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Abstract: Current forecasts estimate that almost 68% of the global population will be living in urban
centers by 2050. As a result, the increase in impermeable surface area can result in severe hydrological
impacts, such as the increase in surface runoff and the frequency of floods and their magnitude. Thus,
this work analyzes the performance of the hydrodynamic model HEC-RAS for assessing the extent of
flood-prone areas, using two digital terrain models (DTM) with different spatial resolutions (5 and
0.50 m). Four different computing intervals (1, 15, 30, and 60 s) were adopted aiming to evaluate
the simulations outputs performance. Additionally, reported data by the civil defense are used for
calibration and validation. In general, the model showed to be a powerful tool in the identification of
susceptible areas to urban flooding. The simulated results in this work provide crucial geographic
information when identifying spots with the highest risk of flooding, which should receive priority
attention during such events. The simulations with a spatial resolution of 5 m showed the flood maps
with the largest coverage of the flooded points (278 points out of 286—97.20%), within the shortest
computation times. We highlight that the more refined DTM derived from spatial images did not
produce the best flood simulation compared to the DTM with a spatial resolution of 5 m derived
from orthoimages.

Keywords: flood simulation; flood management; hydrodynamic modeling; two-dimensional
simulation

1. Introduction

According to the United Nations (UN), the world’s population reached 8 billion people
in 2022 [1], with 55% living in urban areas [2]. By 2050, current forecasts estimate that
the global population will grow to 9.7 billion people [1], and the world’s city dwellers are
expected to be 6.6 billion people (nearly 68% of the world’s population) [3]. On the other
hand, the current urban sprawl rate is twice as fast as its population growth rate [4]. If the
long-term urban expansion trend continues, the global area covered by urban settlements
is expected to increase to over 3 million km2 by 2050, which would be equivalent to the
entire country of India [5].

Unplanned or inappropriate management of rapid urban expansion and fast pop-
ulation growth can seriously increase environmental problems [6] in both physical and
biological environments. From the physical environmental perspective, some of the most
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common modifications caused by urbanization involve land use and land cover change,
increased impervious surface cover, and altered hydrology [7]. Increase in impervious
surface areas result in severe hydrological impacts in urban areas. The clearest impacts
of urban imperviousness on hydrological systems include reducing infiltration and hence
a decrease in groundwater recharge [8]; increase in surface runoffs, in terms of speed,
volumes, and peak flow [9]; and increase in flood frequency and its magnitude, especially
in flood-prone areas [10].

Urban flooding represents a source of hazards for both developed and developing
countries. It not only endangers human life, but also can cause property damage, mass
migration, social and economic disruption, and environmental degradation [11]. Nearly
44% of disasters worldwide have been associated with floods, and different types of floods
account for 31% of economic losses [12]. It is estimated that from 2001 to 2020 floods
affected an average of 82.7 million people annually and caused a global annual average
economic loss of US $34.1 billion [13]. To make things worse, urban flooding is expected to
happen more often and severely as Earth experiences hydrometeorological extreme events
driven by global climate change [14].

In Brazil, according to the Brazilian Atlas of Natural Disasters, from 1991 to 2012,
floods were responsible for 73% of deaths related to natural disasters [15], and between
2000 and 2010 alone, floods killed 1200 people and caused economic losses of around US
$2.8 billion [16]. From 2013 to 2021, at least 205 people were killed by floods and more than
11.7 million people were impacted by flooding events [17]. However, it is estimated that
these numbers may be higher since (i) 90% of the 5570 municipalities reported the data
associated with these events to the Brazilian Integrated Disaster Information System (S2iD)
and (ii) only extreme events are reported to this database.

Urban flood risk assessment and management are fundamental steps for identifying
current hazards and prone risk areas, and thus to mitigate the impacts in future flood
events [18]. In this context, urban flood models (UFMs) are considered powerful tools
to represent the features of urban ecosystems and the mechanisms of floods that impact
them [19]. According to Neal et al. [20], UFMs could be grouped by simplified, hydrological,
or hydrodynamic models. As its name suggests, simplified models use simplified equations
to simulate the flooding process. Consequently, they neither consider physical processes
simulation nor represent flow dynamics. A hydrological model can be defined as a mathe-
matical representation of the water flow and its constituents over some part of the Earth’s
surface and/or subsurface. This sort of model normally involves two main components:
a rainfall–runoff estimator and a routing scheme. In its turn, a hydrodynamic model is
a physical or mathematical representation of the fluid flow. These models simulate the
movement of water, solving equations by applying laws of physics such as Navier–Stokes
and Saint–Venant equations [20,21].

The urban hydrological modeling is a powerful tool for managing urban floods.
Furthermore, in the last decade, modeling tools have improved significantly due to the
development of computing techniques and the increased availability of high-resolution
data. However, there is no universal methodology for urban hydrological modeling at the
catchment scale due to the heterogeneity of urban areas and the great multiplicity of inter-
actions between the urban structure and the water system [22]. Some of the most common
difficulties associated with urban flood modeling are the unpredictable flow conditions
in the urban environment due to rapid changes in topography and the unavailability of
extensive raw data sets [23].

In this context, this work seeks to analyze the performance of the hydrodynamic
model HEC-RAS for the identification and delimitation of urban areas susceptible to flood
and maximum depth. Moreover, we investigate the role of different spatial resolutions in
such simulations. To do so, two digital terrain models (DTM) with different resolutions are
used. This study focuses on the analysis of floods hazard in São Caetano do Sul as a case
study, which is part of the São Paulo megacity, the capital of São Paulo State located in the
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southeast of Brazil, using reported data by the civil defense of this municipality for both
model calibration and validation.

It is worth mentioning that other works in the literature have dealt with the identi-
fication of flood-prone areas in nearby localities within the São Paulo Megacity. A flood
risk map based on hydrological and mobility data was conceived for a sub-basin of the
Tamanduateí River Watershed in a southeastern sector of São Paulo by [24]. As its input
data, a flood susceptibility map was elaborated by means of the Height Above the Nearest
Drainage (HAND) algorithm [25], using an SRTM DEM. The work jointly takes into account
an exposure component, which regards the resident population and the population that
works and studies in the analyzed area, and a vulnerability component that considers both
a local vulnerability, assessed by previous records of floods in the area, and a network
vulnerability, measured by the availability of alternative routes in the road network in the
face of momentary hindrances. In this work, there is no simulation of flooding, and no
rainfall data are employed either. The flood susceptibility map was generated by a slicing
of the HAND output map.

Silva et al. [26] conducted flooding simulations for a sector of the Tamanduateí River
Watershed in the central portion of São Paulo City, named Anhangabaú Lower Valley
Sub-basin. The simulations were run employing the PCSWMM platform and relied on
three alternative scenarios intended to mitigate the flooding problem in the lower valley.
Initially, two flood detention reservoirs and a reinforcement of the main gallery system
were envisaged to ensure safety against 25-year return period events. In a second scenario,
a reinforcement of the main gallery and a flow derivation tunnel leading to Tamanduateí
River were foreseen for a 100-year return period. The third scenario distributed linear
retentions spread over the watershed considering stages of return periods of 10/25/100
years. The scenarios combined drainage system, urban occupancy, adoption of LID (Low
Impact Development) controls, modeling dimension, and rainfall time series, and their
evaluation regarded aspects such as alternative efficiency, prevented damages, permanent
environmental impacts, temporary environmental impacts, costs, and public response. This
work concerned prescriptive (hypothetical) and not real case simulations.

Another work in the same line was executed by [27], who conducted simulations in
PCSWMM for six minor sub-basins in São Paulo City that experienced flood-related prob-
lems. The models were calibrated for each basin adopting recent extreme event data. The
authors obtained as results profiles and hydrographs along simulated channels, reservoir
states, flood inundation extents, and affected buildings. As this work was intended to act as
a warning system, a PCSWMM Real-Time module was additionally conceived to disclose
predictions for flood inundation sites based on radar rainfall forecasts, taken every 10 min
to a prediction horizon of 3 h. These simulations were driven by only one DTM, and the
groundwater modeling was disregarded due to the unavailability of tuning parameters.
Likewise our findings, Oliveira et al. [27] pointed out that the model outputs are highly
dependent on sufficient channels cross-section data and the DTM quality is decisive for an
accurate delimitation of flooding areas.

Differently from the works described above, we have conducted simulations for a
practical situation and carried out validations of our results relying on in situ data. Finally,
we must say that our work aims not only to increase the scientific knowledge on this topic
in the study area but also to provide a support tool to the civil defense agents and local
decision-makers, as a means of building the capacity to enhance their readiness to prevent
and mitigate the effects of such events.

2. Materials and Methods
2.1. Study Area

São Caetano do Sul is located in the southern São Paulo metropolitan area and belongs
to an important industrial region in Brazil, named ABCD Region (Figure 1). The study site
was chosen due to its history of floods (Table 1). The municipality is intensely conurbated
with the municipalities of São Paulo, Santo André, and São Bernardo do Campo, with
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visually undefined limits among them. According to the Brazilian Institute of Geography
and Statistics (IBGE), the current population of São Caetano do Sul is estimated at about
162,763 inhabitants in an area of 15.33 km2 [28]. São Caetano do Sul is the second city with
the highest economic density [29] in the country and, according to the UN Sustainable
Development Goals, the municipality occupies 1st place within the ranking of sustainable
cities in Brazil [30].
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The study area is situated on a plateau adjacent to a mountain chain named Serra
do Mar (Portuguese term for “Sea Range”), with elevations ranging from 722 to 812 m
above sea level and with a mean altitude of 758 m [31]. According to the Köppen climate
classification [32], São Caetano do Sul has a humid subtropical climate (Cwa), with a mildly
warm and rainy summer, and a moderate and dry winter. The average annual temperature
is 19.5 ◦C, and the coldest and warmest months are July (average of 16.2 ◦C) and February
(average of 22.5 ◦C), respectively [33]. The mean annual rainfall is 1496 mm, which was
obtained from Station n◦ 2346051 of the Department of Water and Electricity (Departamento
de Águas e Energia Elétrica—DAEE) of São Paulo State.

São Caetano do Sul is located downstream in the Tamanduateí River Watershed
(Figure 2), a densely urbanized sub-basin of the Tietê Upstream River (Alto Tietê in Por-
tuguese) Watershed. The Tamanduateí Watershed has a drainage area of 330.41 km2, which
totally encompasses the city of São Caetano do Sul and partially the cities of Diadema,
Mauá, Santo André, São Bernardo do Campo, and São Paulo. Its main river, Tamanduateí
River, is 36.5 km long. Tamanduateí River rises in Mauá and flows into Tietê River by a
narrow-rectified channel. The Tamanduateí River Watershed is divided into four sub-basins:
Tamanduateí Inferior, which includes the city of São Paulo; Meninos Downstream and
Couros; Tamanduateí Upstream and Meninos; and Tamanduateí Upstream and Oratorio,
where its spring is located [34].
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Table 1. Most relevant flood events in São Caetano do Sul between 2000 and 2022 *.

Year
(Descending Order)

Number of
Events Per Year

Dates of Occurrence
(Day/Month)

2022 4 02/02 17/02 01/03 12/03

2021 1 18/11

2020 3 08/01 19/02 24/02

2019 3 04/02 15/02 10/03

2018 2 17/10 23/11

2017 3 06/02 06/04 27/11

2016 2 15/02 06/06

2015 1 27/01

2012 2 17/01 28/11

2011 2 15/11 14/12

2010 1 17/02

2008 1 21/02

2005 1 11/01

2002 1 28/11

2000 2 12/01 26/01
Note: * 29 events were found from a search carried out by the authors in databases of newspapers, journals, and
the civil defense of São Caetano do Sul considering the period between 2000 and 2022, shown in descending
chronological order.
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2.2. Case Study: The Extreme Event of March 2019

On 10 March 2019, São Caetano do Sul was devastated by severe widespread river
floods and pondings (Figures 3 and 4), resulting from an extreme rainfall of 179 mm in a
period of 4 h [35]. The scenario was worsened due to river flows coming upstream from
neighboring municipalities (Diadema, Mauá, Ribeirão Pires, Santo André, São Bernardo do
Campo, and São Paulo), which caused the overflow of Tamanduateí River and Meninos
Creek. According to the civil defense, nine neighborhoods were affected as follows: Centro,
Cerâmica, Fundação, Jardim São Caetano, Mauá, Nova Gerty, Prosperidade, Santo Antônio,
and São José. Approximately 2000 buildings were flooded and in more than half of them,
the water depth reached almost 2 m in relation to the ground floor. In some neighborhoods,
the water column reached 2.70 m [35]. However, these points with greatest flooding depths
were informed by the residents of the municipality since the civil defense was unable to
inform the exact spots due to the lack of personnel in the corporation and the short duration
of this event.
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Figure 3. CBERS-04A satellite image of São Caetano do Sul and its municipal limits (red line)
surrounded by a 500 m buffer, indicating flooded points reported by the civil defense of São Caetano
do Sul and its citizens on 10 March 2019 (a 79-year return period event). Red points are used for
validation since they are reported with estimated water depth.
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Figure 4. Some photos of the floods on 10 March 2019 in São Caetano do Sul. Source: (A,B) [36];
(C) [37].

The magnitude of this event exceeded the management capacity of the municipal
government, and, consequently, simultaneous aid to victims in several neighborhoods was
not possible. Unfortunately, 3 people died, 20 people were injured, 10 people were sick,
and another 8000 people were displaced. Public economic damages were over US $830,000,
while private economic losses reached US $2.4 million [35], according to the present cur-
rency. Moreover, a total of 40,000 people were directly affected by this event in compliance
with data provided by the S2iD. According to the database of DAEE, considering Rain
Gauge Station n◦ 2346051, this was reported as the greatest event since November of 1943
(start of data recording), presenting a return period of 79 years [38] considering until 2022.

2.3. Dataset and Computer Settings

The accuracy of the input data is one of the key elements for the application of 2D
models because of its influence on the quality of results and on computational times [39].
Thus, we seek to analyze the influence of input data with different high spatial resolutions.
To do so, we used two digital terrain models (DTM), generated considering the São Caetano
do Sul municipality itself and a buffer of 500 m surrounding its boundaries (Figure 3): (i) a
DTM with a spatial resolution of 0.50 m generated by a WorldView-2 (WV-2) stereopair [31];
and (ii) a DTM with a spatial resolution of 5 m derived from airborne orthophotos and
generated by the São Paulo Metropolitan Planning Company S.A. (Empresa Paulista de
Planejamento Metropolitano S.A.—EMPLASA) in the project Mapeia São Paulo, held during
2010/2011 [40]. Hereafter, the WV-2 DTM with the spatial resolution of 0.50 m is referred
to as finer DTM, while the DTM with the spatial resolution of 5 m is named as EMPLASA
DTM. It is important to mention that the bathymetric map of the streams generated by [31]
was merged to the EMPLASA DTM aiming to maintain the river channels with the same
features in both DTMs. Furthermore, levees along the streams, which were mapped during
the fieldwork performed by [31], were included in the HEC-RAS simulations. The levee
heights range from 0.50 to 3.40 m.

Flow rates were obtained from Stream Gauge Station 279 (code 1006610) from DAEE
(Figure 3). Since this stream station is the closest station to the study area and the rainfall
was evenly distributed in the area according to the civil defense of the ABCD Region, it
was assumed that Meninos Brook, Couros Brook, and Tamanduateí River had the same
inflow. The simulations used the flow data from 6:00 pm on 10 March 2019 and 5:59 pm on
11 March 2019, totaling a 24-h-period, and collected at an interval of 10 min.
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We used flood points reported by both the civil defense of São Caetano do Sul and its
citizens. The civil defense reported blocks and squares that were flooded with approximate
depths due to the magnitude of the event. Thus, flood points with respective addresses and
flooding depths were generated in QGIS. Furthermore, the citizens reported the address of
flooded areas with estimated depths (with no scientific rigor). Such areas were converted
to points in QGIS to standardize the data, and a total of 286 points were created (Figure 3).

Finally, we performed HEC-RAS simulations in a central processing unit with a MEG
X570 ACE (MSI, Zhonghe, Taiwan); a Ryzen 9 5900X (AMD, Santa Clara, CA, USA); a
ZOTAC GeForce RTX 3080 (NVIDIA, Santa Clara, CA, USA), and a 32GB DDR4 Trident Z
RGB 3600Mhz CL14 (G.Skill, Taipei, Taiwan).

2.4. HEC-RAS
2.4.1. Theoretical Foundation

HEC-RAS is a free river hydraulics model developed by the United States Army Corps
of Engineers (USACE). The computer model is designed to perform one-dimensional (1D),
two-dimensional (2D), or combined 1D and 2D hydraulic calculations for a full network
of natural and constructed channels, overbank or floodplain areas, and levee-protected
areas. More specifically, HEC-RAS supports steady and unsteady flow water surface
profile calculations; combined 1D and 2D hydrodynamics; sediment transport/mobile
bed computations; water temperature analysis; water quality analyses (nutrient transport
and fate); and spatial mapping of many computed parameters (e.g., depth, water surface
elevation, velocity). Furthermore, HEC-RAS uses geometric data representation and geo-
metric and hydraulic computation routines for a network of natural and constructed river
channels, and the model also has an extensive spatial data integration and mapping system
(HEC-RAS Mapper) [41].

1D and 2D HEC-RAS main input data for performing hydraulic analysis are the
following: (i) river geometric data (width, elevation, shape, location, length); (ii) river
floodplain data (length, elevation); (iii) the distance between successive river cross-sections;
(iv) Manning ‘n’ value for the land use type covering the river and the floodplain area;
(v) boundary conditions (slope, critical depth); and (vi) stream discharge values. On the
other hand, the outputs from the model include water surface elevations, rating curves,
hydraulic properties (i.e., energy grade line slope and elevation, flow area, velocity), and
visualization of stream flow, which shows the extent of flooding [41].

Both 1D and 2D models of HEC-RAS have been widely used in river flood analysis [42–47].
However, since the newest versions combined 1D and 2D unsteady flow routing within the
unsteady flow model, it is possible to perform more accurate calculations of headwater, tail-
water, flow, and any submergence that occurs at the hydraulic structure on a time-oriented
step-by-step basis (e.g., [48]). However, while there are a large number of capabilities that
this model can perform, our research only focuses on exploring the ability of HEC-RAS to
compute 2D flood modeling once it may obtain better results than 1D simulations [41].

The 2D HEC-RAS simulation represents floodplain flow as a 2D field with the as-
sumption that the third dimension (water depth) is shallow in comparison to the other
two dimensions. The 2D shallow water equations, which represent mass and momentum
conservation in a plane, are fully solved as follows:

∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= q, (1)

∂u
∂t + u ∂u

∂t + v ∂u
∂t − fcv

= −g ∂zs
∂x + 1

h
∂

∂x

(
vt,xxh ∂u

∂x

)
+ 1

h
∂

∂y

(
vt,yyh ∂u

∂y

)
− τb,x

ρR

+ τs,x
ρh ,

(2)
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∂v
∂t + u ∂v

∂t + v ∂v
∂t − fcu

= −g ∂zs
∂y + 1

h
∂

∂x

(
vt,xxh ∂v

∂x

)
+ 1

h
∂

∂y

(
vt,yyh ∂v

∂y

)
− τb,y

ρR

+
τs,y
ρh

(3)

where t represents time, h is the water depth (m), u and v are the velocity components in the
x and y directions, respectively (ms−1); g is the gravitational acceleration (ms−2); zs is the
water surface (m), vt,xx and vt,yy are the horizontal eddy viscosity coefficients in the x and y
directions; τb,x and τb,y are the bottom shear stresses in the x and y directions; τsx and τs,y
are the surface wind stress; R is the hydraulic radius (m), and fc is the Coriolis parameter
(s−1). When the diffusive wave is selected, as in the case of this study, the inertial terms of
the momentum (Equations (2) and (3)) are neglected. The above equations are solved with
an implicit finite-volume scheme.

In general, 2D flood models simulate the water movement in both longitudinal and
lateral directions, whilst velocity is assumed to be negligible in the z direction. Such models
represent the terrain as a continuous surface through a mesh or grid. Thus, aiming to
improve the computational time, HEC-RAS applies a sub-grid approach, which applies
a relatively coarse computational grid and finer scale information underlying the topog-
raphy [49]. The sub-grid bathymetry equations are derived from full shallow water and
diffusion wave equations. Thus, Equation (1) is presented in the following integral form:

Ω
(

Hn+1)−Ω(Hn)

∆t
+ ∑

k
Vknk Ak(H) + Q = 0, (4)

where Ω is the volumetric three-dimensional (3D) space occupied by the fluid, and Q
represents the source/sink term (net rainfall) that crosses the bottom (infiltration) and top
surface (rain/evaporation). The superscript terms n and n + 1 represent the index time
steps between two consecutive time steps ∆t, and Vk, Ak(H) and nk are the average velocity,
area, and unit normal vector at face k, respectively. The integral form of Equation (4) is
needed to compute extra information (e.g., hydraulic radius, volume, cross-sectional data)
in a preprocessing stage for every computational cell face [44,49]. The sub-grid approach
can be used to increase the cell dimensions preserving the details of the bathymetry [49].

2.4.2. HEC-RAS Simulation

HEC-RAS version 6.3 was used in this work. The terrain, geometries, and boundary
conditions were generated in RAS MAPPER within HEC-RAS. Three flow entry points
upstream of Meninos Brook, Couros Brook, and Tamanduateí River and an exit point
downstream of Tamanduateí River were created. The unsteady flow was used in this
simulation. Two types of boundary conditions were used as follows: flow hydrograph
and normal depth. The flow hydrograph was set for the three upstream extremes of
Meninos Brook, Couros Brook, and Tamanduateí River. On the other hand, the normal
depth boundary condition was set for the downstream extreme of Tamanduateí River. The
slope of the water body patches was set to 0.005%, which was obtained according to the
terrain slope of the study area. The histogram ranged from 15.50 to 486.62 m3 s−1 in less
than five hours. The hydrograph of the event on 10 March 2019 is shown in Figure S4.

Aiming to ensure the stability of the model, the time step was estimated according to
the Courant–Friedrichs–Lewy condition:

Cr =
c∆t
∆x

=

√
gh∆t
∆x

≤ 1, (5)

where Cr is the Courant number, g is the gravity acceleration (m s−2), c is the celerity
(ms−1), h is the flow depth (m), ∆t is the time step (s), and ∆x is the grid cell size (m).
The celerity was estimated considering that a maximum water depth around 2.00 m was
reported [35]. In HEC-RAS, the values of Courant were set in the interval between 1 and
0.40. The roughness resistance (Manning value) was set at the default value suggested by
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HEC-RAS once no work was found in the literature reporting a value for this coefficient in
the study area.

Aiming to obtain the best simulation results as possible, four computing intervals
were performed as follows: 1 s, 15 s, 30 s, and 60 s. Three different mesh sizes were set for
the model execution: (i) 5 m for the entire study area with the EMPLASA DTM; (ii) 5 m for
the entire study area with the finer DTM; and (iii) 5 m in the dry areas and 1 m in the stream
channels (using the refinement tool) with the finer DTM. This difference in the mesh size
configuration with the finer DTM was applied in order to analyze the impacts of the mesh
refinement in the mapping of the flood-prone areas. All other HEC-RAS parameters were
kept the same for the simulations. A summary of the methodology is shown in Figure 5. A
total of 12 flood maps were generated (4 different computing intervals for each mesh size
setup) [49].
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Figure 5. Methodological flowchart.

As indicated above, the set of equations used in the model to perform the simulations
concerns the diffusive wave. In general, most flood applications work well with the
2D Diffusion Wave Equations, apart from being faster and more stable. In HEC-RAS,
the numerical solution of Saint–Venant equations is approximated by the implicit finite
difference method, which is numerically solved in a 4-point numerical scheme, considering
the Newton–Raphson iteration technique. The matrix solver used was PARDISO, a direct
solver that calculates the final solution within a finite number of steps and does not require
an initial guess. This type of solver is very robust and accurate. The theta parameter was
left at its default value of 1.0, favoring the stability of the model. All other HEC-RAS
parameters were kept the same for the simulations.

2.5. Validation

The flood area obtained in the HEC-RAS simulations were cross-checked with the
flood points reported by the civil defense (red points in Figure 3) in order to analyze the
accuracy in the simulations performed by the model. This comparison aims to ensure
that the data obtained in the simulation correspond to what was observed in situ. So,
more specifically, 82 points (28.67%) were used for this checking (red points in Figure 3).
These points were selected once the civil defense reported an approximated depth for
them, lying around 1.7 m. So, all points were classified considering this height. Then, we
calculated descriptive statistics of the residuals between the 82 validation points and their
corresponding points in the 12 HEC-RAS simulations (Equation (6)). The mean, standard
deviation, range, minimum and maximum values of residuals are presented.

ri = Mi −Oi (6)



Water 2023, 15, 1127 11 of 19

where r represents the residual value, M the modeled value in HEC-RAS, O the observed
value, and i refers to the point under analysis.

3. Results

The HEC-RAS simulations for the return period of 79 years with the four computing
intervals (1, 15, 30, and 60 s) for three different scenarios (EMPLASA DTM, finer DTM,
and finer DTM with refined channel mesh) are shown in Figures 6–8. It is important to
highlight that only water depth outside the stream channels is shown (water depth inside
the channels is excluded for visualization purposes). Enlarged maps of the simulation
results are presented in the Supplementary Material (Figures S1–S3).
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Figure 6. Flood maps generated in HEC-RAS. (A–D) represent the simulations with the computing
interval of 1, 15, 30, and 60 s, respectively, with the finer DTM (0.50 m). (E) is a zoom-in of the
confluence of Tamanduateí River and Meninos Brook in the northwestern region of the study area.
(F) shows a zoom-in of the Tamanduateí River in the northeastern part of the analyzed reach. Red
points are used for validation, while the green points represent other flooded points reported by the
citizens of São Caetano do Sul. The thick lines in dark blue correspond to the open channels. The
different shades of blue in polygonal shape account for the different depths of the flood zones.
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Figure 7. Flood maps generated in HEC-RAS. (A–D) represent the simulations with the computing
interval of 1, 15, 30, and 60 s, respectively, with the finer DTM (0.50 m) with refined channel mesh.
(E) is a zoom-in of the confluence of Tamanduateí River and Meninos Brook in the northwestern
region of the study area. (F) shows a zoom-in of Tamanduateí River in the northeastern part of the
analyzed reach. Red points are used for validation, while the green points represent other flooded
points reported by the citizens of São Caetano do Sul. The thick lines in dark blue correspond to the
open channels. The different shades of blue in polygonal shape account for the different depths of
the flood zones.

With respect to the HEC-RAS simulations with the finer DTM (0.50 m) (Figure 6),
the simulations with the four computing intervals (1, 15, 30, and 60 s) provide the same
minimum and maximum depth, which are between 0.01 and 7.72. The flood spots are quite
similar in the four scenarios. However, these simulations did not encompass all reported
flooded points by the civil defense and the citizens. Overall, 103 out of 286 flooded points
were not simulated and they are concentrated especially in the western and northeastern
regions of the city as shown in Figure 6E,F.
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Figure 8. Flood maps generated in HEC-RAS. (A–D) represent the simulations with the computing
interval of 1, 15, 30, and 60 s, respectively, with the EMPLASA DTM (5 m). (E) is a zoom-in of the
confluence of Tamanduateí River and Meninos Brook in the northwestern region of the study area.
(F) shows a zoom-in of Tamanduateí River in the northeastern part of the analyzed reach. Red points
are used for validation, while the green points represent other flooded points reported by the citizens
of São Caetano do Sul. The thick lines in dark blue correspond to the open channels. The different
shades of blue in polygonal shape account for the different depths of the flood zones.

As for the HEC-RAS simulations with the finer DTM (0.50 m) with refined channel
mesh (Figure 7), the simulations with the four different computing intervals (1, 15, 30,
and 60 s) provide the same minimum and maximum depth, ranging from 0.01 to 7.71 m.
Despite the difference in the stream channel mesh between the two finer DTMs, the flooded
areas are quite similar in the flooding maps produced by both DTMs (Figures 6 and 7). As a
result, the simulations generated with the finer DTMs with refined channel mesh produced
the same amount of omitted flooded points (103 points in total, mainly in the western and
northeastern regions—see Figure 7E,F).
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Considering the HEC-RAS simulations with the EMPLASA DTM (Figure 8), the
simulations with the four computing intervals (1, 15, 30 and 60 s) show the same minimum
and maximum depth of 0.01 and 8.42 m. From all 286 reported flooded points reported
by the civil defense and the citizens, only 8 points were not mapped in all 4 simulations.
However, some other areas within São Caetano do Sul were mapped in all four simulations,
but they were not registered by the authorities (see Figure 8E,F).

Descriptive statistics of the residuals between the 82 validation points and their corre-
sponding points in the HEC-RAS simulations are presented in Tables 2–4. Considering the
finer DTM, the residuals means range from 0.805 to 0.808 m, while the standard deviation
of the four simulations is 1.215 m. The minimum and maximum residual values vary
from −1.552 to 3.364 m. A total of 5 out of 82 validation points were not simulated in the
4 simulations. The simulation with the computing interval of 1 s lasted 2 h, 40 min, and
30 s. On the other hand, the simulation with the computing interval of 60 s was performed
in 16 min and 58 s (Table 2). The simulation with the computing interval of 60 s was 89.42%
faster than the simulation with the computing interval of 1 s.

Table 2. Descriptive statistics of the residuals between the 82 validation points and their correspond-
ing points in the HEC-RAS simulation with the finer DTM (0.50 m).

Finer DTM Finer DTM Finer DTM Finer DTM

Computing intervals 1 s 15 s 30 s 60 s
Mean (m) 0.805 0.806 0.806 0.808

Standard deviation (m) 1.215 1.215 1.215 1.215
Range (m) 4.910 4.909 4.910 4.913

Minimum (m) –1.552 –1.552 –1.551 –1.549
Maximum (m) 3.357 3.358 3.359 3.364
Missing points 5 5 5 5

Computation time (hh:mm:ss) 02:40:30 00:55:32 00:30:24 00:16:58

Table 3. Descriptive statistics of the residuals between the 82 validation points and their corresponding
points in the HEC-RAS simulation with the finer DTM (0.50 m) with refined channel mesh.

Finer DTM with Refined
Channel Mesh

Finer DTM with Refined
Channel Mesh

Finer DTM with Refined
Channel Mesh

Finer DTM with Refined
Channel Mesh

Computing intervals 1 s 15 s 30 s 60 s
Mean (m) 0.809 0.810 0.811 0.813

Standard deviation (m) 1.210 1.210 1.210 1.210
Range (m) 5.038 5.038 5.039 5.040

Minimum (m) –1.626 –1.625 −1.624 –1.621
Maximum (m) 3.412 3.413 3.414 3.420
Missing points 5 5 5 5

Computation time
(hh:mm:ss) 21:08:20 02:50:31 01:37:39 00:50:59

Table 4. Descriptive statistics of the residuals between the 82 validation points and their correspond-
ing points in the HEC-RAS simulation with the EMPLASA DTM (5 m).

EMPLASA DTM EMPLASA DTM EMPLASA DTM EMPLASA DTM

Computing intervals 1 s 15 s 30 s 60 s
Mean (m) 0.591 0.591 0.592 0.596

Standard deviation (m) 0.966 0.966 0.966 0.964
Range (m) 4.493 4.493 4.492 4.484

Minimum (m) –1.577 –1.576 –1.575 –1.566
Maximum (m) 2.917 2.917 2.917 2.917
Missing points 3 3 3 3

Computation time (hh:mm:ss) 03:13:51 00:50:46 00:30:51 00:19:46
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The residuals between the validation points and their corresponding points in the
HEC-RAS simulation with the finer DTM (0.50 m) with refined channel mesh present
means between 0.809 and 0.813 m and a standard deviation of 1.210 m (for all the four
simulations). A sum of 5 out of 82 validation points were not simulated in the 4 simulations.
The simulation with the computing interval of 1 s was executed in 21 h, 08 min, and 20 s.
On the other hand, the simulation with the computing interval of 60 s was performed in
50 min and 59 s (Table 3). The simulation with the computing interval of 60 s was 95.98%
faster than the simulation with the computing interval of 1 s.

Considering the HEC-RAS simulations with the EMPLASA DTM, the four simulations
presented similar results. The means range from 0.591 to 0.596 m. The standard deviations
lie between 0.964 and 0.966 m. The minimum and maximum residual values are −1.575
and 2.917 m, respectively. Only 3 out of 82 validation points were not simulated in the
4 simulations. Finally, it is essential to address that these four simulations related to the
EMPLASA DTM, like the previous set of simulations associated with the finer DTM with
refined mesh, present a meaningful difference in their processing times. The simulation
with the computing interval of 1 s was performed in 3 h, 13 min, and 51 s, while the
simulation with the computing interval of 60 s was performed in 19 min and 46 s (Table 4).
The simulation with the computing interval of 60 s was 89.80% faster than the simulation
with the computing interval of 1 s.

4. Discussion

The floods simulation highlights significant overflows of the watercourse on its banks.
The flood magnitudes obtained with the different DTMs indicate that the water can inun-
date several areas around the water courses, including streets and even buildings. The
results of the simulations make it possible to describe the severity of such extreme event
in terms of spatial extension since they allow a very detailed mapping of the flood zones.
Additionally, it is possible to observe that certain stretches of the streams are more prone to
flooding due to the difference in relief. It was also observed that the extent of the flood and
the water depths are much higher downstream than upstream. For the simulations with
the 3 DTMs, it is important to highlight that all maximum depths are in the stream channels
located around the confluence of Tamanduateí River and Meninos Brook (northwestern
region of the study area).

Simulations with the finer DTM and the finer DTM with refined channel mesh show
similar flooded spots in all four computing intervals. The results also indicate that finer
grid sizes (0.50 m) are not impacted by different computing intervals between 1 s and 60 s.
Furthermore, even channel mesh refinement seems to not interfere in such simulations.
However, computational time should be considered since they present significant difference
(from over 21 h up to 17 min).

The simulations with the EMPLASA DTM (spatial resolution of 5 m) present the flood
maps with the highest coverage of the flooded points, i.e., 278 points out of a total of
286 points were mapped within the shortest computation time. However, there are still
some simulated flood spots that were not observed during the extreme flood event [35],
especially in the western and northwestern regions.

The EMPLASA DTM was originally derived from orthophotos with 0.45 m of spatial
resolution and refined by IBGE topographic charts, using IKONOS-2 imagery as ancillary
data [50,51]. It was generated with 1 m of spatial resolution and was rendered available for
public use with a downgraded resolution of 5 m.

The DTM generated from the stereo-pair of WV-2 images has a nominal resolution of
0.5 m. Orbital imagery-derived DTMs tend to generate artifacts since one image of the pair
is acquired with a given off-nadir angle, and the other image, in its turn, with a different
viewing angle. In addition to that, each GCP introduced for generating orbital DTMs brings
along an associated noise, which greatly amplifies the errors. In sum, the spatial resolution
is not directly related to the DTM accuracy [52]. In the case of the EMPLASA DTM, its native
data are much more accurate than the WV-2-derived DTM. And even though downsampled
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to 5 m, this DTM still preserves its planialtimetric quality. This explains the achievement
of better simulation results when using the EMPLASA DTM, with a few omission errors
(eight points) and an elevated accuracy (97.20%). This demonstrates that DTMs with high
accuracy (and not necessarily with very high spatial resolution) are crucial for obtaining
better flood estimations [53–55].

This flood event, having taken place on 10 March 2019, crossed the boundary of São
Caetano do Sul and hit the municipalities of São Paulo, Santo André, and São Bernardo
do Campo. However, since there is no record of flooded points in the database of the civil
defenses for such municipalities, it is not possible to validate these simulated floods with
HEC-RAS simulations.

5. Conclusions

In this work, we focused on comparing the influence of the spatial resolution of DTM
in flood simulation. To do so, we used two DTMs, with spatial resolutions of 5 and 0.50 m
(EMPLASA DTM and finer DTM, respectively) applied in a case study in São Caetano do
Sul, São Paulo, Brazil. An extreme event was analyzed. The 2D HEC-RAS simulations were
performed within three different scenarios simulated on four computing intervals (1, 15, 30,
and 60 s). The scenarios were the following (i): the EMPLASA DTM with a mesh size of
5 m; (ii) the finer DTM with a mesh size of 5 m; and (iii) the finer DTM with a mesh size of
5 m in the dry areas and 1 m in the stream channels (using the refinement tool).

The simulations with the EMPLASA DTM (spatial resolution of 5 m) presented the
flood maps with the largest coverage of the flooded points (278 points out of 286—97.20%),
within the shortest computation times. However, they mapped flood spots that were not
observed by the civil defense nor the citizens during the extreme flood event. In addition,
we highlight that a DTM with a finer spatial resolution (<0.50 m) derived from spatial
images may not produce the best flood simulation compared to a DTM with a spatial
resolution of 5 m derived from orthoimages. This demonstrates that highly accurate DTMs,
relying on high quality native data, are essential for achieving successful results.

Unlike previous works reported in the literature, our experiment dealt with a real case
study, coping with rainfall data, and innovatively provided statistical validation of the
obtained results based on field data. According to our results, HEC-RAS proved to be a
powerful tool in the identification of areas susceptible to urban flooding. The results should
be handled by local decision-makers in order to prevent and mitigate the effects of extreme
flooding such as the one occurred on 10 March 2019. The identification of flood-prone areas
can help in the management before, during, and after such events, and the availability of
such simulations supports timely decisions targeted to tackle the adverse material impacts
of these phenomena as well as to protect and save people directly and indirectly affected
by them.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15061127/s1. Supplementary Figure S1. Flood maps generated
in HEC-RAS using the finer DTM (0.50 cm). (A) represents the simulation with computing interval
of 1 s; (B) computing interval of 15 s; (C) computing interval of 30 s; (D) computing interval of 60 s;
Supplementary Figure S2. Flood maps generated in HEC-RAS using the finer DTM with refined
channel mesh (0.50 cm). (A) represents the simulation with computing interval of 1 s; (B) computing
interval of 15 s; (C) computing interval of 30 s; (D) computing interval of 60 s; Supplementary
Figure S3. Flood maps generated in HEC-RAS using the EMPLASA DTM (5 m). (A) represents the
simulation with computing interval of 1 s; (B) computing interval of 15 s; (C) computing interval of
30 s; (D) computing interval of 60 s; Supplementary Figure S4. Hydrograph of the flow rate provided
by Stream Gauge Station 279 on 10 March 2019.

https://www.mdpi.com/article/10.3390/w15061127/s1
https://www.mdpi.com/article/10.3390/w15061127/s1
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