

XXXV SALÃO de INICIAÇÃO CIENTÍFICA

6 a 10 de novembro

Evento	Salão UFRGS 2023: SIC - XXXV SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2023
Local	Campus Centro - UFRGS
Título	Estudo da função do gene CYP705A2 e seus impactos
	fisiológicos em Arabidopsis thaliana
Autor	RAUL SIMON BATISTA
Orientador	FELIPE DOS SANTOS MARASCHIN

Plântulas crescidas sob sombreamento apresentam pouco desenvolvimento radicular quando comparadas com plântulas crescidas na luz plena. A luz sombreada é pobre em fótons na faixa do vermelho (600-680nm) e rica em Far-Red (>700nm). A percepção da luz, tanto da sua quantidade quanto o seu espectro é mediada por fotorreceptores específicos desencadeando a fotomorfogênese. Nosso grupo identificou inúmeros genes que podem potencialmente atuar como reguladores do processo fotomorfogênico na espécie-modelo Arabidopsis thaliana. Vários genes centrais da rota foram identificados como fortemente induzidos em raízes em resposta à iluminação da parte aérea. A análise fenotípica de plântulas dos mutantes para genes induzidos em raízes mostrou que um destes mutantes se destacou pelo seu tamanho avantajado e crescimento rápido. Este mutante é deficiente em uma enzima da classe das citocromo P450 oxirredutases (CYP450) que possivelmente atua na modificação de compostos terpenóides exclusivos de plantas. Todavia, o motivo das alterações fenotípicas deste mutante é completamente desconhecido. Desta forma, este projeto almeja caracterizar a função deste gene através de estudos de genética funcional através da obtenção de mutantes perda-de-função via CRISPR-Cas9, assim como linhagens de superexpressão desta CYP450. Adicionalmente, linhagens repórter do seu promotor baseadas em GUS e GFP serão geradas para o estudo do perfil de expressão do gene nos diferentes tecidos da planta. Até o momento, identificamos que este mutante parece ser insensível ao efeito repressor que a iluminação por Far-Red costuma ter na emergência de raízes laterais, além de apresentar uma surpreendente aceleração no seu crescimento vegetativo e reprodutivo. Estes resultados indicam que esta CYP450 atua reprimindo o crescimento das plantas, principalmente sob regime de iluminação detrimental para a fotossíntese.