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Curvature-driven growth and interfacial noise in the voter model with self-induced zealots
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We introduce a variant of the voter model in which agents may have different degrees of confidence in their
opinions. Those with low confidence are normal voters whose state can change upon a single contact with a
different neighboring opinion. However, confidence increases with opinion reinforcement, and above a certain
threshold, these agents become zealots, irreducible agents who do not change their opinion. We show that both
strategies, normal voters and zealots, may coexist (in the thermodynamical limit), leading to competition between
two different kinetic mechanisms: curvature-driven growth and interfacial noise. The kinetically constrained
zealots are formed well inside the clusters, away from the different opinions at the surfaces that help limit their
confidence. Normal voters concentrate in a region around the interfaces, and their number, which is related to
the distance between the surface and the zealotry bulk, depends on the rate at which the confidence changes.
Despite this interface being rough and fragmented, typical of the voter model, the presence of zealots in the bulk
of these domains induces a curvature-driven dynamics, similar to the low temperature coarsening behavior of the
nonconserved Ising model after a temperature quench.
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I. INTRODUCTION

Consensus, in physical models of opinion dynamics [1–3],
may be achieved locally, within a given subgroup, or globally,
with all interacting agents agreeing on a common position.
Understanding the process of the formation and the probabil-
ity of attaining consensus, how to enforce it, and why it is
sometimes prevented is important to uncover its underlying,
universal mechanisms. An example is the convergence of
results in some scientific fields (vaccines, climate, etc.) that,
despite being widely accepted in the scientific community
[4,5], do not always lead to evidence-based public policies.
Indeed, in actual situations, agreement with other individu-
als may depend on several factors (e.g., the local network,
the intensity of noise, new evidence, propaganda, fake news,
self-confidence, and other psychological reinforcement mech-
anisms). However, in simple systems like the binary voter
model (VM) and related models of language competition, the
process is simplified and considered an ordering one, in which
each agent aligns its opinion with one of its neighbors. In an
infinite, regular lattice of dimension d � 2, the consensus in
the VM is an absorbing state (bulk noise is absent) and is
always attained, albeit with very different time dependences
[6–9]. In two dimensions, the geometry we consider here,
the growth of order by coarsening, in the absence of surface
tension, is not driven by the curvature of the interfaces but by
its noise [10,11].
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In the original VM, agents have no confidence whatso-
ever, and opinions may change upon a single contact with
a different position. The possibility of having strong confi-
dence is among the many modifications introduced to better
describe more complex social phenomena [1–3]. These confi-
dent agents, or zealots, may never change their opinion or may
change it in spite of the opinions of their neighbors [12–16],
introducing some disorder in the system that, besides interfer-
ing with how local consensus groups grow, may even prevent
the system from attaining global consensus. When intermedi-
ate levels of confidence are allowed, the zealot state may be
transient [17–26], and opinions are kept while the necessary
number of contacts is not attained (complex contagion). This
is akin to annealed disorder and represents the inertia in the
process of changing an opinion, associated with a reinforce-
ment mechanism that makes positions stronger or weaker. The
necessity of multiple contacts prior to a change in state is
similar to sampling the local field by interacting with a larger
number of closest neighbors [17]. This noise reduction mech-
anism induces an effective surface tension [17,20,22,26–32],
and some properties become analogous to those of the low
temperature coarsening of the Ising model with nonconserved
order parameters in the Allen-Cahn (model A) universality
class [33] (hereafter IM0).

We propose an alternative model in which, instead of
zealotry being an inherited characteristic, it may develop
depending on the previous history of an individual. While
its confidence is low, the agent behaves as a normal voter.
However, above a given threshold its opinion freezes, and it
becomes a kinetically constrained zealot. This self-induced
disorder may be either irreversible (quenched) or, when
the confidence keeps evolving, reversible (annealed). A
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reversible, or transient, zealot needs multiple interactions with
the opposite opinion in order to reset its confidence and once
again be able to change its opinion. This resetting corresponds
to a complex contagion process, different from the simple, sin-
gle contact process for normal agents. During the dynamics,
clusters of agents with a common opinion form, grow, and
compete for the consensus state. The reinforcement process
between agents with the same opinion leads, after multiple
interactions, to the formation of zealots in the bulk of these
clusters. Because of the constant flipping that occurs close
to the surface where both opinions coexist, the confidences
are repeatedly reset, the agents tend to be normal voters,
and consequently, the surface is very rough and fragmented.
Below the actual interface there is another one that is internal,
separating the bulk zealots from normal voters, all with the
same opinion. Close to this secondary surface, normal voters
who are close to zealots have a persistent neighborhood that
induces an increase in their confidence, eventually increas-
ing the probability of the normal voters becoming zealots
themselves. This seems to be the mechanism responsible for
the effective surface tension of the internal surface, which
behaves as a frame structure for the external one. An important
question is whether the internal surface is enough to turn the
dynamics into a curvature-driven one, in spite of the interface
still being rough as in the original VM. Moreover, what are
the consequences for the probability of attaining a consensus?
How does the approach to the stationary state change, depend-
ing on the parameters of the model? How do the geometric
properties of the opinion clusters (neighboring agents with the
same opinion) differ from those of the pure VM? These are
some of the questions that we try to answer in the following
sections.

II. THE MODEL

The state of each agent is characterized by two variables,
(σi, ηi ). The binary opinion is represented by the discrete
variable σi = ±1, where i = 1, . . . , N . The total number of
agents N corresponds to the sites either in a one-dimensional
(1D) ring or in a two-dimensional (2D) square lattice where
N = L2. Each opinion is associated with some individual
degree of confidence, which is described by the continuous
variable ηi � 0. It depends on the previous history of contacts
and evolves after each interaction. When ηi attains the thresh-
old φ (which is set to φ = 1), the agent becomes refractory
to the opinions of its neighbors, and σi is temporarily frozen,
a form of self-induced disorder. However, ηi keeps evolving,
and when it get smaller than φ, that agent becomes, once
again, susceptible to the opposite opinions of its nearest neigh-
bors, and σi may change. We will refer to transient zealots
simply as “zealots,” while the other agents will be called
“normal.”

In a Monte Carlo step (MCS), N attempts to update ran-
domly chosen agents are performed. Two agents are selected,
i and one of its nearest neighbors, j, whose states are, re-
spectively, (σi, ηi ) and (σ j, η j ) at time t . If their opinions
differ, σi �= σ j , and ηi < φ, the nonzealot focal site changes
its opinion and aligns with j:

σi −→ σ j if ηi < φ. (1)

Although zealots, obviously, do not change their opinions,
the confidences of both i and j are updated, in this case,
accordingly, with

ηi −→ ηi/γ , (2)

η j −→ η j + �η, (3)

where γ and �η are positive parameters. The fact that i is
confronted with a different opinion is enough to change its
confidence by the rescaling factor γ . For intermediate values,
1 < γ < ∞, ηi continuously decreases, and zealots eventu-
ally may become normal once again. When γ � 1, ηi does
not decrease, and becoming a zealot is an irreversible process
that may prevent the system from attaining a consensus. This
mimics the reinforcement observed among conspiracy theo-
rists and among negationists. The confidence of the neighbor
j, on the other hand, always increases by �η because j had
the opportunity to express its opinion to a neighbor. Finally,
when both agents have the same opinion, σi = σ j , the mutual
reinforcement is positive, and both confidences increase:

ηi, j −→ ηi, j + �η. (4)

We study the above competing mechanisms in the extreme
cases γ = 1 and γ → ∞. If γ → ∞ and σi �= σ j , the con-
fidence of the focal agent is always reset; that is, ηi instantly
becomes zero. Thus, whatever the degree of zealotry, only two
steps may be enough for any agent to change its opinion: in
the first interaction the confidence is reset, and in the next step
the opinion may be updated. In this way, the model combines
simple and complex contagion, in which single or multiple
exposures are necessary, respectively, to induce a change in
opinion. The other case, γ = 1, corresponds to the irreversible
limit where the confidence never decreases and the system
becomes frozen once all ηi become larger than φ. Irrespective
of the value of γ , in the initial steps of the dynamics, when
zealots have not yet been created, the model is equivalent to
the standard VM, but there is a γ -dependent timescale when
it crosses over to a new behavior. The main objective of this
paper is, indeed, to describe and understand how the behavior
is affected by the presence of irreducible agents.

III. RESULTS

A. One dimension

Initially, the variables {σi} characterizing the opinion of all
N sites are randomly assigned, chosen with equal probability
of being σi = ±1. The initial level of confidence, instead, is
the same for all agents, ηi = 0. Although we have performed
simulations with several different sizes of the 1D ring, we
present only the results for N = 105, which is enough to
reduce finite size effects. All results are averaged over 100
samples. An important observable is the fraction of links con-
necting neighboring agents with different opinions (defects)
ρ(t ). In addition to it, we also consider the persistence P(t ),
the fraction of sites that have not changed their initial state up
to time t [34].

Figure 1 shows the temporal evolution of both P(t ) and
ρ(t ). Since zealots appear only later in the dynamics (solid
red line), the initial trend is the same as the VM: P(t ) ∼
t−3/8 [35,36] and ρ(t ) ∼ t−1/2 [8]. However, along with the
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FIG. 1. Persistence P(t ) and density of defects ρ(t ) in one di-
mension for �η = 10−2 and γ = 1 (purple symbols) and γ → ∞
(green symbols). The solid black curves correspond to the pure 1D
VM where P(t ) ∼ t−3/8 [35,36] and ρ(t ) ∼ t−1/2. The red curve
shows the very fast increase in the fraction of zealots z(t ). There are
three different regimes. In the initial one, the system follows the VM
behavior. It is followed by an intermediate regime that starts when
zealots first appear, and the curves deviate from the VM behavior.
Eventually, in the third regime, the system returns to the exponents
characterizing the VM behavior.

fast increase in the density of zealots, we observe deviations
from the VM behavior. For γ = 1, once zealots are created,
the system ends in a frozen configuration with two or more
compact blocks of opposite opinions, and consensus is never
achieved. On the other hand, for γ → ∞, both P(t ) and ρ(t )
slow their decrease in a transient interval, soon returning to the
VM exponent at longer times, albeit with a larger coefficient.

The different temporal regimes are illustrated in the snap-
shots in Fig. 2. In the initial regime in the left panel, zealots are
absent, and the dynamics is the same as the VM. The system
is divided into small domains that coalesce once two walls
collide [37]. In the intermediate regime in the middle panel,
zealots appear (dark colors) in the interiors of the domains.
Normal agents with both opinions (light colors) become con-

FIG. 2. Snapshots for the 1D case with γ → ∞ and �η = 10−2,
showing the temporal evolution in the three different regimes (time
goes from top to bottom, and only part of the lattice is shown). Dark
colors are used for zealots, while normal voters (ηi < φ) are indi-
cated by light colors. In the initial regime (left panel), the dynamics
is indistinguishable from the original VM, and several small domains
coexist. The middle panel shows the intermediate regime, where
many of these domains have already coalesced and the first zealots
appear away from the interfaces. Finally, the right panel illustrates
the long time behavior, where there are two compact blocks of zealots
with opposite opinions and, in the middle, a region with normal
agents.

FIG. 3. Mean square displacement R2(t ) of the single wall for
different values of �η. The thin black line is the linear, diffusive
behavior of the VM. At both short and long times, the behavior
is diffusive, R2(t ) ∼ t , for all values of �η. There is, however, an
intermediate, subdiffusive regime in which the curves depart from
and, later, return to the linear behavior.

fined between compact blocks of zealots, characterizing the
late stage of the dynamics in the right panel. Inside these
stripes, the normal agents follow the VM, and once the mov-
ing border (where light red and light blue are neighbors) gets
closer to the zealots, decreasing their confidence, the width
of the stripe may change. Because of this additional step
necessary to unblock the zealots, the spreading is slower than
in the VM. Small domains last longer, and both the persistence
and the number of interfaces are relatively larger.

The coalescence of domains, in one dimension, is driven
by the diffusive behavior of the domain walls [37]. In order
to better understand how the presence of zealots affects such
behavior, we consider an initial state in which there is a single
domain wall, located at x(0), dividing the system into two
blocks, each with one of the σi = ±1 states. The boundary
conditions are open, γ → ∞, and all sites start with ηi = 0.
The mean square displacement R2(t ) = [x(t ) − x(0)]2, where
x(t ) is the location of the interface at time t , is shown in Fig. 3
for different values of �η. In all cases, two timescales are
present. The initial behavior is purely diffusive, as in the VM
(thin black line), and R2(t ) ∼ t . The smaller �η is, the longer
it will take for the system to deviate from the original VM
behavior, becoming subdiffusive. This deviation occurs at an
intermediate time that behaves as (�η)−1 when zealots first
appear. On a longer timescale, which also goes as (�η)−1,
the diffusive behavior is resumed. At the late stage of the
dynamics, all activity is confined to the stripe between the
two blocks of zealots, and the interface evolution depends
on unblocking the neighboring zealots, which occurs on a
longer timescale. The overall behavior is reminiscent of glassy
systems, with a fast timescale associated with the Brownian
motion inside the cage formed by neighboring particles and a
slower timescale related to the slow restructuring of the cages
themselves.

B. Two dimensions

In the extreme case γ = 1, as mentioned above, the con-
fidence ηi never decreases, and the creation of zealots is
irreversible. The self-induced disorder is thus quenched. If �η
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FIG. 4. Snapshots at different times for the 2D VM (top row) and
our model (middle and bottom rows) with γ → ∞ and �η = 10−2.
Each color shows a different opinion, with the darker shades indicat-
ing zealots, while light colors represent normal agents. The onset of
zealots induces an effective surface tension, and the bulk dynamics
becomes curvature driven. Thus, while the interfaces between normal
agents with opposite opinions (light red and light blue) are still rough
as in the original VM, the internal walls between normal agents and
zealots with the same opinion are smoother. Instead of a random
initial state, in the bottom row we consider all agents with one
opinion inside a circle, surrounded by the other opinion.

is large enough, the compact domains of zealots grow very
quickly until they collide with the neighboring domains. Thus,
as in one dimension, the two-dimensional system with γ = 1
reaches a frozen state without normal agents, and consensus is
avoided. We focus here, instead, on the γ → ∞ case, where
the confidence is fully reset after a single contact with a
different opinion. For intermediate values of γ the system
behavior interpolates between these two extremes. The results
discussed below were averaged over at least 1000 samples.

The behavior of the case γ → ∞ is illustrated in Fig. 4
when starting from a random initial state (middle row). For
comparison, the evolution of the original VM is shown in
the top row. Deep inside the domains, certainty builds up,
and the agents become zealots, creating an internal interface
between bulk zealots and normal agents. The presence of
zealots induces an effective surface tension, and this inte-
rior interface gets smoother. The dynamics become curvature
driven, similar to those of the out-of-equilibrium 2D Ising
model, as shown in the snapshots in the middle and bottom
rows of Fig. 4. As will be shown below, the analogy with
the model A dynamical universality class [33], to which the
out-of-equilibrium Ising model belongs, goes beyond these
visual similarities. Being curvature driven, the circular domain
shrinks [38–41], with a much reduced fragmentation when
compared with a similar condition for the VM [10] (see also

FIG. 5. Snapshots showing how the VM stripe develops, after
1000 MCSs, from a specially prepared initial state with two equal
regions of opposite opinions in the γ → ∞ case. Only the central
part of the system is shown. From left to right the values of �η are,
respectively, 1, 10−1, and 10−2. Notice that the active region gets
wider as �η decreases with many small domains, without zealots,
fully embedded in the opposite opinion.

Fig. 10 below). Whatever the initial condition, the external
interfaces remain rough at all times because normal agents
with both opinions get confined in the VM superficial stripe.
The fluctuations of the main interface cause a constant flipping
that keeps the certainties below the threshold in this region,
setting the average distance between the external and internal
interfaces. The width of the VM stripe depends on both �η

and γ , as illustrated in Fig. 5 for an initial state with a flat
interface within two equal sized domains. For large values of
�η zealots form very quickly, and the dynamics get blocked
close to the initial state (notice that the initial state is absorbing
for the IM0; left panel). As �η decreases, the VM stripe
becomes wider, and both the roughness of the interface and
the number of fragmented clusters increase (middle and right
panels). Of course, when �η → 0, no zealot is formed, and
the VM stripe is the whole system.

Figure 6 presents the behavior of the persistence P(t ).
Similar to the 1D case, the initial regime is equivalent to the
VM [9,45] because zealots are still absent. However, upon
the sudden rise in the number of zealots (red solid line),
P(t ) slows down and deviates from the VM curve (thin black
line). For increasing system sizes, P(t ) develops a power-law

FIG. 6. Persistence P(t ) of increasing linear sizes L for �η =
10−2 and γ → ∞. In the initial regime there are no zealots, and the
behavior follows the VM (L = 64; thin black line). As the density of
zealots increases (red thick line), P(t ) departs from this behavior and
eventually develops a power law, P(t ) ∼ t−θ . The thick black line
shows the 2D Ising behavior whose exponent, after a quench from
high temperature, is θ � 0.2 [42–44].
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FIG. 7. Density of active interfaces ρ(t ), defined as the frac-
tion of neighboring agents with different opinions, for �η = 10−2,
γ → ∞, and different sizes. The VM results for L = 64 are shown
for comparison (thin black line) along with the expected, asymptotic
behavior [8,11] (thick red line). Deviations from the VM behavior
start again when zealots rapidly invade the lattice. Since domains
become smoother, the total perimeter, measured by ρ(t ), presents a
strong decrease relative to VM. For large enough systems, a power
law with an exponent slightly below 1/2, ρ(t ) ∼ t−0.46, develops.

behavior (thick black line), P(t ) ∼ t−θ , whose exponent is
consistent with the one for the 2D Ising model after a temper-
ature quench from high temperature, θ � 0.2 [42–44]. Most
of the persistent spins are in the zealot bulk region, and the
fluctuating interface between different opinions must collide
with the internal interface in order to destabilize the zealots,
originating the slowdown.

Figure 7 shows the fraction ρ(t ) of links connecting neigh-
boring agents with different opinions, i.e., located on the
rough active interface that separates two domains. For γ →
∞, sites belonging to a stripe whose width corresponds to
the mean height of the surface will have a high probability of
having small values of ηi, thus following the VM dynamics.
After zealots are formed, ρ(t ) presents a strong decrease,
deviating from the slow inverse logarithm behavior of the
VM [8]. Moreover, for large enough systems, a power-law
develops, ρ(t ) ∼ t−0.46, whose exponent is consistent with
the model A universality class, although it is slightly below
1/2. This deviation from the characteristic 1/2 exponent of
the curvature-driven coarsening was observed in similar mod-
els [20,26,27,32]. Notice that although larger clusters have
an underlying structural frame provided by the zealot bulk,
smaller domains that are formed by fragmentation close to
the surface are, in general, purely VM and contribute with a
slower, logarithmic time dependence. This effect, along with
those samples that have a longer lived metastable structure
(see below), seems to be the main mechanism explaining this
small exponent difference. Despite its short-range roughness
that is analogous to the VM, the smaller value of ρ(t ) shown
in Fig. 7 indicates that on a larger scale the clusters are more
compact. This is a consequence of the bulk of sufficiently
large domains, formed by zealots, whose growth is driven by
curvature. The presence of these more compact regions has
a strong influence on the long range properties of the VM
region around the bulk, providing a rather smooth support that
decreases the overall perimeter.

FIG. 8. Distribution h(T , L) of the consensus time T with �η =
10−2 and γ → ∞. Our model, different from the VM, which has
a single timescale [11], also develops a longer timescale related to
transient stripes, similar to the IM0. Good collapses are obtained
by rescaling the horizontal axis with Lα ln L: α � 2 for the first
peak (left inset), and α � 3.5 for the second one (right inset). In the
vertical direction, α′ = 3.5 for both peaks.

In the IM0, the asymptotic state is either fully magne-
tized or divided into multiple (most often two) parallel stripes
[46–52], and either of these possible fates is decided early
in the dynamics, when it approaches the percolative criti-
cal point [53–57]. The time to attain the former grows as
T ∼ L2 for most of the initial states [47]. However, a small
fraction of these initial states develops diagonal stripes that
slow down the dynamics, with the characteristic time in-
creasing as T ∼ L3.5 [47,48,52]. For the VM, since it lacks
surface tension and straight interfaces are unstable, no struc-
tures resembling stripes are formed. All initial states do
converge to consensus in a time whose average scales as
〈T 〉 ∼ L2 ln L [6,7,11]. As a consequence, the single-peaked
consensus time distribution h(T , L) obeys the scaling relation
h(T , L) = L−α′

H (T /Lα ln L) [11]. In our model, once zealots
are formed and curvature-driven dynamics becomes impor-
tant, some initial states, with clusters that wrap the system in
a single direction, develop transient structures that are similar
to stripes. Nonetheless, since the dynamics at the surface are
driven by interfacial noise, these stripes remain unstable, and
the system eventually converges to consensus. Nonetheless,
the presence of such stripes introduces a new timescale to
attain consensus. This is the origin of the second peak in
Fig. 8 for the distribution h(T , L) and has been observed in
similar models [22,26–28,32]. The main contribution, how-
ever, comes from those initial states that are not delayed, and
consensus is attained faster because, early in the dynamics,
a percolating cluster, wrapping the system in two directions
[11], forms. Notice that although a double-peak structure was
also observed for the IM0 [52], in our model the second peak
also has a contribution from those states whose stripes are
parallel to the lattice directions, while in the IM0 they lead
to absorbing states and only diagonally striped configurations
contribute. In the left inset in Fig. 8 an excellent collapse is
obtained with Lα ln L and α � 2. This is similar to the L2

scaling of the corresponding first peak for the IM0 but also
includes the logarithmic correction from the VM [11]. The
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FIG. 9. Consensus time distribution h(T , L) for a single size,
L = 64, and different values of �η. For comparison, the VM (black
line) and the IM0 (red line) are also shown. Averages over 104

samples were considered.

second peak collapse, with α � 3.5, is shown in the right
inset.

Although one could expect a simple interpolation, by vary-
ing �η from the VM (when �η → 0) and the IM0 (for
�η → 1), Fig. 9 shows that the dependence on �η is nontriv-
ial. For �η = 10−3, there is a single, large peak in h(T , L).
By slightly increasing �η, a second peak appears, while the
first one moves towards the position of the corresponding first
peak of the IM0. After the location of this peak has attained
its minimum value, this tendency is reversed for intermediate
values of �η and starts approaching the position of the VM
peak. Notice that, for all values of �η, the first peak is within
the first peak of the IM0 and the VM single peak. For �η = 1,
however, the whole distribution has the largest displacement
away from the IM0 distribution. Thus, the active region on the
surface of all clusters, whatever its width, always has a delay-
ing effect. The second, smaller peak, once it forms, does not
seem to present a minimum and always moves to larger times,
becoming even larger (and wider) than the corresponding peak
of the IM0.

In order to understand the origin of the above minimum,
we consider a specially prepared initial state that prevents the
formation of stripes. As illustrated in the bottom row of Fig. 4,
one opinion is initially fully embedded in a circular domain
while the other one surrounds it [17,20,30]. Figure 10 shows
the time evolution of the relative area of the selected opinion
A(t )/A(0), regardless of the fragmentation that may occur on
the surface. For very small values of �η, the possible presence
of zealots late in the dynamics has little impact, and the
behavior is logarithmic, following the VM. As �η increases,
the frozen bulk forms along with the VM region closer to the
surface whose width depends on �η. While the drop and its
fragments decrease in size, the VM region roughly retains its
width, forcing the internal border with the bulk (zealots) to
recede and disappear. During the time interval when zealots
are present, the behavior is linear, similar to that of the IM0,
A(t ) � A0(1 − λt ). The parameter λ is a monotonically de-
creasing function of �η (bottom inset in Fig. 10). As �η

increases from 10−4 to 1, λ decreases from, roughly, 1.4 to 0.2,
while for the IM0, λ � 2 [41] and the drop disappears faster
than in all cases considered here. An interesting consequence

FIG. 10. Time evolution of the average area A(t )/A0 of an ini-
tially circular domain containing a single opinion (Fig. 4, bottom
row) for L = 256 and several values of �η. Averages are over 1000
samples. The straight black lines are linear fits at short times, whose
declivity λ is the rate at which the area shrinks (bottom inset). Notice
that above the minimum for �η � �ηmin ≈ 10−2, the linear behav-
ior, characteristic of the Ising model [58,59], persists in the whole
interval, while for smaller values, it crosses over to the logarithmic
behavior. The average consensus time T (�η) is shown in the top
inset.

is that the faster the initial linear decrease is (�η → 0), the
sooner the behavior of A(t) deviates from it. Moreover, for
small �η, once A(t ) becomes logarithmic, the average con-
sensus time increases. On the other hand, for �η → 1, the
VM region is very small, and because most of the agents are
zealots, the dynamics slow down, and λ is small. In this case,
even if the deviations from the linear behavior cannot be seen
in the linear scale of Fig. 10, the average consensus time is
large once again. Thus, 〈T 〉 has a minimum [18,19,24] at an
intermediate value, close to �η � 10−2. Note that although
the above behavior is rather clear for a single droplet, once a
more general, random initial state is considered, the trend for
the average area is not (not shown). The probable origin is the
VM region that dresses each compact bulk. Because it is easily
fragmented, there is a large contribution of small domains to
the average from sizes that are much less frequent in the IM0.

IV. CONCLUSIONS

We introduced an opinion model whose agents have inter-
mediate levels of confidence that may interfere in their process
of changing opinion. When all agents have low confidence,
in the beginning of the dynamics, the model is equivalent to
the VM, where a single contact with a different opinion is
enough for an agent to change its own. Opinion reinforce-
ment builds up confidence, and above a certain threshold,
the agent becomes a kinetically constrained zealot whose
opinion is frozen. But regardless of the nature of the agents,
the variables characterizing their confidence keep evolving
as the agents interact with their neighborhood. We consid-
ered two limiting cases depending on the parameter γ , which
rescales the confidence after an agent is confronted with a
different opinion. For γ = 1, the zealot state is irreversible,
while for γ → ∞ the dynamics allows the zealot state to be
reversed and coexistence with normal voters. Similar opin-
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ions segregate in spatial domains, and in their bulk, because
of the positive reinforcement, zealots first appear once the
confidence threshold φ is attained. Because the zealots are
frozen, there is an increased probability of repeated contacts
with their nonzealot neighbors, increasing their confidence as
well. This mechanism of noise reduction smooths the internal
interface between zealots and normal voters with the same
opinion. This smoother internal surface induces an effective
surface tension, acting as a structural frame that turns the
dynamics from interfacial noise to curvature driven. As a
consequence, several properties become analogous to those of
the low temperature Ising model with a nonconserved order
parameter (IM0) in the Allen-Cahn (model A) universality
class [33]. Close to a domain border, continued interaction
with the opposite opinion keeps the confidence of these agents
low. Normal agents are thus confined to this region, close
to the surface, and their number depends on �η, i.e., on
how fast the zealot bulk grows. Although the curvature-driven
growth was already observed in other variations of the VM
[17,20,22,26–32], our model allows us to tune the number of
normal voters close to the surface through �η. Interestingly,
the internal surface induces a curvature-driven growth, but the
actual surface is driven by the interface noise typical of the
VM, becoming rougher and more fragmented than in other
models.

The width of the normal voter region close to the surface,
which depends on �η (see Fig. 5), determines how fast the
domains shrink and, consequently, the exit time, i.e., how long
it takes to attain consensus. While a large domain shrinks,
the zealot bulk disappears first, and that cluster dynamics is
no longer driven by the curvature of the interface. This late

regime is dominated by the normal voters, and the dynamics
becomes logarithmic. How important this final regime will be
depends on the width of the stripe with normal voters around
the bulk. When �η is large, it is thin, and most of the dynam-
ics is dominated by the curvature-driven mechanism induced
by the zealots. However, despite being curvature driven, the
dynamics is still slower than in the IM0 because of the large
number of zealots: since they are frozen, it is first necessary
to turn them into normal agents. On the other hand, for small
�η, the stripe is thick, and once the bulk disappears, leaving
only the normal voters, there is a crossover to a slower, log-
arithmic regime. It is the interplay between both mechanisms
that explains the existence of a minimum consensus time as
a function of �η, directly related to the superficial normal
voters.

There are some possible generalizations of the model that
would be interesting to investigate. For example, individual
heterogeneities [60] in the values of γ , {γi}, can be considered.
If some of the agents have γi � 1, they may become perma-
nent zealots. Another possible modification is to reintroduce
the conservation of the magnetization, which is present in the
pure VM but broken in our model, by a local conservation rule
[61]. Such conserved order parameter dynamics are known
to be in a different universality class from the nonconserved
case [33,62], and their effect in the present model is worth
investigating.
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