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Abstract In this paper, we study a class of stochastic processes {X;}:cn, where
Xi = (poT!)(Xp) is obtained from the iterations of the transformation T, invariant
for an ergodic probability ps on [0,1] and a certain constant by partial function
¢ :[0,1] = R. We consider here the family of transformations T : [0,1] — [0, 1] indexed
by a parameter s > 0, known as the Manneville-Pomeau family of transformations. The
autocorrelation function of the resulting process decays hyperbolically (or polynomially)
and we obtain efficient methods to estimate the parameter s from a finite time series. As
a consequence, we also estimate the rate of convergence of the autocorrelation decay of
these processes. We compare different estimation methods based on the periodogram
function, the smoothed periodogram function, the variance of the partial sum, and the
wavelet theory. To obtain our results we analyzed the properties of the spectral density
function and the associated Fourier series.
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1. Introduction

The goal of this paper is to estimate the main parameter of some processes obtained from
iterations of Manneville-Pomeau maps.

We consider a class of stochastic processes {X;}ien, where X; = (poT¥)(Xy) is obtained
from the iterations of the transformation Ty, invariant for an ergodic probability us on [0, 1]
and a continuous by part function ¢:[0,1] = R. The transformation T :[0,1] — [0,1],
s €(0,1), is considered here as the Manneville-Pomeau map. We analyze the rate of decay of
the autocorrelation function for the resulting process. The rate of convergence decays
hyperbolically (or polynomially) not exponentially. We obtain efficient methods to estimate the
parameter s from a finite time series. As a consequence, we also estimate the rate of
convergence of the autocorrelation decay of these processes.

Indeed, given s the decay is known: Young [42] has shown that the autocorrelation decay of
Manneville-Pomeau processes has an order smaller than nl=% for 0 < s. Other models which
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have similar properties to the Manneville-Pomeau map are the linear-by-part approximation of
the same map (see Fisher et al. [15]) and the Markov chain with infinite symbols, described in
Lopes [24].

Models of different phenomena in nature present autocorrelation decay of the form n~?, also
called hyperbolic (or polynomial) decay: the use of the Markov chain model seems to be
appropriate for the analysis of DNA sequences (see Peng et al. [35, 36] and Guharay et al. [20]);
cardiac rhythm fluctuations (see Absil et al. [1], and Peng et al. [36]); turbulence (see Schuster
[40]) and economy (see Mandelbrot [32]; Lopes et al. [29]; and Bisognin et al. [5]). In most cases,
the exact rate of convergence of the autocorrelation function decay is relevant information in the
model. Here we are interested in comparing different methods for estimating such (£ in the case
of Manneville-Pomeau processes.

When 0.5 < s < 1.0, we have the long-range dependence regime. Fractionally integrated
autoregressive moving average (ARFIMA) models also present such behavior (see Beran et al.
[4]; Geweke et al. [18]; Reisen et al. [39]; Lopes et al. [29]; and Lopes [27]). The corresponding
parameter for the ARFIMA model is d =1 — i The ARFIMA process has an explicit formula
for the spectral density function fx(-) (see Reisen et al. [38]; Lopes et al. [28]; Olbermann et al.
[34]; and Lopes [27]) but this is not the case for the processes considered here.

When 0 < s < 0.5, we have the not-so-long dependence regime. The so-called intermediate
dependence regime happens when s € (%, %)

Recently, several interesting papers describe the statistics of time series obtained from
dynamical systems: Freitas et al. [16], Korepanov et al. [22], Chazottes et al. [8], Chazottes et al.
[7], Collet [10], Collet et al. [12], Collet et al. [13], and Collet [9]. We also refer the reader to the
last sections of the book by Collet and Eckmann [11].

Here we analyze and compare several estimation procedures based on the periodogram
function, on the smoothed periodogram function, on the variance of the partial sum, and on the
wavelet theory.

The paper is organized as follows. In section 2, we define the Manneville-Pomeau maps and

provide definitions, basic properties, and results. Section 3 presents the Manneville-Pomeau
processes that will be the setting of the estimation procedures we choose in this paper. In section

4, we consider the estimation procedures for the long dependence case and in section 6 we
present the Monte Carlo simulation study for this regime. In section 5, we consider the
estimation procedures for the not-so-long dependence case while section 7 presents the Monte

Carlo simulation study for this regime. Section 8 contains a summary of the paper. In Appendix
A, we consider some general properties of the Fourier series which are necessary for the paper.
Appendix B contains the theoretical reasoning for some of the estimation procedures proposed in

section 4.

2. Manneville-Pomeau maps

In this section, we present the Manneville-Pomeau maps, some definitions, basic properties,
and results.
We first define the Manneville-Pomeau transformation and we give some of its properties.

Definition 2.1 Let Ty : [0,1] — [0,1] be the Manneville-Pomeau map given by

x4+ xtts, if x4+,

TS(Z') =z+a't* (mOd 1) = { 4 atts —1 if z4zlts>1

(2.1)

where s 1s a positive constant.
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As usual, we shall use the notation
Ti=T,0...0T,.
t—times
The map T (see Figure 2.1 (a)) given by the expression (2.1) has the following properties:

® T, is a piecewise monotone function with two full branches, that is, there exists
p € N—{0} such that Tl and 7|1 are strictly monotone, continuous, and T,((0,p)) =
(0,1) = Ty((p, 1)), where p+pt+s = 1.

® The branches Ty ) and T, 1) are C2.

® T/(x)>1,forall x>0,and Ti(x) > A>1,for x € (p,1).

® T, has a unique indifferent fixed point 0. Therefore, T5(0) =0 and |T%(0)| = 1.

® There exists an invariant absolutely continuous ergodic measure pug for the Manneville-
Pomeau transformation Ts. Thaler [41], using the properties of the Manneville-Pomeau map,
shows that dus(z) = hs(x) dz, where hg(x) ~ 2%, for x € (0,1), close to 0.

When s > 1, the measure ps has infinite mass and it is not a probability.

When 0 < s <1, the probability us is mizing for Ts:[0,1] — [0,1] (see Young [42]; and
Fisher et al. [15]).

1 1

0 T(x) ! 0 T(x) I
@ ®)

Figure 2.1 (a) Manneville-Pomeau T, transformation; (b) its linear-by-part approximation 7., transformation.

Given a continuous partial function ¢ :[0,1] = R, one can consider the random variables
Xi = (poTH)(Xp), for t €N, where X, is distributed according to the probability us. The
stationary stochastic process {X:}ien is called the Manneville-Pomeau process. We consider
here ¢ as an indicator function of an interval in [0,1]. In this case, the time series obtained
from the process {X;}ien is a binary time series of 0’s and 1’s only.

It is known that the autocorrelation decay of the Manneville-Pomeau processes, given by the
expression (3.1), have an order smaller than n'~%, for 0 < s < 0.5 (see Young [42]). In Fisher et
al. [15] it is shown for the linear by-part model given by Definition 2.2 below, these bounds are
exact (for the corresponding values).

We refer the reader to Maes et al. [31] for more details on the dynamics of the system given
by (2.1).

Other models which have similar properties to the Manneville-Pomeau map are the linear by-
part approximation of the same map (see Definition 2.2 below and Fisher et al. [15]) and the
Markov chain with infinite symbols (see Definition 2.3 below) described in Lopes [24]. The use of
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the Markov chain model {Y;}:en, defined below, seems to be appropriate for the analysis of
DNA sequences (see Peng et al. [35, 36]). The same estimation methods, proposed for the
Manneville-Pomeau processes in section 4, can also be applied to these other models.

Definition 2.2 Let ((y) =>_,5,n"7 be the Riemann zeta function. Consider the partition in
intervals of [0,1] given by

1 1 k—1 - 1 k -,
M0:<1—m,1) and Mk=<1—mzn ,1—@271 )

n=1 n=1
for k=1 For ~v>2, we define the following linear-by-part transformation T :[0,1] — [0, 1]
such that over the interval My, for k > 1, T, has slope ((k+1)k=')Y and over the interval My,
it has slope ((7v). We assume that the branches

T’Y'(O,l—ﬁ) and Ty,

are continuous; under these assumptions, the transformation T, is uniquely defined (see Figure
2.1 (b)). The transformation T, is called the linear-by-part approzimation of the Manneville-
Pomeau map.

In the same way as before, given a continuous-by-part function defined by ¢ :[0,1] — R,
consider the random variables X; = (¢ o TY)(Xy) for t € N, where X, is distributed according
to a certain probability ., invariant for T%,. The probability u. is absolutely continuous with
respect to the Lebesgue measure. We call {X;}ien the linear-by-part approximation of the
Manneville—Pomeau process.

Each value of s for the Manneville-Pomeau map corresponds to a value v =1+ % with the
same behavior with respect to the autocorrelation decay.

The Manneville-Pomeau map has the advantage of being more suitable than the linear by-
part model for computer implementation when one is interested in Monte Carlo simulations. For
this reason, in the simulation sections, we concentrate our analysis on such a model.

Below we define a Markov process with state N based on a certain transition probability
matrix P. The time evolution of such a process will also have similarities with the iteration of
Manneville-Pomeau maps.

Definition 2.3 Let P be a Markov chain with infinite transition probability matriz P=
(P(3,7))ijen (see page 153 in Lopes [24]) with transition probabilities given by
P(n,n—1)=1, forallneN-{0},
P(n,j) =0, forj#n—1,
and
(n+1)~7
()

where () is the Riemann zeta function and ~ > 2. There exists an explicit formula for the

P(0,n) =

eigenvector my associated with the eigenvalue 1 (see page 154 in Lopes [24]).

Let {Z:}ien be the stationary stochastic Markov process obtained from the transition matrix
P above and from the initial stationary distribution 7. Let Iy be the indicator function of the
set A= {0} on N. Now, let {Y;}:en be the process 1 —1Iy(Z;). In this way, we identify paths
w € NV with paths @ € {0,1}". Then, {Y;}:en is a stochastic process with random variables
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assuming only the values 0 and 1. For the process {Y;}ien, consider the probability induced by
the process {Z;}ten by means of the identification of the paths.

To clarify the ideas in the above Definition 2.3, the following example shows the identification
paths in NV to paths in {0,1}".

Example 2.1 Let {Z;};en be the process where a sample path w € NN, for instance,
w = {0765432109876543210543210. ..}, is associated with another sample path of the process
{Yi}ien. The corresponding sample path for the process {Yi}tien is given by

w = {0111111101111111110111110 .. } .
T —_——— Y

Hence, we applied the change of coordinates Z; — Y; associating sequences of natural numbers
to blocks of 1 intercalated by 0, in such a way that the structure of the process is kept the same.

We say that two different stochastic processes are equivalent when there is a bijective change
of coordinates acting in the set of paths transferring the probability of one process into the other.

The process {Z;}ien is, by definition, equivalent to the process {Y;}ien by the above change
of coordinates. One can also show that Y; is also equivalent to X; = (o TL)(Xp) (see section 4
in Lopes [24], with ¢ =T, ).

The idea of using Markov chain arguments by linearizing the Manneville-Pomeau maps is
considered by Gaspard et al. [17], Lambert et al. [23], and Bahsoun et al. [2], but it is used for
purposes different than ours. We are interested in estimating the parameters of this class of maps.

In Gaspard et al. [17], the authors were interested in the asymptotic growth of the
Kolmogorov algorithmic complexity of a string of symbols S, when n goes to infinity. They
show results on non-Gaussian fluctuations for the Manneville-Pomeau map based on this
linearization.

In Lambert et al. [23], the purpose was to present a power-law upper bound for the decay of
the correlations for Holder observables and rates of mixing, when the dynamics are given by a
Manneville-Pomeau map.

In Bahsoun et al. [2], the authors present a numerical procedure (using a Ulam-type
discretization scheme) to provide pointwise approximations for the invariant density of a
Manneville-Pomeau map. They were able to show the exact rate of convergence based on the
mesh size of the approximation.

It is also known that the central limit theorem (converging to a Gaussian distribution) is true
for the Manneville-Pomeau stochastic process {X:}ien, described in section 3, when 0 < s < 0.5
due to the rate of convergence of the autocorrelation decay (see Young [42]; Lopes [24]; and
pages 1099-1100 in Fisher et al. [15]).

When 0.5 < s < 1.0 it was conjectured that for the Manneville-Pomeau stochastic process
{X:}ten the central limit theorem is true, but it converges to a stable law with parameter
a = s~L This was proved by Gouézel [19]. From Feller [14] it is known for the corresponding
parameter of the Markov chain model described above (or for the equivalent process
X; = (poT!)(Xo) with ¢ =Ty, (see section 4 in Lopes [24], for more details)).

For the estimation in the long-range dependence case, one must consider larger sample sizes
for the time series. In this situation, in general, the computation effort for obtaining good results
is very high. This is something that one cannot avoid due to the small rate of convergence of decay.
The mixing rate is not as good, as it happens, for instance, when one considers models with
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exponential autocorrelation decay. We present here several quite efficient methods to obtain
reasonable results. One method is by using the periodogram function described in sections 4 and
6. The method based on wavelet theory works fine in several cases and, surprisingly, can also be
applied to estimate s when s > 1.0 (see sections 4 and 6).

The paper Lopes et al. [30] presents a bias correction for the wavelet estimation in the long
and not-so-long dependence cases.

3. Manneville-Pomeau process and some of its properties

In this section, we define the Manneville-Pomeau stochastic processes and present some of
their properties.

Let ¢:[0,1] =R be a ps-integrable function and let Tg(-) be the Manneville-Pomeau
transformation given by the expression (2.1). The Manneville—-Pomeau stochastic process
{Xi}ten is given by

Xi = (poT))(Xo) = ¢(T5(X0)) = p(Ts(Xi-1)) = (p 0 T)(Xe-1) (3.1)

for all ¢t € N, where X, is distributed according to the measure p,;. In other words, the
Manneville-Pomeau process {X;}+cn is obtained by applying ¢ to the iterations of Tj, that is,
X =poT! for fixed s and t € N.

We consider here only the case where ¢ is the indicator function I4 of an interval A
contained in [0,1] or else ¢ =14 — ps(A). Our simulations, shown in sections 5 and 7, are for
the case where A = [0.1,0.9].

We denote by 7yx () the autocovariance function for the process {X;};en, that is,

() = B(X0Xo) ~ EACX0)? = [ 0T (0)pla)diea) — [ / so(x)duso:)} (3.2)

for h € N.
We denote by px(-) the autocorrelation function of the process {X;}:en, that is,

vx (h)
h) = for all h € N,
pX( ) vx (0)

where vx(0) = E,(X¢) — [E.(X0)]> = Var,(Xo) is the variance of the process.
The spectral density function of the process {X;}ien is given by

fx(w) = )+2 ZWX cos(wh)], for w € [—m, 7). (3.3)

Now, we define the periodogram function associated with a time series T%(zg) for 1 <t < N,
obtained from a xy chosen with probability one according to the measure ps. The periodogram
function is given by

I(wn) = fn(wn) fn (W), (3.4)

where

fnw ng (T (x0))e™ ™, w e (0,2q],

277\/>
with fy(:) indicating the complex conjugate of fy(-) and

wh:@ for h=0,1,..., N, (3.5)
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the h-th discrete Fourier frequency (see Brockwell et al. [6]).

Note that the periodogram function depends on xy and N (large). One obtains a good
approximation of the spectral density function fx(-) by the periodogram function (see Lopes et
al. [26], for a mathematical proof applicable to the case we analyze here when 0 < s < 0.5).

The periodogram function is an unbiased estimator for the spectral density function fx(-),
even though it is not consistent (see Brockwell et al. [6]).

Another procedure for estimating the parameters which produces good results is by using the
wavelet theory. This type of analysis can also be used in the regime s > 1, where the spectral
density function, defined in the expression (3.4), does not exist since the random process is not
associated with a probability.

We use the following notation:

e If, for the sequence {an}nen, there exists uw € R and, for any & > 0, there exist positive
constants ¢; and cy such that, for all n € N,

u+o

egn 0K lan]| < con™ "7,

then we denote a, ~n~". We also say that a, is of order n=" for n — oc.
e If, for the real function g¢(-), there exist b € R and e > 0 such that, for any ¢ > 0, there
exist positive constants d; and dy such that, for all « € (0,¢€),
dy 2" < g(w)] < do ™,

then we denote g(r) ~ xb. We also say that g is of order 2 around 0.
If there exist c¢1,co > 0 such that

u

an < ap <can™Y,

then, of course, a, ~n~".
If there exist dy,ds > 0 such that
dy2® < |g(x)| < dya”,
then, of course, g(x)~ x’. We need this more general definition because of Theorem A.4 in
Appendix A of the present work.

Definition 3.1 Let {X;}ien be a stochastic stationary process with autocovariance function
vx(-) given by the expression (3.2). If there exists u € (0,1) such that

vx(h) = h™, (3.6)
then we say that {X;}ien is a stochastic process with long dependence.

Definition 3.2 Let {X;}ien be a stochastic stationary process with autocovariance function
vx(+) given by the expression (3.2). If there exists u > 1 such that

vx(h) = B, (3.7)
then we say that {Xi}ien is a stochastic process with not-so-long dependence.
For the Manneville-Pomeau process, it is known that
vx(h) ~ h'"F (3.8)
(see Young [42], for the upper bound and Fisher et al. [15], for the lower bound).

When 0.5 < s < 1, the Manneville-Pomeau process, given by the expression (3.1), has the long-
dependence property and when 0 < s < 0.5, it has the not-so-long dependence property. Here,
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we consider different methods for estimating the value of s in both cases.

In the long-dependence regime, there exists a relationship between the velocity of the
autocorrelation function decay to zero and the regularity of the function fx(-). This property
follows just from a careful analysis of the Fourier series. We refer the reader to Chapter X,
section 3 in Bary [3], pages 1086-1090 in Fisher et al. [15], and also Appendix A of the present
work for a careful description of this relationship. This follows from the fact that if fx(\) ~ A 7°
with b >0, then ~x(h)~h®1. In the case when the coefficients ~x(h) are monotone
decreasing in h, then fx(\)~ A% if yx(h) =~ h*~! for b> 0. Fisher et al. [15] show that the
autocovariance functions 7yx(h) are a monotone function for the linear-by-part approximation of
the Manneville-Pomeau map in the case of a certain . These authors also show that
vx(h) =~ h7=3 when 2 <~ <3 (see page 1090).

In the case of Manneville-Pomeau maps with long dependence, from the exact asymptotic
given by expression (3.3), one obtains (by analogy with the linear by-part model) the rate of
convergence of the autocorrelation decay to zero from the asymptotic of fx(A) to infinity when

A— 0 and vice versa. It follows from the above considerations and from (3.3) that
1

fx(A) = A2
The phenomena fx(w)~ w™" is known as %—noise property (in this case, #—noise would be

a more appropriate terminology), where f stands for a frequency (here denoted by w).

Definition 3.3 The continuous function g:(—m,m) — R is said to be Holder of order a,
0 < a < 1, if there exists a positive constant K such that

l9(z) —g(y)| < K|z —y[*

for any x,y € (—m, 7). We also call a the exponent of g.

Definition 3.4 The continuous function g: (—m,7) — R is said to be exactly a-Hdélder in the
point xo for 0 < a <1, if for any § > 0, there exist positive constants ¢; and co such that

y|a+6

c1 |z — <lgle) =g < ezl —yl**

for any y € (—m,m). We also call a the exact exponent of g at xg.

We apply this definition for the case x¢ = 0.

When one considers the Manneville-Pomeau maps with not-so-long dependence, one can say
more about the regularity of fx(:) (see Chapter II, section 3, and Chapter X, section 9, in
Bary [3]; and Appendix A of this present work): it is an exactly G-Holder continuous function
with exponent (= % — 2. We are using here the notation: a -Holder function with 8 =n + «,
0 < a < 1, is a function such that it is n -times differentiable and the n-th derivative is a-Holder.

The periodogram function I(-) is a useful way to obtain an approximation of fx(-) (see
Lopes et al. [26]). One can obtain an estimation of s from the above considerations and the
periodogram function as we will explain in the next section.

4. Estimation in the “long dependence” case

The main goal of this section is to estimate the transformation 7Ty or, equivalently, to
estimate the parameter s when 0.5 < s < 1. For this purpose, we consider a finite time series
{X,}N5 obtained from the process {X;}ien given by (3.1).

By Monte Carlo simulation, which is given in section 5, we compare some methods for
estimating s with the one presented in Schuster [40]. We are interested in the performance of



Probability, Uncertainty and Quantitative Risk 221

this method when compared to the others.
The process {X;}ien, defined by the expression (3.1), is considered here to be

Xt = ]IA ] Tst = H(O.I,O‘Q) o Tst, (41)

which is stationary and ergodic (see Lopes et al. [25]).

For the long-dependence case, one can express the graph of fx(-) (or of the periodogram
function I(-)) in the logarithm scale and this exhibits linear behavior. By ordinary least-squares
estimation, one obtains an estimate of the value s.

We now explain more carefully this very useful method for the long-dependence case: suppose
there exists ¢ such that fx(w) =~ w® for w close to zero. Then, for w close to zero,

In(fx(w)) _
In(w) ~e

From the estimated value of ¢, we estimate s since c¢= % — 2. An estimate of ¢ can be
obtained via the periodogram by
In(Z(w))
In(w)

~

with w chosen very close to 0.

We now consider six different methods for estimating the parameter s: the least-squares
method proposed in section 4.3 of Schuster [40]; the least-squares method proposed here using
the smoothed periodogram function when the Parzen, or the “cosine bell” lag window, is used to
consistently estimate the spectral density function; one based on the variance of the sample
partial sums of the process; one based on the logarithm of the variance of the sample mean of
the process; and one based on the wavelet theory. These methods are described in this section
and in section 5 we present a Monte Carlo simulation study comparing them.

Perio Estimator

This method is based on the periodogram function of a time series {X;}}Y; and it is largely
used by physicists (see Schuster [40]).

The estimator of s is obtained from the least-squares method based on a linear regression of
Y1,Y25 -, Yg(N) O T1,Z2,...,TenN), Where y; =In(I(};)), z; =In(j) and g(N) = NO5, The
I(-) is the periodogram function given by the expression (3.4) and A; is the j-th Fourier
frequency given by (3.5). Let ¢ be the slope coefficient of the linear regression in the logarithm scale.
The coefficient ¢ allows the estimation of s through the equality

1

S:c—&—Q7

since, for s € (0,1), we know that
fx(w) = w*~2 for w close to the zero frequency.
Therefore,

1

—2& 5= .
T2

o
|

W | =

We denote the estimator in (4.2) by Perio.
Parzen Estimator

This method is also a regression estimator for the parameter s and is obtained by replacing
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the periodogram function I(-) in the Perio method with its smoothed version with the Parzen
lag window (see Brockwell et al. [6]). It is known that the use of a spectral lag window
consistently estimates the spectral density function (see Brockwell et al. [6]). This estimator has
the same expression as in (4.2), but now y; =In(fen(wj)), where fqn(-) is the smoothed
periodogram function. The value of g(N) is chosen as in the Perio method. The truncation
point in the Parzen lag window is considered to be m = N%9.

Cos Estimator

This method is similar to the Parzen estimator, where now we use the “cosine bell” spectral
lag window (see Brockwell et al. [6]). Its expression is given by (4.2), where now the smoothed
periodogram function fq, () is obtained from the “cosine bell” lag window. Again, by linear
regression, we obtain the estimator of s. In this method we considered different limits for
g(N) = N%: we used a3 = 0.5 and as = 0.7. We denote this estimator by Cos(i), i = 1, 2.

Remark 4.1 The methods Perio, Parzen, and Cos defined above are similar to those
proposed by Lopes et al. [29] and Reisen et al. [38] to estimate the differencing parameter in
ARFIMA models. They are also similar to the estimators proposed by 5 for the differencing d or
the seasonal differencing D parameters in seasonal fractionally integrated SARFIMA
(p,d,q) x (P,D,Q)s process with seasonality s. Again, we observe that there is no explicit
expression for the spectral density function fx(-) in the case of Manneville—Pomeau processes.

Varmp Estimator

This method, denoted by Varmp, is different from the previous three. To explain this method,
we consider a time series of sample size N from the process (4.1) and let My be the random
variable is given by

N-1
My = total number of 1’s in the time series { X} ;! = Z X; = Sn. (4.3)
i=0

One can show (see Lopes [24]; Olbermann [33]) that
Var(My) ~ N*7 = N33, (4.4)

We present a proof of this fact in a quite large generality in Appendix B.
The property (4.3) allows one to obtain another estimator for the parameter s. In fact, if one
applies the logarithm to that expression, one gets
1
v = = 3.
armp 5 In(Var(My)) ’
In(N)

Remark 4.2 As in the ARFIMA process (see Beran et al. [4]; and Olbermann [33]), we
observe that this estimator is also very much biased to estimate s in Manneville—Pomeau processes.

Vpmp Estimator

This method is also based on the variance of the random variables M. It was proposed by
Beran [4] under the name of wvariance plot. It is obtained from the order of the variance of
o SN .
Xn = —— given by

N
Var(Xy) ~ O(N?41), (4.5)



Probability, Uncertainty and Quantitative Risk 223

where d is the differencing parameter in ARFIMA models.

For Manneville-Pomeau processes we only need to consider the expression (4.5), the
relationship between the random variables My and Sy, given by (4.4), and the relationship
between the parameters s and d, given by d =1 — 2—13 We shall denote this estimator by Vpmp.

Wmp Estimator

This method is based on the wavelet estimator proposed by Jensen [21] to estimate the
differencing parameter d in ARFIMA models. To consider this a method to estimate the
parameter s in Manneville-Pomeau processes we must consider the relationship between the
parameters s and d, given by d =1 — i, and the estimator proposed here, denoted by Wmp.

We refer the reader to Percival et al. [37] and Lopes et al. [30] for the use of wavelets in
several different problems in statistics.

A wavelet is any continuous function (t) that decays fast to zero when [t| — co and
oscillates in such a way that ffooo (t)dt =0. The idea is to use dyadic translations and
dilations of the function () such that they generate the whole £2(R). From this, the wavelets
considered are of the form

Yin(t) =22 (27t — k), for j,k€Z,
which constitute an orthonormal basis of £2(R) (see Percival et al. [37]).
Here, we consider only the Haar and Mexican hat wavelet bases, since these bases have easy
analytic expressions given by
i . . 1
2%, if277k<t<27 <k5+2>,
Vi (t) —27i, if 27 <kz+2> <t<279(k+1),
0, otherwise ,
and
Yik(t) =22 [1— (27t — k)*|exp[— (27t — k)*/2],
for 7=0,1,...,m—1 and k=0,1,...,27 — 1, where m € N is such that N = 2™.
Given a time series of the sample size N from the stochastic process (4.1), we define the

wavelet coefficients as the finite wavelet transform for this time series given by
N-1

wjp =27 > Xip(27t— k)

t=0
for j=0,1,...,m—1and k=0,1,...,2 — 1, where m € N is such that N = 2™.
To obtain the estimator proposed by Jensen [21], we define the wvariance of the wavelet
coefficients as

R(j) = E[(w;x)?], forall j=0,1,...,m— 1.
Considering the relationship between s and d given by d=1— 2—15, the estimator based on
m—1 2
Zj:4 Tj
m—1 9 m—1 A ’
2 (- X ey

the wavelets is given by

Wmp =

where x; is given by
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3
L

_ 1 _
Ij = ln(272j) — m ln(272j),
J

I
i

and ]:2(]) is the sample variance of the wavelet coefficients defined by
A 1
R(j) == Z(o.)j,k)Q7 forall j=4,5,...,m—1,

with m such that N = 2™.
This method is also considered for the Manneville-Pomeau processes when s > 1. This
corresponds to the case when the invariant measure p is not a probability measure (see Table 7.1).

5. Monte Carlo simulation for the “long dependence” case

In this section, we present the Monte Carlo simulation results comparing the six different
estimation methods given in section 4 for the long-dependence case.

Let {X:}ten be the Manneville-Pomeau process given by expression (3.1), where ¢ =14
with A = (0.1,0.9) such that X; =14 0T"

One chooses at random a value xp of the random variable X, according to a uniform
distribution (this is the same as choosing xo at random according to the probability us). Let
{X, N5 be a time series with N observations from the process {X;}en obtained from such
xo. Hence, this time series is given by

X =14(T () = I0.1,0.9) (T!(z0)), forallt=0,1,...,N—1. (5.1)
The simulations presented here are based on such time series.

Figures 5.1 (a) and (b) present the sample autocorrelation and the periodogram functions,
respectively, for a time series with a sample size N = 10,000 obtained from (5.1) when s =0.8.

The following results were obtained from Monte Carlo simulations in Fortran routines and
using the IMSL library. We remark that for the long-dependence case, one needs a large number
of sets of data requiring high computational time.

For all tables presented here, we calculated the mean (mean ), the standard deviation (sd),
and the mean squared error (mse) values for all estimators of s. The smallest mean squared
error is shown in boldfaced characters in these tables. All simulations are based on 200 replications,
except for Tables 5.3 and 5.4 where we use 50 replications. For the estimator Cos we used two
different values for the limit g(N) = N®: Cos(1) means a3 = 0.5 and Cos(2) means ag = 0.7.

1.000 ¢ 9
0.075 1.75
0.05 15
0.025 1.25
0 1
-0.025 0.75
-0.05 0.5
-0.075 025}
-1.000 . . . . , 0 - ! ‘L. LUV Y
0 2000 4000 6000 8000 10000 0 100 200 300 400 500

(a) (b)

Figure 5.1 (a) Sample autocorrelation function; (b) Periodogram function of a time series with N = 10,000 from the

process {X:}ien given by (5.1) when s =0.8
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Table 5.1 presents the results for the six estimation methods proposed in section 4 for the long-
dependence case when s € {0.60,0.65} and for three different values of N € {10,000; 20, 000;
30,000}.

Table 5.1 Estimation results when s € {0.60,0.65} and N € {10, 000; 20, 000; 30, 000}

s=0.60 s=0.65
N Method mean (8) sd(8) mse(8) N Method mean (8) sd(8) mse(8)
Perio 0.6545 0.1394 0.0223 Perio 0.7539 0.1518 0.0337
Parzen 0.6313 0.1125 0.0136 Parzen 0.7107 0.0107 0.0151
Cos (1) 0.5531 0.0572 0.0054 Cos (1) 0.6145 0.0614 0.0050
10,000 10,000
Cos (2) 0.5993 0.0220 0.0005 Cos (2) 0.6129 0.0198 0.0017
Varmp 0.5309 0.0396 0.0063 Varmp 0.5293 0.0332 0.0156
Vpmp 0.5598 0.0718 0.0067 Vpmp 0.5461 0.0763 0.0166
Perio 0.6364 0.1094 0.0130 Perio 0.7113 0.0779 0.0098
Parzen 0.6147 0.0086 0.0070 Parzen 0.6927 0.0706 0.0068
Cos (1) 0.5488 0.0535 0.0054 Cos (1) 0.6035 0.0472 0.0044
20,000 20,000
Cos (2) 0.5979 0.0264 0.0007 Cos (2) 0.6076 0.0181 0.0021
Varmp 0.5241 0.0303 0.0067 Varmp 0.5251 0.0246 0.0162
Vpmp 0.5513 0.0583 0.0057 Vpmp 0.5257 0.0630 0.0194
Perio 0.6004 0.1051 0.0110 Perio 0.6806 0.0445 0.0029
Parzen 0.5865 0.0736 0.0056 Parzen 0.6910 0.0392 0.0032
Cos (1) 0.5275 0.0508 0.0078 Cos (1) 0.6141 0.0552 0.0043
30,000 30,000
Cos (2) 0.5933 0.0316 0.0010 Cos (2) 0.6090 0.0147 0.0019
Varmp 0.5204 0.0264 0.0070 Varmp 0.5419 0.0262 0.0123
Vpmp 0.5144 0.0608 0.0110 Vpmp 0.5451 0.0562 0.0141

From Table 5.1, we observe that estimators Varmp and Vpmp are very much biased: this
was also true for the ARFIMA processes (see Olbermann et al. [33]). It is natural to state that
the best method is the one that minimizes the mean squared error and the absolute bias values.
In our simulation study, this will occur when the Cos(2) estimator is used, for both values of s
and any sample size considered.

In Table 5.2, we present the results for the case when s = 0.80 considering the same sample
size N € {10,000;20,000;30,000}. The best result is for the method Parzen when N = 10,000.
For the other two values of NN, the proposed methods did not reach the value s =0.8. As s
approaches 1, the time series {X;} !, given by (5.1), remain at zero for an extended period,
resulting in very poor estimates. The methods Varmp and Vpmp are also not recommended in
this situation due to their higher bias values when compared to the other methods.

The simulations presented in Tables 5.3 and 5.4 are based on 50 replications. Table 5.3
presents the results based only on the wavelet method. We consider both the Haar and Mexican
hat bases. We remark that these estimators require a power of two for the sample size. Table 5.3
presents the results when s € {0.65,0.80} with three different values for N € {8,192;16, 384;
32,768}. We observe that the Mexican hat basis has advantages over the Haar basis presenting
smaller bias and mean squared error values. We still point out that when N = 8,192, the
method based on the Haar basis overestimates the mean value when s € {0.65,0.80}. After the
analysis of the long-dependence case, we make a few comments about another regime, that is,
when s > 1.

In Table 5.4, we present the case when s > 1, meaning that the invariant measure us does
not correspond to a probability measure for the process {X;}ien, given by (3.1). This table
presents values of s € {1.0,1.1,1.2,1.3} and sample size N = 32,768. The best results were for
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Table 5.2 Estimation results when s =0.80 and N € {10, 000; 20, 000; 30,000}

N Method mean (§) sd(8) mse(§)
Perio 0.7773 0.1648 0.0275

Parzen 0.7607 0.1444 0.0222

10,000 Cos (1) 0.6286 0.2507 0.0919
Cos (2) 0.6626 0.0822 0.0256

Varmp 0.5472 0.0426 0.0657

Vpmp 0.5781 0.0806 0.0557

Perio 0.6921 0.1220 0.0264

Parzen 0.6740 0.1127 0.2849

20,000 Cos (1) 0.5731 0.0699 0.0563
Cos (2) 0.6434 0.0437 0.0264

Varmp 0.5292 0.0434 0.0752

Vpmp 0.5416 0.0848 0.0739

Perio 0.6559 0.1164 0.0342

Parzen 0.6150 0.1044 0.0456

30,000 Cos (1) 0.5335 0.1713 0.1002
Cos (2) 0.6382 0.0337 0.0273

Varmp 0.5354 0.0524 0.0727

Vpmp 0.5434 0.0861 0.0732

Table 5.3 Estimation results when s € {0.65,0.80} and N € {8,192;16,384;32, 768}

s N Wavelet Basis mean (§) sd(3) mse(8§)
Haar 0.8531 0.0470 0.0434
8,192
Mexican hat 0.8022 0.0480 0.0254
- Haar 0.8311 0.0446 0.0347
0.65 16,384 .
Mexican hat 0.7882 0.0472 0.0213
Haar 0.8283 0.0619 0.0355
32,768 o
Mexican hat 0.7864 0.0451 0.0206
Haar 0.9839 0.0619 0.0376
8,192
Mexican hat 0.8873 0.0670 0.0120
Haar 0.9321 0.0659 0.0217
0.80 16,384 .
Mexican hat 0.8237 0.0675 0.0050
Haar 0.8639 0.0915 0.0120
32,768 .
Mexican hat 0.7747 0.0464 0.0027

Table 5.4 Estimation results when s € {1.0,1.1,1.2,1.3} and N = 32,768

s Wavelet Basis mean (8) sd(8) mse(8)
Haar 0.9461 0.1090 0.0145

1.0
Mexican hat 0.8931 0.1148 0.0243
Haar 1.0924 0.0589 0.0034
11 Mexican hat 0.9943 0.0461 0.0132
Haar 1.0825 0.0729 0.0190
12 Mexican hat 0.9642 0.0939 0.0642
Haar 1.1422 0.0638 0.0288
13 Mexican hat 1.0064 0.0703 0.0910
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the Haar basis. Note that when s > 1, any method based on the periodogram function does not
make sense (for the process obtained from the iterations of the Manneville-Pomeau
transformation Ts when z( is chosen at random).

An interesting question to be investigated: is it true that for any deterministic processes (such
as Manneville-Pomeau, Infinite Markov chains, etc.) or purely stochastic processes (such as
ARFIMA, etc.) depending only on the decay of the rate of convergence of the autocorrelation
function, there exists a better wavelet basis (such as Haar, Mexican hat, Shannon, etc.) to
estimate the exponent of decay?

For the long-dependence case, the Cos(2) estimation method is the best estimator procedure
when s € {0.60,0.65,0.80} for N larger than 10,000. Only when N = 10,000 does the Parzen
estimation method overcome the Cos(2) method (see Tables 5.1 and 5.2). When we consider
the Haar and Mexican hat bases for this case, the best estimation procedure is the one based on
the Mexican hat basis when s € {0.65,0.80} (see Table 5.3) and the Haar basis when s> 1.0
and N = 32,768 (see Table 5.4).

6. Estimation in the “not-so-long dependence” case

In the not-so-long dependence case, one can estimate the value s using the exactly a-Holder
property at the point zo =0 (see Bary [3] and Fisher et al. [15]). Suppose
o~ Ufx (o) — fx(y)l)
In(lzo —yl)
where fx(-) is the spectral density function, given in (3.3), of the process {X;}ien given in (3.1).
We then define the estimator

for y € (—m, ) very close to zero,

()~ )
a+2 In(|wo — wj)

>

, (6.1)

with I(-) the periodogram function, given by (3.4), with wo =0 and w; is a Fourier frequency,
given by (3.5), very close to zero.

The main goal of this section is to describe two different estimation methods to estimate the
transformation Ty or, equivalently, to estimate the parameter s, when s € (07 %) For this purpose,
we consider a finite time series {X;} ;! obtained from the process {X;}ien given by (5.1).
The two methods are proposed by (6.1) when the periodogram or its version smoothed by the
Parzen lag window functions are used.

These methods are described in this section and in section 7 we present a Monte Carlo
simulation study comparing them.

P Estimator

This estimation method is based on the expression (6.1) where I(-) is the periodogram
function given by the expression (3.4). We denote it by P estimator.

SP Estimator

This estimation method is based on the expression (6.1) where the periodogram function I(-)
is now replaced by the smoothed periodogram function fs,,(-) using the Parzen spectral window.
We denote it by SP estimator.

7. Monte Carlo simulation for the “not-so-long dependence” case

In this section, we present the Monte Carlo simulation results comparing the two methods
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given in section 6 for the not-so-long dependence case.

Let {X;}teny be the Manneville-Pomeau process given by expression (5.1), where ¢ =14
with A = (0.1,0.9) such that X; =14 oT%.

One chooses at random a value xy of the random variable X, according to a uniform
distribution (this is the same as choosing xg at random according to the probability us). Let
{X 3N, be a time series with N observations obtained from (5.1). The simulations presented
here are based on such time series and were obtained by Fortran routines with some help from
the IMSL library.

In Table 7.1, we present some simulation results for the not-so-long dependence case based on
the two methods reported in section 6. We calculated the mean (mean ), the standard deviation
(sd), and the mean squared error (mse) values for each method. The smallest mean squared
error is shown in boldface in this table. These simulations are based on 200 replications with
s € {0.35,0.40,0.45} and two different sample sizes N € {10, 000; 30,000}. Note that as we have
a better mixing rate of convergence for the not-so-long dependence case, the biases here are
smaller than in the case of long dependence. However, we have an acceptable estimated mean
value only when s=0.40 for both samples sizes N. However, when s=0.35 and s=0.45,
both methods overestimate the mean value for both sample sizes N.

For the “not-so-long dependence” case, the best estimation procedure is the SP method, but
the P method overcomes it when, respectively, s =0.35 and N = 30,000, and when s = 0.45
and N = 10,000 (see Table 7.1).

Table 7.1 Estimation results, based on 200 replications, when s € {0.35,0.40,0.45} and N € {10, 000; 30,000}

s N Statistics P SP
mean (8) 0.4078 0.3970
10,000 sd(8) 0.0374 0.0255
mse(8) 0.0047 0.0028
0.35
mean (8§) 0.3870 0.4136
30,000 sd(8) 0.0298 0.0208
mse(8) 0.0022 0.0044
mean (8) 0.4210 0.4024
10,000 sd(8) 0.0378 0.0258
mse(8) 0.0018 0.0006
0.40
mean (§) 0.4397 0.4046
30,000 sd(8) 0.0432 0.0405
mse(8) 0.0034 0.0016
mean (8) 0.4652 0.4359
10,000 sd(8) 0.0312 0.0285
mse(8) 0.0012 0.0050
0.45
mean (8) 0.5218 0.4808
30,000 sd(8) 0.0800 0.0619
mse(8) 0.0115 0.0047

8. Conclusions

We analyzed the estimation of the parameter s in the Manneville-Pomeau processes in the
long and not-so-long range dependence cases.

We described several estimation methods for both situations and we consider that the best
estimation procedure is the one with a smaller mean square error value and smaller bias in
absolute value. In this direction, we compare several estimation procedures with the Perio method,
presented by Schuster [40], and largely used by physicists.
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For the “long-dependence’ case, we point out that the Cos(2) estimation method is the best
estimator procedure when s € {0.60,0.65,0.80} for N larger than 10,000. Only when N = 10,000,
does the Parzen estimation method overcome the Cos(2) method (see Tables 5.1 and 5.2).
When we consider the Haar and Mexican hat bases for this “long-dependence” case, the best
estimation procedure is the one based on the Mexican hat basis when s € {0.65,0.80} (see Table 5.3)
and the one based on the Haar basis when s > 1.0 and N = 32,768 (see Table 5.4).

In Tables 5.1 to 5.3, the wavelet method (Wmp ) shows a better performance than the Perio
method. One can see this in the case when s = 0.8, in which case the estimator Wmp from the
Mexican hat wavelet basis gave the best results in terms of smaller mean squared error value
and smaller bias in absolute value (see Table 5.3).

The methods Varmp and Vpmp presented the higher biases while the method Cos(2) had
the best results for the cases when s € {0.60,0.65}, with the smallest mean squared error for the
considered sample size values.

We studied the performance of the Wmp method based on the wavelet theory for the
Manneville-Pomeau processes when s> 1, which corresponds to the situation where the
invariant measure ps is not a probability measure. In this case, the best results were obtained
when the Haar basis was considered.

Among the estimation methods proposed for the “not-so-long dependence’ case, the one based
on the smoothed periodogram function using the SP Parzen spectral window had the best
results with lower bias and mean squared error values. The P method overcomes it only in two
situations, respectively, when s =0.35 and N = 30,000 and when s=0.45 and N = 10,000
(see Table 7.1).

Appendix A

Let {X:}ien be the Manneville-Pomeau process defined in (3.1). Let px(-) and fx(:) be,
respectively, the autocorrelation and the spectral density functions of this process.
In this appendix, we present some general properties of the Fourier series. In this way, we
explain why the hyperbolic (or polynomial) decay of the autocorrelation function, that is,
px(h)=h ™ for0<p<1

corresponds to
fx(\) = At
for the spectral density function of the process {X;}ien given by (3.1).
First, we explain the not-so-long dependence case.
If the function g is n-times differentiable and ¢"(-) is a-Hélder with 0 < a < 1, we say that
g is (n+ a)-Holder.
The relationship of the hyperbolic decay between the autocorrelation function of the Manneville-

Pomeau process and its spectral density function is only a question related to the Fourier series
(see Bary [3]).

Theorem A.1 Suppose that b, ~n~" for some u and that g(6) = > 7", b, cos(nf) converges
to zero for b, € R. If a is positive and g(-) is a Hélder function of order a, then there exists a
positive constant ¢ such that b, < cn=1%%) for all n € N — {0}.

Theorem A.2 Suppose that b, ~n~", for some wu, and that g(0)=>."", b,cos(nf)

n=1
decreases monotonously to zero, for b, € R. If a is positive and there exists a positive constant

¢ such that b, < cn=(F9) then g(-) is a Holder function of order a.
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Theorems A.1 and A.2 (see Chapter II, section 3 and Chapter X, section 9, respectively, in
Bary [3]) apply to the not-so-long dependence case.

Another interesting result of the Fourier series, that can be applied now for the long-
dependence case, is described in the next theorem.

Theorem A.3 (Riesz) Suppose that g(0) =~ b,cos(nb), for all 6 € (—m, ) and that
b, €ER is such that the sequence {bp}lnen decreases monotonously to zero when n — oo.

u

Suppose there exists a positive real constant u such that b, =n~". Suppose there ezists also a

positive real constant b € (—1,0) such that

l9(0)] = |6]".
(a) If there exist a € (—1,0), € > 0 and a positive real constant k such that
géf) <k forall0<6<e

then w>1+a. That is, the decreasing velocity of |by| is at least of order n~ (49 when
n— 0o.

(b) If there exist a € (—1,0) and a positive real constant v such that |b,| < vn~0+%) | then
b<a. Thatis, g(0) is at least of order of |6|* when 6 — 0.

Hence, from (a) and (b) above, one concludes that u=1+b.

Remark A.1 In the genmeral cases, we point out that there exist sequences {b,}nen (not
monotonous) such that cin™ < |b,| < can™ for some positive constants ¢1 and co, and u
such that 0 <wu <1, but g(f) does not satisfy c3|0]® < |g(0)| < cal6|® for any fized positive
constants cs,cq, and b.

Theorem A.3 is a consequence of the following result.

Theorem A.4 (Riesz) Suppose that g(0) =>.°"  b,cos(nf) for all 6 € (—m,7), and that

n=1

{bn}nen € R decreases monotonously to zero. Let p > 1 and ¢ > 1 be such that 1% + % =1.
(a) If g€ LP, then Y, |by|? < 0.
(b) If Y00 |bn|? < oo, then g € LP .
Remark A.2 Theorem A.3 follows from Theorem A.4 making use of
(a) for any continuous function f on (0,m) of order z% (x close to zero), then

feLtea>-1 and
(b) for any sequence ¢, of order n=8 (n close to infinity), then Yoo lenl <o & B> 1.

Theorem A.4 follows easily from the first theorem of Chapter X, section 9 of Bary [3].
The above results justify the ideas used in the estimation methods Perio, Parzen, Cos(1),
and Cos(2), given in section 4.

Appendix B

Considering the rate of convergence to zero of the autocorrelation function, one can also get
an estimate of the order of magnitude of the variance for the partial sums Sy = Zij\:)l X; from
a time series ... X _3,X 9, X 1, X0, X1,...,Xn_1. In Proposition B.1 below, we present a proof
of the estimated value for the variance of the random variable Sy. In Proposition B.2, we give a
precise estimate of the order of growth for the variance of this random process.
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We point out that the stationary process stated above and given by
Xi = (poThH(Xy) fort € N

can be considered defined for all ¢ € Z via the natural extension transformation (see section 5.3
in Lopes et al. [25]).

Proposition B.1 Let {X;}icz be any stationary stochastic process. Let Sy = Zfigl X; be the

partial sum of a time series Xo, X1,...,Xn_1 from this process. Then,
N—-1
_ 1x(0) 1 , .
Var(Sn) =2N 5 TN Z:l(N = x0)|
j=

where yx(+) is the autocovariance function of the process {Xi}iez .

Proof Since the process {X;}iez is stationary, we observe that

N-1 N-1 N-1N-1
Var(Sy) =Var (Z Xi> = Z Var(X;) + cov(X;, Xy)

i=0 i=0 7=0 £=0
N—-1N-1
= NVar(Xy) + (E(X;X¢) — [E(X0)]?)
7j=0 £=0
Nf
=Nyx(0)+2 > yx(—0) (B.1)
=

It follows from the expression (B.1) that

N—1
Var(Sy) = Nyx(0)+2 > vx(j - 0)

3,1=0
j<t

=Nyx(0) +2 | vx(=1) +vx(=2) + 7x(=3) + ... + yx (=N + 1)

§=0
Jr’YX(*l) +7X(72) +... +'YX(1 - (Nf 1))
+x(—=1) + vx(-2) +.7..+7x(2 - (N-1))

+x (=D Fyx(=2)+ ... +9xB = (N = 1)) +... +yx(-1)
j=3 = oy
= Nx(0) +2[(N = 1)yx(=1) + (N = 2)yx(=2) + (N = 3)7x(=3)
+ .+ 3x (= (N = 3)) + 2yx (= (N = 2)) + vx (—=(N —1))]
N—1
= Nx(0)+2 3 (N = ) 1x(=j) = Nx(0) +2 (B.2)

J:1

l\')

The last equality (B.2) follows from the fact that the process is stationary. This implies that
x (7)) = vx (=3)-
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Therefore,
N-1
Var(Sn) = Nyx(0)+2 > (N = 5)vx (),
j=1

and this completes the proof of Proposition B.1. O

In the next proposition, we show the order of Var(Sy) with respect to N for a quite general
class of stationary stochastic processes.

Proposition B.2 Let {X;}icz be any stationary stochastic process. Let Sy = Zi]\gl X; be the
partial sum of a time series Xo,X1,...,Xn_1 from the process {Xi}icz . If there exists
u € (0,1) such that yx(h) = h™", then

Var(Sy) =~ N*7*.

Proof For u € (0,1), the integral
1
I :/ (1—-2z)xz"de
0

is finite. Then, for any N € N, one can consider the Riemann sums associated with the partition

o L2 N1,
7N7N""7 N ) )

2(-0 () 7

Jj=1

obtaining the approximation

that converges to I when N — oo.
By similar arguments to those proposed in Lemma 8.1 of Fisher et al. [15], consider

- S0E SR

= f:(N — ) (;j)lu (B.3)

Given € > 0 for N sufficiently large, one has that

1
I —e¢ < — <7 .
€ NCN +e€

Using the expression (B.3), the above inequality is given by
1N
(I—e) NS Y (N=j) i < (T+e) N (B.4)
j=1

for N sufficiently large.
Therefore,

1

N (N —5)j7" is of order N* 7%,
J

NE

1

From the expressions (B.2) and (B.4), one has
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x(0) 1%~

X . . —u

Var(Sy) =2N | ==+ ;(N—]) vx(j)| ~ N7,

and this completes the proof of Proposition B.2. O

The above results justify the ideas used in the estimation methods Varmp and Vpmp given
in section 4.
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