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Abstract

Background: Genomic selection (GS) has played an important role in cattle breeding programs. However,
genotyping prices are still a challenge for implementation of GS in beef cattle and there is still a lack of information
about the use of low-density Single Nucleotide Polymorphisms (SNP) chip panels for genomic predictions in breeds
such as Brazilian Braford and Hereford. Therefore, this study investigated the effect of using imputed genotypes in
the accuracy of genomic predictions for twenty economically important traits in Brazilian Braford and Hereford beef
cattle. Various scenarios composed by different percentages of animals with imputed genotypes and different sizes
of the training population were compared. De-regressed EBVs (estimated breeding values) were used as pseudo-
phenotypes in a Genomic Best Linear Unbiased Prediction (GBLUP) model using two different mimicked panels
derived from the 50 K (8 K and 15 K SNP panels), which were subsequently imputed to the 50 K panel. In addition,
genomic prediction accuracies generated from a 777 K SNP (imputed from the 50 K SNP) were presented as
another alternate scenario.

Results: The accuracy of genomic breeding values averaged over the twenty traits ranged from 0.38 to 0.40 across
the different scenarios. The average losses in expected genomic estimated breeding values (GEBV) accuracy
(accuracy obtained from the inverse of the mixed model equations) relative to the true 50 K genotypes ranged
from −0.0007 to −0.0012 and from −0.0002 to −0.0005 when using the 50 K imputed from the 8 K or 15 K,
respectively. When using the imputed 777 K panel the average losses in expected GEBV accuracy was −0.0021. The
average gain in expected EBVs accuracy by including genomic information when compared to simple BLUP was
between 0.02 and 0.03 across scenarios and traits.

Conclusions: The percentage of animals with imputed genotypes in the training population did not significantly
influence the validation accuracy. However, the size of the training population played a major role in the accuracies
of genomic predictions in this population. The losses in the expected accuracies of GEBV due to imputation of
genotypes were lower when using the 50 K SNP chip panel imputed from the 15 K compared to the one imputed
from the 8 K SNP chip panel.
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Background
Brazil is a key player in the global beef market exporting
throughout the whole world. Currently, Brazil has a herd
of more than 212 million cattle [1], in which Zebu
breeds are the most predominant in the national cattle
population. However, there are other breeds with high
economic impact in the Brazilian and international
beef industry as well, such as Hereford and Braford
(composite breed, which had genetic contribution
from Zebu breeds in its development). Hereford and
Braford breeds, together with Angus and Brangus ac-
count for 50% of the approximate eight million doses
of beef cattle semen commercialized in Brazil in 2013
[2]. Much of this semen, as well as most live bulls
sold are mated to Zebu females with the primary ob-
jective of improving carcass quality [3].
Genetic progress in Hereford and Braford breeding

programs have been achieved through traditional genetic
evaluations. However, incorporation of genomic infor-
mation in livestock breeding programs (e.g. genomic se-
lection, GS [4]) can result in higher and faster genetic
progress [4–6], by decreasing generation interval, in-
creasing accuracy of selection and facilitating incorpor-
ation of novel traits of economic importance in the
current breeding programs [4, 7, 8]. GS has changed
considerably the dairy cattle breeding systems, especially
young bulls testing, where some countries have currently
partially or completely eliminated the traditional pro-
geny testing [9], with a subsequent reduction in costs in
breeding programs [10].
The success of genomic predictions can be evaluated

by accuracy of direct genomic breeding values (DGVs),
which depends on many factors such as the level of link-
age disequilibrium between markers and the quantitative
trait loci (QTL), the number of animals in the training
population, the heritability of the trait and the distribu-
tion of QTL effects over the genome [11]. Thus, the suc-
cess of GS in dairy cattle, mainly in the Holstein breed,
is associated with a large number of genotyped animals,
a small effective population size (Ne), large use of key
sires world-wide and collaborations among countries for
genotype sharing [11]. However, in the beef industry
there are more challenges for the implementation of GS
due to a larger effective population size compared to
dairy cattle breeds, higher number of important beef cat-
tle breeds world-wide, smaller number of key sires used
across countries and also minimal collaboration among
countries for genotyping sharing [9]. Some reported esti-
mates of Ne for Holstein Friesian are 39 [12], 49 [13], 64
[14] and 90 [14]. For beef cattle some estimates of Ne

are 234, 128, 185 and 303 for Angus, Devon, Hereford
and Shorthorn, respectively [15], 207 and 285 for Angus
and Charolais, respectively [16], and, 445 for American
Red Angus [17].

There is a need to increase the size of training popula-
tion for successful genomic predictions in beef cattle.
However, genotyping costs in commercial herds is still a
major constraint for implementation of GS. An alterna-
tive to reduce costs is to genotype individuals from com-
mercial breeding programs with low-density single
nucleotide polymorphisms (SNP) chip panels, which are
more affordable for the producers. These low-density
panels can then be imputed to a medium or high density
SNP chip panel [18, 19] and used to predict genomic
breeding values of the animals [20, 21]. It is important
to investigate the impact of using imputed genotypes for
genomic prediction of breeding values. Although the im-
pact of using imputed genotypes for genomic prediction
of breeding values has been investigated in different
breeds [22, 23], this has not been reported in beef cattle
breeds such as Brazilian Braford (Nellore x Hereford)
and Hereford. Thus, the aim of this study was to investi-
gate the accuracy of genomic predictions using true
50 K genotypes, as well as including alternative percent-
ages of animals with imputed genotypes in the training
population and different sizes of the training dataset in
Brazilian Braford and Hereford beef cattle.

Methods
Genotypic and phenotypic data
Genotypic, phenotypic and pedigree datasets were ob-
tained from the Conexão Delta G’s Genetic Improvement
Program (Conexão Delta G, Dom Pedrito, Rio Grande do
Sul, Brazil). The dataset contained approximately 520,000
animals from 97 farms located in the South, Southeast,
Midwest and Northeast regions of Brazil. Out of these ani-
mals there were 683 Hereford and 2,997 Braford animals
genotyped (born between 2008 and 2011) plus 130 sires
(born between 1982 and 2010).
From the total of genotyped animals, there were 624

Hereford and 2,926 Braford animals genotyped with the
Illumina BovineSNP50 panel (Illumina Inc.,San Diego,
USA) and 59 Hereford and 71 Braford sires genotyped
with the Illumina BovineHD panel (Illumina Inc., San
Diego, USA). In addition, there were 88 Nellore bulls
(Zebu breed used to develop Braford composite breed)
from the Paint Breeding Program (Lagoa da Serra,
Sertãozinho, São Paulo, Brazil) genotyped with the
Illumina BovineHD panel.

Genotype data editing
Single nucleotide polymorphisms that were not present
in both 50 K and 777 K SNP chip panels were removed
for imputation to the Illumina BovineSNP50 BeadChip
(Illumina Inc., San Diego, CA). Missing genotypes
(0.46%) in the 50 K SNP chip panel were previously im-
puted using FImpute software v.2.2 [24]. Only SNPs lo-
cated on autosomes with GenCall score (≥0.15), call rate
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(≥0.90) and p-value for Hardy-Weinberg Equilibrium
test (>10−6) were retained for further analyses. Quality
control of individuals was based on GenCall score
(≥0.15), call rate (≥0.90), heterozygosity deviation (limit
of ± 3 SD), repeated sampling and paternity errors. The
quality control for imputation to the 777 K SNP panel
was the same as the one described before for the imput-
ation to the 50 K SNP panel. The 8 K and 15 K SNP
chip panels were used for imputation to 50 K SNP chip
panel, and the 50 K SNP panel was used for imputation
to the 777 K SNP panel [19] using FImpute v.2.2 [24]. A
quality control as described before plus Minor Allele
Frequency (MAF ≥ 0.05) was implemented for the gen-
omic prediction of breeding values. Table 1 presents the
number of individuals after the data quality control.

Traits
Conexão Delta G’s Genetic Improvement Program -
Hereford and Braford (Nellore x Hereford) started
around 1970. During its early stages animals were se-
lected based on a selection index that included weight
gain, scrotal circumference and conformation score

traits [25]. In 1975, other traits such as precocity, mus-
cularity and body size scores [26] were incorporated into
the selection index. In the 1990, body size score was ex-
cluded from the selection index. Furthermore, there are
other traits not included in the selection index, which
are used for culling of animals as well. Therefore, the
traits included in this study can be divided in two
groups: 1) traits that make up the selection index used
by Conexão Delta G’s Genetic Improvement Program;
and 2) traits that are not included in the selection index,
but are used for independent culling selection. The
current selection index is based on 25% for weight gain
from birth to weaning (WGBW), 25% for weight gain
from weaning to yearling (WGWY), 4% for conform-
ation score at weaning (CW), 4% for conformation score
at yearling (CY), 8% for precocity score at weaning
(PW), 8% for precocity score at yearling (PY), 8% for
muscularity score at weaning (MW), 8% for muscularity
score at yearling (MY), 5% for scrotal circumference ad-
justed for age at yearling (SCa) and 5% for scrotal cir-
cumference adjusted for age and weight at yearling
(SCaw). On the other hand, the traits that are not

Table 1 Number of phenotypes, EBVs and genotypes for each economic trait in the training and validation population after data editing

Economic traits Abbreviation h2b Phenotypes Genotypes Training population Validation population

Progeny Sire Dam Total Progeny Sire Dam Total

Traits included in the selection index

Weight gain from birth to weaning (kg) WGBW 0.25 354,255 3,305 2,231 91 3 2,325 944 9 27 980

Weight gain from weaning to yearling (kg) WGWY 0.31 164,140 2,539 1,520 91 3 1,614 907 6 12 925

Conformation score at weaning (scores 1–5) CW 0.25 348,020 2,970 1,896 91 3 1,990 944 9 27 980

Conformation score at yearling (scores 1–5) CY 0.32 171,406 2,768 1,717 91 3 1,811 939 6 12 957

Precocity score at weaning (scores 1–5) PW 0.25 330,312 2,961 1,887 91 3 1,981 944 9 27 980

Precocity score at yearling (scores 1–5) PY 0.32 160,261 2,768 1,717 91 3 1,811 939 6 12 957

Muscularity score at weaning (scores 1–5) MW 0.25 330,059 2,968 1,894 91 3 1,988 944 9 27 980

Muscularity score at yearling (scores 1–5) MY 0.32 159,706 2,768 1,717 91 3 1,811 939 6 12 957

Scrotal circumference a (cm) SCaa 0.43 46,823 1,581 623 85 0 708 865 5 3 873

Scrotal circumference aw (cm) SCawa 0.43 46,823 1,581 623 85 0 708 865 5 3 873

Traits not included in the selection index

Birth weight (kg) BW 0.33 221,038 3,434 2,401 88 3 2,492 905 10 27 942

Birth assistance score (scores 1–5) BA 0.10 26,058 1,581 1,123 44 0 1,167 395 3 16 414

Size score at weaning (scores 1–5) SW 0.25 140,681 2,911 1,848 81 3 1,932 944 8 27 979

Size score at yearling (scores 1–5) SY 0.41 84,261 2,737 1,694 84 3 1,781 939 5 12 956

Prepuce (navel) score at weaning (scores 1–5) NW 0.46 265,802 3,343 2,291 89 2 2,382 927 7 27 961

Prepuce (navel) score at yearling (scores 1–5) NY 0.41 122,409 2,825 1,793 89 2 1,884 924 5 12 941

Hair length score at weaning (scores 1–3) HW 0.23 110,163 1,579 612 86 2 700 846 6 27 879

Hair length score at yearling (scores 1–3) HY 0.31 73,621 2,480 1,561 88 2 1,651 813 4 12 829

Ticks resistance (ticks unit) TR 0.19 12,099 1,640 594 60 0 654 948 3 3 954

Ocular pigmentation score (scores 1–3) OP 0.20 139,082 1,635 587 90 1 678 921 9 27 957
a SCa is the scrotal circumference adjusted for age at yearling and SCaw is the scrotal circumference adjusted for age and weight at yearling; b The heritability
estimates were obtained prior to this study using the DMU package [49]
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included in the selection index are: birth weight (kg, BW),
birth assistance score (scores 1–5, BA), size score at wean-
ing (scores 1–5, SW), size score at yearling (scores 1–5,
SY), prepuce (navel) score at weaning (scores 1–5, NW),
prepuce (navel) score at yearling (scores 1–5, NY),
hair length score at weaning (scores 1–3, HW), hair
length score at yearling (scores 1–3, HY), ticks resist-
ance (ticks unit, TR) and ocular pigmentation score
(scores 1–3, OP).
The independent culling level was carried out system-

atically since the beginning of the Conexão Delta G’s
Genetic Improvement Program for BW, BA and OP
traits, particularly in Hereford, and NW, NY, HW and
HY in Braford. The SW and SY traits were part of the
selection index between the 1970s and 1990s while the
selection of TR has been performed with greater em-
phasis on young bulls in the last decade.

Traditional genetic evaluation
The package used to obtain the estimated breeding
values (EBVs) for each trait was written in Fortran lan-
guage and developed by GenSys (GenSys Consultores
Associados, Porto Alegre, Brazil). Contemporary group
was defined based on farm, year-season, sex, and man-
agement group. The traits WGBW, CW, CY, PW, PY,
MW, MY and SW were pre-adjusted for dam age, birth
date, breed, dominance and epistasis effects and environ-
mental interactions (latitude). WGWY was pre-adjusted
for calf age, while CW, CY, PW, PY, MW, MY and SY
were pre-adjusted for calf and dam age. SCa was ad-
justed for age at yearling and SCaw was adjusted for age
and weight at yearling. TR was pre-adjusted for additive
effects of breed. A connectedness analysis was per-
formed prior to each genetic evaluation. The degree of
connectedness among contemporary groups was mea-
sured based on genetic connections of animals and its
common relatives. Genetic connections were weighted
by the degree of additive relationship between animals
[27, 28]. To be considered connected, contemporary
groups were defined as a minimum of 10 genetic dir-
ect connections. All individuals not assigned to a con-
temporary group were excluded from the genetic
evaluations.
The general model used for the genetic evaluations

was: yijkl = μ + cgi + aj + mk + pek + eijkl, where yijkl is the
phenotype for the animal l, pre-adjusted for the known
environmental effects (individual age, dam age and birth
date) and genetic fixed effects (breed, dominance,
epistatic, complementary and interactions with latitude);
μ is the general mean for the trait; cgi is the effect of
contemporary group i (fixed effect); aj is the genetic dir-
ect effect of animal j (random effect); mk is the maternal
genetic effect of cow k (random effect); pek is the per-
manent environment effect due to the cow k (random

effect); and eijkl is the residual effect associated to the
observation ijkl. The required variance components were
estimated using Restricted Maximum Likelihood (REML).
A robust estimation procedure regarding to the hetero-
geneity of residual variance within contemporary groups
[29] was used. The robust estimation procedure allows ob-
servations from cg with large residual variance to have re-
duced influence, while not giving to much weight to
observation from cg with low residual variance [29].
Two EBV sets were generated: the first one was esti-

mated using all available information to date while the
second set was estimated using information from all ani-
mals born before 2010. These two sets of EBVs were
then used as pseudo-phenotypes in the genomic predic-
tion models for validation and training populations,
respectively.

De-regressed EBVs
The second set of EBVs (for the training population)
was de-regressed and used as pseudo-phenotypes to
estimate genomic markers effects. The approach de-
scribed by VanRaden and Wiggans [30] was used to
calculate de-regressed EBVs using EBVs and reliabil-
ities of genotyped animals and their sires and dams.
De-regressed EBVs were calculated for animals of the
training population with EBV reliability greater than the
overall mean (r2 = 0.09) and that satisfied the following

condition: abs EBV−dEBVð Þ
sdEBV

� �
≤10sdEBV , where abs repre-

sents the absolute value, EBV is the estimated breeding
value, dEBV is the de-regressed EBV and sdEBV is the
standard deviation of the EBVs.

Prediction of DGV and GEBV
Direct genomic values (DGVs) were estimated using
GBLUP method as described in VanRaden [7] for all the
twenty traits (Table 1), using either 50 K or 777 K SNP
chip panels and de-regressed EBVs. The GEBV software
was used for the analysis [31]. The following linear
model was implemented: y = 1nμ + Zg + e, where y is the
vector of de-regressed EBV for the trait, μ is the overall
mean, 1n is a vector of ones, Z is the design matrix that
relates de-regressed EBVs to animals, g is the vector of
DGV to be predicted, and e is the vector of residual ef-
fects. It was assumed that g ~N (0, G*σ2g) where σ2g is
the additive genetics variance and G* is a combined rela-
tionship matrix (80% genomic relationship and 20%
pedigree-based relationship), and e ~N (0, Rσ2e) where
σ2e is the residual variance and R is a diagonal matrix
whose elements account for the differences in reliabil-
ities of the de-regressed EBVs. The reason for using a
combined relationship matrix is due to the fact that pre-
vious studies, also performed in Brazil, reported gains in
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accuracies when adding 20% pedigree-based relationship
(e.g. [32]).
The genomic estimated breeding values (GEBV) were

estimated using the blending procedure outlined by Hayes

et al. [11] and described as: GEBV ¼ r2DGV�DGVþr2EBV�EBV
r2DGVþrEBV

2 ,

where rDGV
2 and rEBV

2 are the reliability of DGV and EBV,
respectively.

Training and validation populations
For the genomic predictions as described in the previous
section, the dataset was split into two groups: training
and validation populations. To simulate what would
happen in practice (genotype and phenotypes from older
animals used to predict breeding values of younger
animals), the training population included all animals
born before 2011, while the validation group included all
the animals born in 2011 (youngest animals). Training
and validation groups varied in size for each trait
(Table 1). The training group had 100% of true
genotypes or alternatively, between 10% and 60% (10%,
20%, …, 60%) of imputed genotypes in the first two
groups of scenarios. In the third group of scenarios, the
training group, had 91% of imputed genotypes because
only 212 animals were genotyped with 777 K chip panel.
In the validation groups, only true genotypes were
included.

Genomic prediction scenarios
Three groups of genomic prediction scenarios were de-
signed to mimic situations where different proportion of
animals with imputed genotypes (derived from alternate
low-/medium- density SNP chip panels) were included
in the training set. The first two groups of scenarios
were created based on animals genotyped (mimicked
from 50 K SNP chip panel) with 8 K and 15 K SNP chip
panels and imputed to the 50 K SNP chip panel [19].
For this study, the two best scenarios based on con-
cordance rate and allelic R2 were used: 8 K scenario
(concordance rate: 0.952 and allelic R2: 0,927) and
15 K scenario (concordance rate: 0.973 and allelic R2:
0,962). The 20 K panel was slightly superior to the
8 K panel. However, various markers from the 20 K
are not included in the 50 K and 777 K, and there-
fore, when matching panels for imputation 8 K and
20 K become very similar [19].
The first group of scenarios (SCE1) was created with

different percentages of animals with imputed genotypes
and unequal training population sizes (separated based
on birth year, as described in the previous section). The
second group of scenarios (SCE2) was also created with
different percentages of animals with imputed genotypes,
however, with same size training populations. The
third group of scenarios (SCE3) was based on animals

genotyped using the 50 K SNP chip panel and im-
puted to the 777 K SNP chip panel. More details for
all scenarios are shown in the Table 2.

Comparisons between scenarios
The prediction accuracies of GEBV were used to com-
pare the scenarios evaluated. The prediction accuracies
were calculated as Pearson’s correlation between DGVs
and EBVs (validation accuracy) from the validation
population. Accuracy obtained from the mixed model
equations (expected accuracy) in the validation popula-
tion was used to quantify losses in GEBV accuracy due
to the use of imputed genotypes compared to the true
50 K SNP chip panel. Expected accuracy was also used
to quantify the gain in breeding value accuracies when
using molecular marker information in the EBV estima-
tion. The factors affecting validation accuracies and
losses in expected GEBV accuracies were tested by carry-
ing out an analysis of variance in the ANOVA procedure
of SAS version 9.2 (SAS Inst. Inc., Cary, NC).

Results
Phenotypic and genotypic data
As shown in Table 1, the average heritability estimates
(± SD) for the traits included in this study was 0.30 ±
0.09 and it ranged from 0.10 (BA) to 0.46 (NW). The
average number of individuals (± SD) in the training
population was 1,603.4 ± 594.7 and ranged from 654
(TR) to 2,492 (BW). The average number of individuals
in the validation population (± SD) was 913.7 ± 122.1
and ranged from 414 (BA) to 980 (WGBW, CW, PW
and MW).

Adding alternative imputed genotypes to increase the
size of training population (SCE1)
In the SCE1, we investigated the prediction accuracies of
genomic breeding values when increasing the size of the
training population by inclusion of imputed genotypes
(imputed from 8 K or 15 K to 50 K). Tables 1 and 2
show the number of animals in the training and valid-
ation population within scenario evaluated and total
number of genotypes (true and imputed). The average
validation accuracies for the traits included in the selec-
tion index ranged from 0.29 to 0.31 (Table 3), while for
the traits not included in the selection index, it ranged
from 0.47 to 0.49 (Table 4). However, for the traits re-
lated to fitness (NW, NY, HW, HY, TR and OP), the
average validation accuracy ranged from 0.63 to 0.65
(Table 4). As shown in Table 5, higher accuracies were
observed for the majority of the traits when including a
higher proportion of imputed genotypes in the training
population.
The differences between the 8 K and 15 K SNP panels

were not significant (P > 0.05) for the majority of the
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traits (55%) and in general, when there was a significant
difference, 15 K performed better than 8 K (Table 5).
When comparing 8 K and 15 K to the true 50 K SNP,
significant differences (P < 0.05) were observed in 45%
and 40% of the traits, respectively. In general, the accur-
acies were higher when using the true 50 K SNP panel.
However, for BW higher accuracies were observed when
using imputed genotypes from 8 K and 15 K.
When evaluating the size and percentage of animals

with imputed genotypes in the training population in
SCE1 scenarios (Table 5), 86% of the comparisons were
statistically significant (P < 0.05). In general, larger train-
ing populations (i.e. including larger proportion of im-
puted genotypes) provided greater prediction accuracies.
Regarding to the panel used, 60% of the comparisons be-
tween 8 K and 15 K SNP chip panels and the true 50 K

panel were statistically significant (P < 0.05) and in most
cases the true 50 K SNP panel provided greater accur-
acies (Table 5). For the 8 K and 15 K SNP panel the
average losses in expected GEBV accuracy were between
−0.004 and −0.0011. More details about the losses in
GEBV accuracies are presented in Additional file 1.

Comparing different proportion of imputed genotypes
keeping constant the size of the training population
(SCE2)
Table 6 shows the accuracies of genomic predictions in
the SCE2 scenarios, where the training population size
was held constant but the percentage of imputed ani-
mals varied from 0% to 60%. The average accuracies
ranged between 0.29 and 0.30 for the traits included in
the selection index and for the traits not included in the

Table 2 Number of animals with true and imputed genotypes in each scenario in the training set for the weight gain from birth to
weaning (WGBW) traita

Scenarios SCE1 – 50 K SNP panel Scenarios SCE2 – 50 K SNP panel Scenario SCE3 – 777 K SNP panel

Levelb True Imputed genotypes Total Levelb True Imputed genotypes Total Levelb True Imputed genotypes Total

0 2,325 0 2,325 0 2.325 0 2,325 91 212 2,113 2,325

10 930 103 1,033 10 2,092 233 2,325

20 930 233 1,163 20 1,860 465 2,325

30 930 399 1,329 30 1,627 698 2,325

40 930 620 1,550 40 1,395 930 2,325

50 930 930 1,860 50 1,162 1,163 2,325

60 930 1,395 2,325 60 930 1,395 2,325
a The same criteria were used to define the scenarios of other traits, but the number of genotypes varies for each trait; b Percentage of animals with imputed
genotypes used in the training population

Table 3 DGVs validation accuracies for the SCE1 scenarios and traits included in the selection indexa, b

Traitsc 8 Kd 15 Kd 50 Kd

10e 20e 30e 40e 50e 60e 10e 20e 30e 40e 50e 60e 10f 20f 30f 40f 50f 60f

WGBW 0.32 0.33 0.34 0.34 0.34 0.32 0.32 0.33 0.34 0.33 0.33 0.32 0.31 0.33 0.34 0.33 0.34 0.32

WGWY 0.33 0.33 0.33 0.34 0.36 0.35 0.33 0.33 0.33 0.33 0.36 0.35 0.33 0.33 0.33 0.33 0.36 0.35

CW 0.24 0.27 0.29 0.30 0.31 0.29 0.25 0.28 0.29 0.30 0.31 0.28 0.25 0.28 0.29 0.30 0.31 0.29

CY 0.29 0.29 0.29 0.28 0.29 0.26 0.29 0.29 0.29 0.29 0.29 0.26 0.29 0.29 0.29 0.29 0.29 0.26

PW 0.28 0.29 0.30 0.31 0.33 0.31 0.27 0.29 0.29 0.31 0.33 0.31 0.27 0.29 0.30 0.31 0.33 0.31

PY 0.32 0.32 0.31 0.32 0.35 0.33 0.32 0.32 0.31 0.32 0.35 0.34 0.32 0.32 0.31 0.33 0.35 0.34

MW 0.32 0.33 0.34 0.34 0.37 0.35 0.32 0.33 0.34 0.34 0.37 0.35 0.31 0.33 0.34 0.34 0.37 0.35

MY 0.35 0.35 0.33 0.34 0.37 0.34 0.35 0.35 0.33 0.35 0.38 0.35 0.35 0.35 0.33 0.34 0.38 0.35

SCa 0.21 0.21 0.20 0.20 0.17 0.18 0.22 0.23 0.21 0.21 0.17 0.18 0.22 0.22 0.21 0.20 0.18 0.18

SCaw 0.24 0.23 0.22 0.21 0.17 0.20 0.25 0.24 0.22 0.22 0.18 0.19 0.25 0.25 0.23 0.22 0.18 0.20

Average 0.29 0.30 0.30 0.30 0.31 0.29 0.29 0.30 0.30 0.30 0.31 0.29 0.29 0.30 0.30 0.30 0.31 0.30
a DGV validation accuracy means Pearson’s correlation between DGVs and EBVs in the validation population; b SCE1 scenario that the number of animals and the
percentage of animals with imputed genotypes in the training population varied; cTrait abbreviations are presented in Table 1; d 8 K: means that the base panel is
the 8 K SNP panel imputed to the 50 K SNP panel; 15 K: means that the base panel is the 15 K SNP panel imputed to the 50 K SNP panel; 50 K: means the true
50 K SNP panel; e Percentage of animals with imputed genotypes in the training population; f The percentage 10 to 60 correspond to the similar analysis carried
out with the 8 K and 15 K SNP panels, but using only true genotypes
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selection index they were all the same (0.49). There were
no significant differences among the alternate percentage
of imputed animals (P > 0.05) for all traits (Table 7). The
comparison of the 8 K and 15 K SNP chip panels to
the true 50 K SNP panel showed significant differ-
ences (P < 0.05) in 45% and 60% of the cases, respectively
(Table 7). When there were significant differences, in gen-
eral, the true 50 K SNP panel performed better than the
imputed genotypes. The differences between the 8 K and
15 K SNP panels were not significant (P > 0.05) for the
majority of traits (Table 7).
Losses in expected GEBV accuracy were measured

within each level of the scenario in relation to the same
level of the scenario using only the actual genotypes. All
losses were statistically different from actual (not
imputed) 50 K SNP panel (P < 0.05) and were higher
when using the 8 K SNP panel in relation to the 15 K
SNP panel. For the 8 K and 15 K SNP panel the average
losses in expected GEBV accuracy were between −0.0002
and −0.0011 across scenarios (Additional file 2). In gen-
eral, a higher proportion of imputed genotypes in the
training population in SCE2 was associated with larger
reductions in accuracies.
There were no statistically significant differences

(P > 0.05) in validation accuracies when including dif-
ferent percentage of imputed animals (Table 7). When
comparing the SNP chip panels, there were no signifi-
cant differences for 60% of the traits (P > 0.05) be-
tween the 8 K and 15 K SNP chip panels and the
true 50 K SNP chip panel (Table 7). The losses in
GEBV accuracies are presented in Additional file 2. In

brief, losses in expected GEBV accuracy were statisti-
cally different from true 50 K genotypes (P < 0.05) for
traits not included in the selection index. Using im-
puted genotypes from 8 K and 15 K to the 50 K SNP
chip panel, the average losses in GEBV expected accuracy
ranged between −0.0004 and −0.0013 and −0.0003 to
−0.0013, respectively.

Comparing prediction accuracy of genomic breeding
values using 50 K or 777 K SNP chips (SCE3)
We also investigated the use of a 777 K SNP chip panel
imputed from 50 K (SCE3). The average DGV validation
accuracies were 0.31 and 0.50 for traits included or not
in the selection index, respectively (Table 6). The average
loss in expected GEBV accuracy was −0.0021 (Additional
file 2).

Including genomic information
The average expected EBV accuracy in the training
population was 0.64 and ranged from 0.52 to 0.74. For
the validation population, the average expected EBV ac-
curacy was 0.63 and ranged between 0.51 and 0.73.
Average expected GEBV accuracy was 0.66 for the sce-
nario with all animals and 60% imputed genotypes
(SCE1-60% and SCE2-60%) and 0.65 for the SCE3 sce-
nario. The increase in average expected GEBV accuracy
in the validation population by adding the information
of the markers was 0.03. The average expected DGV ac-
curacy across traits was 0.40 (Table 8). The increase in
expected GEBV accuracy by adding marker information
was about 0.02 in all scenarios.

Table 4 DGVs validation accuracies for the SCE1 scenarios and traits included not included in the selection indexa, b

Traitsc 8 Kd 15 Kd 50 Kd

10e 20e 30e 40e 50e 60e 10e 20e 30e 40e 50e 60e 10f 20f 30f 40f 50f 60f

BW 0.21 0.21 0.22 0.21 0.21 0.22 0.21 0.21 0.23 0.21 0.21 0.21 0.20 0.21 0.22 0.20 0.20 0.21

BA 0.12 0.14 0.12 0.13 0.14 0.14 0.14 0.15 0.14 0.14 0.15 0.15 0.13 0.14 0.13 0.13 0.14 0.14

SW 0.28 0.30 0.31 0.32 0.31 0.33 0.28 0.30 0.31 0.31 0.31 0.33 0.27 0.30 0.31 0.31 0.31 0.33

SY 0.29 0.30 0.30 0.30 0.33 0.36 0.30 0.31 0.31 0.30 0.33 0.35 0.30 0.31 0.31 0.30 0.33 0.36

NW 0.47 0.49 0.49 0.50 0.51 0.53 0.47 0.48 0.49 0.50 0.51 0.53 0.47 0.49 0.49 0.50 0.52 0.54

NY 0.46 0.48 0.50 0.50 0.52 0.54 0.46 0.48 0.50 0.50 0.51 0.54 0.46 0.48 0.50 0.50 0.52 0.54

HW 0.73 0.72 0.72 0.71 0.71 0.71 0.73 0.73 0.72 0.71 0.71 0.71 0.73 0.73 0.72 0.71 0.72 0.71

HY 0.79 0.79 0.78 0.78 0.81 0.81 0.79 0.79 0.78 0.79 0.81 0.81 0.80 0.79 0.79 0.79 0.81 0.81

TR 0.65 0.64 0.63 0.62 0.62 0.62 0.65 0.64 0.63 0.62 0.62 0.62 0.65 0.64 0.63 0.62 0.62 0.62

OP 0.70 0.69 0.69 0.67 0.67 0.66 0.70 0.69 0.68 0.67 0.66 0.66 0.70 0.69 0.69 0.68 0.67 0.66

Average 0.47 0.48 0.48 0.47 0.48 0.49 0.47 0.48 0.48 0.48 0.48 0.49 0.47 0.48 0.48 0.47 0.48 0.49

Overall mean 0.38 0.39 0.39 0.39 0.39 0.39 0.38 0.39 0.39 0.39 0.39 0.39 0.38 0.39 0.39 0.39 0.40 0.39
a DGV validation accuracy means Pearson’s correlation between DGVs and EBVs in the validation population; b SCE1 scenario that the number of animals and the
percentage of animals with imputed genotypes in the training population varied; cTrait abbreviations are presented in Table 1; d 8 K: means that the base panel is
the 8 K SNP panel imputed to the 50 K SNP panel; 15 K: means that the base panel is the 15 K SNP panel imputed to the 50 K SNP panel; 50 K: means the true
50 K SNP panel; e Percentage of animals with imputed genotypes in the training population; f The percentage 10 to 60 correspond to the similar analysis carried
out with the 8 K and 15 K SNP panels, but using only true genotypes
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Discussion
Wide application of GS in beef cattle breeding programs
depends among other factors, on the price of genotyp-
ing. The current medium or high density SNP chips are
still expensive for widespread use in the beef industry,
considering the number of individuals needed for rea-
sonably accurate genomic predictions of breeding values.
Genotype imputation has been used as an alternative to
reduce costs [21, 23, 33, 34]. In this study, we investi-
gated different scenarios as alternatives to use imputed
genotypes in commercial beef cattle breeding programs.
The correlation between DGV and EBV (validation ac-
curacy) has been used to represent the accuracy of DGV
[6, 35, 36]. The validation accuracy for traits in the selec-
tion index were lower than values reported in the litera-
ture for other breeds such as Angus, Limousin and
Simmental [35, 36]. Neves et al. [32], working with
Brazilian Nellore and the same set of traits (included in
the selection index) also reported greater validation ac-
curacies, except for WGBW and CW. The lower values
of validation accuracy in this study could be explained
by the lower expected EBV accuracies in the training

population (r = 0.64). The greater validation accuracies
observed for traits with higher heritability estimates
(e.g., post weaning traits) has also been reported in the
literature (e.g. Brito et al. [6] working with simulated
data of beef cattle, Akanno et al. [37] studying pigs, and
Khatkar et al. [33] working with Australian dairy cattle).
In general, high heritability traits are associated with lar-
ger accuracy estimates. The reason why scrotal circum-
ference (i.e. high heritability trait) presented the lowest
validation accuracy could be due to the smaller number
of animals in the training population (n = 708) compared
to the other traits, as the size of training population is
another very important component for the accuracy of
genomic predictions.
The results from SCE1 and SCE2 showed that the size

of the training population was more important than the
percentage of animals with imputed genotypes. Other
studies in dairy cattle have also reported small reduction
in accuracies when using imputed genotypes to predict
the effect of the markers [20, 21, 23, 33, 38]. These find-
ings indicate that in order to improve the accuracies of
genomic predictions in Brazilian Braford and Hereford,

Table 5 Results of analysis of variance of the DGV validation accuracies for the SCE1 scenariosa, b, c

Trait Paneld Scenarioe

8–15 8–50 15–50 10–60 20–60 30–60 40–60 50–60

WGBW * (8) ns ns * (60) * (20) * (30) * (40) * (50)

WGWY ns ns ns * (60) * (60) * (60) * (60) ns

CW ns * (50) ns * (60) * (60) ns * (40) * (50)

CY * (15) * (50) ns * (10) * (20) * (30) * (40) * (50)

PW ns ns ns * (60) * (60) * (60) ns * (50)

PY ns ns ns * (60) * (60) * (60) * (60) * (50)

MW ns ns * (15) * (60) * (60) * (60) * (60) * (50)

MY ns ns ns ns ns * (60) ns * (50)

SCa * (15) ns ns * (10) * (20) * (30) * (40) ns

SCaw * (15) * (50) * (50) * (10) * (20) * (30) * (40) * (60)

BW ns * (8) * (15) * (60) ns * (30) * (60) * (60)

BA * (15) ns * (15) * (60) ns * (60) * (60) ns

SW * (8) * (8) ns * (60) * (60) * (60) * (60) * (60)

SY ns ns ns * (60) * (60) * (60) * (60) * (60)

NW ns ns ns * (60) * (60) * (60) * (60) * (60)

NY ns ns ns * (60) * (60) * (60) * (60) * (60)

HW * (15) * (50) * (50) * (10) * (20) * (30) ns ns

HY * (15) * (50) * (50) * (60) * (60) * (60) * (60) ns

TR ns * (50) * (50) * (10) * (20) * (30) ns * (60)

OP * (15) * (50) * (50) * (10) * (20) * (30) * (40) * (50)
a DGV validation accuracy means Pearson’s correlation between DGVs and EBVs in the validation population; b SCE1 scenario that the number of animals and the
percentage of animals with imputed genotypes in the training population varied; c “*” means that there was a significant difference (P < 0.05). The value between
brackets indicates which panel/scenario had higher estimated accuracy. “ns” means that there was no significant difference (P > 0.05); d 8,15 and 50 means the
8 K, 15 K and 50 K SNP panel. 8–15, 8–50 and 15–50 are the contrast between the two panels; e 10,20,30,40,50 and 60 means the percentage of imputed
genotypes. 10–60, 20–60, 30–60, 40–60, 50–60 are the contrasts between the two percentages of the imputed genotypes
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it is important to increase the size of the training popu-
lation. It could be done by genotyping more animals
with 50 K SNP chip panel or with 8 K or 15 K and im-
pute to 50 K. On the basis of the relatively small reduc-
tion in accuracy of genomic prediction when using
imputed genotypes, we would then recommend the use
of 15 K for large-scale genotyping as long as its costs are
acceptable to Brazilian Braford and Hereford breeders.
As discussed in Piccoli et al. [19] including pedigree

information did not increase concordance rate or allelic
R2. This could be expected due to the weak structure of
the pedigree within the set of genotyped animals and in
the whole pedigree file. Similar results were found by
Carvalheiro et al. [22] when working with Nellore in
Brazil with similar pedigree structure. It is also important

to highlight that the dataset used for this investigation is
from a commercial breeding program and not from re-
search herds. Therefore, in practice there will be always an
interest on predicting young animals based on the infor-
mation from previous generations (with phenotypes and
genotypes).
In theory, increasing the number of SNPs in a panel

will increase the level of linkage disequilibrium (LD) be-
tween a SNP and a QTL and consequently there should
be an improvement in accuracies of genomic predictions
of breeding values. This assumption has been confirmed
by other studies in the literature that reported increased
prediction accuracies when using imputed HD genotypes
compared to medium density genotypes (e.g. 50 K).
For instance, Boison et al. [39], working with Guzerá

Table 6 DGV validation accuracy in the validation population for the SCE2 and SCE3 scenariosa, b

Traitsc 8 Kd 15 Kd 50 Kd 777 Kd, e

10 20 30 40 50 60 10 20 30 40 50 60

Traits in the selection index

WGBW 0.33 0.33 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.34

WGWY 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.36

CW 0.29 0.29 0.29 0.29 0.29 0.29 0.28 0.28 0.28 0.28 0.29 0.29 0.29 0.32

CY 0.27 0.26 0.26 0.26 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.29

PW 0.31 0.31 0.31 0.31 0.31 0.32 0.31 0.30 0.30 0.31 0.31 0.31 0.31 0.32

PY 0.34 0.34 0.34 0.33 0.33 0.34 0.34 0.34 0.34 0.34 0.33 0.34 0.34 0.34

MW 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.37

MY 0.35 0.35 0.35 0.34 0.34 0.35 0.35 0.35 0.34 0.34 0.34 0.35 0.35 0.36

SCa 0.18 0.19 0.18 0.19 0.19 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.18 0.17

SCaw 0.20 0.20 0.20 0.20 0.20 0.19 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Average 0.30 0.30 0.30 0.30 0.29 0.30 0.29 0.29 0.29 0.29 0.29 0.30 0.30 0.31

Traits not in the selection index

BW 0.22 0.21 0.21 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

BA 0.13 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.14 0.11

SW 0.33 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.36

SY 0.36 0.36 0.36 0.35 0.35 0.35 0.36 0.36 0.36 0.35 0.36 0.36 0.36 0.37

NW 0.54 0.54 0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.56

NY 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.55 0.55 0.54 0.54 0.57

HW 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

HY 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.80 0.81 0.81 0.81 0.80

TR 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62

OP 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.64

Average 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50

Overall mean 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.40
a DGV validation accuracy means Pearson’s correlation between DGVs and EBVs in the validation population; b SCE2 scenario that the percentage of animals with
imputed genotypes in the training population varied and SCE3 scenario was created with only one percentage of animals with imputed genotypes and only one
training population size; cAbreviation descriptions are presented in Table 1; d 8 K: means that the base panel is the 8 K SNP panel imputed to the 50 K SNP panel;
15 K: means that the base panel is the 15 K SNP panel imputed to the 50 K SNP panel; 50 K: means the true 50 K SNP panel; 777 K: means that the base panel is
the 50 K SNP panel imputed to the 777 K SNP panel; e When the 777 K SNP panel was used, all animals had their genotypes imputed from the 50 K SNP panel to
the 777 K SNP panel, except for 212 animals in the training population (SCE3)
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(Bos indicus) cattle, reported an increase of 8% (averaged
across all traits) when using imputed HD genotypes com-
pared to true 50 K genotypes. Brito et al. [6], in a study
with simulated data of beef cattle reported an increase of
0.09 in the DGV accuracy by using a 777 K SNP panel
compared to a 50 K SNP panel. Weigel et al. [22] and
Vazquez et al. [40] also reported higher accuracies of pre-
diction using denser SNP markers. Other studies have re-
ported gains in accuracy, even smaller, when using
imputed 777 K compared to 50 K [34, 41, 42]. In the
present study, we also investigated genotype imputation
from 50 K to 777 K in Brazilian Braford and Hereford.
However, no major advantages of the 777 K over the 50 K
were observed. The losses in accuracies obtained for
GEBV and DGV when using 777 K (SCE3) are probably
associated with a higher percentage of imputation errors,
as in this scenario only 212 animals had true HD geno-
types [19]. Therefore, our results do not support the use
of an imputed 777 K SNP chip panel to increase genomic
prediction accuracies in Brazilian Braford and Hereford
breeds. Similarly to our study, Su et al. [42] reported no
gain in prediction accuracy when using imputed 777 K

genotypes vs. the 50 K in Nordic Holstein and Red Dairy
cattle.
Despite the losses in expected GEBV accuracies when

using 8 K and 15 K SNP panels were statistically signifi-
cant when compared to the ones attained using the true
50 K SNP chip panel, they were smaller with the 15 K
compared to 8 K SNP chip panel. These results can be
explained by the highest concordance rate in the 50 K
SNP panel imputed from the 15 K SNP panel [19], lower
genotyping errors and denser genome coverage. Similar
trend was reported by Segelke et al. [38] when they ana-
lyzed the losses in reliability from imputed panels of two
different densities of SNPs in German dairy cattle.
Sargolzaei et al. [43], working with Canadian dairy cattle
and 3 K SNP chip panel, also reported losses in reliabil-
ity around −0.02. Boison et al. [39] also reported a small
loss in accuracy of prediction using imputed 50 K from
3 K, while prediction accuracy remained the same for
the imputed 50 K from 7 K. Chen et al. [44], working
with Canadian dairy cattle, reported that the 6 K SNP
(imputed to 50 K) panel performed better than the 3 K
(imputed to 50 K) panel and resulted in the least

Table 7 Results of analysis of variance of the DGV validation accuracies for the SCE2 scenariosa,b,c

Trait Paneld Scenarioe

8–15 8–50 15–50 10–60 20–60 30–60 40–60 50–60

WGBW ns ns ns ns ns ns ns ns

WGWY ns * (50) * (50) ns ns ns ns ns

CW * (8) ns * (50) ns ns ns ns ns

CY ns ns * (50) ns ns ns ns ns

PW ns * (50) * (50) ns ns ns ns ns

PY ns * (50) * (50) ns ns ns ns ns

MW ns ns * (50) ns ns ns ns ns

MY * (8) ns * (50) ns ns ns ns ns

SCaf ns * (8) * (15) ns ns ns ns ns

SCawf * (15) * (50) ns ns ns ns ns ns

BW ns ns ns ns ns ns ns ns

BA * (15) ns * (15) ns ns ns ns ns

SW * (8) * (8) ns ns ns ns ns ns

SY ns ns ns ns ns ns ns ns

NW * (15) ns ns ns ns ns ns ns

NY * (15) * (50) ns ns ns ns ns ns

HW * (15) * (50) * (50) ns ns ns ns ns

HY ns ns ns ns ns ns ns ns

TR * (8) * (8) * (50) ns ns ns ns ns

OP ns ns * (50) ns ns ns ns ns
a DGV validation accuracy means Pearson’s correlation between DGVs and EBVs in the validation population; b SCE2 scenario that the percentage of animals with
imputed genotypes in the training population varied; c “*” means that there was a significant difference (P < 0.05). The value between brackets indicates which
panel/scenario had higher estimated accuracy. “ns” means that there was no significant difference (P > 0.05); d 8,15 and 50 means the 8 K, 15 K and 50 K SNP
panel. 8–15, 8–50 and 15–50 are the contrasts between the two panels; e 10, 20, 30, 40, 50 and 60 means the percentage of imputed genotypes. 10–60, 20–60,
30–60, 40–60, 50–60 is the contrast between the two percentages of the imputed genotypes; f SCa is the scrotal circumference adjusted for age at yearling and
SCaw is the scrotal circumference adjusted for age and weight at yearling
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reduction of genomic prediction accuracy among all the
low-density panels evaluated in their study. The authors
also reported that including genotypes imputed from the
6 K panel achieved almost the same accuracy of genomic
prediction as that of using the 50 K panel even when
66% of the training population was genotyped on the
6 K panel. Our results and reports from the literature
suggests that genomic prediction of breeding values de-
rived from genotypes imputed from higher density SNP
chip panels provide greater accuracies and in some
cases, even the same than using the true 50 K genotypes.
Similar trend was pointed out in a review study by Calus
et al. [45], where the authors reported that in dairy cattle
within-breed genomic predictions, the use of imputed
50 K genotypes typically yields 85% to almost 100% of
the reliability obtained with a 50 K panel, provided that

the low-density panel contains at least 3 K genotypes.
Other studies in dairy cattle have shown that further im-
putation to 777 k SNPs yielded at most a limited further
increase in reliability of genomic breeding values for
within breed genomic prediction.
The traits related to fitness (NW, NY, HW, HY, TR

and OP) had higher values of validation accuracy in rela-
tion to the other traits, including those from the selec-
tion index. These higher values are probably associated
with greater genetic variability due to a weaker selection.
The results found by Akanno et al. [37], working with
simulated data in swine strengthens this theory because
they found much higher accuracy for the indigenous
population (low selection pressure) in comparison with
the exotic population (high selection pressure). However,
Neves et al. [32] studying Brazilian Nellore reported

Table 8 Expected EBV accuracy in the training and validation population and expected GEBV and DGV accuracy in the validation
population in the scenario with the largest training populationa

Traitc EBV training EBV validation 8 Kb 15 Kb 50 Kb 777 Kb

GEBV DGV GEBV DGV GEBV DGV GEBV DGV

Traits in the selection index

WGBW 0.64 0.64 0.67 0.42 0.67 0.42 0.67 0.43 0.66 0.42

WGWY 0.62 0.60 0.63 0.39 0.63 0.40 0.63 0.40 0.63 0.39

CW 0.60 0.61 0.64 0.40 0.64 0.40 0.64 0.40 0.63 0.39

CY 0.62 0.61 0.64 0.40 0.64 0.40 0.65 0.41 0.64 0.40

PW 0.60 0.61 0.64 0.40 0.64 0.40 0.64 0.40 0.63 0.39

PY 0.62 0.61 0.64 0.40 0.64 0.40 0.65 0.41 0.64 0.40

MW 0.60 0.61 0.64 0.40 0.64 0.40 0.64 0.40 0.63 0.39

MY 0.62 0.61 0.64 0.40 0.64 0.40 0.65 0.41 0.64 0.40

SCa 0.74 0.70 0.72 0.39 0.72 0.39 0.72 0.39 0.72 0.39

SCaw 0.73 0.70 0.71 0.38 0.71 0.39 0.71 0.39 0.71 0.38

0.64 0.63 0.66 0.40 0.66 0.40 0.66 0.40 0.65 0.40

Traits not included in the selection index

BW 0.66 0.65 0.68 0.44 0.68 0.44 0.68 0.44 0.68 0.43

BA 0.73 0.73 0.75 0.43 0.75 0.43 0.75 0.43 0.74 0.42

SW 0.60 0.61 0.63 0.40 0.64 0.40 0.64 0.40 0.63 0.39

SY 0.69 0.68 0.71 0.43 0.71 0.44 0.71 0.44 0.71 0.43

NW 0.72 0.71 0.74 0.47 0.74 0.47 0.74 0.47 0.74 0.46

NY 0.68 0.68 0.70 0.43 0.70 0.44 0.70 0.44 0.70 0.43

HW 0.58 0.55 0.58 0.35 0.58 0.35 0.58 0.35 0.58 0.35

HY 0.61 0.60 0.63 0.40 0.63 0.40 0.63 0.40 0.63 0.39

TR 0.52 0.51 0.53 0.31 0.53 0.31 0.53 0.31 0.53 0.31

OP 0.57 0.54 0.57 0.35 0.57 0.35 0.57 0.35 0.57 0.35

Average 0.64 0.63 0.65 0.40 0.65 0.40 0.65 0.40 0.65 0.40

Overall mean 0.64 0.63 0.65 0.40 0.65 0.40 0.66 0.40 0.65 0.39
a Expected EBV, DGV and GEBV accuracy means were obtained from the mixed model equation; b 8 K: means that the base panel is the 8 K SNP panel imputed to
the 50 K SNP panel; 15 K: means that the base panel is the 15 K SNP panel imputed to the 50 K SNP panel; 50 K: means that the true 50 K SNP panel; 777 K:
means that the base panel is the 50 K SNP panel imputed to the 777 K SNP panel; c Abbreviation descriptions are presented in Table 1
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validation accuracy lower than those attained for the
NW and NY traits in the current study. This could be
due to a stronger selection pressure in Nellore breed
compared to Braford and Hereford. Another explanation
could be due to the fact that fitness traits in general have
lower heritability estimates potentially due to the influ-
ence of non-additive genetic factors [46, 47]. The valid-
ation accuracy for the BW and the BA in this study were
lower than other traits studied. This could be related to
the strong selection, which is carried out in Hereford
breed for these traits. Saatchi et al. [35, 48] working with
Angus, Limousin, Simmental and Hereford breeds,
found higher validation accuracy for these two traits
compared to those reported in this study.
Validation accuracies for BW in the SCE2 scenario

were not influenced by either the panel or the percent-
age of imputed animals in the training population. Dif-
ferent results were observed in SCE1, where both the
panel and the number of animals in the training popula-
tion influenced the validation accuracy of BW. Hayes et
al. [11] showed that the values of genomic prediction ac-
curacies are influenced by the size of the training popu-
lation and Brito et al. [6] working with simulated data
from beef cattle, also showed that the size of the training
population has a major effect on the accuracies. Similar
results were observed for the fitness traits (NW, NY,
HW, HY, TR and OP). In general, the expected DGV ac-
curacy for all traits across levels of each scenario were
lower than the accuracy of the parents’ average as re-
ported by Brito et al. [6] which were between 0.44 and
0.58 for traits with heritability estimates from 0.10 to
0.40.
The losses in expected GEBV accuracy in each sce-

nario were always analyzed relatively to the scenario
where only true genotypes were used. For traits not in-
cluded in the selection index over the different scenar-
ios, the losses in expected GEBV accuracy were, on
average, higher compared to the group of traits included
in the selection index used in the Brazilian Braford and
Hereford breeding program. However, the losses in ex-
pected GEBV accuracy for the majority of traits were
greater when using 50 K genotypes imputed from the
8 K SNP panel compared to 15 K. A greater percentage
of animals with imputed genotypes was associated to
higher losses in expected GEBV accuracy, regardless of
the scenario investigated. In other words, losses in ex-
pected GEBV accuracy were higher due to greater error
rates in the genotyping imputation process [19].

Conclusions
The percentage of animals with imputed genotypes in
the training population did not significantly influence
the validation accuracy (Pearson’s correlation), but the
size of the training population did influence the

validation accuracies. The losses in expected GEBV ac-
curacy due to imputation of genotypes were lower when
using the 50 K SNP panel imputed from the 15 K SNP
panel instead of imputation from the 8 K SNP panel.
Therefore, using the low-density panels may allow
Brazilian Braford and Hereford cattle breeders to geno-
type more animals, preferentially using 15 K or 50 K
SNP chip panels, and consequently enlarging the size of
the training population, which might in fact increase the
accuracy of the DGV.
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