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Abstract: Streamflow forecasts from continental to global scale hydrological models have gained
attention, but their performance against operational forecasts at local to regional scales must be
evaluated. This study assesses the skill of medium-range, weekly streamflow forecasts for 147 large
Brazilian hydropower plants (HPPs) and compares their performance with forecasts issued opera-
tionally by the National Electric System Operator (ONS). A continental-scale hydrological model was
forced with ECMWF medium-range forecasts, and outputs were corrected using quantile mapping
(QM) and autoregressive model approaches. By using both corrections, the percentage of HPPs with
skillful forecasts against climatology and persistence for 1–7 days ahead increased substantially for
low to moderate (9% to 56%) and high (72% to 94%) flows, while using only the QM correction
allowed positive skill mainly for low to moderate flows and for 8–15 days ahead (29% to 64%).
Compared with the ONS, the corrected continental-scale forecasts issued for the first week exhibited
equal or better performance in 60% of the HPPs, especially for the North and Southeast subsystems,
the DJF and MAM months, and for HPPs with less installed capacity. The findings suggest that
using simple corrections on streamflow forecasts issued by continental-scale models can result in
competitive forecasts even for regional-scale applications.

Keywords: ensemble forecasting; post-processing; bias correction; South America

1. Introduction

Hydropower is an important source of renewable and clean energy. Brazil is the
country with the second-largest installed capacity of hydropower globally [1], hosting six
out of the twenty largest hydropower plants in the world [2]. While hydropower contributes
approximately 60% of the total power capacity in the country [1], the largest percentage of
the energy produced by this source comes from the large hydropower plants (HPPs), which
are part of a very extensive and complex hydrothermal system called the Brazilian National
Interconnected System (SIN). The SIN is optimized by a chain of models addressing
long-range (5 years), seasonal (12 months), and monthly operational planning, as well as
short-range for making operational decisions in the coming weeks [3]. The planning and
coordination of the SIN are conducted by the Brazilian National Electric System Operator
(ONS), which routinely issues natural inflow forecasts for the SIN reservoirs required as
input to the optimization models [4].

Natural inflow forecasts play a crucial role in planning the operation of the SIN, which
aims to meet energy demand and maximize overall efficiency by minimizing spillover
losses and reducing additional fuel costs [5–7]. Methodologies to produce streamflow
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forecasts for the few weeks ahead have long been based on statistical methods based
on observed discharge [8]. In recent years, operational forecasting methods have been
gradually changing by incorporating precipitation forecasts up to 14 days ahead into
rainfall-runoff models [9], although natural inflow forecasts used in the optimization
models of the SIN are still deterministic.

On the other hand, progress in the field of catchment-scale streamflow forecasting
has been toward the use of multiple future streamflow scenarios in the form of ensem-
bles (e.g., [10–18]). Ensemble methods can account for uncertainties in the forecast chain
that arise from multiple sources, such as errors in meteorological forcing, the inability
of models to adequately represent hydrological processes, and deficiencies in parameter
estimation [19–24]. While ensemble hydrological forecasts have shown advantages over
single-value ones for hydropower purposes, for instance, by improving operational deci-
sions and leveraging economic benefits (e.g., [17,25–29]), the development of studies on
this topic is still slow in South America compared to other regions of the world, especially
in the northern hemisphere [30–32]. In parallel, the scientific community has dedicated
substantial efforts to developing ensemble streamflow forecasting methods also at conti-
nental and global scales [33–41], and analyses of streamflow forecasts produced with such
techniques have been possible for Brazil as a whole [42].

Less attention has been given to how competitive continental (or global) scale forecasts
are compared with those made operationally at the regional scale. It is intuitive that stream-
flow forecasts generated by large-scale hydrological models are less accurate than locally
calibrated ones [43], which reflect limitations in the forcing data used, parameterization,
and level of detail. However, there are currently several techniques that can improve the
accuracy of flow prediction from local information, ranging from simple bias correction
methods (e.g., [44]) to more complex methods such as ensemble calibration, statistical
postprocessing (e.g., [14,18,45]), and data assimilation (e.g., [13,28,46]), although simple
methods are generally more attractive because of their efficiency and ease of operational
application [47]. In this sense, Lozano et al. [48] showed that a simple bias correction on the
outputs of a global-scale system was able to effectively transform historical runoff simula-
tions and forecasts for local-scale use in Brazil, while Wang et al. [49] found that a global
forecast system (GloFAS) outperformed a regional system in predicting high runoff and
even performed reasonably well in predicting low to moderate runoff after bias correction
on forecast runoff. Combining simple bias correction with autoregressive models that can
use newly available local information [50,51] also proved suitable for hydrological forecast-
ing. It is therefore of interest to know the extent to which it is possible to produce accurate
natural inflow forecasts for the SIN reservoirs using continental-scale modeling techniques
and whether these forecasts can be used as additional information to the forecasts currently
produced on an operational basis.

The objective of this study is twofold: (i) To assess the skill of medium-range, weekly
streamflow forecasts issued for 147 SIN HPPs by a continental-scale hydrological model
and (ii) to compare these forecasts with those being generated by ONS to support operation
at the HPP sites. The next sections are organized in the following order: Section 2 presents
the study area of the SIN, while Section 3 presents the methods used to generate and correct
the streamflow forecasts, as well as the ONS forecasts used for comparison and the metrics
adopted for the analysis. The results, discussion, and final conclusions are presented in
Sections 4–6, respectively.

2. Materials and Methods

The overview of the main methodological steps is shown in Figure 1. A continental-
scale hydrologic model was forced by ECMWF precipitation forecasts to produce stream-
flow forecasts at the sites of the SIN HPPs. The raw forecasting performance was initially
evaluated against observed (naturalized) flows at these locations, and the performance gain
obtained by applying bias correction and autoregressive model output correction was also
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evaluated. Next, the corrected streamflow forecasts were compared with the operational
forecasts issued by ONS.
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3. Study Area

The study encompasses 147 HPPs of the Brazilian National Interconnected System
(SIN) in the domain between latitudes 5◦ N–30◦ S and longitudes 65◦ W–35◦ W. These
HPPs were selected based on the availability of natural streamflow data, as some HPPs
receive most of the inflows from other rivers through artificial channels and pumping
stations. Currently, the SIN has an installed capacity of more than 179,366 MW, and
hydroelectric plants account for 109,190 MW (60.9%) and are located in river basins with
different hydrological characteristics and climate variability [52].

The SIN is a large hydro-thermoelectric system for the production and transmission
of electricity, composed of four subsystems: the South, the Southeast/Central West, the
Northeast, and most of the North. The installed generation capacity of the SIN is composed
mainly of hydroelectric plants distributed in sixteen hydrographic basins in the different
regions of the country [53]. Figure 2 shows a map of the locations of the SIN HPPs and
their respective subsystems.

Until 2006, ONS flow forecasts were produced only by stochastic approaches such
as the Periodic Auto-Regressive or Auto-Regressive Moving Average models [8]. From
2006 onwards, other forecasting methods in addition to stochastic models have been rec-
ommended, including lumpedand distributed conceptual models, artificial intelligence
techniques, as well as the incorporation of future rainfall from Numerical Weather Predic-
tion [6]. During 2018, the ONS formally adopted the Soil Moisture Accounting Procedure
model as the only rainfall-runoff model for the first week of the forecast horizon at several
SIN sites, and the use of stochastic models has declined in recent years [54,55].
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3.1. Observed Streamflow Data

Daily time series of naturalized streamflow spanning from January 1980 to December
2020 were obtained for the selected 147 SIN HPPs through the SINtegre portal (https:
//sintegre.ons.org.br, accessed on 1 August 2022). Naturalized streamflow at dam locations
is computed by routing downstream natural incremental reservoir inflows, which are
reconstructed through water balance using evapotranspiration estimates and operation
data from SIN reservoirs such as water levels, volumes, and outflows, as well as water
withdrawals across the basin [56]. Natural flows can be used to evaluate the effects of
human interventions in rivers, such as the implementation of reservoirs, but for the ONS,
they are relevant information for the planning and operation of the SIN.

3.2. Streamflow Forecasts
3.2.1. Forecast Input Data and Hydrological Model

Daily ensemble precipitation forecasts from the European Center for Medium-Range
Weather Forecasting (ECMWF) were achieved for the period between May 2015 and Decem-
ber 2020 (initialization of 00 UTC) through the Thorpex Interactive Grand Global Ensemble
(TIGGE) platform (http://tigge.ecmwf.int/, accessed on 12 March 2021). These ensemble
forecasts consist of 50 perturbed members with a forecast time horizon of 15 days, and their
spatial resolution depends on the ECMWF model cycle, for instance, it was changed from
36 km (in 2015) to 18 km (from Mar 2016 onwards).

To obtain streamflow forecasts at SIN reservoir locations, the ECMWF predicted pre-
cipitation data were used as inputs to the continental-scale hydrologic-hydrodynamic MGB
model for South America (MGB-SA) [57]. The MGB-SA is a conceptual, semi-distributed
model that discretizes the domain into unit-catchments, each containing a ~15 km-long

https://sintegre.ons.org.br
https://sintegre.ons.org.br
http://tigge.ecmwf.int/
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river segment, and further into Hydrological Response Units (HRU), which are subdivi-
sions according to combinations of land cover and soil type. Evapotranspiration (based
on Penman-Monteith) and runoff generation (based on the ARNO model) are computed
at a daily time step at the HRU level. Surface, subsurface, and groundwater runoff are
routed to the main channel through linear reservoirs, and the propagation in river channels
is computed by using an explicit 1D inertial approximation of the Saint-Venant equations.
The MGB-SA has been calibrated with more than 600 in situ gauges and validated with
remote sensing-based datasets [57]. Details on MGB-SA model performance at each HPP
location can be found in the Supplementary Material (Table S1). For further information on
general MGB equations regarding water balance and river routing, the reader is referred
to [58,59].

For model initialization along the forecast period (2015–2020), we used daily precipita-
tion data from the Integrated Multi-satellite Retrievals for GPM (IMERG) v06 final run [60].
Herein, IMERG data is further bias-corrected to match the climatological distribution of
the Multi-Source Weighted Ensemble Precipitation (MSWEP) v1.1 [61], as the MSWEP was
used to calibrate the MGB-SA model [57]. Other climate variables used to compute evap-
otranspiration in the forecast period are assumed to be equal to their long-term monthly
means computed with CRU v.2 data, according to previous applications (e.g., [42]). For
historical MGB-SA simulations, which are required for streamflow correction approaches
(i.e., before 2015; see Section 3.2), the model was forced to use MSWEP v1.1 data to maintain
coherence with its original configuration.

3.2.2. Quantile Mapping Applied to Streamflow Forecasts

To correct biases in the streamflow forecasts, a quantile mapping (QM) procedure was
applied in a similar way to Wood and Schaake [62] and Hashino et al. [44]. This is a simple
correction method that matches both the mean and variance (including higher moments)
of the hydrological model outputs to those of the observed climatology. Thus, cumulative
distribution functions (CDF) are obtained from the observed and simulated discharges,
and for each forecast ensemble trace, the QM replaces the predicted discharge with the
observed value that has the same no exceedance probability, according to:

Ẑi = F−1
o [FS(Zi)] (1)

where Ẑi is the bias-corrected forecast ensemble trace I, Fo is the inverse of the CDF of the
observed discharge, Fs is the CDF of the simulated discharge, and Zi is the raw forecast
ensemble trace.

Before applying QM to the forecasts, we first analyzed the performance of empirical
and gamma distributions to construct/fit the CDF curves over a historical, independent
period (1980 to 2014). For that, we applied a leave-one-year-out cross-validation by con-
structing/fitting CDF curves of observed and simulated flows using data from the entire
historical period except the target year and then applying QM to correct the simulated
flows for this same year. For each HPP, the Nash-Sutcliffe (NSE) and logarithm of NSE
were computed for the cross-validated, bias-corrected simulated flows, and the distribution
that resulted in the best performance was then selected to correct the ensemble traces in the
forecast verification period (2015–2020).

In our initial assessment (see the Supplementary Material), we noted that both gamma
and empirical distributions frequently result in improved simulated discharges with only
minor variations in performance. As such, we prioritized the gamma distribution (para-
metric), as it allows for extrapolation to values outside the range of historical observations.
For certain SIN gauges, we either applied empirical distribution-based corrections to dis-
charges or no correction was made. The final CDFs employed for QM correction in the
forecast verification period were derived from data spanning the entire historical period
(i.e., without cross-validation).
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3.2.3. Autoregressive Model (AR)

After applying QM to the streamflow forecasts, these were further corrected by using
a simple AR model. The autoregressive model uses error updating to anticipate the errors
in a forecast period as a linear function of the known errors in previous steps [26,50]. In
this way, according to Liu et al. [63], error updating is based on using data to generate
predictions of future differences between the model prediction and future observations, so
it is not restricted to the goal of producing improved predictions in the hydrologic model.

In this method, the current value of the time series (Qt) is defined as a combination of
past values of the time series itself plus a random noise (εt), where t is the time index. Thus,
in the AR(p) model, where p is the order of the model, one has as input the past values
Qt−1, Qt−2, . . . , Qt−p, multiplied by optimized parameters α to predict the next value Qt.
In Equation (2), an example is given of what an AR-only model would look like:

Qprev(t)
′ = Qprev(t) − αt

1 ∗
(

Qprev(t0)−QObs(t0)
)

(2)

where Qprev(t)
′ is the forecast streamflow corrected with a lag-1 autoregressive model;

QObs(t0) and Qprev(t0) are observed streamflow and model simulated streamflow, respec-
tively, at initial time t0. For example, εt is an identically and independently distributed
Gaussian deviation with a mean of zero and a constant standard deviation.

In the autoregressive model, one can consider the autocorrelation function of the
process, (pt = αt

1 ∗ t), where t is the number of observations to be included in the correction;
in this case, t is equal to 1 [64]. The parameter αt

1 can be determined by calculating the
autocorrelation function between the lead times of the forecast data. The value of αt

1 for each
HPP was assumed as the lag-1 autocorrelation of the time series of observed natural flows.

3.3. Operational Forecasts from the Brazilian National Electric Service Operator (ONS)

ONS routinely produces streamflow forecasts to support the Monthly Operation
Programs (PMO—Programação Mensal de Operação in Portuguese). The PMO allows
the establishment of energy production policies and regional exchanges between SIN
subsystems, providing directives on which hydropower plants will be dispatched as well
as information on energy pricing in the short-term market. The PMO is conducted monthly
and is revised every week [55].

Operational streamflow forecasts produced for PMOs along May/2015–December/2020 were
obtained from the SINtegre data portal (https://sintegre.ons.org.br/sites/9/13/79/Produtos/245,
accessed on 5 September 2022). These forecasts are given in weekly average discharges with a
maximum lead time of 6 weeks (also called “operation weeks”), each one starting at 00:00 on
Saturday and ending at 24:00 on the following Friday. The first operation week of a given month
is the one that includes the first day of that month. Streamflow forecasts are issued on a weekly
basis, always on the day immediately preceding the PMO or one of its revisions [65]. As a rule,
forecasts are officially issued on Thursdays; in the event of a holiday occurring on the forecasting
day (Thursday) or on the PMO/revision day (Friday), forecasts are issued earlier on Tuesday and
Wednesday, respectively. Figure 3 shows an example of the forecast generation schedule.

A preliminary review of the forecast dates was conducted to identify potential changes
due to holidays. Since forecast calendars were not available for all years analyzed in the
official reports, we chose to use the file creation date as an indication of the forecast issue
date, both for the PMO and its weekly revisions, after consulting with ONS technicians.
Additionally, as forecasts must be produced one day before the PMO (which takes place on
Friday), any forecast issue date listed in the files as Friday was adjusted to the previous day
(Thursday). A total of 268, 18, and 6 weekly forecasts were issued on Thursday, Wednesday,
and Tuesday, respectively.

https://sintegre.ons.org.br/sites/9/13/79/Produtos/245
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3.4. Forecast Assessment

Firstly, the impact of the correction schemes on raw streamflow forecasts produced
by MGB-SA using ECMWF data as input (hereafter referred to as MGB-ECMWF) was
analyzed. The assessment was performed considering weekly average discharges for 1–7
and 8–15 days in advance, and raw streamflow forecasts were compared to those corrected
by using the QM individually and both corrections (QM+AR). In addition, the potential
performance gains by applying QM and QM+AR on streamflow forecasts at SIN locations
were further investigated in terms of high (>Q75 of non-exceedance flows) and moderate to
low discharges (<Q50), as well as in terms of characteristics such as streamflow seasonality
and flashiness (Appendix A).

To assess the raw, QM, and QM+AR configuration strategies for MGB-ECMWF stream-
flow forecasts, we used the percent bias (PBIAS) and the Continuous Ranked Probability
Score (CRPS) [66]. PBIAS measures the tendency of forecast values to overestimate or
underestimate the observed ones, and it is computed for the ensemble mean:

PBIAS = 100
∑N

i=1(Fcsti −Obsi)

∑N
i=1(Obsi)

(3)

where Obsi and Fcsti are the observed and predicted discharges, respectively, and i and N
are the current and total number of forecasts.

The CRPS summarizes the overall performance of a probabilistic forecast. It is defined
by the quadratic difference between the cumulative distribution function (CDF) of the
forecast and the empirical CDF of the observation and is typically averaged over a set
of forecasts:

CRPS =
1
N

N

∑
i=1

∫ ∞

−∞
[Fi(x)− 1(x ≥ yi)]

2dx (4)

where Fi(x) is the CDF of the forecast ensemble x and forecast day i, 1(x ≥ yi) is a Heaviside
step function that equals one when forecast values are greater than the observed value yi
and zero otherwise, and N is the total number of forecasts.

Following Siqueira et al. [42], CRPS was transformed into an overall skill score
(CRPSS = 1 − CRPSfcst/CRPSbenchmark) using both daily streamflow climatology and per-
sistence as benchmarks. Streamflow climatology was computed for each calendar day by
sampling 50 equally distanced quantiles (1/51, 2/51, 3/51, . . . , 50/51) from the empirically
observed CDF, that is, the same number of ensemble members as the MGB-ECMWF, since
the number of ensemble members is known to affect the CRPS value [67]. In turn, for the
persistence, it is assumed that all forecast lead times have the same predicted value equal
to the last observed discharge (i.e., a deterministic forecast), so the CRPS reduces to the
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mean absolute error [66]. Maximum skill is achieved when CRPSS = 1, and values below 0
indicate no skill.

In a second experiment, the corrected streamflow forecasts (QM+AR) produced by the
Continental-Scale Hydrological model were compared with the Operational model issued
by the ONS. The forecast assessment was carried out only for the lead time of 1 week ahead,
and it was performed in such a way to keep coherence with the evaluations presented in
the official ONS reports [65]. By taking the calendar in Figure 3 as an example, the 1-week
lead time forecast issued on day 3 for revision 1 of month m corresponds to the average of
discharges predicted for days 5–11. Similarly, the 1-week lead time forecast issued on day
29 for the PMO of month m+2 corresponds to the average of discharges predicted for days
1–7. No distinctions are made for streamflow forecasts issued for PMOs or revisions, so
that both are equally treated in a single verification set (May 2015–December 2020). Note
that there is always a gap of at least 2 days between the forecast issue date and the start
of the operation week, which can be larger due to the possible occurrence of holidays as
mentioned in Section 3.3.

For this assessment, we adopted standard metrics that are routinely used for forecast
evaluation by ONS, namely the Mean Absolute Percent Error (MAPE) and the Nash-
Sutcliffe Efficiency (NSE) [68]:

MAPE =
1
N

N

∑
i =1

∣∣∣∣ Fcsti −Obsi
Obsi

∣∣∣∣ (5)

NSE = 1− ∑N
i =1(Fcsti −Obsi)

2

∑N
i=1
(
Obsi − Obsi

)2 (6)

where Obsi and Fcsti are the observed and predicted discharges, respectively; i and N are
the current and total number of forecasts, and Obsi is the mean of observed values.

In addition, ONS [69] developed an overall performance index called Multicriteria
Distance (MD), which uses the above metrics as an ordered pair (1—NSE, MAPE) and
calculates its Euclidean distance to the origin of a cartesian coordinate system:

MD =

√
(1−NSE)2 + (MAPE)2 (7)

The MD ranges from 0 to ∞ and values close to zero indicate better performance.
The implementation of prediction correction methods and statistical metrics analysis

were carried out using Matlab software.

4. Results
4.1. Skill Assessment of Raw and Corrected Continental-Scale Streamflow Forecasts

Examples of hydrographs with raw and corrected weekly averaged streamflow fore-
casts from the continental-scale hydrological model are presented in Figure 4. Results are
shown considering a fixed lead time of 1–7 days, and the HPPs used as examples were
chosen based on different characteristics of seasonality and day-to-day discharge variations.
Figure 4a shows the hydrographs for Pedra do Cavalo HPP, which has high seasonality
and flashiness, and Figure 4b shows the hydrographs for Itaipu HPP, where both indexes
are low. Figure 4c,d display hydrographs for Itá and Tucuruí HPPs, respectively, where the
former is characterized by high daily variation of discharges and low seasonality, and the
latter by low flashiness and a high seasonal index. Finally, in Figure 4e,f, the Euclides da
Cunha and Furnas HPP exhibit average values for these streamflow indexes.
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The corrections with the QM method show variable performances. For instance, there
is a notably positive effect on the rise and recession of hydrographs at Tucuruí and Furnas
HPPs (and to a minor extent on the recession at Itaipu), while at Pedra do Cavalo and Itá
HPPs there is apparently no benefit from this correction. In some cases, as in Euclides da
Cunha HPP, the application of QM apparently causes a reduction in the accuracy of the
forecasts, which can be explained by the very low performance of the hydrological model at
this location (see Table S1 in Supplementary Materials). On the other hand, the application
of QM+AR resulted in substantial performance gains in all the analyzed cases.

The performance of MGB-ECMWF forecasts was verified from May 2015 to December
2020, considering average weekly predicted discharges and lead times of 1–7 and 8–15 days.
The biases of raw and corrected (QM and QM+AR) forecasts were categorized into bins,
and the relative frequency of HPPs with forecasts falling in each category is shown in
Figure 5. In general, the MGB-ECMWF raw forecasts have a predominantly positive bias.
The QM contributes to reducing the percentage of HPPs for which predicted flows are
overestimated by 20–40% and >40%, although it increases the frequency of underestimation
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in the bias range of −20 to −10%. For the QM+AR configuration and lead time of 1–7 days,
bias is mostly concentrated between -10 and 10% (~70% of the HPPs), while for 8–15 days
in advance, values tend to be closer to those observed for QM but still exhibit lower biases
than the latter. Moreover, for longer lead times, a larger number of HPPs show (high)
positive PBIAS values when bias correction is applied, probably due to the miscorrection
of runoff response biases from predicted precipitation.
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and (b) 8–15 days.

The assessment of MGB-ECMWF forecast skill at each HPP was carried out using
climatology (CRPSSclim) and persistence (CRPSSpers) as benchmarks, and the results were
conditioned on high (>Q75 of non-exceedance) (Figure 6) and low to moderate (<Q50) flows
(Figure 7). For high flows and a lead time of 1–7 days, both the raw forecasts and the QM
exhibit positive skill relative to persistence in 72% of the HPPs, which increases to 94% after
applying the QM+AR corrections. For the 8–15-day lead time, raw MGB-ECMWF forecasts
already show significant positive CRPSSpers for the majority of SIN locations (>90%), and
the overall skill improvement by using QM or QM+AR correction is relatively small. When
compared to climatology (8–15 days ahead), the raw forecasts exhibit positive skill in 70%
of the HPPs, and performance increases slightly for the QM (77%) and QM+AR (87%)
configurations, while for the lead time of 1–7 days, the patterns of skill are similar to those
observed against persistence.
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In general, the MGB-ECMWF forecast skill for low to moderate flows (Figure 7) tends
to be lower than that observed for the higher flows. For the lead time of 1–7 days, the
raw MGB-ECMWF forecasts exhibit virtually no positive skill, and a few HPPs (9%) show
CRPSSpers > 0 after applying the QM method, despite the substantial performance gain over
the no correction configuration. Even when both correction approaches (QM+AR) are used,
MGB-ECMWF forecasts exhibit positive skill in only 56% of the HPPs, which indicates
difficulty in overcoming a naive forecast. For 8–15 days in advance, the percentage of HPPs
where forecasts exhibit positive skill relative to persistence (climatology) improves from 29%
(69%) to 64% (91%) and 76% (96%) for the QM and QM+AR configurations, respectively.

Figure 8 presents the relative skill improvement (∆CRPSS) between the raw MGB-
ECMWF forecasts and those corrected with the QM+AR methods, plotted against seasonal-
ity and flashiness indices that were calculated from the observed naturalized discharges at
each SIN HPP. Results are also separated by low to moderate (<Q50) and high (>Q75, no
exceedance) flows. In general, the results relative to climatology and persistence are similar.
For higher flows, skill improvements are larger (∆CRPSS > 1) for flashiness usually lower
than 0.1 (i.e., rapid day-to-day discharge variations) regardless of seasonality, but in some
HPPs, larger skill gains can be observed for flashiness values closer to 0.2 and a seasonality
index around 5 (moderate seasonality). For flashiness larger than 0.2, smaller performance
gains are obtained (∆CRPSS < 0.3). For low to moderate flows, ∆CRPSS > 1 is observed
even in locations where rapid flow variations may occur (flashiness ~0.5), but with some
degree of seasonality.
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4.2. Comparison between Continental-Scale and ONS Operational Streamflow Forecasts

A comparison between the MGB-ECMWF and ONS forecasts according to season is
shown in Figure 9. The box plots include the performance of the 147 HPPs. Overall, the
largest differences in global accuracy (as measured by MD) are found mainly in DJF and
MAM, where there is a positive performance for the MGB-ECMWF forecasts. Percentual
errors tend to be larger during the austral spring (SON) and smaller during the austral win-
ter (JJA), and in both seasons MGB-ECMWF forecasts have lower performance compared
with ONS forecasts.
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Figure 9. Comparison of forecast performance (MGB-ECMWF × ONS) for 1 week in advance,
according to season.

Figure 10 shows the differences in performance (∆MD) between ONS and MGB-
ECMWF forecasts according to the installed capacity of the SIN HPPs. The installed
capacity ranges were assigned in such a way to encompass a similar number of HPPs
in each class. Better performances of the MGB-ECMWF forecasts are observed for HPPs
with smaller installed capacity, where the median values of ∆MD are close to 0.1 and the
75th percentile reaches 0.15, 0.3, and 0.37 for the <85, 85–150, and 150–350 MW ranges,
respectively. For the larger HPPs, with installed capacity larger than 350 MW, the differences
are smaller (median close to zero), and there is a generally better performance of the ONS
forecasts (a larger spread of ∆MD for negative values).
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To spatially evaluate the relative performance between MGB-ECMWF and ONS stream-
flow forecasts, Figure 11 shows the ∆MD values geographically distributed over the SIN.
Forecast performances are quite variable in space, with hotspots of ∆MD usually alternating
(between negative and positive values) over southern and southeastern Brazil, although the
corrected (QM+AR) continental-scale forecasts exhibit higher relative accuracy (∆MD > 0)
in most of the analyzed locations (~60% of all HPPs). MGB-ECMWF forecasts mostly
outperform those of ONS in the North and Midwest/Southeast subsystems, where positive
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∆MD values are observed in 100% and 69% of the HPPs, respectively. On the other hand,
MGB-ECMWF forecasts exhibit lower accuracy in the Northeast and South subsystems,
with positive ∆MD in only 28% and 38% of the HPPs, respectively.

Figure 11. Spatial patterns of Multicriteria Distance differences (∆MD between ONS and MGB-
ECMWF forecasts (May 2015–December 2020) over SIN locations. Positive differences represent
better overall performance of the continental-scale forecasts.

The performance metrics were also calculated for each year individually between
2015 and 2020 (Figure 12). The median accuracy (NSE) of the MGB-ECMWF forecasts is
generally higher than that of the ONS, and the 25–75% range of the former is considerably
higher for the first years of analysis. On the other hand, in later years (2019 and 2020),
the accuracy of the MGB-ECMWF and ONS tends to become closer. The median MAPE
values between the two forecasting approaches are quite similar (~20%), although the
interquartile range for the MGB-ECMWF encompasses higher percentual errors (35–40%)
compared to that of the ONS (25–30%), especially from the year 2019 onward. In terms of
MD, a very similar pattern to NSE is observed, where the overall performance is higher for
MGB-ECMWF before 2019 and similar for later years.



Water 2023, 15, 1693 15 of 21

Water 2023, 15, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 11. Spatial patterns of Multicriteria Distance differences (ΔMD between ONS and MGB-
ECMWF forecasts (May 2015–December 2020) over SIN locations. Positive differences represent 
better overall performance of the continental-scale forecasts. 

The performance metrics were also calculated for each year individually between 
2015 and 2020 (Figure 12). The median accuracy (NSE) of the MGB-ECMWF forecasts is 
generally higher than that of the ONS, and the 25–75% range of the former is considerably 
higher for the first years of analysis. On the other hand, in later years (2019 and 2020), the 
accuracy of the MGB-ECMWF and ONS tends to become closer. The median MAPE values 
between the two forecasting approaches are quite similar (~20%), although the 
interquartile range for the MGB-ECMWF encompasses higher percentual errors (35–40%) 
compared to that of the ONS (25–30%), especially from the year 2019 onward. In terms of 
MD, a very similar pattern to NSE is observed, where the overall performance is higher 
for MGB-ECMWF before 2019 and similar for later years. 

 
Figure 12. Year-to-year performance comparison between MGB-ECMWF and ONS streamflow 
forecasts for 1 week ahead over the verification period. The graphs show the median and the 25–
Figure 12. Year-to-year performance comparison between MGB-ECMWF and ONS streamflow
forecasts for 1 week ahead over the verification period. The graphs show the median and the 25–75%
range of performance considering the 147 SIN hydropower plants and are presented for (a) NSE,
(b) MAPE, and (c) Multicriteria Distance (MD) metrics.

5. Discussion

The analysis showed that there are important challenges regarding the use of continental-
scale streamflow forecasts for operational purposes in large Brazilian HPPs. Applying QM on
the predicted flows allowed improvements generally for low to moderate discharges, although
forecasts often exhibited lower skill when compared to simple benchmarks (e.g., persistence)
for such conditions. Nevertheless, the application of QM on predicted discharges can lead to
reductions in accuracy relative to that of raw forecasts if the performance of the hydrologic
model is too low, as noted in Euclides da Cunha HPP. On the other hand, correcting the predicted
discharges with both QM and AR updating using the observed natural flows led to substantial
improvement in forecast skill, and this correction was more effective for locations with less
day-to-day discharge variability. Seasonality affected the QM+AR correction performance only
to a minor extent; we observed improvements in forecast skill in a few HPPs with some degree
of seasonality but only for low to moderate flow conditions. This means that the ability to correct
predicted discharges produced by continental-scale hydrological models will depend more
on the time lag between rainfall and runoff than the existence (or absence) of a well-defined,
wet-dry hydrological behavior.

Regarding the comparison between forecast performance and installed capacity, it is
possible that the ONS models are more focused on HPPs with higher installed capacity,
which play a more important role in setting energy prices and meeting demand. This
could be one of the reasons that explain the higher accuracy of ONS predictions relative
to continental-scale forecasts for such HPPs. Continental-scale predictions also showed
relatively lower performance during the JJA months, which is the dry season in much of
the SIN. During the dry season, the benefit of one-week ahead flow predictions is typically
less than that of forecasts issued during the wet period, as predictability is higher due to
the long hydrograph recession and consequent high persistence of flows. On the other
hand, there seems to be room for improvement in flow predictions for HPPs with lower
installed capacity, especially for the wet season (DJF).

The regional performance differences between ONS and MGB-ECMWF forecasts are
possibly explained by the type of model used by ONS for a given location or even the
quality of the model adjustment. Although the MGB-ECMWF forecasts exhibit higher
overall accuracy over the entire verification period (2015–2020) at several SIN locations
(Figure 12), it is worth mentioning that the performance of ONS forecasts has increased over
those years. Possible reasons for this improvement may include the gradual replacement of
ONS forecast models (including a stochastic one with a lumped rainfall-runoff hydrological
model that uses precipitation forecasts from numerical weather prediction) [54,70] and the
potential calibration of the hydrological models using data from more recent years, which
were characterized by a drier than normal period in many regions of Brazil [71].
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It should be noted that the naturalized flow estimated at the time that the ONS
forecasts are updated, that is, in (near) real time, may differ slightly from that used in
the AR model to update the MGB-SA streamflow forecasts. Near real-time naturalized
flows are further quality checked before being made available on the SINtegre portal,
so the corrected MGB-SA forecasts may have benefited positively since the consistent
naturalized streamflow data (used in the AR model) are the same as those used here for
forecast performance evaluation. Therefore, access to the naturalized streamflow estimated
at the time of the forecast would be necessary to approximate the performance of the AR
correction to that which could be obtained in (near) real time.

The bias correction on the streamflow forecasts was based on the assumption of
stationarity, which is a limiting factor since the analyzed period was a critical one in most
of the SIN HPPs. Moreover, some studies have already pointed out the non-stationarity of
the streamflow time series at several SIN locations [72]. Nevertheless, the use of QM as
the only bias correction method is justified by the focus on the ensemble mean, especially
in the comparison with ONS forecasts. On the other hand, studies have shown that the
QM approach alone is not able to improve the reliability of the forecasts when the focus
is on the predicted probabilities [62,73], and in this case the inclusion of post-processing
techniques designed for ensemble calibration would be more appropriate (e.g., [18,42,45]).

No bias correction was performed on the predicted precipitation. It is worth men-
tioning that freely available ECMWF reforecasts, i.e., forecasts for multiple years in the
past produced with the same version of the operational numeric weather model—which
could be used for bias correction—are archived at a coarser resolution (1.5◦) than that of
real-time forecasts, which makes it difficult to preprocess the predicted precipitation before
it is propagated through the hydrological model.

6. Conclusions

Streamflow forecasts produced by continental and global scale hydrological models
have gained increasing attention in the scientific community, and there is a need to evaluate
the quality of these forecasts and the (potential) performance gains through the use of
correction approaches, as well as to assess how such forecasts compare with those issued
by institutions operating at the local to regional scales. These analyses are particularly
relevant for the Brazilian context, where streamflow forecasting plays a key role due to the
high dependence on water resources for energy production. In this study, we evaluated the
performance of medium-range, weekly average streamflow forecasts (up to 15 days ahead)
for 147 hydropower plants (HPPs) of the Brazilian National Interconnected System (SIN).
The streamflow forecasts were generated by a continental-scale hydrologic-hydrodynamic
model (MGB-SA) forced with ECMWF precipitation forecasts (referred to as MGB-ECMWF),
while bias correction and updating procedures were applied to the model outputs by using
quantile mapping (QM) and autoregressive models (AR), respectively.

The results showed that the MGB-ECMWF streamflow forecasts issued for the SIN
HPPs are mostly affected by positive bias, and their skill is generally low. However, with
the introduction of both output correction methods (QM+AR), the percentage of HPPs
exhibiting skillful forecasts for the lead time of 1–7 days increased substantially for both low
to moderate flows and high flows, whereas using only the QM correction allowed positive
skill mainly for low to moderate flows and for 8–15 days ahead. Although differences in
forecast skill (between correction and no correction) were less dependent on streamflow
seasonality, for high discharges the skill improvements were larger at locations with slow
day-to-day variations in river discharge (i.e., lower flashiness), while for low to moderate
flows the improvements in skill were obtained even for locations characterized by relatively
high daily discharge variability.

The forecasts generated by the continental scale model were subjected to a compar-
ative analysis with the operational forecasts released by the Brazilian National Electric
Service Operator (ONS). The evaluation encompassed the first week in advance, with due
consideration given to the ONS-provided data on the forecast production dates and the
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operating weeks. Considering the verification period from 2015 to 2020, we observed that
the relative performance between ONS and MGB-ECMWF was quite variable (exhibiting
positive and negative values) over the geographical extent of the SIN, but in most loca-
tions the MGB-ECMWF forecasts performed equal to or even better than those issued by
ONS, especially in HPPs with lower installed capacity (typically < 350 MW) and during
the months of DJF and MAM. In addition, better performances of the continental-scale
forecasts were observed for the North and Midwest/Southeast SIN subsystems. On the
other hand, the results indicated that the overall performance of ONS forecasts produced
for SIN locations has improved over time, and in the final years of the assessment, the
overall performance of ONS forecasts was similar to that observed for MGB-ECMWF.

In future studies, especially regarding comparisons with ONS forecasts, we recom-
mend evaluating longer lead times (e.g., subseasonal forecasts up to week 6) and exploring
the probabilistic information of the ensemble. With respect to the continental hydrological-
hydrodynamic model, some improvements in the accuracy of the streamflow forecasts
could be achieved through better calibration as well as by ensuring consistency of rainfall
data between the verification period and the historical one used as the baseline for the QM
and AR corrections. Future model calibration could take advantage of datasets with precip-
itation data available from decades in the past to the present, for example, MERGE [74] or
MSWX [75].

Finally, the findings suggest that the use of local data to correct outputs from continental-
scale models can result in forecasts with competitive accuracy for regional-scale applications. In
addition, there are opportunities for improvement in the performance of operational streamflow
forecasts issued for the SIN HPP locations, even for forecasts produced with the current ONS
models. This would be possible as the methods used in this study can be directly applied to
other rainfall-runoff models (e.g., lumped or semi-distributed) developed to operate at smaller
spatial scales (local or regional).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15091693/s1, Table S1: Performance statistics for the simulated
flows at the SIN gauges. Table S2: SIN gauges for which the predicted flows were corrected based on
QM + empirical distribution. Table S3: SIN gauges for which no bias correction was performed on
the predicted flows.
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Appendix A

Appendix A.1. Seasonality Index (SI)

In order to verify the influence of seasonality on the performance of the flow forecast
corrections, the Seasonality Index has been used [76]. This index can be defined as the sum
of the absolute deviations of monthly average flows from the overall monthly average,
divided by the annual average of flows:

SI =
1

∑
i=12

∣∣Q−Qhist
∣∣

Qhist
(A1)

where, Q is the mean monthly streamflow and Qhist is the long-term mean streamflow.

Appendix A.2. Richard-Baker Flashiness Index (RBI Index)

The Richard-Baker Flashiness Index (R-BI Index) was used to measure the degree of
variability of flow (day-to-day) relative to total flow, i.e., it reports changes in short-term
daily flows relative to average yearly flows. The resulting index is dimensionless, and its
value is independent of the units chosen to represent flow [77].

R− BI Index =
∑n

i=1|qi − qi−1|
∑n

i=1 qi
(A2)
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