62,151479 (12)59,607557 9) 59, 046345 (10)91,993799 (11)21,792842 (13)27,573103 (14)20,071428 (15)55,263377 (16)9,746276 (18)20,917146 (17) 4,594405 (19)9,331067 (20)19,499921 (21) 64,773872 (22)10,990209 (23)319,733179 (24)94,864467 (26) 32,733875 (30) 57,059184 (27)53,611384 (25)72,305049 (28)58,718059 (29)68,647053 (31)63,735831 (32)84,180827 33)103,321528 (34)14,920875 (35)75,461804 (36)28,627425 37)62,683683 (38)22,900312 (39) 67,86365 (40)75,169407 (41)70,932243 (42)57,993872 (43) 91, 142573 (47)13,897257 (45)79,548745 (46) 64,350238 (48)72,729794 (51)100,931833 (49)94,538127 (50)65,416729 (52)64,691875 (53)83,04819 MAIOR DISTÂNCIA: 319,733179 MENOR DISTÂNCIA: 4,594405 GENÓTIPO : 23 GENÓTIPO · 17 DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 45 (2)78,878468 (1)83,013439 3)142,514597 (4)188,217496 (6) 94, 909158 (5)144,796207 (7)75,417418 (8)133,078955 (9)170,811799 (11)109,086894 (12)168,164231 (10)99,915942 (14)103,128987 (15)127,078358 (13)120,803091 (16)87,359869 (17)66,778043 (18)54,740498 (19)57,454086 (20)63,361508 21)144,619707 (22)93,956686 (23)327,90798 (24)123,234482 25)160,84814 (26)28,855495 27)143,176648 (28) 156, 652833 (29)179,432216 (30)147,634747 (31)147,036631 (32)185,264403 (34)62,501875 (33)184,780646 (35)140,409848 (36)119,776051 (39)139,763336 (37)123,630918 (40)155,969592 (38)49,826059 (41)162,593316 (42) 168, 634831 (43)168,231977 (44)79,548745 (46)160,77863 (47)58,282277 (48)173,283006 (49)211,072308 (50)172,226984 (51)186,407053 (52)161,579206 (53)150,168431 MAIOR DISTÂNCIA: 327,90798 GENÓTIPO: 23

GENÓTIPO: 26

MENOR DISTÂNCIA: 28,855495

```
DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 46
                   (2)42,895112
                                         3 ) 44, 812223
                                                            (4)38,363764
                   ( 6 ) 62, 627003
(5)70,141299
                                       (7)37,608256
                                                            (8)33,264302
 9 ) 36, 992049
                   ( 10 )79,782224
                                       ( 11 )90,228402
                                                           ( 12 )16,666423
(13)92,018122
                   ( 14 )84,327633
                                       (15)31,911433
                                                           (16)64,419022
( 17 ) 67,319037
( 21 ) 23,090918
                   ( 18 ) 93, 34309
( 22 ) 66, 824025
                                       ( 19 ) 65,867171
( 23 ) 372,433824
                                                            ( 20 ) 97, 361398
( 24 ) 136, 39773
(25)28,118559
                   ( 26 ) 105, 159616
                                       ( 27 ) 27, 627135
                                                            ( 28 ) 10, 039718
 29 ) 40, 361587
                   ( 30 ) 25, 786523
                                       (31)21,824704
                                                            ( 32 )11,436016
( 33 )63,220699
                   ( 34 )86,30383
                                       ( 35 )54,280493
                                                           ( 36 )84,001913
( 37 ) 75, 971595
( 41 ) 52, 225271
                   ( 38 )88,269582
                                       (39)28,934378
                                                           (40)57,631966
                                      ( 43 )79,52002
                  ( 42 )7,123544
                                                           (44)64,350238
( 45 )160,77863
( 49 )23,550025
                                       ( 47 )81,221829
                                                           (48)53,663732
                                                         ( 52 )18,253121
                  (50)30,569166
                                     (51)88,010088
(53)56,657469
MAIOR DISTÂNCIA: 372,433824
                                                 GENÓTIPO : 23
MENOR DISTÂNCIA: 7,123544
                                                 GENÓTIPO: 42
                        DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 47
(1)6,804381
                   (2)14,950234
                                         3 )59,828796
                                                            (4)73,353445
                                                         (8)52,308276
(5)70,567058
                  (6)68,144704
                                       (7)20,296863
 9 ) 60, 300666
                   (10)109,128537
                                       (11)19,250757
                                                           (12)79,986011
( 13 ) 26, 166519
                   ( 14 ) 24, 907962
                                       ( 15 )53,225599
                                                            ( 16 )8,873118
                   ( 18 ) 16, 564837
                                                            ( 20 ) 5, 047434
( 17 )8,618238
                                       ( 19 )10,445474
                                       (23)327,862447
(21)68,189651
                   ( 22 ) 19,03369
                                                            (24)96,648776
                                       ( 27 )53,889717
(25)69,472536
                  (26)15,26726
                                                           (28)71,086235
(29)70,558465
                   ( 30 ) 54, 046321
                                       (31)64,037231
                                                            (32)98,729599
( 33 ) 92,540499
                  ( 34 )10,355893
                                      ( 35 )56,505231
                                                           (36)32,768729
                                                           ( 40 )59,135323
 37 ) 47, 831429
                   ( 38 )5,725688
                                       (39)62,069398
( 41 ) 60,113282
                   ( 42 )72,501432
                                       (43)96,230374
                                                           (44)13,897257
                  ( 46 )81,221829
( 50 )69,400391
                                                           ( 48 ) 74, 337329
( 52 ) 74, 985149
(45)58,282277
(49)117,675791
                                       (51)85,901364
(53)61,581699
MAIOR DISTÂNCIA : 327,862447
                                                 GENÓTIPO : 23
MENOR DISTÂNCIA: 5,047434
                                                 GENÓTIPO: 20
                        DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 48
                   (2)57,559531
(1)67,109912
                                        ( 3 )29,051601
                                                            ( 4 ) 31,728868
(5)53,320649
                  ( 6 )72,260318
                                       (7)47,655829
                                                            (8)49,496505
                                       (11)94,815993
(9)23.664104
                   ( 10 )106,263319
                                                            (12)34,384642
(13)94,669572
                   (14)102,708296
                                                            (16)71,51275
                                       (15)33,740199
(17)70,32835
                   ( 18 )108,075624
                                       (19)92,302651
                                                            ( 20 )81,281758
                   ( 22 ) 93, 334555
 21 )23,513942
                                       (23)377,668438
                                                            (24)164,862902
( 25 )19,79524
                   ( 26 )113,671328
                                       ( 27 )28,343982
                                                            (28)51,913577
(29)9,70619
                   ( 30 )31,381453
                                       ( 31 )36,261881
                                                            (32)55,903547
(33)31,418533
                                       ( 35 )30,015457
                   ( 34 )84,506745
                                                           (36)92,10559
                   (38)87,861358
(37)28,402439
                                      (39)39,782481
                                                           (40)16,078947
                                       (43)42,375733
                   ( 42 ) 38, 068473
                                                            (44)72,729794
(41)11,392834
( 45 )173,283006
                  (46)53,663732
                                       ( 47 )74,337329
(49)93,680939
                   (50)57,050303
                                       (51)21,995957
                                                           (52)60,322062
(53)30,501603
MAIOR DISTÂNCIA: 377,668438
                                                 GENÓTIPO : 23
MENOR DISTÂNCIA: 9,70619
                                                 GENÓTIPO: 29
                        DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 49
                                       (7)64,050035
(1)127,467345
                   (2)70,267143
                                                            (4)49,424869
                   ( 6 )84,314027
(5)126,21139
                                                            (8)67,549689
 9 )63,759064
                   ( 10 )94,96599
                                       ( 11 )106,464213
                                                            ( 12 )27,869805
( 13 )100,896757
                   (14)90,30652
                                       ( 15 ) 67, 057776
                                                            (16)90,528561
( 17 )101,538562
                  ( 18 )123,504875
                                       ( 19 )101,145304
                                                            (20)137,107055
(21)61,359839
                   ( 22 )87,632512
                                                            (24)174,740756
                                       (23)375,44002
                                       (27)64,970322
( 25 )66,620091
                   ( 26 ) 148, 118843
                                                            (28)25,358343
                                                            ( 32 )21,015115
 29 ) 69, 495925
                   ( 30 )57,03703
                                       (31)59,802301
                                       ( 35 )103,094458
 33 )103,334172
                  ( 34 )126,392321
                                                            (36)87,235471
                                     ( 39 )64,025953
( 43 )130,340296
( 47 )117,675791
( 37 )124,827751
( 41 )84,577467
                  ( 38 )122,628088
( 42 )27,391638
                                                           ( 40 ) 96,676192
( 44 ) 94,538127
(45)211,072308 (46)23,550025
                                                           (48)93,680939
```

(50)45,043721 (51)124,31476 (52)23,149733

(53)106,754326

MAIOR DISTÂNCIA : 375,44002 GENÓTIPO : 23
MENOR DISTÂNCIA : 21,015115 GENÓTIPO : 32

	DISTÂNCIAS E	M RELAÇÃO AO GENÓTIPO) => 50	
(1)73,555044 (5)66,563393 (9)19,1884 (13)59,207139 (17)73,609739 (21)35,030535 (25)37,825444 (29)33,54058 (33)78,096641 (37)82,838156	DISTÂNCIAS EL (2)30,427611 (6)63,949519 (10)84,531072 (14)55,346603 (18)87,528416 (22)56,563865 (26)96,524832 (30)11,689925 (34)82,966974 (38)72,810562	M RELAÇÃO AO GENÓTIPO (3)41,15551 (7)55,145067 (11)58,649961 (15)24,849055 (19)71,262009 (23)368,644727 (27)21,861469 (31)27,924176 (35)39,65918 (39)20,931615	0 => 50 (4)22,471915 (8)11,162907 (12)33,931216 (16)57,772575 (20)77,883549 (24)159,392936 (28)22,248366 (32)34,29519 (36)69,865905 (40)46,993541	
(41)37,330625 (45)172,226984 (49)45,043721 (53)45,472366	(42)15,862246 (46)30,569166	(43)76,740727 (47)69,400391 (51)79,531393	(44)65,416729 (48)57,050303 (52)15,344556	

MAIOR DISTÂNCIA : 368,644727 GENÓTIPO : 23 MENOR DISTÂNCIA : 11,162907 GENÓTIPO : 8

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 51 (2)78,553187 (1)72,418961 (3)24,458109 (4)33,963187 (5)42,688981 (6)108,908349 (7)65,889943 (8)64,249267 9)38,211372 (10)144,773011 (11)115,549847 (12)72,037626 (14) 125, 464937 (13)117,521724 (15) 48, 260228 (16)96,925532 (17)92,060808 (18)120,321151 (19)113,815646 (20)80,121917 (21)42,739171 (22)121,824049 (23)429,508402 (24)190,57952 (25)29,678378 (26)128,77571 (27) 40,501096 (28)82,406109 (30)46,265753 29) 19, 468069 (31)52,5191 (32)100,410619 (34) 93, 311228 (35)23,549676 (33)20,526218 (36)117,064466 (37)18,301641 (38)99,041711 (39)50,800636 (40)9,390204 (42)70,771705 (46)88,010088 (41)14,233999 (43) 43, 169774 (44)100,931833 (45)186,407053 (47)85,901364 (48)21,995957 (49)124,31476 (52)89,799725 (50)79,531393 (53)19,839412

MAIOR DISTÂNCIA: 429,508402 GENÓTIPO: 23 MENOR DISTÂNCIA: 9,390204 GENÓTIPO: 40

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 52 (1)79,527654 (2)39,993424 (3) 44, 361195 (4)33,490297 (5)85,772685 (6) 63, 947853 (7)42,449942 (8)26,758735 (9)29,051086 (10) 79, 428862 (11)61,385248 (12) 17, 56352 (13)60,633267 (14) 52, 41053 (15) 37, 06138 (16)61,283378 (19)70,588349 (20)87,159427 (17)68,593612 (18)78,460217 (22)60,550091 21)37,26852 (23)350,699323 (24) 145, 130409 (25)49,99953 (26) 90, 796667 (27) 36, 046395 (28)22,819991 (29) 43,274898 (31)42,414945 (30)24,222648 (32)23,226804 (33)88,790887 (34)89,105932 (35)57,488306 (36)58,625085 (37)90,340735 (38)70,86985 (39)35,654281 (40)57,52105 (41)44,396844 (42) 17, 323849 (43)100,6045 (44) 64,691875 (46)18,253121 (45)161,579206 (47)74,985149 (48)60,322062 (49)23,149733 (50)15,344556 (51)89,799725 (53)64,43293

MAIOR DISTÂNCIA : 350,699323 GENÓTIPO : 23 MENOR DISTÂNCIA : 15,344556 GENÓTIPO : 50

DISTÂNCIAS EM RELAÇÃO AO GENÓTIPO => 53 (1)59,024029 (2)51,331137 3)11,39726 (4) 31,880468 (8)25,314079 (5)22,740382 (6)84,288218 (7)56,920634 (9)26,643381 (10)121,819618 (11)94,33034 (12) 67, 266058 (14)104,552229 (18)99,655636 (13)100,08937 (17)76,944914 (15)25,232014 (19)82,882929 (16)72,913366 (20)61,256276 (22)94,996865 (23)413,343332 (21)26,522901 (24)157,632748 (25) 14, 332352 (26) 94,772417 (27)18,115808 (28)50,983043

(29)20,897412	(30)19,64548	(31)21,999483	(32)72,830234
(33)20,394345	(34) 76, 532655	(35)2,243994	(36)110,824813
(37)21,432055	(38)73,570199	(39)21,401088	(40)6,873621
(41)16,497994	(42) 45,228038	(43) 34, 95352	(44)83,04819
(45)150,168431	(46) 56, 657469	(47)61,581699	(48)30,501603
(49)106,754326	(50)45,472366	(51)19,839412	(52) 64,43293

MAIOR DISTÂNCIA : 413,343332 GENÓTIPO : 23 MENOR DISTÂNCIA : 2,243994 GENÓTIPO : 35

MÁXIMO: 497,509062 ACESSOS: 5 e 23 MÍNIMO: 2,243994 ACESSOS: 35 e 53 SOMA DAS DISTÂNCIAS 101012,078539 SOMA DE QUADRADOS 13934250,796318 MÉDIA DAS DISTÂNCIAS 73,303395

MATRIZ DE DISTÂNCIA ==> MAHALANOBIS GRAVADA NO ARQUIVO : matrizd

CONTRIBUIÇÃO RELATIVA DOS CARACTERES PARA DIVERGÊNCIA - SINGH(1981) Cálculo feito com médias não padronizadas

VARIÁVEL	S.j	VALOR(%)	
x 1	1370,625435	1,3569	
x 2	7112,143475	7,0409	
x 3	4402,141411	4,358	
x 4	14093,175795	13,952	
x 5	4090,500166	4,0495	
x 6	3536,692806	3,5013	
x 7	1035,634597	1,0253	
x 8	4353,194396	4,3096	
x 9	10413,273999	10,3089	
x 10	1432,691803	1,4183	
x 11	8644,814229	8,5582	
x 12	2625,770544	2,5995	
x 13	6691,42939	6,6244	
x 14	31209,990493	30,8973	

ESTATÍSTICAS DESCRITIVAS								
/ARIÁVEL	VARIÂNCIA	MÉDIA	MÁXIMO	MÍNIMO				
1	4,166064	7,191824	13,7	3,6				
2	,026492	,908176	1,266667	, 4				
3	,172553	1,427673	2,0	1,0				
4	,02677	1,968553	2,0	1,0				
5	21,061942	12,386164	24,6	4,8				
6	,041113	,828931	1,466667	, 4				
7	116,938558	37,830189	65,0	15,0				
8	,129737	1,264151	2,0	1,0				
9	,052814	1,930818	2,0	1,0				
10	,025883	2,062893	2,666667	2,0				
11	5,425147	9,016289	14,683333	5,283333				
12	243,716097	47,150943	93,333336	18,333334				
13	63,624173	26,950314	46,866667	14,9				
14	,90695	1,792453	3,0	1,0				
OTAL	456,314293							

Apêndice 2. Método de Tocher – Agrupamento.

Programa GENES Agrupamento de Otimização - Tocher Arquivo de distâncias C:\Users\Usuário\Documents\matrizd.
Dimensão da matriz 53
Acessos selecionados 53
Data 02-09-2010

LIMITE DE DISTÂNCIA INTERGRUPO

(1)9,	(2)6,	(3),	(4)14,	(5),	
(6)7,	(7),	(8)16,	(9),	(10)17,	
(11),	(12)12,	(13),	(14) 16,	(15),	
(16)11,	(17),	(18)10,	(19),	(20)16,	
(21),	(22)11,	(23),	(24)13,	(25),	
(26)6,	(27),	(28)10,	(29),	(30)7,	
(31),	(32)8,	(33),	(34)4,	(35),	
(36)12,	(37),	(38)9,	(39),	(40)5,	
(41),	(42)7,	(43),	(44)10,	(45),	
(46)94,	(47),	(48)17,	(49),	(50)14,	
(51),	(52)9,	(53),			

MAIOR ENTRE OS MÍNIMOS

94,

FORMAÇÃO DOS GRUPOS

GRUPO	PO						ACESSOS				
< 1 >	29	38	36	32							
< 2 >	15	51	14	31	23	53	3	43	35	47	39
< 3 >	37	48	52	40							
< 4 >	33	50									
< 5 >	6	13	7	11							
< 6 >	18	19	41								
< 7 >	1	30	24	16	4	12	8	20	28	3	
< 8 >	2	21	3								
< 9 >	5	46									
< 10 >	17	44									
< 11 >	34	49									
< 12 >	42	45									
< 13 >	26	27									
< 14 >	9	10									
< 15 >	22										
< 16 >	25										

Corte 1

FV TRATAM RESÍDU TOTAL	ENTOS O		Programa GENES Arquivo de dado Número de variá Número de genót Número de teste Data	s veis ipos	C:\Users\Usuário\ 2 55 0 01-22-2010	caso com testemunhas adicionais Documents\genes\paspalum notatum Probabilidade ,0	corte 1.d
MÉDIA				20,9492363636			
CV (%)			מת המת	64,6381691209	MBIENTAIS- Obtidos	nara gonátinos	
VARIÂN VARIÂN HERDAB CORREL COEFIC RAZÃO	CIA A CIA G ILIDA AÇÃO IENTE CVg/C	MBIENT ENOTÍP DE (US INTRAC DE VA Ve - M	ICA (média) AL (média) ICA (média) : média da famíli LASSE (US: parcel RIAÇÃO GENÉTICO (édia dos genótipo	a) - % a)- % %)	375,400996 36,672835 338,728161 90,231 64,879 87,8532 1,3592 5,		
			ANÁLISE DE VARI	ÂNCIA DA VARIÁVEL =	=> x 2		
FV	GL		SQ	QM	F	Probabilidade	
TRATAM RESÍDU			24346,160435 8382,8492	450,854823 38,10386	11,8323	, 0	
TOTAL		274	32729,0096				
MÉDIA CV (%)	geral			10,1709818181 60,6906247934			
			PARÂM	ETROS GENÉTICOS E A	MBIENTAIS- Obtidos	para genótipos	
VARIÂN VARIÂN HERDAB CORREL COEFIC RAZÃO	CIA A CIA G ILIDA AÇÃO IENTE CVg/C	MBIENT ENOTÍP DE (US INTRAC DE VA Ve - M	ICA (média) AL (média) ICA (média) ICA (média) : média da famíli LASSE (US: parcel RIAÇÃO GENÉTICO (édia dos genótipo EPETIÇÕES	a) - % %)	90,170965 7,620772 82,550193 91,5485 68,4189 89,3298 1,4719 5,		
				IÂNCIAS FENOTÍPICAS	3		
375,40 175,93							
			COVAR	IÂNCIAS GENOTÍPICAS	3		
338,72 160,59							
			COVAR	IÂNCIAS RESIDUAIS			
183,36 76,685							
			CORRE	LAÇÕES FENOTÍPICAS			
1, ,95 ,9562							
1 0 0	0.4		CORRE	LAÇÕES GENOTÍPICAS			
1, ,96 ,9604							
			CORRE	LAÇÕES RESIDUAIS			
1, ,91 ,9174							

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott).

Agrupamento de Médias C:\Users\Usuário\Documents\genes\med.dat

Programa GENES
Arquivo de dados
Número de variáveis
Graus de Liberdade do Resíduo
Número de Repetições
Nível de Significância
Número de Tratamentos
Testes comparativos de médias
Arquivo com os QMR
Data 220

55 Scott-Knott Original

01-22-2010 Data

Teste : Scott e Knott

QMR: 183, Nível: 5 GLRes: 220 N.Rep: 5 VARIÁVEL: x 1 Bo V² Lambda Partição GL

Partição	Во	V ²	Lambda	GL	Probabilidade(%
(37- 33) vs (29- 4)	14803,2506	102,9951	197,7649	48,1783	, 0
(29- 27) vs (39- 4)	2457,2835	43,2382	78,1981	41,1706	,0452
(37- 53) vs (51- 33)	1794,2107	43,9816	56,1321	7,0078	, 0
(39- 10) vs (52- 4)	590,9312	34,4957	23,5711	32,4109	87,1504
(29- 45) vs (5- 27)	177,9152	35,9735	6,8052	8,7597	63,5888
(51- 43) vs (54- 33)	92,5412	36,2369	3,5139	4,3798	53,5478
(37- 55) vs (53)	75,9561	36,4677	2,8659	2,6279	34,7667

(51- 43) vs (54- 33) (37- 55) vs (53)	92,5412 75,9561	36,2369 36,4677	3,5139 2,8659	4,3798 2,6279	53,5478 34,7667
(37- 33) VS (33)	73,9301	30,4077	2,0039	2,02/9	34,7007
Tratamento	Média	Grupo			
37 Trat34	85,08	a			
55 Trat52	82,132	a			
53 Trat50	72,932	a			
51 Trat48	54,296	b			
48 Trat45	52,944	b			
43 Trat40	50,64	b			
54 Trat51	44,824	b			
33 Trat30	42,866	b			
29 Trat26	34,498	С			
3 10386	34,196	С			
35 Trat32	33,722	С			
31 Trat28	30,21	С			
45 Trat42	28,91	С			
5 Trat2	25,65	С			
25 Trat22	24,902	C			
41 Trat38	24,852	c			
40 Trat37	23,606	c			
27 Trat24	20,346	c			
39 Trat36	18,86	d			
21 Trat18	17,796	d			
47 Trat44	17,224	d			
30 Trat27	17,15	d			
20 Trat17	16,168	d			
34 Trat31	15,454	d			
17 Trat14	15,372	d			
9 Trat6	15,366	d			
46 Trat43	15,06	d			
42 Trat39	14,784	d			
26 Trat23	14,638	d			
15 Trat12	13,82	d			
38 Trat35	12,792	d			
11 Trat8	12,532	d			
44 Trat41	11,906	d			
14 Trat11	10,916	d			
49 Trat46	10,812	d			
12 Trat9	10,752	d			
10 Trat7	10,516	d			
52 Trat49	9,868	d			
2 38	9,31	d			
13 Trat10	9,126	d			
24 Trat21	8,93	d			
16 Trat13	8,87	d			
7 Trat4	7,544	d			
7 Trac4 28 Trat25	7,344	d d			
32 Trat29	7,234	d			
8 Trat5	6,768	d			
1 10386	6,458	d d			
50 Trat47	6,26	d d			
18 Trat15		d d			
	5,574				
22 Trat19	4,374	d			
36 Trat33	4,088	d			
23 Trat20	3,8	d			
6 Trat3	3,308	d			
19 Trat16	2,68	d			
4 Trat1	2,04	d			

VARIÁVEL: x 2	QMR: 38,	Nível:	5	GLRes : 220	N.Rep : 5	
Partição		Во	V²	Lambda	GL	Probabilidade(%)
(55- 33) vs (43-	4)	3276,4713	23,7863	189,5345	48,1783	, 0
(43- 21) vs (15-	4)	856,005	10,5574	111,5654	43,7985	, 0
(55- 53) vs (54-	33)	297,7632	9,2723	44,1866	4,3798	, 0

	(resie Scott & N				
(15- 2) vs(9- 4)	129,0824	7,2582	24,4708	28,907	70,1404
(43- 3) vs (25- 21)	131,8061	7,7222	23,4857	14,8915	7,1499
(54)vs(33)	7,7224	7,5663	1,4044	1,7519	56,223
(55) vs (37-53)	99,7479	7,9856	17,1872	2,6279	,0514
(37) vs (53)	9,0398	7,5723	1,6426	1,7519	61,659
Tratamento	Média	Grupo			
55 Trat52	49,034	a			
37 Trat34	38,928	b			
53 Trat50	34,676	b			
54 Trat51	27,092	C			
33 Trat30	23,162	C			
43 Trat40	19,476	d			
51 Trat48	17,986	d			
35 Trat32	17,488	d			
45 Trat42	15,854	d			
31 Trat28	15,852	d			
48 Trat45	15,65	d			
3 10386	15,456	d			
25 Trat22	12,92	d			
29 Trat26	12,864	d			
47 Trat44	11,788	d			
5 Trat2	11,338	d			
27 Trat24	11,084	d			
40 Trat37	11,012	d			
41 Trat38	10,894	d			
34 Trat31	10,824	d			
39 Trat36	9,544	d			
21 Trat18	9,386	d			
15 Trat12	9,022	e			
17 Trat14	8,588	e			
38 Trat35	8,438	e			
46 Trat43	8,208	e			
10 Trat7	7,946				
42 Trat39	7,826	e e			
30 Trat27					
20 Trat17	7,528	e			
	6,742	е			
26 Trat23	6,226	е			
44 Trat41	6,216	е			
24 Trat21	6,144	е			
2 38	5,638	е			
9 Trat6	4,836	е			
49 Trat46	4,544	е			
11 Trat8	4,484	е			
12 Trat9	4,212	е			
8 Trat5	4,188	е			
7 Trat4	3,976	е			
32 Trat29	3,96	e			
14 Trat11	3,894	е			
16 Trat13	3,86	е			
50 Trat47	3,352	е			
28 Trat25	3,258	е			
13 Trat10	3,076	e			
1 10386	3,044	e			
18 Trat15	3,026	e			
23 Trat20	2,846	e			
52 Trat49	2,784	e			
36 Trat33	2,444	e			
6 Trat3	2,128	e			
22 Trat19	1,898	e			
19 Trat16	1,892	e			
4 Trat1	,872	e			
	, 0 , 2	_			

Corte 2

Programa GENES Inteiramente ao acaso com testemunhas adicionais Arquivo de dados C:\Users\Usuário\Documents\genes\corte2.dat
Número de variáveis 2
Número de genótipos 55
Número de testemunhas 0
Data 01-22-2010

ANÁLISE DE VARIÂNCIA DA VARIÁVEL \Rightarrow x 1

FV	GL	SQ	QM	F	Probabilidade
TRATAME: RESÍDUO	NTOS 54 220	275003,846308 137673,6703	5092,663821 625,78941	8,138	, 0
TOTAL	274	412677,5166			

MÉDIA geral CV (%) 25,8955636363636 96,602582504741

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott).

	PARÂN	METROS GENÉTICO	DS E AMBIEN	inis obcidos pai	a generapos	
VARIÂNCIA FENOTÍ				1018,532764		
VARIÂNCIA AMBIEN				125,157882		
VARIÂNCIA GENOTÍ				893,374882		
	S: média da famíli			87,7119		
	CLASSE (US: parcel ARIAÇÃO GENÉTICO			58,807 115,4228		
	Média dos genótipo			1,1948		
NÚMERO MÉDIO DE 1				5,		
	ANÁLISE DE VARI	ÂNCIA DA VARIÁ	ÁVEL => x 2			
FV GL	SQ	QM		F	Probabilidad	de
TRATAMENTOS 54 RESÍDUO 220	42555,051282 29886,3901	788,05650 135,84722		5,801	, 0	
TOTAL 274	72441,4414					
MÉDIA geral CV (%)			545454545 563801946			
	PARÂN			TAIS- Obtidos par	ra genótipos	
VARIÂNCIA FENOTÍ				157,611301	J. **=F**	
VARIÂNCIA AMBIEN				27,169446		
VARIÂNCIA GENOTÍ	PICA (média)			130,441855		
	S: média da famíli			82,7617		
	CLASSE (US: parcel ARIAÇÃO GENÉTICO			48,9851 78,6239		
	Média dos genótipo			,9799		
NÚMERO MÉDIO DE 1				5,		
	COVAF	RIÂNCIAS FENOTÍ	PICAS			
1018,532764 368, 368,525615 157,6						
	COVAF	RIÂNCIAS GENOTÍ	PICAS			
893,374882 318,0	90136					
318,090136 130,4						
	41855	TÂNCIAS RESIDI	IATS			
318,090136 130,4	41855 COVAF	RIÂNCIAS RESIDU	JAIS			
318,090136 130,44 625,78941 252,17	41855 COVAF 7398	RIÂNCIAS RESIDU	JAIS			
318,090136 130,4	COVAF 7398 47228	RIÂNCIAS RESIDU				
318,090136 130,4- 625,78941 252,17 ² 252,177398 135,8-	COVAF 7398 47228					
318,090136 130,44 625,78941 252,17	COVAF 7398 47228					
318,090136 130,4- 625,78941 252,17 ² 252,177398 135,8- 1, ,9198	COVAF 7398 47228 CORRE		PICAS			
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1,	COVAF 7398 47228 CORRE	ELAÇÕES FENOTÎF	PICAS			
318,090136 130,4- 625,78941 252,17' 252,177398 135,8- 1, ,9198 ,9198 1,	COVAF 7398 47228 CORRE	ELAÇÕES FENOTÎF	PICAS			
318,090136 130,4- 625,78941 252,17' 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1,	COVAE 7398 47228 CORRE	ELAÇÕES FENOTÎF	PICAS			
318,090136 130,4- 625,78941 252,17' 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1,	COVAE 7398 47228 CORRE	LAÇÕES FENOTÍE	PICAS			
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1,	COVAF 7398 47228 CORRE CORRE CORRE	LAÇÕES FENOTÍF	PICAS			
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1,	COVAF 7398 47228 CORRE CORRE CORRE	CLAÇÕES FENOTÍF	PICAS	upamento de Médic		
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1, 1, ,8649	COVAF	LAÇÕES FENOTÍF	PICAS PICAS AIS C:\		as	
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1, 1, ,8649	COVAF	CLAÇÕES FENOTÍF CLAÇÕES GENOTÍF CLAÇÕES RESIDUA	PICAS PICAS AIS Agr C:\ 2	upamento de Média Users\Usuário\Dod	as	
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1, 1, ,8649	COVAF	LAÇÕES FENOTÍF	PICAS PICAS AIS Agr C:\ 2 2 2 2 2 2	upamento de Média Users\Usuário\Dod	as	
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1, 1, ,8649	COVAF	LAÇÕES FENOTÍF LAÇÕES GENOTÍF LAÇÕES RESIDUA LAÇÕES RESIDUA	PICAS PICAS AIS Agr C:\ 2	upamento de Média Users\Usuário\Dod	as	
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1, 1, ,8649	COVAF	LAÇÕES FENOTÍF LAÇÕES GENOTÍF LAÇÕES RESIDUA	PICAS PICAS AIS Agr C:\ 2 0 220 5 5 55	upamento de Média Users\Usuário\Doc	as cuments\genes\med	
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1, 1, ,8649	COVAF	CLAÇÕES FENOTÍF CLAÇÕES GENOTÍF CLAÇÕES RESIDUA CLAÇÕE	PICAS PICAS AIS Agr C:\ 2 0 220 5 5 55	upamento de Média Users\Usuário\Dod	as cuments\genes\med	
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1,	COVAR 7398 47228 CORRE CORRE CORRE CORRE Programa GENES Arquivo de dade Número de variá Graus de Liberr Número de Repet Nivel de Signif Número de Tratz Testes comparat Arquivo com os Data	CLAÇÕES FENOTÍFE CLAÇÕES GENOTÍFE CLAÇÕES RESIDUA CLAÇÕES RESI	PICAS AIS Agr C:\ 2 0 220 5 5 5 5 Sco 01-	upamento de Média Users\Usuário\Doc tt-Knott Original 22-2010	as cuments\genes\mec	i.dat
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1,	COVAR 7398 47228 CORRE CORRE CORRE Programa GRMES Arquivo de dado Número de varié Graus de Libero Número de Repet Nivel de Signií Número de Trate Testes comparat Arquivo com os Data	CLAÇÕES FENOTÍF CLAÇÕES GENOTÍF CLAÇÕES RESIDUA SILAÇÕES RESIDUA SILAÇÕES RESIDUA LICAÇÕES RESIDU	PICAS AIS Agr C:\ 2 0 220 5 5 5 5 Sco 01-	upamento de Média Users\Usuário\Doo tt-Knott Original	as cuments\genes\mec	i.dat
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1, 1, ,8649 ,8649 1,	COVAR 7398 47228 CORRE CORRE CORRE CORRE Programa GENES Arquivo de dade Número de variá Graus de Liberr Número de Repet Nivel de Signif Número de Tratz Testes comparat Arquivo com os Data	CLAÇÕES FENOTÍFE CLAÇÕES GENOTÍFE CLAÇÕES RESIDUA DISTRIBUTION DE CONTROL DE	PICAS PICAS AIS Agr C:\ 2 2 20 5 5 5 5 Company Comp	upamento de Média Users\Usuário\Doc tt-Knott Original 22-2010	as cuments\genes\mec	i.dat
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1,	COVAR	CLAÇÕES FENOTÍF CLAÇÕES GENOTÍF CLAÇÕES RESIDUA SILAÇÕES RESIDUA SILAÇÕES RESIDUA LICAÇÕES RESIDU	PICAS PICAS AIS Agr C:\ 2 2 20 5 5 5 5 Company Comp	upamento de Média Users\Usuário\Doo tt-Knott Original 22-2010	as cuments\genes\mec	i.dat
318,090136 130,4- 625,78941 252,17' 252,177398 135,8- 1, ,9198 , 9198 1, 1, ,9318 , 9318 1, VARIÁVEL: x 1 Partição	COVAR 7398 47228 CORRE CORRE Programa GENES Arquivo de dado Número de varié Graus de Libero Número de Repet Nível de Signií Número de Trate Testes comparat Arquivo com os Data Teste: Scott & QMR: 625,	CLAÇÕES FENOTÍF CLAÇÕES GENOTÍF CLAÇÕES RESIDUA CLAÇÕES CARACA CLAÇÕES CARACAA CLAÇÕES CARA	PICAS PICAS AIS Agr C:\ 2 0 220 5 5 5 5 01-	upamento de Média Users\Usuário\Doc tt-Knott Original 22-2010 	N.Rep : 5	i.dat === Probabilidade(%
318,090136 130,4- 625,78941 252,17 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1, 1, ,8649 ,8649 1,	COVAR 7398 47228 CORRE CORRE CORRE CORRE Programa GENES Arquivo de Mada Número de Vari Graus de Liber Gra	CLAÇÕES FENOTÍF CLAÇÕES GENOTÍF CLAÇÕES RESIDUA CLAÇÕE	PICAS PICAS AIS Agr C:\ 2 0 220 5 5 5 5 01	upamento de Média Users\Usuário\Doc tt-Knott Original 22-2010 	ns cuments\genes\mec	i.dat
318,090136 130,4- 625,78941 252,17- 252,177398 135,8- 1, ,9198 , 9198 1, 1, ,9318 , 9318 1, VARIÁVEL: x 1 Partição (555 - 37)vs(5- (5- 20)vs(25- (55)vs(54- 37)	COVAR 7398 47228 CORRE CORRE CORRE Programa GENES Arquivo de dado Número de varié Graus de Libero Número de Tatat Testes comparat Arquivo com os Data Teste: Scott e QMR: 625,	CLAÇÕES FENOTÍF CLAÇÕES GENOTÍF CLAÇÕES GENOTÍF CLAÇÕES RESIDUA DISTRIBUTION OF THE PROPERTY OF THE PROPER	PICAS PICAS AIS Agr C:\ 2 2 0 220 5 5 5 5 01- V² 300,0028 147,7429 131,0303	upamento de Média Users\Usuário\Doc tt-Knott Original 22-2010 	N.Rep: 5 GL 48,1783 44,6744 3,5039	Probabilidade(% ,0 ,014 ,2663
318,090136 130,4- 625,78941 252,17 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1, VARIÁVEL: x 1 Partição (55-37)vs(5-(5-20)vs(25-(55)vs(54-37)(25-44)vs(32	COVAR 7398 47228 CORRE CORRE CORRE CORRE Programa GENES Arquivo de Mada Número de Vari Graus de Libero Número de Repet Nível de Signif Número de Trata Testes comparat Arquivo com os Data Teste : Scott e QMR: 625,	CLAÇÕES FENOTÍF CLAÇÕES GENOTÍF CLAÇÕES RESIDUA CLAÇÕE	PICAS AIS Agr C:\ 2 2 5 5 5 5 5 7 7 8 7 8 7 8 8 8 8 8 8 8 8 8	upamento de Média Users\Usuário\Doc tt-Knott Original 22-2010 	N.Rep: 5 GL 48,1783 44,6744 3,5039 28,907	Probabilidade(%, 0, 014, 2663, 99,9972
318,090136 130,4- 625,78941 252,17' 252,177398 135,8- 1, ,9198 ,9198 1, 1, ,9318 ,9318 1, VARIÁVEL: x 1 Partição (55- 37)vs(5- (5- 20)vs(25- (55)vs(54- 37)	COVAR 7398 47228 CORRE CORRE CORRE CORRE Programa GENES Arquivo de Mada Número de Vari Graus de Libero Número de Repet Nível de Signif Número de Trata Testes comparat Arquivo com os Data Teste : Scott e QMR: 625,	CLAÇÕES FENOTÍF CLAÇÕES GENOTÍF CLAÇÕES GENOTÍF CLAÇÕES RESIDUA DISTRIBUTION OF THE PROPERTY OF THE PROPER	PICAS PICAS AIS Agr C:\ 2 2 0 220 5 5 5 5 01- V² 300,0028 147,7429 131,0303	upamento de Média Users\Usuário\Doc tt-Knott Original 22-2010 	N.Rep: 5 GL 48,1783 44,6744 3,5039	Probabilidade(% ,0 ,014 ,2663

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott).

Tratamento	Média	Grupo			
55 Trat53	156,098	a			
54 Trat52	126,77	b			
53 Trat51	109,426	b			
37 Trat35	99,402	b			
5 Trat3 43 Trat41	62,624	С			
33 Trat31	55,724 50,21	C C			
3 Trat1	49,21	c			
48 Trat46	45,888	c			
51 Trat49	39,684	c			
41 Trat39	39,628	c			
31 Trat29	33,058	С			
21 Trat19	32,72	C			
40 Trat38	32,42	С			
45 Trat43	32,176	С			
47 Trat45	29,84	С			
15 Trat13	28,42	C			
35 Trat33	28,306	C			
27 Trat25	27,116	C			
29 Trat27	25,05	C			
34 Trat32	24,03	С			
20 Trat18	23,884	С			
25 Trat23	19,978	d			
8 Trat6	19,27	d			
38 Trat36	18,938	d			
2 847228	15,71	d			
24 Trat22 14 Trat12	13,54	d			
14 Trat12 17 Trat15	13,132	d d			
39 Trat37	12,634 12,284	a d			
42 Trat40	11,72	d			
42 Trat40 44 Trat42	10,784	d			
32 Trat30	9,942	d d			
9 Trat7	9,554	d			
10 Trat8	8,75	d			
46 Trat44	8,264	d			
16 Trat14	7,938	d			
49 Trat47	7,142	d			
11 Trat9	6,646	d			
6 Trat4	6,552	d			
18 Trat16	6,434	d			
1 135	6,376	d			
36 Trat34	6,082	d			
30 Trat28	5,53	d			
28 Trat26	5,49	d			
52 Trat50	4,846	d			
26 Trat24	4,372	d			
22 Trat20	3,412	d			
19 Trat17	3,31	d			
50 Trat48	2,74	d			
12 Trat10	2,71	d			
13 Trat11	2,558	d			
4 Trat2	2,282	d			
23 Trat21	2,12	d			
7 Trat5	1,532	d			
VARIÁVEL: x 2 QMR: 135,	Nível:	5	GLRes : 220	N.Rep: 5	
D		172	T b -d -		Probabilidade(%)
Partição	Во	V ²	Lambda		
				GL	(• /
(53- 27) vs(8- 7)	5607,234	52,5491	146,8223	48,1783	, 0
(53- 27) vs(8- 7) (8- 44) vs(46- 7)	5607,234 680,79	52,5491 26,6048	146,8223 35,2096		
	·			48,1783	,0
(8- 44) vs (46- 7)	680,79	26,6048	35,2096	48,1783 32,4109	, 0 33, 6925
(8- 44) vs (46- 7) (53- 37) vs (54- 27)	680,79 1731,663	26,6048 33,3879	35,2096 71,3645	48,1783 32,4109 15,7674	,0 33,6925
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37)	680,79 1731,663 178,4387 15,392	26,6048 33,3879 26,3795 26,7062	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8- 44) vs(46- 7) (53- 37) vs(54- 27) (54- 47) vs(15- 27)	680,79 1731,663 178,4387	26,6048 33,3879 26,3795	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37)	680,79 1731,663 178,4387 15,392	26,6048 33,3879 26,3795 26,7062	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento	680,79 1731,663 178,4387 15,392	26,6048 33,3879 26,3795 26,7062 Grupo	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51	680,79 1731,663 178,4387 15,392 Média	26,6048 33,3879 26,3795 26,7062 Grupo	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53	680,79 1731,663 178,4387 15,392 Média 54,138 49,542	26,6048 33,3879 26,3795 26,7062 Grupo	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842	26,6048 33,3879 26,3795 26,7062 Grupo	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,546	26,6048 33,3879 26,3795 26,7062 Grupo a a a b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat55 54 Trat52 43 Trat41 48 Trat46 5 Trat3	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,842 27,708	26,6048 33,3879 26,3795 26,7062 Grupo a a a b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,546 27,708 27,378	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31 47 Trat45	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,546 27,708 27,378 25,768	26,6048 33,3879 26,3795 26,7062 Grupo a a a b b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31 47 Trat45 15 Trat13	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,842 28,546 27,708 27,378 25,028	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31 47 Trat45 15 Trat13 31 Trat29	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,546 27,708 27,378 25,768 25,028 24,148	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31 47 Trat45 15 Trat13 31 Trat29 21 Trat19	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,546 27,708 25,768 25,028 24,148 23,368	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b b b b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat44 48 Trat46 5 Trat3 33 Trat31 47 Trat45 15 Trat13 31 Trat29 21 Trat19 41 Trat39	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,842 28,546 27,708 27,378 25,028 24,148 23,368 21,868	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b b b b b b b b b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31 47 Trat45 15 Trat13 31 Trat29 21 Trat19 41 Trat39 3 Trat1	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,546 27,708 27,378 25,768 25,028 24,148 23,368 21,868 21,868 21,554	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b b b b b b b b b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31 47 Trat45 15 Trat13 31 Trat29 21 Trat19 41 Trat39 3 Trat13 47 Trat39 3 Trat13	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,546 27,708 25,768 25,028 24,148 23,368 21,868 21,868 21,554 20,592	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b b b b b b b b b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31 47 Trat45 15 Trat13 31 Trat29 21 Trat19 41 Trat39 3 Trat1 34 Trat39 3 Trat1 34 Trat39 3 Trat1 34 Trat39 3 Trat1	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,546 27,708 27,378 25,028 24,148 23,368 21,868 21,868 21,868 21,868 21,554	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b b b b b b b b b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31 47 Trat45 15 Trat13 31 Trat29 21 Trat19 41 Trat39 3 Trat1 34 Trat39 3 Trat1 34 Trat39 41 Trat39 41 Trat39 41 Trat39 41 Trat39 40 Trat38	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,546 27,708 27,708 25,768 25,028 24,148 23,368 21,868 21,868 21,868 21,554 20,592 20,414 20,282	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b b b b b b b b b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31 47 Trat45 15 Trat13 31 Trat29 21 Trat19 41 Trat39 3 Trat1 44 Trat39 3 Trat1 47 Trat49 40 Trat49 40 Trat48 27 Trat25	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,546 27,708 25,768 25,028 24,148 23,368 21,868 21,868 21,868 21,868 21,554 20,592 20,414 20,282 18,946	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b b b b b b b b b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31 47 Trat45 15 Trat13 31 Trat29 21 Trat19 41 Trat39 3 Trat1 34 Trat32 51 Trat49 40 Trat38 27 Trat25 8 Trat5	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,842 28,546 27,708 27,378 25,028 24,148 23,368 21,868 2	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b b b b c	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955
(8-44)vs(46-7) (53-37)vs(54-27) (54-47)vs(15-27) (53)vs(55-37) Tratamento 53 Trat51 55 Trat53 37 Trat35 54 Trat52 43 Trat41 48 Trat46 5 Trat3 33 Trat31 47 Trat45 15 Trat13 31 Trat29 21 Trat19 41 Trat39 3 Trat1 44 Trat39 3 Trat1 47 Trat49 40 Trat49 40 Trat48 27 Trat25	680,79 1731,663 178,4387 15,392 Média 54,138 49,542 49,124 34,8 28,546 27,708 25,768 25,028 24,148 23,368 21,868 21,868 21,868 21,868 21,554 20,592 20,414 20,282 18,946	26,6048 33,3879 26,3795 26,7062 Grupo a a b b b b b b b b b b b b b b b b b	35,2096 71,3645 9,3074	48,1783 32,4109 15,7674 13,1395	,0 33,6925 ,0 75,955

•		
45 Trat43	16,232	С
25 Trat23	15,59	С
20 Trat18	15,542	С
2 847228	13,328	С
29 Trat27	11,314	С
14 Trat12	10,872	С
42 Trat40	10,058	С
17 Trat15	10,04	С
24 Trat22	9,5	С
44 Trat42	9,358	С
46 Trat44	7,338	С
10 Trat8	7,264	C
32 Trat30	7,128	С
39 Trat37	6,982	C
16 Trat14	6,698	С
49 Trat47	5,98	C
36 Trat34	5,65	C
18 Trat16	5,62	C
9 Trat7	5,38	C
11 Trat9	5,216	C
6 Trat4	4,802	C
28 Trat26	4,39	C
1 135	4,01	C
52 Trat50	3,968	C
30 Trat28	3,83	С
19 Trat17	3,1	C
22 Trat20	3,052	С
26 Trat24	2,824	С
50 Trat48	2,558	C
13 Trat11	2,244	C
4 Trat2	1,882	C
23 Trat21	1,642	C
12 Trat10	1,416	С
7 Trat5	,868	С

Corte 3

Programa GENES
Arquivo de dados
Número de variáveis
Número de genótipos
Número de testemunhas
Data Inteiramente ao acaso com testemunhas adicionais
C:\Users\Usuário\Documents\genes\corte 3.dat

01-22-2010

ANÁLISE DE VARIÂNCIA DA VARIÁVEL => x 1

FV	GL	SQ	QM	F	Probabilidade
TRATAMEI	NTOS 1	1358,39025	1358,39025	2,5118	,151687
RESÍDUO	8	4326,4959	540,811988		
TOTAL	9	5684,8862			
MÉDIA q	eral		74,575		
CV (%)			31,18386148663	08	
		PARÂM	ETROS GENÉTICOS E AM	BIENTAIS- Obtidos	para genótipos
/ARIÂNC:	IA FENOTÍ	PARÂM PICA (média)	ETROS GENÉTICOS E AM	BIENTAIS- Obtidos 271,67805	para genótipos
			ETROS GENÉTICOS E AM		para genótipos
VARIÂNC:	IA AMBIEN	PICA (média)	ETROS GENÉTICOS E AM	271,67805	para genótipos
VARIÂNC: VARIÂNC:	IA AMBIEN IA GENOTÍ	PICA (média) TAL (média)		271,67805 108,162398	para genótipos
VARIÂNC: VARIÂNC: HERDABII	IA AMBIEN IA GENOTÍ LIDADE (U	PICA (média) TAL (média) PICA (média)	a) - %	271,67805 108,162398 163,515653	para genótipos
VARIÂNC: VARIÂNC: HERDABII CORRELA	IA AMBIEN IA GENOTÍ LIDADE (U ÇÃO INTRA	PICA (média) TAL (média) PICA (média) S: média da famíli	a) - % a)- %	271,67805 108,162398 163,515653 60,1873	para genótipos
VARIÂNC: VARIÂNC: HERDABII CORRELAC COEFICII	IA AMBIEN IA GENOTÍ LIDADE (U ÇÃO INTRA ENTE DE V	PICA (média) TAL (média) PICA (média) S: média da famíli CLASSE (US: parcel	a) - % a) - % %)	271,67805 108,162398 163,515653 60,1873 23,2159	para genótipos

ANÁLISE DE VARIÂNCIA DA VARIÁVEL \Rightarrow x 2

FV	GL	SQ	QM	F	Probabilidade
TRATAMENT RESÍDUO	OS 1 8	1182,00384 4493,9448	1182,00384 561,7431	2,1042	,184975
TOTAL	9	5675,9486			
MÉDIA ger	al		72,686 32,607545093538	 39	

PARÂMETROS GENÉTICOS E AMBIENTAIS- Obtidos para genótipos

VARIÂNCIA FENOTÍPICA (média)

236,400768

VARIÂNCIA AMBIENTAL (média)	112,34862
VARIÂNCIA GENOTÍPICA (média)	124,052148
HERDABILIDADE (US: média da família) - %	52,4754
CORRELAÇÃO INTRACLASSE (US: parcela) - %	18,0888
COEFICIENTE DE VARIAÇÃO GENÉTICO (%)	15,3233
RAZÃO CVg/CVe - Média dos genótipos	,4699
NÚMERO MÉDIO DE REPETIÇÕES	5,

	ARIAÇÃO GENÉTICO (Média dos genótipo: REPETICÕES			15,3233 ,4699 5,		
		IÂNCIAS FENC	TÍPICAS	·		
271,67805 253,42 253,42632 236,40						
	COVAR	IÂNCIAS GENO	TÍPICAS			
163,515653 144,8 144,851621 124,0						
	COVAR	IÂNCIAS RESI	DUAIS			
540,811988 542,8 542,873494 561,7						
	CORRE	LAÇÕES FENOI	ÍPICAS			
1, 1, 1, 1,						
	CORRE	LAÇÕES GENOT	ÍPICAS			
1, 1,017 1,017 1,						
	CORRE	LAÇÕES RESII	DUAIS			
1, ,9849 ,9849 1,						
	Programa GENES Arquivo de dado. Número de variá: Graus de Liberd Número de Repet Nível de Signif. Número de Trata: Testes comparat. Arquivo com os o Data	veis ade do Resíd ições icância mentos ivos de médi QMR	luo .as	Agrupamento de Médi C:\Users\Usuário\Dc 2 8 5 5 2 Scott-Knott Origina 01-22-2010	ocuments\genes\med	
	Teste : Scott e	Knott				
VARIÁVEL: x 1	QMR: 540,	Nível:		GLRes : 8	N.Rep : 5	
Partição		Во	V²	Lambda	GL	Probabilidade(%)
(1)vs(2)		271,6781	113,56	78 3,2916	1,7519	15,5524
Tratamento	Média		Grupo			
1 Trat1 2 Trat2	86,23 62,92		a a			
VARIÁVEL: x 2	QMR: 561,	Nível:	5	GLRes : 8	N.Rep : 5	
Partição		Во	V²	Lambda	GL	Probabilidade(%)
(1) vs(2)	:	236,4008	113,40	01 2,8684	1,7519	19,5532
Tratamento	Média		Grupo			
1 Trat1 2 Trat2	83,55 61,81		a a			

Corte 4

Programa GENES Inteiramente ao acaso com testemunhas adicionais Arquivo de dados C:\Users\Usuário\Documents\genes\corte 4.dat Número de variáveis 2
Número de genótipos 55
Número de testemunhas 0
Data 01-22-2010

							ä
ANALISE	1)E:	VARTÄNCTA	D)A	VARIAVEL	=>	×	н

FV	GL		SQ	QM	F	Probabilidade
TRATAMEN RESÍDUO		54 220	30175,765039 9873,1613	558,810464 44,878006	12,4518	, 0
TOTAL		274	40048,9263			
MÉDIA ge	ral			9,56192727272		
CV (%)			DAD ÂMERO	70,06019464192		
		-womén-		ROS GENETICOS E AR	MBIENTAIS- Obtidos p	oara genotipos
VARIÂNCI	A A	MBIENTA	CA (média) L (média)		111,762093 8,975601	
			CA (média) média da família)	- %	102,786492 91,969	
CORRELAÇ	ÃO	INTRACL	ASSE (US: parcela)		69,6081	
			IAÇÃO GENÉTICO (%) dia dos genótipos		106,0285 1,5134	
			PETIÇÕES		5,	
			ANÁLISE DE VARIÂNO	CIA DA VARIÁVEL =	> x 2	
FV	GL		SQ	MQ	F	Probabilidade
TRATAMEN	TOS	54	25062,091195	464,1128	11,6457	, 0
RESÍDUO			8767,6045	39,852748		
TOTAL		274	33829,6957			
MÉDIA ge CV (%)	ral			9,018618181818 69,9985645824		
			PARÂMETI	ROS GENÉTICOS E AM	MBIENTAIS- Obtidos p	para genótipos
VARIÂNCI	A F	ENOTÍPI	CA (média)		92,82256	
			L (média)		7,97055	
			CA (média) média da família)	- %	84,85201 91,4131	
			ASSE (US: parcela)		68,0423	
			IAÇÃO GENÉTICO (%)		102,1389	
			dia dos genótipos PETIÇÕES		1,4592 5,	
			COVARIÂ	NCIAS FENOTÍPICAS		
111,7620 101,7722						
				NCIAS GENOTÍPICAS		
102,7864	92	93,4204	51			
93,42045	1 8	4,85201				
				NCIAS RESIDUAIS		
44,87800 41,75901						
			CORRELAC	ÇÕES FENOTÍPICAS		
1, ,9992 ,9992 1,	!					
			CORRELAC	ÇÕES GENOTÍPICAS		
1, 1,000	13					
1,0003 1	,			~		
			CORRELA	ÇÕES RESIDUAIS		
1, ,9874 ,9874 1,						
			Programa GENES Arquivo de dados		Agrupamento de Méo	dias Documents\genes\med.dat
			Número de variáve:	is	c:\users\usuario\i	occuments (genes (med.dat
			Graus de Liberdade	e do Resíduo	220	
			Número de Repetiçã Nível de Significa		5 5	
			Número de Tratamen		5 55	
			Testes comparative	os de médias	Scott-Knott Origin	nal
			Arquivo com os QMI Data	K	01-22-2010	

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott).

Teste : Scott e Knott VARIÁVEL: x 1 OMR: 44, GLRes : 220 Nível: 5 N.Rep : 5 Partição GL Probabilidade(%) Во Lambda 54- 35) vs (20- 4) 4232,981 200,9401 48,1783 28,986 20- 44) vs (50- 4) 54- 37) vs (55- 35) 55- 53) vs (21- 35) 50,6602 107,6258 21,9094 10,283 330,3912 1120,9515 8,9737 14,3311 39,4186 8,7597 10,8066 ,0 ,277 ,4485 74,3519 147,2 67,4425 9,2445 9,0245 7,0078 1,7519 (21) vs (3- 35) (55) vs (33- 53) 21) vs (3- 35) 14,2501 2,2585 1,1215 8,6818 4,3798 7,1025 8,7137 2,6279 71,1983 Tratamento Média Grupo 54 Trat54 55,154 43,54 30,592 27,474 27,182 37 Trat37 55 Trat55 b С 33 Trat33 53 Trat53 27,182 22,932 19,774 19,38 18,054 21 Trat21 Trat3 25 Trat25 d 5 Trat5 35 Trat35 20 Trat20 48 Trat48 17,638 13,538 d 10,64 10,212 10,02 9,57 9,532 51 Trat51 43 Trat43 41 Trat41 е 45 Trat45 31 Trat31 9,472 40 Trat40 30 Trat30 9,204 8,408 47 Trat47 46 Trat46 27 Trat27 29 Trat29 39 Trat39 8,364 8,02 7,926 7,64 7,484 11 Trat11 7,364 8 Trat8 34 Trat34 38 Trat38 9 Trat9 6.476 6,134 е 44 Trat44 50 Trat50 6,068 5,49 49 Trat49 5,408 10 Trat10 4,778 12 Trat12 28 Trat28 16 Trat16 26 Trat26 18 Trat18 4,55 4,5 3,36 32 Trat32 3,232 14 Trat14 2,984 1 Trat1 36 Trat36 2,872 2,812 22 Trat22 7 Trat7 2,462 2,378 52 Trat52 2,192 6 Trat6 24 Trat24 2,17 е 17 Trat17 42 Trat42 1,782 19 Trat19 13 Trat13 23 Trat23 1,67 1,36 4 Trat4 1,23 е VARIÁVEL: x 2 OMR: 39, GLRes : 220 Nível: 5 N.Rep : 5 Partição V² GL Probabilidade(%) Lambda Во 3573,4744 (54- 35) vs (20- 23) 24,467 (34- 33)vs (20- 23) (20- 9)vs (49- 23) (54- 37)vs (55- 35) (55- 33)vs (21- 35) (54)vs (37) (21)vs (25- 35) (55)vs (53- 33) 7,3648 ,0 ,3391 1,5956 309,258 838,4515 8,0408 11,9136 52,921 96,8378 39,4186 8,7597 8,1463 7,9293 7,6823 7,7052 7,0078 1,7519 4,3798 126,588 44,3117 21,3816 7,6894 83,7669 9,4119 1,6858 2,1218 ,3789 2,6279 91,3749 Tratamento Média Grupo 54 Trat54 49,138 37 Trat37 55 Trat55 39,724 27,864 b С

26,336 25,824

53 Trat53 33 Trat33

	(Teste Scott &	KIIOU
21 Trat21	21,202	d
25 Trat25	18,712	d
3 Trat3	18,342	d
5 Trat5	17,632	d
35 Trat35	16,402	d
20 Trat20	12,978	e
48 Trat48	10,336	e
51 Trat51	10,042	
		e
43 Trat43	9,978	e
45 Trat45	9,43	е
41 Trat41	9,332	е
40 Trat40	8,942	е
31 Trat31	8,696	е
47 Trat47	8,364	е
30 Trat30	8,2	e
27 Trat27	7,656	е
46 Trat46	7,464	е
29 Trat29	7,142	е
39 Trat39	7,06	е
11 Trat11	7,01	e
38 Trat38	6,344	e
8 Trat8	6,262	e
34 Trat34	6,256	e
	5,784	
44 Trat44		е
9 Trat9	5,72	е
49 Trat49	5,344	е
50 Trat50	4,928	е
10 Trat10	4,702	е
28 Trat28	4,65	е
16 Trat16	4,492	e
12 Trat12	4,398	е
26 Trat26	4,292	е
18 Trat18	3,282	е
2 Trat2	3,052	е
14 Trat14	2,924	е
32 Trat32	2,902	é
1 Trat1	2,872	e
36 Trat36	2,812	e
22 Trat22	2,404	e
7 Trat7	2,262	
		e
24 Trat24	2,074	e
52 Trat52	1,98	е
6 Trat6	1,952	е
17 Trat17	1,87	e
42 Trat42	1,758	е
19 Trat19	1,67	е
13 Trat13	1,47	e
15 Trat15	1,322	е
4 Trat4	1,23	е
23 Trat23	1,21	е
	•	

Corte 5

Programa GENES Inteiramente ao acaso com testemunhas adicionais Arquivo de dados C:\Users\Usuário\Documents\genes\corte 5.dat
Número de variáveis 2
Número de genétipos 55
Número de testemunhas 0
Data 01-22-2010

ANÁLISE DE VARIÂNCIA DA VARIÁVEL => x 1

FV	GL	SQ	QM	F	Probabilidade
TRATAMEN	TOS 54	210641,463479	3900,767842	24,7803	, 0
RESÍDUO	220	34631,0407	157,413821		
TOTAL	274	245272,5042			
MÉDIA ge	ral		23,95007272727	27	
CV (%)			52,38592229773	81	
		PARÂME:	TROS GENÉTICOS E AM	BIENTAIS- Obtidos	para genótipos
VARIÂNCI	A FENOTÍF	PICA (média)		780,153568	
VARIÂNCI	A AMBIENT	'AL (média)		31,482764	
VARIÂNCI	A GENOTÍF	PICA (média)		748,670804	
HERDABIL	IDADE (US	: média da família	- %	95,9645	
CORRELAC	ÃO TMEDAC	LASSE (US: parcela)	- 9-	82,627	
	AO INIKAC	LASSE (US: Parcera,			
		RIAÇÃO GENÉTICO (%)		114,2454	
COEFICIE	NTE DE VA				

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott). ANÁLISE DE VARIÂNCIA DA VARIÁVEL => x 2

FV GL		SQ	QM		F	Probabilidade	1
TRATAMENTOS RESÍDUO	54 220	148856,58954 25802,8231	2756,60 117,285		23,5033	, 0	
TOTAL	274	174659,4126					
MÉDIA geral CV (%)				9636363636 7101079777			
		PARÂ	METROS GENÉTI	COS E AMBIE	NTAIS- Obtidos par	a genótipos	
VARIÂNCIA FI					551,320702		
VARIÂNCIA AI VARIÂNCIA GI	ENOTÍPI	ICA (média)	\		23,457112 527,86359		
CORRELAÇÃO	INTRACI	: média da famíl LASSE (US: parce	la)- %		95,7453 81,8204		
		RIAÇÃO GENÉTICO Édia dos genótip			106,1412 2,1215		
NÚMERO MÉDIO	O DE RE				5,		
			RIÂNCIAS FENC	TÍPICAS			
780,153568 651,920184							
		COVA	RIÂNCIAS GENC	TÍPICAS			
748,670804 625,292668							
			RIÂNCIAS RESI	DUAIS			
157,413821 133,137582							
	, = 3		ELAÇÕES FENOT	ÍPICAS			
1, ,994							
,994 1,			~~~~	·			
1 0047		CORR	ELAÇÕES GENOT	PICAS			
1, ,9947 ,9947 1,							
		CORR	ELAÇÕES RESID	DUAIS			
1, ,9798 .9798 1.		CORR	ELAÇÕES RESIC	DUAIS			
1, ,9798 ,9798 1,		CORR	ELAÇÕES RESIC	DUAIS			
					rupamento de Média		=
		======== Programa GENES Arquivo de dad		Ag C:	rupamento de Média \Users\Usuário\Doc	S	
		Programa GENES Arquivo de dad Número de vari Graus de Liber	os áveis dade do Resid	Ag C: 22 22	rupamento de Média \Users\Usuário\Doc	S	
		Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi	os áveis dade do Resid tições ficância	Ag C: 2 duo 22 5 5	rupamento de Média \Users\Usuário\Doc 0	S	
		Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe	os áveis dade do Resid tições ficância amentos	Ag C: 2 duo 22 5 5	rupamento de Média \Users\Usuário\Doc 0	s uments\genes\med.	
		Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat	os áveis dade do Resid tições ficância amentos tivos de médi	Ag C: 2 2 5 5 5 55 as Sc	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original	s uments\genes\med.	
		Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nivel de Signi Número de Trat Testes compara Arquivo com os	os áveis dade do Resid tições ficância amentos tivos de médi QMR	Ag C: 2 2 5 5 5 5 5 5 5 5 5 5 5 0 1	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010	s uments\genes\med.	dat
		Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat Testes compara Arquivo com os Data	os áveis dade do Resid tições ficância amentos tivos de médi QMR	Ag C: 2 2 5 5 5 5 5 5 5 5 5 5 5 0 1	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010	s uments\genes\med.	dat
,9798 1, VARIÁVEL: x	1	Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat Testes compara Arquivo com os Data	os áveis dade do Resid tições ficância amentos tivos de médi QMR	Ag C: 2 2 5 5 5 5 8 8c 01	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010	s uments\genes\med.	dat
VARIÁVEL: x		Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nivel de Signi Número de Trat Testes compara Arquivo com os Data Teste: Scott QMR: 157,	os áveis dade do Resid tições ficância amentos tivos de médi QMR	Ag C: 2 2 5 5 5 5 8c 01	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010 	s uments\genes\med. N.Rep : 5	dat ==
,9798 1,	(5- 15	Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat Testes compara Arquivo com os Data Teste : Scott QMR: 157,	os áveis dade do Resid tições ficância amentos tivos de médi QMR	Ag C: 2 2 5 5 5 5 8 8c 01	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010 	s uments\genes\med. N.Rep : 5	dat ==
VARIÁVEL: x Partição (54- 51)vs (5- 30)vs((54)vs (55) (54)vs (54)vs (55) (54)vs (55) (54)vs (55) (54)vs (55) (54)vs (54)vs (55) (54)vs ((5- 15 9- 15) - 51)	Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nivel de Signi Número de Trat Testes compara Arquivo com os Data Teste: Scott QMR: 157,	os áveis dade do Resid tições ficância amentos tivos de médi OMR Nível: Bo 27365,7955 6467,5361 5333,7046	Ag C: 22 5 5 55 55 48 01 78 78 78 78 78 737 60,1305	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010 	N.Rep: 5 GL 48,1783 43,7985 4,3798	Probabilidade(%) ,0 ,0 ,0
VARIÁVEL: x Partição (54-51)vs (5-30)vs (54)vs (5-31)vs (5-47)vs (5-47)vs	(5- 15 9- 15) - 51) 50- 15 40- 30	Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat Testes compara Arquivo com os Data Teste : Scott QMR: 157,	os áveis dade do Resid tições ficância amentos tivos de médi QMR E Knott Nível: Bo 27365,7955 6467,5361 5333,7046 852,2413 390,2244	Ag C: 2 2 5 5 5 55 as Sc 01 178,3138 55,7375 60,1305 31,4448 31,7922	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010 	N.Rep: 5 GL 48,1783 43,7985 4,3798 30,6589 13,1395	Probabilidade(%) ,0 ,0 ,0 ,0 ,0 19,0077 21,1515
VARIÁVEL: x Partição (54-51)vs(5-30)vs(54)vs(55)vs(9-34)vs(59-34)vs(55)v	(5- 15 9- 15) - 51) 50- 15 40- 30	Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat Testes compara Arquivo com os Data Teste : Scott QMR: 157,	os áveis dade do Resid tições ficância amentos tivos de médi QMR e Knott Nível: Bo 27365,7955 6467,5361 5333,7046 852,2413	Ag C: 2 2 3 5 5 5 5 5 72 178,3138 55,7375 60,1305 31,4448	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010 	N.Rep : 5 GL 48,1783 43,7985 4,3798 30,6589	Probabilidade(%) ,0 ,0 ,0 ,0 19,0077
VARIÁVEL: x Partição (54- 51)vs (5- 30)vs((54)vs(5- 47)vs((5- 47)vs(55)vs(53)vs(55)vs(53)vs(55)vs(55)vs	(5- 15 9- 15) - 51) 50- 15 40- 30	Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat Testes compara Arquivo com os Data Teste : Scott QMR: 157,	os áveis dade do Resid tições ficância amentos tivos de médi QMR e Knott Nível: Eo 27365,7955 6467,3361 5333,7046 852,241 390,2244 1190,7778 87,6002	Ag C: 22 5 5 55 as Sc 01 778,3138 55,7375 60,1305 31,4448 31,7922 36,5878	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010 	N.Rep: 5 GL 48,1783 43,7985 4,3798 30,6589 13,1395 3,5039	Probabilidade(%) ,0 ,0 ,0 ,0 19,0077 21,1515 ,0
VARIÁVEL: x Partição (54-51)vs (5-30)vs (5-4)vs (5-4)vs (5-4)vs (5-4)vs (5-4)vs (5-4)vs (5-4)vs (5-4)vs (5-4)vs	(5- 15 9- 15) - 51) 50- 15 40- 30	Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat Testes compara Arquivo com os Data	os áveis dade do Resid tições ficância amentos tivos de médi QMR e Knott Nível: Eo 27365,7955 6467,3361 5333,7046 852,2413 390,2244 1190,7778 87,6002	Ag C: 2 2 5 5 5 55 as Sc 01 178,3138 55,7375 60,1305 31,4448 31,7922 36,5878 31,4121 Grupo	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010 	N.Rep: 5 GL 48,1783 43,7985 4,3798 30,6589 13,1395 3,5039	Probabilidade(%) ,0 ,0 ,0 ,0 19,0077 21,1515 ,0
VARIÁVEL: x Partição (54-51)vs (5-30)vs (54-7)vs (5-47)vs (55)vs (53)vs (37-47)vs (55)vs (53)vs (37-47)vs	(5- 15 9- 15) - 51) 50- 15 40- 30	Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat Testes compara Arquivo com os Data Teste : Scott QMR: 157,	os áveis dade do Resid tições ficância amentos tivos de médi OMR e Knott Nível: Bo 27365,7955 6467,5361 5333,7046 852,2413 390,2244 1190,7778 87,6002	Ag C: 22 30 22 5 5 55 55 8c 01 178,3138 55,7375 60,1305 31,4448 31,7922 36,5878 31,4121 Grupo	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010 	N.Rep: 5 GL 48,1783 43,7985 4,3798 30,6589 13,1395 3,5039	Probabilidade(%) ,0 ,0 ,0 ,0 19,0077 21,1515 ,0
VARIÁVEL: x Partição (54-51)vs (5-30)vs (5-4)vs (5-4)vs (5-4)vs (5-47)vs (5-47)vs (55)vs (53)vs (37: Tratamento 54 AZULAO 55 BAIO 53 95N 37 48N	(5- 15 9- 15) - 51) 50- 15 40- 30	Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat Testes compara Arquivo com os Data	os áveis dade do Resid tições ficância amentos tivos de médi QMR e Knott Nível: Bo 27365,7955 6467,3361 5333,7046 852,2413 390,2244 1190,7778 87,6002	Ag C: 2 2 5 5 5 55 as Sc 01 178,3138 55,7375 60,1305 31,4448 31,7922 36,5878 31,4121 Grupo	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010 	N.Rep: 5 GL 48,1783 43,7985 4,3798 30,6589 13,1395 3,5039	Probabilidade(%) ,0 ,0 ,0 ,0 19,0077 21,1515 ,0
VARIÁVEL: x Partição (54-51)vs (5-30)vs((54)vs(55-47)vs((55-47)vs((55)vs(53-53)vs(53)vs(53)vs(53)vs(53)vs(53)vs(53)vs(55-47)vs(55-47)vs(55-47)vs(55-47)vs(55-47)vs(55-47)vs(55-58)vs(55-58)v	(5- 15 9- 15) - 51) 50- 15 40- 30	Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat Testes compara Arquivo com os Data	os áveis dade do Resid tições ficância amentos tivos de médi QMR 	Ag C: 22 5 5 55 55 as Sc 01 178,3138 55,7375 60,1305 31,4448 31,7922 36,5878 31,4121 Grupo a b c c c d	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010 	N.Rep: 5 GL 48,1783 43,7985 4,3798 30,6589 13,1395 3,5039	Probabilidade(%) ,0 ,0 ,0 ,0 19,0077 21,1515 ,0
VARIÁVEL: x Partição (54- 51)vs (5- 30)vs (54)vs (55)vs (5- 47)vs (55)vs (53)vs (37) Tratamento 54 AZULAO 53 95N 37 48N 51 92N	(5- 15 9- 15) - 51) 50- 15 40- 30	Programa GENES Arquivo de dad Número de vari Graus de Liber Número de Repe Nível de Signi Número de Trat Testes compara Arquivo com os Data	os áveis dade do Resid tições ficância amentos tivos de médi QMR e Knott Nível: Bo 27365,7955 6467,3361 5333,7046 852,2413 390,2244 1190,7778 87,6002	Ag C: 22 5 55 55 as Sc 01 778,3138 55,7375 60,1305 31,4448 31,7922 36,5878 31,4121 Grupo a b c c c	rupamento de Média \Users\Usuário\Doc 0 ott-Knott Original -22-2010 	N.Rep: 5 GL 48,1783 43,7985 4,3798 30,6589 13,1395 3,5039	Probabilidade(%) ,0 ,0 ,0 ,0 19,0077 21,1515 ,0

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott).

(scott & Kr	iott).			
3 BAG 35 36N	37,412 35,62	d d				
48 83N	35,08	d				
21 V42 27 V67	34,36 34,218	d d				
8 V10	33,962	d				
47 80N 40 66N	32,92 28,378	d d				
41 67N	27,38	d				
25 V51 30 16N	24,368 23,118	d d				
9 V12	21,172		e			
2 AR 31 17N	21,162 19,64	e e				
45 73N	17,056	e				
28 V69 38 49N	15,46 15,38	e e				
29 13N	15,002	e				
26 V66 24 V50	14,348 14,338	e e				
39 51N	14,138	e				
18 V32 22 V47	14,02 12,072	e e				
46 79N	11,558	e				
49 87N 34 33N	11,422 10,462	e e				
50 89N	9,58	e				
12 V24 44 71N	8,942 8,408	e e				
32 20N	7,458	e				
10 V13 16 V30	6,612 6,44	e e				
17 V31	5,918	e				
1 pensacola 42 69N	5,778 5,3	e e				
52 93N	5,118	e				
6 V5 11 V23	4,94 4,732	e e				
19 V35	4,66	е				
36 37N 7 V9	4,582 3,698	e e				
4 V2	2,968	е				
14 V27 23 V49	2,458 2,252	e e				
13 V26	2,13	е				
15 V29	1,572	e				
VARIÁVEL: x 2 QMR:	: 117,	Nível:	5	GLRes : 220	N.Rep : 5	
VARIÁVEL: x 2 QMR: Partição		Nível:	5 V ²	GLRes : 220	N.Rep : 5	Probabilidade(%)
Partição		Во	V²	Lambda	GL	
Partição (54-37)vs(51-15) (51-30)vs(2-15)		Bo 18522,2421 6544,5149	V ² 126,9793 49,6912	Lambda 200,7101 181,2201	GL 48,1783 44,6744	, 0
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37)		Bo 18522,2421 6544,5149 2726,1028	V ² 126,9793 49,6912 36,0658	Lambda 200,7101 181,2201 104,0052	GL 48,1783 44,6744 3,5039	,0 ,0 ,0
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30)		Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155	V ² 126,9793 49,6912 36,0658 24,2777 24,9137	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972	GL 48,1783 44,6744 3,5039 31,5349 13,1395	,0 ,0 ,0 3,4086 4,1448
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30) (55)vs(53- 37)		Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279	,0 ,0 ,0 3,4086 4,1448 ,9952
Partição (54-37)vs(51-15) (51-30)vs(2-15) (54)vs(55-37) (2-34)vs(50-15) (51-47)vs(40-30) (55)vs(53-37) (50-1)vs(42-15) (2-45)vs(38-34)		Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 107,0439	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001
Partição (54-37)vs(51-15) (51-30)vs(2-15) (54)vs(55-37) (2-34)vs(50-15) (51-47)vs(40-30) (55)vs(53-37) (50-1)vs(42-15) (2-45)vs(38-34) (40-25)vs(30)		Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 107,0439 1,3557	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412
Partição (54-37)vs(51-15) (51-30)vs(2-15) (54)vs(55-37) (2-34)vs(50-15) (51-47)vs(40-30) (55)vs(53-37) (50-1)vs(42-15) (2-45)vs(38-34)		Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 107,0439	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30) (55)vs(53- 37) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47)		Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 107,0439 1,3557 218,6263 19,5187	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30) (55)vs(53- 37) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(37) Tratamento 54 AZULAO	Média 132,39	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 1,3557 218,6263 19,5187	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30) (55)vs(53- 37) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47) (53)vs(37) Tratamento 54 AZULAO 55 BAIO	Média 132,39 83,21	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 107,0439 1,3557 218,6263 19,5187	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37) vs (51- 15) (51- 30) vs (2- 15) (54) vs (55- 37) (2- 34) vs (50- 15) (51- 47) vs (40- 30) (55) vs (53- 37) (50- 1) vs (42- 15) (2- 45) vs (38- 34) (40- 25) vs (30) (51- 5) vs (33- 47) (53) vs (37) Tratamento 54 AZULAO 55 BATO 53 95N 37 48N	Média 132,39 83,21 69,67 63,422	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 1,3557 218,6263 19,5187	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30) (55)vs(53- 37) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47) (53)vs(37) Tratamento 54 AZULAO 55 BAIO 53 95N 37 48N 51 92N	Média 132,39 83,21 69,67 63,422 48,53	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 107,0439 1,3557 218,6263 19,5187 a b c c d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30) (55)vs(53- 37) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47) (53)vs(37) Tratamento 54 AZULAO 55 BATO 53 95N 37 48N 51 92N 5 V4 33 30N	Média 132,39 83,21 69,67 63,422 48,53 43,962 39,202	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 1,3557 218,6263 19,5187 a b c d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (55- 47)vs(40- 30) (55)vs(53- 37) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47) (53)vs(37) Tratamento 54 AZULAO 55 BATO 53 95N 37 48N 51 92N 5 V4 33 30N 20 V41	Média 132,39 83,21 69,67 63,422 48,53 43,962 39,202 38,026	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 107,0439 1,3557 218,6263 19,5187 a b c d d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30) (55)vs(53- 37) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47) (53)vs(37) Tratamento 54 AZULAO 55 BAIO 53 95N 37 48N 51 92N 5 V4 33 30N 20 V41 43 70N 3 Bagual	Média 132,39 83,21 69,67 63,422 48,53 43,962 39,202 38,026 36,77 35,73	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 1,3557 218,6263 19,5187 a b c d d d d d d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (55)vs(53- 37) (50- 1)vs(42- 15) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47) (53)vs(37) Tratamento 54 AZULAO 55 BAIO 53 95N 37 48N 51 92N 5 V4 33 30N 20 V41 43 70N 3 Bagual 21 V42	Média 132,39 83,21 69,67 63,422 48,53 43,962 38,026 36,77 35,73 33,982	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 107,0439 1,3557 218,6263 19,5187 a b c d d d d d d d d d d d d d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37) vs (51- 15) (51- 30) vs (2- 15) (54) vs (55- 37) (2- 34) vs (50- 15) (51- 47) vs (40- 30) (55) vs (53- 37) (50- 1) vs (42- 15) (2- 45) vs (38- 34) (40- 25) vs (30) (51- 5) vs (33- 47) (53) vs (37) Tratamento 54 AZULAO 55 BATO 53 95N 37 48N 51 92N 5 V4 33 30N 20 v41 43 70N 3 Bagual 21 v42 35 36N 27 v67	Média 132,39 83,21 69,67 63,422 48,53 43,962 39,202 38,026 36,77 35,73 33,982 33,96 32,688	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 1,3557 218,6263 19,5187 a b c d d d d d d d d d d d d d d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (55)vs(53- 37) (50- 1)vs(42- 15) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47) (53)vs(37) Tratamento 54 AZULAO 55 BAIO 53 95N 37 48N 51 92N 5 V4 33 30N 20 V41 43 70N 3 Bagual 21 V42 35 36N 27 V67 48 83N	Média 132,39 83,21 69,67 63,422 48,53 43,962 39,202 38,026 36,77 35,73 33,96 32,688 32,658	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 107,0439 1,3557 218,6263 19,5187 a a b c c d d d d d d d d d d d d d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30) (55)vs(53- 37) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47) (53)vs(37) Tratamento 54 AZULAO 55 BATO 53 95N 37 46N 51 92N 5 V4 33 30N 20 v41 43 70N 3 Bagual 21 v42 35 36N 27 v67 48 83N 8 V10 47 80N	Média 132,39 83,21 69,67 63,422 48,53 43,962 39,202 38,026 36,77 35,73 33,982 32,658 32,658 32,658 32,63 32,282	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 1,3557 218,6263 19,5187 a b c d d d d d d d d d d d d d d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37) vs (51- 15) (51- 30) vs (2- 15) (54) vs (55- 37) (2- 34) vs (50- 15) (51- 47) vs (40- 30) (55) vs (53- 37) (50- 1) vs (42- 15) (2- 45) vs (38- 34) (40- 25) vs (30) (51- 5) vs (33- 47) (53) vs (37) Tratamento 54 AZULAO 55 BAIO 53 95N 37 48N 51 92N 5 V4 33 30N 20 v41 43 70N 3 Bagual 21 V42 35 36N 27 V67 48 83N 8 V10	Média 132,39 83,21 69,67 63,422 48,53 43,962 39,202 38,026 36,77 35,73 33,982 33,96 32,688 32,658	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 1,3557 218,6263 19,5187 a b c c d d d d d d d d d d d d d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30) (55)vs(53- 37) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47) (53)vs(37) Tratamento 54 AZULAO 55 BATO 53 95N 37 48N 51 92N 5 V4 33 30N 20 v41 43 70N 3 Bagual 21 v42 35 36N 27 v67 48 83N 8 V10 47 80N 40 66N 25 V51 30 16N	Média 132,39 83,21 69,67 63,422 48,53 43,962 39,202 38,026 36,77 35,73 33,982 32,688 32,688 32,688 32,63 32,282 24,328 24,328 24,328 24,528	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 188,126 59,6599 107,0439 1,3557 218,6263 19,5187 a b c d d d d d d d d d d d d d d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37) vs (51- 15) (51- 30) vs (2- 15) (54) vs (55- 37) (2- 34) vs (50- 15) (51- 47) vs (40- 30) (55) vs (53- 37) (50- 1) vs (42- 15) (2- 45) vs (38- 34) (40- 25) vs (30) (51- 5) vs (33- 47) (53) vs (37) Tratamento 54 AZULAO 55 BATO 53 95N 37 48N 51 92N 5 V4 33 30N 20 v41 43 70N 3 Bagual 21 v42 35 36N 27 v67 48 83N 8 V10 47 80N 40 66N 25 V51	Média 132,39 83,21 69,67 63,422 48,53 43,962 38,026 36,77 35,73 33,982 33,96 32,688 32,658 32,63 32,282 24,328 23,568	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 1,3557 218,6263 19,5187 a b c c d d d d d d d d d d d d d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30) (55)vs(53- 37) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47) (53)vs(37) Tratamento 54 AZULAO 55 BATO 53 95N 37 48N 51 92N 5 V4 33 30N 20 v41 43 70N 3 Bagual 21 v42 35 36N 27 v67 48 83N 8 V10 47 80N 40 66N 25 V51 30 16N 2 AR 31 17N 9 V12	Média 132,39 83,21 69,67 63,422 48,53 43,962 39,202 38,026 36,77 35,73 33,982 32,658 32,658 32,63 32,282 24,328 26,53 36,53 36,53 36,53 36,53 36,53 36,53 36,53 36,53 36,53 36,53 36,53 36,53 36,53 36,53 36,53 37,53 38	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 107,0439 1,3557 218,6263 19,5187 a b c d d d d d d d d d d d d d f f f f	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37) vs (51- 15) (51- 30) vs (2- 15) (54) vs (55- 37) (2- 34) vs (50- 15) (51- 47) vs (40- 30) (55) vs (53- 37) (50- 1) vs (42- 15) (2- 45) vs (38- 34) (40- 25) vs (30) (51- 5) vs (33- 47) (53) vs (37) Tratamento 54 AZULAO 55 BATO 53 95N 37 48N 51 92N 5 V4 33 30N 20 v41 43 70N 3 Bagual 21 v42 35 36N 27 v67 48 83N 8 V10 47 80N 40 66N 25 V51 30 16N 2 AR 31 17N	Média 132,39 83,21 69,67 63,422 48,53 43,962 38,026 36,77 35,73 33,982 33,96 32,688 32,658 32,658 32,282 24,328 23,568 22,522 20,442 18,96	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 1,3557 218,6263 19,5187 a b c d d d d d d d d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37)vs(51- 15) (51- 30)vs(2- 15) (54)vs(55- 37) (2- 34)vs(50- 15) (51- 47)vs(40- 30) (55)vs(53- 37) (50- 1)vs(42- 15) (2- 45)vs(38- 34) (40- 25)vs(30) (51- 5)vs(33- 47) (53)vs(37) Tratamento 54 AZULAO 55 BAIO 53 95N 37 48N 51 92N 5 V4 33 30N 20 v41 43 70N 3 Bagual 21 v42 35 36N 27 v67 48 83N 8 V10 47 80N 40 66N 25 V51 30 16N 2 AR 31 17N 9 V12 41 67N 45 73N 38 49N	Média 132,39 83,21 69,67 63,422 48,53 43,962 39,202 38,026 36,77 35,73 33,982 32,658 32,658 32,63 32,282 24,328 24,328 24,328 24,328 24,328 27,522 20,442 18,96 18,458 17,318 16,94 14,992	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 188,126 59,6599 107,0439 1,3557 218,6263 19,5187 a b c d d d d d d d d d d f f f f f f f	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362
Partição (54- 37) vs (51- 15) (51- 30) vs (2- 15) (54) vs (55- 37) (2- 34) vs (50- 15) (51- 47) vs (40- 30) (55) vs (53- 37) (50- 1) vs (42- 15) (2- 45) vs (38- 34) (40- 25) vs (30) (51- 5) vs (33- 47) (53) vs (37) Tratamento 54 AZULAO 55 BATO 53 95N 37 48N 51 92N 5 V4 33 30N 20 v41 43 70N 3 Bagual 21 v42 35 36N 27 v67 48 83N 8 V10 47 80N 40 66N 25 v51 30 16N 2 AR 31 17N 9 V12 41 67N 45 73N	Média 132,39 83,21 69,67 63,422 48,53 43,962 39,202 38,026 36,77 35,73 33,982 33,96 32,688 32,658 32,658 32,63 32,282 24,328 24,328 24,328 25,522 20,442 18,96 18,458 17,318 16,94	Bo 18522,2421 6544,5149 2726,1028 837,5502 420,0155 185,126 59,6599 1,3557 218,6263 19,5187 a b c d d d d d d d d d d d d	V ² 126,9793 49,6912 36,0658 24,2777 24,9137 24,0029 21,8294 22,4004 23,0926 23,4184 23,2771 Grupo	Lambda 200,7101 181,2201 104,0052 47,4692 23,1972 10,6124 3,7605 6,5753 ,0808 12,8456	GL 48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 17,5194 14,0155 2,6279 10,5116	,0 ,0 ,0 3,4086 4,1448 ,9952 99,972 95,0001 98,7412 26,7362

24 V50	13,67	f
39 51N	13,432	f
18 V32	13,282	f
29 13N	12,852	f
22 V47	12,072	f
49 87N	11,332	f
46 79N	11,038	f
34 33N	10,08	f
50 89N	9,18	g
44 71N	8,34	g
12 V24	8,162	g
32 20N	6,36	g
16 V30	6,342	g
10 V13	6,32	g
17 V31	5,71	g
1 pensacola	5,55	g
42 69N	5,128	g
52 93N	4,738	g
11 V23	4,668	g
6 V5	4,592	g
36 37N	4,458	g
19 V35	4,292	g
7 V9	2,98	g
4 V2	2,762	g
14 V27	2,4	g
13 V26	2,08	g
23 V49	2,03	g
15 V29	1,512	g

Corte 6

Programa GENES
Arquivo de dados
Número de variáveis
Número de genótipos
Número de testemunhas Inteiramente ao acaso com testemunhas adicionais C:\Users\Usuário\Documents\genes\corte 6.dat

01-22-2010

ANÁLISE DE VARIÂNCIA DA VARIÁVEL => x 1

FV GI		SQ	QM	F	Probabilidade
TRATAMENTOS	54	433417,633498	8026,252472	49,2038	, 0
RESÍDUO	220	35886,9467	163,122485		
TOTAL	274	469304,5802			
MÉDIA geral			28,276545454545	5	
CV (%)			45,167969111854	2	
		PARÂME'	TROS GENÉTICOS E AMB:	IENTAIS- Obtidos	para genótipos
		ICA (média)	TROS GENÉTICOS E AMB:	IENTAIS- Obtidos	para genótipos
VARIÂNCIA E VARIÂNCIA <i>E</i>		ICA (média)	TROS GENÉTICOS E AMB		para genótipos
VARIÂNCIA A	MBIENT	ICA (média)	TROS GENÉTICOS E AMB:	1605,250494	para genótipos
VARIÂNCIA A	MBIENT ENOTÍP	TICA (média) PAL (média)		1605,250494 32,624497	para genótipos
VARIÂNCIA A VARIÂNCIA O HERDABILIDA	MBIENT ENOTÍF DE (US	TICA (média) PAL (média) TICA (média)) - ° ° °	1605,250494 32,624497 1572,625997	para genótipos
VARIÂNCIA A VARIÂNCIA O HERDABILIDA CORRELAÇÃO	MBIENT ENOTÍF DE (US INTRAC	ICA (média) AL (média) ICA (média) : média da família) - 8)- 8	1605,250494 32,624497 1572,625997 97,9676	para genótipos
VARIÂNCIA A VARIÂNCIA O HERDABILIDA CORRELAÇÃO COEFICIENTE	MBIENT ENOTÍF DE (US INTRAC DE VA	ICA (média) AL (média) ICA (média) : média da família LLASSE (US: parcela) - %)- %)	1605,250494 32,624497 1572,625997 97,9676 90,6022	para genótipos

ANÁLISE DE VARIÂNCIA DA VARIÁVEL => x 2

FV	GL	SQ	QM	F	Probabilidade
TRATAMENT	OS 54	252544,180644	4676,744086	48,4858	, 0
RESÍDUO	220	21220,3272	96,456033		
TOTAL	274	273764,5078			
MÉDIA ger	al		22,9803636363636		
CV (%)			42,7373708152778		

PARÂMETROS GENÉTICOS E AMBIENTAIS- Obtidos para genótipos

VARIANCIA FENOTIFICA (Media)	935,34881/
VARIÂNCIA AMBIENTAL (média)	19,291207
VARIÂNCIA GENOTÍPICA (média)	916,057611
HERDABILIDADE (US: média da família) - %	97,9375
CORRELAÇÃO INTRACLASSE (US: parcela) - %	90,4736
COEFICIENTE DE VARIAÇÃO GENÉTICO (%)	131,7057
RAZÃO CVg/CVe - Média dos genótipos	3,0817

	COV	ARIÂNCIAS FEN	OTÍPICAS			
1605,250494 1213						
1213,721434 935,						
1570 (05007 1100		ARIÂNCIAS GENO	OTIPICAS			
1572,625997 1189 1189,057568 916,						
	COV	ARIÂNCIAS RES	IDUAIS			
163,122485 123,3 123,319331 96,45						
		RELAÇÕES FENO	rípicas			
1, ,9905						
,9905 1,						
	CORI	RELAÇÕES GENO	TÍPICAS			
1, ,9907 ,9907 1,						
	CORI	RELAÇÕES RESII	DUAIS			
1, ,9831 ,9831 1,						
	Programa GENE			grupamento de Média		===
	Arquivo de dao Número de var:	ios		:\Users\Usuário\Doc		d.dat
	Graus de Libe: Número de Repe		duo 2 5	20		
	Nível de Sign: Número de Tra	tamentos	5 5	5		
	Testes compara Arquivo com o		ias S	cott-Knott Original		
		S QMR				
	Data	======================================	0	1-22-2010		===
			0	1-22-2010		===
VARIÁVEL: x 1	Data =======	e Knott		1-22-2010 	N.Rep : 5	===
VARIÁVEL: x 1 — Partição	Data Teste : Scott	e Knott			N.Rep : 5	=== Probabilidade
Partição (54- 53)vs(33- (33- 41)vs(34-	Data Teste : Scott QMR: 163,	e Knott Nivel: Bo 66625,8336 9028,2046	5 V ² 341,292 71,328	GLRes: 220 Lambda 8 268,6113 174,1606	GL 48,1783 43,7985	, 0
Partição (54- 53)vs(33- (33- 41)vs(34- (54- 37)vs(55- (34- 36)vs(26-	Data Teste : Scott QMR: 163, 50) 50) 53) 53)	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807	5 V ² 341,292 71,328 67,3028 32,8375	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185	GL 48,1783 43,7985 4,3798 33,2868	,0 ,0 ,0 16,308
Partição (54- 53)vs(33- (33- 41)vs(34- (54- 37)vs(55- (34- 36)vs(26- (33- 3)vs(35- (55)vs(5- 53)	Data Teste : Scott QMR: 163, 50) 50) 53) 53)	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279	,0 ,0 ,0 16,308 ,0007 1,63
Partição (54- 53)vs(33- (33- 41)vs(34- (54- 37)vs(55- (34- 36)vs(26- (33- 3)vs(35- (55)vs(5- 53) (54)vs(37) (35- 43)vs(48-	Data Teste : Scott QMR: 163, 50) 50) 53) 50) 41)	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597	,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661
Partição (54- 53) vs (33- (33- 41) vs (34- (54- 37) vs (55- (34- 36) vs (26- (33- 3) vs (35- (55) vs (5- 53) (54) vs (37) (35- 43) vs (48- (33) vs (3)	Data Teste : Scott QMR: 163, 50) 50) 53) 50) 41)	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519	,0 ,0 ,0 16,308 ,0007 1,63 ,4088
Partição (54- 53)vs(33- (33- 41)vs(34- (54- 37)vs(55-	Data Teste : Scott QMR: 163, 50) 50) 53) 50) 41)	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324 32,5324 33,3001	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54- 53)vs(33- (33- 41)vs(34- (54- 37)vs(55- (34- 36)vs(26- (33- 3)vs(35- (55)vs(5- 53) (54)vs(37) (35- 43)vs(48- (33)vs(3) (5)vs(53) Tratamento	Data Teste : Scott QMR: 163, 50) 50) 53) 50) 41) 41) Méd: 196,78:	e Knott Nível: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54- 53)vs(33- (33- 41)vs(34- (54- 37)vs(55- (34- 36)vs(26- (33- 3)vs(35- (55)vs(5- 53) (54)vs(37) (35- 43)vs(48- (33)vs(3) (5)vs(55) Tratamento	Data Teste : Scott QMR: 163, 50) 50) 53) 50) 41) 41)	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54- 53)vs(33- (33- 41)vs(34- (54- 37)vs(55- (34- 36)vs(26- (33- 3)vs(35- (55)vs(5- 53) (54)vs(37) (35- 43)vs(48- (33)vs(3) (5)vs(55) Tratamento 54 AZULAO 37 48N 55 BAIO	Data Teste: Scott QMR: 163, 50) 50) 53) 50) 41) 41) Méd: 196,78: 174,21: 119,34!	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo a b	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54-53)vs(33-(33-41)vs(34-54-37)vs(55-(34-36)vs(26-(33-3)vs(35-(55)vs(5-53)(54)vs(37)(35-43)vs(35)(55)vs(55)vs(55)vs(55)vs(55)vs(55)vs(55)vs(55)vs(55)vs(55)vs(55)vs(55)vs(55)vs(55) Tratamento 54 AZULAO 37 48N 55 BAIO 5 V4 53 95N	Data Teste: Scott QMR: 163, 50) 50) 53) 50) 41) 41) Méd: 196,78: 174,21: 119,34! 106,64: 94,712 94,712	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo a b c d d e f	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54- 53)vs(33- (33- 41)vs(34- (54- 37)vs(55- (34- 36)vs(26- (33- 3)vs(35- (55)vs(5- 53) (54)vs(37) (35- 43)vs(37) (35- 43)vs(5)vs(53) Fratamento 54 AZULAO 37 48N 55 BAIO 5 V4 53 95N 33 30N 3 BAG 35 36N 8 V10	Data Teste: Scott QMR: 163, 50) 50) 53) 50) 41) 41) Méd: 196,78: 174,21: 119,34: 106,64: 94,712: 74,298 53,292 46,858 42,69	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo a b c d d e f g g	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54- 53) vs (33- (33- 41) vs (34- 54) vs (54- 37) vs (55- 34- 36) vs (26- (33- 3) vs (35- (55) vs (5- 53) (54) vs (37) (35- 43) vs (35- (33) vs (35- 43) vs (36- 23) vs (55) vs (53) Tratamento 54 AZULAO 37 48N 55 BAIO 5 V4 5 V4 5 V4 5 V4 5 V5 5 V4 5 V4 5 V4	Data Teste: Scott QMR: 163, 50) 50) 50) 53) 50) 41) 41) Méd: 196,78: 174,21: 119,34: 106,64: 94,712 74,298 53,292 46,858 42,69 39,97 38,27 38,27	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624 i.a	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo a b c d d e e f g g g g	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54-53)vs(33- (33-41)vs(34- (54-37)vs(55- (34-36)vs(26- (33-3)vs(35- (55)vs(5-53) (54)vs(37) (35-43)vs(48- (33)vs(3) (5)vs(53) Fratamento 54 AZULAO 37 48N 55 BAIO 5 V4 53 95N 33 30N 3 BAG 35 36N 8 VIO 44 73 NN 20 V41 43 70N 48 83N	Data	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624 i.a	5 V ² 341,292 71,328 67,3028 82,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo a b c d d e f g g g g g g	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54- 53)vs(33- (33- 41)vs(34- (54- 37)vs(55- (34- 36)vs(26- (33- 3)vs(35- (55)vs(5- 53) (54)vs(37) (35- 43)vs(48- (33)vs(3) (5)vs(55) Tratamento 54 AZULAO 37 48N 55 BAIO 5 V4 53 95N 33 30N 3 BAG 35 36N 8 V10 45 73N 20 V41 43 70N 48 83N 21 V42 25 V51	Data Teste: Scott QMR: 163, 50) 50) 53) 50) 41) 41) Méd: 196,78: 174,21: 119,34: 106,64: 94,712 74,298 53,292 46,858 42,69 39,97 38,27 37,738 36,088 35,29 33,15	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624 i.a	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo a b c d d e f g g g g	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54- 53) vs (33- (33- 41) vs (34- 54) vs (54- 37) vs (55- 34- 36) vs (26- (33- 3) vs (35- (55) vs (5- 53) (54) vs (37) (35- 43) vs (48- 33) vs (33) vs (55) vs (53) Tratamento 54 AZULAO 37 48N 55 BAIO 5 V4 58 BAIO 5 V4 59 SAIO 33 30N 3 BAG 33 30N 3 BAG 35 36N 8 V10 45 73N 20 V41 43 70N 48 83N 21 V42	Data Teste: Scott QMR: 163, 50) 50) 50) 53) 50) 41) 41) Méd: 196,78: 174,21: 119,34: 106,64: 94,712 74,298 53,292 46,858 42,69 39,97 38,27 37,738 36,088 35,29	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624 i.a	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo a b c d d e e f g g g g g g g	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54-53)vs(33-(33-41)vs(34-(54-37)vs(55-(34-36)vs(26-(33-3)vs(35-(55)vs(5-53)(54)vs(37)(35-43)vs(48-(33)vs(3)(5)vs(53) Tratamento 54 AZULAO 37 48N 55 BAIO 5 V4 53 95N 33 30N 33 30N 33 BAG 35 36N 8 V10 45 73N 20 V41 43 70N 48 83N 21 V42 25 V51 47 80N	Data	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624	5 V ² 341,292 71,328 67,3028 82,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo a b c d d e f g g g g g g g g g g g g g	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54- 53) vs (33- (33- 41) vs (34- 54) vs (54- 57) vs (55- 34- 36) vs (26- (33- 3) vs (35- (55) vs (5- 53) (54) vs (37) (35- 43) vs (48- 33) vs (33) vs (33) vs (55) vs (53) Tratamento 54 AZULAO 37 48N 55 BAIO 5 V4 53 95N 33 30N 3 BAG 35 36N 8 V10 45 73N 20 V41 43 70N 48 83N 21 V42 25 V51 47 80N 41 67N 34 33N 2 AR 39 51N	Data Teste: Scott QMR: 163, 50) 50) 50) 53) 50) 41) 41) Méd: 196,78: 174,21: 119,34: 106,64: 94,712 74,298 53,292 46,858 42,69 39,97 38,27 37,738 36,088 35,29 33,15 28,542 28,002 21,892 21,002 18,952	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo a b c d d e f f g g g g g g g g g g g g g g g g g	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54-53)vs(33-(33-41)vs(34-54-77)vs(55-34-36)vs(26-(33-3)vs(35-(55)vs(5-53) (55)vs(5-53) (55)vs(5-53) (5)vs(53) Tratamento 54 AZULAO 37 48N 55 BATO 5 V4 53 95N 33 30N 33 BAG 35 36N 8 V10 41 43 70N 48 83N 21 V42 25 V51 47 80N 41 67N 34 33N 2 2 AR 39 51N 51 92N 51 92N 51 17N	Data	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624 ia	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5527 33,4536 32,5524 33,301 32,6269 Grupo a b c d d e e f g g g g g g g g g g g g g g g g g	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54- 53) vs (33- (33- 41) vs (34- (54- 37) vs (55- (34- 36) vs (26- (33- 3) vs (35- (55) vs (5- 53) (54) vs (37) (35- 43) vs (48- (33) vs (33) (5) vs (53) Tratamento 54 AZULAO 37 48N 55 BAIO 5 V4 53 95N 33 30N 3 BAG 35 36N 8 V10 45 73N 20 V41 43 70N 48 83N 21 V42 25 V51 47 80N 41 67N 34 33N 2 AR 39 51N 51 92N 31 17N 18 V32 29 13N	Data	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624 ia	5 V ² 341,292 71,328 67,3028 82,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo a b c d d e f g g g g g g g g g g g g g g g g g h h h h h h	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891
Partição (54- 53) vs (33- (33- 41) vs (34- 54) vs (54- 57) vs (55- 53) (54) vs (55) vs (5- 53) (54) vs (37- 37) vs (48- 33) vs (35- 38) vs (35- 38) vs (36) vs (55) vs (57- 58)	Data Teste: Scott QMR: 163, 50) 50) 50) 53) 50) 41) 41) Méd: 196,78: 174,21: 119,34: 106,64: 94,712 74,298 53,292 46,858 42,69 39,97 38,27 37,738 36,088 35,29 33,15 28,542 28,002 21,892 21,002 18,952 18,512 17,104 16,914	e Knott Nivel: Bo 66625,8336 9028,2046 7412,8603 982,8807 1227,1985 232,4041 254,7024 197,6158 220,6261 71,1624 ia	5 V ² 341,292 71,328 67,3028 32,8375 38,4926 33,5227 33,4536 32,5324 33,3001 32,6269 Grupo a b c d d e f f g g g g g g g g g g g g g g g g g	GLRes: 220 Lambda 8 268,6113 174,1606 151,5519 41,185 43,8678 9,5392 10,4761 8,3582 9,1163	GL 48,1783 43,7985 4,3798 33,2868 10,5116 2,6279 1,7519 8,7597 1,7519	,0 ,0 ,0 ,0 16,308 ,0007 1,63 ,4088 52,4661 ,7891

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott).

9 V12	13,902	h
49 89N	12,69	h
28 V69	11,682	h
17 V31	11,59	h
22 V47	11,538	h
36 37N	10,59	h
26 V66	9,24	h
11 V23	9,24	h
42 69N	8,25	h
24 V50	8,1	h
14 V27	7,928	h
46 79N	7,3	h
10 V13	6,888	h
30 16N	6,14	h
32 20N	5,622	h
1 pensacola	5,272	h
4 V2	5,05	h
27 V67	4,596	h
52 93N	4,25	h
7 V9	4,07	h
19 V35	3,938	h
15 V29	3,618	h
13 V26	3,2	h
6 V5	1,652	h
23 V49	1,502	h
38 49N	1,34	h
50 89N	,812	h

Partição	Во	V²	Lambda	GL	Probabilidade(%)
(37- 33) vs (3- 50)	39762,1282	199,0285	274,8926	48,1783	, 0
(3- 34) vs (2- 50)	5238,7772	40,6201	177,459	42,9225	, 0
(37- 54) vs (55- 33)	3481,6133	36,5837	130,9489	5,2558	, 0
(2- 28) vs (26- 50)	598,8345	19,6399	41,9543	33,2868	14,3849
(3- 35) vs (20- 34)	476,4421	20,9737	31,2567	9,6357	,0459
(55-53)vs(33)	543,6764	21,3268	35,0771	3,5039	,0001
(37) vs (54)	9,0993	19,068	,6566	1,7519	66,5475
(20- 47) vs (48- 34)	96,3103	19,0789	6,9459	6,1318	33,9709
(3) vs (8-35)	36,3869	19,0249	2,6317	3,5039	54,3612
(55-5) vs (53)	8,0597	18,9844	,5842	2,6279	85,7901

m	264 44 -		
Tratamento	Média	Grupo	
37 48N	136,018	a	
54 AZULAO	131,752	a	
55 BAIO	91,53	b	
5 V4	89,82	b	
53 95N	87,198	b	
33 30N	62,592	c	
3 BAG	46,72	d	
8 V10	40,642	d	
45 73N	39,412	d	
35 36N	39,21	d	
20 V41	31,608	e	
43 70N	30,768	е	
21 V42	30,628	e	
25 V51	30,06	e	
47 80N	27,74	e	
48 83N	22,96	е	
34 33N	20,94	е	
2 AR	19,56	f	
41 67N	17,16	f	
31 17N	16,204	f	
18 V32	16,122	f	
39 51N	14,198	f	
51 92N	12,872	f	
12 V24	12,11	f	
16 V30	11,648	f	
29 13N	11,632	f	
44 71N	11,2	f	
40 66N	10,522	f	
17 V31	10,242	f	
49 89N	9,95	f	
22 V47	9,908	f	
36 37N	9,802	f	
9 V12	9,36	f	
28 V69	8,66	f	
26 V66	7,268	f	
24 V50	7,11	f	
10 V13	6,888	f	
46 79N	6,768	f	
14 V27	6,324	f	
11 V23	6,292	f	
42 69N	6,048	f	
30 16N	5,68	f	
32 20N	5,47	f	
1 pensacolA	4,878	f	
27 V67	4,412	f	
52 93N	3,888	f	
19 V35	3,83	f	

4 V2	3,6	f
7 V9	3,482	f
15 V29	3,458	f
13 V26	2,6	f
6 V5	1,652	f
23 V49	1,372	f
38 49N	1,34	f
50 89N	,812	f

Cortes Período de Verão

Inteiramente ao acaso com testemunhas adicionais C:\Users\Usuário\Documents\genes\avaliacao verao.dat 2 55 Programa GENES Arquivo de dados Número de variáveis Número de genótipos Número de testemunhas 0 01-22-2010 Data

COVARIÂNCIAS RESIDUAIS

CORRELAÇÕES FENOTÍPICAS

		ANÁLISE DE VARIÂ	NCIA DA VARIÁVEL =>	x 1	
FV	GL	SQ	QM	F	Probabilidade
TRATAM	ENTOS 54	670464,959144	12416,017762	10,1745	, 0
RESÍDU	10 220	268468,6136	1220,31188		
TOTAL	274	938933,5727			
MÉDIA	geral		46,8448		
CV (%)			74,571697727531		
		PARÂME	TROS GENÉTICOS E AME	BIENTAIS- Obtidos	para genótipos
		PICA (média)		2483,203552	
	CIA AMBIENT			244,062376	
		PICA (média)		2239,141176	
		3: média da família		90,1715	
		CLASSE (US: parcela		64,7253	
		ARIAÇÃO GENÉTICO (%		101,0135	
	CVg/CVe - N MÉDIO DE F	Média dos genótipos		1,3546	
NUMERO	MEDIO DE F	REPETIÇOES		5,	
		ANÁLISE DE VARIÂ	NCIA DA VARIÁVEL =>	x 2	
FV	GL	SQ	QM	F	Probabilidade
TRATAM	ENTOS 54	125113,9485	2316,924972	8,811	,0
RESÍDU	10 220	57850 , 7862	262,958119	·	
TOTAL	274	182964,7347			
MÉDIA	geral		24,697236363636	54	
CV (%)			65,659101311229	16	
		PARÂME	TROS GENÉTICOS E AME	BIENTAIS- Obtidos	para genótipos
VARIÂN	CIA FENOTÍE	PICA (média)		463,384994	
	CIA AMBIENT			52,591624	
		PICA (média)		410,793371	
		3: média da família		88,6506	
CORREL	AÇÃO INTRAC	CLASSE (US: parcela) - %	60,9711	
COEFIC	IENTE DE VA	ARIAÇÃO GENÉTICO (%)	82,066	
RAZÃO	CVg/CVe - N	Média dos genótipos		1,2499	
VÚMERO	MÉDIO DE F	REPETIÇÕES		5,	
		COVARI	ÂNCIAS FENOTÍPICAS		
	03552 1042, 48798 463,				
		COVARI	ÂNCIAS GENOTÍPICAS		
	44486 005	4.04.5.0			
	41176 937,1 8153 410,79				
,					

1, ,9715

1220,31188 525,153227 525,153227 262,958119

a	7	1	5	- 1

	CORRELAÇÕES GENOTÍPICAS	
1, ,9771 ,9771 1,		
	CORRELAÇÕES RESIDUAIS	
1, ,9271 ,9271 1,		

Programa GENES Agrupamento de Médias
Arquivo de dados C:\Users\Usuário\Documents\genes\med.dat
Número de variáveis 2
Graus de Liberdade do Resíduo 220
Número de Repetições 5
Nível de Significância 5
Número de Tratamentos 55
Testes comparativos de médias Arquivo com os QMR
Data 01-22-2010

	Arquivo com os QMR Data		-22-2010		_
	Teste : Scott e Kno				_
VARIÁVEL: x 1	QMR: 1220,	Nível: 5	GLRes : 220	N.Rep : 5	
Partição	Во		Lambda	GL	Probabilidade(%)
(55- 54)vs(43- 4 (43- 47)vs(25- 4 (55)vs(37- 54) (25- 24)vs(10- 4 (43- 3)vs(41- 47 (37- 53)vs(54) (41- 40)vs(21- 4 (43- 48)vs(51- 3	1) 9362 1) 2816 2588 1) 2643 7) 4970 93,2 17) 323, 3) 222,	3,0963 682,8105 1,285 337,5113 ,8481 251,6265 ,122 225,1388 ,5216 252,5473 361 241,1457 8682 236,053 3619 238,9473	188,665 114,8082 14,1566 16,1538 27,0811 ,532 1,8879 1,2805	48,1783 44,6744 3,5039 31,5349 13,1395 2,6279 7,8837 5,2558	,0 ,0 ,4589 98,919 1,2998 87,2214 98,1675 94,7408
Tratamento	Média	Grupo			
55 Trat55 37 Trat37 53 Trat53 54 Trat54 43 Trat43 48 Trat48 51 Trat51 33 Trat5 3 Trat5 3 Trat5 3 Trat5 41 Trat41 31 Trat31 35 Trat5 45 Trat45 29 Trat29 40 Trat40 21 Trat21 27 Trat27 47 Trat47 25 Trat25 15 Trat15 20 Trat20 34 Trat34 38 Trat38 39 Trat39 17 Trat17 42 Trat42 8 Trat8 2 Trat2 9 Trat9 14 Trat14 46 Trat44 30 Trat30 24 Trat24 10 Trat10 11 Trat11 26 Trat26 17 Trat17 26 Trat27 27 Trat47 28 Trat29 17 Trat17 29 Trat9 14 Trat14 15 Trat16 16 Trat40 17 Trat17 17 Trat17 18 Trat17 19 Trat17 20 Trat20 21 Trat20 22 Trat20 23 Trat20 24 Trat24 25 Trat26 26 Trat16 26 Trat52 27 Trat52 28 Trat28	238,23 184,482 182,358 171,594 106,364 98,832 93,98 93,076 88,274 83,406 64,48 63,268 62,028 61,086 59,548 56,026 50,516 47,462 47,064 44,88 42,24 40,052 39,484 31,73 31,144 28,006 26,504 26,038 25,02 24,98 17,178 19,01 17,954 17,176 16,808 14,714 13,462 12,942 12,834	a b b b c c c c c d d d d d d d d e e e e e e e			
18 Trat18 13 Trat13 36 Trat36 6 Trat6 7 Trat7	12,008 11,684 10,17 9,86 9,076	e e e e			

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott).

50 Trat50	9,	e
22 Trat22	7,786	e
19 Trat19	5,99	е
23 Trat23	5,92	е
4 Trat4	4,322	е

VARIÁVEL: x 2 QMR: 2	862, Nível:	5	GLRes : 220	N.Rep : 5	
Partição	Во	V²	Lambda	GL	Probabilidade(%)
(55- 43) vs (48- 4)	15517,6594	132,912	160,6464	48,1783	, 0
(48- 8) vs (2- 4)	5781,6422	69,3898	114,6474	42,9225	, 0
(55- 37) vs (54- 43)	2192,3758	61,4835	49,0642	5,2558	, 0
(2- 14) vs (30- 4)	518,7878	48,7692	14,637	26,2791	96,6769
(48- 40) vs (27- 8)	450,3776	51,1293	12,1204	16,6434	77,4151
(54) vs (33-43)	103,551	52,1705	2,7311	2,6279	36,8725
(55) vs (53- 37)	68,587	52,0039	1,8147	2,6279	54,3187
Tratamento	Média	Grupo			
55 Trat55 53 Trat53	98,576	a			
37 Trat37	88,814 88,052	a a			
54 Trat54	61,892	b			
33 Trat33	50,54	b			
43 Trat43	48,318	b			
48 Trat48	44,196	С			
31 Trat31	40,	С			
5 Trat5	39,046	C			
51 Trat51	38,4	C			
47 Trat47	37,556	С			
3 Trat3	37,01	C			
35 Trat35 15 Trat15	34,524	С			
41 Trat41	34,05 32,762	c c			
21 Trat21	32,754	c			
45 Trat45	32,086	c			
34 Trat34	31,416	c			
40 Trat40	31,294	С			
27 Trat27	30,03	С			
25 Trat25	28,51	C			
38 Trat38	24,962	C			
29 Trat29	24,178	С			
20 Trat20	22,284	С			
8 Trat8 2 Trat2	21,85 18,966	c d			
17 Trat17	18,628	d			
42 Trat42	17,884	d			
39 Trat39	16,526	d			
24 Trat24	15,644	d			
44 Trat44	15,574	d			
46 Trat46	15,546	d			
10 Trat10	15,21	d			
14 Trat14	14,766	d			
30 Trat30 32 Trat32	11,358	d			
16 Trat16	11,088 10,558	d d			
49 Trat49	10,524	d			
9 Trat9	10,216	d			
11 Trat11	9,7	d			
26 Trat26	9,05	d			
18 Trat18	8,646	d			
36 Trat36	8,094	d			
28 Trat28	7,648	d			
1 Trat1	7,054	d			
6 Trat6 52 Trat52	6,93 6,752	d d			
52 Trat52 50 Trat50	5,91	a d			
12 Trat12	5,628	d			
13 Trat13	5,32	d			
19 Trat19	4,992	d			
22 Trat22	4,95	d			
7 Trat7	4,844	d			
23 Trat23	4,488	d			
4 Trat4	2,754	d			

Cortes Período Primavera

Programa GENES
Arquivo de dados
Número de variáveis
Número de genótipos
Número de testemunhas
Data

Inteiramente ao acaso com testemunhas adicionais
C:\Users\Usuário\Documents\genes\avaliacao primavera.dat
2
55
0
01-22-2010

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott). ANÁLISE DE VARIÂNCIA DA VARIÁVEL => x 1

FV GL		SQ	QM	F	Probabilidade
TRATAMENTOS	54	1563340,924378	28950,757859	73,3348	, 0
RESÍDUO		86850,4962	394,774983	75,5515	, ,
OTAL	274	1650191,4206			
MÉDIA geral			61,7885454545		
CV (%)			32,1563568747	201	
		PARÂMET	ROS GENÉTICOS E A	MBIENTAIS- Obtidos p	ara genótipos
VARIÂNCIA F VARIÂNCIA A				5790,151572 78,954997	
VARIÂNCIA G	ENOTÍPI	CA (média)		5711,196575	
		média da família)		98,6364 93,5346	
		ASSE (US: parcela) IAÇÃO GENÉTICO (%)	- 3	122,3082	
RAZÃO CVg/C	Ve - Mé	dia dos genótipos		3,8035	
NÚMERO MÉDI	O DE RE	PETIÇOES		5 , 	
		ANÁLISE DE VARIÂN	CIA DA VARIÁVEL =	> x 2	
FV GL		SQ	QM	F	Probabilidade
TRATAMENTOS	54	1024285,382114	18968,247817	70,51	, 0
RESÍDUO	220	59183,3416	269,015189		•
TOTAL	274	1083468,7237			
MÉDIA geral			53,6449454545		
CV (%)			30,5745161430		
			ROS GENÉTICOS E A	MBIENTAIS- Obtidos p	ara genótipos
VARIÂNCIA F				3793,649563	
VARIÂNCIA A VARIÂNCIA G				53,803038 3739,846526	
		média da família)	- %	98,5818	
		ASSE (US: parcela)	- %	93,2895	
		IAÇÃO GENÉTICO (%) dia dos genótipos		113,9982 3,7285	
NÚMERO MÉDI				5,	
		COVARIÂ	NCIAS FENOTÍPICAS		
5790,151572 4663,41267					
		COVARIÂ	NCIAS GENOTÍPICAS		
5711,196575					
4599,304449	3739 , 8	46526			
		COVARIÂ	NCIAS RESIDUAIS		
394,774983 320,541108					
			ÇÕES FENOTÍPICAS		
1, ,995					
,995 1,					
		CORRELA	ÇÕES GENOTÍPICAS		
1, ,9952					
,9952 1, 					
		CORRELA	ÇÕES RESIDUAIS		
1, ,9836 ,9836 1,					
				Agrupamente de Méd	
		Programa GENES Arquivo de dados		Agrupamento de Méd C:\Users\Usuário\D	ias ocuments\genes\med.dat
		Número de variáve	is	2	ocamenco (genes (med.ddt
		Graus de Liberdad	e do Residuo	220	
		Número de Repetiç		5 5	
		Nível de Signific Número de Tratame		5 55	
		Testes comparativ	os de médias	Scott-Knott Origin	al
		Arquivo com os QM	R	01_22_2010	
		Data		01-22-2010	

Teste : Scott e Knott

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott).

VARIÁVEL: x 1	QMR: 394,	Nível:		GLRes : 220	N.Rep : 5	
Partição		Во	V²	Lambda	GL	Probabilidade(%)
(54-5)vs(33-22 (33-41)vs(40-2 (54)vs(37-5) (40-16)vs(24-2 (33-3)vs(35-4] (37-55)vs(53-5 (24-42)vs(1-23 (40-30)vs(18-1 (35-48)vs(25-4 (33)vs(3) (53)vs(5) (37)vs(55)	23) L) 5) 3)	225359,4489 40130,1417 27208,5891 4417,7831 3398,7213 7675,8626 435,3073 923,6689 1044,0679 563,3382 403,9619 345,8449	1200,0152 255,5944 235,4234 91,618 97,2984 115,0075 75,0259 77,8691 80,989 80,6276 79,9097 79,648	2 258,4031 216,037 159,0249 66,3487 48,0639 91,8354 7,9835 16,3215 17,7383 9,6138 6,9558 5,9747	48,1783 43,7985 4,3798 32,4109 11,3876 3,5039 16,6434 15,7674 9,6357 1,7519 1,7519	,0 ,0 ,0 ,0418 ,0003 ,0 96,1147 41,4398 5,0783 ,6195 2,3053 3,7974
Tratamento	Médi	a	Grupo			
54 AZULAO 37 48N 55 BAIO 53 95N 5 V4 33 30N 3 BAG 35 36N 20 V41 21 V42 51 92N 43 70N 8 V10 48 83N 25 V51 47 80N 45 73N 41 67N 40 66N 27 V67 31 17N 2 AR 9 V12 39 51N 34 33N 29 13N 30 16N 18 V32 28 V69 49 87N 44 71N 12 V24 26 V66 46 79N 22 V47 16 V30 24 V50 38 49N 11 V23 17 V31 10 V13 36 37N 32 20N 50 89N 42 69N 1 pensacola 14 V27 52 93N 19 V35 7 V9 4 V2 6 V5 13 V26 15 V29 23 V49	411,746 284,282 257,982 197,732 169,308 144,044 110,478 100,116 93,336 92,582 90,944 86,568 83,324 81,808 86,898 69,826 66,558 64,952 53,272 46,46,216 45,302 41,208 40,574 38,83 38,484 37,666 34,294 31,894 29,52 28,604 28,492 28,088 26,878 26,072 25,508 24,548 23,092 21,336 19,378 18,608 17,984 16,312 15,882 15,332 13,922 21,337 11,56 10,268 10,146 9,248 8,762 6,87		a b c d e f gh h h h h h h h h h h h h h h h h h			
VARIÁVEL: x 2	QMR: 269,	Nível:	5	GLRes : 220	N.Rep : 5	
Partição		Во	V ²	Lambda	GL	Probabilidade(%)
(54-33)vs(3-22 (3-45)vs(27-23 (54-37)vs(55-3 (27-22)vs(24-2 (3-20)vs(8-45) (55-53)vs(5-33 (54)vs(37) (24-32)vs(1-23 (27-30)vs(39-2 (8-43)vs(25-45 (3)vs(35-20) (5)vs(33)	3) 33) 23) 33) 33)	14990, 391 25967, 8615 16136, 8535 3867, 8623 836, 8544 2850, 2785 2746, 5907 459, 8511 775, 8496 135, 6309 164, 1321 283, 1248	787,9748 165,4188 150,624 67,1704 56,4321 67,6678 65,6873 51,914 53,9443 52,91 53,6804 54,5907	261,9147 216,0031 147,4122 79,2322 20,4048 57,9581 57,5335 12,1883 19,7898 3,5272 4,2071 7,1362	48,1783 42,9225 5,2558 33,2868 9,6357 3,5039 1,7519 17,5194 15,7674 6,1318 3,5039 1,7519	,0 ,0 ,0014 2,1538 ,0 ,0 81,5634 21,726 75,6123 30,8019 2,105

	(Teste Scott & Knott).				
(55) vs (53)	188,18	54,163	4,7806	1,7519	7,0515
ratamento	Média	Grupo			
54 AZULAO	313,28	a			
37 48N	239,164	b			
55 BAIO	202,604	С			
53 95N	183,204	C			
5 V4	151,414	d			
33 30N	127,618	е			
3 BAG	100,792	f			
35 36N	89,572	f			
21 V42	85,812	f			
20 V41	82,612	f			
8 V10	79,534	g			
43 70N	77,516	g			
25 V51	72,34	g			
51 92N	71,444	g			
47 80N	68,386	g			
48 83N	65,954	g			
45 73N	65,782	g			
27 V67	44,756	ĥ			
31 17N	43,86	h			
41 67N	43,81	h			
40 66N	43,792	h			
2 AR	43,054	h			
34 33N	37,276	h			
30 16N	36,402	h			
39 51N	34,69	h			
9 V12	33,538	h			
18 V32	32,686	h			
29 13N	31,626	h			
28 V69	27,638	h			
49 87N	26,626	h			
26 V66	25,758	h			
44 71N	25,324	h			
46 79N	25,27	h			
12 V24	24,67	h			
22 V47	24,384	h			
24 V50	22,854	i			
38 49N	22,676	i			
16 V30	22,482	i			
11 V23	17,97	i			
10 V13	17,91	i			
17 V31	17,822	i			
36 37N	17,072	i			
50 89N	14,92	i			
32 20N	14,732	i			
1 pensacola	13,3	i			
42 69N	12,934	i			
14 V27	11,648	i			
52 93N	10,606	i			
19 V35	9,792	i			
7 V9	8,724	i			
7 V9 6 V5	8,196	i			
4 V2	7,592	i			
4 V2 15 V29	6,292	i			
		i			
13 V26 23 V49	6,15	i			
	4,612	1			

Estatística Total dos Cortes

Programa GENES Inteiramente ao acaso com testemunhas adicionais
Arquivo de dados C:\Users\Usuário\Documents\genes\total com os guenoarum.dat
Número de variáveis 2
Número de genótipos 55
Número de testemunhas 0
Data 01-22-2010

ANÁLISE DE VARIÂNCIA DA VARIÁVEL \Rightarrow x 1

FV	GL	SQ	QM	F	Probabilidade
TRATAMENT RESÍDUO	OS 54 220	4761609,380468 362828,9758	88177,95149 1649,222617	53,4664	, 0
TOTAL	274	5124438,3563			
MÉDIA ger	al		111,345163636364		
CV (%)			36,4727309652788		

VARIÂNCIA FENOTÍPICA (média)

17635,590298

(Teste Scott & Knott).

VARIÂNCIA AMBIENTAL (média)

VARIÂNCIA GENOTÍPICA (média)

VARIÂNCIA GENOTÍPICA (média)

VENTÂNCIA GENOTÍPICA (média)

VENTÂNCIA GENOTÍPICA (média)

VENTÂNCIA GENOTÍPICA (média)

VENTÂNCIA GENOTÍPICA (média)

17305,745775

98,1297

CORRELAÇÃO INTRACLASSE (US: parcela) - %

91,2993

COEFICIENTE DE VARIAÇÃO GENÉTICO (%)

RAZÃO CVG/CVC - Média dos genótipos

NÚMERO MÉDIO DE REPETIÇÕES

5,

FV	GL	SO	OM	F	Probabilidad
TRATAME RESÍDUC	ENTOS 54 0 220	2196428,269049 131937,0954	40674,597575	67,8233	, 0
(F21D0C	220	131937,0934	599,71407		
TOTAL	274	2328365,3644			
MÉDIA 9	geral		80,985309090909	91	
CV (%)			30,238892072564	16	
		PARÂMET	ROS GENÉTICOS E AME	BIENTAIS- Obtidos p	ara genótipos
JARIÂNO	CIA FENOTÍI	PICA (média)		8134,919515	
		TAL (média)		119,942814	
		PICA (média)	0	8014,976701	
		3: média da família)		98,5256	
		CLASSE (US: parcela) ARIAÇÃO GENÉTICO (%)		93,0385	
		ARIAÇÃO GENETICO (%) Média dos genótipos		110,5465 3,6558	
	.vg/cve = r MÉDIO DE R			5,	
		COVARIÂ	NCIAS FENOTÍPICAS		
17625 5	590298 1193	10 100305			
	190385 813				
		COVARIÂ	NCIAS GENOTÍPICAS		
	745775 1173 336475 8014				
		COVARIA	NCIAS RESIDUAIS		
	22617 909,2				
	9551 599,7				
			ÇÕES FENOTÍPICAS		
909,269	9551 599 , 73		ÇÕES FENOTÍPICAS		
1, ,995	9551 599 , 73	CORRELA			
909,269	9551 599 , 73	CORRELA	ÇÕES FENOTÍPICAS		
909,269 1, ,995 ,995 1,	9551 599,7:	CORRELA			
	9551 599,7:	CORRELA	ÇÕES GENOTÍPICAS		
909,269 1, ,995 ,995 1,	555	CORRELA			

Programa GENES Agrupamento de Médias
Arquivo de dados C:\Users\Usuário\Documents\genes\med.dat
Número de variáveis 2
Graus de Liberdade do Resíduo 220
Número de Repetições 5
Nível de Significância 5
Número de Tratamentos 55
Testes comparativos de médias
Arquivo com os QMR
Data 01-22-2010

Teste : Scott e Knott

VARIÁVEL: x 1 QMR: 1649	Nível:	5 GI	Res : 220	N.Rep : 5	
Partição	Во	V²	Lambda	GL	Probabilidade(%)
(54-53)vs(5-23)	718234,3123	3726,8286	265,1768	48,1783	, 0
(5- 40) vs (29- 23)	140061,3319	961,4119	200,4553	44,6744	, 0
(54-55)vs(37-53)	36071,1258	529,7185	93,6965	3,5039	, 0
(29-30)vs(38-23)	9586,2896	344,7236	38,2638	30,6589	16,2181
(5-48)vs(35-40)	24966,6625	445,4779	77,1157	14,0155	, 0
(37) vs (53)	3931,5392	344,5385	15,7012	1,7519	,0362
(54) vs (55)	6098,2759	354,2985	23,6835	1,7519	,0011

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott).

(35- 21)vs(20 (5- 33)vs(3- 4 (3- 43)vs(51- (5)vs(33)	48)		1738,3368 4681,6981 112,9119 209,3467		326,7502 343,2283 324,4578 327,7718		7,3203 18,7685 ,4788 ,8788	8,759 5,2558 3,5039 1,7519		58,1368 ,2753 95,2902 58,733
Tratamento		Médi	a		Grupo					
54 AZULAO 55 BAIO 37 48N 53 95N 5 V4 33 30N 3 BAGUAL 43 70N 51 92N 48 83N 35 36N 21 V42 20 V41 41 67N 45 73N 25 V51 47 80N 31 17N 8 V10 40 66N 29 13N 27 V67 34 33N 39 51N 2 AR 9 V12 30 16N 38 49N 44 71N 46 79N 15 V29 49 89N 17 V31 26 V66 24 V50 18 V32 22 V47 32 20N 36 37N 1 PENSACOLA 52 93N 50 89N 7 V9 6 V5 13 V26 19 V35 4 V2 23 V49		669,57 559,132 468,764 380,09 257,582 237,12 193,884 192,932 184,924 180,64 162,144 143,098 133,388 129,432 127,644 121,778 116,89 109,484 109,362 109,298 98,032 294,202 78,314 71,718 70,322 66,128 60,346 654,822 51,294 50,202 24,7474 47,384 47,018 46,302 44,836 42,316 641,954 41,836 42,316 62,746 42,316 62,746 43,855 41,954 41,856 41,954 41,8		$\begin{array}{c} a \ b \ c \ d \ e \ e \ f \ f \ f \ g \ g \ g \ g \ g \ g \ h \ h \ h \ h$						
VARIÁVEL: x 2	QMR:	599,	Nível:	5		GLRes	: 220	N.Rep	: 5	
Partição			Во		V 2		Lambda	GL		Probabilidade(%)
(54-53)vs(5- (5-31)vs(41- (54)vs(55-53) (41-38)vs(9- (5-33)vs(3-3 (55-37)vs(53) (9-36)vs(50- (41-34)vs(2- (3-21)vs(48- (5)vs(33) (55)vs(37)	23) 23) 31) 23) 23) 38)		324458,421 72320,3244 14280,3781 7955,3341 9442,8197 3561,1397 2320,6284 970,3545 1630,2346 75,6696 640,0327		1693,2424 452,7737 200,1676 149,9464 163,2527 137,0277 118,6515 120,1367 123,6321 119,0616 121,6038		263,6627 219,7798 98,1645 73,0014 79,5884 35,7593 26,9117 11,1138 18,1438 ,8745 7,2421	48,178 44,674 3,5039 32,410 12,263 2,6279 24,527 7,8837 10,511 1,7519	4 9 6 1 6	,0 ,0 ,0062 ,0 33,5355 18,6676 6,4526 58,8759 1,9959
Tratamento		Médi	a		Grupo					
54 AZULAO 55 BAIO 37 48N 53 95N 5 V4 33 30N 3 BAGUAL 43 70N 35 36N 21 V42 48 83N		458,73 362,994 327,216 272,018 190,46 178,158 137,802 125,834 124,096 118,566 110,15		a b c d e e f f f f						

Apêndice 3. Continuação... Análise de Variância e Comparação entre médias (Teste Scott & Knott).

	(Teste Scott	α Knou).
51 92N	109,844	f
47 80N	105,942	f
20 V41	104,896	f
8 V10	101,384	f
25 V51	100,85	f
45 73N	97,868	f
31 17N	83,86	f
41 67N	76,572	g
40 66N	75,086	g
27 V67	74,786	g
34 33N	68,692	g
2 AR	62,02	g
29 13N	55,804	g
39 51N	51,216	g
30 16N	47,76	g
38 49N	47,638	ğ
9 V12	43,754	ĥ
18 V32	41,332	h
44 71N	40,898	h
46 79N	40,816	h
15 V29	40,342	h
24 V50	38,498	h
49 89N	37,15	h
17 V31	36,45	h
28 V69	35,286	h
26 V66	34,808	h
10 V13	33,12	h
16 V30	33,04	h
42 69N	30,818	h
12 V24	30,298	h
22 V47	29,334	h
11 V23	27,67	h
14 V27	26,414	h
32 20N	25,82	h
36 37N	25,166	h
50 89N	20,83	h
1 PENSACOLA	20,354	h
52 93N	17,358	h
6 V5	15,126	h
19 V35	14,784	h
7 V9	13,568	h
13 V26	11,47	h
4 V2	10,346	h
23 V49	9,1	h

Apêndice 4. Matriz de similaridade genética de 51 acessos de *P. notatum* analisados através da técnica de microssatélites.

	analisados atraves da tecnica de microssatelites.																				
	PEN	AR	BAG	V2	V4	V5	V9	V10	V12	V13	V23	V24	V26	V27	V29	V30	V31	V35	V41	V42	V47
PEN																					
AR	0,43																				
BAG V2	0,25	0,71																			
V2 V4	0,15 0.00	0,25 0,22	0,32 0.22	0,20																	
V4 V5	0,00	0,22	0,22	0,57	0,10																
V9	0.08	0,07	0,07	0,27	0,10	0,37															
V10	0,21	0,19	0,19	0,39	0,20	0,30	0,29														
V12	0,38	0,18	0,18	0,37	0,09	0,33	0,14	0,43													
V13	0,44	0,36	0,36	0,40	0,00	0,53	0,13	0,29	0,45												
V23	0,20	0,14	0,14	0,11	0,00	0,12	0,00	0,15	0,29	0,22											
V24	0,25	0,33	0,50	0,25	0,00	0,28	0,07	0,27	0,30	0,50	0,33										
V26	0,00	0,14	0,33	0,11	0,00	0,12	0,00	0,07	0,00	0,22	0,00	0,33	0.22								
V27 V29	0,25 0,30	0,20 0,25	0,33 0,36	0,32 0,33	0,00 0,17	0,21 0,44	0,00 0,20	0,36 0,38	0,30 0,33	0,36 0,38	0,14 0,10	0,33	0,33 0,22	0,36							
V29	0,00	0,00	0,00	0,05	0,00	0,00	0,20	0,38	0,33	0.00	0,00	0,00	0,00	0,30	0,00						
V31	0.50	0,38	0,38	0,26	0,00	0,29	0.08	0,29	0,33	0.40	0,17	0,38	0,17	0,38	0,56	0,00					
V35	0,50	0,14	0,14	0,11	0,00	0,12	0,00	0,15	0,29	0,22	0,33	0,14	0,00	0,33	0,22	0,00	0,40				
V41	0,11	0,33	0,20	0,14	0,10	0,15	0,00	0,12	0,08	0,25	0,14	0,33	0,14	0,09	0,07	0,00	0,10	0,00			
V42	0,29	0,57	0,38	0,20	0,11	0,22	0,08	0,20	0,20	0,40	0,17	0,38	0,17	0,10	0,17	0,00	0,25	0,00	0,57		
V47	0,25	0,21	0,21	0,25	0,00	0,33	0,05	0,41	0,20	0,43	0,18	0,31	0,18	0,31	0,33	0,00	0,23	0,18	0,21	0,23	
V49	0,21	0,25	0,25	0,58	0,20	0,64	0,22	0,39	0,37	0,47	0,11	0,25	0,11	0,25	0,47	0,05	0,26	0,11	0,19	0,20	0,36
V50 V51	0,29 0.20	0,38	0,22 0.27	0,14	0,00	0,16	0,08	0,20	0,20 0,25	0,27	0,00	0,38	0,17	0,22	0,17	0,20	0,25	0,00	0,38 0.27	0,43	0,14
V51 V66	0,20	0,27 0,33	0,27	0,23 0,25	0,00	0,39 0,35	0,00 0.07	0,24 0,27	0,25	0,42 0,36	0,25 0,14	0,40 0,33	0,25 0,14	0,40 0,33	0,31 0,50	0,13	0,18 0,83	0,11 0,33	0,27	0,30 0,22	0,46 0,21
V67	0,43	0,33	0,33	0,48	0,06	0,38	0,07	0,56	0,30	0,50	0,14	0,38	0,14	0,50	0,30	0,00	0,31	0,33	0,09	0,22	0,53
V69	0,23	0,20	0,20	0,48	0,13	0,38	0,24	0,79	0,46	0,31	0,17	0,29	0,08	0,38	0,40	0,08	0,42	0,17	0,13	0,21	0,35
13N	0,20	0,27	0,17	0,13	0,00	0,25	0,13	0,31	0,15	0,31	0,11	0,27	0,11	0,08	0,21	0,00	0,18	0,00	0,40	0,44	0,46
16N	0,25	0,21	0,21	0,50	0,07	0,33	0,18	0,50	0,50	0,43	0,18	0,31	0,08	0,42	0,33	0,09	0,33	0,18	0,13	0,23	0,29
17N	0,31	0,27	0,27	0,33	0,00	0,58	0,16	0,18	0,25	0,47	0,07	0,27	0,15	0,27	0,47	0,00	0,38	0,15	0,19	0,20	0,33
20N	0,19	0,17	0,17	0,60	0,08	0,65	0,25	0,42	0,33	0,43	0,10	0,23	0,10	0,29	0,36	0,05	0,24	0,10	0,17	0,18	0,39
30N	0,25	0,22	0,16	0,46	0,17	0,50	0,32	0,45	0,35	0,47	0,13	0,22	0,06	0,16	0,39	0,00	0,31	0,13	0,22	0,24	0,35
33N 36N	0,44 0,13	0,36	0,25 0,10	0,33 0,20	0,00	0,30	0,13 0,27	0,47 0,20	0,45 0,20	0,50 0,08	0,22	0,36 0,10	0,10	0,36 0,22	0,29 0,08	0,11 0,20	0,40 0,11	0,22	0,25 0,00	0,40	0,54 0,00
37N	0,13	0,10 0,29	0,10	0,20	0,00	0,16 0,18	0,00	0,20	0,20	0,08	0,00	0,10	0,67	0,22	0,08	0,20	0,11	0,00	0,00	0,11 0,14	0,00
48N	0,17	0,09	0.09	0,09	0,00	0,15	0,36	0,17	0,08	0,07	0,00	0,09	0,00	0,00	0,07	0,00	0,10	0,00	0,00	0,10	0,21
49N	0.43	0,50	0.50	0,25	0,00	0,28	0.07	0,27	0,30	0,50	0,14	0,50	0,33	0,50	0,36	0,17	0,38	0,14	0,20	0,38	0,31
51N	0,00	0,00	0,00	0,15	0,50	0,11	0,30	0,21	0,10	0,00	0,00	0,00	0,00	0,00	0,18	0,00	0,00	0,00	0,00	0,00	0,07
66N	0,00	0,00	0,00	0,38	0,15	0,29	0,36	0,28	0,21	0,06	0,09	0,07	0,00	0,14	0,06	0,10	0,00	0,00	0,07	0,07	0,11
67N	0,21	0,27	0,36	0,52	0,13	0,43	0,22	0,30	0,33	0,47	0,15	0,36	0,15	0,27	0,38	0,00	0,29	0,15	0,12	0,20	0,26
69N	0,17	0,14	0,23	0,45	0,00	0,29	0,12	0,35	0,31	0,36	0,09	0,33	0,20	0,45	0,27	0,10	0,25	0,09	0,14	0,25	0,31
70N	0,09	0,27	0,40	0,35	0,08	0,25	0,21	0,11	0,07	0,31	0,00	0,27	0,25	0,17	0,21	0,00	0,18	0,00	0,08	0,18	0,12
71N 73N	0,17 0.08	0,13	0,13 0.45	0,16	0,33	0,18	0,33 0.06	0,23	0,25	0,09	0,00	0,13 0,23	0,00 0,20	0,00	0,20	0,00	0,14	0,00	0,00 0,23	0,14	0,00 0,11
73N 79N	0,08	0,33	0,45	0,38 0,30	0,15 0,20	0,13 0,20	0,06	0,21 0,25	0,13 0,27	0,19 0,23	0,00	0,23	0,20	0,33 0,44	0,19 0,33	0,10 0,14	0,15 0,20	0,00	0,23	0,25 0,09	0,11
80N	0,10	0,30	0,44	0,30	0,25	0,20	0,07	0,23	0,27	0,23	0,13	0,30	0,29	0,30	0,33	0,14	0,20	0,13	0,08	0,09	0,20
83N	0,03	0,14	0,23	0,78	0,15	0,50	0,27	0,35	0,21	0,32	0,09	0,10	0,10	0,45	0,46	0,00	0,25	0,10	0,13	0,07	0,23
89N	0,08	0,15	0,15	0,40	0,17	0,30	0,20	0,16	0,33	0,29	0,22	0,15	0,00	0,07	0,13	0,00	0,08	0,10	0,07	0,08	0,11
92N	0,14	0,25	0,25	0,15	0,13	0,11	0,08	0,06	0,10	0,08	0,20	0,11	0,00	0,11	0,08	0,00	0,13	0,20	0,00	0,00	0,07
93N	0,00	0,00	0,00	0,15	0,00	0,17	0,08	0,06	0,22	0,18	0,20	0,11	0,00	0,00	0,00	0,00	0,00	0,00	0,11	0,13	0,07
95N	0,33	0,27	0,27	0,35	0,00	0,39	0,21	0,24	0,36	0,55	0,11	0,27	0,11	0,27	0,31	0,00	0,44	0,25	0,08	0,18	0,19

Apêndice 4. Continuação... Matriz de similaridade genética de 51 acessos de *P. notatum* analisados através da técnica de microssatélites.

	1/40	1/50	1/54	1/00	1/07	1/00	401	401	471	001	001	001	001	071	40N	40N	EAN	001	071	001	701
	V49	V50	V51	V66	V67	V69	13N	16N	17N	20N	30N	33N	36N	37N	48N	49N	51N	66N	67N	69N	70N
V49																					
V50	0,20																				
V51	0,42	0,30																			
V66	0,32	0,22	0,27																		
V67	0,48	0,31	0,43	0,29																	
V69	0,41	0,21	0,25	0,38	0,60																
13N	0,29	0,30	0,33	0,17	0,33	0,33															
16N	0,43	0,23	0,27	0,31	0,64	0,53	0,19														
17N	0,45	0,20	0,31	0,36	0,32	0,25	0,31	0,26													
20N	0,74	0,18	0,38	0,29	0,57	0,50	0,32	0,45	0,42												
30N	0,67	0,17	0,20	0,29	0,47	0,47	0,33	0,50	0,45	0,61											
33N	0,40	0,40	0,42	0,36	0,75	0,50	0,42	0,54	0,29	0,43	0,47										
36N	0,09	0,25	0,08	0,10	0,21	0,21	0,08	0,23	0,20	0,13	0,05	0,17									
37N	0,16	0,14	0,38	0,29	0,25	0,15	0,10	0,17	0,23	0,14	0,12	0,20	0,00								
48N	0,04	0,10	0,00	0,09	0,13	0,20	0,27	0,06	0,19	0,08	0,10	0,15	0,38	0,00							
49N	0,32	0,57	0,56	0,33	0,50	0,29	0,27	0,31	0,36	0,29	0,22	0,50	0,22	0,50	0,09						
51N	0,21	0,00	0,00	0,00	0,14	0,14	0,00	0,15	0,00	0,14	0,25	0,08	0,00	0,00	0,00	0,00					
66N	0,21	0,07	0,13	0,00	0,29	0,29	0,06	0,40	0,15	0,29	0,24	0,19	0,36	0,00	0,14	0,07	0,27				
67N	0,39	0,13	0,24	0,27	0,39	0,32	0,17	0,50	0,30	0,42	0,38	0,29	0,06	0,23	0,06	0,27	0,06	0,21			
69N	0,32	0,25	0,29	0,23	0,57	0,38	0,20	0,50	0,28	0,41	0,24	0,46	0,36	0,18	0,14	0,33	0,08	0,33	0,35		
70N	0,23	0,18	0,14	0,17	0,18	0,11	0,14	0,27	0,24	0,21	0,20	0,13	0,08	0,22	0,08	0,27	0,00	0,13	0,62	0,20	
71N	0,16	0,14	0,00	0,13	0,15	0,25	0,10	0,17	0,07	0,14	0,19	0,09	0,14	0,00	0,13	0,13	0,40	0,18	0,14	0,08	0,10
73N	0,26	0,25	0,20	0,14	0,29	0,22	0,20	0,24	0,21	0,24	0,13	0,19	0,25	0,18	0,07	0,33	0,00	0,11	0,28	0,33	0,38
79N	0,30	0,20	0,36	0,18	0,36	0,27	0,07	0,29	0,18	0,22	0,15	0,23	0,09	0,43	0,00	0,44	0,10	0,13	0,33	0,21	0,25
80N	0,56	0,09	0,27	0,13	0,39	0,33	0,12	0,41	0,27	0,52	0,38	0,26	0,14	0,15	0,04	0,18	0,20	0,36	0,43	0,30	0,27
83N	0,32	0,07	0,29	0,23	0,38	0,38	0,13	0,31	0,35	0,41	0,24	0,19	0,15	0,30	0,07	0,23	0,17	0,33	0,35	0,25	0,20
89N	0,27	0,00	0,13	0,07	0,17	0,17	0,06	0,33	0,16	0,25	0,32	0,13	0,00	0,09	0,00	0,07	0,08	0,27	0,57	0,06	0,42
92N	0,10	0,00	0,09	0,11	0,07	0,07	0,00	0,15	0,13	0,09	0,11	0,08	0,00	0,17	0,00	0,11	0,00	0,17	0,31	0,00	0,33
93N	0,10	0,00	0,09	0,00	0,07	0,07	0,09	0,15	0,13	0,14	0,18	0,08	0,00	0,00	0,00	0,00	0,00	0,27	0,21	0,08	0,20
95N	0,29	0,18	0,14	0,40	0,25	0,25	0,14	0,46	0,40	0,32	0,41	0,31	0,08	0,22	0,08	0,27	0,00	0,13	0,50	0,20	0,45

Apêndice 4. Continuação... Matriz de similaridade genética de 51 acessos de *P. notatum* analisados através da técnica de microssatélites.

	71N	73N	79N	80N	83N	89N	92N	93N	95N
71N									
73N	0,08								
79N	0,11	0,42							
80N	0,10	0,36	0,35						
83N	0,18	0,18	0,31	0,50					
89N	0,09	0,12	0,23	0,38	0,19				
92N	0,00	0,08	0,22	0,14	0,17	0,44			
93N	0,00	0,00	0,00	0,14	0,08	0,44	0,33		
95N	0,10	0,13	0,15	0,27	0,29	0,42	0,33	0,33	

8. VITA

Juliana Maria Fachinetto, filha de Jandir Antonio Fachinetto e Iria Ozelame Fachinetto, nasceu em 5 de setembro de 1985 no município de Espumoso – RS. Concluiu o Ensino Médio no Instituto Estadual de 1º e 2º graus Dr. Ruy Piégas da Silveira, em Espumoso, no ano 2003.

Ingressou no Curso de Ciências Biológicas da Universidade Federal de Santa Maria em 2004, graduando-se como Bióloga, Habilitação Bacharelado em 2007.

Em março de 2008, iniciou o Mestrado em Zootecnia, Área de Concentração Plantas Forrageiras, no Programa de Pós Graduação da Faculdade de Agronomia da Universidade Federal do Rio Grande do Sul.