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Abstract. In this article, we consider a one-dimensional symmetric exclusion process in weak
contact with reservoirs at the boundary. In the diffusive time-scaling the empirical measure
evolves according to the heat equation with Robin boundary conditions. We prove the asso-
ciated dynamical large deviations principle.
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1. Introduction

The investigation of the thermodynamic properties of stationary nonequilibrium states of
interacting particle systems has been proven to be an important step in the understanding
of nonequilibrium phenomena and a rich source of mathematical problems Derrida (2007);
Bertini et al. (2015); Jack (2020).

In the context of lattices gases, the empirical measure is the only relevant thermodynamical
quantity in the macroscopic description of the system, and the thermodynamical functionals,
as the free energy, can be identified to the large deviations rate functional.

While in equilibrium the stationary state is given by the Gibbs distribution associated to
the Hamiltonian, in nonequilibrium the construction of the stationary state requires solv-
ing a dynamical-variational problem which defines the so-called quasi-potential Freidlin and
Wentzell (1998).

At the beginning of this century, Derrida et al. (2002) considered the one-dimensional
symmetric exclusion process in strong contact with reservoirs. In this context, the empiri-
cal measure evolves in the diffusive time-scale according to the heat equation with Dirichlet
boundary conditions (Kipnis and Landim, 1999). Expressing the stationary state as a product
of matrices (Derrida et al.; 1993), they obtained an explicit formula for the large deviations
principle rate functional of the empirical measure under the stationary state, the so-called
nonequilibrium free energy.

Later, Bertini et al. (2002) derived the Derrida-Lebowitz-Speer formula (in short DLS for-
mula) for the nonequilibrium free energy extending to infinite dimensions the dynamical ap-
proach introduced in Freidlin and Wentzell (1998). More precisely, they first proved a dynam-
ical large deviations principle for the empirical measure for symmetric exclusion processes in
strong contact with reservoirs Bertini et al. (2003). Denote by Ijg7)(u) the large deviations
rate function of the dynamical large deviations principle. Hence, Ijg 1y (u) represents the cost
of observing a trajectory u(t) in the time-interval [0,T]. Let p be the stationary profile of the
hydrodynamic equation, that is, the typical density profile under the stationary state. Define
the quasi-potential as

= infinf]
V(v) = mnfinfljor(u),

where the second infimum is carried over all trajectories u(t) connecting the stationary density
profile p to a density profile v in the time interval [0,7]: w(0) = p, w(T) = . It is proven in
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Bertini et al. (2002) that the quasi-potential V' coincides with the nonequilibrium free energy,
i.e., that it satisfies the DLS’ equations.

In the sequel, Bodineau and Giacomin (2004); Farfan (2009) derived a large deviations prin-
ciple for the empirical measure under the stationary state from the dynamical one, with rate
functional given by the quasi-potential. This result was later extended to weakly symmetric
exclusion processes in strong contact with reservoirs Enaud and Derrida (2004); Bertini et al.
(2009b,a, 2011) and to reaction-diffusion models Landim and Tsunoda (2018); Farfan et al.
(2019).

It has long been understood that these results extend to boundary-driven one-dimensional
symmetric exclusion processes in weak contact with reservoirs Derrida (2016). But only re-
cently, this result appeared in Derrida et al. (2021) through the matrix ansatz product method.

In this article, we accomplish the first step in the project of deriving the large deviations
principle for the empirical measure under the stationary state, through the dynamical ap-
proach, for boundary-driven one-dimensional symmetric exclusion processes in weak contact
with reservoirs. The law of large numbers has been obtained in Baldasso et al. (2017); Franco
et al. (2021). We prove here the dynamical large deviations, while in the companion paper
Bouley et al. (2021), it is shown that the quasi-potential satisfies the DLS’ equations obtained
in Derrida et al. (2021) for this model. In Franco et al. (2021), a large deviations principle is
proved for symmetric exclusion processes in even weaker contact with reservoirs.

2. Notation and Results

The model. We consider one-dimensional, symmetric exclusion processes in a weak contact
with boundary reservoirs. Fix N > 1, and let ey = 1/N, vy = 1—(1/N), Ay = {en,..., (N —
2)en,tn}. The state-space is represented by Qy = {0,1}*~ and the configurations by the
Greek letters 1, £ so that n,, x € Ay, represents the number of particles at site x for the
configuration 7. Here and below all notation introduced in the text and not in displayed
equations is indicated in blue.

Fix throughout this article, 0 < a < 8 < 1, A > 0, B > 0. The generator of the Markov

L%A"B’B, is given by

process, represented by Ly =
Ly = L 4 LRk 4 b
In this formula, for every function f: Qx — R,

(LR F)n) = N? Y [fo™*F¥n) — f(n)], (2.1)

zEAG;

where A9 represents the interior of Ay, A = Anx \ {tn} = {en,..., (N —2)en}, and

N
(LN)(n) = " [(1=ney) o + (1= a)mey |[f(0Nn) = f(n)] 02)
r N .
(LN (n) = 5 [(L=ney) B+ (1=B)ney [[F(@™n) — f(n)] .
From now on, we omit the subindex N from ¢y and ty. In the definitions above,
My ify#xz,z+e :
f
(ax’“en)y = M. fy==x and (0%n), = "My 1 y7e (2.3)
1—-n, ify==x.

U ify=mz+e
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For a metric space X, denote by D([0,7T],X), T > 0, the space of right-continuous functions
x: [0,T] — X, with left-limits, endowed with the Skorohod topology and its associated Borel
o-algebra. The elements of D([0,T],Qy) are represent by n(-).

For a probability measure p on Qp, let P, be the measure on D([0,7],y) induced by
the continuous-time Markov process associated to the generator £y starting from p. When
the measure p is the Dirac measure concentrated on a configuration n € Qy, that is p = 9,
we represent Ps simply by P,. Expectation with respect to P, P, is denoted by E,, E,,
respectively.

Hydrodynamic limit. Denote by M the set of non-negative measures on [0, 1] with total mass
bounded by 1 endowed with the weak topology. Recall that this topology is metrisable and
that, with this topology, M is a compact space. For a continuous function F': [0,1] — R and
a measure 7 € M, denote by (m, F') the integral of F' with respect to m:

(m, F)y = /F(SU)T[‘(dl‘)

Given a configuration ) € Qp, denote by m = m(n) the measure in M obtained by assigning
a mass N~! to each particle:

T =n(n = + Z Ne Oz -
rEAN

The measure 7 is called the empirical measure. Denote by = : D([0,T],Q2n) — D(]0,T], M)
the map which associates to a trajectory m(-) its empirical measure:

w(t) = 7(n(t) = 5 Y m(t)ds . (2.4)
TEAN

For a probability measure p in Qy, let Qﬁf be the measure on D([0, 7], M) given by ny =

]P’l]y o w~!. The first result, due to Baldasso et al. (2017), establishes the hydrodynamic
behavior of the empirical measure.

Theorem 2.1. Fix T > 0, a measurable density profile v: [0,1] — [0,1], and a sequence
{VN}Nzl of probability measures on Q2 associated to v in the sense that

lim I/NH<7T,H> - /Olfy(:v)H(x)dz" > 5] =0 (2.5)

N—o0

for all continuous functions H: [0,1] — R and § > 0. Then, the sequence of probability
measures QI]/VN converges weakly to the probability measure Q concentrated on the trajectory
m(t,dx) = u(t,z)dzx, where u is the unique weak solution of the heat equation with Robin
boundary conditions
ou = Au
(Vu)(t,0) = A [u(t,0) — ]
(Vu)(t,1) = B~'[B — u(t,1)]
u(0,-) = ~(-).

In this formula, Vu stands for the partial derivative in space of w, Ju for its partial
derivative in time and Aw for the Laplacian of u in the space variable. The definition of
weak solutions of equation (2.6) and the proof of uniqueness of weak solutions is provided in
Appendix B. It is also presented in Baldasso et al. (2017).

(2.6)
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The energy. Denote by M, the subset of M of all measures which are absolutely continuous
with respect to the Lebesgue measure and whose density takes values in the interval [0, 1],
that is, Mae = {m € M : w(dx) = y(x)dz and 0 < y(z) < 1}.

For T' > 0, let the energy Qo7 : D([0,T], Mac) — [0, o] be given by

Qpo,ry(u) = sup 1)

::sup/dt/ (t,z) (VG)(t,x) x—/dt/Gtx d:v,
(0,

1) — R with compact

(2.7)

where the supremum is carried over all smooth functions G : [0, T
support.

Remark 2.2. In this definition and below, for a functional ®: D([0,7T], M,.) — R, we often
write ®(u) instead ®(7) when 7 (t,dx) = u(t, z) dz.

Clearly, the energy Q7] is convex and lower semicontinuous. Moreover, if Q 7j(u) is
finite, v has a generalized space derivative, denoted by Vu, and

Qjo,7)(u /dt/ (Vaug)? da - (2.8)

In other words, u belongs to the Sobolev space H!( | x [0, 1]), introduced below in Section
4. Denote by Dg([O T], M) the trajectories in D([O T], M,.) with finite energy.

The rate functional. For T' > 0 and positive integers m,n, denote by C™"([0,7] x [0,1]) the

space of functions G: [0,7] x [0,1] — R with m derivatives in time, n derivatives in space

which are continuous up to the boundary. Denote by C;""([0,77] x [0,1]) the functions G in

C™"(]0,T] %[0, 1]) such that G(t,0) = G(t,1) = 0 for all t € [0,T], and by C¢"" ([0, T] x (0, 1))

the functions in C™"™(]0,T] x [0, 1]) with compact support in [0, 7] x (0, 1).
For0<p<1,D>0,0<a<1, MeR,let

bpn(a, M) = {1 —alol™ ~1] + all —o] [ ~1]}. (2.9)
Fix a trajectory m(t,dz) = u(t,z)dr € Dg([0,T),Myc). Then, for almost all ¢ € [0,T7,
fol(Vut)2 dz is finite, and therefore u(t,-) is Holder-continuous. In particular, u(¢,0) and
u(t, 1) are well defined for almost all ¢.
Denote by (-, -) the usual scalar product in £2(]0,1]) fo x)dx for f,g €
£2([0,1]). Recall the convention established in Remark 2. 2 For each H in C ’ ([ T] % [0,1]),
let Jr, i De([0,T], Mac) — R be the functional given by

Jra(u) = (up, Hp) — (uo, Ho) / (ut, Oy Hy) dt
T T T
0 0 (2.10)

), (VH,)?) dt

S

th\

), Hi(0)) + bgp(u(l), H(1)) } dt .
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In this formula and below, o(a) = a(1 — a) stands for the mobility of the exclusion process.
Since trajectories in Dg([0,T], Mac) have generalized space-derivatives, we may integrate by
parts the second line and write the functional Jp g (-) as

T
Jra(u) = (upr,Hp) — (uo, Ho) — /0 (u, OpHy) dt
T T
2
+/O (Vuy, VHy) dt—/o (o(ue), (VHy)) dt (2.11)

T
- /0 {ba,A(ut(O), Hy(0)) + bgp(u(l), Hy(1)) }dt :

We extend the definition of Jr () to D([0, 7], M) by setting
JT,H(W) =o0 if 7 € Dg([oaT]’Mac) .

Remark 2.3. This definition differs from the one presented in Bertini et al. (2009b); Farfan
et al. (2011); Franco et al. (2021) in the context of exclusion processes with Dirichlet boundary
conditions. There, one defines Jr g (-) in D([0, 7], Mac) by an equation similar to (2.10) with
ut(0), u(1) replaced by the densities o, 3, respectively. Here, as the boundary values appear
and are not fixed by the dynamics, in the definition of the functional Jr g, one is forced to
restrict the definition to trajectories with finite energy. Otherwise, the boundary values of a
density profile are not defined.

Let Ijory(-): D([0,T], Mac) — [0, +00] be the functional defined by

Tory(uw) = sup Jra(u) . (2.12)
HeC2(]0,T]x[0,1])

Fix a density profile v in Mac, and let Ijg (- |v): D([0,T],M) — R be given by

Lo (m) if mo(dr) = y(z)dz as.,

To(mh) = { (2.13)

oo otherwise .
Theorem 2.4. Fiz T > 0 and a measurable function v : [0,1] — [0,1]. The function
Lo (-ly) = D([0,T], M) — [0,00] is convex, lower semicontinuous and has compact level
sets.

This result is proved in Section 3, where we also show, in Lemma 3.1, that any path 7 with
finite rate function, Ijg 1) (m]y) < o0, is weakly continuous in time. Moreover, Proposition 3.5
states that there exists a finite constant Cy such that

T 1 YVu 2
/0 dt/o [O'(u]) der < Cy {I[O,T] (u)+1}

for all w in Dg([0,T], Mac), where Ijg 7j(u) is the rate functional introduced in (2.12).
In Section 4, we obtain an explicit formula for the action functional. Proposition 4.5 states

that Ijp 71(-) can be expressed as [ [(01)T]( )41 [(02 ) }( -). The first term provides the contribution
to the rate function due to the evolution in the interior of the interval [0, 1], while the second
one the contribution due to the evolution at the boundary.

In Section 5, we show that trajectories with finite rate function can be approximated by

smooth ones. The precise statement requires some notation.
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Definition 2.5. Given v € My, let IL, be the collection of all paths 7 (t,dz) = u(t,z)dz in
D(]0,T], M,c) such that
(a) There exists t > 0, such that u follows the hydrodynamic equation (2.6) in the time
interval [0, t]. In particular, u(0,-) = ~(-).
(b) For every 0 < § < T, there exists € > 0 such that ¢ < u(t,z) <1 —¢ for all (¢,z) in
6,T] [0, 1)
(¢) w is smooth on (0,77 x [0, 1].

Theorem 5.2 states that for all v : [0,1] — [0,1], the set IL, is Ijg7)(:|y)-dense. This
means that any trajectory 7 in D([0,T], M) with finite rate function can be approximated by
a sequence of trajectories 7" € IL, in such a way that Ij 7 (m™) converges to I 0,7] (7). This is
one of the main technical difficulties in the proof of the lower bound.

We also provide in Section 4 an explicit formula for the rate function of trajectories in IL,.
ForO0<o<1,D>0,0<a<1, MeR,let

pop(a, M) = %{[l—a]geM - a[l—g]e_M}, (2.14)
¢o,p(a, M) = %{[1—&]@[1—CM—|—M€M] + a[l—g][l—e_M—Me_M]}.

Proposition 2.6. Fiz a density profile vy : [0,1] — [0,1] and a trajectory w in I1,. Then, for
each t > 0, the elliptic equation (for H)
ou = Au — 2V{o(u) VH} ,
Vuy(1) — 20(u(1)) VH(1) = pgp(w(l), Hi(1)), (2.15)
Vug(0) = 20(ur(0)) VH(0) = —pa,a(ue(0), Hi(0)) ,
has a unique solution, denoted by Hy. The function H belongs to CY2([0,T] x [0,1]), and the
rate functional Ijo 11(u) takes the form
T 1 T
Tor(u) = / dt/ o(u) (VHy)? do + / cs.5(ur(1), Hy(1)) dt
0 0 0 (2.16)

T
+ /0 Ca7A(ut(0), Ht(O)) dt .

Dynamical large deviations principle. The main result of this article reads as follows.

Theorem 2.7. Fiz T > 0, v € My and let {n™N}nen be a sequence of configurations. Assume
that 6,~ is associated to v in the sense of (2.5). Then, the sequence of probability measures
{Q,~ }n>1 satisfies a large deviation principle with speed N and good rate function I7(-|7y).
Namely, for each closed set C C D([0,T], M) and each open set O C D([0,T], M)

1
li —logPN [V eC] < — inf ]
1]{[njotipN og nN[F ] = 71rfelc [O,T}(Wh’)

.. 1 N N .
lﬂl&fﬁloanN[ﬁ €0] > - ;IGlgI[O’T](T("”}/).

Remark 2.8. In contrast to Kipnis et al. (1989); Bertini et al. (2009b), the large deviations
principle is formulated here for the empirical measure and not for the empirical density. More
precisely, the empirical measure m(t), defined in (2.4), is a sum of Dirac measures, while in
Kipnis et al. (1989); Bertini et al. (2009b) () is defined as a measure, absolutely continuous
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with respect to the Lebesgue measure and whose density takes values in the set {0, 1}. Defining
7(t) as a singular measure requires to prove that Ijgq(m) = +oo if m is not absolutely
continuous with respect to the Lebesgue measure. The proof presented in Subsection 6.3 of
Farfan et al. (2011) applies to the dynamics considered here.

3. The rate functional Ijo7(-)

In this section, we present some properties of the rate function Ijg () and prove Theo-
rem 2.4. Fix, once for all, a measurable density profile « : [0, 1] — [0, 1].

Note: Throughout this article, given a function u : [0,7] x [0, 1] — R, we represent by u; and
u(t) the function defined on [0, 1] and such that w(x) = u(t, x).

We start with two elementary bounds. The first estimate asserts that the cost of a trajectory
in a interval [0, 7] is bounded by the sum of its cost in the intervals [0, S] and [S,T]. Let
mu : Ry x [0,1] — R, r > 0, be the function defined by 7mu(t,z) = u(t + r,z). For all
7(t,dz) = u(t,z) dx in D(]0,T],My) and 0 < S < T,

Tory(u) < Ipo,s)(w) + I r-s)(Tsu) - (3.1)
The proof of this claim is elementary and left to the reader. It relies on the fact that sup,,{a, +
bn} < sup,, a, + sup,, by,.
The second assertion states that the cost of a trajectory on a subinterval of [0, 7] is bounded
by its total cost. For all 7(¢,dz) = u(t,z) dx in D([0,T], Mac) and 0 < S < T,

Iip,s1(u) < Iy (u) - (3.2)
To prove this claim, assume that I|p g)(u) < 0o, and fix ¢ > 0. The same argument applies to
the case I|y g)(u) = oo. By definition of the rate function, there exists H in Cct2(]0, 8] x [0,1])
such that

I[(),S}(u) < Jsu(u) + €.

Extend smoothly the function H to [0, S + ¢] x [0, 1] for some d > 0. Let o, : [0,7] — [0, 1],
n > 1, be a sequence of smooth, monotone functions such that o,(t) = 1 for 0 < ¢t < §
and o,(t) = 0 for S+ (1/n) < t < T. Define the function H, : [0,7] x [0,1] — R as
H,(t,x) = H(t,z) o, (t) Then,

Jou(u) = lim Jrp,(u) < Ioz(u),

as claimed.
A similar argument yields that the cost of a trajectory u in a time-interval [R, R 4 5] is
bounded by the total cost. More precisely,

Ijo,s1(TrRu) < Ipory(u) - (3.3)
for all S >0, R > 0 such that R+ S <T.
The proof of the next result is similar to the ones of Bertini et al. (2003, Lemma 3.5), Farfan
et al. (2011, Lemma 4.1). We present it here in sake of completeness.

Lemma 3.1. Fiz T >0 andy € Mac. Let u be a path in D([0,T], Mac) such that Ijg r(uly) <

oo. Then u(0,z) = y(x). Moreover, for each M > 0, g in C?([0,1]) and € > 0, there erists
0 > 0 such that

sup  sup | (u,g) — (us,9)| < .
wlp(uly)<M |t—s|<8

In particular, u belongs to C([0,T], Mac).
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Proof: Fix T > 0, v € Mye and u in D([0,T], Mac) such that Ijg 71(uly) < co. We first show
that u(0,-) = y(-).

As Iory(uly) < oo, u has finite energy. For ¢ > 0, consider the function Hs(t,z) =
hs(t)g(z), where hs(t) = (1 — 6 )% and g is a C%([0,1]) function which vanishes at the
boundary of the interval [0,1]. Here a™ stands for the positive part of a. Of course, Hg
can be approximated by smooth functions. Since w is bounded and since ¢ — wu(t,-) is right
continuous for the weak topology,

lim J7, 1, (1) = (u(0),9) = (7,9) -

This proves that u(0) = v a.s. because I|g 77(uly) < oo.

We turn to the second assertion of the lemma. Fix g in C%([0,1]) and 0 < s <t < T such
that t — s < 1. A convenient test function, depending only on time and similar to the one
proposed after equation (4.3) in Farfan et al. (2011), yields that

Mmm—Mﬂmga%mm)
+ C1([1Aglloos [ Vglloo) a (t — 8) + Ca(A, B, ||gllc) a (t — s) ellgllo

for all @ > 0. The exponential term comes from the b, p contribution to Jr g in the definition
(2.10). Choose a = — (1/2) (1 + ||glleo) " log(t — s) to get that there exists a finite positive
constant Cy, depending only on A, B, g, such that
Co
t — <
(w(t). ) = (u(s). 9) < o
This completes the proof of the lemma. (|

{I[OT] u]’y + 1}

The space H'. Let H' be the Sobolev space of measurable functions G : [0,1] — R with
generalized derivatives VG in £2([0,1]). H! endowed with the scalar product (-,-)1, defined
by

is a Hilbert space. The corresponding norm is denoted by || - ||4:

1
\qw./kzﬁm+/wmw@.
0

Recall from (A.12) that any function v in H! has a continuous version. Hereafter, we always
replace vy by its continuous version w.
Consider the function ¢ : R — [0, 00) defined by

1 1

—exp{————>~ if|r| <1,
sy o Lz gyt i

0 otherwise ,

where the constant Z is chosen so that [ ¢(r)dr = 1. For each 6 > 0, let

s = o(5) (35)

whose support is contained in [—d, J].
Denote by f % g the space or time convolution of two functions f, g

(f *9)a /fa—b
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Throughout this section, we adopt the following notation. Recall from Appendix A that
we denote by (Pt(R) :t > 0) the semigroup associated to the Robin Laplacian. For a bounded
measurable function u : [0,7] x [0,1] — R, define the smooth approximation in space, time
and space-time, respectively, by

)
w(t,x) = [PPu)(x), ul(t,x) = [u(-,z)*¢°)(t) = /_5u(t—|—7",x)q§5(r) dr

u(t,2) = [P]](2) = [PPu](2).

In the above formulas, we extend the definition of u to [—1,T + 1] x [0, 1] by setting u; = ug
for -1 <t<0,uy=upforT <t<T+1.

Note that we use the same notation, u° and u’, for different objects. However, u¢ and u’
always represent a smooth approximation of u in space and time, respectively. Moreover, the
time-convolution commutes with the operator which explains the identity in the last displayed
equation.

We summarize some properties of u® in the next result. Denote by V"u, n > 1, the n-th
partial derivative in space of u and by £2(0,T;H') the space of square-integrable functions
F:[0,T] = H, fioq IF@)]3, dt < co.

Lemma 3.2. Let u : [0,T] x [0,1] — R be a function in £2(0,T;H'). Then, u° and Vuf
converge to u and Vu in L£2([0,T] x [0,1]), respectively. Moreover, if u is bounded in [0,T] x
[0,1] and the application t — (u, g) is continuous in the time interval [0,T] for any function
g in C([0,1]), then, for each € > 0, n > 1, u® and V™ are uniformly continuous in
[0, 7] x [0, 1].

Proof: Recall the notation introduced in Appendix A. As u belongs to £2(0,T;H!) and the
norms H', Hp are equivalent,

T
/ lue |3, dt < oo
0

This relation can be rewritten in terms of the eigenfunctions (fx : k& > 1) of the Robin

Laplacian as
T

> X (ur, fi)?dt < oo (3.6)

0 k>1
Since

Uy = Z<uta fk‘> fk‘a ui = Ze_)\ks <ut7 fk> fk‘a

E>1 k>1

T T
| =B = [T T 1), g
0

0 k>1

we have that

and, by (A.9),

IA

T
Co [ i
0

T —AgE 2 2
- CO/O D [ = 1) (ur, fi)?dt

k>1

T
/ | Vs — Vg |2 dt
0
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By (3.6), the left-hand side of the previous two displayed equations vanish as ¢ — 0, which
proves the first assertion of the lemma.
We turn to the second assertion. We may represent u®, V"u® as

up(z) = Y e M (g, fi) frl@),  (V'ug)() = D e (ur, fi) (V" fr)(@)
k>1 E>1

The second assertion follows from these identities and from the two hypotheses of the lemma.
Indeed, the bound (A.5) on the eigenfunctions fi permits to restrict the sum to a finite number
of terms. 0

For each a > 0, define the functions h, and o, on [0, 1] by

he(x) = ){(x—i—a)log(a:—i—a)—i—(1—m+a)log(1—m+a)},

2(1+2a
oo(z) == (x+a)(l-—x+a).

Note that h” = (20,)7 L.

Until the end of this section, 0 < Cy < oo represents a constant independent of ¢, § and a
and that may change from line to line.

Fix T' > 0 and a path u in Dg([0,T],Mae). For a smooth function G : [0,7] x [0,1] - R
and a bounded function H in £2(0,T;H!), define the functionals

T
Lo(u) = (ur,Gr) — (uo, Go) — /0 (g, 0,Gy) dt
T T
Bl (u) = /0 (Vuy, VH,) dt —/O (o(ur), (VHy)?) dt ,

T
Bhw) = [ {baa(u©). H0) + ban(u(). (1) bt
By (2.10), for paths u such that u(0) =+,

sup A Lu(u) + Bly(w) - By(w)} = Tom(ul) -
HeC1:2(]0,T]x[0,1])

Lemma 3.3. Fora>0,e>0,8 >0, let H. 5 = h/,(u®°),
R = Ly, ;(u’) — Ly yyes(u) .
Then, for any fived a > 0, € > 0, R®° converges to 0 as § | 0.

Warning: Until the end of Proposition 3.5 proof’s, we drop the dependence of H = H, 5 =
Rl (uf°) on e, §. Hence, H always stands for H. ;.

Proof of Lemma 3.5: Recall that Cy represents a constant independent of €, § and a, that may

change from line to line. As P is a self-adjoint operator in £2([0,1]) and commutes with
the time-derivative,

T
L) = (ud, HE) — (ud, HS) — / (ul, O, HE) dt
0

T
— (up, HE®) — (ug, HE) — / (w8, O HF) dt + R
0
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where
Re 5 — R&S ,0,T RE,E,O and RE,&,t — <u6 — uy, H > <Ut7 Ha Hta,5>
for0 <t <T.
A simple computation yields that

T T
/ (S, O, HE) dt — / (g, LY dt + RSO
0 0

where ]R§’6| < Cpd||0¢H||so- To conclude the proof, it is enough to show that, for each fixed
a>0,e>0, Ri"s and 0]|0;H® || converge to zero as d | 0.
We first prove that Ri’é vanishes as 6 — 0. We have to show that
léiﬁ)l RO =0 for t=0 and t="T. (3.7)

(R)

We consider the case ¢ =T, the argument being similar for t = 0. As P, is symmetric,

R = (i — i, Hr) + (i, Hy = HE)
By Lemma 3.2, for each z € [0,1], u®(-,x) is continuous. Therefore, by definition of H, for
any (t,) € [0.7] x [0, 1]

lim uf® (¢, x) = us(t
mu (t,z) = w(t,z),

lim HY(T.2) = lim bl (u™) (T,2) = by (0")(To0) = lim bl (™) = lim H(T,)
because hl, is bounded and continuous on [0,1]. Note that the dependence on d of the last
term on the right-hand side is hidden, as H is actually &/, (u*?). Claim (3.7) follows from these
results, from the boundedness of u and A/, and the bounded convergence theorem.

It remains to show that J||0;H®||« converges to 0 as 6 | 0. An elementary computation
gives that, for any t € [0, 7],
0

o (1) = P[0 (0) [ () (@) () ar

-0
Since ¢? is an even function, a change of variables shows that
)
[ wt-n @ ar = [ - e 6o
By Lemma 3.2, u® is uniformly continuous on [—1,7 + 1] x [0,1]. On the other hand,

0 fo (%) (r)dr = — ¢(0). Therefore, the last expression multiplied by § converges to 0 as
040 unlformly in [0,7] x [0,1]. Since A is uniformly bounded, by the bounded convergence
theorem, d||0;He||oo converges to 0 as d | 0. O

Lemma 3.4. There exists a positive constant Cy < oo such that

(Vu( t x)
/ dt / z < CoBjyuy(u),  |Bjp ()] < Co (3.8)
forallu € Dg([0,T], Mac) cme < a < 1. Moreover, for eachu € Dg([0,T],Mac) andi = 1,2,

limlim Byy.(u) = Bjy ) (u)
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Proof: Let u be a path in Dg([0,T], Mac). We first show that

hfglalmBHE(g(u) = Bilz{l(u)(u) . (3.9)
By Lemma 3.2, Vu® is uniformly continuous in [0,7] x [0,1]. Therefore, for any (t,z) €
[0,77] x [0,1],
lim Vu™d(t,2) = Vui(t,z).
m Vus(t, 7) us(t, x)
Recall from the end of the Appendix B the definition of the semigroup Pt(M). By (B.11)
VPg(R) = P{:-(M)V. Hence,

é
: €,0 — 7 (M) | pt(,,€0 €,0 — pM)Tpt(,e €
l(slﬁ]l VH*(t,x) 151\%1 P [ha (u™?) Vu } (t,x) PUOT R (uf) Vg | () -

Hence, as (Vu)(t,x) dz dt is a finite measure on [0,7] x [0, 1], by the bounded convergence
theorem,

510

lim B}, s(u) = /OT{WW, G;) — (o(u), [G§]2>}dt, (3.10)

where G°(t,z) = P;M)[hg(ui) Vg |(x).
On the one hand, since P\ is a contraction in £2([0,1]), A is bounded, and since, by
Lemma 3.2, Vu converges to Vu in £2([0,T] x [0,1]),

T 1
ti [t /0 [POD [ 1) (Vs — Vg )]} dz = 0
Therefore, on the right-hand side of (3.10), in the formula for G* we may replace Vu by Vu,
at a cost that vanishes as ¢ — 0.

Since hll is Lipschitz continuous, by Lemma 3.2, as ¢ | 0, h!(u®) converges in measure
to hl(u). In other words, for any b > 0, the Lebesgue measure of the set {(t,z) € [0,T] x
[0,1]; |hl(u(t,x)) — hi(u(t,z))| > b} converges to 0 as € | 0. Therefore, as Vu; belongs to
(0,77 x [0, 1]),

hﬁ)l dt/ h// (ug) Vut / dt/ h" (ug) Vut % dz .
€.

In consequence, on the right-hand side of (3.10), in the formula for G* we may further replace
Rl (uf) by to hll(u).

To complete the proof of (3.9), it remains to recall that for any f in £2(]0,1]), P&-(M)f
converges in £2(][0,1]) to f as ¢ — 0.

We turn to the proof that

2
limlim By s (u) = By (u)

We examine the boundary condition at x = 0, the other one being similar.

By Lemma 3.2, v is uniformly continuous. Hence, as h/, is continuous in the interval [0, 1],
as § — 0, H%(t,0) converges to P;R)[h;(uﬁ) 1(0). Therefore,

T

T
im Uy -s(t, = aal(u(0), PH) ' (uf . )
i [ baa(w(0), Hop(t.0))dt = [ b (), PO GON0) bt (1)
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To conclude the proof, we first replace on the right-hand side PR [ Rl (uF)](0) by hl(uf(0)).
Since h/, is bounded, there exists a finite constant C1 = C4(a, A, &) such that

T T
| [ b 0), PO )10 bt~ [ b (u0), B (0))) |
0 0

T
< 0 [P0 )0) - Hyfui(o) | at.

It is easily seen that
By Lemma A.3 and (A.9),

| PO () (0) — (w5 (0)) | < Co® | huf ) [

for some finite constant Cpy. Hence, the term on the right-hand side in the penultimate
displayed equation is bounded by

T
&) 51/5/0 ) [0t

By Lemma 3.2, u® converges to u in £2(0,T;H!). Since h!, and h/ are bounded, the previous
integral is bounded uniformly in . In particular, the previous expression vanishes as € — 0.

It remains to estimate the right-hand side of (3.11) with R;(R)[hg(uf)](()) replaced by
h. (u$(0)). By Lemma 3.2, u® converges to u in £2(0,T,H'). Thus, by (A.7) and (A.9),
r 2
lim ‘ut(()) - uf(0)| dt = 0.

e—0 0

Hence, as |ba,a(a,y) — ba,a(a,2)| < Co{|e? —e®| 4+ |e™¥ — e * |} for some finite constant
Co, and h!, belongs to C1([0,1]), and since, by (A.16), u¢ is uniformly bounded,
T T
lim ba,a(u(0), hy(uf (0)))dt = / ba,a(ue(0), hi(u(0))) dt,
0

e—0 0

which completes the proof of first assertion of the lemma.
We turn to the bounds (3.8). As o(x) < g4(x), for each € > 0,

T T
| vu wm iy dt [ oaud), (THLHP) db < By ()
0 0

Compute the derivative VA, (u$) on the left-hand side to get that
1 T 1 (vue)Q
— | dt | = dx < B} o).
4 /O /0 aa(ua) T = hl (u )(u )

The arguments presented in the first part of the proof permit to let € — 0 on both sides of
this inequality and yield the first estimate in (3.8).
To estimate By, (u)(u), note that

bgp(v, hg(v)) =

et [(F )" ] n-a () -
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In particular, b, p, as a function of v and a is bounded: for all 0 < ¢ < 1, D > 0, there exists
a finite constant Cy = Cy(g, D) such that

sup sup ‘bgp(v k. (v | < Cpy.
0<a<1v€(0,1]

The second inequality in (3.8) follows from this estimate and the definition of B, (w) (w). O

Proposition 3.5. There exists a constant Cy > 0 such that

u xr 2
/ /]V (t | r < Co{lpm(u) + 1}

for any path w in Dg([0,T], Mac

Proof: We may assume, without loss of generality, that Ijg r)(u) is finite. By the variational
formula (2.12) and with the notation of Lemma 3.3,

Ly (u™) + By (u) = Bpes(w) = B < Ijgpy(u) (3.12)

where, recall, H stands for the function A/ (u®?°).
Since u? is smooth, an integration by parts yields that

1 1
Li(ued) = /0 ha(usd) de — /0 ha(uS?) da
There exists, therefore, a constant Cp, independent of &, § and a, such that
L (u?)| < Cp .

In (3.12), let 6 | 0 and then ¢ | 0. It follows from the previous bound, and from Lemmata
3.3 and 3.4 that

B (@) — Bjy(w) < Ir(w) + Co.

/ dt/ |V“”|2 de < Co{Ir(u)+1}.

It remains to let a | 0 and to apply Fatou S lemma. O

Thus, by (3.8),

Note: Since the rate function is declared to be infinite on trajectories with infinite energy,
this result is not meant to show that a trajectory has finite energy. Its interest lies on the fact
that it provides a uniform bound of a strong version of the energy for trajectories with rate
function bounded by a constant.

Corollary 3.6. The density u of a path ©(t,dx) = u(t,z)dx in D([0,T], M) is the weak
solution of the initial-boundary value problem (2.6) if, and only if I (u|y) = 0.

Proof: Suppose that the density u of a path 7 (¢, dx) = u(t, ) dz in D([0,T], M) is the weak
solution of the initial-boundary value problem (2.6). Then, by Lemma B.5, u has finite energy.

On the other hand, by Definition B.3 and the equation following it, u(0) =~ a.s. and for any
G in C12(0,T] x [0, 1)),

T
Jra) = - /0 (o(us), (VG2 dt
T
- /0 [ 95.5(ue(1), Gi(1)) + Qo a(ur(0), Go(0)) } dt
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where

qg,D(a,M):%{[l—a]g[eM—M—l]—i—a[l—g][e*M%-M—l]}. (3.13)

Here we used the fact that u — a can be written as u(1 —a) — (1 — u)a. As q,p(a, M) >0
Jrc(u) < 0. Hence, the supremum in the variational problem (2.12) is attained at H =
and Ijg r)(u) = 0. Since u(0) =+, Ijo11(uly) = 0.

On the other hand, if Ijg 71(uly) = 0, then, for any G in C12([0,T] x [0,1]) and € in R,
Jrec(u) < 0. Since Jro(u) = 0, the derivative in € of Jr.g(u) at ¢ = 0 is equal to 0.
Therefore, by Definition B.3, the density u is a weak solution of the initial-boundary value
problem (2.6). O

0

Let Fy, ¢ > 0, be the level set of the rate function Ijg (-v):
g = {me D0, T],M) | Ior(rly) < q}.

Proof of Theorem 2./: The rate function Ijg 7)(-[v) is convex because the energy Qo 7(-)
and the functionals Jr g (-) are convex.

Let {#™ : n > 1} be a sequence in D(]0, 7], M) such that 7" converges to some element 7
in D([0,T],M). We show that Ijg7(7|y) < liminf, oo o) (7"]y). If liminf Ijg (7" |7) is
equal to oo, the conclusion is clear. Therefore, we may assume that the set {#" : n > 1} is
contained in E, for some ¢ > 0. In particular, by definition of /g 71( - |v) and by Lemma 3.1,
©"(t,dz) = u"(t, x) dz for some u" € C([0,T], M) with finite energy.

Since u™ belongs to C([0,T],Mac) and 7"(¢t,dz) = u"(t,z)dx converges to m(t,dx) in
D(]0,T],M), 7(t,dx) = u(t,x) dz for some u € C([0,T], Mac). Moreover, by the lower semi-
continuity of the energy Qo 1) and by Proposition 3.5,

Qpj(u) < lim Qpr(u") < Colg+1) < oo
n—oo
for some finite constant Cj.

Claim 1: The sequence {u™ : n > 1} converges to u in £2([0,T] x [0,1]).
Indeed, by the triangle inequality,

1 r n2
5 =i a
T T T
sAuwwmﬁ+A M—W%ﬁ+én#tw@w

where uf = PE(R)ut, uc = PE(R)u?. By Lemma A.2 and (A.9), and since |[ut||oo < 1, the first
and the last terms are bounded by

T
cm%/uw@+meﬁs%W%wTﬂy
0
On the other hand,

T
/‘Mwmﬁ</§jmwntmmm
0

k>1

As 7™ converges to 7 in D([0,T],M), for all g € C([0,1]), (up — ut, g) — 0 for almost all
t € [0,7]. In particular, for every € > 0, the right-hand side of the previous displayed equation
vanishes as n — 0o, which proves Claim 1.
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Claim 2: We have that

T
im [ {u0) = O F + () =)} de = 0. (3.14)
0

n—o0

We consider the boundary x = 0, the argument for = 1 being identical. The proof is
similar to the one of Claim 1 and relies on Lemma A.3 instead of Lemma A.2. By the triangle
inequality, the previous integral, for z = 0 only and divided by 3, is bounded by

T

T T
/0 [ue(0) — ui (0)|* dt +/0 |4 (0) — " (0)|* dt +/0 [ (0) — ' (0)|* dt .

As wuy, uj are continuous for almost all ¢ [because they have finite energy|, we may repeat the
argument of Claim 1, using Lemma A.3 instead of Lemma A.2, to show that the first and
third integrals in the previous equation are bounded by Cpe2/5 {¢g+T+1}.

By (A.13), (A.5) and Schwarz inequality,

[05(0) = up SO < ST e (up — g, )2 DM

k>1 E>1

= Cole) e (uf —up, fi)”
k>1
At this point, we may repeat the arguments presented in Claim 1 to complete the proof of
Claim 2.

By Claims 1, 2 and (2.11), for any function G in C2([0,T] x [0, 1)),
lim Jo(n") = Jg(r). (3.15)

n—o0
Therefore, Ijg )(m]y) < liminf, e Ijo7)(7"|7), proving that I 7)(-|v) is lower semicontinu-
ous.
The same argument shows that Ej is closed in D([0,7],M). By Lemma 3.7 below, E; is
relatively compact in D([0,T],M). Thus, E, is compact in D([0,T], M), as claimed. O

The proof of the next result is similar to the one contained in the proof of Theorem 4.2 in
Bertini et al. (2009b).

Lemma 3.7. For each q > 0, the set E, is relatively compact in D([0,T], M).

Proof: Fix ¢ > 0 and let 7" be a sequence in E,. By Lemma 3.1, 7" € C([0,T], Mac).
Denote by u” the density of 7": 7" (¢,dz) = u™(t,z)dzx. Since 0 < u"(¢,x) < 1, there exists
a subsequence, still denoted by (u™ : n > 1), which converges weakly in £2([0,T] x [0,1]) to
some trajectory u. By the lower semicontinuity of Qo 7y, Qjo.1)(u) < oo.

The proofs of Claims 1 and 2 in Theorem 2.4 yield that u™ converges strongly, as n — oo, to
win £2([0,T] x [0,1]) and that (3.14) holds. Therefore, by (3.15) and the fact that 7 belongs
to Eq, Lo r)(mly) < liminf, o Ijo 1(7"|7) < ¢. By Lemma 3.1, u”, u are uniformly weakly
continuous in time. In particular, strong convergence in £2([0,T] x [0, 1]) implies convergence

in C([0,T], Mac). O

4. Deconstructing the rate functional

The main result of this section, stated in Proposition 4.5 below, shows that the rate function
Ijo,7(+) can be decomposed as the sum of two rate functions. The first one measures the cost
of the trajectory due to its evolution in the bulk, while the second one measures the costs due
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to the boundary evolution. This decomposition of the rate function is the main tool in the
proof that any trajectory u with finite rate function can be approximated by a sequence of
regular trajectories (u" :n > 1) in such a way that Ijg7)(u" |y) = Ijor(u|7), the content of
the next section.

Weighted Sobolev spaces. Let Qp be the cylinder [0,7] x [0,1]. Fix a non-negative weight
k : Qr — Ry, and denote by £?(x) the Hilbert space induced by the smooth functions in
C*(Qr) endowed with the scalar product defined by

T 1
<<G7H>>I€ = / dt/ Kt Gt Ht dr .
0 0

Above and hereafter, induced means that we first declare two functions F', G in C*°(Qp) to
be equivalent if (F' — G, F — G)), = 0 and then we complete the quotient space with respect
to the scalar product.

Denote by C%(€Qr) the space of smooth functions H : Qp — R with support contained in
(0,T) x (0,1). Let H'(r), H{(x) be the Hilbert spaces induced by the sets C*(Qr), C2(Q7)
endowed with the scalar products, (G, H)12.x, (G, H))1,, respectively defined by

(G )z = (G H)w + (VG VH))
(G H)ix = (VG,VH)) .

The Poincaré’s inequality yields that the norms induced by the scalar products (G, H))1 2,
(G, H))1 x are equivalent in HJ (k).

Denote by || - ||x, || - []1,+ the norm associated to the scalar product (-, -)«, (-, )1k, respec-
tively. Let #1(k) be the dual of H}(x); it is a Hilbert space equipped with the norm || - || _1
defined by

ILI2y . = sup  {2L(G) — [|GIE . } - (4.1)
€CE (Qr)

By Riesz’ representation theorem, an element L of H~1!(k) can be written as L(H) =
(VG, VH)), for some G in H}(k).

When x = 1, we represent £2(k), Hl(k), H(k), H (k) as L2(Qr), HY(Qr), HY(Qr)
HY(Qr), respectively. Next result is Bertini et al. (2009b, Lemma 4.8). It states that
H (k) is formally the space {VP : P € £2(k~1)}. For an integrable function H : [0,1] — R,

let (H) = [} H(z) da.

Lemma 4.1. A linear functional L : H}(x) — R belongs to H™1(k) if, and only if, there exists
P in £2(k~Y) such that L(H) = fOT dt fol P, VHdx for every H in C¥(Qr). In this case,

T
IR = [ (PP = )t
where ¢; = { (Py/ki)? ] (1/k¢) } 1{{1/K) < 00}

Representation theorems. Until the end of this section, 7(t,dz) = u(t,x)dz is a path in
Dg(]0,T], Mye). We assume that

u is continuous on {27 and smooth in time, there exists € > 0

such that e <w(t,z) <1 —¢ for all (t,x) € Qp, and Ijg)(u) < oo. (42)
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These conditions are fulfilled in sets of the form [4,T] x [0,1], 6 > 0, by paths in 3, a class
of trajectories to be introduced in Section 5. As u is bounded away from 0 and 1, the spaces
L£2(o(u)) and £2(Qr) coincide, as well as, the other Hilbert spaces introduced in the previous
subsection with x = o(u).

Denote by 20: C%1(7) — R the functional given by

T 1 T
_ 2
_/0 dt/o o (u) [V Hi|? da +/0 W(t, H,(0), H,(1)) dt (4.3)

where
U(t,M,N) = by a(u(0),M) + bgp(u(1),N),
and b, p(a, M) has been introduced in (2.9). For each 0 < ¢ < T, (M,N) — ¥(t,M,N) is a
smooth, convex function which takes negative values.
Fix a linear functional L : C%!(Qr) — R. Denote by Ly its restriction to Co' (27):

Lo(H) = L(H), H e Cy'(Qr), (4.4)
where
ColQr) = {H e C®NQr): H(t,0) = H(t,1) =0,0<t<T}.
Let = : Q7 — R the function given by

1
E(t,x) =

1 xX
J3 1o (u(t,y)) dy /0 o(u(t,y)) W

Note that Z belongs to C°1(Q), and that Z(t,0) = 0, Z(¢,1) = 1 for all 0 < ¢t < T. Let £,
(M) C([0,T]) — R be the linear functionals given by

Oy = L(ht)[1 - E(t,2)]), (P(h) = L(h(t)E(t2)) . (4.6)
Note that the right-hand sides of the previous identities are well defined because = belongs to
Co’l(QT).
Note: The definition of ¢, ¢! explains why we defined L in C%(Qr) and not in C°*°(Qr).
For L( h(t)[1 — Z(t,x)]) to make sense, we need the map (t,z) — h(t) [1 — E(t, )] to belong
to the domain of definition of L.

Decompose a function H: Qp — R as H = HO + HD  where

HW(t,2) = H(t,0) + [H(t,1) — H(t,0)] E(t,z) . (4.7)

Note that H()(¢,0) = HO)\(t,1) = 0 for all 0 < t < T'. In particular, H® belongs to Cg’l(QT)
so that Lo(H©) is well defined and Lo(H) = L(H©).

By linearity and the previous paragraph, L(H) = L (H( )) +L(HWM). By definition of H(),
O 0 LHYY = L(H(t,0)[1-2]) + L(H(t,1)E) = (°(H(-,0)) + ¢'(H(-,1)), Hence, for
all H in C%1(Qy),

(4.5)

L(H) = Lo(H") + (°(H(-,0)) + ¢'(H(1)).
Lemma 4.2. Let L : C%Y(Qr) — R be a linear functional. Then,

sup  {L(H) —W(H)} = S1 + 52, (4.8)
HeCo1(Qr)
where
S1 = sup {Lg / dt/ o(u) [VG?dx } (4.9)

GeCy (Qr
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and

T
82 = sup / Ct )] dt — /0 \I’(t,gt, ht) dt } .

h,geC([0,T])
In this formula, ¢ = 1/(1/0(uy)) and £(g,h) = £©)(g) + (D (h).

The first variational problem concerns the interior of {27, while the second one the boundary
of the cylinder Qp.

Proof of Lemma /.2. Fix a linear functional L : C%'(Qr) — R. Write H = H® + HW  as in
(4.7). Since H© belongs to Co' (), Lo(H®) is well defined and Lo(H©©) = L(H©).

By linearity, L(H) = Lo(H®) + L(HM). On the other hand, an elementary computation
yields that VH(©) and VH® are orthogonal in £2(o(u)):

T 1
/ dt/ o(u) VHO VHEY do = 0.
0

Therefore, the supremum appearing in (4.8) can be written as

HGCS(?RQT) / dt/ o(ur) [VH"|? dz
/ GH(t 1) — H(t,0))? dt—/o \Il(taHt(O),Ht(l))dt}_

The first line depends only on H(®, while the second one only on Hy(0), Hy(1). We may,
therefore, split the supremum in two pieces. Recall the definition of the functionals ¢ to
rewrite the previous supremum as

sup  { Lo(G / dt/ o(uy) |[VGy|? dz }

Gecd (Qr)

T
+ e / G h(t) = g(0) de = [ Wbt}

h,geC([0, T]

as claimed. 0

We apply Lemma 4.2 to the linear functionals appearing in the definition of the rate func-
tional Ijo 71(-). Denote L@ LV) . ¢%Y(Qp) — R the linear functionals given by

T T
Lo = / (Ous, Go) dt, L)(H) = / (Vue, VH, ) dt (4.10)
0 0

and let £ = L) 4+ L(V) Denote by £o, 19, [* the linear functionals associated to £ by (4.4),
(4.6), so that

T T
£0(G) = /0 8tut, Gt> dt + /0 <Vut, VGt > dt s
T

(
T
0(g) = /0 a(t) g(t) dt, 1(g) = /0 b(t) g(t) dt |
where

a(t) = (O, [1 —Z¢]) — (Vue, VE¢ ), b(t) = (Opur, Z¢) + (Vug, VEi) . (4.11)
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With this notation,
S(H) = L(HO) + (°(H(-,0)) + ("H(1)). (4.12)
Denote by T;: R2 = R, 0 <t < T, the strictly convex map defined by
Ti(w,y) = G lo—y]? + baa(us(0),2) + bg p(us(1),y)
and let ®; : R?> - R, t > 0 be its Legendre transform:

®y(a,b) = sup {az + by — Ti(z,y) }. (4.13)
z,y€ER

Lemma 4.3. Under the hypotheses (1.2),
1 2
Tory(u) = I (w) + I (u)
where

1 T
L@ = 12012 1o > Tom@) = [ @uanby) dt.
K 4 b 0

Proof: Recall the definition of the operators 20 and £, introduced in (4.3) and (4.12), respec-
tively. By definition of the rate functional I}o 7}, given in (2.12),

Ior(u) =  sup  {L(H) - W(H) } .
HeC%1(Qr)
Hence, by Lemma 4.2, (4.1) and the definition of [0, [', given above (4.11),
1 2
Tory(u) = Iy (w) + Ion(u)

where )
1
I @) = 712007100
o T (4.14)
I[O,T](u) = sup { l(g,h) — / Yi(g¢, he) dt}
h,geC([0,T1) 0
and [(g, h) = [°(g) + [*(h). The second term can be written as
T
swp [ {a(®)g(t) + b0 h(O) ~ Yilainho) ) di
h,geC([0,T]) JO
T T
= / sup {a(t)z + b(t)y — Yy(z,y) } dt = / Dy (ag, by) dt .
0 z,yeR 0
This completes the proof of the lemma. O

The function ®; is convex and continuous. Moreover, ®4(a,b) > 0 [take z = y = 0 in
the supremum| and ®4(a,b) < ®Y(a) + ®}(b), where ®, ®} are the Legendre transform of
b, 4 (1e(0), ), b, 5(u(1), -), respectively:

0 < P4(a,b) < ‘I’gt(o)(a) + (I)llu(l)(b)’

a? + 4o gouw + @
®(a) = a ln{ 2ff(;u - } — /@ +4foubou + fou + Gou
U

where
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fow = (1/A) [1 —u] o, gou = (1/A) u[l — @]. The formula for ®? is similar. One just needs to
replace A, a by B, 3, respectively. In particular,

0 < ®(a,b) < Co{l + |a| In" |a| + [b] InT|b]}, (4.15)
where Intz=0for 0 <z <1and InT2z =Inz for x > 1.
Note: It might be disconcerting that ®;(0,0) is not equal to 0. This is a consequence of the
fact that bg p(a, -) takes negative values. To remedy, one can add and subtract a linear term to
bg B(a,-), transforming bg p(a,-) into qg p(a,-), given by (3.13). In constrast with bg p(a,-),
qg,B(a, -) is nonnegative and attains its minimum at 0.

After these modifications, ®; becomes

®y(a,b) = EI\Jt(a + %[a—ut(())], b+ %[ﬂ—u&l)]) ,
where
Bi(ab) = swp {aw + by — Glo =yl — daal0).2) — a5p(m(1).) }
T,y
and ®y(a,b) > ©,(0,0) = 0.

Both functions ®; and </I\>t are convex and continuous. As ®;, </Ist depend on the trajectory
u, whenever we wish to stress this dependence, we represent ®;(a,b), </I;t(a, b), by @g")(a, b),
651‘) (a,b), respectively.

Lemma 4.3 decomposes the rate function as the sum of two independent functionals. The
first piece can still be simplified. This is the content of the next result. Under the hypotheses
(4.2), |l L(()v) ||2_170(u) < 00. Since fOT Oy (ag, by) dt is finite as well, it follows from the previous
lemma that

Iio(u) < oo if, and only if, ||L((]at) H2_170(u) < 00. (4.16)

Suppose that L((]at) belongs to H~!(o(u)). By Lemma 4.1, there exists P in £2(o(u)~}!)

such that

T
L (H) = /0 (P, VH,) dt

for all H in C7(Q7). This identity extends to C’g 1(Qr). Since Hy vanishes at the boundary
x = 0, z = 1, the same identity holds if we replace P, by P; — ¢; for some function ¢ in
£1([0,T]). By choosing the right constant [that is ¢; = (P;/a(ut))/(1/0(us))], we may assume
that (P;/o(us)) = 0 for almost all 0 < ¢ < T. We denote by M the element of £2(o(u)™!)
satisfying this condition and the previous displayed equation:

(0% 4 LM,
LY (H) = / (M, VH,) ds , / dz = 0 (4.17)
0 0 U(Ut)

for all H € Cg’l(QT) and almost all 0 < ¢ < T'. Moreover, as (M;/o(u¢)) = 0 for almost all ¢,

by Lemma 4.1,
T 1 M2
1L Py = [t [ it s
' 0 o o(ur)

Lemma 4.4. Fiz a trajectory satisfying the hypotheses (4.2). Then,

1 T
) = 5 [0+ Vel o~ R} it
0
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where

R, — < VUt)>2< 1 B {loglﬁt(l)—l ut(0) 1

2
_ o 0) ) |
o(w)’ {o(w) ) w® BT w©) S Golw) )
Proof: As Ijgr)(u) is finite, by (4.16) and the paragraph preceding the statement of the lemma,

Léat) belongs to H (o (u)) and there exists M in £2(o(u)~!) satisfying (4.17). Therefore, for
all H in CJ'(Qr),

T
go(H) = LVH) + L (H) = / (My + Vg, VH,) dt .
0

By Lemma 4.1,

T
102 1o = [ {130+ Tl = Ri )t

where R; has been introduced in the statement of the lemma. This completes the proof of the
lemma. ]

We summarize the last two results in the next proposition.

Proposition 4.5. Fiz a path 7(t,dz) = u(t,z)dz in D([0,T], Mac). Assume that u is con-
tinuous on Qp and smooth in time, that there exists € > 0 such that ¢ < u(t,z) < 1—¢ for
all (t,z) € Qr, and that Ijg p)(u) < oo. Then,

1 2
Tory(u) = I (w) + Ioh(u)
where Lemma /./ provides a formula for first term and Lemma /.3 for the second.

Remark 4.6. In the statement of Proposition 4.5, we imposed many regularity assumptions
on u because this is the context in which this result is applied in the next section. The proof
shows that they can be relaxed.

5. Ijpq)(-)-density

In this section, we prove that any trajectory m € D([0,T], M) with finite rate function can
be approximated by a sequence of smooth trajectories {n™ : n > 1} such that

™ — 7 and Ijyp (") — Iiom (m|y) -

We follow an approach proposed in Quastel et al. (1999); Bertini et al. (2009b); Farfan et al.
(2011). Here, and throughout this section, : [0,1] — [0, 1] is a fixed density profile. We first
introduce some terminology.

Definition 5.1. A subset A of D([0,7],M) is said to be Ijo r(-|7)-dense if for any 7 in
D([0,T7],M) such that Ijg7(7|y) < oo, there exists a sequence {7 : n > 1} in A such that
7" converges to 7 in D([0,T], M) and Ijo7y(7"|y) converges to I r(7|7).

Theorem 5.2. For all v : [0,1] — [0,1], the set IL, is Ijg7)(-|7)-dense. If there exists g9 > 0
such that eg < v <1 —gq, condition (b) in Definition 2.5 can be replaced by the existence of
e > 0 such that e <wu(t,x) <1—¢ for all (t,x) € [0,T] x [0, 1].
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The proof of Theorem 5.2 is divided into several steps. Throughout this section, denote by
u : 0, T] x [0,1] — [0, 1] the unique weak solution of the boundary-initial valued problem
(2.6) with initial profile ug = .

Let PR; be the set of all paths 7(¢,dx) = u(t,x)dz in Dg([0,T], Mac), whose density u is
a weak solution of the Cauchy problem (2.6) in some positive time interval. In other words,

there exists 6 > 0 such that u; = up) for 0 <t <94.
Lemma 5.3. The set Ry is Ijg r(+|7)-dense.

Proof: Fix m in D([0,T], M) such that Ijg(7|y) < oc. By definition of the rate function, m
belongs to D([0,T], Mac), 7(t,dx) = u(t,r) dz, and Qo 1)(u) < oo.
For each § > 0, consider the path 7°(¢, dz) = u’(t, ) dx defined by

u)(t, z) if t €[0,9],
u(tx) = qu(26 —t,2) ifte€[5,20],

u(t — 26, x) ift € [20,7] .
Claim A: The trajectory 70 belongs to 9. Indeed, by definition, u’ is the weak solution of
the Cauchy problem (2.6) in the time-interval [0,4]. On the other hand, by definition of u?,
Qo,1] (u’) < 2 Q0,6] (u) + Qo,1)(w). By Corollary 3.6, Qo 5 (u")) < co. On the other hand,
Qo,r)(u) is finite because Ijg )(7|y) < oo. Therefore, u® has finite energy, which completes
the proof of Claim A.

It is clear that 7° converges to m in D([0,T],M) as ¢ | 0. To conclude the proof of the
lemma it is enough to show that Ijg 1 (7°]y) converges to Lo 7y (mly) as 0 1 0.

Since the rate function is lower semicontinuous, Ijo7j(7|y) < liminfs o Ijo 7 (m0]y). To
prove that limsups_,, I[O’T}(ﬂ'6|"}/) < Ijo,r)(7|7), decompose the rate function Ijo 7 (7%|) into
the sum of the contributions on each time interval [0, 4], [d, 20] and [24, T'.

Recall the notation introduced at the beginning of Section 3. By (3.1), (3.2), since in the
interval [26, T] 7° is a time translation of the path m,

Iom(7°1y) < Tipq(7ly) + 1[0,51(75165\%(57)) + Iiomy(mly) -

Since the density u9 is a weak solution of the equation (2.6) on the interval [0, 6], by Corollary
3.0, the first contribution is equal to 0. It remains to show that the second term on the
right-hand side of the last display vanishes as § — 0.

Let v0 = 75ul. As v%(t) = u(") (8 — t), the density v° solves the backward heat equation:
0w = — Av®. Thus, by Definition B.1 and (2.11), for each H in C12([0,T] x [0, 1]),

)
Jon(w’) = /0 [2(vd, VH,) — (o), (VH))) di

- /OT {EQ,A(U,E”(O), Hi(0)) + bpp(ul”(1), Hi(1)) }dt ,
where
bon(a M) = 5 {[1L—alole” 14+ M) + alt— [ —1- 1]}
By Schwarz inequality, the first integral on the right-hand side is bounded above by

g 1 ) 2
/ gt / [Vul?)(t, )| da
0 o o(u(t,x))
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By (B.6), this expression vanishes as § — 0. On the other hand, maximizing EQ, p(a, M) over
M yields that the second integral is bounded above by

) () _ .
[ {5 1w 10 R 2o () 10g Gt Ol g
0 ug (1) [1 = ] ug ' (0) [1 - a
S, n_ .0 _ . _ . _
< / ’ﬁ ug (1) lo 1 (U)t (1) o —u; ' (0) log 1 (“)t (0)] ‘dt + Cos
0 B u; (1) A u; "’ (0)
for some finite constant Cy = Cy(av, 8, A, B). By (13.6), this expression vanishes as § — 0.

Putting together the previous estimates shows that there exists a function ¢(¢d), independent
of H, such that lims_,oc(d) = 0 and

J(;’H(Tgué) < 6(5)

for all H € C%2([0,T] x [0,1]). This shows that lims_,o To,6) (Tsul | u((;’)) = 0, and completes
the proof of the lemma. U

Let PRy be the set of all paths 7(¢,dz) = u(t,x) dx in Ry with the property that for every
0 > 0 there exists ¢ > 0 such that ¢ < u(t,z) <1 —¢ for all (¢,x) € [0,T] x [0, 1].

Lemma 5.4. The set Ra is I7(-|y)-dense.

Proof: Fix w(t,dr) = u(t,r)dr in Ry such that Ijy p(7|y) < oo. For each 0 < & < 1, define
the path 7°(t,dz) = u®(t, 2)dz by v = (1 — &)u + eul?).

Claim A: For each 0 < ¢ < 1, the trajectory 7° belongs to fR;. Since 7 belongs to Ry, by
definition, there exists 6 > 0 such that n; = 7 for 0 < t < §. Therefore, 7° follows the
hydrodynamic equation in the time-interval [0, 0]. On the other hand, by the convexity of the
energy, Qjo7)(u®) < e Q[O,T}(u('y)) + (1 —¢) Qjo,r)(w). Hence, by lemma B.5, Qo 77(u®) < oo.
Therefore, 7€ belongs to R1, as claimed.

Claim B: For each 0 < € < 1, the trajectory n° belongs to Rs. By Theorem B.4, for every
0 > 0 there exists k > 0 such that k < up) <1—kforall 6§ <t <T. This property is
inherited by u® for a different kK = k(g) because 0 < u < 1, which proves Claim B.

It is clear that 7€ converges to m in D([0,T], M) as € | 0. Therefore, to conclude the proof
it is enough to show that I}y )(7°|7) converges to Ijgr)(7|y) as € | 0. Since the rate function
is lower semicontinuous, Ijo rj(7|y) < liminfejg Ijg7(7°|7). On the other hand, as the rate
function Ijg7)(-|7) is convex, by Corollary 3.6,

Iomy(n*ly) < (1=&) Ipmy(nhy) + elpny(u®ly) < (1—e) lon(r]y) -
This completes the proof of the lemma. (|

Let M3 be the set of all paths 7 (¢, dzx) = u(t, z) dz in Ry whose density u is continuous in
(0,T] x [0,1] and smooth in time: for all z € [0, 1], u(z, -) belongs to C*°((0,T7]).

Lemma 5.5. The set R3 is I 1)(-|7)-dense.

Proof: Fix m(t,dr) = u(t, z)dz in Ry such that Ijg m(7|y) < co. Since 7 belongs to the set
M1, the density u solves the equation (2.6) in a time interval [0,30] for some § > 0. Let
¢ : R — R be a smooth, nonnegative function such that

1
supp ¢ C (0,1) and / p(s)ds = 1.
0
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Set ¢c(s) = e tip(s/e).
Let x : [0,T] — [0, 1] be a smooth, nondecreasing function such that

x(t) =0 if tel0,0],
0 <x(t) <1 if te(626), (5.1)
x(t) =1 if tel26,T],

and set x,(t) = x(t)/n for n > 1. Hence, x,(t) = 1/n for t > 24.
Let n™(t,dz) = u"(t, z) dz where

1

u(t,x) = /0 u(t + xn(t) s) p(s) ds = /Ru(t +5) Py (1) (8) ds .
In the above formula, we extend the definition of w to [0,7 + 1] by setting u; = ugqf‘%) for
T <t < T+ 1. This means that on the interval [T,T + 1], u; follows the hydrodynamic
equation (2.6) starting from the initial condition up. [If w represents the solution of equation
(2.6) with v = up, upyy = we for 0 <t < 1J.
Claim A: The trajectory 7" belongs to SRy for all n > 6.

Fix such n € N. By construction, the density u™ coincides with the solution u(?) of the
hydrodynamic in the time-interval [0, §]. To estimate the energy of u™, we consider the time-
intervals [0,4], [§,26] and [20,T] separately. On [0, 4], u™ coincides with u(?). Therefore, by
Lemma B.5, the energy of «™ in this interval is bounded (uniformly in n). In the interval
[6,26], u} is a convex combination of uy s for 0 < s < 1/n < §. Since u coincides with u() in
the interval [0, 36], and since the solution is smooth in this interval and bounded away from 0
and 1, the energy of u" in this interval is bounded (uniformly in n). Finally, for 26 <t < T,

1/n
u'(t,x) = /0 u(t +5) p1/n(s) ds .

By convexity of the energy,
1/n
Qs (") < ; Qps1)(7sT) P1/n(8) ds < Qpsty1/n(T) ,

where the translation 75 has been introduced in (3.1). This quantity is finite because u has
finite energy and by Lemma B.5. This proves Claim A.
Claim B: The trajectory 7" belongs to %3 for all n > §~1.

As 7 belongs to Ry, by construction, so does 7. By Definition B.3 and Theorem B.2,
the function w is smooth in the set (0,3d) x [0, 1]. Therefore, by definition, the function u" is
smooth in time on (0, 7] x [0,1]. Asn > 6!, and since u = u(?) is continuous in (0, 38) x [0, 1],
by definition, ™ is continuous in (0, 26) x [0, 1]. We turn to the set [24, T x [0, 1]. By convexity,
forall 26 <t<T,

1 1/n 1
[ uris < [ aseynts) [ 1Var P da

t+(1/n) 1 T+1 1
< C’n/ ds/ [Vus]? de < Cn/ ds/ [Vus]? do
¢ 0 0 0

for some finite constant C),,. The last integral is finite for two reasons. By Lemma B.5, the
integral restricted to [T',T + 1] is finite. The integral on [0,77] is finite because 7 has finite
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energy as all elements of JRa. It follows from this bound and from its definition that uy is
continuous on [20, 7] x [0, 1], which proves Claim B.

It is clear that 7" converges to 7 in D([0,T], M). It remains to show that Ijg7(u™|y) —
Tior(u|y). As the rate-function Ijp7j(-|y) is lower semicontinuous, we turn to the bound

lim sup,, ;o6 To,77(7"|7) < Tjo,17(7|7)-

By (3.2), the cost of the trajectory ™ in the interval [0, 7] is bounded by the sum of its
cost in the intervals [0, 4], [9,2d], [26,T]. As u" = w in the time-interval [0, ¢], and as w is the
solution of the hydrodynamic equation in this interval,

I 5(7"y) = 0. (5.2)

Consider the contribution to Ijg 1) (7™|y) of the piece of the trajectory corresponding to
the time interval [26,7]. Recall the definition of the functional 7;, introduced just above
(3.1). Since xn(t) = 1/n in this interval, by the concavity of o(-), for any smooth function
H:[0,T —26] x [0,1] — R,

Jr_os m(T2su™) < /901/n(3) Jr—26,H( T254su ) ds

< /801/71(8) I[O,T—25](7'25+5U) ds .

By (3.1), the right-hand side is bounded by

/@1/n(8){f[o,T_za_s](T25+SU) + Ijoq(7ru) } ds .

Since u solves the hydrodynamic equation on the interval [T,T + 1], by Corollary 3.6,
Lo, (7ru) = 0 for s < 1. Hence, by (3.3), the previous integral is bounded by

/@1/n(5) Lor(u)ds < Tigr(u).
Therefore, optimizing over H,

Ior—26) (257" ) < Tjopy(w) (5.3)

We turn to the contribution to Ijg 7y (7™|) of the piece of the trajectory corresponding to
the time interval [d, 26]. Since u solves the hydrodynamic equation (2.6) on the time interval
[0, 3d], it is smooth in (0,36) x [0,1]. Hence, by definition of u™,

o (t,z) = / Opu(t + 8, 1) oy, 1) (s) ds + / u(t + s,7) Orpy, 1) (3) ds .
R R

As u solves the hydrodynamic equation (2.6) on the time interval [d, 36], for any function G
in C12(0,7] x [0, 1)),

20 25
W%%@—%ﬂ@—é@&%ﬁﬁz—A<W$WMﬁ

28 1 " 1 " 20 "
+ [AFB- G + - OGO} i+ [ or.coar,

where

ri(x) = /Ru(t + s, 1) &gchn(t)(s) ds .
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Therefore,

26 26 1
Js.a(msu™) < /5 (rit, Gy) dt — /6 dt/0 o(uy) [VGt]2 dx
20
~ {ap,Bu}(1),Gi(1) + qa,a(uf(0),Gi(0)) } dt

where q, p(a, M) has been introduced in (3.13). Since u belongs to PRa, there exists ¢ > 0
such that e < u(t,z) < 1—cforall § <t <T,0 <z <1 By Theorem B.4, this bound
extends to T <t < T+ 1,0 <z < 1. By definition, it is inherited by u™. Therefore, there
exists a positive constant cop = c¢o(e) such that

25 26 1
Jmmw)§/<wﬂgﬁ—%/ @/W@Pm
é é 0

— ¢ %{@uﬁ+GmW}w,
1

Adding and subtracting G¢(0) to G; in (r}, G¢) yields, by Young’s inequality, that this scalar
product is bounded by (1/2A41)((r)2) + A1([G; — G¢(0)]?) + A1G(0)? for all A} > 0. Hence,
by choosing A; appropriately,

25 1
Js.a(msu™) < Co/ dt/ (T‘ZL)2 dx |
) 0
so that
20 1
Ijg 5 (T5u™) < 00/5 dt/o (rM? dx (5.4)

It remains to show that r™(, z) converges to 0, as n — oo, in £2((d,26) x [0, 1]). Fix a point
(t,z) in this set. Since [, O ¢y, 1) (s)ds = Ot [ Py, t)(5)ds = 0, 7"(t, ) can be written as

/ [u(t +s,2) —u(t,2) ] 0Ly, 1)(s) ds .
R

Since u is Lipschitz continuous on [, 30] x [0, 1], there exists a positive constant C'(§) > 0,
depending only on ¢, such that

ult +5,2) — u(t,2) | < C(6)s,
for any (t,z) € [4,20] x [0,1] and s € [0,4]. Therefore (¢, x) is bounded above by

0(5)/Rs ‘ Ot Py () () ’ ds .

By the change of variables s’ = s/x,(t),

X oo [*
/Rs |0k oy () | ds < HnH/O {sp(s)+s%[¢(s)] }ds.
Therefore, as n — oo, r™ converges to 0 uniformly in (d,20) x [0, 1], and, by (5.4),
Jim T g)(757") = 0.

By (3.1), (5.2), (5.3) and the previous estimate, limsup,,_,o. Io7)(7" [v) < Lom(7|v),
which completes the proof of the lemma. O
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Let P4 be the set of all paths 7 (¢,dz) = u(t,x) dz in 5)%3 whose density u(t,-) belongs to
the space C*°([0,1]) for any ¢ € (0,T]. Note that %4 = II,, introduced in Definition 2.5.

Denote by (Pt(D) 1t >0), (Pt(N) :t > 0) the semigroup associated to the Laplacian on [0, 1]

with Dirichlet, Neumann boundary conditions, respectively. The following property will be
used many times below. For all s > 0 and function f in C*(]0, 1)),

VPP = pNIGF . (5.5)

To check this identity, fix f in C*([0,1]), and let ug := P f Clearly ug is the solution of
the heat equation on [0, 1] with boundary conditions us(0) = us(1) = 0 and initial condition

= f. Let vs := Vug, Then, vs solves the heat equation on [0,1] with boundary conditions
Vus(0) = Vug(l) = 0 and initial condition vy = Vf Hence, vs can be represented as
Vg = PS,(N)Vf, that is, PS(N)Vf =vs = Vug = VP f, as claimed.

Fix 7(t,dz) = u(t, z) dz in Ry such that Ijg 7)(7|y) < co. Since 7 belongs to the set R, the
density u solves the equation (2.6) in some time interval [0,3d], 6 > 0. Recall the definition
of the function y,() introduced in (5.1). Let n"(¢,dz) = u"(t, z) dz, where

ul = wp + P)Ef()t)[ut —w]. (5.6)
In this formula, wy(-) is the smooth function given by wy(x) = u(0) + [w(1) — u(0)] .

Lemma 5.6. Fiz 7(t,dz) = u(t,z) dzx in N3 such that g7 (7|y) < oo. Define u™, n > 1, by
(5.6). For each n > 1, m"(t,dx) = u™(t,z)dx belongs to Ry and the trajectory u™ has finite
energy.

Proof: Claim A: The trajectory n™ belongs to fRy.
() (")

By definition, u! = u; = u;"’ for 0 < ¢ < 4. It remains to estimate its energy. As ul! =,
for 0 <t < ¢, by Lemma B.5, the contribution to the total energy of the evolution of u™ in
the time interval [0, ] is bounded. We turn to the contribution in the time interval [0, T'].

By definition and (5.5), Vup = Vuw; + P( ()t)V[ we ], so that (Vup)? < 2 (Vwy)?

2{P>£N) V[us — wi] }2. Therefore, as £(d) < u? <1—e(d)for 6 <t<T,

1 n|2 T 1
/ / \Vut\ dx < C’o(s)/ dt/ \Vul'|* da
< Cy(e / dt/ (Vwy)? drx + Cole /dt/{P —wy ]} dx

where the constant Cy(¢) changed from line to line. The first term is bounded by the definition

of wy. As P is a contraction in £2([0,1]), the second term is bounded by

€) /:dt/ol(Vut)z dx + Cy(e) /(sTdt/Ol(th)Z‘ da .

The first term is bounded because m;(dx) = u(t, ) dz belongs to Rz. We already estimated
the second one. This completes the proof of Claim A.

Claim B: The trajectory n" belongs to fia. By Theorem B.4, and since 7 belongs to RRs, for
every &' > 0, there exists € > 0 such that ¢ <wu; <1 —¢ for all t € [¢/,T]. Denote by £() the
constant € when &' = §. As u} = u; for 0 < ¢ <4, this property extends to u}' in the interval
[0,0]: for every 0 < ¢’ < 4, there exists € > 0 such that e <wup <1—¢ forall t € [¢,].
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We turn to the interval [§,T]. Fix § <t <T. Let vs = vgt) = wt+PS(D) [ug —wy], s > 0. Note
()

that uy = NS By definition, v is the unique solution of the heat equation with Dirichlet

boundary conditions:
Osv = Av,

vs(0) = w(0) , ws(1) = u(1)
v(0,-) = () -

Here we used the fact that w(¢,0) = wu(¢,0), w(t,1) = u(t,1) and that Awy; = 0. By the
maximum principle, for all s > 0, ming<y<j u(z) < ming<yz<j vs(z) < maxg<z<i vs(z) <
maxo<g<1 Ut(x). Hence, the bound £(d) < uy < 1 —¢(d), which holds for all ¢ € [§,T] by
definition of £(J), extends to v)((tr)l (1) = ut- Therefore, 7 belongs to Ry, as claimed.

The condition Aw; = 0 selects w; among other possible choices. More precisely, in principle
one could define w; as wi(x) = ut(0) + [ur(1) — w(0)] f(x) for any smooth function f(z)
such that f(0) = 0, f(1) = 1. However, the proof that u" belongs to fRy is based on the
maximum principle for the heat equation with Dirichlet boundary conditions. For v to be a
solution we need Aw; = 0 which imposes the choice f(z) = x.

It remains to examine the regularity in space and time of the trajectory wj}. Since wy

belongs to fRs and as the time-derivative commutes with the operator PS(D), by definition, the
trajectory uy also belongs to fi3. Furthermore, as w; is smooth in space, by Theorem B.4 and
its equivalent version for the heat equation with Dirichlet boundary conditions, uy € C*°([0, 1])
for all 0 <t < T, and uj belongs to 4. This completes the proof of the lemma. O

Lemma 5.7. The set Ry is Ijg 1)(-|7)-dense.

Proof: Fix n(t,dr) = u(t,r)dr in Rz such that Iy 7(7]y) < oo. Keep in mind that u is
continuous in (0,7] x [0,1]. Define v™, n > 1, by (5.6), and let 7" (¢t,dz) = u"(t,x)dx. By
Lemma 5.6, 7" belongs to MRy.

By definition, 7™ converges to 7 in D([0, 7], M). Hence, by the lower semicontinuous of the
rate function, it remains to show that limsup,,_, Ijo7)(7"[) < Ijo)(7|7).

By (3.1), the cost of the trajectory 7™ in the 1nterval [0,T7] is bounded by the sum of its
cost in the intervals [0, ¢], [9, T':

To(u™) < Ios(u") + Ijor—g(Tsu™) - (5.7)
As u" = u) in the time-interval [0, ],

Tppg (™) = 0. (5.8)

We turn to the interval [§,7]. Recall the notation introduced in (3.1). The cost of the

trajectory in this interval is given by Ijgr_g(7su"). Let Xn(t) = xu(t —0), Ts = T — 4,

v =T5u, V" = T5u", W = 75w, and observe that v}’ = w; + P)éf()t)[vt —wy), 0 <t < Ty.

Moreover,

e(d) < v <1 —¢€(6) (5.9)

for 0 < t < Ty, where £(d) has been introduced at the beginning of the proof of Lemma 5.6.
With this notation, Ijg7_g(7su™) = Ijo 7, (v").

By Lemma 4.3, Ijg 1, (v") = Y (v™) + 1) ](U"). We estimate each term of this sum

~ o.1] [0,
separately. The next observation will be useful in the argument.
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Let L0 Léat) be the functional introduced in (4.10), (4.4) with T, u; replaced by Ty, v,
respectively. Keep in mind that these linear functionals depend on the trajectory u(-,-), that

D)

is, on v. Since Ijg 7y)(v) = Ijo7r—s)(Tsu) < Ijo)(u) < oo, by (4.16), (4.17), Ly’ belongs to
H~1(o(v)) and there exists M in £2(o(v)~!) such that
Ts 1 M.
L(()at)(H) = / (Ms, VH) ds / ——dz =0 (5.10)
0 o o(vs)

for all H in CF(Qr;), and almost all 0 < s < Tj.

We turn to I[(O)T]( ™). By Lemma 4.3, I[(O)T]( "= (1/4)H£0||210vn) The linear functional

£o introduced just below (4.10) is the sum of Lé ") with Lé ). We first examine Léat).

The linear functional Léat) . By definition, since PS(D)

every H € C2(Qr),

is a symmetric operator in £2([0, 1]), for

& o (D)
/ (O, H, ) dt :/ (1 = PL) )iy, Hy) dt
0 0 (5.11)

o (D) ’ (D)
+ / <6tvt, Pﬁn(t)Ht>dt + / X\;z(t)<AP5<\n(t)[Ut_,&;t]7 Ht>dt.
0 0

The last integral runs from 0 to ¢ because X,(t) vanishes for ¢ > .

As (t,z) — ( )%f()t)Ht)(x) is a smooth function that vanishes at z = 0 and z = 1, by

(5.10), the second term on the right-hand side of (5.11) is equal to the time integral of

(M, VP£ ()t) ¢). By (5.5), this scalar product is equal to

(M, P v ) = (P

0 ety Mt VHe)

because the operator P}%iv()t) is symmetric in £2([0, 1]).
On the other hand, as H; vanishes at the boundary, an integration by parts yields that the
third term on the right-hand side of (5.11) is equal to

1 d
— [ RO (TP o), Ve = — [ R0 (PLY, Ve~ @) VHL) de
0 0

where we apllied the identity (5.5) once more.
In conclusion,

Ts Ts D
/ (Ol Hy)dt = / (1 = PL)) vy, Hy)dt
0 0 " (5.12)
+/ (P My, VH,)dt — / 1(6) (PN, Vv — @], VH,) dt

0 0

We estimate the first and the last term on the right-hand side of (5.12). By Young’s
inequality xy < (1/24;)2? + (A1/2)y?, Ay > 0, the first term on the right-hand side is
bounded by

Ts

= A
(L = POy O Pyt + | (17 )dt
0

1 Ts
24,
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for all Ay > 0. As H; vanishes at the boundary of [0, 1], by Poincaré’s inequality and (5.9),
this sum is bounded by

IR (D) \ 4 ~ 12 o 2
2A/ (1 - PP Yoy dt + CoAl/ ((VH, )2 )dt
LJo 0 (5.13)

1 Ts Ts 1
S/ <[(I_P£D)t)at@t]2>dt+CoA1/ dt/ o(vf) (VH)? do
2A1 0 Xn( ) 0 0
for some finite constant Cy = Cp(u) which may change from line to line.

Since X7,(t) = (1/n) x'(t — 0), by Young’s inequality, the third term on the right-hand side
of (5.12) is bounded by

Co [° . 1 [?
2 L UP Tl - a Prar + o [ (TH )

for some finite constant Cy which depends on x(-). As PS(N), s > 0, is a contraction in L2(]0, 1])
and since £(9) < vf* <1 —€(0), this expression is less than or equal to

CO 1 1 S Cl 0 1 . )
— [ dt | [V =V, ]*de + — [ dt | o(v})[VH]" dz (5.14)
n Jo 0 n Jo 0

for some finite constant C; = C(u). We turn to the linear functional Lév).

The linear functional L(()v). By definition of v;,

) Vi, VH)dt .

Ts T (N) Y
/ (Vo , VH; ) dt :/ ((I — P )V@t,VdetJr/ (P30
0 0

Xn (t) 0 Xn

For similar reasons to the ones presented above, the first term on the right-hand side is bounded
by

1 Ts N Ts 1
2A/ ([(1 = PL )V P dt + OOAQ/ dt/ o) (VH,)? dx (5.15)
2 Jo 0 0

for all A3 > 0 and some finite constant Cy = Cp(u).

The linear functional £9. We are now in a position to estimate I[(Ol)Té](v”) = (1/4)]|L0]1* , o(om)-
Let

Ts 5 1
ri(n) = /0 ([(I - P)ﬁ(f()t))ﬁt@t]2>dt, ro(n) = CT;O/O dt/o [Vvt—Vfbt]Q dz |
Ts N
nm) = [ - P VR ar.

As both semigroups P(P) and are PXY) continuous, lim,, e 7j(n) = 0 for j = 1, 3. As u (and,
thus, v) has finite energy, by definition of @, lim, o r2(n) = 0. Set A; = /7j(n) =: ¢j(n),
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j=1,3, and ca(n) :=rao(n). By (5.12), (5.13), (5.14), (5.15),

Ts

Ts Ts 1
2 / (Owy, Hy)dt + 2 / (Vu)', VHy ) dt — / dt / o(vf) (VH)? dx
0 0 0 0

Ts N Ty N
< 2/0 (PX) My, VH,)dt + 2/0 (P Y, VH, ) dt

Ts 1
- [1_gn]/ dt/ o) (VH, )2 do + o
0 0

where ¢, = 3 1<;<3¢5(n), en = Co[e1(n) + c2(n) + (1/n)] so that limy o0 en = 0. Note
that ¢, €, do not depend on H. Hence, by definition of ji (-)and (4.1),

[OvTé]
(1) n 1 n N2
I[o,T,;](U ) < m Il Lo H—l,o(v") + ¢,
where L (H) = 0T§<P>%iv()t) M; + P)%iv()t) Ve, VHy ) dt.

By Lemma 4.1, the first term on the right-hand side of the previous displayed equation is
equal to

1 et (N) (N) 2 n
prg— /0 {/0 ooy [Pt Mo + Py Yl do — fat,

N N
where B = ([PX)) My + PN Vol fo(up))? / (1/o(u])).
Consider the limit, as n — oo, of the two previous displayed equations. Since &, — 0 and

¢n, — 0 we may ignore these constants. On the other hand, by (5.9), £(§) < vy < 1 — g(9).
Therefore, as the semigroup (Pt(N) : t > 0) is continuous in £2(]0,1]), we may replace in the

previous equations P)%iv()t) M, P)%V()t) Vo by My, Vg, respectively, at a cost which vanishes as

n — oo. Finally, as v* = v; a.e., we conclude that

limsup I\") (") < 1/T§{/11[M + Vo | dx —R’}dt
where R} = ([ M; + Vv /o(v))? / (1/o(vy)). By (5.10), this expression is equal to R;, where
Ry = (Vui/o(vy))? /{1/a(vs)). Hence, by Lemma 4.4 [with u; replaced by vy,

lim sup I[(017)T5] (v") < I[((i)Ta} (v) -
n—oo

We turn to 1(2)

[0,T] (v™). By Lemma 4.3,

@) &
I[QT&} (Un) = /0 Pon (CL?‘, b?) dt )

where a}', b} are given by (4.11), (4.5) with u replaced by v™. To stress the dependence of
® on vy, we denoted this functional by ®'». However, as v"(¢,1) = v(¢,1), v"(¢,0) = v(¢,0),
P = P,

Let Z™, Z be given by (4.5) with v™, v in place of u, respectively. As v"™ — v almost
everywhere, and since £(6) < v" < 1 — £(§), the continuous function E™ converges to =
pointwisely.
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An elementary computation, similar to the one presented above when we examined the rate

function I [( ) yields that

0,75’

af = (I — PO oy, 1= 27) — (I - PLY),)) Vi, VET)
D —n
+ <P)’5\n()t) 815’[)15, 1 - :‘t> < ( ()t) V’Ut, Vut>

+ Xu(t) (v — @y, AP, 1 - 20))
Note that in the last term the operator AP)%f()t) is acting on [1 — Z}] instead of v; — 1wy,

as in the first part of the proof. Here, we simply used the fact that the semigroup PT(D) is
symmetric.

As vy — wy vanishes at the boundary, an integration by parts and (5.5) yield that the last
term is equal to

—X0(®) (Vo — @], VP11 = Z1]) = %) (P, Vo — @], VE})

Xn (1)
where we used that the semigroup PN s symmetric in £2([0,1]).

Since €(0) < v™ < 1 — ¢(d), there exists a finite constant Cp such that |E}| < Cy,
|VEY| < Cp for all n > 1, 0 <t < Ts. Therefore, as ,(t) = (1/n)x'(t — 0) and since the
operators PS(N), PP are contractions in £2([0,1]), there exists a finite constant Cy such that
lal |2 < Co{1 + ((Owy)?) + ((Vuy)?)} forallm > 1, 0 < t < Ts. Moreover,

Tim (¢ 1 (P (Q)V[vt — @), VE}) = 0,

and, as ZP — Z;, VEP — V=, in £2(]0,1]), for all 0 < ¢ < Ty,
lim at = a; = <8t21t, 1 - Et> — <VUt, VEt> . (516)

n—oo
A similar bound and limit hold for the sequence b7. Since ®" is continuous and the map
t = ((Owe)?) + ((Vuy)?) is integrable, by (4.15), (5.16) and the dominated convergence
theorem,
Ts Ts
lim OY(ay, bY) dt = / dY(ay, by) dt .
0

n—oo 0

By Lemma 4.3, the right-hand side is equal to I [(O)T}( ). Therefore,

(2) _ 7@
Jim o (V) = oy (v) -
Since v" = Tsu", v = Ts5u, adding together the estimates on I[(O)m( ") and I[(O)T ]( ™), yield
that

limsupl[oyTé](Tgun) < I[O,T5}(7'6U)~
n—oo

By (3.3), this expression is bounded by Ijo 7j(u ), which completes the proof of the lemma
in view of (5.7), (5.8). O

Proof of Theorem 5.2: The first assertion follows from Lemma 5.7 and the definition of the
set Ry.

Assume that there exists g > 0 such that ¢g < v < 1 —¢g. Fix 7 € D([0,T], M) such
that Ijg r)(7m|y) < oo. Let 7"(t,dx) = u"(t,r)dx be the sequence in IL, which Ijo 7 (-|7)-
approximates 7 in the sense of Definition 5.1. Since 7" belongs to IL, there exists (5 > (0 and
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e > 0 such that u = u,@ for 0 <t <dande <u(t,z) <1—cforall (t,2) € [6,T] x [0,1].
By (B.4), there exists €1 > 0 such that ¢; < u"(t,z) <1—¢; for all (¢,2) € [0, 9] x [0, 1]. This
completes the proof of the theorem. ]

Remark 5.8. The difference between the present context and Bertini et al. (2009b) is that here
the rate function is convex. We used this property to restrict our attention to trajectories
bounded away from 0 and 1 and smooth in time [that is to paths in Rg].

We conclude this section deriving the explicit formula for the rate functions of trajectories
in II,.

Proof of Proposition 2.6: As u belongs to IL,, u is smooth in (0,77 x [0,1], and for each
0 <t <T, there exists § = d(¢) > 0 such that 6 < u(t,z) <1 —J. Therefore, equation (2.15)
is strictly elliptic and can be solved explicitly. The solution H inherits the smoothness from
u. In particular, it belongs to C*2((0,T] x [0, 1]).

As u belongs to I, u follows the hydrodynamic equation in a time-interval [0, t| for some
t > 0. Hence, for 0 < t < t, the solution of (2.15) vanishes: H(t,z) = 0 for all (¢,2) €
[0,4] x [0,1]. Hence, H actually belongs to C12([0, T] x [0, 1]).

We turn to the formula for the rate function. For a function G in C%2([0, T x [0,1]), let

T T
LTyg(u) = <uT,GT> — <UO,G0> — / <ut,8th> dt + / <Vut,VGt> dt .
0 0

Multiply equation (2.15) by G, integrate over space and time, integrate by parts in space, and
recall the boundary conditions to get that

T
Lrg(u) = 2 /0 (o(uy) VHy, VGy) dt

T
+ /0 {Gt(l)PB,B(Ut(1)> Ht(l)) + G4(0) pa,A(Ut(O)a Ht(o)) } dt .

Insert this expression in (2.11) and add and subtract some terms to get that

T
Jra(u) = — /0 <J(ut)[VHt — VGt]2> dt
1 T
- A/o (1= w(0)]ar [ — O — [Gy(0) — Hi(0)] O] at
1 /T
-2 /O ut(0) (1 — ) [e*Gt(O) e~ Hi(0) _ [G1(0) — Hy(0)] eth(O)] dt
=B + Ipon(v),

where T )(u) is the expression appearing on the right-hand side of (2.16) and B is a term
similar to the second and third lines of this formula with the left boundary conditions replaced
by the right ones. Since the expressions inside the integrals are all positive, the supremum in
G is attained at G = H, so that

Lo (u) = supJra(u) = Tom(u),
G

which completes the proof of the lemma. O
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6. Proof of Theorem 2.7

In this section, we prove the dynamical large deviations. The strategy is by now classical and
we just indicate the main steps. The main point here is that the dynamics can be considered as
a small perturbation of the exclusion process with Neumann boundary conditions (the process
induced by the generator LE’\}IH‘) because the boundary dynamics is speeded-up only by N.

The reversible stationary measures for the exclusion process with Neumann boundary con-
ditions are the uniform measures with a fixed total number of particles. The grand canonical
versions are the Bernoulli product measures with a fixed density. For this reason, we take one
of these measures as reference measure.

There is an important difference between our model and the exclusion process with Dirich-
let boundary conditions. Recall the definition the functional Jr g introduced in (2.10) and
(2.11). For the sake of this discussion, denote by J:R];D’IC the corresponding functional in the
context of exclusion dynamics with Dirichlet boundary conditions Bertini et al. (2003, 2009b);
Farfan et al. (2011); Franco et al. (2021). While J%%C is defined on the set D([0,T], Mac),
in the present context, the functionals Jr p are defined only on the subset Dg ([0, T7], Mac)
of trajectories with finite energy because only for such trajectories are the boundary densi-
ties well defined. As a consequence, in the two-blocks estimate, the usual empirical density,
(2Ne + 1)t ZyeAN,|y—x\<s 1y which, as a function of z, has jumps needs to be replaced by a
smooth approximation. See (6.1) below.

A super-exponential estimate. We follow the proofs presented in Bertini et al. (2009b, Section
3), Farfan et al. (2011, Section 6), Franco et al. (2021, Section 3). Denote by vy the Bernoulli
product measure on 2y with density 1/2 and by Dy the Dirichlet form given by

Dn(f) = (= LY¥™f, fluon, [:Qn —R4.

Next result is Bertini et al. (2009b, Lemma 3.1) adapted to the present context. The proof is
elementary and left to the reader. It relies on a Schwarz inequality.

Lemma 6.1. There exists a finite constant Cy, which only depends on the parameters o, 5,
A, B, such that

(LN, oy < =Dn(f) + CoN E,y[ f?]
for all f: Qn — R4

Given a cylinder function h, that is a function on {0,1}% depending on 7., = € Z, only
through finitely many x, denote by E(a) the expectation of h with respect to v, the Bernoulli
product measure with density a:

h(a) = E, [h] .

Denote by {7, : € Z} the group of translations in {0, 1}? so that (7,(), = (pr» for all z,
z in Z and configuration ¢ in {0, 1}%. Translations are extended to functions and measures in
a natural way. They are also extended to configurations, functions and measures in Q. In
this case, for , y € {k/N : k € Z} such that y, z +y € An, (7a1)y = Naty-

Fix a strictly decreasing sequence {U; : € > 0} converging to 1: U. > U, > 1fore > &' > 0,
lim, o U. = 1. Recall from (3.5) the definition of the approximation of the unity ¢°. For e > 0,
m € M, denote by Z.(m) the measure in M, defined by

1
Ee(m) (dx) = 111}/0 ¢ (y — ) w(dy)dz . Let o™ = = (zV). (6.1)
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Clearly, 7¢ belongs to M, for N sufficiently large because U, > 1. Denote its density by
u™N¥. We have just pointed out that 0 < u™#(x) < 1 for N large. The map = — u™(x) is
smooth, and, if x is at distance less than e from the boundary of the interval [0,1], u’*(z)
does not represent the density of particles around x because the integral is carried over an
interval which does not contain the support of ¢(- — ).

Let H € C(]0,T] x [0,1]) and h a cylinder function. For € > 0 and N large enough, define

VAl 10,7 x @y — R by

Vith() = - 3 H(ta/N) {reh(n) — R(uV(x)}

TEAN

The sum is carried over all x € Ay for which the support of 7,.h is contained in Ay. For a
function G € C([0,7T]) and cylinder functions h, f whose supports are contained in N, —N|
respectively, let Wg :[0,T] x ANy — R be defined by

Wk~ (tn) = G(t) { h(n) — h(u™=(e) }
Wil t(tn) = G >{<mf>< = < NE(l—e))}

Theorem 6.2. Fiz H in C([0,T] % [0,1]), G in C([0,T]), a cylinder function h whose support
ia contained in N, a sequence of configurations {n™N € Qn : N > 1} and 6 > 0. Then

lim limsup — log]P’ N / V]\?Eh t,ne) dt’ > 5} = -0,

=0 Nooco

o 1 Goh,—
;1_13(1) h]rvnjllopﬁlogl[”nw /0 Wy (¢, nt)dt’ > (5] = —00.
A similar result holds if the cylinder functions h has support contained in —N and the
minus sign in Wﬁgh " (t,m) is replaced by a plus sign. The proof of this result follows from
Lemma 6.1 and the computation presented in the proof of Landim (1992, Lemma 3.2).

An energy estimate. The next result is Lemma 3.3 and Corollary 3.4 in Bertini et al. (2009b).
The proof is similar and the details are left to the reader.

Proposition 6.3. Fiz a sequence {G; : j > 1} of functions in C%1([0,T]x [0, 1]) with compact
support in [0,T] x (0,1) and a sequence {n™ € Qn : N > 1} of configurations. There exists a
finite constant Cy, depending only on o, 5, A, B, such that

hmsuphmsupﬁlogﬂ” [lrgaéck QG].(UN’E) > 4 < 0+ Co(T+1).
<<

e—0 N—oo

forallk, £> 1.

Upper bound. The upper bound proof relies on the super-exponential estimate presented in
Theorem 6.2 and on the energy estimate stated in Proposition 6.3. It is similar to the one
presented in Farfan et al. (2011, Subsection 6.3). As a consequence of the argument, the rate
function can be set as 400 for trajectories that are not absolutely continuous with respect to
the Lebesgue measure or which do not have finite energy. In other words, in the proof of the
upper bound one can set Ijg 7)(7|y) = +oo for m & De([0,T], Mac).
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Lower bound. We follow the arguments presented in Bertini et al. (2009b, Subsection 3.4) and
Farfan et al. (2011, Subsection 6.4). Fix an open set § of D([0,T], M) and a den81ty profile

: [0,1] — [0, 1]. Recall the definition of the set II, introduced in Definition 2.5. Fix a path
7r(t, dx) = u(t x)dx € 11, N G.

Let (nV : N > 1) be a sequence of configurations associated to the density profile in the
sense (2.5). Denote by IP’T]HN the probability measure on D([0,T],Qy) induced by the weakly
asymmetric exclusion process with Robin boundary conditions defined in Section 7.

Given two probability measures P and () we denote by Ent (Q | P) the relative entropy of
() with respect to P. By Theorem 7.1, Proposition 2.6 and an elementary computation,

lim NEnt(PfN [P~ ) = Lo (7ly) -

N—oo

Therefore, since N~ log(dIP’nHN /dP,~) is absolutely bounded, by the proof of the lower bound
presented at Kipnis and Landim (1999, page 277),

hm 1nf 10gIP’ N[G] > - inf I[O,T] (uly) .
The lower bound follows from this result and the I} T]( |’y) density stated in Theorem 5.2.

7. Weakly asymmetric exclusion with Robin boundary conditions

Recall the notation introduced in Section 2. Fix H € CY2([0,T] x [0,1]). Consider the
weakly asymmetric exclusion process induced by the external field H with Robin boundary
conditions. The generator of this process, denoted by £ is given by

S AR N (7.1)
where, for a function f: Qy — R,
(LJI\{/,bulk "7 — N2 Z — (Nete—Na) [ He (z+e)—He(x) ]{f x,x+e ) _ f(77) }’
zeAY,

N

LR Hm = F{e™a—n) + O 1 —a)n } { flon) - o)}
N

(L™ Hm) = Z {081 =) + e 1= B)n }{ flo'n) — fn) }-

Denote by Pf , it a probability measure on Q, the measure on D([0, 7], Qx) induced by the
Markov process with infinitesimal generator L% and initial state u. Let Qf be the probability
on D([0,T], M) induced by the empirical measure 7 and the measure IPf : Qﬁ] = ]P’f om L
Theorem 7.1. Fiz a measurable profile v : [0,1] — [0,1]. Let {un : N > 1} be a sequence
of probability measures on Qn associated to vy in the sense of (2.5). Then, the sequence

of probability measures QfN converges to the probability measure Qf concentrated on the
trajectory mw(t,dx) = u(t, ) dz, whose density u is the unique weak solution of

ou = Au — 2V{o(u) VH} ,

V(1) — 20(u(1)) VH(1) = pap(w(l), Hi(1)),
Vur(0) — 20(ut(0)) VH(0) = —pa,a(u(0), Hi(0)) ,
u(0,-) =~() .
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The proof of this result is by now classical and divided in several steps. One first proves
tightness of the sequence (QfN : N > 1). Then, one shows that any limit point of the sequence

EN is concentrated on trajectories (¢, dr) = u(t, x) dz whose density belongs to £2(0, T; H!),
where the #! is the Sobolev space introduced in Section 4. Finally, one shows that limit
points of the sequence QEN are concentrated on trajectories which satisfy the identity (13.7).
It remains to invoke the uniqueness of weak solutions, stated in Theorem B.7, to complete
the proof. The technical details are standard and the arguments rely on the bound presented
in Lemma 6.1. We refer to Kipnis and Landim (1999); Baldasso et al. (2017); Franco et al.
(2021).

Appendix A. The Robin Laplacian

We present in this section some results on the Robin Laplacian needed in the previous
sections. We refer to Mikhailov (1983); Strauss (2008) for details. Denote by A the Laplacian
on [0, 1] with Robin boundary conditions, sometimes called the Robin Laplacian Strauss (2008,
Section 4.3). This is the symmetric linear operator defined on the Hilbert space L?([0,1])
whose domain D(AR) is the set

D(Ag) = {f€C*([0,1]): (V/)(0) = AL f(0), (VNH(1) = =B 1f(1) },

and such that
(Arf)(z) = f(x)

for all f € D(AR). Here, A, B > 0 are fixed positive constants omitted from the notation,

Fix A € R and consider the eigenvalue problem

—Af=AFf,
(V1)(0) = A7 £(0) | (A1)
(VA1) = - BLE(1).

This problem has only the trivial solution f = 0 for A < 0. For A > 0, the equation —Af =\ f

can be turned into a two-dimensional ODE which yields that the solutions of (A.1) are given
by f(z) = a[cos(v/Ax)+b sin(v/Ax)] for some a, b € R. The boundary conditions are satisfied
if and only if
VA
AMB—-1"
in which case b = (Av/A)~!. This identity excludes A = 0 from the set of eigenvalues of the
Robin Laplacian.

An analysis of (A.2) shows that it has a countable set of solutions {\; : j > 1}, where
0 <A1, Aj < Ajpq and Aj ~ j2 in the sense that there exists 0 < ¢y < ¢; < oo such that

tan VA = (A+ B) (A.2)

coj? < Aj < 4% forall j>1. (A.3)

Denote by {f; : 7 > 1} the associated orthonormal eigenvectors, which form a basis of
£2([0,1]). By the previous analysis,

fi(z) = aj{ COS(\/)\»jw) + L

ey sin(\/)\»jx)} , (A.4)

Aj
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where a; is chosen for f; to have £2-norm equal to 1. It can be shown that |a;| < Cj for all
j > 1, where Cj is a finite constant depending only on A and B. Therefore, by (A.3),

[fille < Co, [IV"fillo < Co(M\)™? < Coj” (A.5)

forall j > 1, n > 1. A straightforward computation provides a formula for the Green function
of the Robm Laplacian: Let Kg : [0, 1] x [0,1] — R be given by

1 {(B+1—x)<A+y>, 0<y<az<l,

K - -
REY) = T AT B ((B+l-y)(At2), 0<z<y<l.

(A.6)
Denote by Kg the integral operator defined by

(Krf)(x /KR=T3/ y) dy .

Then, Kr = (*AR)_I.
Denote by Hp the Hilbert space obtained by completing the space C2([0,1]) endowed with
the scalar product (-, - )y, defined by

1
(F29hun = 37050) + [ (VH@) (Vo)) do + ZFDg). (AT
Let || f||2; be the norm induced by the scalar product (-, - )3 ,. We have that
£ = DA lFs £ (A.8)
k>1

for all f € Hr. Note that

IFF, = (fy (= ARS))
for all f € D(AR).

Recall from (3.4) the definition of the Sobolev space H!. The norms || - ||z, and || - |3
are equivalent. There exist finite constants 0 < C7 < Uy < 0o such that
Cilflln < Ifllue < Collfllan (A.9)

for all f € C2%([0,1]). In particular, the spaces Hp and H! coincide.
In terms of the eigenfunctions fi,

I £, = Z)\k‘<fafk>|2‘ (A.10)

k>1
Moreover, a straightforward computation yields that for all f € D(Ag),
1fl5 < 2(AV ) [ fliF, - (A.11)

Fix a function f in H!. Tt is well known that there exists a continuous function f(© :
[0,1] = R (actually Holder continuous, | () (y) — £ (z)| < ||f|l2|ly — |*/?) such that f = ()
almost surely. Moreover, for all h € C*([0,1]),

/1thd:): = fO)R(1) — f@ / Vfhdz. (A.12)
0

The next result provides an explicit formula for f(¢) in terms of the eigenvectors fj.
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Lemma A.1. There exists a finite constant Cy such that

ST f ] < Coll fllan

k>1
for all f € H'. In particular, Y ks1(f s fr) fr(+) defines a continuous function, and, for almost
all z € [0, 1],

fa) =Y (s fr) fula) (A.13)

k>1

Proof: By (A.9), f belongs to Hr. By Schwarz inequality,

(31 f) ) Sl ) Z*'

k>1 k>1

The second sum is finite by (A.3) and the first one is finite by (A.10). This proves the first
assertion.

Since each function fj is continuous, and a summable sum of uniformly bounded continuous
functions is continuous, >~ (f, fr) fx(-) defines a continuous function. As (fy : k > 1)

forms an orthonormal basis of £2([0,1]), f = Y 4o, (f, fx) fx as an identity in £2([0,1]). In
particular, these functions are equal almost everywhere. ]

Denote by (Pt(R) .t > 0) the semigroup in £2(]0,1]) generated by the Robin Laplacian: For
any function f € £2([0,1]), t > 0,

= > e 1) S (A.14)
k>1
In particular, for each ¢ > 0, P( ) is a self- adjoint operator in £2([0, 1]) and P f e C*([0,1])
for all f € £2(]0,1]). Moreover, as Pt( ) is symmetric, by (A.10), Pt( ) is a contraction in Hr
and £2([0, 1]):
1P 12, = S e, fid 1P < 1 f 13,
k>1
I PIVFIS = D e [ f) 2 < (1 £13
k>1
Let f € £2([0,1]) be given by f = > x>1(fs f) fr. For each t > 0, there exists a finite
constant Cy(t) such that

R
112 < co®)| £13, || B fHHR < Co)|I £ 13- (A.16)
Indeed, by (A.10) and since Pt( ) is symmetric and P f = e*)‘ktfk
1P f 13, = S e (F, f P < Cot) Y[ fd [P = o) 1 £ 13

k>1 k>1

(A.15)

for some finite constant Cy(¢). On the other hand, by Schwarz inequality and (A.5),
2
I8 1% = || Yo e g | < TN A0 = G I
k>1 k>1

for some finite constant Cp(t).
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Lemma A.2. There exists a finite constant Cy such that

I PEf = Fllz < Cot'™ | £l
forallt >0, f € Hp.
Proof: Since (fy : k > 1) is an orthonormal basis of £2([0, 1]),

1P — 13 = S [e ™t — 12|, S |

k>1

Fix ko > 1. Since the sequence Ay increases and | exp{—A;t} — 1| < 1, the right-hand side
can be bounded by

ko—1

et — 123 [ P+ — S (s o [

k=1 ko k>ko

for all ky > 1. The first sum is bounded by || f||3. In view of (A.10), the second one is
bounded by || f ||$_[R so that

- 2 1
1200 = £15 < [1= e PISIB + 50 F
As1—e™* <z, x>0, and since, by (A.9), || f|l2 < Col| f |2 for some finite constant Cp,
(R) 2 2 2
1P7 = 113 < {Cort)? + Ako}ufum-

To complete the proof, it remains to choose kg such that )\,;OB ~ t2. [l
Lemma A.3. There exists a finite constant Cy such that
R
| PEVF = Flloo < Cot™® | £ llng
forallt >0, f € C([0,1]) N Hg.
Proof: Fix x € [0, 1]. Since f is continuous, by (A.13) and (A.D),
R 2 _ 2
{POf@) — f@ ) < G (D [0 - e™ [ f)])
k>1

for some finite constant Cy. By Schwarz inequality and (A.10), the right-hand side is bounded
by

3 Z e Mt Z)\k (f  f)|” = ng — e P f 13 -
k>1 k>1 k>1

It remains to estimate the sum. Fix kg > 1. Since the sequence A\ increases, as 1 — e % < x,
x >0, by (A.3), the sum is less than or equal to

cli—et 4 Y L < oW+ )
k>ko k 0

for some finite constant C'. It remains to choose kg such that k:g ~ 12, O
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Appendix B. Initial-value problems with Robin boundary conditions

We present in this section some result on the initial-boundary value problems (2.6), (7.2).
Recall the definition of the Sobolev space H! introduced in (3.4). Fix a function ¢ € £2([0,1]),
and consider the initial-boundary problem

ou = Au

(Vu)(t,0) = A=tu(t,0)
(Vu)(t,1) = — B~ u(t, 1)
U(O") = ¢(-) .

Definition B.1. A function u in £2(0,T;H!) is said to be a generalized solution in the
cylinder [0,77] x [0, 1] of the equation (B.1) if

1 1 t 1
/ uy Hy do — / ¢ Hydr — / ds/ us OsHg dx
0 0 0 0
t 1 t 1 1
_ —/ ds/ Vo, VH, do — / (L () H() + L ug(0) B,(0) ) ds
0 0 o B A

for every 0 < ¢t < T, function H in C*2([0,T] x [0, 1]).

(B.1)

Next result is proved in Baldasso et al. (2017). We present it here in sake of completeness.

Theorem B.2. For each ¢ € £L2([0,1]), there exists one and only one generalized solution to

(B.1). The solution is smooth in (0,00) x [0, 1] and can be represented as u(t,z) = (Pt(R)qﬁ)(:v),

where Pt(R) 1s the semigroup associated to the Robin Laplacian. Moreover,

min{ 0, essinf ¢ } < wu(t,z) < max{0, esssup¢ } (B.2)

for all (t,x) € Ry x [0,1]. Finally, if ¢(x) < b for some b > 0, then, for each ty > 0 there
exists € > 0 such that u(t,z) < b—¢ for all (t,x) € [ty,00) X [0,1]. Analogously, if ¢(z) > a
for some a < 0, then, for each ty > 0 there exists € > 0 such that u(t,x) > a + ¢ for all
(t,z) € [to,00) x [0, 1].

Proof: Existence and uniqueness of generalized solutions, as well as their representation in

)

terms of the semigroup Pt(R
VI.2).

We turn to (B.2). Assume first that ¢ belongs to H!. By (A.9), ¢ € Hgr, and, by
Lemma A.3, u(t) converges to ¢ in £>([0,1]) as ¢ — 0. Since the solution is smooth in
(0,00) x [0,1], by the maximum principle stated in Theorems 2 and 3 of Protter and Wein-
berger (1984, Chapter 3),

is the content of Theorems 1 and 3 in Mikhatlov (1983, Section

min{ 0, inf wu(to,y)} < u(t,z) < max{0, sup u(to,y)}
0<y<1 0<y<1
for all (t,z) € [to,00) x [0,1]. Letting to — 0, as u(tp) converges to ¢ in £°°([0, 1]), yields
(B.2).
To extend this result to ¢ € £2([0,1]), we consider a sequence ¢,, € H' which converges to
¢ in £2([0,1]) and such that essinf ¢ < ¢,(x) < esssup¢ for all 0 < x < 1. Denote by u™
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the solution of (B.1) with initial condition ¢,. Fix ¢ > 0. By the result for initial conditions
in H',
min{ 0, essinf ¢} < min{0, inf ¢,(y)}
0<y<1

< u'(t,z) < max{0, sup ¢n(y)} < max{0,esssupe} .
0<y<1

for all 0 <z < 1. By (A.16), u™(t) converges to u(t) in £°°([0, 1]). This completes the proof
of (B.2).

Assume that ¢(z) < b for some b > 0. By (B.2), u(t,z) <bforallt >0,0 <z <1. Fix
to > 0, and assume that maxo<z<i u(to, ) = b. As b > 0, the boundary conditions imply that
the maximum cannot be attained at the boundary. On the other hand, if it is attained at the
interior, by Theorem 2 of Protter and Weinberger (1984, Chapter 3) and by the smoothness
of the solution, u(t,z) = b for all (¢,z) € (0,to] x [0,1]. This is not possible at the boundary.
Therefore, maxo<z<i1 u(to, ) < b. By the maximum principle, this bound can be extended to
all (t,x) € [tg,00) x [0,1]. The same argument applies to the lower bound. O

Let p € M, be the unique stationary solution of the equation (2.6). That, is p is the
solution of the elliptic equation
Ap =10
(Vp)(0) = A7 [p(0) — o] (B.3)
(Vp)(1) = BB~ p(1)] .
An elementary computation yields that p is given by
_ a(l+ B) + BA B—a)x
S ey 1+B+A
Note that p is the linear interpolation between p(—A) = a and p(1 + B) = .

Definition B.3. Fix v : [0,1] — [0,1]. A function u in £2(0,T;H") is said to be a generalized
solution in the cylinder [0, 7] x [0, 1] of the equation (2.6) if u(t, z) — p is a generalized solution
of the initial-boundary problem (B.1) with initial condition v — p.

Therefore, a function u in £2(0,T;H!) is a generalized solution in the cylinder [0, T] x [0, 1]
of the equation (2.6) if

1 1 t 1 t 1
/ u Hy do — / v Hydxr — / ds / us OsHg dx = —/ ds / Vus VH, dx
0 0 0 0 0 0

— [ {F = A1) + (0 — o] Hi(0) } ds
for every 0 < ¢ < T and function H in C*2([0,T] x [0, 1]).

Theorem B.4. Fiz a measurable density profile v : [0,1] — [0,1]. There exists a unique
generalized solution of (2.6). The solution is smooth in (0,T] x [0,1] and satisfies the bounds

min{ «, essinfy } < u(t,z) < max{ [, esssup~} (B.4)

for all (t,z) € [0,T] x [0,1]. Moreover, for all 0 < to < T there exists € > 0 such that
e <u(t,x) <1—c¢ forall (t,x) € [to,T] x [0, 1].

Proof: The proof of this result is similar to the one of Theorem B.2. O
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Fix v : [0,1] — [0,1], and denote by «(?) the unique weak solution of (2.6) with initial
condition 7. Let Fy: [0,1] — R be given by Fy(r) = rlogr + (1 — r)log(1 —r).

Lemma B.5. There exists a finite constant Cy, which depends only on «, 5, A, B such that

/ Vus A/ ‘ us(0) — « log ‘ds

u

1 1
_us(l) < E — F
T ‘ds < Cpt + /0 o(7) dzx /0 o(ut) dx

for allt >0 and all v : [0,1] — [0, 1].

[us(1) — B] log

Proof: Fix F € C?([0,1]), an initial profile « : [0,1] — [0, 1], and denote by u the solution of
(2.6). Since u is smooth on (0, 00) X [0, 1], integrating by parts and in view of the boundary
conditions, for all 0 < § < t < oo,

/ (ug) de — / F(us)dx = —/;ds OIF”(US)(VUS)Qda:
[ o (ﬂﬁwammS—Lf;wxw—ﬁu%%a»w.

As ug converges to v in £2([0,1]), letting 6 — 0 yields that for all ¢ > 0,

/ds/ F" (ug) (V) dm—i—/A us(0) — a] F'(us(0)) ds

+/OB[US(1) B]F(us(1))ds = /F dx—/ Flup) de .

Since for each t > 0, there exists € > 0 such that ¢ < wu(s,z) < 1 — ¢ for all (s,z) €

[t,00) x [0, 1], the previous argument can be applied to the function Fj introduced just before
the statement of the lemma. It yields that
us(0)

[ )% 0

U 1 1
+A3mmwm%j&@=4%wm—émwm

for all t > 0. Clearly, for each o > 0, the function f, : (0,1) — R defined by f,(r) =
[r — o] log[r/(1 — )] is bounded below by a finite constant, say —c1(0) < 0. Hence,
| fo(r)]| < fo(r) + 2¢1. Therefore, there exists a finite constant Cy = Cy(A, B, «, B) such that

¢ 1 (Vu,)?
s) J0)—all ‘
/Ods/0 (1) A/‘u aog ds
1 t
<5

for all t > 0, as claimed. ]

d —i—/A us(0) — a] log ds

(B.5)

u

1 1
[us(l)—ﬁ]logl_sus(l)’ds < Cot + /0 Fo(y)dx — /0 Fo(uy) dz
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As uy converges to v in £2(]0,1]), letting ¢t — 0 in the previous lemma yields that
lim{ ds VUS / ) us(0) — « log us( ) ‘ ds
0 o olus) us(0)

+/‘us logiz ‘ }—0.

Definition B.6. Fix a measurable density profile v : [0,1] — [0,
C%1([0,T] x [0,1]). A function u in £2(0,T;H") such that 0 <
generalized solution in the cylinder [0, 7] x [0, 1] of the equation (

1 1 t 1
/ ur Gy do — / vGodr — / ds / us 0sG s dx
0 0 0 0

t 1
= / ds / { — Vus VGs + 20(us) VHs VGS} dx (B.7)
0 0

1)

1] and a function H in
u < 1 a.e. is said to be a
7.2) if

)

+ /O {ps.5(us(1), Hs(1)) Gs(1) + pa,a(us(0), Hs(0)) G5(0) } ds

for every 0 < ¢ < T and function G in CH2([0,T] x [0,1]).

Theorem B.7. Fiz v : [0,1] — [0,1] and H in C%1([0,T] x [0,1]). There exists a unique
weak solution of (7.2).

Proof: Existence follows from the hydrodynamic limit of the weakly asymmetric process with
Robin boundary conditions introduced in Section 7. Uniqueness is based on the energy esti-
mate. Fix two initial conditions vV, 7(2), and denote by u(!), u(?) two weak solutions of (7.2)
with initial conditions vV, 42| respectively.

Before presenting a rigorous argument we provide an heuristic one. Approximate w =
2) — uM by a sequence of functions G in C*2([0,7] x [0,1]). By (B.7), for all 0 < t < T,

1
2/wtdm—/[()—7(1) da:+/ds/ (Vw,)?

/ ds / o(ulV) ) VH, Vuw, dz (B.8)

u

B / {01 By p(H <>>+ws<o>25a,A<Hs<o>>}ds,

0
where p, p(M) = D' {oeM + (1 - p)e *M} As p, p(M) > 0, the last integral is negative.

Therefore, by Young’s inequality 2zy < az? + e '2%, @ > 0, and since VH is uniformly

bounded and ¢ Lipschitz continuous,

1
;/wtdaz—/[() MO A /ds/sz
< Co(H /ds/wdm

for some finite constant Cy(H ) which depends on H. It remains to apply Gronwal’s inequality

to conclude that . .
/ w? dx < 0t / [7(2) — W2 da
0 0
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which yields uniqueness.

We turn to a rigorous proof. Recall the notation introduced in the proof of Lemma 3.3. Fix
a smooth function F : R — R and recall that w = u? — v, As w? is a smooth function,
for0<t<T,

(F(w$?)) — /ds/ F'(w2?) 0w du: .

Integrating by parts, the right-hand side becomes

1 1 t 1
/ wf"s F’(wf’d) dr — / wg’(s F’(wé’(s) dx — / ds/ wi"s GSF’(wg"s) dx
0 0 0 0

By Lemma 3.3, actually its proof since we changed the definition of w®, this expression is
equal to

1 1 t 1
/ wy P () dg — / wo F' (i) da — / ds / w, O,F (o)) dz + Res, (B.9)
0 0 0 0

where for all € > 0, lims_,o R. 5 = 0.
Take F(a) = (1/2) a®. Let ¢ be the convolution of ¢ with itself:

6@t /¢t—s

and set gzb((g) (t) = 61 ¢ (t/5). Since Pt( )is a semigroup and since Pt(R) comutes with the
time convolution, for any function f € £2([0,T] x [0, 1]),

(f)(t,2) = / (PPt +5))(2) 62 (5) ds
R

Therefore, the first three terms of (B.9) are equal to

1 1 t 1
/ Wy w?s 9 dy — / wo wgs’é dx — / ds/ Wy aswﬁeﬁ dx ,
0 0 0 0

with the convention, starting from this equation and up to the end of the proof, that the

superscript ¢ represent now convolution with (bgz) instead of ¢s.
By (B.7), this sum is equal to

/ds/ { — Vw, Vo0 + 2{o(u?) - o(ulV) } VH, Vw2 } dz

- /0 {Pp.p(Hs(1) ws(1) wi* (1) + Pa,a(Hs(0)) ws(0) w2 (0) } ds

where P, (M) has been introduced in (B.8). By (A.16), (A.9), for each & > 0, Vw?® belongs
to £2([0,T] x [0,1]). Therefore, as § — 0, Vw?*?® = (Vw?*)? — Vw? in £2([0,T] x [0,1]).
On the other hand, by (A.7) and (A.9),

2,8 2,0
|w; (1) — wi* (1) < Collw;™ — wi |3,

for some finite constant Cy independent of ¢ and t. A similar inequality holds at = = 0.
Therefore, as Vw29 — Vw? in £2([0,T] x [0,1]) as § — 0, w>*°(1) — w2(1) in £2(]0,T]) as
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6 — 0. In conclusion, letting 6 — 0, the sum appearing in the penultimate displayed equation
converges to

t 1
/ ds / { — Vw, Vo + 2{ oc(u®) — o(uV)} VH, Vw? }dx
0 0

- /0 {95, (Hs(1)) ws(1) wiF(1) + P, a(Hs(0)) ws(0) w3 (0) } ds.

By the first assertion of Lemma 3.2, as e — 0, Vw?® converges to Vw in £2([0,T] x [0,1]).
Therefore, as € — 0, the first line converges to

/ds/ { = VwsVw, + 2[0o (ul?)) — (gl))]VHSsz}d:c.

On the other hand, as w € £2(0,T;H!'), by Lemma A.3, w§(1) — w(1) in L£2([0,T]).
Hence, by the dominated convergence theorem, as € — 0, the second line converges to

- /0 [Fsp(Ha(1) wa(1)? + Foa(Ha(0)) ws(0)2 } ds

This proves that equation (B.8) is in force and completes the proof of the theorem. O

We conclude this section with a heat equation with mixed boundary equations. Fix a
function ¢ € £2([0,1]), and consider the initial-boundary problem

ou = Au

(Au)(t,0) = A~ Vu(t,0)
(Au)(t,1) = — B~ Vu(t, 1)
u(0,-) = o(-) .

One can define generalized solutions of this problem as in Definition B.1 and prove existence

(B.10)

and uniqueness as stated in Theorem B.2. The solution can be represented as u; = Pt(M)¢,

where (Pt(M) : t > 0) represents the semigroup associated to the Laplacian with boundary
conditions
(Af)(0) = ATH(VH0), (AN = =B HVH().
Denote this operator by Ajs. An elementary computation shows that the eigenvalues of Ay
coincide with those of Apg.
We claim that for all s > 0 and function f in C*([0,1]),

VPR f — P<M>Vf. (B.11)

To check this identity, fix f in C1([0, 1]), and let u, := PR f Clearly u, is the solution of (B.1)
with initial condition ug = f. Let vs := Vus, Then, v, solves (B.10) initial condition vy = V f.

Hence, vs; can be represented as vy = P Vf, that is, P )Vf =v; = Vug = VP(R f, as
claimed.
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