
T Q..oL-L_o..._ oO-c..._ ~t+~~
~~ ~\~ ~S' '~
'b-e.'"'~~~~ ~fo~~-"._ -c.a.-::.~~ ~

0~~~ ~l~o_Q_
Using the ACL2 Theorem Prover to
Reason about VHDL Components

~~l>L-

Vanderlei Moraes Rodrigues* e_w \> ;. . o~. ü I. . oo- 3

Dominique Borrione** 10\o,ffD
Philippe Georgelin**

Abstract

ACL2 is a theorem prover which uses an applicative subset of Common Lisp as
specification language, and employs a quantifier-free first order logic to reason about
these specifications. \iVe define how to build an ACL2 model of a design describecl in
a synthesiza91e VHDL. Using t his single model , we may execute the design (which
corresponds to standard simulation), perform a symbolic simulation of this design,
and formally verify its propert ies. To hanclle designs employing components, we
use abstract functions to represent an unspecifiecl surrounding environment. This
environment stands for the (unknown system) where the component is inserted. T he
ACL2 construction encapsulate is usecl to introcluce such abstract functions. This
technique allows for compositional reasoning, since component properties became
available to the surrounding environment without the need to repeat t he proofs for
each component instance.

Keyworcls: formal verification of digital systems, VHDL, automated t heorem
proving, ACL2.

*Instit uto de Informática, Un iversidade Federal do Rio Grande elo Su l
e-ma il: vancli @inf.ufrgs.br

** Laboratoire TIM.A, Uni versité Joseph-Fourier
e-m a i I: { clom in ique. borrione,philippe.georgeli n }@imag.fr

Using the ACL2 Theorem Prover to Reason about VHDL Components

1. Introduction

ACL2 [KMl\1100, KM97] is the automated theorem prover that follows the highly
successful NQTHM [BM88] prover of Boyer anel Moore. It uses an applicative subset
of Common Lisp as specification language. Thus a system anel its properties are
modeled as a standard program in an ordinary programming language, rendering this
model' executable anel , dueto the existing compilers for Lisp, its execution is effi cient.
As a consequence, many system developers finei modeling in ACL2 quite easy.

To reason about these models, ACL2 uses a quantifier-free, first-order logic. Its
inference engine orchestrates a large number of proof techniques, including induction,
in a highly automated anel effi cient way. Therefore, ACL2 is able to perform rea
sonably large proof steps by itself, relieving the user from providing more detailed
proof scripts, in contrast to other theorem proving tools such as HOL [GM93] or
PVS [Sha96].

We use ACL2 in the verification of high-level, behavioral descriptions of hardware
designs written in VHDL [IEE94]. This is a large anel complex language, whose official
semantics is an informal operational description of the design simulator. The most
popular verification techniques (such as finite model-checking [CGPOO, l\ lcl\1193]) are
not very appropriate for such descriptions because they present large or infinite state
spaces, parametric anel regular structures , separate components, etc. Such features
are better described with more powerful formalisms anel tools such as ACL2.

We develop a model for VHDL designs in ACL2, anel build the translator t hat
generates it automatically. This model is a set of functions describing the design
simulation, anel a supporting set of theorems. It is a single model which may be used
for three distinct purposes. Since it is composed of Lisp functions, it can be e.recuted,
reproducing the behavior of a standard VHDL simulator.

The ACL2 model can also be used for symbol·ic simulation, which corresponds to
executing the design with symbolic Yalues as inputs, producing symbolic expressions
as outputs. The inputs are mathematical va.riables (x , y), possibly restricted b~·
conditions, representing arbitrary Yalues , anel the outputs describe their functional
relation with the inputs.

As in formal verification, a. symbolic simulation run may correspond to a. large or
infinite number of cases. As in standa.rd simulation, this method is fully automated.
Therefore, symbolic simula.tion is a pra.ctical bridge between standard simulation and
formal verification. The ACL2 model includes design specific theorems that transform
the prover engine into a high-quality symbolic simulator .

On top of these two tasks, the ACL2 model is aimed at fo rmal verification. In this
case, propert ies of the VHDL clesign are stated anel provecl as theorems of the ACL2
model using the prover engine. To aid t his task. the model also includes t heorems
stating design specific propert ies anel support ing particular verification methods. \Ve
extencl this set of theorems as we develop new verification methodologies or handle a

130 RITA • Volume VII • Número 1 • Setembro 2000

Using the ACL2 Theorem Prover to Reason about VHDL Components

new class of designs.
Our ACL2 model of a VHDL design is compositional: the properties of a compos

ite system may be derived from its component properties, allowing for modular system
development anel verification. Component properties anel specifications may include
arbitrary restrictions on the environment, which are checked when the component
is used , anel we may verify that components are functionally equivalent under envi
ronment assumptions. Equivalent components are interchangeable, anel a composite
system may know only the properties of its components.

Compositional reasoning about VHDL designs is not obvious dueto the semantics
of VHDL. To simulate a design, all its components are expanded into basic processes ,
anel each process contributes to the simulation cycle in several distinct moments
(process activation, signal updating, etc). In our approach , we embed a component
into a partially specified abstract system, anel ensure that properties hold in this
arbitrary environment, allowing for the verification of reactive systems. This approach
is based on the method adopted in UNITY [CM88] anel other temporallogics.

This paper is organized as follows. Section 2 introduces the ACL2 model of a ftat
VHDL design. Section 3 studies VHDL components . The last section concludes on
the current extensions of this work.

2. Basic model

We only consider a synthesis subset of VHDL [IEE99] which excludes physical
time anel non-cl.iscrete types. 'i\Te further require that processes be synchronized on
a single clock edge, anel be put in a normal form with a single wai t statement at
the beginning. Under these conditions, we may identify the simulation step with the
clock cycle, anel ignore clock signals.

Figure 1 shows an example design which computes the power function , producing
ARG1ARG2 in the output RES. Signal START begins the computation, anel DONE indicates
that the result is ready. This design is composed o f two processes. Process MUL TIPLIER
computes REGi x REG2, it is activated by REQ , anel it signals the result availability
through ACK. Process CONTROLLER is a finite state machine that uses the functionality
supplied by the first process.

According to the semantics of VHDL, the simulation of a design consists of re
peating a step where each process is executed up to a wai t statement, anel all signals
are then updated. A signal assignment x <= e evaluates expression e anel generates
a next value for x which takes effect in the following simulation step only. This be
havior models wire delays. The ACL2 model of a VHDL design is a set of functions ,
macros anel theorems clescribing its simulation behavior. Since ACL2 is an applicative
framework , we follow Moore [Moo98] anel represent each architecture as a transition
function between states.

RITA • Volume VII • Número 1 • Setembro 2000 131

Using the ACL2 T heorem Prover to Reason about VHDL Components

entity POWER is
port (ARG1,ARG2: in NATURAL; START,CLK: in BIT;

RES: out NATURAL ; DONE : out BIT);
end POWER;
architecture BEHAV of POWER is

signal STATE: NATURAL := O;
signal REG1,REG2 , RESULT,COUNT : NATURAL;
s ignal REQ , ACK : BIT ;

begin
MULTIPLIER : process begin

wait until CLK = ' 1 ';
if REQ = '1' then

RESULT <= REG1*REG2 ;
end if;
ACK <= REQ;

end process ;
CONTROLLER: process begin

wait until CLK = '1';
case STATE is

when O =>
if START = ' 1 ' then

REGi <= ARG1 ; REG2 <= 1; COUNT <= ARG2;
STATE <= 1 ;

end if ;
when 1 =>

if COUNT = O then
RES <= REG2; DON~<= '1' ; STATE <= 3;

else
REQ <= '1'; STATE <= 2;

end if;

when 2 =>
if ACK = ' 1 ' then

REG2 <= RESULT ; REQ <= ' 0 ' ;
COUNT <= COUNT-1; STATE <= 1;

end if;
when 3 =>

if START '0' then
DDNE <= '0'; STATE <=O ;

end if ;
end case;

end process;
end BEHAV;

Figure 1: VHDL design for power function

132 RITA • Volume VII • Número 1 • Setembro 2000

Using the ACL2 Theorem Prover to Reason about VHDL Components

2.1 States

The state of an architecture represents a snapshot of its variables, local signals, and
interface signals (except the clock). It is implemented as a list of values as explained
below.

• For each variable, there is one element holding the value stored in the variable.

• For each signal, there is one element holding the current value of this signal, and
another element holding the next value of this signal. The next value represents
the \'HDL signal driver which holds only one value due to the restrictions on
the time model imposed by the synthesis subset of VHDL.

By convention, the next value of signal x is named x+. For the previous example, the
state is the list (ARG1 ARG2 ... ARG1+ ARG2+ ...).

To separate the state behavior from its implementation , only two functions directly
knovY about the actual state representation.

• Function (getst i st) fetches the value of variable i in state st. It returns t he
i-th element of state st

• Function (putst i a st) builds a new state and assigns value a to variable i . It
returns a ne,,· state identical to st except for the i-th element , which then holds
a.

For readability, we generate constants for indexes in the state list. A partia!
list from the previous design is shown below. Entity and architecture names prefix
identifiers to avQid ambiguities in the ACL2 model.

(defconst *power . behav.argl* O)
(defconst *power . behav . arg2* 1)

(defconst *power . behav.arg1+* 12)
(defconst *power.behav.arg2+* 13)

The characteristic properties of getst and putst are listed belovv, where i , and j
are element indexes. Properties P1 and P2 describe the access to an updated state.
Property P3 indicates that only the last update to a variable matters. Property P4
swaps updates to distinct variables. Property P5 discharges an update when it assigns
to a variable t he same Yalue it a lready stores.

Pl: (getst i (putst i a st)) = a
P2: i =/- j ~ (getst i (putst j a st)) = (getst i st)
P3: (putst i a (putst i b st)) = (putst i a st))
P4: i =/- j ~ (putst i a (putst j b st)) = (putst j b (putst i a st))
P5: (getst i st) = a ~ (putst i a st) = st

RITA • Volume VII • Número 1 • Setembro 2000 133

Using the ACL2 Theorem Prover to Reason about VHDL Components

From the properties above, ACL2_ generates rewrite rules that reduce a nested
expression (putst i 0 a0 (put i 1 a 1 (. . . st))) to a unique normal form where
there is at most one update for each variable, and updates are ordered by variable
indexes. These properties also generate rules to read the value of a variable from such
expressions . Thus this form is taken as the representation of states for proofs and
symbolic simulat ion .

T he naive application of the rewrite rule generated from property P4 could lead
the ACL2 rewriter to an infinite loop, because the term it generates can be rewritten
bay the same rule. ACL2 recognizes this possibility and employs a heuristic to stop
such loops when the terms are ordered. However, the standard heuristic fails to
identify which argument of putst must be used to stop the loop. T herefore, we add
the cla use below the theorem corresponding to P4:

: rule-classes ((:rewrite : loop-stopper ((i j))))

According this clause, the rule can only be applied vlhen it swaps terms where i is
larger t han j .

T he actual definitions of getst and putst are hidden after the proof of their
characterizing properties, because the associated rewrite rules suffice to conduct all
handling of states. Therefore the ACL2 model is independent of the state repre
sentation, and any other implementation that satisfies the sa.me properties may be
adopted , if it is found more convenient .

To describe a state in a formula, we use a constructor· e.rpression of nested putst
calls beginning in nil , which , in this case stands for a predefined state where variables
are undefined. For exal!lple, the formula below describes a state st where ARG1 holds
15, ARG2 holds 66 , etc .

(equal st (putst *power.behav.arg1* 15
(putst *power. behav .arg2* 66

nil)))

2.2 Transition Functions and their Uses

Using states explicitly, t he execution of a group of \'HDL statements in an initial
stat e is represented as the expression that builds the corresponding final state. For
instance, the execution of a signal assignment x <= e is modeled by (putst :t + e'
st) , which updates the next signal value, ,,,.here e' corresponds to expression e with
references to variables and signals replaced by the access to the corresponding elements
in st. Using recursive function definitions and standard Lisp operators such as cond
and let*, we model other \'HDL statements.

Using this representation for statements , we model each process of t he VHDL
design by a tmnsition fun ction that returns the ne\v state produced by one simulation

134 RITA • Volume VII • Número 1 • Setembro 2000

Using the ACL2 Theorem Prover to Reason about VHDL Components

(defun power . behav.multiplier (stO)
(let* ((st1 (if (equal (getst *power.behav.req* stO) 1)

(putst *power.behav.result+*

st2))

(* (getst *power . behav.reg1* stO)
(getst *power . behav . reg2* stO))

stO)
stO))

(st2 (putst *power.behav.ack+*
(getst *power.behav.req* st1) st1)))

(defun power . behav . controller (stO)
. ..)

(defun power.behav-update-signals (st)
(putst *power . behav.res* (getst *power.behav . res+* st)

(putst *power.behav.done* (getst *power.behav.done+* st)
(putst *power.behav . state* (getst *power.behav.state+* st)

... st H))
(defun power.behav-cycle (st) (power . behav-update-signal

(power.behav.multiplier
(power.behav .controller st))))

(defun power.behav-simul (n st)
(if (and (intergerp n) (> nO))

(power.behav-cycle (power . behav-simul (- n 1) st)
st))

Figure 2: ACL2 model for design of Figure 1

RITA • Volume VII • Número 1 • Setembro 2000 135

Using the ACL2 Theorem Prover to Reason about VHDL Components

step ofthis process . For instance, in Figure 2, the functions power. behav .rnultiplier
and power. behav. controller model the processes in Figure 1. One simulation cycle
of architecture behav of entity power is modeled by function power. behav-cycle of
Figure 2. This function calls the functions corresponding to each process, and then
calls function power. behav-update-signal to replace the current value of each signal
with its (possibly resolved) next value. More details about this modeling technique
ar;e found in [BGROO].

Finally, the transition fun ction representing the architecture is a recursive function
power. behav- simul that repeats the architecture simulation cycle n times , returning
the final state. This ACL2 model may be simulated for n steps by evaluating the
standard Lisp expression (power. behav-simul n st) , where st is a state with a.ppro
priate input values. It may also be used for for·mal verification by proving properties
of function power. behav-simul.

For instance, the theorem below demonstrates that the VHDL design is correct.
T he hypothesis indicates that st is a state where t he inputs ARG1 and ARG2 hold
the natural numbers rn and n, and the remaining variables have appropriate initial
values. The conclusion indicates that the simulation beginning in this state arrives,
after 3 x n + 2 steps, in a state where RES holds mn . This is a property of ali simulation
runs , for ali positive values of m and n, covering an infinite number of cases. l\!Iodel
checkers cannot handle such general properties.

(defthm power . behav-correct
(implies (and (integerp m) (>= m O) (integerp n) (>= n O)

(equal st (putst *power.behav.arg1* m
~ (putst *power.behav.arg2* n

(putst *power.behav.start* 1

nil)))))

(equal (getst *power.behav . res*
(power.behav-simul (+ (* n 3) 2) st))

(power m n))))

The ACL2 model may a.lso be symbolically simulated. which corresponds to ex
ecuting the design with symbolic values as input. For instance, consider the goal
below.

(irnplies (and (integerp m) (>= rn O) (integerp n) (>= n 5)
(equal st (putst *power.behav. arg1* m

(putst *power .behav.arg2* n

nil)))))

(equal (power . behav-simul 10 st) v))

136 RITA • Volume VII • Número 1 • Setembro 2000

Using the ACL2 Theorem Prover to Reason about VHDL Components

The hypothesis of this formula iptroduces a initial state st where t he inputs are
natural numbers m and n , with n 2: 5. When submitted to the symbolic simulator ,
t he conclusion of this formula performs ten simulation steps beginning in st , which
correspond to three iterations of the power algorithm. The result is the st ate below,
where REG2 contains the intermediate result m x m x m, as expected .

(putst *power.behav.arg1* m
(putst *power.behav . arg2* n

. .. (putst *power.behav . reg2* (* m m m)
(putst *power.behav . count* (+ n -3) . ..))))

ACL2 manages to t race initial values and condit ions along the whole run to decide
tests over symbolic expressions. When it cannot decide a t est , it performs a case split
a.nd explores ali possibilit ies. More details about these verification and simula tion
techniques a re found in [BGROO].

3. Components

T he previous modeling technique needs to be extended to ha.ndle architectures
with components. Figure 3 shows another design for the power function. In this
example, t he architecture BEHAV of ent ity MULT computes the mult iplication of its
input arguments when requested t hrough signal REQ , and t he architecture COMP of
PDWER uses it as a. component . This design is equal to the design of Figure 1, except
for the mult iplication . In the new version, t his operation is performed by a component
a.nd takes several,s imula tion steps, while the first version performs it by a sequentia.l
process in one step. We now consider the modeling of components.

3.1 Component Representation and Verification

Architec ture BEHAV of MULT has no component , so it is modeled as described
before, with a state list of t he form (A B . . . A+ B+ ...) , and the corresponding
transition functions, including the following two functions that compute one cycle
(mult . behav-cycle), and the simula tion of n cycles (mult.behav-simul) of this de
sign.

(defun mult.behav-cycle (st) . ..)
(defun mult.behav-simul (n st)

(if (and (intergerp n) (> n O))
(mult . behav-cycle (mult.behav-simul (- n 1) st)
st))

The state of each component of an architecture has internai variables anel signals,
anel their values persist t hrough simulation steps. T herefore, the state of an archi
tecture \:vit h components inclucles one state list for each instance of component. For

RITA • Volume VII • Número 1 • Setembro 2000 137

Using the ACL2 Theorem Prover to Reason about VHDL Components

entity MULT is
port (A,B : in NATURAL; REQ,CLK : in BIT;

PROD: out NATURAL; ACK: out BIT);
end MULT ;
architecture BEHAV of MULT is
. signal STATE: NATURAL := O;

signal RESULT, COUNT : NATURAL;
begin

MAIN: process begin
wait until CLK = '1';
case STATE is

when O =>
if REQ = '1' then COUNT <=A ; RESULT <=O; STATE <= 1; end if;

when 1 =>
if COUNT O then

PROD <= RESULT; ACK <= '1'; STATE <= 2 ;
else

RESULT <= RESULT+B; COUNT <= COUNT-1; end if;
when 2 =>

if REQ = '0' then ACK <= ' 0'; STATE <=O; end if
end case;

end process;
end BEHAV;

" architecture COMP of POWER is
component MULT_UNIT

port (A,B: in NATURAL; REQ,CLK : in BIT;
PROD : out NATURAL; ACK: out BIT);

end component;
for all: MULT_UNIT use MULT(BEHAV);
signal STATE: NATURAL := O;

begin
MULTIPLIER: MULT_UNIT (REGi, REG2, REQ, RESULT, ACK, CLK);
CONTROLLER: process begin

end process;
end COMP ;

138

Figure 3: Power function with a component

RITA • Volume VII • Número 1 • Setembro 2000

Using the ACL2 Theorem Prover to Reason about VHDL Components

example, the state for COMP o f POWER is a list o f the form (ARG 1 ARG2 . . . ARG 1 +
ARG2+ ... MULTIPLIER), where MULTIPLIER is a state for BEHAV of MULT, i.e., a list
(A B . . . A+ B+ ...) .

Like processes, components are modeled by a transition function. This function
passes the actual port values to and from the component state, and performs one step
of the component simulation cycle by calling the transition function of the architecture
bound to the component.

Figure 4 shows the ACL2 model for COMP of POWER. It is identical to the model
in Figure 2, except for the function power . comp.multiplier which represents the
component activation as follows:

1. It extracts its local component state st-multO (a state of BEHAV of MULT) from
the global state stO.

2. Next, the component inputs A, B and REQ receive their actual value from the
external architecture state, resulting in st-mult3 .

3. A call to mul t . behav-cycle activates the component internal processes, and
produces state st-mult4.

4. The external architecture state is then updated with this new component state,
resulting in st1 (a state of COMP of POWER).

5. Finally, the result is state st3 , where the signals RESULT and ACK receive the
component outputs .

Models of architectures with components can be usecl for execution . symbolic
simulation and form;l verification exactly as clescribed in the previous section. In
this last case, however , it. is desirable that the proof effort be divicled among the
design components , anel that properties proved over a component be carried to all
designs using that component. However, how to achieve this goal is not obvious.

Consider again Figure 3. According to the approach discussed earlier , the theorem
belmv· for the multiplier correctness states that if a anel b are the values of the input
arguments, REQ is set to 1, anel the internal signals are properly initializeel, then the
result founel in PROD after the appropriate number of simulation cycles is a x b.

(defthm mult . behav-correct
(implies (and

(equal st (putst *mult.behav.a* a
(putst *mult.behav.b* b

nil))))
(equal (getst *mult.behav.prod*

(mult.behav-simul ... st))
(* a b))))

RITA • Volume VII • Número 1 • Setembro 2000 139

Using the ACL2 Theorem Prover to Reason about VHDL Components

(defun power.comp.multiplier (stO)
(let* ((st-multO (getst *power.comp.multiplier* stO))

(st-multl (putst *mult.behav.a*
(getst *power.comp.regl* stO) st-multO))

(st-mult2 (putst *mult.behav.b*
(getst *power.comp . reg2* stO) st-multl))

(st-mult3 (putst *mult.behav.req*
(getst *power.comp.req* stO) st-mult2))

(st-mult4 (mult.behav-cycle st-mult3))
(stl (putst *power . comp.multiplier* st-mult4 stO))
(st2 (putst *power .comp . result+*

(getst *mult.behav.prod+* st-mult4) stl))
(st3 (putst *power.comp.ack+*

(getst *mult . behav.ack+* st-mult4) st2)))
st3))

(defun power.comp.controller (stO)
...)

(defun power.comp-update-signals (st)
. . .)

(defun power.comp-cycle (st) (power.comp-update-signal
(power.comp.multiplier

(power.comp.controller st))))
(defun power . comp-simul (n st)

(if (and (intergerp n) (> n O))

140

(power.comp-cycle (power .comp-simul (- n 1) st)
st))

Figure 4: ACL2 model for design of figure 3

RITA • Volume VII • Número 1 • Setembro 2000

Using the ACL2 Theorem Prover to Reason about VHDL Components

This is necessarily a property of function mul t. behav-simul , because it takes severa!
steps to compute the result . This function simulates an isolated multiplier, which does
not interact with its surrounding environment. It does not consider , for instance, that
the inputs may oscillate. So it is not appropriate as a description of t he multiplier as
a component.

Even considering only the multiplier properties which hold when it is employed
as a component, it is not evident how they can be lifted from the component to the
composite sys tem. For instance, the correctness of the architecture CDMP of PDWER is
stated as:

(defthm power .comp-correct
(implies (and

(equal st (putst *power.comp . arg1* m
(putst *power.comp.arg2* n ... nil))))

(equal (getst *power.comp.res*
(power.comp-simul . .. st))

(power m n))))

This is a. property over function power. comp-simuL which communica.tes with the
multiplier component only t hrough its step function mul t . behav-cycle. But this
is not the simulat ion function mult. behav-simul over which multiplier properties
such as theorem mult. behav-correct are sta.ted. Thus, properties of the multiplier
component cannot be used in proofs a.bout the composite architecture COMP of PDWER.

3.2 Represei-ttation of Components Using Abstract Systems

The problems discusses a.bove are consequences of the semantics of VHDL. To
overcome them , we sta.te and prove properties of an a.rchi tecture A as if it were a
component of an abstmct system representing its enclosing environment. It stands
for any other enclosing architecture B which uses architecture A the component ,
i.e., crea.tes a.n instance of A. The abstra.ct system is not full y described , but only
characterized as the simulation function of the enclosing architecture. This abstract
s:ystem can !ater be specialized to any a.rchitecture, and the component properties are
preserved in this process.

For instance, consider the description of architecture BEHAV of MUL T as a compo
nent. A system using such component must obey two restrictions. First , the system
state must include an element to hold the local state of the multiplier component.
Second, ea.ch step of the system simulation function must activate the component
t hrough a cal! to function mul t. behav-cycle on its local state.

Let st m be the actual multiplier state. Let st5 be t he state of an an unspecified,
abstract system which has a multiplier as a component. To describe this abstract
system, we employ the functions below.

RITA • Volume VII • Número 1 • Setembro 2000 141

Using the ACL2 Theorem Prover to Reason about VHDL Components

• The a.bstract function (mult . behav-getst st8) = stm extracts the local state
of the multiplier component from the enclosing abstract system state.

• The abstract function (mult. behav-system n st 8) = st~ represents the system
simulation function. This function repeats a simulation step which must perform
the multiplier simulation step on t he multiplier local memory.

In the 'case of the composite architecture COMP of POWER, these functions actually are
(getst *power.comp .multiplier* st8) and (power.comp-simul n st8) .

To fully characterize an architecture t hat includes t he mult iplier as a component,
the two abstract functions above must correspond to functions with the following
properties.

Initial state property: Executing zero step of the system simulation function does
not change t he multiplier state:

(equal (mult.behav-getst (mult.behav-system O st-s))
(mult.behav-getst st-s)

Simulation step property: For any local and output element x of the component ,
one step of the system simulation function performs one simulation step of the
multiplier component on its local state:

(equal (getst x (mult.behav- getst (mult.behav-system (1+ n) st - s)))
(getst x (mult.behav-cycle

(mult.behav-getst (mult . behav-system n st-s)))))

This property must be stated for each local or output element x of the compo
nent.

The first argument of equal gets t he Yalue of this element after n + 1 system
simulation steps. The second argument simulates the system n steps, performs
one multiplier step on t he local component state, and then extracts this element
value. The property says that the result of both terms is the same.

Alternatively, we may say this property st ates that the paths in Figure 5 are
equivalent (the diagram commutes) .

The la.st property only holds for local and output elements of the component
state beca.use these are the only elements t he component writes . The value of input
elements of the component local sta.te is taken from the global state as defined by
the surrounding environment which writes to the component input ports in each
simula.tion step.

142 RITA • Volume VII • Número 1 • Setembro 2000

Using the ACL2 Theorem Prover to Reason about VHDL Components

system state

mult.behav-getst
local state o f multiplier component

mult . behav-system

mult.behav-cycle

r,

mult.behav-getst

Figure 5: Simulation step of abstract function

RITA • Volume VII • Número 1 • Setembro 2000 143

Using the ACL2 Theorem Prover to Reason about VHDL Components

(encapsulate
(({rnult . behav-system * *) => *)
((rnult.behav-getst *) => *))

(local (defun mult.behav-system (n st) (rnult . behav-sirnul n st)))
(local (defun mult.behav-getst (st) st))
(defthrn mult . behav-systern-init

(equal (rnult . behav-getst (rnult . behav-system O st))
(mult . behav-getst st))))

(defthm mult . behav-systern-var-prod
(irnplies (and (integerp n) (> n O))

(equal (getst *rnult.behav-prod*
(rnult.behav-getst (rnult.behav-systern n st)))

(getst *mult.behav-prod*
(mult.behav-cyc le

(rnult.behav-getst (rnult.behav-system (1- n) st)))))))

(defthm mult . behav-var-a-stable
(implies (and (integerp n) (> n O)

(getst *mult . behav-req*
(mult.behav-getst (mult . behav- system n st))))

(equal (getst *mult.behav-a*
(mult.behav-getst (mult.behav-system n st)))

(getst *mult.behav-a*
(mult.behav-getst (mult.behav-system (1- n) st))))))

(defthm mult.behav-system-induction t

144

:rule-classes ((: induction :pattern (mult.behav-system n rnern)
:condition t
:s cherne (rnult.behav-simul n rnern)))))

Figure 6: l\1ult iplier of design of figure 3 described as a component

RITA • Volume VII • Número 1 • Setembro 2000

Using the ACL2 Theorem Prover to Reason about VHDL Components

In ACL2, the abstract functions mult . behav-system anel mult. behav-getst
ma.y be introduced t hrough the encapsulate construction, which introduces func
tions through t heir properties , without actually defining them. Figure 6 shows t his
construction.

• The second anel third !ines introduce the two abstra.ct functions through their
signatures .

• The next two !ines give local witnesses definitions required by ACL2 to ensure
that at least one actual function sa.tisfies the constrains imposed to each abstract
function. These definition s are imma.terial in our presenta.tion.

• The theorems that follow state the characteristic properties of the abstra.ct
functions, as discussed earlier.

Theorem mul t. behav-system- in i t corresponds to the initial state prop
erty introduced a.bove, which characterizes the beginning of the system
com pu tation.

Theorem mul t . behav-system-var-prod corresponds to the simulation step
property introducecl above for the output component varia.ble PROD. It is
followed by similar theorems describing the other local anel output variables
anel signals of the multiplier component .

Besicles these properties characterizing the abstract functions, we may impose
other restrictions to the abstract functions as adclitional theorems in the encapsulate
bocly. In this éxample, theorem mult. behav-var-a-stable requires that t he system
does not change the value of the input signal A when there is a multiplier request.
T he hypothesis of this theorem checks if the REQ signal is active. anel the conclusion
inclicates the value of A does not change in consecutive simulation states. Other
restrictions may be imposed on the abstract functions.

The last theorem (mult. behav-system-induction) in t he encapsulate is a fake
property required by ACL2 to generate an induct ion rule for the abstract system
function. It indicates we may perform induction on mul t . behav-system using the
same scheme of mul t. behav-simul. This theorern is necessary beca use the clefinition
of the system function is hidclen, so its incluction scheme is not visible outside the
encapsulate.

After the abstract functions are introduced, t he correctness of the multiplier can
be stated through the theorem below. It follows from the characterizing properties o f
the abstract system which are exported (are not local) by the enca.psulate, anel the
actual clefinition of the multiplier simulation step mult. behav-cycle.

(defthm mult .behav-system-correct
(implies (and . ..

RITA • Volume VII • Número 1 • Setembro 2000 145

Using the ACL2 Theorem Prover to Reason about VHDL Components

(equal (multobehav-getst st)
(putst *multobehavoa* a

(putst *multobehavob* b

nil))))

(equal (getst *multobehavoprod*
(multobehav-getst

(mult obehav-system o o o st)))
(* a b))))

Observe this is no longer a property of the component simulation function , but of its
enclosing abstract system mult o behav-systemo From now on, all multiplier properties
are stated over this abstract system.

Using the functional-instance construct , this theorem can be later explicitly in
stantiated to any architecture which has the multiplier as a component . For instance,
the t heorem below instantiates it to architecture COMP of POWERO

(defthm powerocomp-multiplier-correct
(implies (and

(equal (getst *powerocompomultiplier* st)
(putst *mult obehavoa* a

(putst *mult obehavob* b

nil))))

(equal (getst *multobehavoprod*
(~etst *powerocompomultiplier*

(powerocomp-simul o o o st)))
(* a b)))

:hints
(("Goal" :by

(: functional-instance mult obehav-system-correct
(mult obehav-system powerocomp-simul)
(multobehav-getst

(lambda (st) (getst *powerocomp omultiplier* st)))))))

The hint construction in this theorem indicates it must be proved as an in
stance of t he previously proved t heorem multo behav-system-correct substituting
power o comp-simul for multo behav-system and substituting (mult o behav-getst
st) for (getst *powerocompomultiplier* st). This proofproceeds as follows.

• First, we create an instance of the original theorem multo behav-system-correct
using the substitution above for multo behav-system-correct and multo behav
-getst , and check that the proposed theorem power o comp-mul tiplier-correct
is equivalent to this instance. This is a trivial step in the case above.

146 RITA • Volume VII • Número 1 • Setembro 2000

Using the ACL2 Theorem Prover to Reason about VHDL Components

• Next , we check that the substitution above satisfies to the restrictions imposed on
the abstract function s mul t . behav-system-correct and mul t. behav-getst .
To perform t his task:

- we apply the same substitution above to all theorems on the body of the
encapsulate that int roduced these abstrac functions (Figure 6).

- we prove each of these theorems.

This step checks that the actual system COMP of POWER is an abtract system for
the multiplier , i.e. , it has BEHAV of MULTas a component.

The last step is the most time-consuming and it is repeated each time we create
an inst ance of a theorem. However , we assume this step is reasonable easy, since it
depends mostly on the structure of the functions involved. We must observe that the
proof of the theorem being instantiated is not replayed. This is the greatest saving in
this approach, since we expect the proofs of such theorems to be long and complex.

4. Conclusion

The long-term objective of this research is the formal validation of high-level spec
ifications for digital systems being developed in an industrial context. Therefore we
chose tools and methods which integrate smoothly with other design practices (such
as value simulation) , and airn at description techniques important for actual system
developers.

This paper desaribed t he compositional verification of designs built from compo
nents. In our approach, we reason about the component embedded in an abstract
enúronment , allowing for arbitrary restrictions on the environment and its compo
nents. This method can be extended to deal with systems where components are
unspecified. Therefore, this method can support the modular development of de
signs, where third-party libraries anel components play an essential role.

The work is still on-going anel involves the automatic generation of properties for
regular designs with generic parameters, and the application of our methodology to
indust rial designs.

References

[BGROOJ D. Borrione, P. Georgelin, and V. Rodrigues . Symbolic simulation and ver
ification of VHDL with ACL2. In International Conference on HDL (HDL
CONF'2000}, pa.ges 167- 182 , San Jose, 2000.

[Bl\'188] Robert S. Boyer and J Strother 1\IIoore. A Computational Logic Handbook.
Academic Press, Boston , 1988.

RITA • Volume VII • Número 1 • Setembro 2000 147

Using the ACL2 Theorem Prover to Reason about VHDL Components

[CGPOO] Edmund M. Clarke Jr , Orna Grumberg, and Doron A. Peled. Model Check
ing. M.I.T. Press, 2000.

[CM88] K. Many Chandy and J ayadev Misra. Parallel Program Design: A Founda
tion. Addison-Wesley, Reading, 1988.

[GM93] M. J . C. Gordon and T. F . Melham, editors. Introduction to HOL; A The
or·em Proving Environment fo r Higher Or-der Logic. Cambridge University,
Cambridge, 1993.

[IEE94] IEEE. IEEE Standard VHDL Language R ef erence Manual, June 1994. Std
1076-1993.

[IEE99] IEEE Synthesis Interoperability W.G. 1076.6, New York. IEEE Standard for
VHDL Register Transf er Level Synthesis , 1999.

[Kl\197] Ma.tt Kaufma.nn and J S. l\.1oore. An industrial strength theorem prover for a
logic based on Common Lisp. IEEE Transactions on Software Engineering,
23(4) :203- 13, April 1997.

[Kl\1MOO] ::VIa.tt Ka.ufma.nn , Pa.na.giotis Ma.nolios, a.nd J S. Moore. Computer-Aided
R easoning: An Appmach. Kluwer , 2000.

[McM93] K. C. McMilla.n. Symbolic Model Checking. Kluwer , Boston , 1993.

[Moo98] .J S. Moore. Symbolic simula.tion: An ACL2 approa.ch. In FMCAD '98, pa.ges
334- 350, 1998. LNC~ 1522.

[Sha.96] N. Sha.nka.r. P\'S: Combining specifica.tion, proof checking a.nd model check
ing. In FMCAD '96, pa.ges 257- 264, 1996. LNCS 1166.

148 RITA • Volume VII • Número 1 • Setembro 2000

