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Abstract 

ACL2 is a theorem prover which uses an applicative subset of Common Lisp as 
specification language, and employs a quantifier-free first order logic to reason about 
these specifications. \iVe define how to build an ACL2 model of a design describecl in 
a synthesiza91e VHDL. Using t his single model , we may execute the design (which 
corresponds to standard simulation), perform a symbolic simulation of this design, 
and formally verify its propert ies. To hanclle designs employing components, we 
use abstract functions to represent an unspecifiecl surrounding environment. This 
environment stands for the (unknown system) where the component is inserted. T he 
ACL2 construction encapsulate is usecl to introcluce such abstract functions. This 
technique allows for compositional reasoning, since component properties became 
available to the surrounding environment without the need to repeat t he proofs for 
each component instance. 
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1. Introduction 

ACL2 [KMl\1100, KM97] is the automated theorem prover that follows the highly 
successful NQTHM [BM88] prover of Boyer anel Moore. It uses an applicative subset 
of Common Lisp as specification language. Thus a system anel its properties are 
modeled as a standard program in an ordinary programming language, rendering this 
model' executable anel , dueto the existing compilers for Lisp, its execution is effi cient. 
As a consequence, many system developers finei modeling in ACL2 quite easy. 

To reason about these models, ACL2 uses a quantifier-free, first-order logic. Its 
inference engine orchestrates a large number of proof techniques, including induction, 
in a highly automated anel effi cient way. Therefore, ACL2 is able to perform rea
sonably large proof steps by itself, relieving the user from providing more detailed 
proof scripts, in contrast to other theorem proving tools such as HOL [GM93] or 
PVS [Sha96]. 

We use ACL2 in the verification of high-level, behavioral descriptions of hardware 
designs written in VHDL [IEE94]. This is a large anel complex language, whose official 
semantics is an informal operational description of the design simulator. The most 
popular verification techniques (such as finite model-checking [CGPOO, l\ lcl\1193]) are 
not very appropriate for such descriptions because they present large or infinite state 
spaces, parametric anel regular structures , separate components, etc. Such features 
are better described with more powerful formalisms anel tools such as ACL2. 

We develop a model for VHDL designs in ACL2, anel build the translator t hat 
generates it automatically. This model is a set of functions describing the design 
simulation, anel a supporting set of theorems. It is a single model which may be used 
for three distinct purposes. Since it is composed of Lisp functions, it can be e.recuted, 
reproducing the behavior of a standard VHDL simulator. 

The ACL2 model can also be used for symbol·ic simulation, which corresponds to 
executing the design with symbolic Yalues as inputs, producing symbolic expressions 
as outputs. The inputs are mathematical va.riables (x , y . ... ), possibly restricted b~· 
conditions, representing arbitrary Yalues , anel the outputs describe their functional 
relation with the inputs. 

As in formal verification, a. symbolic simulation run may correspond to a. large or 
infinite number of cases. As in standa.rd simulation, this method is fully automated. 
Therefore, symbolic simula.tion is a pra.ctical bridge between standard simulation and 
formal verification. The ACL2 model includes design specific theorems that transform 
the prover engine into a high-quality symbolic simulator . 

On top of these two tasks, the ACL2 model is aimed at fo rmal verification. In this 
case, propert ies of the VHDL clesign are stated anel provecl as theorems of the ACL2 
model using the prover engine. To aid t his task. the model also includes t heorems 
stating design specific propert ies anel support ing particular verification methods. \Ve 
extencl this set of theorems as we develop new verification methodologies or handle a 
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new class of designs. 
Our ACL2 model of a VHDL design is compositional: the properties of a compos

ite system may be derived from its component properties, allowing for modular system 
development anel verification. Component properties anel specifications may include 
arbitrary restrictions on the environment, which are checked when the component 
is used , anel we may verify that components are functionally equivalent under envi
ronment assumptions. Equivalent components are interchangeable, anel a composite 
system may know only the properties of its components. 

Compositional reasoning about VHDL designs is not obvious dueto the semantics 
of VHDL. To simulate a design, all its components are expanded into basic processes , 
anel each process contributes to the simulation cycle in several distinct moments 
(process activation, signal updating, etc). In our approach , we embed a component 
into a partially specified abstract system, anel ensure that properties hold in this 
arbitrary environment, allowing for the verification of reactive systems. This approach 
is based on the method adopted in UNITY [CM88] anel other temporallogics. 

This paper is organized as follows. Section 2 introduces the ACL2 model of a ftat 
VHDL design. Section 3 studies VHDL components . The last section concludes on 
the current extensions of this work. 

2. Basic model 

We only consider a synthesis subset of VHDL [IEE99] which excludes physical 
time anel non-cl.iscrete types. 'i\Te further require that processes be synchronized on 
a single clock edge, anel be put in a normal form with a single wai t statement at 
the beginning. Under these conditions, we may identify the simulation step with the 
clock cycle, anel ignore clock signals. 

Figure 1 shows an example design which computes the power function , producing 
ARG1ARG2 in the output RES. Signal START begins the computation, anel DONE indicates 
that the result is ready. This design is composed o f two processes. Process MUL TIPLIER 
computes REGi x REG2, it is activated by REQ , anel it signals the result availability 
through ACK. Process CONTROLLER is a finite state machine that uses the functionality 
supplied by the first process. 

According to the semantics of VHDL, the simulation of a design consists of re
peating a step where each process is executed up to a wai t statement, anel all signals 
are then updated. A signal assignment x <= e evaluates expression e anel generates 
a next value for x which takes effect in the following simulation step only. This be
havior models wire delays. The ACL2 model of a VHDL design is a set of functions , 
macros anel theorems clescribing its simulation behavior. Since ACL2 is an applicative 
framework , we follow Moore [Moo98] anel represent each architecture as a transition 
function between states. 
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entity POWER is 
port (ARG1,ARG2: in NATURAL; START,CLK: in BIT; 

RES: out NATURAL ; DONE : out BIT); 
end POWER; 
architecture BEHAV of POWER is 

signal STATE: NATURAL := O; 
signal REG1,REG2 , RESULT,COUNT : NATURAL; 
s ignal REQ , ACK : BIT ; 

begin 
MULTIPLIER : process begin 

wait until CLK = ' 1 '; 
if REQ = '1' then 

RESULT <= REG1*REG2 ; 
end if; 
ACK <= REQ; 

end process ; 
CONTROLLER: process begin 

wait until CLK = '1'; 
case STATE is 

when O => 
if START = ' 1 ' then 

REGi <= ARG1 ; REG2 <= 1; COUNT <= ARG2; 
STATE <= 1 ; 

end if ; 
when 1 => 

if COUNT = O then 
RES <= REG2; DON~<= '1' ; STATE <= 3; 

else 
REQ <= '1'; STATE <= 2; 

end if; 

when 2 => 
if ACK = ' 1 ' then 

REG2 <= RESULT ; REQ <= ' 0 ' ; 
COUNT <= COUNT-1; STATE <= 1; 

end if; 
when 3 => 

if START '0' then 
DDNE <= '0'; STATE <=O ; 

end if ; 
end case; 

end process; 
end BEHAV; 

Figure 1: VHDL design for power function 
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2.1 States 

The state of an architecture represents a snapshot of its variables, local signals, and 
interface signals ( except the clock). It is implemented as a list of values as explained 
below. 

• For each variable, there is one element holding the value stored in the variable. 

• For each signal, there is one element holding the current value of this signal, and 
another element holding the next value of this signal. The next value represents 
the \'HDL signal driver which holds only one value due to the restrictions on 
the time model imposed by the synthesis subset of VHDL. 

By convention, the next value of signal x is named x+. For the previous example, the 
state is the list (ARG1 ARG2 ... ARG1+ ARG2+ ... ). 

To separate the state behavior from its implementation , only two functions directly 
knovY about the actual state representation. 

• Function (getst i st) fetches the value of variable i in state st. It returns t he 
i-th element of state st 

• Function (putst i a st ) builds a new state and assigns value a to variable i . It 
returns a ne,,· state identical to st except for the i-th element , which then holds 
a. 

For readability, we generate constants for indexes in the state list. A partia! 
list from the previous design is shown below. Entity and architecture names prefix 
identifiers to avQid ambiguities in the ACL2 model. 

(defconst *power . behav.argl* O) 
(defconst *power . behav . arg2* 1) 

(defconst *power . behav.arg1+* 12) 
(defconst *power.behav.arg2+* 13) 

The characteristic properties of getst and putst are listed belovv, where i , and j 
are element indexes. Properties P1 and P2 describe the access to an updated state. 
Property P3 indicates that only the last update to a variable matters. Property P4 
swaps updates to distinct variables. Property P5 discharges an update when it assigns 
to a variable t he same Yalue it a lready stores. 

Pl: (getst i (putst i a st)) = a 
P2: i =/- j ~ (getst i (putst j a st) ) = (getst i st) 
P3: (putst i a (putst i b st )) = (putst i a st)) 
P4: i =/- j ~ (putst i a (putst j b st)) = (putst j b (putst i a st)) 
P5: (getst i st) = a ~ (putst i a st) = st 
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From the properties above, ACL2_ generates rewrite rules that reduce a nested 
expression (putst i 0 a0 (put i 1 a 1 ( . . . st))) to a unique normal form where 
there is at most one update for each variable, and updates are ordered by variable 
indexes. These properties also generate rules to read the value of a variable from such 
expressions . Thus this form is taken as the representation of states for proofs and 
symbolic simulat ion . 

T he naive application of the rewrite rule generated from property P4 could lead 
the ACL2 rewriter to an infinite loop, because the term it generates can be rewritten 
bay the same rule. ACL2 recognizes this possibility and employs a heuristic to stop 
such loops when the terms are ordered. However, the standard heuristic fails to 
identify which argument of putst must be used to stop the loop. T herefore, we add 
the cla use below the theorem corresponding to P4: 

: rule-classes ((:rewrite : loop-stopper ((i j)))) 

According this clause, the rule can only be applied vlhen it swaps terms where i is 
larger t han j . 

T he actual definitions of getst and putst are hidden after the proof of their 
characterizing properties, because the associated rewrite rules suffice to conduct all 
handling of states. Therefore the ACL2 model is independent of the state repre
sentation, and any other implementation that satisfies the sa.me properties may be 
adopted , if it is found more convenient . 

To describe a state in a formula, we use a constructor· e.rpression of nested putst 
calls beginning in nil , which , in this case stands for a predefined state where variables 
are undefined. For exal!lple, the formula below describes a state st where ARG1 holds 
15, ARG2 holds 66 , etc . 

(equal st (putst *power.behav.arg1* 15 
(putst *power. behav .arg2* 66 

nil))) 

2.2 Transition Functions and their Uses 

Using states explicitly, t he execution of a group of \'HDL statements in an initial 
stat e is represented as the expression that builds the corresponding final state. For 
instance, the execution of a signal assignment x <= e is modeled by (putst :t + e' 
st) , which updates the next signal value, ,,,.here e' corresponds to expression e with 
references to variables and signals replaced by the access to the corresponding elements 
in st. Using recursive function definitions and standard Lisp operators such as cond 
and let*, we model other \'HDL statements. 

Using this representation for statements , we model each process of t he VHDL 
design by a tmnsition fun ction that returns the ne\v state produced by one simulation 
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(defun power . behav.multiplier (stO) 
(let* ((st1 (if (equal (getst *power.behav.req* stO) 1) 

(putst *power.behav.result+* 

st2)) 

(* (getst *power . behav.reg1* stO) 
(getst *power . behav . reg2* stO)) 

stO) 
stO)) 

(st2 (putst *power.behav.ack+* 
(getst *power.behav.req* st1) st1))) 

(defun power . behav . controller (stO) 
. .. ) 

(defun power.behav-update-signals (st) 
(putst *power . behav.res* (getst *power.behav . res+* st) 

(putst *power.behav.done* (getst *power.behav.done+* st) 
(putst *power.behav . state* (getst *power.behav.state+* st) 

... st H )) 
(defun power.behav-cycle (st) (power . behav-update-signal 

(power.behav.multiplier 
(power.behav .controller st)))) 

(defun power.behav-simul (n st) 
(if (and (intergerp n) (> nO)) 

(power.behav-cycle (power . behav-simul (- n 1) st) 
st)) 

Figure 2: ACL2 model for design of Figure 1 
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step ofthis process . For instance, in Figure 2, the functions power. behav .rnultiplier 
and power. behav. controller model the processes in Figure 1. One simulation cycle 
of architecture behav of entity power is modeled by function power. behav-cycle of 
Figure 2. This function calls the functions corresponding to each process, and then 
calls function power. behav-update-signal to replace the current value of each signal 
with its (possibly resolved) next value. More details about this modeling technique 
ar;e found in [BGROO]. 

Finally, the transition fun ction representing the architecture is a recursive function 
power. behav- simul that repeats the architecture simulation cycle n times , returning 
the final state. This ACL2 model may be simulated for n steps by evaluating the 
standard Lisp expression (power. behav-simul n st) , where st is a state with a.ppro
priate input values. It may also be used for for·mal verification by proving properties 
of function power. behav-simul. 

For instance, the theorem below demonstrates that the VHDL design is correct. 
T he hypothesis indicates that st is a state where t he inputs ARG1 and ARG2 hold 
the natural numbers rn and n, and the remaining variables have appropriate initial 
values. The conclusion indicates that the simulation beginning in this state arrives, 
after 3 x n + 2 steps, in a state where RES holds mn . This is a property of ali simulation 
runs , for ali positive values of m and n, covering an infinite number of cases. l\!Iodel 
checkers cannot handle such general properties. 

(defthm power . behav-correct 
(implies (and (integerp m) (>= m O) (integerp n) (>= n O) 

(equal st (putst *power.behav.arg1* m 
~ (putst *power.behav.arg2* n 

(putst *power.behav.start* 1 

nil))))) 

(equal (getst *power.behav . res* 
(power.behav-simul (+ (* n 3) 2) st)) 

(power m n)))) 

The ACL2 model may a.lso be symbolically simulated. which corresponds to ex
ecuting the design with symbolic values as input. For instance, consider the goal 
below. 

(irnplies (and (integerp m) (>= rn O) (integerp n) (>= n 5) 
(equal st (putst *power.behav. arg1* m 

(putst *power .behav.arg2* n 

nil))))) 

(equal (power . behav-simul 10 st) v)) 
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The hypothesis of this formula iptroduces a initial state st where t he inputs are 
natural numbers m and n , with n 2: 5. When submitted to the symbolic simulator , 
t he conclusion of this formula performs ten simulation steps beginning in st , which 
correspond to three iterations of the power algorithm. The result is the st ate below, 
where REG2 contains the intermediate result m x m x m, as expected . 

(putst *power.behav.arg1* m 
(putst *power.behav . arg2* n 

. .. (putst *power.behav . reg2* (* m m m) 
(putst *power.behav . count* (+ n -3) . .. )))) 

ACL2 manages to t race initial values and condit ions along the whole run to decide 
tests over symbolic expressions. When it cannot decide a t est , it performs a case split 
a.nd explores ali possibilit ies. More details about these verification and simula tion 
techniques a re found in [BGROO]. 

3. Components 

T he previous modeling technique needs to be extended to ha.ndle architectures 
with components. Figure 3 shows another design for the power function. In this 
example, t he architecture BEHAV of ent ity MULT computes the mult iplication of its 
input arguments when requested t hrough signal REQ , and t he architecture COMP of 
PDWER uses it as a. component . This design is equal to the design of Figure 1, except 
for the mult iplication . In the new version, t his operation is performed by a component 
a.nd takes several,s imula tion steps, while the first version performs it by a sequentia.l 
process in one step. We now consider the modeling of components. 

3.1 Component Representation and Verification 

Architec ture BEHAV of MULT has no component , so it is modeled as described 
before, with a state list of t he form (A B . . . A+ B+ ... ) , and the corresponding 
transition functions, including the following two functions that compute one cycle 
(mult . behav-cycle), and the simula tion of n cycles (mult.behav-simul) of this de
sign. 

(defun mult.behav-cycle (st) . .. ) 
(defun mult.behav-simul (n st) 

(if (and (intergerp n) (> n O)) 
(mult . behav-cycle (mult.behav-simul (- n 1) st) 
st)) 

The state of each component of an architecture has internai variables anel signals, 
anel their values persist t hrough simulation steps. T herefore, the state of an archi
tecture \:vit h components inclucles one state list for each instance of component. For 
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entity MULT is 
port (A,B : in NATURAL; REQ,CLK : in BIT; 

PROD: out NATURAL; ACK: out BIT); 
end MULT ; 
architecture BEHAV of MULT is 
. signal STATE: NATURAL := O; 

signal RESULT, COUNT : NATURAL; 
begin 

MAIN: process begin 
wait until CLK = '1'; 
case STATE is 

when O => 
if REQ = '1' then COUNT <=A ; RESULT <=O; STATE <= 1; end if; 

when 1 => 
if COUNT O then 

PROD <= RESULT; ACK <= '1'; STATE <= 2 ; 
else 

RESULT <= RESULT+B; COUNT <= COUNT-1; end if; 
when 2 => 

if REQ = '0' then ACK <= ' 0'; STATE <=O; end if 
end case; 

end process; 
end BEHAV; 

" architecture COMP of POWER is 
component MULT_UNIT 

port (A,B: in NATURAL; REQ,CLK : in BIT; 
PROD : out NATURAL; ACK: out BIT); 

end component; 
for all: MULT_UNIT use MULT(BEHAV); 
signal STATE: NATURAL := O; 

begin 
MULTIPLIER: MULT_UNIT (REGi, REG2, REQ, RESULT, ACK, CLK); 
CONTROLLER: process begin 

end process; 
end COMP ; 
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Figure 3: Power function with a component 
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example, the state for COMP o f POWER is a list o f the form (ARG 1 ARG2 . . . ARG 1 + 
ARG2+ ... MULTIPLIER), where MULTIPLIER is a state for BEHAV of MULT, i.e., a list 
(A B . . . A+ B+ ... ) . 

Like processes, components are modeled by a transition function. This function 
passes the actual port values to and from the component state, and performs one step 
of the component simulation cycle by calling the transition function of the architecture 
bound to the component. 

Figure 4 shows the ACL2 model for COMP of POWER. It is identical to the model 
in Figure 2, except for the function power . comp.multiplier which represents the 
component activation as follows: 

1. It extracts its local component state st-multO (a state of BEHAV of MULT) from 
the global state stO. 

2. Next, the component inputs A, B and REQ receive their actual value from the 
external architecture state, resulting in st-mult3 . 

3. A call to mul t . behav-cycle activates the component internal processes, and 
produces state st-mult4. 

4. The external architecture state is then updated with this new component state, 
resulting in st1 (a state of COMP of POWER). 

5. Finally, the result is state st3 , where the signals RESULT and ACK receive the 
component outputs . 

Models of architectures with components can be usecl for execution . symbolic 
simulation and form;l verification exactly as clescribed in the previous section. In 
this last case, however , it. is desirable that the proof effort be divicled among the 
design components , anel that properties proved over a component be carried to all 
designs using that component. However, how to achieve this goal is not obvious. 

Consider again Figure 3. According to the approach discussed earlier , the theorem 
belmv· for the multiplier correctness states that if a anel b are the values of the input 
arguments, REQ is set to 1, anel the internal signals are properly initializeel, then the 
result founel in PROD after the appropriate number of simulation cycles is a x b. 

(defthm mult . behav-correct 
(implies (and 

(equal st (putst *mult.behav.a* a 
(putst *mult.behav.b* b 

nil)))) 
(equal (getst *mult.behav.prod* 

(mult.behav-simul ... st)) 
(* a b)))) 
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(defun power.comp.multiplier (stO) 
(let* ((st-multO (getst *power.comp.multiplier* stO)) 

(st-multl (putst *mult.behav.a* 
(getst *power.comp.regl* stO) st-multO)) 

(st-mult2 (putst *mult.behav.b* 
(getst *power.comp . reg2* stO) st-multl)) 

(st-mult3 (putst *mult.behav.req* 
(getst *power.comp.req* stO) st-mult2)) 

(st-mult4 (mult.behav-cycle st-mult3)) 
(stl (putst *power . comp.multiplier* st-mult4 stO)) 
(st2 (putst *power .comp . result+* 

(getst *mult.behav.prod+* st-mult4) stl)) 
(st3 (putst *power.comp.ack+* 

(getst *mult . behav.ack+* st-mult4) st2))) 
st3)) 

(defun power.comp.controller (stO) 
... ) 

(defun power.comp-update-signals (st) 
. . . ) 

(defun power.comp-cycle (st) (power.comp-update-signal 
(power.comp.multiplier 

(power.comp.controller st)))) 
(defun power . comp-simul (n st) 

(if (and (intergerp n) (> n O)) 
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(power.comp-cycle (power .comp-simul (- n 1) st) 
st)) 

Figure 4: ACL2 model for design of figure 3 
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This is necessarily a property of function mul t. behav-simul , because it takes severa! 
steps to compute the result . This function simulates an isolated multiplier, which does 
not interact with its surrounding environment. It does not consider , for instance, that 
the inputs may oscillate. So it is not appropriate as a description of t he multiplier as 
a component. 

Even considering only the multiplier properties which hold when it is employed 
as a component, it is not evident how they can be lifted from the component to the 
composite sys tem. For instance, the correctness of the architecture CDMP of PDWER is 
stated as: 

(defthm power .comp-correct 
(implies (and 

(equal st (putst *power.comp . arg1* m 
(putst *power.comp.arg2* n ... nil)))) 

(equal (getst *power.comp.res* 
(power.comp-simul . .. st)) 

(power m n)))) 

This is a. property over function power. comp-simuL which communica.tes with the 
multiplier component only t hrough its step function mul t . behav-cycle. But this 
is not the simulat ion function mult. behav-simul over which multiplier properties 
such as theorem mult. behav-correct are sta.ted. Thus, properties of the multiplier 
component cannot be used in proofs a.bout the composite architecture COMP of PDWER. 

3.2 Represei-ttation of Components Using Abstract Systems 

The problems discusses a.bove are consequences of the semantics of VHDL. To 
overcome them , we sta.te and prove properties of an a.rchi tecture A as if it were a 
component of an abstmct system representing its enclosing environment. It stands 
for any other enclosing architecture B which uses architecture A the component , 
i.e., crea.tes a.n instance of A. The abstra.ct system is not full y described , but only 
characterized as the simulation function of the enclosing architecture. This abstract 
s:ystem can !ater be specialized to any a.rchitecture, and the component properties are 
preserved in this process. 

For instance, consider the description of architecture BEHAV of MUL T as a compo
nent. A system using such component must obey two restrictions. First , the system 
state must include an element to hold the local state of the multiplier component. 
Second, ea.ch step of the system simulation function must activate the component 
t hrough a cal! to function mul t. behav-cycle on its local state. 

Let st m be the actual multiplier state. Let st5 be t he state of an an unspecified, 
abstract system which has a multiplier as a component. To describe this abstract 
system, we employ the functions below. 
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• The a.bstract function (mult . behav-getst st8 ) = stm extracts the local state 
of the multiplier component from the enclosing abstract system state. 

• The abstract function (mult. behav-system n st 8 ) = st~ represents the system 
simulation function. This function repeats a simulation step which must perform 
the multiplier simulation step on t he multiplier local memory. 

In the 'case of the composite architecture COMP of POWER, these functions actually are 
(getst *power.comp .multiplier* st8 ) and (power.comp-simul n st8 ) . 

To fully characterize an architecture t hat includes t he mult iplier as a component, 
the two abstract functions above must correspond to functions with the following 
properties. 

Initial state property: Executing zero step of the system simulation function does 
not change t he multiplier state: 

(equal (mult.behav-getst (mult.behav-system O st-s)) 
(mult.behav-getst st-s) 

Simulation step property: For any local and output element x of the component , 
one step of the system simulation function performs one simulation step of the 
multiplier component on its local state: 

(equal (getst x (mult.behav- getst (mult.behav-system (1+ n) st - s))) 
(getst x (mult.behav-cycle 

(mult.behav-getst (mult . behav-system n st-s))))) 

This property must be stated for each local or output element x of the compo
nent. 

The first argument of equal gets t he Yalue of this element after n + 1 system 
simulation steps. The second argument simulates the system n steps, performs 
one multiplier step on t he local component state, and then extracts this element 
value. The property says that the result of both terms is the same. 

Alternatively, we may say this property st ates that the paths in Figure 5 are 
equivalent ( the diagram commutes) . 

The la.st property only holds for local and output elements of the component 
state beca.use these are the only elements t he component writes . The value of input 
elements of the component local sta.te is taken from the global state as defined by 
the surrounding environment which writes to the component input ports in each 
simula.tion step. 
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system state 

mult.behav-getst 
local state o f multiplier component 

mult . behav-system 

mult.behav-cycle 

r, 

mult.behav-getst 

Figure 5: Simulation step of abstract function 
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(encapsulate 
(({rnult . behav-system * *) => *) 
((rnult.behav-getst *) => *)) 

(local (defun mult.behav-system (n st) (rnult . behav-sirnul n st))) 
(local (defun mult.behav-getst (st) st)) 
(defthrn mult . behav-systern-init 

(equal (rnult . behav-getst (rnult . behav-system O st)) 
(mult . behav-getst st)))) 

(defthm mult . behav-systern-var-prod 
(irnplies (and (integerp n) (> n O)) 

(equal (getst *rnult.behav-prod* 
(rnult.behav-getst (rnult.behav-systern n st))) 

(getst *mult.behav-prod* 
(mult.behav-cyc le 

(rnult.behav-getst (rnult.behav-system (1- n) st )) ) )))) 

(defthm mult . behav-var-a-stable 
(implies (and (integerp n) (> n O) 

(getst *mult . behav-req* 
(mult.behav-getst (mult . behav- system n st)))) 

(equal (getst *mult.behav-a* 
(mult.behav-getst (mult.behav-system n st))) 

(getst *mult.behav-a* 
(mult.behav-getst (mult.behav-system (1- n) st)) )))) 

(defthm mult.behav-system-induction t 

144 

:rule-classes (( : induction :pattern (mult.behav-system n rnern) 
:condition t 
:s cherne (rnult.behav-simul n rnern))))) 

Figure 6: l\1ult iplier of design of figure 3 described as a component 
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In ACL2, the abstract functions mult . behav-system anel mult. behav-getst 
ma.y be introduced t hrough the encapsulate construction, which introduces func
tions through t heir properties , without actually defining them. Figure 6 shows t his 
construction. 

• The second anel third !ines introduce the two abstra.ct functions through their 
signatures . 

• The next two !ines give local witnesses definitions required by ACL2 to ensure 
that at least one actual function sa.tisfies the constrains imposed to each abstract 
function. These definition s are imma.terial in our presenta.tion. 

• The theorems that follow state the characteristic properties of the abstra.ct 
functions, as discussed earlier. 

Theorem mul t. behav-system- in i t corresponds to the initial state prop
erty introduced a.bove, which characterizes the beginning of the system 
com pu tation. 

Theorem mul t . behav-system-var-prod corresponds to the simulation step 
property introducecl above for the output component varia.ble PROD. It is 
followed by similar theorems describing the other local anel output variables 
anel signals of the multiplier component . 

Besicles these properties characterizing the abstract functions, we may impose 
other restrictions to the abstract functions as adclitional theorems in the encapsulate 
bocly. In this éxample, theorem mult. behav-var-a-stable requires that t he system 
does not change the value of the input signal A when there is a multiplier request. 
T he hypothesis of this theorem checks if the REQ signal is active. anel the conclusion 
inclicates the value of A does not change in consecutive simulation states. Other 
restrictions may be imposed on the abstract functions. 

The last theorem (mult. behav-system-induction) in t he encapsulate is a fake 
property required by ACL2 to generate an induct ion rule for the abstract system 
function. It indicates we may perform induction on mul t . behav-system using the 
same scheme of mul t. behav-simul. This theorern is necessary beca use the clefinition 
of the system function is hidclen, so its incluction scheme is not visible outside the 
encapsulate. 

After the abstract functions are introduced, t he correctness of the multiplier can 
be stated through the theorem below. It follows from the characterizing properties o f 
the abstract system which are exported (are not local) by the enca.psulate, anel the 
actual clefinition of the multiplier simulation step mult. behav-cycle. 

(defthm mult .behav-system-correct 
(implies (and . .. 
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(equal (multobehav-getst st) 
(putst *multobehavoa* a 

(putst *multobehavob* b 

nil)))) 

(equal (getst *multobehavoprod* 
(multobehav-getst 

(mult obehav-system o o o st))) 
(* a b)))) 

Observe this is no longer a property of the component simulation function , but of its 
enclosing abstract system mult o behav-systemo From now on, all multiplier properties 
are stated over this abstract system. 

Using the functional-instance construct , this theorem can be later explicitly in
stantiated to any architecture which has the multiplier as a component . For instance, 
the t heorem below instantiates it to architecture COMP of POWERO 

(defthm powerocomp-multiplier-correct 
(implies (and 

(equal (getst *powerocompomultiplier* st) 
(putst *mult obehavoa* a 

(putst *mult obehavob* b 

nil)))) 

(equal (getst *multobehavoprod* 
(~etst *powerocompomultiplier* 

(powerocomp-simul o o o st))) 
(* a b))) 

:hints 
(("Goal" :by 

( : functional-instance mult obehav-system-correct 
(mult obehav-system powerocomp-simul) 
(multobehav-getst 

(lambda (st) (getst *powerocomp omultiplier* st))))))) 

The hint construction in this theorem indicates it must be proved as an in
stance of t he previously proved t heorem multo behav-system-correct substituting 
power o comp-simul for multo behav-system and substituting (mult o behav-getst 
st) for (getst *powerocompomultiplier* st). This proofproceeds as follows. 

• First, we create an instance of the original theorem multo behav-system-correct 
using the substitution above for multo behav-system-correct and multo behav
-getst , and check that the proposed theorem power o comp-mul tiplier-correct 
is equivalent to this instance. This is a trivial step in the case above. 
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• Next , we check that the substitution above satisfies to the restrictions imposed on 
the abstract function s mul t . behav-system-correct and mul t. behav-getst . 
To perform t his task: 

- we apply the same substitution above to all theorems on the body of the 
encapsulate that int roduced these abstrac functions (Figure 6). 

- we prove each of these theorems. 

This step checks that the actual system COMP of POWER is an abtract system for 
the multiplier , i.e. , it has BEHAV of MULTas a component. 

The last step is the most time-consuming and it is repeated each time we create 
an inst ance of a theorem. However , we assume this step is reasonable easy, since it 
depends mostly on the structure of the functions involved. We must observe that the 
proof of the theorem being instantiated is not replayed. This is the greatest saving in 
this approach, since we expect the proofs of such theorems to be long and complex. 

4. Conclusion 

The long-term objective of this research is the formal validation of high-level spec
ifications for digital systems being developed in an industrial context. Therefore we 
chose tools and methods which integrate smoothly with other design practices (such 
as value simulation) , and airn at description techniques important for actual system 
developers. 

This paper desaribed t he compositional verification of designs built from compo
nents. In our approach, we reason about the component embedded in an abstract 
enúronment , allowing for arbitrary restrictions on the environment and its compo
nents. This method can be extended to deal with systems where components are 
unspecified. Therefore, this method can support the modular development of de
signs, where third-party libraries anel components play an essential role. 

The work is still on-going anel involves the automatic generation of properties for 
regular designs with generic parameters, and the application of our methodology to 
indust rial designs. 
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