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Abstract: This study emphasizes the importance of monitoring the microbiological quality of animal
products, such as raw sheep’s milk and cheese, to ensure food safety. In Brazil, there is currently no
legislation governing the quality of sheep’s milk and its derivatives. Therefore, this study aimed to
evaluate: (i) the hygienic-sanitary quality of raw sheep’s milk and cheese produced in southern Brazil;
(ii) the presence of enterotoxins and Staphylococcus spp. in these products; and (iii) the susceptibility
of the isolated Staphylococcus spp. to antimicrobial drugs and the presence of resistance genes. A total
of 35 samples of sheep’s milk and cheese were examined. The microbiological quality and presence
of enterotoxins were accessed using Petrifilm and VIDAS SET2 methods, respectively. Antimicrobial
susceptibility tests were conducted using VITEK 2 equipment and the disc diffusion method. The
presence of resistance genes tet(L), sul1, sul2, ermB, tetM, AAC(6)’, tetW, and strA were evaluated
through PCR. In total, 39 Staphylococcus spp. were obtained. The resistance genes tetM, ermB, strA,
tetL, sul1, AAC(6)’, and sul2 were detected in 82%, 59%, 36%, 28%, 23%, 3%, and 3% of isolates,
respectively. The findings revealed that both raw sheep’s milk and cheese contained Staphylococcus
spp. that exhibited resistance to antimicrobial drugs and harbored resistance genes. These results
underscore the immediate need for specific legislation in Brazil to regulate the production and sale of
these products.

Keywords: raw sheep’s milk; cheese; staphylococcal enterotoxin; microbiological safety;
antimicrobial resistance

1. Introduction

Sheep’s milk and cheese production in Brazil is a relatively new venture when com-
pared to European countries. In 2017, the production of sheep’s milk in Brazil reached
1.72 million [1], with a significant portion being utilized for cheese production [2]. The mi-
crobiological quality of milk depends on its natural microbiota and potential contamination
from viruses, bacteria, and fungi [3]. Therefore, it is crucial to assess the presence of mi-
croorganisms that indicate the cleanliness and safety of milk to prevent foodborne illnesses.
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Foodborne illnesses are a major global health concern, impacting around 600 million
individuals annually [4]. They occur when contaminated food is consumed and they can
lead to serious consequences. Staphylococcus aureus is a pathogenic microorganism known
for causing such illnesses, particularly through the production of enterotoxins. These toxins
have been linked to outbreaks of foodborne diseases associated with cheese consuming
of [4].

Cheese made from sheep’s milk is rich in proteins, fats, and carbohydrates, which
often enhances the production of toxins by S. aureus [5]. The contamination of S. aureus
often originates from human handling, water sources, milking equipment, and the en-
vironment [6]. S. aureus is known to cause mastitis in animals and is commonly found
as a contaminant in raw milk [7]. Consequently, a key challenge in the dairy industry is
to minimize the contamination levels in milk and its derivatives to ensure the safety of
products and consumers [8]. Limited research has been conducted on the quality of raw
sheep’s milk and the resulting cheese in Brazil, where specific legislation for these products
is lacking.

Another significant concern in food safety is antimicrobial resistance (AMR), which
results from misuse and abuse of antimicrobial agents in both humans and animals [9].
In 2019, antibiotic-resistant bacterial infections caused over 1.2 million deaths [10], with
methicillin-resistant S. aureus (MRSA) alone accounting for 100,000 deaths and being a
major cause of severe foodborne outbreaks [4]. Therefore, the objectives of this study were
to assess: (i) the microbiological quality of raw sheep’s milk and cheese produced on farms
in southern Brazil; (ii) the presence of Staphylococcus spp. and their enterotoxins in these
samples; and (iii) the susceptibility of Staphylococcus spp. antimicrobial agents and the
presence of resistance genes in these isolates.

2. Materials and Methods
2.1. Sampling and Experimental Design

Fifteen raw sheep’s milk samples were collected in three producing farms (F1, F2
and F3, n = 5 each) located in Rio Grande do Sul and Santa Catarina states (Figure 1).
The selection of farms was based on convenience and their willingness to participate in
the study. Additionally, 20 cheese samples from these farms including colonial, fresh,
feta-type, and pecorino-type (n = 5 each) were purchased from the local market (Figure 1).
All samples were within their specified expiration date and transported to the laboratory
in Styrofoam boxes with ice and submitted to microbiological analysis under aseptic
conditions within 24 h of collection. The samples were submitted to microbiological
quality assessment through microbial counts of aerobic mesophilic microorganisms (AM),
total coliforms (TC), Escherichia coli; and (d) Staphylococcus aureus. Moreover, enterotoxins’
analysis, Staphylococcus spp. isolation, antimicrobial susceptibility and resistance genes
investigation were performed in 15 milk and 15 cheese samples. It is important to note that
the fresh cheese samples were not included in these specific analyses.

2.2. Microbiological Quality Assessment

Microbiological analysis of aerobic mesophilic microorganisms (AM), total coliforms
(TC), Escherichia coli and S. aureus were performed using the PetrifilmTM system (3M
Company, St, Paul, MN, USA). Each cheese sample (10 g) was mixed with 90 mL of
buffered peptone saline in a sterile bag and homogenized in a stomacher for 5 min. Serial
decimal dilutions were then performed in a 0.85% saline solution (up to 10−4) to enumerate
the AM, TC, E. coli and S. aureus. For milk samples, 1 mL was inoculated into a tube
containing 9 mL of 0.85% saline solution, followed with the serial dilutions (up to 10−4).
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Petrifilm™ plates were used to quantify the counts of AM, TC, E. coli, and S. aureus. A
1.0 mL volume of each dilution was inoculated in the center of the lower film, and the upper
film was carefully placed to prevent air bubble formation. Diffusers indicated for each
plate type were employed to distribute the inoculum. The plates were then incubated for
24–48 h at 35 ± 1 ◦C, and the results were expressed in colony-forming units per milliliter
CFU/mL [11].

2.3. Analysis of Staphylococcal Enterotoxins

Cheese samples (n = 15) and milk samples (n = 15) were evaluated for the presence of
classical staphylococcal enterotoxins (SEs) using Vidas® II staphylococcal enterotoxin (SET2,
bioMérieux, Marcy l’Etoile, France), performed according to the manufacturer’s instruc-
tions. The methodology, based on the Enzyme Linked Fluorescent Assay (ELFA) technique
using anti-SEs antibodies, allows the simultaneous detection of seven SEs serotypes (A,
B, C 1, C 2, C 3, D, and E), with detection limit of 0.25 ng/g of food matrix. The system
automatically quantifies the results as positive or negative.

2.4. Staphylococcus spp. Isolation

For each cheese sample, 25 g were placed in a sterile plastic bag with 225 mL of
buffered peptone water. After homogenization in a mixer (Smasher™ AES Blue line) for
3 min, 1 mL of the initial 10−1 suspension divided into 0.3, 0.3, and 0.4 mL was seeded on
3 Baird-Parker agar plates (BP), supplemented with egg yolk tellurite emulsion.

Milk samples were inoculated directly into BP plates (0.3, 0.3 and 0.4 mL). Dilutions of
up to 10−3 were performed for each sample. It was then incubated at 37 ◦C for 48 h. After
48 h, 5 typical colonies that appeared black, shiny, and convex and surrounded by zones of
2 to 5 mm and 5 atypical colonies were selected.

The isolates obtained were confirmed using Gram color to observe the morphology of
the colonies. Subsequently, tests of catalase, coagulase and fermentation in mannitol salt
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were carried out. Staphylococcus aureus ATCC 25923 was used as a positive control in each
of the biochemical test protocols.

The isolates were then seeded on TSA agar plates and incubated at 37 ◦C for 24 h.
After this time, the colonies were suspended in a solution of 3 mL of 0.45% saline solution.
A turbidity of 0.5–0.63 standard McFarland was established using VITEK DensiCHEK
Plus (bioMérieux, Nürtingen, Germany). Isolates were identified to the species level using
the VITEK 2 system (bioMérieux, Nürtingen, Germany) using GP cards (for analysis of
gram-positive bacteria). The isolates identified as Staphylococcus spp. they were removed
with a sterile loop from the TSA plate and placed in Eppendorf containing 1 mL of TSB
broth with 10% glycerol and despaired at −20 ◦C.

2.5. Antimicrobial Susceptibility Analysis

The antibiotic resistance of Staphylococcus spp. isolates was assessed using the VITEK
2 method and the disk diffusion test using Mueller-Hinton agar (KASVI). A panel of
23 antimicrobial agents was examined. The antibiotics included in the VITEK 2 method were
benzylpenicillin (BENPEN) oxacillin (OXA), cephalothin (CFL), cefovecin (CVN), ceftiofur
(CEF), enrofloxacin (ENR), marbofloxacin, pradofloxacin (PRA), amoxicillin/clavulanic acid
(AUG), kanamycin (K), gentamicin (GEN), neomycin (N), erythromycin (ERI), clidamycin
(CLI), tetracycline (TET), doxycycline (DXT), chloramphenicol (CLO), nitrofurantoin (F)
and Trimethoprim/Sulfamethoxazole (SXT), with concentrations established in the analysis
cards. To perform the tests, 280 µL of standardized McFarland solution was combined with
3 mL of 0.45% saline solution. The VITEK 2 system (bioMérieux, Nürtingen, Germany)
was used for antibiogram analysis with AST–GP80 cards [12]. For antibiotics not included
in the AST-GP80 card, the disk-diffusion method on agar was conducted following the
guidelines of the Clinical and Laboratory Standards Institute [13].

The antimicrobial agents tested by disc-diffusion method were selected based on those
commonly used for treating Staphylococcus infection. The specific antimicrobials evaluated
were ampicillin (AMP) (10 µg), linezolid (LNZ) (30 µg), rifampicin (RIF) (5 µg), sulfazotrim
(SUT) (25 µg). Staphylococcus aureus strain ATCC25923 served as control. The isolates were
classified as susceptible (S), intermediate (I), or resistant (R), according to Clinical and
Laboratory Standards documents [13]. Multidrug resistance was defined as resistance to
three or more antimicrobial classes.

2.6. Detection of Resistance Genes

Staphylococcus spp. DNA was extracted using PureLink Genomic DNA Mini Kit,
according to the manufacturer’s instructions and described by Endres et al. 2021. The
extracted DNA was stored at −20 ◦C until analysis. Polymerase Chain Reaction (PCR)
was performed to detect the genes ermB, AAC(6)’, tetL, tetM, tetW, sul1, sul2, strA (Table 1).
PCR for 16S rRNA gene was used as internal control. Amplicons were submitted to
electrophoresis using 1% agarose gels stained with ethidium bromide. Strains available in
laboratory harboring the mentioned resistance genes were used as positive controls.

2.7. Statistical Analysis

The comparison of microorganisms’ counts was performed using the Kruskal-Wallis
test. The different types of cheese were compared, and the raw sheep’s milk samples from
the different farms. The significance level was set at p < 0.05. Afterwards, the Dunn test
for multiple comparisons was conducted. Descriptive statistics were used to present the
results enterotoxin detection, Staphylococcus spp. isolation, and resistance studies.
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Table 1. Nucleotide sequences used as primers in PCR for identification of resistance genes and
internal control.

Target Annealing
Temperature (◦C) Amplicon Size (bp) Sequence (5′ to 3′) Reference

16S rRNA 55 375
F CACGGTCGKCGGCGCCATT

[14]
R GGACTACHVGGGTWTCTAAT

ermB 52 639
F GAAAAGGTACTCAACCAAATA

[15]
R AGTAACGGTACTTAAATTGTTTAC

AAC(6)’ 60 219
F CCAAGAGCAATAAGGGCATA

[16]
R CACTATCATAACCACTACCG

tetL 58 628
F ACTCGTAATGGTTGTAGTTGC

[16]
R TGTAACTCCGATGTTTAACACG

tetM 52 657
F GTTAAATAGTGTTCTTGGAG

[17]
R CTAAGATATGGCTCTAACAA

tetW 60 168
F GAGAGCCTGCTATATGCCAGC

[18]
R GGGCGTATCCACAATGTTAAC

Sul1 60 99
F GGATCAGACGTCGTGGATGT

[19]
R GTCTAAGAGCGGCGCAATAC

Sul2 57 99
F CGCAATGTGATCCATGATGT

[19]
R GCGAAATCATCTGCCAAACT

strA 59 99
F CCAGTTCTCTTCGGCGTTAG

[19]
R ACTCTTCAATGCACGGGTCT

3. Results and Discussion
3.1. Microbiological Quality of Milk Samples

Out of the 15 milk samples obtained from the three farms, a significant occurrence of
mesophilic microorganisms, total coliforms, E. coli and S. aureus was observed (Figure 2;
Supplementary Table S1). Among analyzed samples, only one tested positive for the pres-
ence of enterotoxins. It was possible to isolate 24 strains of Staphylococcus spp., identified
as S. sciuri, S. simulans, and S. aureus. The isolated strains exhibited resistance to multiple
antibiotics, and the presence of the resistance genes such as tetM, sul1, Sul2, ermB, tetM, and
strA was detected (Supplementary Table S1).

There were no significant differences in the counts of total mesophilic aerobic microor-
ganisms and S. aureus among the milk samples from the evaluated farms (Figure 2a,d).
However, in terms of total coliforms, Farm 1 showed lower counts compared to Farms 2
and 3 (p = 0.022, and 0.027 respectively; Figure 2b). Farm 3 had higher counts of E. coli
compared to Farms 1 and 2 (p = 0.013, and 0.031 respectively; Figure 2c). The differences in
microorganism counts do not appear to be associated with geographic location, as Farms 1
and 3 are in Santa Catarina state and Farm 2 is in Rio Grande do Sul state. Other factors,
such as hygiene practices during the milking process and milk storage on each farm, are
likely to be involved. Moreover, the presence of S. aureus in raw milk is often associated
with subclinical mastitis. However, no follow-up was conducted to assess the hygiene
conditions or mastitis occurrence at the farms.
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The presence of these microorganisms in milk can negatively impact its shelf life,
quality, and risk of transmitting diseases, particularly when consumed raw or used to
produce derivatives without proper pasteurization or the required maturation period as
mandated by regulations [20]. Moreover, S. aureus has the potential to produce thermostable
enterotoxins that can persist in the product even after pasteurization, posing additional
risks to consumers [21]. Therefore, the results highlight the importance of microbial control
and training for handlers.

3.2. Microbiological Quality of Cheese Samples

Cheese samples showed a lower occurrence of E. coli and S. aureus, and no presence
of enterotoxins was detected. Out of the fifteen cheese samples analyzed, fifteen strains
of Staphylococcus spp. were isolated, identified as: S. lentus; S. warneri, S. pseudintermedius,
S. chromogenes and S. sciuri. The isolates demonstrated resistance to various antimicro-
bials and carried the genes tetL, sul1, ermB, tetM, strA, AAC(6), strA, sul1, tetW and strA
(Supplementary Table S2).

Statistical differences in microorganism counts among different types of cheese were
observed through Dunn’s test (Figure 3). These comparisons should be carefully considered,
considering factors such as cheese production methods, milk composition, and maturation
time specific to each cheese type. The analyzed cheese types undergo a distinct maturation
process and are produced using pasteurized milk with added starter cultures, which shape
final product’s microbiota [20]. Most of the cheeses analyzed exhibited low counts of
total coliform, E. coli, and S. aureus (Figure 3; Supplementary Table S1). Colonial cheeses
displayed lower total coliform counts compared to fresh cheeses (p < 0.05; Figure 3b), likely
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due to maturation process that hinders microorganism growth. There was no significant
difference in E. coli counts observed between the different cheese types (Figure 3c). The low
coliform counts indicate proper milk pasteurization and sound manufacturing practices.
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On the other hand, all cheese samples showed significant mesophilic bacteria counts,
with feta-type cheeses showing higher counts compared to colonial and fresh cheeses
(Figure 3a). S. aureus was detected in fresh cheese but not in colonial and feta-type cheeses
(Figure 3d). This finding may be attributed to factors such as the pH reduction, initial
microbial load of the raw materials, and adherence to good manufacturing practices at the
production sites. Moreover, the use of starter cultures and their byproducts play a crucial
role in controlling pathogens during the maturation process [22].

S. aureus and E. coli are globally recognized as significant zoonotic pathogens that
can lead to bacterial infections and foodborne illnesses [23]. These microorganisms have
been detected in various food sources such as chicken meat, eggs, beef, sheep and goat
meat, buffalo meat, raw bovine milk, raw sheep’s and goat’s milk, raw buffalo milk, cheese,
and fish [24–31]. In Brazil, the Health Surveillance Secretariat reported 2504 outbreaks of
foodborne diseases between 2016 and 2019, affecting 37,247 individuals and resulting in
38 deaths. However, it is important to note that the actual number of affected individuals
may be higher as reporting foodborne outbreaks is not mandatory in Brazil [32]. Among
these outbreaks, 11.5% were attributed to S. aureus as the causative agent, and 9.06% were
associated with the consumption of milk and its derivatives [33]. Nonetheless, specific
information regarding the frequency of staphylococcal food poisoning related to cheese is
currently unavailable.

The Brazilian regulations for raw milk and dairy products (Ordinance 146 of
7 March 1996) set microbiological standards based on the moisture content of cheese. How-
ever, these regulations do not specifically address sheep’s milk and its dairy products,
leaving a regulatory gap. The cheeses examined in this study have a moisture content
ranging from 35.9% to 45.9%, classifying them as medium-moisture cheeses. The microbial
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counts observed in these cheeses complied with the established regulations, including the
counts of total coliforms S. aureus. Only one sample of fresh cheese exceeded the acceptable
level for thermotolerant coliforms (5.0 × 102 CFU/mL).

Raw sheep’s milk generally exhibited higher microorganism counts compared to
cheeses, which can be attributed to the use of pasteurized milk during cheese production
and the maturation process. While the microbiological quality of cheeses is not solely
dependent on milk pasteurization due to potential presence of thermoresistant toxins pro-
duced by certain microorganisms, pasteurization helps eliminate potential pathogens and
spoilage bacteria present in raw milk [34]. Furthermore, maintaining sanitary conditions in
the herd, following standard manufacturing process, reducing pH, removing water, and
adding salt during cheese production favors microbiological safety [35].

3.3. Enterotoxin Investigation

In this study, a single sample of raw sheep’s milk was identified as containing staphy-
lococcal enterotoxin, with the highest S. aureus count (5.30 × 103 CFU/mL) observed using
the traditional culture method. Previous studies have also reported the presence of en-
terotoxins in milk samples [36,37]. It is important to note that while this study focuses on
characterizing S. aureus, both coagulase-positive (CoPS) and coagulase-negative (CoNS)
Staphylococcus spp. possess genes that can produce enterotoxins [38,39]. Even though milk
pasteurization, fermentation, and cheese maturation slow down the growth of S. aureus, it
is crucial to examine the presence of enterotoxins, since they are the main responsible for
staphylococcal food poisoning.

3.4. Staphylococcus spp. Isolation

A total of 461 colonies were from 15 samples of raw sheep’s milk and 15 samples of
cheese. These colonies were analyzed using the catalase test. The negative catalase strains
were discarded, and positive catalase strains (40%; n = 186) underwent the mannitol salt
fermentation test and Gram staining. Out of these strains, 39 showed gram-positive staining
in clusters and were identified as Staphylococcus spp. Of these isolates, 24 were from sheep’s
milk and 15 from cheese. Among the cheese strains, eight (53%) were from feta-type cheese,
four (27%) from pecorino-type cheese, and three (20%) from colonial cheese. Among the
raw sheep’s milk strains, 13 (54%) were from Farm 1, 1 (4%) from Farm 2, and 10 (42%)
from Farm 3. All the isolates were identified (Table 2), with the main Staphylococcus species
in raw sheep’s milk being S. sciuri (66.7%), and the predominant species in cheese being S.
lentus (60%). Most isolated strains were characterized as CoNS species (Table 2).

Table 2. Staphylococcus species isolated in the present study.

Sample Species Frequency (%) Coagulase Test AMR Frequency (%) *

Milk

S. sciuri 16 (67) CoNS 15 (94)
S. simulans 4 (17) CoNS 3 (75)
S. aureus 3 (13) CoPS 3 (100)
S. lentus 1 (4) CoNS 1 (100)

Total 24 (100) 22 (92)

Cheese

S. lentus 9 (60) CoNS 8 (89)
S. warneri 2 (13) CoNS 2 (100)

S. pseudintermedius 2 (13) CoPS 2 (100)
S. chromogenes 1 (7) CoNS 1 (100)

S. sciuri 1 (7) CoNS 1 (100)
Total 15 (100) 14 (93)

* Resistant to at least one antimicrobial.

Staphylococcus aureus was detected exclusively in raw sheep’s milk samples. As men-
tioned above, cheese preparation includes steps that decrease the microbial count. The
production of organic acids (such as lactic, acetic, propionic, and butyric acids) by Lacto-
bacillus spp. during cheese ripening leads to lower pH [40], which inhibits bacterial growth,



Microorganisms 2023, 11, 1618 9 of 16

although certain pathogens can still survive in acidic conditions. However, there is still a
risk of contamination during the cheese forming and packing processes.

Previous studies have assessed Staphylococcus spp. in sheep’s milk and identified
S. chromogenes, S. epidermidis, S. haemolyticus, S. pseudintermedius, S. aureus, and
S. agnetis [21,41,42]. The variation in species profile could be attributed to factors such as
the animals’ microbiota, management practices, and other factors not evaluated in this
study.

Staphylococcus pseudintermedius, a coagulase-positive Staphylococcus, was detected in
the cheese samples. It is commonly associated with infections in dogs, cats, and humans [43].
Among the coagulase-negative isolates, Staphylococcus chromogenes has been identified in
bovine, sheep’s, and goat’s milk and is known to cause mastitis [44–46]. S. sciuri is another
species linked to mastitis and is often described as methicillin-resistant [47,48]. S. warneri,
commonly found in humans and animals, can cause meningitis, endocarditis, and septic
arthritis in humans [49]. S. warneri has been isolated from fish, and antimicrobial resis-
tance is a concern [50]. In a previous study conducted in northern Italy, CoNS (including
S. equorum, S. lentus, S. simulans, S. sciuri, and S. xylosus) were detected in both raw milk and
cheese [51]. CoNS are often present in fermented foods as part of the normal microbiota
and can contribute positively to flavor and aroma development by producing proteolytic
and lipolytic enzymes. CoNS also have good tolerance to salt and acidity, which makes
them frequently present in cheeses made from sheep’s milk.

3.5. Antimicrobial Susceptibility Tests and the Detection of Resistance Genes

The antimicrobial susceptibility of the 39 Staphylococcus isolates was evaluated us-
ing 23 antibiotics. Results showed that 87% of the evaluated Staphylococcus strains were
resistant to at least one antibiotic, with 46% exhibiting multidrug resistance. All isolates
from raw sheep’s milk were susceptible to linezolid, sulfazotrim, gentamicin, and nitro-
furantoin. However, a high frequency of AMR to oxacillin was observed (Figure 4). The
isolates obtained from cheese samples showed lower AMR frequency compared to the milk
isolates. The cheese isolates were susceptible to ampicillin, linezolid, sulfazotrim, amoxi-
cillin/clavulanic acid, gentamicin, kanamycin, neomycin, doxycycline, chloramphenicol,
and trimethoprim/sulfamethoxazole. The highest resistance frequency was observed
against rifampicin (Figure 4), and resistance to up to 15 antimicrobials was detected in one
S. aureus isolate (Figure 5).

Regarding the antimicrobial classes, all strains were susceptible to oxazolidinones.
However, resistance to rifamycins, sulfonamides, β-lactams, macrolides, fluoroquinolones,
lincosamides, and tetracyclines was observed in at least one Staphylococcus isolate (Figure 6).

All S. aureus isolates obtained from Farm 3 were found to be multidrug-resistant. This
finding raises concerns as multidrug-resistant bacteria pose a significant global public health
issue, causing approximately 700,000 deaths annually [52]. The resistance mechanisms
are diverse and are determined by specific resistance genes. Of particular concern is the
presence of these genes in mobile genetic elements, which can facilitate their horizontal
transfer [53]. Consequently, even if not inherently pathogenic, the presence of resistant
microorganisms can have an impact on public health by prolonging hospitalization periods
and complicating treatment procedures [54].

Antimicrobial resistance and foodborne outbreaks are important considerations within
the One Health framework. In Brazil, the Ministry of Health, Environment, and Agriculture
collaboratively addresses this issue. The objective is to implement programs, policies,
legislation, and research that promote effective communication and collaboration among
different sectors. The aim is to achieve better public health outcomes, including monitoring
of Food and Waterborne Diseases. The presence of antimicrobial resistance in foodborne
pathogens is widely recognized as a significant biological risk, prompting concerns and
extensive research. In Romania, a study focused on assessing cheeses made from raw cow’s
and sheep’s milk revealed that 49% of S. aureus isolates exhibited multidrug resistance. The
authors emphasize the increasing concern over antimicrobial resistance and recommend
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the establishment of an integrated surveillance system to monitor antimicrobial resistance
throughout the entire food chain [55]. Another study investigated milk samples, semi-ready
products, and finished cow products, revealing that 50% of the samples were contaminated
with S. aureus, with some of them presenting AMR [56].
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class, and multidrug-resistant isolates showed resistance to 3 or more classes of antimicrobials.
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and resistance genes.

Antimicrobial resistance can undermine the effectiveness of clinical treatments, po-
tentially leading them to failure. The concern regarding food consumption stems from the
potential acquisition of resistance genes and microorganisms present in food, which can
occur due to environmental contamination from sources such as water, air, soil, or manure.
Moreover, the use of antibiotics in animal production contributes to the selection of resistant
microorganisms. In this study, the three farms were surveyed regarding antibiotic use in
animals and the presence of other animals in the production environment. Farm 1 reported
no antibiotic use and had Maremano shepherd dogs on the property. Farm 2 reported
using gentamicin and had no other animal species. Farm 3 reported using sulfonamides
and terramycins and engaged in bovine milk production. This assessment corroborates
that antibiotic use can promote resistance [57], along with the presence of other animals
that can facilitate the transfer of microorganisms and resistance genes [58]. However, other
unmeasured factors may also contribute to AMR, particularly in Farm 1, which claims
no antibiotic use. It is important to note that cross-resistance, defined as resistance to
antimicrobial agents that act through a shared pathway or target [59], can also occur.

This study also investigated some resistance genes for which the protocols and primers
were available at the laboratory. The results revealed that Staphylococcus spp. isolates carried
various resistance genes, irrespective of their pathogenicity (Figure 5). Among the isolates,
82% harbored the TetM gene, 59% had ermB, 36% had strA, 28% had tetL, 23% had sul1, and
3% had sul2 and AAC(6)’. Notably, the tetW gene was not detected in any of the strains.
The tetM gene, associated with tetracycline resistance, is commonly found on the Tn916
transposon, which can naturally be transferred between various Gram-positive and Gram-
negative bacteria. The Tn916 transposon has been identified in coliform strains isolated
from raw cow’s milk [60]. The sul1, ermB, strA, and sul2 genes have been described in
Salmonella spp. isolated from leafy vegetables, chicken carcasses, and raw milk processing
environments [61,62]. Studies have highlighted the potential risk of horizontal transfer of
these genes between Staphylococcus strains, leading to the expansion and distribution of
multidrug-resistant strains [63].
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4. Conclusions

The study revealed that raw sheep milk had high levels of total coliform, S. aureus,
and E. coli. However, most of cheese samples had low counts of these microorganisms.
Enterotoxin was detected in one sample of raw sheep’s milk, which is concerning because
enterotoxins can withstand heat and persist even after pasteurization, posing a risk to con-
sumer health. The study also identified various species of Staphylococcus in both raw sheep’s
milk and cheese. These isolates showed resistance to multiple antimicrobial agents, with
46% being multidrug-resistant. Additionally, most isolates carried at least one resistance
gene, highlighting the alarming issue of antimicrobial resistance as a public health concern.
These findings underscore the need for rigorous sanitary controls and responsible use of
antimicrobials through regulations and monitoring by authorities. It is essential to establish
guidelines for the production of sheep’s milk products, incorporating quality measures
to ensure the safety of produced food. While this study provides initial insights into the
quality of sheep milk and cheese samples, the antimicrobial resistance of Staphylococcus spp.
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strains associated with foodborne illnesses, and the presence of enterotoxins in southern
Brazil, it is important to note that the number of samples analyzed was limited. Further
studies are necessary to enhance understanding and contributions to regulatory bodies,
manufacturers, and producers involved in the production of these products.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11061618/s1, Table S1: Compilated results of
raw sheep’s milk microbiological quality and resistance studies; Table S2: Compilated results of raw
sheep’s cheese microbiological quality and resistance studies.
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