
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

MARCOS TOMAZZOLI LEIPNITZ

Integrating Constraint Awareness and
Multiple Approximation Techniques in

High-Level Synthesis for FPGAs

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Computer Science

Advisor: Prof. Dr. Gabriel Luca Nazar

Porto Alegre
October 2022

CIP — CATALOGING-IN-PUBLICATION

Leipnitz, Marcos Tomazzoli

Integrating Constraint Awareness and Multiple Approxima-
tion Techniques in High-Level Synthesis for FPGAs / Marcos
Tomazzoli Leipnitz. – Porto Alegre: PPGC da UFRGS, 2022.

136 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2022. Advisor: Gabriel Luca Nazar.

1. High-level synthesis. 2. Approximate computing. 3. Design
space exploration. 4. Field-Programmable Gate Array. I. Nazar,
Gabriel Luca. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“It always seems impossible until it’s done.”

— NELSON MANDELA

ACKNOWLEDGEMENTS

The British philosopher Alfred North Whitehead once said: "No one who achieves

success does so without acknowledging the help of others. The wise and confident ac-

knowledge this help with gratitude." In that spirit, I dedicate this thesis to each person

who has been involved in my academic life and helped me throughout this project. Spe-

cial thanks to my parents, Roni Carlos Leipnitz and Larice Tomazzoli, for their support

and affection, and to my advisor, Gabriel Nazar, for patiently guiding me in the right

direction and for the words of motivation and inspiration.

ABSTRACT

The adoption of High-Level Synthesis (HLS) targeting Field-Programmable Gate Arrays

(FPGAs) has increased as the latest HLS tools have evolved to provide high-quality re-

sults while increasing productivity and reducing time-to-market. Concurrently, numerous

approximate computing (AC) techniques have been developed to reduce design costs in

error-resilient application domains, such as signal and multimedia processing, data min-

ing, machine learning, and computer vision, to trade-off computation accuracy with area

and power savings or performance improvements. However, selecting adequate tech-

niques for each application and optimization target is complex but crucial for high-quality

results. In this context, many works have proposed incorporating AC techniques within

HLS toolchains to alleviate the burden of hand-crafting approximate circuits, i.e., de-

signers can resort to approximate HLS (AHLS) tools to automate the exploitation of AC

techniques when attempting to make a design meet the specified requirements.

However, previous AHLS design methodologies do not allow specifying a set of design

metrics constraints to guide the exploration of approximate circuits towards meeting the

aimed optimizations. Moreover, they are typically tied to a single approximation tech-

nique or a difficult-to-extend set of techniques whose exploitation is not fully automated

or steered by optimization targets. Therefore, available AHLS tools overlook the benefits

of expanding the design space by mixing diverse approximation techniques toward meet-

ing specific design objectives with minimum error. This thesis proposes that a constraint-

aware AHLS methodology for FPGAs, able to automatically identify efficient combina-

tions of multiple AC techniques for different applications and design optimizations, would

be a promising option to manage the design effort of adopting the AC design paradigm

while optimizing the quality of results. Experimental results over a set of signal and image

processing benchmarks show that, on average, a reduction of about 30% in error measure,

ranging from 9.5% to 52% depending on the target constraints (resources, worst-case exe-

cution time, or both), can be obtained when compared to constraint-oblivious approaches

relying on unconstrained or error-constrained design methodologies. Moreover, addi-

tional improvements varying from 5% to 30% (about 18% on average) can be attained

when constraint awareness is exploited with multiple AC techniques.

Keywords: High-level synthesis. Approximate computing. Design space exploration.

Field-Programmable Gate Array.

Integração de Consciência de Restrições e Múltiplas Técnicas de Aproximação em

Síntese de Alto Nível para FPGAs

RESUMO

A adoção de Síntese da Alto Nível (HLS do Inglês High-Level Synthesis) visando Field-

Programmable Gate Arrays (FPGAs) aumentou à medida que as ferramentas mais recen-

tes de HLS evoluíram para fornecer resultados de alta qualidade enquanto aumentam a

produtividade e reduzem o time-to-market. Simultaneamente, inúmeras técnicas de com-

putação aproximativa (AC do Inglês Approximate Computing) foram desenvolvidas para

reduzir os custos de projeto em domínios de aplicação resilientes a erros, tais como pro-

cessamento de sinais e multimídia, mineração de dados, aprendizado de máquina e visão

computacional, para trocar a precisão da computação por economia de área e energia ou

melhorias de desempenho. Entretanto, a seleção de técnicas adequadas para cada apli-

cação e otimização alvo é complexa, porém crucial para resultados de alta qualidade.

Neste contexto, muitos trabalhos propuseram incorporar técnicas de AC dentro do fluxo

de ferramentas HLS para aliviar a carga de explorar manualmente circuitos aproximados,

ou seja, os projetistas podem recorrer a ferramentas de HLS aproximativas (AHLS do

Inglês Approximate High-Level Synthesis) para automatizar a exploração das técnicas de

AC quando tentarem fazer um projeto atender os requisitos especificados.

Entretanto, as metodologias prévias de AHLS não permitem especificar um conjunto de

métricas de projeto para orientar a exploração de circuitos aproximados para atender às

otimizações pretendidas. Além disso, esses métodos normalmente estão vinculados à

uma única técnica de aproximação ou à um conjunto de técnicas de difícil extensão, cuja

exploração não é totalmente automatizada ou orientada por objetivos de otimização. Por-

tanto, as ferramentas AHLS disponíveis ignoram os benefícios de expandir o espaço de

projeto, misturando diversas técnicas de aproximação para atingir objetivos específicos de

projeto com o mínimo de erro. Esta tese propõe que uma metodologia AHLS consciente

das restrições para FPGAs capaz de identificar automaticamente combinações eficientes

de múltiplas técnicas de AC para diferentes aplicações e otimizações de projeto seria uma

opção promissora para gerenciar o esforço de projeto para adoção do paradigma de pro-

jeto AC enquanto otimiza a qualidade dos resultados. Resultados experimentais sobre um

conjunto de aplicações de processamento de sinais e imagem mostram que, em média,

uma redução de cerca de 30% na medida do erro, variando de 9,5% a 52% dependendo

das restrições alvo (recursos, tempo de execução de pior caso, ou ambos), pode ser obtida

quando comparada a abordagens que não são conscientes das restrições e que dependem

de metodologias de projeto sem restrições ou com restrições de erro. Além disso, melho-

rias adicionais variando de 5% a 30% (cerca de 18% em média) podem ser alcançadas

quando a consciência das restrições é explorada com múltiplas técnicas de AC.

Palavras-chave: Síntese de alto nível. Computação aproximativa. Exploração do espaço

de projeto. Field-Programmable Gate Array.

LIST OF FIGURES

Figure 1.1 Constraint-aware exploration of AC techniques within HLS design flows ...19
Figure 1.2 Multiple attempts to meet design objectives with error-constrained AHLS..20
Figure 1.3 Motivational example: trade-offs provided by different AC techniques

for different applications and target optimizations with savings of 20%..................21
Figure 1.4 Motivational example: comparison between single-technique and multi-

technique approaches for the ADPCM application with resource savings of 20% ..22

Figure 2.1 Typical FPGA structure and design flow...26
Figure 2.2 Typical HLS design flow for FPGAs...29
Figure 2.3 Sources of Inherent application resilience...32

Figure 4.1 GRASP-based design flow to meet multiple constraints with minimum
error...60

Figure 4.2 Software-level AC techniques implemented as code transformations...........63
Figure 4.3 HLS optimizations on area and delay (a) before and (b) after a V2P

substitution..67
Figure 4.4 Sequence of steps to measure error and evaluate resources and time savings69
Figure 4.5 Execution times distribution and timing analysis for real-time systems72
Figure 4.6 IPET-based static WCET analysis for HLS...75
Figure 4.7 DSE of approximate designs: (a) DSE at each RGC iteration and (b)

DSE on subsequent RGC iterations until a feasible design is found83

Figure 5.1 Experimental setup and tool flow ..89
Figure 5.2 Code excerpt from the ADPCM encoder application....................................91
Figure 5.3 Code excerpt from the JPEG decoder application...91

Figure 6.1 Constraint-aware heuristic results for the ADPCM benchmark93
Figure 6.2 Constraint-aware heuristic results for the FIR benchmark94
Figure 6.3 Constraint-aware heuristic results for the FFT benchmark95
Figure 6.4 Constraint-aware heuristic results for the SOBEL benchmark......................96
Figure 6.5 Constraint-aware heuristic results for the 3DR benchmark...........................97
Figure 6.6 Constraint-aware heuristic results for the JPEG benchmark98
Figure 6.7 Constraint-aware heuristic results for the MOTION benchmark99
Figure 6.8 Constraint-aware heuristic results for the DIGIT benchmark100

Figure 7.1 Comparison between the multi-technique and the best single-technique
approaches...104

Figure 7.2 Error variation for each application considering all constraint scenarios....104
Figure 7.3 Error and running time variation over all scenarios for different values

of K ...106
Figure 7.4 Contribution of each AC technique over the total number of RGC iterations107
Figure 7.5 Summary of results for constraint-oblivious, constraint-aware, and multi-

technique design methodologies ...110
Figure 7.6 AHLS running time for different applications, constraints, and target

design metrics ...111

LIST OF TABLES

Table 3.1 Comparison between AHLS works found in the literature and this thesis54

Table 5.1 Benchmark kernels (synthesized for Intel Cyclone V)90

Table 6.1 Summary of results for the constraint-aware GRASP-based heuristic102

LIST OF ABBREVIATIONS AND ACRONYMS

AC Approximate Computing

ADPCM Adaptive Differential Pulse-Code Modulation

AHLS Approximate High-Level Synthesis

ALAP As-Late-As-Possible

ALS Approximate Logic Synthesis

ASAP As-Soon-As-Possible

ASIC Application Specific Integrated Circuit

BRAM Block Random Access Memory

BWR Bitwidth Reduction

CDFG Control and Data Flow Graph

CFG Control Flow Graph

CGP Cartesian Genetic Programming

DAG Directed Acyclic Graph

DFG Data Flow Graph

DSE Design Space Exploration

DSP Digital Signal Processor

EM Error Metric

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field-Programmable Gate Array

IoT Internet-of-Things

HLS High-Level Synthesis

ICFG Interprocedural Control Flow Graph

ILP Integer Linear Programming

IPET Implicit Path Enumeration Technique

IR Intermediate Representation

LLVM Low-Level Virtual Machine

LP loop Perforation

LUT Look-Up Table

MSE Mean-Squared Error

NSGA Non-Dominated Sorting Genetic Algorithm

PA Percentage Accuracy

PSNR Peak Signal-to-Noise Ratio

QoR Quality of Results

V2C Variable to Constant

V2M Variable to Mean

V2P Variable to Power

V2Z Variable to Zero

WCET Worst-Case Execution Time

CONTENTS

1 INTRODUCTION...14
1.1 Motivation and Challenges...18
1.2 Thesis Contributions...23
2 BACKGROUND..25
2.1 Field-Programmable Gate Arrays...25
2.2 High-Level Synthesis ..26
2.3 Approximate Computing..31
2.3.1 Applications and Principles ...31
2.3.2 Software-level Techniques ...34
2.3.3 Architecture-Level Techniques ..36
2.3.4 Circuit-Level Techniques ...37
2.3.5 Current Challenges...39
3 RELATED WORK ...41
3.1 Approximate Logic Synthesis ..41
3.2 Approximate High-Level Synthesis ...48
3.3 Open Challenges Addressed by this Thesis ..53
4 DESIGN METHODOLOGY ...58
4.1 Methodology Overview...58
4.1.1 Optimization Problem..58
4.1.2 Design Space Exploration Overview ...60
4.2 Approximate Computing Techniques ...62
4.2.1 Variable-to-Constant Substitutions ..64
4.2.2 Bit-width Reduction...65
4.2.3 Loop Perforation ..66
4.2.4 Exploring Further Optimizations ...67
4.3 Design Metrics Evaluation ...68
4.3.1 Resource Savings ...68
4.3.2 Execution Time Savings ..72
4.3.3 Error Measurement ..77
4.4 GRASP-based Optimization Heuristic ...79
4.4.1 Randomized Greedy Construction Procedure..81
4.4.2 Local Search Procedure ...83
4.4.3 Fitness Function ...85
4.4.4 Generality and Scalability..85
5 EXPERIMENTAL SETUP ..88
5.1 Design Flow Implementation ...88
5.2 Benchmarking Applications...89
6 CONSTRAINT-AWARE HEURISTIC RESULTS ..92
6.1 Techniques Performance for Different Constraints and Applications...............93
6.2 Impact of Constraint Awareness ...97
6.3 Summary of Results..101
7 MULTI-TECHNIQUE HEURISTIC RESULTS ...103
7.1 Comparing the Single-Technique and Multi-Technique Approaches103
7.2 Heuristic Running Time and Error Variation for Different Values of K105
7.3 Techniques Contribution for Different Constraints and Applications.............106
7.4 Summary of Results..108
8 CONCLUSION ...113
8.1 Published Works ...114

8.2 Future Works...116
REFERENCES...118
APPENDIX A — EXTENDED ABSTRACT IN PORTUGUESE (RESUMO

ESTENDIDO EM PORTUGUÊS) ...133
A.1 Introdução...133
A.2 Motivação e Contribuições ..133
A.3 Resultados Experimentais ...135

14

1 INTRODUCTION

The technology scaling of Complementary Metal Oxide Semiconductor (CMOS)

devices has boosted advances in the processing capacity and functionality of modern com-

puting systems. The exponential growth in the number of transistors on-chip, popularly

known as Moore’s law (MOORE, 1965), leveraged the integration of complex systems

in a single package (Systems-on-Chip - SoCs) with concurrent advancements in area,

power, and delay without jeopardizing costs. For example, smaller process node tech-

nologies allow adding more memory or application-specific accelerators to build systems

requiring higher and heterogeneous processing capabilities. However, the innovation op-

portunities enabled by the technology scaling introduced new challenges as the physical

limitations of transistor devices have diminished the performance scaling trend. With

the end of the Dennard scaling (DENNARD et al., 1974) due to voltage scaling limits

and increasing sub-threshold leakage current, integrating more transistors on-chip results

in higher power density and hence in power dissipation issues, such as overheating and

reliability degradation due to accelerated aging. Moreover, sustained chip performance

becomes limited by the Thermal Density Power (TDP) constraint, which leveraged the

adoption of multi-core architectures with heterogeneous computing resources to preserve

performance scaling through parallel processing (BORKAR, 2007). Nevertheless, as tran-

sistors continue to shrink, the power wall may limit the concurrent activation of on-chip

devices (ESMAEILZADEH et al., 2011). Therefore, power dissipation and energy con-

sumption become primary concerns in the design and deployment of modern computing

systems since they critically determine operating costs, cooling requirements, and battery

autonomy of mobile devices.

In face of these technological hurdles, the growth in market demand for real-time

performance and energy-bound systems for a wide range of applications involving multi-

media streaming, computer graphics, computer vision, natural language processing, data

mining, and virtual and augmented reality has been driving substantial research and en-

gineering efforts. A typical example is the rise of edge computing applications based on

the Internet-of-Things (IoT) paradigm, where computation and data storage are brought

closer to data sources, such as smartphones, wearables, unmanned aerial vehicles, and

sensor networks (VARGHESE et al., 2016; KHAN et al., 2019). The main idea is to en-

able applications requiring low response times by providing low latency communication

and real-time processing capabilities. With the growing adoption of the 5G technology,

15

mobile IoT will reach 4.4 billion connections by 2023, a four-fold growth from 2018,

crossing over a third (34%) of all mobile devices connected to the internet (CISCO, 2020).

However, the limited computing capacity of edge devices due to non-functional con-

straints like manufacturing cost, power dissipation, and energy consumption may ham-

per the viability and quality of compute-intensive networked services based on graph-

ics processing and deep learning, for example. Moving such computations to the cloud

to take advantage of the high processing capacity of modern data centers offering high-

performance and heterogeneous computing resources may not be an option due to latency,

scalability, and privacy concerns (CHEN; RAN, 2019). In that case, the user experience

may be harmed by the lack of latency and bandwidth guarantees. Therefore, deploy-

ing edge computing applications often demands energy-efficient software and hardware

implementations to meet specific performance requirements and become feasible.

On the other hand, cloud providers must deal with the ever-increasing demand

for computing and storage resources in worldwide data centers. Public cloud services

providers, such as Amazon, Google, and Microsoft, take in more than 250 billion dollars

a year to maintain massive data centers around the world, all loaded with high-core-count

CPUs, sporting terabytes of RAM and petabytes of storage. In such a scenario, global

data centre electricity use reached 200-250 TWh in 2020, or around 1% of global final

electricity demand, not to mention the energy needs for cryptocurrency mining, which

were about 100 TWh in that same period (IEA, 2021). With augmented-reality spectacles

streaming real-time video over the internet and the widespread adoption of smart digital

currencies, the cloud infrastructure will provide the foundation for nearly every financial

transaction and user interaction with data over the next decade (PESCE, 2021). Conse-

quently, the cloud’s energy consumption is poised to grow unsustainably, bringing the

challenge of designing high-efficiency computing systems able to process huge amounts

of data timely without busting power and energy budgets and raising capital and opera-

tional expenditures to impractical figures (ARMBRUST et al., 2010).

Another typical application in this context are the new video encoding standards

with higher compression capabilities, such as the High Efficiency Video Coding (HEVC)

and its successor, the Versatile Video Coding (VVC), commonly adopted by live and on-

demand streaming platforms to manage bandwidth requirements (BROSS et al., 2021).

The strong demand for streaming services has boosted the growth of network traffic.

Globally, video streaming and gaming currently make up 87% of total consumer Internet

traffic, projected to reach 332.7 exabytes per month by 2022 (CISCO, 2020). Considering

16

only mobile data traffic, which reached around 84 exabytes per month by the end of 2021

and is projected to grow by a factor of about 4.3 to reach 368 exabytes per month in 2027,

video traffic is estimated to account for 69%, a share that is forecast to increase to 79%

in 2027 (ERICSSON, 2022). However, more complex encoding techniques usually come

with higher computational costs. For example, when real-time encoding is necessary, the

encoding system must handle computing needs that grow substantially with increasing

resolutions while still meeting the required frame rate. Efficient implementations of such

standards usually leverage dedicated hardware accelerators to handle the stringent latency

and throughput requirements of applications such as high-resolution video streaming (4K

and beyond) and cloud gaming without sacrificing user experience (SJöVALL et al., 2018;

FAN et al., 2018; Bey Ahmed Khernache et al., 2021; GOGOI; PEESAPATI, 2021).

Therefore, deploying compute-intensive networked services and applications while meet-

ing performance requirements with stringent resources, power, and energy constraints can

be very challenging.

As mentioned, among the strategies commonly used to meet the specific require-

ments of each application is the development of dedicated hardware accelerators, de-

signed and adjusted manually through a hardware description language (HDL), such as

VHDL or Verilog, according to the availability of resources and the restrictions imposed

by the environment where the services will be implemented. Such strategy, however, in-

creases the time-to-market and demands specialized designers, making its adoption more

costly and difficult in environments where services and requirements constantly change

with the emergence of new technologies, platforms, and applications. The High-Level

Synthesis (HLS) design methodology has emerged in this scenario as an option to syn-

thesize hardware targeting Field-Programmable Gate Arrays (FPGAs) or Application-

Specific Integrated Circuits (ASICs) from a behavioral description in a high-level lan-

guage, such as C/C++ or SystemC, increasing productivity and reducing development

cycles (COUSSY et al., 2009; Cong et al., 2011). However, compiling untimed algo-

rithmic descriptions to low-level and cycle-accurate hardware specifications can be very

challenging due to the inherent interdependence between the basic tasks involved in the

synthesis process (resources allocation, scheduling, and binding), which may lead to sub-

optimal results. Nevertheless, due to its advantages, the adoption of HLS is expanding as

the available tools (e.g., Cadence Stratus, Xilinx Vivado, and Intel HLS Compiler) have

evolved to provide high-quality results often comparable to hand-coded designs (Koch;

Hannig; Ziener, 2016; LAHTI et al., 2019; Nane et al., 2016).

17

One of the great advantages of the HLS approach is the possibility of reusing and

redirecting high-level IP cores to different technological substrates, allowing quick imple-

mentation of variants with unique characteristics regarding resources usage, performance,

energy, and power, from a series of directives specified directly in the tool (number of

functional units, resource sharing, clock frequency, loop unrolling, loop pipelining, etc.)

or through pragmas in the source code. However, given that the design space exploration

is carried out by steering the synthesis with a relatively large set of configurations not ex-

plicitly related to the target optimizations, obtaining satisfactory results requires designers

to have familiarity with the specific application at hand and the chosen HLS tool.

Concurrently, the Approximate Computing (AC) design paradigm has become a

powerful tool for aiding designers in implementing highly efficient software and hard-

ware accelerators for a wide range of compute-intensive applications in domains like sig-

nal and image processing, computer graphics, data mining, machine learning, and com-

puter vision (Palem et al., 2009; Han; Orshansky, 2013; LIU; LOMBARDI; SHULTE,

2020). Many applications in such domains are inherently tolerant to approximations in

some of their computations due to redundant or noisy input data, probabilistic and statis-

tical calculations, or perceptual limitations. Thus, delivering a less-than-optimal outcome

with a controlled and occasional deviation from the exact implementation is often suffi-

cient, making precise and costly computations unnecessary. For such cases, a plethora

of AC techniques have been proposed to overcome the challenges arising from real-time

requirements or stringent resources, power, and energy constraints, allowing the explo-

ration of unique trade-offs between computation precision and design objectives (XU;

MYTKOWICZ; KIM, 2016; Mittal, 2016). Mobile applications, for example, can benefit

from AC techniques to reduce energy consumption without sacrificing user experience Pe-

jović (2019). However, harnessing the full potential of AC can be very challenging, as it is

an application- and workload-dependent task that relies on carefully selecting appropriate

techniques and assessing where they should be applied to achieve the target optimizations

without unacceptable quality loss (Venkataramani et al., 2015; Shafique et al., 2016).

Therefore, the AC design paradigm has the drawback of increasing design complexity,

impacting time-to-market and costs.

The hurdles for adopting the AC design paradigm have driven the proposal of nu-

merous approximate logic synthesis (ALS) and approximate HLS (AHLS) design method-

ologies incorporating approximate computing techniques within HLS toolchains to deal

with the Design Space Exploration (DSE) of approximate circuits and to relieve the

18

burden of hand-crafting application-specific hardware accelerators (Vaverka; Hrbacek;

Sekanina, 2016; Li et al., 2015; Lee; John; Gerstlauer, 2017; Schafer, 2017; Lee; Gerst-

lauer, 2017; Nepal et al., 2014; Nepal et al., 2019; Xu; Schafer, 2017; XU; SCHAFER,

2019c; CASTRO-GODíNEZ et al., 2020b). In a typical (i.e., not approximate) HLS de-

sign flow, designers steer the synthesis tool to produce the desired trade-off regarding

area, power, and timing, allowing automatic exploration of diverse hardware implemen-

tations from high-level algorithmic descriptions. The wider flexibility offered by the HLS

approach compared to traditional design flows, where the HDL code must be hand-crafted

to achieve specific optimizations, is thus a promising option to manage the design effort of

adopting AC as well. Including the exploitation of AC techniques within the HLS design

space enables a comprehensive exploration of approximation opportunities at higher ab-

straction levels, enabling designers to trade off output precision with diverse optimization

targets and generate approximate hardware quickly without requiring in-deep knowledge

of approximation methodologies.

1.1 Motivation and Challenges

Reconfigurable devices, such as FPGAs, are widely used to implement comput-

ing systems that can benefit from fine-grained parallelism acceleration and in-field re-

configuration to add new features or improve their capacity to satisfy new requirements

timely, which is the case for many applications exploiting the AC design paradigm. Com-

piling for reconfigurable computing architectures through HLS imposes specific chal-

lenges for efficiently mapping high-level algorithmic descriptions to device-specific hard-

ware resources (Cardoso; Diniz; Weinhardt, 2010). Thus, state-of-the-art HLS tools rely

on target-oriented resource allocation, scheduling, and binding optimizations to provide

high-quality results. However, most built-in approximation methodologies proposed so

far are target-oblivious, i.e., they disregard the hardware substrate when defining the

methodology for choosing where approximations should be applied, which may result

in sub-optimal designs, as the benefits of approximations may be very different when

targeting FPGAs instead of ASICs.

Figure 1.1 illustrates a traditional HLS design flow augmented (blue boxes) with

constraints on specific design metrics, a set of AC techniques, and a heuristic able to ex-

plore the design space of approximate designs to meet all constraints with minimum error.

As can be observed, FPGAs comprise a wide variety of heterogeneous resources that can

19

Figure 1.1 – Constraint-aware exploration of AC techniques within HLS design flows

28...

Error up to 5% Error up to 10% Error up to 15%

1st Attempt 2nd Attempt 3rd Attempt

...

Error up to 12%

4th Attempt

Target

Exact Circuit
Resources Usage

...

LUT REG DSP BRAM

Target

</>

HDL Code
(VHDL/Verilog)

Device-specific
RTL Synthesis

(FPGA)

IP Cores
Device Characterization

HLS

</>

Source Code
(C/C++)

Standard
Directives

Include constraints
on resources, power,

delay, etc.

Approximate Computing Techniques

HLS

Available
Resources

Delay
Actual

DSE Heuristic

Power...

Source: The author

be exploited to fine-tune approximation strategies and improve the quality of results. De-

pending on design constraints, arithmetic operations and data storage can be mapped to

built-in hard blocks such as Digital Signal Processors (DSPs) and Block RAMs (BRAMs)

or carried out via fine-grained resources such as Look-Up Tables (LUTs) and Registers

(REGs). Consequently, AHLS design methodologies that aim to reduce resource usage,

power consumption, or delay in FPGAs should be aware that specific operations may have

a more efficient mapping to dedicated resources, providing different gains when compared

to ASIC-oriented synthesis.

Besides being target-oblivious, most existing approximation methodologies for

HLS are also error-constrained, i.e., designers specify a maximum target error, and DSE

is performed to minimize area, power, or delay, subject to the maximum error. As the

concept of acceptable error is application- and workload-dependent, defining error bounds

beforehand often requires deep knowledge of the application and the environment where

it will be used, making such an approach unpractical for many scenarios. As exemplified

in Figure 1.2, the available resources are frequently known a priori, which can be the

entire device or a certain subset if it is shared with other components, and thus designers

may need multiple attempts to find the target error that produces a circuit meeting all

design requirements. In the third and fourth attempts shown in Figure 1.2, note how an

error-constrained DSE is unable to focus on approximations with more impact on those

design metrics that still have not been met in the second attempt, i.e., the number of DSP

blocks and the circuit’s power consumption. Consequently, designers may need to try

multiple error thresholds until an acceptable result is found.

There are also unconstrained methodologies that produce Pareto-optimal designs

20

Figure 1.2 – Multiple attempts to meet design objectives with error-constrained AHLS

16

Motivation

...

LUT REG DSP BRAM

...

LUT REG DSP BRAM

...

LUT REG DSP BRAM

Error up to 5% Error up to 10% Error up to 15%

1st Attempt 2nd Attempt 3rd Attempt

...

LUT REG DSP BRAM

Error up to 12%

4th Attempt

Power
Delay

Ø Most AHLS methodologies proposed so far are error-constrained
• The suitability of different AC techniques for specific design objectives is not exploited directly
• Designers may need multiple attempts to meet all design objectives
• Defining error bounds may be difficult and counterintuitive from a design perspective

Target Exact

Ta
rg

et

Source: The author

regarding the error and specific design metrics, with designers responsible for choosing

the approximate design with a trade-off that best fits their needs. However, more suitable

trade-offs may be lost in those cases due to less focused optimizations. Additionally,

these methodologies usually restrict optimizations to specific design metrics, not being

adequate if designers need to meet multiple constraints simultaneously. As a result, the

tool may apply more approximations than the strictly necessary to meet the designer’s

objectives, jeopardizing results. Therefore, a promising option would be a target-oriented

approach with which designers can directly control design objectives by steering the DSE

with multiple constraints, such as resource usage, energy consumption, or performance.

Another limitation of AHLS methodologies proposed so far is relying on a limited,

difficult-to-extend set of AC techniques tightly coupled to the design flow or on pre-built

libraries of approximate functional units found in the literature. The drawback of such ap-

proaches is narrowing the design space by hampering the addition of new AC techniques

that may enable the exploration of unique trade-offs. Variable to constant substitutions,

for example, may provide both area and performance improvements by replacing costly

operations with constant values. Conversely, loop perforation techniques are primarily

used to reduce execution times by skipping some iterations of loop-based computations,

while bit-width reduction is a fine-grain technique suitable for reducing the data-path size

by simplifying costly operations. Figure 1.3 illustrates a motivational example where

the bit-width reduction (BWR), loop perforation (LP), and variable-to-mean (V2M) AC

techniques are applied to two different applications (ADPCM encoder and FIR filter), tar-

geting savings of 20% in resources (LUTs, REGs, and DSPs), worst-case execution time

(WCET), and both design metrics. The metric considered for quality measurement is the

21

Figure 1.3 – Motivational example: trade-offs provided by different AC techniques for different
applications and target optimizations with savings of 20%

ADPCM FIR

RESOURCE WCET BOTH RESOURCE WCET BOTH

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
4250
4500

Design Metric Savings

M
S

E

ACT BWR LP V2M HEURISTIC Constraint-Oblivious Constraint-Aware

Source: The author

mean squared error (MSE). Additionally, for each scenario, it is considered two different

approaches for DSE: constraint-oblivious, where approximations are performed until the

aimed savings are attained based only on error-metric trade-offs, and constraint-aware,

where the target savings of 20% is leveraged to select approximate design candidates

based not just on error-metric trade-offs, but also on how distant they are from meeting

the imposed constraints.

As can be observed in Figure 1.3, BWR and LP are more suitable for resource

and WCET savings, respectively, being very inefficient for other scenarios, while V2M

provides an intermediate option that performs well for most cases, even though it is not

the best option for some cases where BWR and LP stand out. Nevertheless, depending on

the application, the best technique for a given optimization may vary. For example, while

BWR is the best choice for resource savings in the ADPCM application, it was overtaken

by the V2M technique in the FIR application. Regarding the heuristic employed, it be-

comes clear that a constraint-aware approach is able to improve results by reducing the

MSE, on average, by about 25% and 22% for the ADPCM and FIR applications, respec-

tively. Such results represent the experiments presented in Chapter 6, where more applica-

tions and design scenarios are explored and discussed in detail. Therefore, although some

techniques may impact multiple design metrics, other techniques were designed to focus

on specific optimizations to avoid unnecessary quality loss. However, current efforts on

AHLS concentrate on heuristically evaluating where to apply the AC techniques to opti-

22

Figure 1.4 – Motivational example: comparison between single-technique and multi-technique
approaches for the ADPCM application with resource savings of 20%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

BWR LP V2M V2P V2Z ALL
AC Technique Available

M
S

E

Source: The author

mize results, i.e., which operations or functional units to approximate, not assessing the

most suitable techniques for each particular application and target objective.

Moreover, as can be seen in the example in Figure 1.4, which explores all im-

plemented AC techniques detailed in Section 4.2 (BWR, LP, V2M, V2P, and V2Z), a

combination of multiple AC techniques (ALL), applied to different circuit operations in

the ADPCM application, leads to about 19% in MSE reduction for resource savings of

20%, when compared to the single technique providing the least error (BWR). As will

be presented in Chapter 7, this pattern is observed, in different degrees, for all applica-

tions and constraints considered for evaluation. Therefore, aside from exploiting different

techniques for different scenarios, there is the possibility of obtaining improved results

by carefully selecting a combination of techniques, especially when facing multiple con-

straints, a possibility currently overlooked by existing approaches. As a result, either the

task of finding which techniques to apply is left as an additional burden for designers, or

the DSE becomes limited, which may produce substantially sub-optimal designs.

As the number of available AC techniques increases, applicable with varying

trade-offs to different applications and substrates, so increases the size and complexity of

the associated design space. Efficient approaches to incorporate new AC techniques and

to effortlessly identify the optimal approximations for each scenario become necessary to

allow seamless integration of the AC design paradigm in design flows aimed at short de-

velopment time. Thus, to optimize results, the exploration of approximate circuits within

HLS design flows requires dedicated heuristics to quickly identify which computations

can be approximated, which AC techniques are adequate to use, and to what extent they

should be applied to avoid increasing output errors beyond the strictly necessary. For this

23

purpose, it is crucial to define a systematic way of estimating the impact of approxima-

tions on the design metrics of interest and the resulting error. Therefore, the challenge to

be dealt with is providing an AHLS design methodology able to minimize output errors by

automatically fine-tuning a combination of approximation strategies on a per-application

basis and according to their suitability in optimizing specific design metrics toward meet-

ing the specified constraints, assuming that they cannot be met by simply adjusting the

HLS tool knobs or redesigning the system.

1.2 Thesis Contributions

The main contribution of this thesis is a novel methodology for automated synthe-

sis of approximate circuits within HLS-based design flows for FPGAs. More specifically,

we propose a constraint-aware AHLS methodology that automatically combines multiple

AC techniques to produce approximate hardware, exploring a wide range of optimization

opportunities toward meeting multiple constraints with minimum error. The proposed

methodology focuses on extensibility, i.e., the ability to broaden the design space by eas-

ily incorporating additional AC techniques and considering their potential benefits in con-

junction with those already available when trying to meet the target constraints. For that

purpose, the AC techniques are implemented as code transformations within the compiler

infrastructure of HLS tools, enabling the synthesis of approximate hardware from an easy-

to-extend set of software-level approximations. In a nutshell, this thesis proposes that

an AHLS design methodology for FPGAs which is directly steered by one or more

constraints on design metrics, and that combines multiple AC techniques, is able

to synthesize approximate hardware with reduced error, when compared to single-

technique or constraint-oblivious approaches. Therefore, we highlight the following

contributions:

• We show that a constraint-aware design methodology where the DSE is directly

steered by constraints on the design metrics of interest can meet said constraints

with a reduced error.

• We show that different AC techniques offer different trade-offs depending on the

application at hand and the target optimizations, demonstrating the advantages of a

constraint-aware approach when exploring multiple AC techniques.

• We show that no single AC technique is able to outperform an adequate combination

24

of techniques whose selection is steered by constraints on the design metrics of

interest, with all available AC techniques being used to improve results in different

scenarios.

These contributions are experimentally validated through an implementation within

the LegUp HLS tool (Canis et al., 2013). A set of five AC techniques were implemented

as transformation passes within the LLVM compiler framework (Lattner; Adve, 2004) to

reduce the WCET and the use of FPGA resources like LUTs, REGs, and DSP blocks. The

design heuristic leverages the Greedy Randomized Adaptive Search Procedure (GRASP)

(FEO; RESENDE, 1995; RESENDE; RIBEIRO, 2019) to identify suitable schedules, i.e.,

sequences of AC transformations, that meet constraints with minimum error. As will be

shown, the adaptive nature of GRASP makes it a promising option for exploring multi-

ple AC techniques, especially when aiming to meet multiple design objectives differently

impacted by each. The results over a set of image, video, signal processing, and machine

learning benchmarks show that we can decrease the MSE by up to 52% and achieve an ab-

solute increase of percentage accuracy (PA) by up to 20.3% when compared to approaches

disregarding the benefits of steering the DSE with a constraint-aware heuristic targeting

the design objectives. Moreover, additional reductions of up to 30% in MSE and absolute

increases of up to 6.5% in PA can be attained when such an approach is combined with

the exploration of multiple AC techniques.

The remaining of this thesis is structured as follows. Chapter 2 presents a theo-

retical background on HLS and AC, while Chapter 3 discusses how AC techniques are

currently exploited within HLS toolchains, highlighting the contributions of this thesis.

Chapter 4 details the design methodology proposed to address some of the challenges

faced by current AHLS works and how it can be incorporated in state-of-the-art HLS

tools. Chapters 5, 6 and 7 present the experimental setup and results for different con-

straints and AC techniques, respectively, to support the contributions herein presented.

Finally, Chapter 8 presents conclusion remarks and future improvements.

25

2 BACKGROUND

This chapter presents a theoretical background on High-Level Synthesis (HLS),

Approximate Computing (AC), Approximate Logic Synthesis (ALS), and Approximate

HLS (AHLS). We detail (i) the basic steps involved in generating a cycle-accurate RTL

model from a high-level source code describing the design’s behavior, (ii) the applica-

tions, principles, and techniques involved in adopting the AC design paradigm, and (iii)

the methods and tools proposed in the literature to efficiently automate the exploration of

AC techniques to yield near-optimal approximate hardware. Before that, it is important

to have an overview of the typical structure of Field-Programmable Gate Arrays (FPGAs)

and the basic steps involved in synthesizing hardware for such devices, as they become

widely used to prototype, deploy, and adapt applications quickly, especially in the context

of HLS design flows, and are the platform chosen to demonstrate the applicability of the

contributions proposed in this thesis.

2.1 Field-Programmable Gate Arrays

FPGAs are reconfigurable devices widely used in computing systems to offer a

compromise between the flexibility of software-based implementations and the perfor-

mance per watt of ASICs, i.e., reconfigurability coupled with a high throughput process-

ing of data streams and relatively low development time and costs. Such devices comprise

a wide variety of heterogeneous resources. The typical layout of modern FPGAs is an ar-

ray of interconnected blocks, including interconnecting resources, clock-management re-

sources, Configurable Logic Blocks (CLBs), Input/Output Blocks (IOBs), and embedded

blocks such as Digital Signal Processors (DSPs), general-purpose processors, high-speed

IOBs, and memories (BRAMs). CLBs are used to perform simple combinational and se-

quential logic. These blocks typically consist of LUTs, multiplexers, flip-flops, and carry

logic. Programmable interconnect resources, such as routing switches, allow intercon-

necting CLBs, IOBs, and embedded blocks to implement complex systems. The logic

and routing resources in an FPGA are configured by the bits of a configuration memory,

which may be based on anti-fuse, flash, or SRAM technology. More details about FPGAs

architecture and usage can be found in (HAUCK; DEHON, 2007).

The design flow of FPGA-based systems involves the creation of a bitstream to

load into the device, as illustrated in Figure 2.1. Typically, the process starts with the

26

Figure 2.1 – Typical FPGA structure and design flow

Bitstream Generation

Load

Logic Synthesis

Technology Mapping

Placement and Routing

FPGA Resource LayoutHDL Code

Bitstream

Routing Switch

C
on

fig
ur

at
io

n
M

em
or

y

Source: adapted from Hauck and DeHon (2007)

system design written in a Hardware Description Language (HDL), such as VHDL or

Verilog. Next, the design is optimized and mapped into the FPGA’s available resources

through logical synthesis, technology mapping, placement, and routing. Finally, the bit-

stream is generated, and the device can be programmed. FPGA vendors such as Xilinx,

Intel, Lattice Semiconductor, and Atmel provide implementation tools to perform the

design flow. Those characteristics make FPGAs a great option for accelerating applica-

tions that can take advantage of HLS and approximate computing, due to the fine-grained

parallelism offered and the possibility of in-field reprogramming to correct faulty be-

haviors, add new features, or adapt their behavior timely, without the performance and

power penalties introduced by the use of general purpose processors or rigid ASIC im-

plementations with high non-recurring engineering costs. Several works are done on AC

for specific system layers, like ASIC-oriented arithmetic circuit blocks, processors, and

programming languages. However, the exploitation of AC on reconfigurable devices is

more recent and the subject of intense research (PERRI et al., 2020; TOAN; LEE, 2020;

PRABAKARAN et al., 2020; TIAN et al., 2017).

2.2 High-Level Synthesis

The HLS design methodology, sometimes called C synthesis, algorithmic synthe-

sis, or behavioral synthesis, promises to reduce hardware design complexity by gener-

ating production-quality Register-Transfer Level (RTL) implementations from high-level

27

specifications. It is a single process synthesis method mainly used to develop hardware

accelerators targetting ASICs or FPGAs that transforms a design expressed in a High-

Level Language (HLL), usually ANSI C, C++, or SystemC, into a Verilog or VHDL RTL

description (COUSSY et al., 2009; Cong et al., 2011; Koch; Hannig; Ziener, 2016). In

other words, HLS aims to automate an otherwise manual process, eliminating the source

of many design errors and accelerating the very long and iterative part of the development

cycle. Moreover, it can be used to accelerate applications initially implemented in soft-

ware, bringing speed and energy advantages over performing computations in software

running on a general-purpose processor due to the overheads of fetching and decoding

instructions or loading and storing to the memory hierarchy. If designers can exploit

hardware parallelism, drastic speed advantages are possible by executing computations in

hardware concurrently that would otherwise need to be done sequentially.

HLS is especially appealing to reduce the complexity of designing hardware ac-

celerators using design flows starting from a hand-coded RTL description. In a traditional

RTL development flow, the early stage of the design specification is essentially functional,

i.e., it contains little to no hardware implementation details, and its primary purpose is to

validate and fine-tune the desired behavior. Once tested, the behavioral model undergoes

a process made of several steps until it takes the form of the actual hardware implemen-

tation. The first step is to define an optimal architecture to implement the desired func-

tionality, with direct consequences on performance, area, and power consumption. After

defining the architecture, the design team hand-codes it in the form of an RTL descrip-

tion in Verilog or VHDL. However, while designer productivity has grown over the past

decades, the rate of improvement has not kept pace with the demand for more complex

applications, driven by the technological advances leveraged by increasing chip capaci-

ties. Finding an optimal architecture can be very challenging as the manual nature of this

approach makes it error-prone, and thus many development cycles may be needed, es-

pecially when designing complex systems. Designers must test, report errors, and spend

time finding and fixing them individually, a long and continuous process that has to end

at some point to meet deadlines.

Moreover, as mentioned, the decisions that most impact the design quality in met-

rics like performance and power efficiency are made early in the design process when the

system architecture and micro-architecture are defined. For example, decisions about the

pipeline depth, datapath structure, and register allocation are usually part of the imple-

mentation stage, whether writing the RTL by hand or via HLS. While such decisions have

28

the most impact, the extent of their impact is not well known until platform-specific RTL

tools fully evaluate the implementation for the target device. As a result, designers have

no choice but to make decisions based on previous experience. For experienced design-

ers, that is often good enough, as any suboptimal decisions still have a good chance of

meeting the overall design objectives. Even for them, however, there is the risk of missing

significant optimizations.

Therefore, the HLS design methodology has become widely used to increase pro-

ductivity by quickly generating RTL designs with diverse trade-offs, a result of its many

benefits, e.g., faster design and verification, fewer bugs, and easier source code mainte-

nance. As raising the abstraction level results in fewer lines of code compared to RTL

descriptions, the adoption of HLS design flows can reduce the number of lines of code

by an average of 10 times, leading to a shorter design cycle and fewer bugs and making it

easier to verify and maintain (WAKABAYASHI; SCHAFER, 2008). Additionally, as the

micro-architecture details are defined during HLS, designs described at higher abstraction

levels are easier to write and re-target for new technology platforms than traditional hand-

coded RTL descriptions, reducing time-to-market without jeopardizing design quality.

Current targets for HLS are mostly heterogeneous Multi-Processor Systems on

Chip (MPSoCs), which include multiple processors, memories, interfaces, and application-

specific hardware accelerators. Traditional FPGA vendors like Altera and Xilinx have re-

leased their own configurable MPSoCs devices, e.g., Altera’s Cyclone V SoC and Xilinx’s

Zynq Ultrascale. More recently, Intel and AMD have acquired Altera and Xilinx, respec-

tively, mainly based on the benefits of tight integration of x86 processors with FPGAs

to design automotive, industrial, video, and communications applications. Therefore, it

is not surprising that AMD and Intel have their own HLS tools to support designers in

implementing complex systems for their devices. Such tools can be used, for example,

to deal with the complexity of efficiently distributing the execution of application ker-

nels across the heterogeneous resources offered by cloud infrastructures (LIGNATI et al.,

2021).

Figure 2.2 shows an overview of the complete HLS design flow. It takes as inputs

a behavioral description, a set of design directives and constraints, and a characterized

library of hardware components for the target platform. The basic steps for HLS to pro-

duce an RTL design representing the given algorithmic description are resource allocation,

scheduling, and binding. After parsing and optimizing the source code through a com-

piler infrastructure and assembling the Control Data Flow Graph (CDFG), the resource

29

Figure 2.2 – Typical HLS design flow for FPGAs

Binding

C/C++ Compiler

Resource Allocation

Scheduling

Source Code
(C/C++)

RTL Generation

Synthesizable HDL Code
(Verilog/VHDL)

Device-specific
RTL Synthesis Load

Bitstream
FPGA

C
on

fig
ur

at
io

n
M

em
or

y

Characterized Library
of Components

User Constraints
(timing and resources)

+ +

-

* *

A B C D E

F

Optimized
DFG

-

C1

C2

C3

C4

C5

+ +

*

*

C6

C
on

tro
l S

te
ps

A B C D E

F

clock
period

-

C1

C2

C3

C4

C5

+ +

*

*

C6

C
on

tro
l S

te
ps

A B C D E

F

clock
period

Adder #1
Adder #2

Subtractor #1
Multiplier #1

Adder: 2
Subtractor: 1
Multiplier: 1

Source: The author

allocation task defines the necessary hardware resources, i.e., it defines the instantiated

hardware resources according to the operations found in the system’s Data Flow Graphs

(DFGs). Such implementations are annotated with both timing and area information to

be used later during scheduling. Any given operator may have multiple hardware imple-

mentations with different area, delay, and power trade-offs that can be selected from a

technology-specific pre-characterized library containing sufficient components for a wide

range of bit widths and clock frequencies. Therefore, the operations described in the

source code can potentially be allocated to many different resources.

By default, the HLS tool will maximize the reuse of resources as much as possi-

ble to reduce the allocation of functional units (FUs) and thus avoid increasing the area.

Nevertheless, designers can explicitly control resource allocation to insert pipeline regis-

ters or define the number of available resources by typically setting the maximum number

of FUs the synthesizer can instantiate. For example, in Figure 2.2, the HLS tool must

implement the design with at most two adders, one subtractor, and one multiplier.

Next, the scheduling task analyses the operations in the optimized DFG and de-

cides the exact time step in which they will be executed, such that data dependencies

and resource and timing constraints are not violated. The task of scheduling is dividing

the design’s CDFG into states, also referred to as control steps, so that it can be directly

30

synthesized into a finite state machine model. Registers are added between operations

based on the target clock frequency, similar to what is done in manual RTL designs with

pipelining, by which registers are inserted to reduce combinational delays. Conversely,

the allocation of registers can be reduced by chaining a sequence of operations connected

by data dependencies in the same control step if the total delay is smaller than the target

clock period. As exemplified in Figure 2.2, considering the given constraints and that

multipliers have a delay of two clock cycles, the design’s DFG is scheduled to execute

in six control steps. Note that providing just one multiplier prevents the DFG execution

in four clock cycles because the two multiplications cannot be placed in the same control

step.

The amount of loop pipelining used in the design also affects scheduling by al-

lowing a new iteration of a loop to be started before the current iteration has finished, i.e.,

it allows the execution of loop iterations to be overlapped, increasing the design perfor-

mance by running them in parallel. The amount of overlap is controlled by the Initiation

Interval (II), which determines how many clock cycles are needed before starting the next

loop iteration, defining the number of pipeline stages. The II for loops is usually set either

as a design constraint in the HLS design environment or through compiler pragmas. Ad-

ditionally, loop unrolling can add parallelism to the design by enabling the scheduling of

multiple loop iterations in parallel whenever possible, improving performance at the cost

of increasing resource usage.

The resulting hardware generated from the schedule varies depending on how the

design was constrained regarding clock frequency, resource allocation, and the amount

of loop unrolling and loop pipelining used. As the DFGs expose the design’s paral-

lelism, each operation has a range of control steps that can be assigned. Regardless of re-

source constraints, the earliest and latest bounds within which operations in the DFG can

be scheduled are determined by the As-Soon-As-Possible (ASAP) and the As-Late-as-

Possible (ALAP) scheduling algorithms. These algorithms are especially useful to iden-

tify the operations mobility, widely used by more advanced scheduling algorithms consid-

ering time and resource constraints (HWANG; LEE; HSU, 1991; SLLAME; DRABEK,

2002; KUNDU; CHANDRAKAR; ROY, 2014).

After scheduling operations, the binding stage is the last step in HLS before the

RTL description generation. Binding maps each operation to a FU and each variable used

in more than one control step (loads and stores) to a register. More specifically, it assigns

the design’s operations and variables to specific hardware resources, given the resources

31

available in the technology library, the resource constraints, and the design schedule. In

short, the binding step of HLS is associating each computation in the behavioral descrip-

tion with a specific unit in the hardware such that performance is optimized without vio-

lating resource constraints.

Once the binding task is finished, an optimized RTL design described in Ver-

ilog or VHDL is generated, ready to be synthesized down to the basic components of

the target substrate by vendor-specific synthesis tools, such as the Intel Quartus or the

Xilinx Vivado. Note that there is an evident interdependence between the resource alloca-

tion, scheduling, and binding tasks, which makes generating high-efficient cycle-accurate

hardware implementations from untimed algorithmic descriptions very challenging. Nev-

ertheless, as HLS compilation has been the subject of research and engineering efforts for

over three decades, current state-of-the-art tools can provide high-quality results quickly

without requiring experienced RTL designers (LAHTI et al., 2019; Nane et al., 2016).

2.3 Approximate Computing

2.3.1 Applications and Principles

The AC design paradigm aims to reduce unnecessary costs (area, power, delay,

and other design metrics) in error-tolerant applications by relaxing the traditional require-

ment of exact results. However, leveraging AC techniques to reduce design costs strongly

depends on the nature of the applications. Applications well-suited to AC can be imple-

mented in software or hardware that does not guarantee the execution of computations in

a 100% correct manner. A large class of computing workloads, including digital signal

processing, multimedia processing (image, video, audio), network processing, wireless

communications, web search and recognition, data mining and big data analytics, com-

puter vision, and machine learning, possesses characteristics that enable them to execute

well on approximate software and hardware platforms. Such workloads exhibit inherent

application resilience to approximations or the ability to produce acceptable outputs even

when some of their computations are approximate. An analysis of a benchmark suite of 12

recognition, mining, and search applications showed that, on average, 83% of the runtime

is spent in computations that can tolerate at least some degree of approximation (Chippa

et al., 2013).

As illustrated in Figure 2.3, the source of inherent imprecision resilience of ap-

32

Figure 2.3 – Sources of Inherent application resilience

5

Ø High-Level Synthesis
• Hardware synthesis for ASICs or FPGAs from high-level source code
• Improves productivity and time-to-market while providing high-quality results

Ø Approximate Computing
• Exploits the resilience of many application domains to imprecise results
• Trades-off precision for improved performance, energy consumption, or resources usage

Motivation

Redundant
Data

Perceptual
Limitations

Statistical
Probabilistic

Computations

Self-Healing
and Iterative
Algorithms

Noisy Real
World Data

Inherent
Application
Resilience

In
pu

t

Output

Computation

Patterns
No Golden

Output

Source: adapted from Chippa et al. (2013)

plications usually relates to redundant or noisy input data (signal processing), the limited

perceptual ability of users (multimedia processing), the inexistence or inability to offer

perfect or golden outputs, i.e., several different outputs are equally acceptable (search or

recommendation systems and machine learning), or computation patterns, such as sta-

tistical computations that result in attenuation/cancellation of errors (data analytics) and

the iterative-refinement nature of some computations wherein errors due to approxima-

tions may be healed in the iteration process (scientific computations) (Han; Orshansky,

2013; Chippa et al., 2013). Therefore, given that many applications are error-resilient to

some extent, the central challenge in AC is developing abstractions that make imprecision

controlled and predictable without sacrificing the quality of results, allowing designers to

attain accuracy-efficient trade-offs regarding the target optimizations (e.g., performance,

area, power, and energy). In this direction, the literature has established some important

principles to guide the development of AC design methodologies (Venkataramani et al.,

2015).

First, the notion of acceptable quality must be measurable, and methods to

ensure its sustainability when AC techniques are employed should be part of the design

methodology. For example, some designers may wish to evaluate the worst-case error,

the average-case error, or the error probability. Additionally, the error distribution for all

possible inputs may be of interest in some cases. Therefore, the quality analysis should

ideally be flexible enough to support multiple error metrics. Moreover, although the ac-

ceptable quality is an application-specific property and quality metrics vary across them

(e.g., recognition accuracy or visual quality of images), the abstraction and methodology

used to specify and validate quality should still be general, using functional verification

33

concepts as much as possible.

Second, approximate hardware or software components must be quality con-

figurable to be modulated according to the application usage, as resilience to approxi-

mations is not a static property of an application and may depend on both the input data

processed and the context in which the outputs are used. For example, a machine learn-

ing algorithm for health-critical medical diagnosis may have much more stringent quality

constraints than when used in a product recommendation system.

Third, AC methodologies must be significance-driven, i.e., it is paramount to

separate resilient and sensitive computations and approximate the resilient ones based on

how significantly they impact the output quality. For example, computations that involve

pointer arithmetic or affect the control flow should be avoided, as they may lead to catas-

trophic effects when approximated. Even among resilient computations, the extent to

which they impact application quality when approximated varies considerably.

Fourth, AC methodologies should provide disproportionate benefits, i.e., large

improvements in efficiency for little to no impact on quality. For example, it is often

beneficial to target bottleneck operations such as global synchronization and communi-

cation in software, or critical paths in hardware, to achieve performance improvements.

Also, the sources of disproportionate benefits are usually spread across different comput-

ing stack layers, making a cross-layer approach where hardware and software techniques

are co-designed more likely to produce better overall trade-offs. In short, the objective of

AC methodologies and platforms should be to provide a range of quality vs. efficiency

trade-offs according to user-defined optimizations, quality metrics, and error bounds.

With those principles in mind, the exploitation of AC in software and hardware

has shown promising results (LIU; LOMBARDI; SHULTE, 2020). Software techniques

typically improve performance by skipping tasks or reducing costly operations, such as

inter-thread synchronizations or high-precision floating-point computations. In contrast,

hardware techniques modify the design at various levels of abstraction (behavioral level,

register transfer level, and physical level) through operations on inexact or faulty hard-

ware. As discussed, approximate computing techniques should be targeted toward re-

silient computations while avoiding sensitive ones, as even the most resilient applications

contain both resilient and sensitive computations. Once variables and operations that can

be approximated are identified, a variety of strategies can be employed at different ab-

straction layers (software, architecture, and circuit) to explore unique trade-offs (Mittal,

2016; Shafique et al., 2016; XU; MYTKOWICZ; KIM, 2016; STANLEY-MARBELL et

34

al., 2020).

2.3.2 Software-level Techniques

Software-level AC techniques leverage code transformations to reduce code size

and simplify its execution on general-purpose or specialized processors through fewer

and lower-cost instructions, optimizing performance and energy consumption. Although

such techniques are primarily used to approximate software-based implementations, their

scope can be extended to generate approximate hardware by incorporating them in HLS

design flows. Therefore, some of the presented techniques will be incorporated into our

experimental flow, detailed in Chapter 5.

Precision scaling is one of the most effective software-level AC techniques. It is

a fine-grained approximation strategy that relies on changing the precision of inputs or

intermediate operands (bit-width reduction) to reduce storage requirements or processing

demands (Yeh et al., 2007; RUBIO-GONZáLEZ et al., 2013; ANAM; WHATMOUGH;

ANDREOPOULOS, 2013; RAHA et al., 2015; PARK; CHOI; ROY, 2010; YESIL; AK-

TURK; KARPUZCU, 2018). For example, reducing data width in some computations

from 64 to 16 bits may provide significant performance and energy improvements through

data path simplification.

On the other hand, loop perforation can be used to skip some iterations of loop-

based computations to reduce the computational effort needed and trade-off accuracy with

performance (Sidiroglou-Douskos et al., 2011; LI; PARK; MAHLKE, 2018). It has been

shown that the so-called hot loops in error-tolerant applications can be perforated by up

to 50% with a similar reduction in execution time while still producing acceptable results.

Note that the decision of which loops and iterations can be perforated must be carefully

evaluated to avoid excessive quality degradation as it is application-dependent.

Variable-to-constant substitutions (V2C) replaces an operation’s output with a

constant value, possibly propagating optimizations to other operations and variables due

to control and data dependencies (Nepal et al., 2014; Nepal et al., 2019). A common

approach for V2C is replacing operations with data statistics, such as the mean values ob-

tained through code instrumentation and simulation with a set of training inputs. In this

case, the decision if the operation should be replaced can be based on a given threshold

for the standard deviation (Xu; Schafer, 2017; XU; SCHAFER, 2018; CHOWDHURY;

SCHAFER, 2021). Another option to leverage V2C substitutions is using probabilistic

35

pruning, which allows designers to achieve area, power, and performance improvements

by replacing costly operations with constant values based on their execution probability

and significance in affecting primary outputs, usually defined according to error propaga-

tion analysis and data statistics (Lingamneni et al., 2013; BARBARESCHI; IANNUCCI;

MAZZEO, 2016). A more aggressive form of V2C substitution is replacing the oper-

ation’s output with a constant zero (V2Z) (Lee; John; Gerstlauer, 2017). Although this

approach may introduce more errors than the mean value if the standard deviation is small,

the constant zero can, for example, eliminate adders (X +0 = X) and propagate through

multipliers (X × 0 = 0), enabling further optimizations throughout the code.

Instead of replacing operations with constant values, some works employ a less ag-

gressive form of operation pruning called variable-to-variable substitutions (V2V) (Xu;

Schafer, 2017; XU; SCHAFER, 2018; CHOWDHURY; SCHAFER, 2021). With V2V, a

variable’s computation is replaced by another variable’s output if their output values are

similar. The similarities are previously identified by code instrumentation and simulation

to calculate statistics such as the mean value (µ) and the standard deviation (σ) of each

variable’s output. Then, for example, if two variables are within each other’s µ±σ, it can

substitute one variable with the other’s output. Consequently, the code needed to calculate

one of the variables will be fully pruned away.

Besides eliminating operations, operation transformations can be employed to

simplify arithmetic operations, for example, by replacing additions with bitwise ORs and

multiplications with shifts and additions. A similar technique is arithmetic expression

transformations, where the computations of near similar arithmetic structures are sim-

plified by sharing common or similar operands through V2V substitutions. For example,

we can approximate the expression (a × b + c × d) by substituting d by b if they are

similar, leading to (a + c) × b, thus saving one multiplier (Nepal et al., 2014; AWAIS;

MOHAMMADI; PLATZNER, 2018; Nepal et al., 2019).

With load value approximations, load values are estimated when a load miss

occurs in cache memory, avoiding the latency associated with fetching the data from the

next-level cache or main memory. Therefore, the cache miss latency can be hidden by

allowing the processor to progress without stalling for a response (Miguel; Badr; Jerger,

2014; YAZDANBAKHSH et al., 2015).

Conversely, memoization works by storing the results of previous computations

of functions for later reuse when an identical input arrives for the same function, skipping

repeated computations (Rahimi; Benini; Gupta, 2013). Therefore, memoization can po-

36

tentially improve performance and save energy by trading costly computations involving

elementary functions, for example, for a few memory operations (MULLER, 2020). In

error-tolerant applications, the results of specific operations can often be reused for simi-

lar inputs to increase the memorization scope at the cost of introducing more errors. Other

methods to achieve efficiency with bounded quality loss are selectively skipping tasks

and memory accesses in multi-core architectures or processing a portion of the input

data through data sampling (Samadi et al., 2014; VASSILIADIS et al., 2015; GOIRI et

al., 2015).

There are also accelerators employing neural networks to substitute compute-

intensive kernels and execute code regions more efficiently (ESMAEILZADEH et al.,

2012b; GRIGORIAN; REINMAN, 2015; GRIGORIAN; FARAHPOUR; REINMAN,

2015). The neural network is trained to approximate the code regions annotated by

the programmers. Also, there are AC frameworks dedicated to approximate Artificial

Neural Networks (ANNs) and applications based on iterative methods for solution con-

vergence (ZHANG et al., 2014; ZHANG et al., 2015). With a more general approach,

in Oliveira et al. (2018), the authors propose using a tree-based classification algorithm

as an approximation tool for general-purpose applications to improve performance and

reduce the energy-delay product without hardware support.

2.3.3 Architecture-Level Techniques

Architecture-level AC techniques usually apply to processors, memory, and stor-

age subsystems. Ideally, the system architecture is defined to balance performance with

energy efficiency under various constraints imposed by a given technology, such as chip

area and power. It also attempts to balance density (or the cost per bit) with performance

for memory and storage. For example, with data storage approximations, the perfor-

mance, lifetime, and density of solid-state memories can be improved by enabling applica-

tions to store data approximately (SAMPSON et al., 2014; LI et al., 2019a; FROEHLICH;

GROSSE; DRECHSLER, 2020).

Adopting memory architectures with unreliable memory arrays through aggres-

sive voltage over-scaling or reduced refresh rates (for DRAMs) can also provide power ef-

ficiency for error-resilient applications like video processing and deep learning (CHANG;

MOHAPATRA; ROY, 2011; NGUYEN et al., 2020). Similarly, the properties of such

applications can be leveraged to approximate data and reduce energy consumption in

37

cache architectures by shutting down error correction mechanisms or reducing the data

size through similarity-based encoding schemes (SAMPAIO et al., 2015; MIGUEL et al.,

2015; RANJAN et al., 2020; ZHAO et al., 2021).

More coarse-grained techniques, such as selective approximations, work by ex-

ecuting some chosen instructions or code segments on approximate hardware to improve

performance (VENKATARAMANI et al., 2013). In that direction, architectural support

for approximate programming can be offered by extending the Instruction Set Architec-

ture (ISA) of general-purpose processors to efficiently map approximate operations and

storage to hardware (ESMAEILZADEH et al., 2012a). Domain-specific knowledge can

also be used to design application-specific accelerators using specialized processors that

leverage the approximate nature of some computations to improve performance and re-

duce power consumption (CHIPPA et al., 2014; NDOUR et al., 2019; JOE; KIM, 2019;

DU et al., 2021; KUNDI et al., 2022).

2.3.4 Circuit-Level Techniques

At the circuit level, approximate arithmetic units (adders, multipliers, and di-

viders) or entire datapaths have been broadly studied based on the general principle

of significance-guided design, i.e., fewer resources should be provided for insignificant

computations with lower complexity (ZHU et al., 2010; KULKARNI; GUPTA; ERCE-

GOVAC, 2011; Kahng; Kang, 2012; FARSHCHI; ABRISHAMI; FAKHRAIE, 2013;

DRANE; ROSE; CONSTANTINIDES, 2014; Aksoy; Flores; Monteiro, 2015; Becher

et al., 2016; HASHEMI; BAHAR; REDA, 2016; LIU et al., 2016; YIN et al., 2016;

SCHLACHTER; CAMUS; ENZ, 2016; REHMAN et al., 2016; ULLAH et al., 2018;

PRABAKARAN et al., 2018; SAADAT; JAVAID; PARAMESWARAN, 2019). For ex-

ample, an approximate adder structure for LUT-based FPGA technology is proposed

by Becher et al. (2016). The critical path is significantly shortened when compared with

an accurate carry-ripple adder, which enables increasing the clock frequency. Therefore,

the throughput of an FPGA-based system using this adder may be significantly improved.

Moreover, the authors claim that the average error can be reduced, when compared to

similar ASIC implementation approaches.

Focusing on more specific applications, Aksoy, Flores and Monteiro (2015) present

an approximation of Multiple Constant Multiplications (MCM) for FPGAs, aiming to

reduce the implementation costs associated with this operation in hardware. An exact

38

algorithm is introduced to find the minimum number of distinct LUTs required to re-

alize the partial products of constant multiplications without violating the defined error

constraint. For example, MCM is commonly used in many DSP systems to perform

Fourier transforms and implement Finite Impulse Response (FIR) filters. In that direc-

tion, many types of reconfigurable approximate arithmetic units that allow adjusting

power and energy consumption by mixing approximate and accurate operations at the

register transfer level were proposed (GUPTA et al., 2011; YE et al., 2013; LIU; HAN;

LOMBARDI, 2014; HU; QIAN, 2015; SHAFIQUE et al., 2015; HASHEMI; BAHAR;

REDA, 2015; MAZAHIR; HASAN; SHAFIQUE, 2018; HASSANI; REZAALIPOUR;

DEHYADEGARI, 2018).

Regarding memory-based approximations in hardware, the work proposed by

Sinha and Zhang (2016) concentrates on developing an automatic synthesis flow to exploit

the benefits of memoization for AC on FPGAs. Minimizing the magnitude of errors in

faulty hardware according to a constrained quality, such as shifting the least significant

bits of data in the faulty cells of a memory, are common approaches too (Ganapathy et

al., 2015). Roldao-Lopes et al. (2009), for example, propose using AC to accelerate the

solution of a system of linear equations on FPGAs based on iterative solvers. To achieve

the desired quality of results (QoR), the user can lower the precision of intermediate

computations and run more iterations. For a fixed area constraint, lowering the precision

of the iterative solvers increases the parallelism. Therefore, by balancing the operation

precision and iteration count, they achieve a significant performance improvement (26

times on average) with controllable quality degradation.

More recently, the use of AC to reduce the costs of fault-tolerance architectures

based on partial hardware redundancy has become the subject of research (SáNCHEZ-

CLEMENTE; ENTRENA; GARCíA-VALDERAS, 2016; RODRIGUES; KASTENSMIDT;

BOSIO, 2021; NAZAR et al., 2021a). For example, Sánchez-Clemente, Entrena and

García-Valderas (2016) propose using approximate logic circuits to build a partial Triple

Modular Redundancy (TMR) scheme on FPGAs. Although TMR is a very effective mit-

igation technique, it is often expensive in terms of FPGA resource usage and power con-

sumption. Therefore, partial TMR can be used to trade off the reliability with the design

costs for applications that can tolerate some temporary misbehavior. Similarly, Nazar et

al. (2021a) present a methodology to exploit approximations in both modules of a dual

modular redundancy scheme to accept a degree of imprecision even in the absence of

faults, reducing the area overhead of duplicating the system while optimizing throughput.

39

Additionally, the proposed technique is integrated into an HLS tool to automate the DSE

of circuits with varying costs and degrees of approximation.

Designers can also explore approximations to reduce the system’s supply volt-

age to save energy at the cost of possible errors (MOHAPATRA et al., 2011; KRAUSE;

POLIAN, 2011; MIAO et al., 2012; RAMASUBRAMANIAN et al., 2013; MOONS;

VERHELST, 2015; LI et al., 2019b; ZERVAKIS et al., 2019). For instance, erroneous

computations may occur in critical paths due to the increased delay. Moreover, the prob-

ability of wrong memory operations increases, such as writing a wrong value or flipping

a bit during read (Sampson et al., 2011).

Considering that ANNs can be efficiently accelerated by dedicated hardware due

to their inherent parallelism, an ANN model can be trained to offer performance and

energy gains by mimicking exact computations in hardware (St. Amant et al., 2014).

Instead of executing the original code, the neural network model can be invoked to exe-

cute on a Neural Processing Unit (NPU) accelerator implemented in reconfigurable logic,

which leads to better efficiency as neural networks are amenable to efficient hardware

implementations, accelerating a broad range of applications with bounded quality degra-

dation (Moreau et al., 2015). Moreover, the flexibility of reconfigurable devices allows

modifying the neural network topology according to the functionality implemented to

manage the acceptable error bound. Since ANNs are typically used in error-tolerant ap-

plications, they can be approximated in hardware as well (Venkataramani et al., 2014). In

this direction, Castro-Godínez et al. (2020a) present a method to explore the resilience of

applications based on convolutional neural networks (CNNs) for IoT edge devices. That

work proposes an approximate accelerator to speed up the execution of the convolutional

layer, which is the most time-consuming component of CNNs. The CNNs are trained and

deployed on an SoC with reconfigurable hardware resources.

2.3.5 Current Challenges

The most efficient AC technique and where it can be applied to avoid excessive

quality degradation or correctness issues heavily depends on the application at hand and

the target optimizations. Moreover, more than one technique can be used simultane-

ously in different parts of the system to optimize results. It is also crucial to consider

the platform where the application will be implemented when choosing the most suitable

techniques since different memory technologies, processor components, and processing

40

units offer different trade-offs, which requires careful evaluation. As design metrics such

as performance, power, and resource usage are usually known after device-specific syn-

thesis, exploring the design space of approximate hardware at higher abstraction layers

also imposes the challenge of early estimating the impact of approximations on design

metrics and performing error-bound analysis and management to optimize decisions, not

to mention reliability and security issues as possible affected domains. Therefore, de-

sign methodologies and tools for automating, at least in part, the exploration of approxi-

mate designs across the software and hardware stacks have become an important research

topic. Although current works have shown great promises for specific domains and opti-

mizations, significant innovations and research efforts are still needed to enable AC as a

practical mainstream computing paradigm.

41

3 RELATED WORK

The automated synthesis of approximate hardware to reduce the development time

and effort required for adopting the AC design paradigm has been the subject of numer-

ous recent works. As this area of research is relatively new, these works usually differ in

many important aspects: (i) the target platforms (e.g., ASICs, FPGAs, or both), (ii) the

AC techniques explored, (iii) the software and hardware abstraction layers where the AC

techniques are implemented in the synthesis process (e.g., source code, HLS, RTL, and

gate-level), (iv) the metrics and methodologies used for evaluating the quality of results,

(v) the optimization targets (e.g., area, delay, or power), and (vi) the developed optimiza-

tion algorithms.

These works can also be divided into ALS methodologies, where the exploration

of AC techniques is limited to the RTL representation and below (usually the gate-level

netlist), and AHLS methodologies that expand the design space by leveraging approxima-

tions at higher abstraction layers, including the high-level source code, the compiler inter-

mediate representation, and the HLS basic tasks to produce the RTL design (resource allo-

cation, scheduling, and binding). Mostly, the trend is to provide error-constrained design

methods for specific optimizations capable of generating approximate circuits that never

exceed a predefined error threshold. However, approaches employing unconstrained de-

sign methodologies using greedy and evolutionary algorithms to produce Pareto-optimal

designs with varying trade-offs can also be found.

3.1 Approximate Logic Synthesis

Many works on ALS leverage structural netlist transformations as a general ap-

proach to exploring approximate circuits. These works usually rely on greedy heuristics

for netlist pruning and manipulation or stochastic transformations.

Shin and Gupta (2011), for example, employ a greedy iterative heuristic for generic

circuit simplification, applied to adders used in image compression and decompression.

The circuit area is used as the cost metric for minimization. A test generation algorithm

is responsible for identifying multiple Stuck-At-Faults (SAFs) that can be injected (static

0 or 1) to introduce errors of low severities while providing significant area reductions

due to operations elimination. The circuit netlist is simplified forward and backward, and

the process is repeated until the error constraint is violated. A parallel fault simulator

42

with a set of test vectors is used to evaluate the error on the final output at each SAF

simplification.

Schlachter et al. (2017) presents another greedy iterative algorithm for netlist sim-

plification. The proposed framework represents the exact circuit as a Direct Acyclic Graph

(DAG). Then, its nodes are pruned according to two metrics: the node significance, which

represents the impact of that node on the final output, and the node activity, expressed as

the toggle count. Depending on the application characteristics, nodes can be pruned start-

ing from those with lower significance, lower activity, or a combination of the two using

the Significance–Activity Product (SAP). Node activity is obtained through gate-level

hardware simulation, while the significance is computed in a reverse topological graph

traversal. After nodes have been ranked according to the desired metric, the framework

iteratively removes a node from the original circuit, setting its output to a constant. Next,

the transformed netlist is synthesized and simulated with a Monte Carlo process to verify

if the error constraints (error rate and mean relative error) have not been violated, recom-

puting the SAP for node ranking. When the error threshold is reached, the algorithm

stops. As computing node activity is time-consuming due to gate-level simulations, using

only the node sensitivity is preferred for large designs, at least for a first evaluation.

As opposed to other works performing netlist pruning heuristically, Scarabottolo,

Ansaloni and Pozzi (2018) resort to an exhaustive netlist exploration to identify the max-

imum portion of the exact circuit that can be eliminated through gate-level pruning to

derive an inexact version bounded by a given error threshold. They propose an algorithm

based on binary tree exploration that identifies the exact influence of each circuit gate

on the output correctness by employing back-tracking. The best candidate sub-circuit is

the largest one (in terms of the number of gates) that does not overcome the given error

threshold. The key idea of this approach is to consider the combined effect of multi-

ple pruning choices, eliminating the risk of getting stuck in local minima. However, the

algorithm’s efficiency strongly relies on accurate estimation of node significance, either

through exhaustive simulation (if the circuit size allows it) or by exploiting the circuit

regularity to derive node significance through induction. Even when the exploration is

stopped after reaching a time limit, this method has shown to perform better than the

greedy-based heuristic proposed by Schlachter et al. (2017), to which it is compared in

terms of energy, delay, and area reduction for the same constrained error. Although that

work does not focus on generating libraries of approximate arithmetic operators, it can be

used for this purpose as the approach applies only to combinatorial circuits.

43

Focusing on netlist manipulation, Venkataramani, Roy and Raghunathan (2013)

propose automating the design and synthesis of quality configurable approximate circuits

by systematically identifying signal pairs in the circuit’s netlist that carry the same value

with high probability and substitute one for the other. These substitutions are carefully

performed to introduce functional approximations that result in logic elimination from the

circuit while also enabling the downsizing of gates on critical paths to boost power sav-

ings. When the target signal is replaced, the gates belonging exclusively to its generating

cone of logic are removed from the circuit. The proposed framework, named SASIMI,

performs substitutions and simplifications through a greedy optimization algorithm that

takes as input the original circuit and a target error and then iteratively selects the best

candidate signal pair, the substitution, and consequent circuit simplification, followed by

quality evaluation. Once the target error constraint is reached, the iterative algorithm

stops. Moreover, based on the desired quality, the discrepancy between two signals can

either be ignored or recovered using an additional clock cycle to recompute the logic that

generates the substituted signals.

The error behavior of approximated circuits (e.g., error rate or error magnitude)

depends heavily on the specific synthesis technique and the input vectors, often hinder-

ing designers from confidently adopting AC design methodologies. Tracking this prob-

lem, Liu and Zhang (2017) propose a statistically certified approximate logic synthesis

(SCALS) framework using techniques from stochastic optimization. The authors apply

statistical hypothesis testing to estimate the errors obtained on the circuit outputs after

approximations to guarantee that the population behavior is a reliable representation of

the actual data distribution. First, the original circuit is mapped to the desired technol-

ogy in order to work directly on what will be the actual implementation. The mapped

netlist is then partitioned into sub-netlists, which will be independently approximated in

parallel. That work implements three gate-level approximations: REDUCE, FLIP, and

ADD. REDUCE randomly pick a logic gate from the netlist and removes one of its fan-

ins, whereas FLIP inverts its output. An ADD transformation, instead, inserts a two-input

logic gate to the circuit, connecting it to existing signals at random. For each logic trans-

formation, the approximate sub-netlist is mapped to the desired technology to assess its

quality. Statistical inference techniques are then used to estimate the errors introduced in

this phase since hypothesis testing for each transformation would be computationally in-

feasible. If the quality improves, the sub-netlists are updated, and the process starts again

until a fixed point is reached. The optimized sub-netlists are then recombined, and the

44

resulting netlist error is evaluated through statistical hypothesis testing. This sequence of

operations represents a single trial, and the process continues until the specified error con-

straint is reached. Therefore, they can provide a confidence level for the analyzed error

metrics, namely error rate, and average relative error magnitude. Note that the transforma-

tion space is explored stochastically, which means considering possible transformations

randomly to maximize the number of design points tackled.

In a similar direction, Vasicek and Sekanina (2015) propose a genetic algorithm

to mutate the circuit into approximate versions by swapping gates with wire connections

to optimize area. Circuits are represented as DFGs, whose nodes can be Boolean gates or

more complex components according to the technology library. The nodes are arranged

in a 2-D grid representing the chromosome, which is randomly modified to explore new

design points. This mutation evolves using a fitness function to lead to better approxima-

tion choices. After computing the area and error of the initial population, the algorithm

iteratively selects the best-scored circuit, generates offspring from the parent through mu-

tation, and evaluates the new population. Full simulation is employed for small circuits

to evaluate the resulting error of each mutation. In contrast, the authors resort to more

complex error analysis techniques based on Boolean Satisfiability (SAT) or Binary Deci-

sion Diagrams (BDDs) for larger circuits. Moreover, the design process can be repeated

many times in order to obtain various trade-offs between accuracy and area. Vasicek and

Sekanina (2016) use this same approach to deal with the approximation of general com-

binational logic (e.g., pattern matching circuits and complex encoders) in which no ad-

ditional information is available to establish a suitable error metric. For that cases, the

error of approximations is expressed in terms of the Hamming distance between the out-

put values produced by the approximate candidate and the accurate circuit., the error of

approximations is expressed in terms of the Hamming distance between the output values

produced by the approximate candidate and the accurate circuit.

Rather than directly performing transformations on the design’s netlist, numerous

works on ALS propose logic rewriting using Boolean representations. Such ALS method-

ologies capture the circuit’s logic in a formal Boolean representation and then transform

it to yield an approximate Boolean representation, which is synthesized to a gate-based

netlist.

The work presented by Venkataramani et al. (2012) is one of the earliest ALS

methodologies to propose logic rewriting-based approximations for combinational cir-

cuits using Boolean simplifications. Given the circuit’s RTL specification and a quality

45

constraint, the SALSA methodology synthesizes an approximate version that meets a

predefined quality bound. The authors map the approximate synthesis problem into an

equivalent traditional logic synthesis problem, allowing the capabilities of existing syn-

thesis tools to be leveraged for approximate logic synthesis. Specifically, SALSA encodes

the quality constraints using logic functions called Q-functions, constructed by compar-

ing the outputs of the exact circuit and the approximate circuit. Depending on the error

metric, the Q-function can compute the arithmetic difference or the Hamming distance

between the exact and the approximate outputs. Then, to simplify the logic of the approx-

imate circuit, SALSA computes the observability of don’t cares for each approximate

output relative to the primary outputs of the Q-function. These don’t cares represent the

primary input combinations for which the outputs of the Q-function are insensitive to the

approximate circuit outputs. Therefore, they can be used for circuit simplification using

traditional don’t care based minimization techniques.

As SALSA targets only combinational circuits, it has been extended by Ranjan et

al. (2014) to handle sequential circuits as well, where errors may arise over multiple clock

cycles. Given a sequential circuit and an output quality constraint, their method, named

ASLAN, creates an approximate version of the circuit that consumes lower energy while

meeting the specified quality bound. It uses a circuit block exploration method to evaluate

the impact of approximating the combinational blocks in the sequential circuit, generat-

ing local quality-energy trade-off curves for them. Then, a gradient-descent approach is

employed to find good approximation trade-offs for the entire circuit.

In contrast to SALSA’s and ASLAN’s global minimization approach, Wu and Qian

(2016) propose a local minimization approach for multilevel ALS under error rate con-

straints. The basic idea is to pick nodes in a Boolean network and shrink them by approx-

imating their factored-form expressions. Each of these Boolean approximations impacts

the error and circuit complexity differently, as measured by the design area. Aiming to

identify the best expressions to apply the simplifications and the particular form of simpli-

fication that leads to minimal area, each Boolean expression is given both a value, defined

as the reduction in the area it realizes when simplified, and a weight, defined as the in-

troduced error. Then, a knapsack formulation is constructed and solved to identify the

best set of nodes to approximate to maximize value (total area reduction) given weight

constraints (maximum error).

Complementary to previous works, Hashemi, Tann and Reda (2018) introduce

a new formal method for logic rewriting approximations by synthesizing approximate

46

circuits using Boolean Matrix Factorization (BMF). Such methodology approximates the

truth table of the exact design’s sub-circuits using BMF to control the approximation

degree and the factorization results to synthesize a less complex sub-circuit. A method

for circuit decomposition is also employed to scale the methodology to large circuits, and

a sub-circuit design-space exploration technique is used to identify the best order for sub-

circuit approximations. The goal is to provide smooth trade-offs between accuracy and

area and power consumption.

Some works rely on BDDs to approach approximate synthesis (SOEKEN et al.,

2016; FROEHLICH; GROßE; DRECHSLER, 2017). Reduced-order BDDs are a canon-

ical representation for Boolean circuits that can be minimized to reduce the synthesized

circuit’s size. The general idea of such approaches is first to represent an input circuit as

a BDD and then transform it to produce an approximate and smaller BDD representation

that adheres to an error threshold. If the error between the original BDD and approximate

BDD does not exceed the given error threshold, the approximate BDD is accepted and

synthesized to a circuit. For example, Soeken et al. (2016) present operators to derive

approximated functions and algorithms to precisely compute the error metrics directly on

the BDD representation. One of the techniques employed is replacing a node with one

of its children, i.e., co-factors. Another possibility is rounding, where a child of a node

is either replaced by terminal 1 or terminal 0. Since each internal node has two children,

the child with a fewer number of assignments that lead to terminal 1 is chosen. This

approach, however, does not guarantee a minimum BDD size for a target error bound.

Nonetheless, Froehlich, Große and Drechsler (2017) face this problem by devising an

error-constrained exact algorithm to solve the Error Bounded Exact BDD Minimization

(EBEBM) problem when trying to find a functional approximation with a minimal repre-

sentation in terms of BDD size for a single output function.

Using AND-Inverter Graphs (AIGs) as the Boolean representation for netlist sim-

plification is another approach used in ALS. An AIG is a representation of circuits where

nodes correspond to two-input AND gates, and edges can be either inverted or not. Al-

though AIGs provide a scalable graphical representation for circuit synthesis, they are not

canonical as BDDs. Nevertheless, Chandrasekharan et al. (2016) propose an algorithm for

approximate AIG rewriting that can guarantee error bounds for the generated approximate

circuits. To accomplish that result, first, the critical paths are identified in the AIG, where

the critical paths are the paths from the primary inputs to the primary outputs with the

largest number of nodes. A SAT solver is then used to compare the original AIG and the

47

approximate AIGs to check whether the error constraint is violated, hence guaranteeing

the error bound.

Besides power optimizations, performance improvements are also sought by Alan

and Henkel (2018), wherein a general-purpose systematic logic synthesis methodology

is proposed to assess potential delay improvements in noncritical paths. As most input

combinations do not invoke the critical path, they can be executed in a shorter time by

introducing timing speculations. Given the RTL code, the main idea is to synthesize cir-

cuits with tight constraints toward minimizing the number of near-critical paths, reducing

the probability of introducing errors due to timing violations when frequency or voltage

are scaled, opening the opportunity for performance and energy optimizations.

In face of vast approximation techniques targetting netlist optimizations, Castro-

Godínez et al. (2021) present a framework for ALS techniques based on netlist transfor-

mations, where the gate-level representation of a circuit is simplified to reduce the circuit

area and power consumption while respecting a user-provided accuracy threshold. As the

implementation of netlist-based approximations is challenging due to the complexity of

transforming low-level circuit representations, the authors propose a systematic approach

to facilitate the implementation and evaluation of existing netlist-level approximations,

usually based on pruning nodes of the netlist’s DFG or replacing gates and connections,

and encourage the proposal of novel methodologies.

Although significant advances have been made in ALS, some limitations prevent

a wider adoption for exploring approximate hardware implementations. In general, scal-

ability is one of the major concerns. ALS methodologies that rely on BDDs and BMF for

Boolean representation and optimization, for example, cannot handle large circuits and,

as a result, need circuit partitioning methods to break down the circuit into manageable

sub-circuits. However, this partitioning often reduces the quality of results attained from

these methods. Conversely, approaches exploring gate-level transformations, whether us-

ing exhaustive, greedy iterative, stochastic, or evolutionary algorithms, also suffer from

scalability due to time-consuming optimization and error analysis arising from operating

at complex low-level circuit representations. Indeed, most ALS proposals are better suited

for approximating small combinatorial circuits or exploring approximate arithmetic op-

erators, being impractical for more general applications with large designs comprising

complex data and control paths.

48

3.2 Approximate High-Level Synthesis

The ALS design methodologies discussed in Section 3.1 operate on either the

RTL code, the gate-level netlist, or a Boolean representation of the circuit. In contrast,

AHLS aims to integrate software-level AC techniques and inexact operators as building

blocks for the RTL design assembled by the resource allocation, scheduling, and binding

HLS tasks to efficiently implement approximate circuits from the design’s algorithmic

specification, usually in C/C++ or SystemC. Similar to ALS approaches, the input for

AHLS flows is the original design specification to be analyzed and modified by the HLS

tool to produce approximate hardware for the target platform.

In this direction, Nepal et al. (2014) raise the level of abstraction where approxi-

mation techniques are implemented to the behavioral HDL code and present a tool for au-

tomatic DSE of approximate circuits that can be incorporated in standard design flows for

ASICs and FPGAs to generate Pareto-optimal approximate circuits adhering to a given

error threshold. That tool, named ABACUS, uses a greedy iterative heuristic to ran-

domly apply precision scaling (PS), operation transformations (OT) (e.g., sum to logical

disjunction and multiplication to logical conjunction), arithmetic expressions transfor-

mations (AET), loop transformations (unrolling and perforation), and V2C substitutions

on the circuit’s Abstract Syntax Tree (AST) generated from the HDL code, aiming to

achieve area and power savings. The approximate variants of the AST are written back

to Verilog code, simulated for error evaluation, and synthesized for the area and power

evaluation. A similar solution is presented by Nepal et al. (2019), wherein the authors

merge the iterative greedy heuristic with a Non-dominated Sorting Genetic Algorithm

(NSGA) to prioritize approximations on the critical path, creating a positive slack that

can be exploited to reduce the voltage while keeping the frequency intact. Therefore, this

approach leads to additional power savings beyond those provided by approximate logic

by enabling aggressive voltage scaling. As a result, it can yield low-power approximate

circuits for ASICs with varying accuracy trade-offs.

Following a similar approach, Awais, Mohammadi and Platzner (2018) introduce

a framework for automated synthesis of the approximate circuits using as input the be-

havioral HDL code, which is parsed to determine the potential operands and operations

to approximate. A notable difference is that the authors employ an adapted version of the

Monte Carlo Tree Search (MCTS) technique rather than a greedy iterative algorithm to

deal with the large design space. Given an error threshold, the potential approximations

49

using precision scaling, operation transformations (e.g., partially or completely replac-

ing additions with bitwise OR or XOR operations), and loop unrolling are explored by

the MCTS algorithm to generate Pareto-optimal designs in terms of accuracy, power, and

area.

The work presented by Li et al. (2015), on the other hand, proposes to join preci-

sion optimizations and the HLS basic tasks to minimize total leakage energy consumption

in ASICs. Given precision constraints (user-defined), the system DFG, and a library of

approximate adders and multipliers with varying bit widths, that work explores the design

space of approximate designs through a knapsack-based optimization algorithm using In-

teger Linear Programming (ILP) with a statistical precision scaling model integrated into

traditional scheduling and binding HLS tasks. The objective is to find an optimal com-

bination of exact and approximate operators to trade off errors with energy consumption.

The drawback of this approach is related to the use of linear quality and energy models

supporting only combinatorial circuits, which limits its use for general applications. Lee,

John and Gerstlauer (2017) go further and exploit joint precision and voltage scaling to

increase energy savings even more. Given the accurate high-level C description, output

quality constraints, and a testbench, the authors collect data statistics and branch proba-

bilities from simulations of the accurate design. Additionally, they obtain the operations

mobility and total latency through ASAP and ALAP pre-schedulings. Next, given the

data and operations to approximate (decision variables in the C code) and an approximate

library of adders and multipliers, their tool performs precision scaling (data rounding) and

operation pruning (substitution by zero) through a quality-energy optimization solver. To

estimate quality degradation and energy savings, the solver uses the profiled information

and a semi-analytical model based on the system CDFG. Next, the precision-optimized

solution is scheduled to minimize latency. Finally, precision and timing slack are rebal-

anced across clock cycles to minimize the critical path and maximize voltage scaling.

Targeting performance optimizations, Lee and Gerstlauer (2017) extends previous

work (Lee; John; Gerstlauer, 2017) to exploit data dependencies between loop iterations

for performance optimizations through operations elimination with V2Z substitutions.

That work focuses on eliminating execution cycles as much as possible to improve overall

performance while respecting user-defined error bounds. Specifically, loop clustering is

performed using a distance metric computed with iteration-wise data statistics, weighted

by the estimated quality and error sensitivity of approximation points. Then, a hierarchical

clustering algorithm determines the optimal mappings of iterations to clusters. In this

50

process, iterations are reordered whenever possible to maximize approximation benefits.

Rather than exploring loop-based computations directly to achieve performance

optimizations, Xu and Schafer (2020) propose to generate faster approximate circuits for

ASICs by individually approximating the program operations scheduled in each control

step, exploiting the slack between them to increase the performance and reduce the la-

tency of the resultant circuit. Specifically, given a maximum error boundary, multiple

control steps are approximated by replacing exact operations with approximate ones from

a component library and applying software-level V2C and V2V substitutions. Then, to

further optimize the resultant circuit, the final scheduling is generated by merging differ-

ent control steps based on their timing slack without violating the target frequency. In

short, to optimize performance, the authors explore that the code operations assigned to

each control step mainly depend on the target synthesis frequency and technology.

Considering specifically the FPGA substrate, Schafer (2017) exploits the bitwidth

optimization capabilities of commercial HLS tools to limit the size of some FUs through

bitwidth adjustments on output variables of loops. Thus, resource-sharing-based DSE for

FPGAs can be enabled to reduce area and delay at the cost of introducing output errors, as

the area savings from using smaller FUs outweigh the area needed for multiplexers, which

are very costly in terms of LUTs. Although that work does not focus on finding area-error

trade-offs nor reaching area constraints, it borrows concepts of AC, as bit-width reduction

(precision scaling) is one of the most used AC techniques. Therefore, it can be considered

a complementary approach to AHLS design methodologies, further expanding the design

space of bit-width reduction techniques.

Approximate computing can also be explored at different levels of abstractions in

the HLS flow to expose unique optimization opportunities. In this direction, the work pre-

sented by Xu and Schafer (2017) proposes a multilevel approach, i.e., applying different

approximation techniques at each abstraction layer to generate Pareto-dominant approx-

imate designs for different input data distributions (random, normal, positive skew, and

negative skew), aiming to optimize results. At the software level, source-code pruning

using V2C and V2V substitutions is employed based on data statistics obtained through

code profiling. Next, at the HLS level, each operation is individually characterized (area,

latency, and error) according to a technology library of approximate FUs (adders, sub-

tractors, and multipliers). The resulting designs are evaluated through a cycle-accurate

model provided by a commercial HLS tool targeting ASICs and then merged through a

greedy algorithm, with a cost function guiding the process of obtaining Pareto-dominant

51

designs. After generating the RTL designs, the tool applies internal signal substitutions

(V2C and V2V) and bit-level optimizations. Finally, stability analysis is performed at

the gate netlist level to fully observe the result of all the optimizations, providing best

and worst-case scenarios. Note that each abstraction layer explores a different set of AC

techniques. Therefore, they are applied in a fixed order as the design goes through from

the algorithmic representation to the hardware implementation, which may prevent the

exploration of better trade-offs.

The design space of approximate circuits within HLS design flows using pre-built

approximate FUs as building blocks for circuit optimizations can be very large as many

approximate arithmetic circuits with different trade-offs have been reported in the lit-

erature (mostly adders and multipliers). Therefore, the problem of selecting those that

minimize the required resources for designing and generating an approximate acceler-

ator while satisfying a given accuracy constraint can be very challenging. In this con-

text, Castro-Godínez et al. (2020b) propose a framework for HLS of approximate acceler-

ators using a given library of approximate FU’s that comprises a set of analytical models

for estimating the required computational resources when using approximate adders and

multipliers, called AxME, and a general-purpose DSE methodology, called DSEwam,

that uses such analytical models to estimate the resources needed and the accuracy of

approximated designs. The authors employ an optimization solver based on tabu search,

placed between the HLS resource allocation and scheduling, that evaluates optimizations

through a fitness function comprising area, power, and delay design metrics. As a re-

sult, Pareto-optimal approximate accelerators are generated for a given error threshold

and minimization goal.

Xu and Schafer (2018) propose an AHLS methodology specifically for Coarse-

Grain Runtime Reconfigurable Arrays (CGRRA). Applications mapped for these archi-

tectures pose unique challenges when approximated, e.g., partitioning an application into

a large number of contexts can limit the depth of the approximation to the context itself,

while having a smaller number of contexts increases the overall CGRRA area but maxi-

mizes the effect of the different approximation optimizations. Therefore, the authors study

the effect of different context granularities when mapping an application to be approxi-

mated onto a CGRRA, exposing the different trade-offs, and propose a method to create

the context sizes of different granularities to minimize the energy consumption under a

maximum error constraint while leading to a good balance between other circuit parame-

ters such as area and latency. The effectiveness of the proposed method is explored with

52

software-level V2C and V2V substitutions and a library of approximate operators (adders

and multipliers), as defined in previous work (Xu; Schafer, 2017).

Proposing a more general approach relying on machine learning models, Xu and

Schafer (2019a) present a method to selectively extract portions of a high-level behav-

ioral description (ANSI C or SystemC) to be synthesized as a hardware accelerator using

HLS onto different predictive models (PMs) to trade off the accuracy of the accelera-

tors’ outputs with area and power. Because the main aim of that work is to synthesize

the newly approximated behavioral description, the authors investigate the use of differ-

ent predictive models, particularly Linear Regression (LR) and Multi-Layer Perceptron

(MLP), highlighting the trade-offs of using one over the other. In addition, the search

space is further extended by reducing the precision (bit-width) of the predictive models’

coefficients, thus leading to a wider range of solutions. The source code transformed with

such predictive models is validated for a given error threshold through HLS simulations.

Going further, Xu and Schafer (2019b) propose substituting the CGRRA contexts in their

previous work (XU; SCHAFER, 2018) with approximate expressions using the LR and

MLP machine learning models to reduce the CGRRA area and energy at the cost of in-

troducing different levels of output errors. Moreover, the authors present a technique to

merge these approximated contexts with exact ones, leading to a set of Pareto-optimal

configurations.

Chowdhury and Schafer (2021) present a method to unlock approximations that

would have been ignored with traditional approaches. Notably, the authors focus on V2C

and V2V approximations at the source code (e.g., ANSI C) for either HLS or embedded

software. The main idea is to use V2C and V2V to substitute the computation of a variable

by either another variable computed previously in the code or a constant, respectively, to

trade off circuit size or code size with output error. An automatic source code refactoring

method is proposed to enable such approximations, combined with a selective substitution

of portions of the code with predictive models. An automated search method is also

used to find the smallest possible predictive model for a given error threshold, aiming to

minimize code size, area, or power.

A major challenge for adopting approximate computing is that the resulting ap-

proximated circuit is highly dependent on the training data. If the workload is dynamic

or changes over time, output errors may reach unacceptable levels. Therefore, dynamic

control methods are needed to solve this problem. To address this challenge, Xu and

Schafer (2019c) propose an approximate self-adaptive architecture for HLS-generated

53

designs that tunes itself at runtime based on the workload. Two control mechanisms are

proposed, one based on a regular heartbeat (HB), which resets the approximate circuits at

regular intervals, and the other based on internal lightweight checkers (LWCs) to detect

a change in the workload before resetting approximations. The proposed framework is

divided into two phases. The first phase analyzes the input code (ANSI C) to extract a set

of approximation points amenable to self-tuning, where V2V and V2V substitutions are

considered for approximations. The second phase automatically inserts the self-tunable

circuitry at those points to enable or disable these approximations. The goal is to contain

the output error within a given threshold for dynamic workloads and minimize the total

energy consumption, including the energy due to the controller logic.

Many AHLS methodologies rely, at least partially, on pre-built technology li-

braries of approximate components to explore the design space. Thus, synthesizing such

libraries is a crucial requirement for the broad adoption of AHLS design flows using

this approach, as the operations’ characterization regarding the introduced error and de-

sign metrics such as area, delay, and power are design variables considered when ex-

ploring approximation options, i.e., many compromise implementations should exist for

each component. Focusing on this problem for ASIC-oriented AHLS, Vaverka, Hrbacek

and Sekanina (2016) propose a Cartesian Genetic Programming (CGP) algorithm to gen-

erate a comprehensive component library containing hundreds of Pareto optimal imple-

mentations of approximate adders and multipliers, where the error, area, and delay are

simultaneously optimized. The authors also investigate the impact of such libraries on the

quality of approximate circuits produced by HLS by employing another multi-objective

evolutionary algorithm to solve the problem of binding suitable approximate components

to the DFG nodes describing the circuit. Nevertheless, except for very few works (LIU

et al., 2016; YIN et al., 2016; SAADAT; JAVAID; PARAMESWARAN, 2019), approx-

imate arithmetic studies have been focused on integer arithmetic disregarding fixed- and

floating-point operators. Therefore, building general-purpose robust AHLS tools relying

only on technology libraries requires the development of extensive libraries of approxi-

mate components, which may limit their application scope.

3.3 Open Challenges Addressed by this Thesis

As discussed, AHLS design methodologies raise the exploration of AC techniques

to higher abstraction layers (software - SW, HLS, and behavioral HDL) to expand the de-

54

Table 3.1 – Comparison between AHLS works found in the literature and this thesis
Reference Abstraction Layer AC Technique Constraint Goal Target

Nepal et al. (2014) HDL

PS
OT

AET
V2C
LP

Error Pareto-optimal trade-offs
(error and power) Any

Awais, Mohammadi and Platzner (2018) HDL
PS
OT
LP

Error Pareto-optimal trade-offs
(error, area, and power) Any

Nepal et al. (2019) HDL

PS
OT

AET
V2C
LP

Error Pareto-optimal trade-offs
(error and power) ASIC

Li et al. (2015) HLS TechLib Error Minimize energy Any

Lee, John and Gerstlauer (2017) SW
HLS

TechLib
V2Z Error Minimize energy Any

Lee and Gerstlauer (2017) SW V2Z Error Maximize performance Any

Xu and Schafer (2020) SW
HLS

TechLib
V2C
V2V
PM

Error Maximize performance ASIC

Schafer (2017) SW BWR No Pareto-optimal trade-offs
(error, area, and latency) FPGA

Xu and Schafer (2017)
SW
HLS
RTL

TechLib
V2C
V2V
BWR

No Pareto-optimal trade-offs
(error, area, power, and latency) Any

Castro-Godínez et al. (2020b) HLS TechLib Error Minimize area, power, or latency Any

Xu and Schafer (2018) SW
HLS

TechLib
V2C
V2V

Error Minimize energy CGRRA

Xu and Schafer (2019a) SW PM Error Pareto-optimal trade-offs
(error, area, and power) Any

Xu and Schafer (2019b) SW PM Error Pareto-optimal trade-offs
(error, area, latency, and energy) CGRRA

Chowdhury and Schafer (2021) SW V2C
V2V Error Minimize area or power Any

Xu and Schafer (2019c) SW V2C
V2V Error Minimize energy ASIC

This Thesis SW

V2M
V2Z
V2P
BWR

LP

Design Metrics Minimize error FPGA

Source: The author

sign space and address the complexity of exploring approximations at RTL and gate-level

circuit representations, either manually or via ALS design flows, leveraging the tight con-

nection between the design’s algorithmic description, typically in C/C++ or SystemC,

and the HLS tasks involved in generating the RTL code. However, despite the signif-

icant advances in automating the design of approximate hardware accelerators, several

hurdles still have to be faced for AHLS design methodologies to become mainstream in

approximate hardware design.

Table 3.1 summarizes the main characteristics of current AHLS design method-

ologies proposed in the literature and the modifications addressed by this thesis. As

can be observed, some proposals entirely rely on pre-characterized technology libraries

(TechLib) of approximate arithmetic operators (adders and multipliers) (Li et al., 2015;

CASTRO-GODíNEZ et al., 2020b). Such works explore the design space of approximate

55

hardware accelerators by evaluating the composition of multiple such operators. However,

by picking the proper building blocks among the ones available in a library, such strate-

gies propose designing approximate hardware as a selection problem, limiting solutions

to the type and bit-width of the available approximate arithmetic components. Moreover,

selecting appropriate libraries requires previous knowledge of the design’s functionality

or semantics, narrowing the design space and limiting the application scope. On the other

hand, works that do not restrict approximation options to pre-built libraries do so by em-

ploying a limited set of AC techniques implemented either at the HDL layer, i.e., the set

of AC techniques explored is difficult to extend due to the complexity of implementing

approximation strategies at this level of abstraction (Nepal et al., 2014; AWAIS; MO-

HAMMADI; PLATZNER, 2018; Nepal et al., 2019), or at higher abstraction layers but

in a fixed order tightly coupled to a specific implementation flow. As a result, such works

hamper the possibility of integrating new AC techniques to enable other optimization op-

portunities arising from exploring a combination of diverse techniques, and thus relevant

solutions may be missed due to the limited design space.

Another drawback of most current AHLS frameworks is that they propose error-

constrained approximation methodologies to minimize or maximize specific design met-

rics by either using design parameters not typically available to designers of applications

for reconfigurable platforms (e.g., the internal multiplier architecture) and thus are not

directly applicable to standard FPGA design flows, or are not optimized to the propor-

tional costs of operations in the FPGA fabric (Li et al., 2015; Lee; John; Gerstlauer,

2017; Lee; Gerstlauer, 2017; XU; SCHAFER, 2020; CASTRO-GODíNEZ et al., 2020b;

XU; SCHAFER, 2018; CHOWDHURY; SCHAFER, 2021; XU; SCHAFER, 2019c). Un-

like ASICs, FPGAs require managing a predefined number of heterogeneous resources,

either for more efficient implementations or for fitting multiple components in a single

device. Therefore, by disregarding such device-specific optimization opportunities, error-

constrained design methodologies may impose the need for multiple attempts to find the

target error that meets the design metrics of interest, jeopardizing productivity. Moreover,

suppose multiple design metrics must be met. In that case, the quality of results may

be significantly impacted, as error-constrained approaches are not able to dynamically

change the optimization focus to the design metrics that still have not been met or are

far from being met. Therefore, besides being counter-intuitive from a design perspective,

steering the DSE with error thresholds may produce largely sub-optimal designs as the

suitability of each available AC technique towards meeting specific design objectives is

56

not exploited directly.

On the other hand, methods that provide compromise circuit implementations

along a Pareto front, showing different trade-offs between circuit parameters (delay, area,

and power consumption) and error by leveraging either unconstrained (Schafer, 2017;

Xu; Schafer, 2017) or error-bounded (Nepal et al., 2014; AWAIS; MOHAMMADI;

PLATZNER, 2018; Nepal et al., 2019; XU; SCHAFER, 2019a; XU; SCHAFER, 2019b)

optimization algorithms make designers responsible for choosing the solution that best

fits their needs a posteriori. In those cases, although designers are relieved from speci-

fying tight error bounds for each target application, better solutions may be lost during

the optimization process for that same reason, i.e., the DSE is not directly steered by

the designer’s specific objectives, usually defined in advance. Therefore, an AHLS de-

sign methodology that leverages the architecture of FPGAs to optimize approximation

choices toward minimizing errors while exploring a combination of diverse AC tech-

niques according to constraints on the design metrics of interest rather than error bounds

would be a promising option to manage the design effort required for adopting AHLS

for such devices. Note that, although Schafer (2017) targets FPGAs, the specific goal

is to explore software-level bit-width adjustments to reduce the FUs size to the point

where the area savings overweights the cost of using multiplexers for resource sharing,

i.e., the author does not provide a general approach to exploring optimal approximation

options according to target-specific features. Similarly, works targetting CGRRAs (XU;

SCHAFER, 2018; XU; SCHAFER, 2019b) focus on studying the effect of using different

context granularities when mapping approximated applications to expose different trade-

offs. Therefore, the architectural features of such devices are not directly explored to

guide approximation choices.

Another important observation is that, although other AHLS works implement

multiple AC techniques to expand the design space, such techniques are used to optimize

specific design metrics through tightly designed methodologies focusing on error thresh-

olds, overlooking the unique trade-offs offered by different techniques according to the

target optimizations. Therefore, automatically exploring a proper combination of diverse

techniques to minimize errors is a task that should be directly steered by the designer’s

specific objectives through a flexible constraint-aware design methodology. This enables

optimization heuristics to dynamically adapt the selection of a wide range of approxi-

mation options as the design evolves to meet the specified design objectives. In such a

direction, it is also important to offer a flexible method to allow adding new or different

57

AC techniques to expand or adapt the design space according to the target application

and optimizations. As can be observed in Table 3.1, we have implemented five software-

level AC techniques that offer different trade-offs: Variable-to-Mean (V2M), Variable-to-

Zero (V2Z), Variable-to-Power (V2P), Bit-Width Reduction (BWR), and Loop Perfora-

tion (LP), which are detailed in Section 4.2. Nevertheless, this set of techniques can be

seamlessly extended using the methodology described in that section.

In face of those gaps in the AHLS literature, this thesis addresses the challenges

of defining a constraint-aware AHLS design methodology for FPGAs to automatically

and adaptively identify application- and constraint-specific compositions of multiple AC

transformations from an easy-to-extend set of software-level AC techniques toward meet-

ing multiple design constraints with minimum error. As a result, the integration of pre-

vious efforts for efficient AC and AHLS can be achieved without imposing an additional

burden on developers while paving the way for future integration of additional techniques

that may benefit a wider range of application scenarios. Supporting the value of such a

methodology, which is detailed in Chapter 4, experimental results in Chapters 6 and 7

show that the optimal AC transformations greatly depend on the application considered

and the target optimizations and that combining multiple AC techniques outperforms any

single technique for all scenarios.

58

4 DESIGN METHODOLOGY

This chapter presents the design methodology proposed to deal with the AHLS

challenges addressed by this thesis and discussed in Section 3.3. Specifically, Section 4.1

provides a general overview of the proposed constraint-aware multi-technique optimiza-

tion heuristic. Next, Sections 4.2, 4.3, and 4.4 detail respectively: which AC techniques

were implemented and how new techniques can be added; how optimizations are evalu-

ated in terms of the considered design metrics (resources and WCET); and the GRASP-

based heuristic employed to explore the design space of approximated designs.

4.1 Methodology Overview

The methodology overview is divided in two sections. First, the optimization

problem faced by this thesis is defined in Section 4.1.1. Next, Section 4.1.2 overviews

the optimization heuristic employed to deal with the design space of a constraint-aware

multi-technique approach, which will be presented in greater depth in Section 4.4.

4.1.1 Optimization Problem

This thesis proposes that a constraint-aware HLS-based design methodology for

FPGAs that automatically explores multiple AC techniques to yield error-minimized de-

signs meeting multiple constraints can overcome some of the drawbacks of existing AHLS

approaches. Without loss of generality, the optimization problem involved in such a pro-

posal will be defined in terms of common FPGA resources (LUTs, REGs, and DSPs) and

real-time constraints, which are the design metrics considered for presenting the experi-

mental results detailed in Chapters 6 and 7. More precisely, given a designD described in

a high-level language and a set of AC techniques A, we define the set of AC transforma-

tions Γ = A×D as the set of operators γ = (a, d) representing the application of an AC

technique a ∈ A on a design entity d ∈ D, which can be a single operation (arithmetic,

logic, or memory), a basic block, a loop, or a function, depending on the granularity with

which a can be applied. It follows that an approximate design s can be defined by a

sequence of AC transformations over the exact design D, i.e.,

59

s = (γk)
n
k=1 : γk ∈ Γ and 1 ≤ n ≤ |Γ|. (4.1)

Thus, given the set S of all possible functional1 approximate designs resulting from ap-

plying a sequence of AC transformation over D, as defined by Equation (4.1), we define

F ⊆ S as the set of feasible designs such that, ∀s ∈ F , s satisfies

∀t ∈ T : Rt(s) ≤ CRt (4.2)

W (s) ≤ CW (4.3)

where Equations (4.2) and (4.3) define resources and real-time constraints, respectively.

In Equation (4.2), T is the set of all constrained resource types in the target FPGA (e.g.,

LUTs, REGs, and DSPs), Rt(s) is the number of resources of type t required by the

approximated design s, and CRt is the respective resource constraint. Similarly, in Equa-

tion (4.3), W (s) is the WCET of approximate design s and CW is the real-time constraint.

Thus, designers can specify a usage limit CRt for each resource type and a limit CW for

execution time. In short, a design is considered feasible if it is functional and meets all

specified constraints.

Therefore, given an error function E : S → ℜ+, the optimization problem in-

volved in our methodology is finding a feasible approximate design s that minimizes E,

i.e.,

minimize E(s) s.t. s ∈ F (4.4)

where the error function in Equation (4.4) is user-provided and can be defined to calculate

any Error Metric (EM) developers see fit for the application at hand. As the design space

available for multiple AC techniques, arbitrarily applied to complex designs, cannot be

exhaustively explored in a timely manner due to combinatorial explosion, an efficient

heuristic for this purpose must be developed.

1Regardless of error measures, a design is considered functional if it can be compiled by the HLS back-
end and does not hang or crash when executed.

60

Figure 4.1 – GRASP-based design flow to meet multiple constraints with minimum error

0
Source
Code

</> HLS
Front-End

Training Inputs

1

Exact Design

AC Techniques �

 D

Constraints
�� ��

Feasible Design
 S

Local
Search
Phase

Randomized Greedy
Construction Phase

Locally Optimal
Feasible Design

ϕ

2

IR IR

3

GRASP
ITERATION

Select Best Design
(minimum error)

Final Design

IR

IR

Evaluate ErrorTest Inputs

Error...
��ℎ iteration

...��ℎ design

HLS
Back-End

Synthesis
P & R

__________ Reports

ϕ*

Constraints
not met

Feasibility
Verification

Constraints
�� ��

 0110
 01001
 11011

Resource Savings
Estimation

Time Savings
Estimation

Error
Measurement

4

 0110
 01001
 11011

Final
Bitstream

ACT1 ACTNACT2

DSE Heuristic

Source
Code

</>

 0110
 01001
 11011

HLS Compiler Infrastructure

...

</>IR
Code

</>

Approximated
IR Code

Design
ProfileEn

tit
y

ID

Pa
ra

m
et

er
s

</>Updated
IR Code

HLS
Front-End </>

IR
Code

Assign ID
and Profile

Design
Profile</>Updated

IR Code

AC Transformation Passes Analysis PassAnalysis Pass

Assign ID
and Profile

Exact IR
Code

Source: The author

4.1.2 Design Space Exploration Overview

The heuristic devised to explore the design space is based on GRASP, a widely

used metaheuristic for combinatorial optimization problems (FEO; RESENDE, 1995;

RESENDE; RIBEIRO, 2019), adapted to address the multi-constrained optimization prob-

lem described in Section 4.1.1. GRASP is a multi-start iterative process in which each

iteration consists of a Randomized Greedy Construction Phase (RGC) and a Local Search

Phase (LS). For our purposes, the construction phase must build a feasible design sat-

isfying Equations (4.2) and (4.3). Its neighborhood is then explored in the local search

phase to find a locally optimal feasible design, i.e., a feasible design with minimum error.

According to the provided EM, the best solution (less error) over all GRASP iterations

is kept as the final design. Figure 4.1 shows an overview of the GRASP-based design

methodology. The main inputs are the design specification in a high-level language, such

as C/C++, a set of AC techniquesA, a set of representative inputs for error measurement,

divided into training inputs and test inputs, and the resources and real-time constraints

CR and CW respectively. The outputs are the approximated bitstream, ready to be down-

loaded to the target FPGA through vendor-specific tools, and the error measure according

to the chosen EM.

As can be observed, the design flow is divided into four major steps. In step

1, the HLS front-end is used to generate the design’s Intermediate Representation (IR),

DIR, which is a high-level assembly-like code suitable to be optimized by transforma-

tions provided by the HLS compiler toolchain, including the application of software-level

AC techniques. Next, the IR code is fully synthesized to the target FPGA to obtain the

61

synthesis reports used to verify feasibility, i.e., whether the exact design already meets

all constraints. If it does not, it is forwarded to step 2, where the GRASP construction

phase iteratively builds a feasible design s by applying a sequence of approximation trans-

formations over the exact IR code DIR, one at a time, until the resources and real-time

constraints are met. At each construction iteration, a Restricted Candidate List (RCL) is

built with Pareto-optimal designs resulting from applying each transformation γ ∈ Γ on

the design selected at the previous RGC iteration (the exact one if it is the first iteration).

Next, one Pareto-optimal design, considering the introduced error and a measure esti-

mating the distance to meeting all constraints, is randomly selected from the RCL. The

selection probability for each design in the RCL is defined by an adaptive fitness function

measuring the cost-benefit of each approximated design. Sections 4.3 and 4.4.1 detail

respectively how design metrics are evaluated to build the RCL and how the construction

phase is implemented to iteratively select approximate design candidates.

Given the feasible approximate design s built in the construction phase, in step 3

the GRASP local search phase tries to find a better solution in its neighborhood Ns, i.e.,

a feasible design with lower error than s. In our design flow, all Pareto-optimal designs

derived from the same parent design after applying a single approximation step are con-

sidered neighbors. A neighbor of s is, thus, any design in the RCL from which s was

chosen in the last iteration of the construction phase. To search for a local optima, we

check the feasibility of each neighbor ϕ ∈ Ns such that E(ϕ) < E(s). If ϕ is feasible, it

replaces the initial solution s. Additionally, the neighbors’ feasibility is evaluated in as-

cending order of error. Therefore, the local search stops when the first feasible solution is

found. More details regarding the LS phase implementation can be found in Section 4.4.2.

Starting from the exact design, the GRASP iteration comprising steps 2 and 3 is

repeated until a stop criterion is reached, such as a fixed number of iterations or a given

running time. The idea behind performing multiple GRASP iterations is to broaden the

design space by selecting the optimal design among all locally optimal feasible designs

generated. In this case, each GRASP iteration uses a different seed to perform the biased

random selection from the RCL at each iteration of the construction phase. Moreover, the

multiple GRASP iterations can be executed in parallel using multi-core and cluster archi-

tectures to shorten development time, as is done in our experimental setup. Specifically,

designers can provide the number of GRASP iterations to be processed, and one thread is

assigned for each of them. Finally, in step 4, the feasible approximate designs generated

after multiple GRASP iterations are compared, and the best one with minimum error is

62

kept as the final design ϕ∗. The bitstream for the target FPGA, provided by the synthesis

tool, is then delivered along with the final error measure.

Regardless of the heuristic employed to explore the design space, three important

challenges must be faced: (i) how to provide a multi-technique approach to explore the

unique optimization opportunities offered by the numerous AC techniques proposed in

the literature by allowing a seamless integration of new techniques in the design flow, (ii)

how to obtain a reasonable estimation of the impact of each approximation option on the

design metrics of interest without relying on fully synthesizing each approximate circuit

candidate, which is impractical even for moderately-sized designs due the vast design

space that arises from exploring multiple techniques, and (iii) how to offer scalability for

error measurement, as characterizing the error of an approximate circuit candidate for the

whole input range is difficult and time-consuming in general.

In the proposed GRASP-based heuristic, AC techniques are applied from an ex-

tensible library of compiler-based IR code transformations, which are detailed in Sec-

tion 4.2. As design metrics estimation and error measurement play a central role in build-

ing the RCL and selecting the approximate circuit candidate within each iteration of the

construction phase, efficient methods to perform such estimations are needed. Details on

how resources and time savings are estimated can be found in Sections 4.3.1 and 4.3.2

respectively, while the error measurement approach is described in Section 4.3.3.

4.2 Approximate Computing Techniques

A flexible AHLS design methodology aimed at exploring diverse optimization

opportunities through exploiting a combination of AC techniques should provide a sys-

tematic way of integrating new techniques into the standard design flow. To offer such

flexibility, we propose implementing software-based AC techniques as a library of trans-

formation passes within the compiler infrastructure of HLS design flows, decoupling the

set of exploited techniques from the design heuristic employed to explore the design

space. Figure 4.2 illustrates such an approach to integrate new techniques. Before ex-

ploiting any AC transformation pass, in step 1 the design entities in the target IR code are

identified, which can be the exact one or other already approximated if using an iterative

process. Specifically, we developed an analysis pass to assign a unique identifier (ID)

as metadata to each IR entity, including operations, basic blocks, loops, and functions,

and profile its attributes, such as the operations type (arithmetic, logic, memory, or con-

63

Figure 4.2 – Software-level AC techniques implemented as code transformations

ACT1 ACTNACT2

DSE Heuristic

Source
Code

</>

HLS Compiler Infrastructure

...

</>IR

</>

Approximated
IR Code

Design
ProfileA

rg
s

</>Profiled
IR Code

HLS
Front-End

</>
Assign ID
and Profile

Design
Profile</>Profiled

IR Code

AC Analysis and Transformation Passes
Analysis PassAnalysis Pass

Assign ID
and Profile

Exact
IR Code

Valid
Args

Available
ACTs

R
eq

ue
st

 A
rg

s

2

1

3

Source: The author

trol) and bit-width, the operations sources and destinations, the operands type (variable

or constant), the basic blocks’ operations, and the loops’ trip counts. Additionally, this

analysis pass then exports the identified entities and their attributes to a file in the YAML

format (YAML, 2022). Note that the only modification made by this step is including

metadata information in the provided IR code.

Next, in step 2, the DSE heuristic can explore approximation options by selecting

the entities to approximate from the IR code profile and using the library of AC techniques

(ACTs) made available through a file containing the list of callable transformations passes

with their definitions (names and parameters). To use an approximation pass, the heuris-

tic must know the valid arguments for the target IR, as different techniques may apply to

different entities (e.g., loops or arithmetic operations) and to different extents, such as the

perforation ratio for loop perforation or the constant value for variable-to-constant sub-

stitution. Therefore, the AC technique implementation must provide an additional pass

that receives the profiled IR code with the metadata IDs previously added for each entity

to generate a list of those entities that can be approximated by the implemented transfor-

mation, along with their respective valid arguments. This list must be saved as a file in

the YAML format with the pass name and key-value pairs corresponding to the entity’s

ID and the list of valid arguments. Then, to use one of the provided AC transformations,

the heuristic first requests the list of valid entities and arguments pairs by calling the

technique-specific analysis pass for the target IR code. Finally, in step 3, the heuristic can

exploit the techniques available by calling the respective compiler optimization pass for

the IR code to be transformed along with the entity’s ID and one of the valid arguments

64

provided. Note that such an approach offers great flexibility for designers, as it allows

the inclusion of AC techniques applicable only to specific entities and to limited extents

without the need to modify or replace the heuristic. For example, one may provide an

AC transformation that exposes only resilient operations for approximations to reduce the

design space based on a previous analysis of the IR code.

Although Figure 4.2 exemplifies an iterative process for DSE, multiple AC trans-

formations can be applied in sequence before updating and profiling the approximated IR

code. Therefore, given the updated and profiled IR code before and after one or more

AC transformations, the DSE heuristic can estimate the optimizations achieved regard-

ing the design metrics of interest using appropriate methodologies. For our experiments,

approximation techniques were chosen to cover a range of distinct trade-offs in terms of

introduced error and gains in resource usage and execution time. Nevertheless, this set

of AC techniques can be easily extended by developers by following the approach herein

defined, especially to include new AC transformations that are suitable for the targeted

application domains. The techniques detailed in the next subsections were implemented

as transformation passes within the LLVM compiler framework.

4.2.1 Variable-to-Constant Substitutions

As discussed in Section 2.3.2, variable-to-constant (V2C) substitutions allow de-

signers to achieve area, power, and performance improvements by replacing costly oper-

ations with constant values. This technique was implemented through a transformation

pass that, given the IR code, the operation ID, and the substitute value as a parameter,

transforms the IR code by replacing the given operation with the given constant value.

For this thesis, we have implemented three different types of V2C substitution: variable-

to-mean (V2M), variable-to-zero (V2Z), and variable-to-power (V2P).

The V2M approximation option replaces an operation’s output with its mean value,

previously obtained with code instrumentation and simulation with a set of user-provided

training inputs. The code instrumentation is done with another LLVM transformation

pass that inserts a function call after each operation in the IR code to get the value com-

puted after its execution. This function uses the unique identifiers saved as metadata to

differentiate operations and account for multiple executions, saving the computed values

in a list. Before returning from the main function, the instrumented IR code saves the

computed statistics for each operation to a file in the YAML format with key-value pairs,

65

i.e., the operation ID and its mean value, which can be used later by the DSE heuristic to

feed the V2C transformation pass with valid arguments for the target operation. Note that

the mean value can minimize the error introduced by approximations using a fixed value

regardless of the operation, assuming the training inputs are representative of the inputs

found during the system’s actual operation. This technique is especially suitable when the

standard deviation is relatively small, providing excellent trade-offs and adhering to the

AC principle of disproportionate benefits. However, since the output can be any value,

V2M is unlikely to completely eliminate other operations (such as additions or multipli-

cations) that depend on the approximated value. The V2Z option, on the other hand, is

a more aggressive optimization strategy that consists in replacing an operation’s output

with the constant zero. In this case, the only valid argument for substituting operations is

a constant zero. Although this may introduce more error than V2M, the constant zero can

propagate throughout the circuit, completely eliminating other arithmetic operations and

thus enabling further optimizations, as exemplified in Section 2.3.2.

The V2P approximation option aims to be an intermediate strategy when com-

pared to V2Z and V2M, and it is a novel strategy used in this thesis. With V2P, the output

of an operation is replaced by a constant value that is the nearest power of two to its mean

value. Consequently, multiplications using this value can be replaced by constant shifts,

and adders are also likely to be simplified depending on the number of trailing zeros in

the value’s binary representation. Therefore, V2P can provide even better trade-offs than

V2M if the power-of-two value is within the operation standard deviation. This technique

uses the same analysis pass developed to generate the application’s statistical profile for

V2M substitutions, except that the valid arguments provided for the V2C transformation

pass are computed as the nearest power of two to the operations’ mean values.

4.2.2 Bit-width Reduction

Bit-width reduction (BWR) consists in reducing the data width of variables, below

the minimum amount of bits specified in the source code or which would be necessary

to represent all possible values during the system’s regular operation. It does not com-

pletely eliminate operations but allows some variability according to the current input

values, providing a wider design space with less error. We consider the entire design

space associated with BWR, i.e., from removing one single bit up to removing all but

the most significant bit. Specifically, we provide an approximation pass that receives as

66

inputs the IR code, the ID of the operation to be approximated, and the number of bits

to be reduced as an argument, starting from the least significant. Similarly to the V2C

substitution passes, an analysis pass was developed to generate a file in the YAML format

containing the transformation pass name and a list of valid arguments for each operation

eligible to be approximated by this technique. For example, the ID associated with an

8-bit adder will have a list of valid arguments containing integer values ranging from one

to seven, i.e., the bitwidth of this operation can be reduce from one to seven bits.

This technique is an important alternative to more coarse-grained operation-level

approximations, such as V2C substitutions, especially for yielding approximate hardware,

where the data path bit-width is fully customizable. Indeed, many variables declared at

the high-level source code use more bits than necessary, so state-of-the-art HLS tools

perform bit-width optimizations before generating the RTL code. Therefore, applying

BWR to approximate a single operation may propagate further bit-width optimizations to

other operations, extending its benefits.

4.2.3 Loop Perforation

Loop perforation (LP) skips entire iterations of loops, and the frequency of skipped

iterations allows exploring the trade-offs in terms of error and gains. We consider the

range of skipping one every two iterations up to one every 100 iterations, i.e., the imple-

mented transformation pass provide the valid arguments as a list of integers ranging from

2 to 100. Then, to be used, it must receives as inputs the IR code, the loop ID, and the

perforation ratio between 2 and 100 as an argument. It should be noted that LP operates

at a different granularity when compared to the other considered AC techniques. During

the heuristic search, operations that are the first in a loop body are used as handlers for

the loop, while other operations are ignored by this technique. Similar approaches may

be employed when integrating other techniques that operate on different granularities.

Moreover, as detailed in Section 4.3.2, we restrict LP to loops in the time-critical exe-

cution path provided by WCET analysis, which reduces the searching space to the most

promising candidates.

67

Figure 4.3 – HLS optimizations on area and delay (a) before and (b) after a V2P substitution

-

+

C1

C2

C3

C4

C5

-+ +

- -
<<+-

*

0x08O7O6

O8

O5

O9C
on

tro
l S

te
ps

(a)

(b)

+

O10

-

+

-+ +

-

O1 O4O3

O5

O8

O2

+

O10

8 bits 5 bits

O1 O4O3O2

Source: The author

4.2.4 Exploring Further Optimizations

Besides exploring the AC techniques described above, we also explore traditional

compiler optimizations that may have been enabled by each AC transformation, such as

dead code elimination, constant propagation, and strength reduction. When an operation

is approximated, other operations may be affected due to data or control dependencies.

Consequently, further resource and time savings may be achieved as a result of a single

approximation step without introducing additional errors. Therefore, such optimizations

must be considered when evaluating the impact of each AC transformation on design

metrics. More coarse-grained AC techniques, such as V2Z and V2P, will likely enable

more aggressive compiler optimizations at the cost of increased error. Moreover, each

technique produces different trade-offs for different design parameters. Although some

techniques may impact resources and execution time by eliminating operations and con-

trol steps (e.g., V2Z, V2M, and V2P), others were developed to optimize specific design

metrics. LP, for example, is more suitable for reducing execution times, while BWR is a

fine-grained approach primarily used to reduce the data path size.

Therefore, selecting an optimal sequence of AC transformations to meet multiple

constraints while minimizing output errors for different scenarios requires carefully exam-

ining the effects of each approximation step throughout the code. Figure 4.3 exemplifies

one case where V2P yields further savings for FPGAs. It shows a data flow graph with ten

operations scheduled across five control steps (ASAP), assuming that adders and subtrac-

tors have a latency of one clock cycle while multipliers need two clock cycles. Registers

68

between control steps are omitted for the sake of clarity. The adder highlighted in Fig-

ure 4.3(a) is replaced by a power-of-two constant with three zeros in the least significant

bits (0x08). Thus, in Figure 4.3(b), the following adder, O8, can be reduced from eight

to five bits, saving three LUTs. Additionally, the multiplier O9 in Figure 4.3(a) can be

replaced by a constant shift, which is implemented by appropriately connecting the sub-

tractor’s input without consuming any logic resources. Assuming multipliers are mapped

to DSPs, one or more DSP blocks may be saved depending on the multiplier bit-width and

the device’s specific DSP block architecture. Moreover, the two registers needed to use

the outputs of O6 and O9 in control steps C3 and C5 respectively can be eliminated. Thus,

besides reducing the circuit delay in one clock cycle, eliminating O6 results in further

resource savings enabled by optimizations without additional error. The AC transforma-

tions implemented for this thesis leverage the LLVM’s standard optimization passes to

account for such additional optimizations before updating the design entities’ identifiers

and generating the approximated IR code profile.

4.3 Design Metrics Evaluation

The results achieved by the proposed methodology highly depend on the quality

of the locally optimal feasible designs generated by the Randomized Greedy Construc-

tion (RGC) phase of each GRASP iteration. The RGC phase iteratively applies approx-

imations to designs, producing new approximate designs from a parent design, which is

initially the exact implementation. Therefore, it is crucial to adequately estimate the op-

timizations achieved with each transformation applied at the RGC phase without exces-

sively extending running times or producing rough estimates that may degenerate results.

Figure 4.4 shows the sequence of steps and tools used to estimated resource savings, time

savings, and error, as will be detailed in the next subsections.

4.3.1 Resource Savings

The resource savings achieved with each approximation step in the RGC phase

can be precisely measured by synthesizing the circuit down to the basic components of

the target FPGA. However, this method is time-consuming, being impractical for most

cases. Alternatively, one can estimate the resource use with the device characterization

69

Figure 4.4 – Sequence of steps to measure error and evaluate resources and time savings

�(��)
Binary

 101
00111
11001

Parent Design
����

x86
Back-End

HLS
OPT

����

Analysis Pass
ID & Profile

HLS Device
Characterization

</> </> </></>

Binary

Profiled
����

Approx IR
��

Opt IR
��

Estimate Resources
and Time Savings

Training Inputs

Error Measurement
Execute and Compare

HLS
Back-End

Schedule
(S)

��(��)

Approx Pass
 ACTγ(Args)

</>

Synthesis
P & R

����

 101
00111
01001

 101
00111
01001

��(��)

��

Parent Design
Characterization

WCET
Analyzer

����
Netlist (�) and
Resources (R)

Source Code
��

</>

x86
Back-End

HLS
Front-End

Exact Parent Design Only

wcet, �����, and �

���

Reports

Profile

Analysis Pass
ID & Profile

</>

Profiled
IR ��

Profile

Approximate Design Candidates Characterization
(applied to all candidates at each RGC Iteration)

��

The selected candidate becomes the
new parent design for the next iteration

1

nth candidate
...

1st candidate
New Parent Design

2
4

5

6

H
Π

3

Source: The author

file provided by the HLS tool and used to guide the synthesis process. The LegUp tool, for

example, is implemented over the LLVM framework and includes a pre-characterization

of required resources for every operation in the LLVM’s IR considering the target FPGA.

Although this approach can offer a reasonable estimation of the resource usage of each

operation, it does not account for target-specific optimizations performed by synthesis

tools. Depending on how operations were scheduled, registers may be unnecessary due to

operation chaining. Afterward, resources may be eliminated, duplicated, or merged as a

result of netlist optimizations. Therefore, an analytical model based only on the HLS pre-

characterization may produce significant over-estimations (HSIAO; ANDERSON, 2018).

For this thesis, such limitations are circumvented by using both the HLS pre-

characterization and the full synthesis outcomes to estimate resource savings. As can

be observed in Figure 4.4, step 1 is generating the exact parent’s design IR code PDIR

with the HLS front-end and the exact binary code with the x86 back-end, which is used

later for error measurement (details in Section 4.3.3). The parent design (the exact one

in the first RGC iteration or an already approximated from the previous iteration) is then

characterized as follows: in step 2, the scheduling report S and the HDL code DHDL

are generated by the HLS back-end, and the IR design entities are identified and profiled

through the analysis pass discussed in Section 4.2. Next, in step 3, the circuit’s netlist

70

Θ and the exact resources usage report R are produced by fully synthesizing (placement

and routing) the HDL code with the device-specific synthesis tool. With the parent design

characterization at hand (profile, schedule, netlist, and resources), in step 4, an optimized

IR code Dγ and its profile are generated by applying each AC transformation γ ∈ Γ, i.e.,

by exploiting the available AC techniques for each design entity, followed by standard

compiler optimizations, as described in Section 4.2.

Following to step 5, the resulting profiles before and after approximations are

parsed and compared to identify the IR entities that were eliminated, added, or trans-

formed, allowing the estimation of resource savings for each approximate design candi-

date. Note that at this point the time savings are estimated as well, which will be detailed

in Section 4.3.2. To accomplish the resource savings estimation task, the analysis pass

also includes the design entities’ IDs in their naming schema as a prefix, such that the set

of resources associated with each IR entity in the parent’s design can be identified in the

circuit’s netlist for mapping the IR-level operations to the design entities that are actually

synthesized for the target FPGA. As will be detailed next, by parsing the design reports,

resources that were eliminated, duplicated, or merged during the synthesis process are

also tracked to avoid significant under- or over-estimations. Note that operations may be

present only in the approximated design profile, i.e., transformed or added operations that

cannot be directly mapped to the parent’s design netlist. The resource usage estimation

is made using the HLS pre-characterization for these cases, with the control steps of op-

erations not affected, taken from the parent’s design scheduling, being used to estimate

the insertion of registers according to the sources and destinations of the new operations.

Therefore, we can obtain a good estimation of the total resource savings without perform-

ing a full synthesis for each approximate design candidate. Finally, in step 6, the error

measurement approach detailed in Section 4.3.3 is performed, ending the approximate

design candidate characterization.

Formally, let OP and ODγ denote respectively the set of IR operations in the par-

ent’s designPDIR
and in the optimized designDγ resulting from approximatingPDIR

with

an AC transformation γ ∈ Γ. It follows that Eγ = OP \ODγ is the set of eliminated oper-

ations andWγ = ODγ \OP is the set of new operations. Additionally, let ΛP : OP → VP
and ΛDγ : ODγ → VDγ be functions mapping the set of operations in PDIR

andDγ respec-

tively to their sets of attributes. Then, Xγ = {x : x ∈ OP ∩ ODγ and ΛP(x) ̸= ΛDγ (x)}

is the set of transformed IR operations, i.e., operations whose attributes changed after

approximating PDIR
with AC transformation γ, such as the bit-width or the operands

71

type (variable to constant, for example). Therefore, the savings for resource type t ∈ T

obtained with the transformed and optimized IR code Dγ can be estimated as

RSt(Dγ) =
∑
x∈Xγ

max
(
0,Πt(ΛP(x))−Ht(ΛDγ (x))

)
+

∑
e∈Eγ

Πt(ΛP(e))−
∑
w∈Wγ

Ht(ΛDγ (w))
(4.5)

where Πt : VP → N andHt : VDγ → N are functions mapping the IR operation attributes

in the parent and approximated designs respectively to their number of resources of type

t, derived from the netlist Θ and the device’s HLS pre-characterization respectively. Note

that, after approximating an operation inOP , it is either part of Eγ or Xγ depending on the

AC technique applied. Moreover, due to possibly over-estimations for the resource usage

of transformed operations derived from the HLS pre-characterization, the difference in

resources usage before and after such approximations are floored at zero.

After estimating the resource savings, we can calculate the Relative Resource Sav-

ings (RRS), which measures the resources of each type we have eliminated relative to the

total number of resources we still have to eliminate to meet each resource constraint at

the current RGC iteration, given the parent’s design resources usage. For each resource

type t ∈ T , the RRS of the approximated design Dγ can be calculated as

RRSt(Dγ) =

min

(
RSt(Dγ)

PRt − CRt

, 1

)
if PRt > CRt

0 otherwise
(4.6)

where PRt is the exact number of resources of type t used by the parent design P , and

CRt is the resource constraint. Note that RRSt(Dγ) is clamped within [0, 1], where

RRSt(Dγ) = 0 means that approximating PDIR
with the γ does not result in any ben-

efit regarding the resource type t because either resources of this type are not saved

(RSt(Dγ) = 0) or the constraint is already met (PRt ≤ CRt). Conversely, RRSt(Dγ) = 1

means that the constraint would be met if this approximation step is kept. Avoiding values

greater than one prevents overvaluing approximations that provide resources elimination

that exceed the strictly necessary to meet constraints. Therefore, this metric dynamically

adapts as the RGC phase iteratively converges to meet all resource constraints. Still, note

that full synthesis compilation is performed for the chosen design (which becomes the

parent in the next iteration) to get the exact resources usage and and thus avoid accumu-

lating estimation errors across the RGC iterations.

72

Figure 4.5 – Execution times distribution and timing analysis for real-time systems

Measured
WCET

In
pu

t s
 O

cc
ur

re
nc

e

Execution Time

Measured

Possible
Estimated

WCET
Actual
WCET

underestimation overestimation

Source: The author

4.3.2 Execution Time Savings

The design of real-time systems requires dealing with the problem of estimating

the WCET to guarantee that the system execution time is strictly bounded to the specified

real-time constraint (Lokuciejewski; Marwedel, 2011). In general, the WCET analysis

must be safe and accurate, i.e., the actual execution times should not exceed the estimated

WCET and it must be as close as possible to the actual maximal execution time to avoid

over-design. For AHLS purposes, for example, overestimating the system WCET may

steer the tool to introduce more error than the necessary as approximations are performed

until the constraint is met. Therefore, the quality of results is highly dependent of the

WCET analysis methodology.

Figure 4.5 illustrates the WCET analysis problem. As can be observed, measurement-

based methodologies allow designers to estimate the WCET by stimulating the synthe-

sized hardware with a set of representative inputs chosen according to some criterion,

such as the probability of occurrence. Ideally, those inputs should cover scenarios where

the maximal execution time manifests. This approach, however, is not safe for hard real-

time systems, as the inputs that lead to the worst-case scenario are generally not known.

Given that measuring the execution times for all possible inputs is not feasible for most

cases, designers usually add a safety margin, which often leads to highly overestimated

results. Thus, measurement-based methods are not adequate to ensure hard real-time re-

quirements.

To overcome the limitations of measurement-based approaches, designers can re-

sort to static WCET analysis, which can guarantee that the system’s execution time is

73

bounded by the timing constraint specified. With this approach, the system is not executed

on a real hardware or simulator, but instead it is statically analyzed for determining the

time-critical path, i.e., the sequence of operations performed in the extreme running time

case, and how much time the system will take to execute that sequence. Due to runtime

dependencies, however, the path analysis problem is undecidable in general (Puschner;

Koza, 1989). Loop bounds, for example, cannot be statically determined if they depend

on input values. Thus, designers must provide insights about the system functionality

regarding runtime properties, which often produce over-estimations.

Additionally, static analysis methodologies require modeling the hardware where

the system will be executed to estimate the number of clock cycles spent by each basic

block. The number of cycles and the clock period are mandatory to compute how much

time the system will take to execute the time-critical path. For processor-based imple-

mentations, modeling the microarchitecture behavior is much more challenging due to

unpredictable runtime behaviors, such as cache hits/misses, which dynamically impact

the execution times of basic blocks (Shaw, 1989). Thus, it is a common source of im-

precision when estimating the WCET. On the other hand, for hardware implementations

(ASICs or FPGAs) without processor support this step is simplified, as the execution time

of basic blocks without blocking function calls is constant and can be derived from the

clock frequency and the number of control steps produced by the synthesis process.

As discussed, static WCET analysis is a traditional method for computing safe

execution time bounds, which is mandatory for hard real-time systems. Thus, this method

plays an important role for an AHLS methodology aimed to perform approximations to

systematically reduce the system WCET until a given time constraint is met. Specifically,

static methods offer more flexibility, as they operate on the same code and data represen-

tations used by HLS tools to perform resource, scheduling, and binding optimizations,

and thus can be easily integrated with them. For this thesis, we have implemented an op-

timized version of the Implicit Path Enumeration Technique (IPET) proposed by Li and

Malik (1997), which is a widely used method for calculating the WCET in state-of-the-art

timing analysis tools.

The IPET estimates the system WCET by formulating an ILP problem that im-

plicitly evaluates all possible execution paths. It defines a linear objective function rep-

resenting the program execution time, a set of non-negative integer decision variables

representing the execution frequency of edges in the Interprocedural Control Flow Graph

(ICFG), and a set of linear constraints. The goal is to maximize the objective function such

74

that all constraints are satisfied. Structural constraints (flow properties) are fully derived

from the program ICFG, while functional constraints that depend on runtime properties

must be provided by designers, being mandatory for at least loop bounds that cannot be

statically computed. Optionally, other path information that depends on the system func-

tionality can be provided to eliminate unfeasible paths from consideration, which may

reduce the estimation pessimism at the cost of increasing the ILP problem size. There-

fore, the WCET analysis accuracy depends on properly steering the analysis tool. More

details can be found in the work proposed by Li and Malik (1997).

Our IPET-based WCET analysis tool was implemented as an analysis pass within

the LLVM compiler framework and exploits the fact that the programs designed for HLS

compilation do not have recursion, i.e., their call graphs are always DAGs. Thus, instead

of solving the ILP problem derived from the entire program, we can solve smaller ILP

problems derived from the Control Flow Graph (CFG) of each function in the reversed

order produced by topological sort. Moreover, independent ILP problems can be solved

in parallel. In a nutshell, we divide the original ILP problem proposed by Li and Ma-

lik (1997) in smaller ILP problems and solve them in a bottom-up fashion, parallelizing

whenever possible. In general, this approach can offer a sensible reduction in the time

spent with WCET analysis, as ILP problems are NP-complete with respect to the number

of constraints. It is specially beneficial when analyzing complex programs devised with

several functions. Therefore, in the context of HLS-based designs, the WCET analysis

problem can be translated into a set of ILP problems by defining an objective function for

each function F in program P as

∀F ∈ P : WCET (F) = max
∑
B∈F

WCET (B) · CB, (4.7)

where WCET (B) and CB are respectively the estimated WCET and the execution count

of basic block B. In Equation (4.7), the execution time of basic blocks without function

calls is constant, defined by the minimum clock period informed by the device-specific

synthesis tool times the number of cycles spent by the basic block, which can be obtained

from the scheduling report produced by the HLS back-end. However, if a basic block

calls a function, then its WCET can be estimated as the sum of the constant part and the

WCET estimated for the called function, assuming blocking function calls. Thus, the ILP

problem for the main function is the last one to be solved, as the WCET of each function

is estimated in the order defined by topological sort. Regarding structural and functional

75

Figure 4.6 – IPET-based static WCET analysis for HLS

bb2 bb3

bb1

bb4

bb2

bb1

bb2

bb1

bb3

F1
CFG

F2
CFG

Main
CFG

bb3

Program
ICFG

ILP 2ILP 1

ILP 3

Inputs

Outputs

Source: The author

constraints for each objective function defined in Equation (4.7), they are formulated in

the same way as defined by Li and Malik (1997), except that we have a set of constraints

for each function instead of for the whole program.

Figure 4.6 exemplifies the IPET-based WCET analyzer for a simple program with

three functions. The basic blocks bb2 and bb3 in the main function call functions F1 and F2

respectively. As F1 and F2 do not call any function and are independent, their ILP prob-

lems are solved in parallel. Next, the estimated WCETs are passed to the caller function

(main) to estimate the bb2 and the bb3 WCETs. Finally, the program WCET is estimated

by solving the ILP problem associated with the main function. An important observation

is that the presented WCET analyzer is used as a case study for our methodology, as it

leverages specific characteristics of HLS-based designs to minimize the estimation com-

plexity and runtime. It has the same limitations as other static analyzers implementing the

IPET formulation, i.e., the estimation accuracy depends on properly steering the tool, as

previously discussed. However, any other WCET tool can be used. The only requirement

is that it must provide the estimated critical path and the execution count of basic blocks

in it, so that approximation strategies can be fine-tuned to optimize the WCET reduction.

Time savings are obtained depending on whether the AC transformations are able

to increase the circuit’s maximum frequency or reduce the number of control steps in the

time-critical execution path. Thus, given the parent’s design scheduling report S provided

by the HLS back-end and the basic blocks in the time-critical path Cpath provided by the

76

WCET analysis pass, as presented in Figure 4.4, we can estimate how many cycles can

be saved by calculating the difference between the number of control steps in those basic

blocks’ data flow graph before and after each approximation step according to the ASAP

scheduling, times their execution count in the worst-case scenario (ΨP), which is provided

by the WCET analyzer as well. The actual time savings are then obtained by dividing

the cycle savings by the circuit’s maximum frequency fmax obtained from the timing

report for the target FPGA. Note that the maximum frequency is from the parent’s design

characterization, i.e., possible changes in frequency due to single AC transformations are

overlooked. Nevertheless, we have observed that those changes are negligible when they

occur, as the HLS back-end tries to chain as many operations as possible at each control

step following the provided timing directives. Thus, the number of control steps is much

more likely to be affected. Moreover, the maximum frequency is precisely evaluated for

each new parent design to avoid accumulating such variations across the RGC iterations.

Formally, let BP and BDγ denote respectively the set of basic blocks in the par-

ent’s IR code time-critical execution path Cpath and in the optimized IR code Dγ resulting

from applying the AC transformation γ ∈ Γ. It follows that Eγ = BP \ BDγ is the set of

eliminated basic blocks in Cpath andMγ = BP ∩ BDγ is the set of basic blocks in Cpath
kept in the approximated design. Additionally, let ∆P : BP → N and ∆Dγ : BDγ → N

be functions mapping the set of basic blocks in PDIR
and Dγ to their control step counts

respectively, as provided by the parent’s scheduling report and the approximated basic

block’s new scheduling derived from the set of eliminated operations. Therefore, the

WCET reduction obtained by approximating the parent design PDIR
with an AC transfor-

mation γ ∈ Γ can be estimated as

TS(Dγ) =
1

fmax

(
∑
b∈Mγ

(ΨP(b) ·∆P(b)−ΨDγ (b) ·∆Dγ (b))

+
∑
b∈Eγ

ΨP(b) ·∆P(b))
(4.8)

where ΨP(b) and ΨDγ (b) are respectively the execution count of basic block b in the

parent’s design worst-case scenario provided by the WCET analysis tool and in the trans-

formed design Dγ . Note that ΨP(b) ̸= ΨDγ (b) only if the basic block b belongs to a loop

in which the number of iterations was changed by the the AC transformation γ, a common

situation when loop perforation techniques are employed. For those cases, the estimation

ΨDγ (b) = ⌈ΨP(b)− ΨP(b)/r⌉ is considered, where r is the perforation ratio used as the

77

LP transformation parameter defined in Section 4.2.3.

After estimating the time savings, we are able to calculate the Relative Time Sav-

ings (RTS), which measure the time we have saved relative to the total time we still have

to save to meet the real-time constraint at the current RGC iteration, given the parent’s

design WCET. It can be calculated as

RTS(Dγ) =

min

(
TS(Dγ)

PW − Ct

, 1

)
if PW > Ct

0 otherwise
(4.9)

where PW is the parent’s design WCET, and CW is the real-time constraint. Note that

RTS(Dγ) is clamped within [0, 1], where RTS(Dγ) = 0 means that approximating PDIR

with the γ does not result in WCET reduction because either no control step in Cpath
was eliminated (TS(Dγ) = 0) or the constraint is already met (PW ≤ Ct). Conversely,

RTS(Dγ) = 1 means that the constraint would be met if this approximation step is

kept. Avoiding values greater than one prevents overvaluing approximations that provide

WCET reductions that exceed the strictly necessary to meet the constraint. Therefore,

similarly to the RRS calculation in Equation (4.6), this metric dynamically adapts as

the RGC phase iteratively converges to meet the real-time constraint. Nevertheless, full

WCET analysis is performed for parent designs to avoid accumulating time savings esti-

mation errors across the RGC iterations.

4.3.3 Error Measurement

The error introduced by approximations can be evaluated through simulation-

based techniques or formal methods based on symbolic computations. Simulation ap-

proaches are commonly used to produce error statistics derived from Monte Carlo simula-

tions, which can be performed over the entire circuit or smaller sub-blocks. With a divide-

and-conquer strategy, the circuit can be considered a network of approximate building

blocks, which can be individually analyzed by Monte Carlo simulations. Then, the error

statistics are propagated through the network using analytical methods for error com-

position. Using pre-characterized error statistics of smaller sub-blocks usually reduces

simulation times by limiting input combinations. However, as this approach requires the

use of analytical methods modeling the error composition from the approximated sub-

blocks to the system primary outputs, which are currently restricted to composing errors

78

across arithmetic operators like adders and multipliers, the application scope becomes

limited. Moreover, it has the drawback of depending on a library previously character-

ized operators (Chakrapani et al., 2008; Palem et al., 2009; Chan et al., 2013; Li et al.,

2015; SENGUPTA et al., 2017; CASTRO-GODíNEZ et al., 2018). Also, as the error

is input-dependent, providing significant confidence for simulation-based methodologies

depends on stimulating the system with typical workloads and defining adequate EMs for

each application scenario (Chan et al., 2013).

In contrast, formal methods based on symbolic computations on Boolean formulas

can provide formal error guarantees for a wide range of EMs. BDD-based error analy-

sis, for example, scales very well on non-pathological classes of circuits to provide an

error distribution offering information about the probability of occurrence of errors of

different magnitudes. However, it cannot be applied to calculate arbitrary error metrics

and the BDDs can be challenging to construct for common circuits comprising larger

bit-width operators like multipliers, division, remainder, and reciprocal, as they exhibit

exponential memory requirements for any variable ordering (VASICEK, 2017). SAT-

based approaches may offer scalability as well, but they apply to the worst-case error

analysis only, which may not be an adequate error metric to explore approximation op-

tions in general because in most applications the knowledge of the worst-case error alone

will not suffice, since its probability of occurrence is very low in most operating scenar-

ios (VENKATESAN et al., 2011). Although formal methods relying on Boolean satisfia-

bility solvers can provide error bound guarantees on the solution, scalability is often the

main limitation when establishing other EMs like the error rate or the average-case error.

Therefore, formal methods may jeopardize generality and scalability depending on the

underlying model checking algorithm (RANJAN et al., 2014; CHANDRASEKHARAN

et al., 2016), being impractical for arbitrary designs with complex data and control paths.

For this thesis, a simulation-based methodology was adopted to characterize the

error statistics for the entire circuit, wherein the evaluated EMs are the Mean-Squared

Error (MSE) and the Percentage Accuracy (PA), averaged over a set of training inputs for

DSE and another set of test inputs to evaluate the final design. The MSE and PA metrics

for each input are defined as

79

MSE =
1

N

N∑
i=1

(
Oi − Ôi

)2

(4.10)

PA = 100×

1− 1

N

N∑
i=1

diff
(
Oi, Ôi

) (4.11)

where N is the number of values in a training or test input and Oi and Ôi are the golden

and approximated values respectively. In Equation 4.11, diff(Oi, Ôi) = 1 if Oi ̸= Ôi,

otherwise diff(Oi, Ôi) = 0. Note that Equation 4.11 calculates the percentage num-

ber of approximated output values that match with the golden values. Those metrics are

commonly used to assess results when evaluating approximation techniques for a wide

range of multimedia processing and machine learning applications (Li et al., 2015; Lee;

John; Gerstlauer, 2017; Nepal et al., 2019; NAZAR et al., 2021a). They are used as rep-

resentative examples in this work and can be replaced by any metric the designers see fit

for each specific application. Although simulating entire circuits is time-consuming due

to the number of inputs needed for sufficient confidence, in this work such limitation is

circumvented by performing functional simulations at software-level, with the IR code

that is functionally equivalent to the implemented circuit. In the last step for characteriz-

ing approximate design candidates, as presented in Figure 4.4 (step 6), the exact outputs

generated by executing the exact IR code compiled with the compiler’s x86 back-end are

compared with the approximate outputs generated by executing each approximated de-

sign generated across the RGC iterations. Therefore, as detailed in chapters 6 and 7, this

approach can produce error statistics in reasonable run-times without losing generality,

even for complex designs.

4.4 GRASP-based Optimization Heuristic

In this section, we detail the optimization heuristic developed to explore the de-

sign space by exploiting the set AC techniques implemented as compiler transformations,

as detailed in Section 4.2, and using the methods described in Section 4.3 to estimate

resource and time savings and to obtain error statistics of approximate design candidates.

Algorithm 1 shows the GRASP-based approximation heuristic with its pseudo-code. The

inputs are the design source code DS , the set of AC techniques A, the set of training in-

80

Algorithm 1 GRASP-based Approximation Heuristic
Inputs: Design source code (DS), set of training inputs (Ω), set of AC techniques (A),

set of resource types (T), set of resource constraints (CR), real-time constraint (CW),
and number of iterations (K)

Output: The approximated design (DBIT)
1: DIR ← HLS_FRONT_END(DS)
2: (DHDL,S)← HLS_BACK_END(DIR)
3: (DBIT ,Θ, fmax,R)← SY NTH_P&R(DHDL)
4: (Cpath, w,Ψ)← WCET (DIR, fmax,S)
5: Ξ← (DIR,DBIT ,R,S,Θ, w,Ψ, Cpath, fmax, ϵ = 0)
6: if ΞRt ≤ CRt ∀t ∈ T and Ξw ≤ CW then
7: return (ΞDBIT

,Ξϵ)
8: else
9: Φ← ∅

10: for k = 1 to K do
11: seed← NEW_SEED()
12: (s,Ns)← RGC(Ξ, seed)
13: ϕ← LS(s,Ns)
14: Φ← Φ ∪ {ϕ}
15: end for
16: ϕ∗ ← minϵ(Φ)
17: return (ϕ∗

DBIT
, ϕ∗

ϵ)
18: end if

puts Ω, the set of resource constraints CR, the real-time constraint CW , and the number

of GRASP iterations K. First, the source code is compiled with the HLS front-end to

generate the design’s IR code DIR. Next, the exact IR code is fully synthesized to obtain

the scheduling report S, the netlist Θ, the maximum clock frequency fmax, the resources

usage report R for the target FPGA, and the design’s bitstream DBIT (lines 1-3). With

the scheduling and the maximum operating frequency at hand, the circuit’s WCET w, the

time-critical execution path Cpath, and the execution count of basic blocks Ψ are obtained

through the WCET analyzer (line 4).

After saving the exact IR code DIR and its characterization regardingR, S, Θ, w,

Ψ, Cpath, fmax, and error (ϵ = 0) as the exact design Ξ to be transformed by the GRASP

iterations (line 5), we verify if it already meets constraints, i.e., if ΞRt ≤ CRt , ∀t ∈ T ,

and Ξw ≤ CW , where ΞRt and Ξw are the exact design resource usage for resource type

t and WCET respectively (line 6). If it does, the exact bitstream ΞDBIT
and its error Ξϵ

(no error at all) are returned as the final solution (line 7). Otherwise, it is forwarded to the

GRASP heuristic to be approximated by K independent iterations (lines 10-15), executed

in parallel using K processor cores or threads. At each GRASP iteration, the exact design

is forwarded to the Randomized Greedy Construction (RGC) procedure with a unique

81

seed (lines 11-12), where a feasible design s meeting all constraints is returned, along

with a list of its neighbor designs Ns. The RGC procedure is detailed in Section 4.4.1.

Next, the feasible design s built in the RGC procedure is forwarded to the Lo-

cal Search (LS) procedure along with it’s neighborhood list Ns (line 13) to search for a

locally optimal feasible design ϕ with minimum error. The LS procedure is detailed in

Section 4.4.2. Such design is then returned and inserted into the set Φ of locally optimal

feasible designs built by each GRASP iteration (line 14). After all GRASP iterations have

finished, the design ϕ∗ ∈ Φ with minimum error, i.e, the optimal one among all GRASP

iterations, is selected as the final solution (line 16). Finally, its bitstream ϕ∗
DBIT

and error

ϕ∗
ϵ are returned as the heuristic outcomes. Note, however, that due to the complexity of the

design space in the optimization problem defined in Section 4.1.1, no global optimality

guarantee can be offered. Still, sufficient GRASP iterations can provide sufficiently good

solutions, as demonstrated in sections 6 and 7 with experimental results.

4.4.1 Randomized Greedy Construction Procedure

Algorithm 2 shows the RGC procedure pseudo-code, where the inputs are the

exact design Ξ and a random seed. First, the exact design is saved as the parent design P

to be iteratively transformed by the AC techniques available until all constraints are met.

At each iteration of the main loop (lines 2-19), a set Υ of approximate designs is built by

applying each approximation transformation γ ∈ Γ, one at a time, where Γ = PDIR
×A is

the set of all possible approximation transformations for the parent’s IR code giving the set

of AC techniques available, which may include transformations on operations (arithmetic,

logic, and memory), basic blocks, loops, and functions (lines 5-12).

After transforming the parent’s design IR code PDIR
with an AC transformation γ

and applying the standard compiler optimizations provided by the HLS compiler infras-

tructure (e.g., dead code elimination, constant propagation, and strength reduction) (lines

6-7), we estimate the resulting resources and time savings for the transformed and opti-

mized IR codeDγ , as defined by Equations (4.5) and (4.8) respectively. These estimations

are then used to calculate the relative resources and time savings (RRS and RTS), mea-

suring the savings relative to the total resources and time we still need to save to meet all

constraints at the current iteration, given the parent’s design resources usage and WCET,

as defined by Equations (4.6) and (4.9) respectively. With those metrics at hand (line 8),

we can calculate the Distance to Constrain (DTC), δ, which is a function measuring how

82

Algorithm 2 GRASP Randomized Greedy Construction Procedure
procedure RGC(Ξ, seed)
1: P ← Ξ
2: repeat
3: Υ← ∅
4: Γ← PDIR

×A
5: for all approximation transformations γ ∈ Γ do
6: Dγ ← ACTγ(PDIR

)
7: Dγ ← HLS_OPT (Dγ)
8: δ ← DTC(Dγ)
9: ϵ← Ē(Dγ,Ω)

10: λ← fit(δ, ϵ)
11: Υ← Υ ∪ (Dγ, δ, ϵ, λ)
12: end for
13: RCL← PARETOδ,ϵ(Υ)
14: (DIR, ϵ)← RANDλ(RCL, seed)
15: (DHDL,S)← HLS_BACK_END(DIR)
16: (DBIT ,Θ, fmax,R)← SY NTH_P&R(DHDL)
17: (Cpath, w,Ψ)← WCET (DIR, fmax,S)
18: P ← (DIR,DBIT ,R,S,Θ, w, Cpath,Ψ, fmax, ϵ)
19: until PRt ≤ CRt ∀t ∈ T and Pw ≤ CW

20: return (P , RCL)
end RGC

distant an approximated design is from meeting constraints and thus being feasible, as

illustrated in Figure 4.7(a) with |T | = 1 for the sake of clarity. Note, however, that the

DTC metric is an estimation used to avoid fully synthesizing all approximate candidates,

since it is obtained from the estimated values for resource and time savings. Neverthe-

less, as the DTC calculation is based on the parent’s design precise resources and WCET

metrics, estimation errors are not accumulated across the RGC iterations.

Next, the set of training inputs, Ω, is used to evaluate the design’s average er-

ror ϵ using the appropriate EM (line 9), as described in Section 4.3.3. At this point, the

design’s fitness λ towards meeting all constraints with minimum error at the current iter-

ation is evaluated according to δ and ϵ (line 10). Finally, the approximated IR code Dγ

and its characterization regarding δ, ϵ, and λ are inserted into the set Υ of approximated

designs candidates. Section 4.4.3 details how the approximate designs’ DTC and fitness

are evaluated at a given RGC iteration.

Figure 4.7(b) illustrates the DSE of approximated designs in the RGC procedure.

When all approximation transformations available at a given iteration have been evalu-

ated, we build the RCL with all Pareto-optimal approximated designs from Υ regarding

the distance to constrain δ and the error ϵ (line 13), shown in red in Figure 4.7(b). Then,

83

Figure 4.7 – DSE of approximate designs: (a) DSE at each RGC iteration and (b) DSE on
subsequent RGC iterations until a feasible design is found

DTC (�
)

Final
Design

1�� RGC
iteration

Original
Design R

el
at

iv
e

R
es

ou
rc

e
Sa

vi
ng

s

Relative Time Savings
Parent Design (�)

1

1

Feasible
Designs

Design Candidates ∀� ∈ �

Er
ro

r

DTC

Ideal Design

Design Candidates

Exact Design

RCL

2��

iteration

��ℎ

iteration

�����

��

P

Feasible
Design

(s)

Neighborhood
(Ns)

not
feasible

�

(a) (b)
Source: The author

one approximated design, along with its error, is randomly selected from the RCL using

the fitness value λ as a selection bias, i.e., designs with higher fitness are more likely to be

selected (line 14). Next, the selected IR code is fully synthesized and evaluated for WCET

(lines 15-17), and its characterization regarding the IR code (DIR), bitstream (DBIT), re-

sources (R), scheduling (S), netlist (Θ), WCET (w), time-critical execution path (Cpath),

basic blocks’ execution count (Ψ), maximum frequency (fmax), and error (ϵ) is saved as

the new parent design for the next iteration (line 18).

At this point, the new parent design feasibility is verified against the constraints

CR and CW by analyzing the resources report PR and the WCET Pw respectively (line

19). If constraints are not met (design not feasible), it is forwarded to the next iteration.

Otherwise, it is returned as the feasible design s to the main GRASP iteration, along with

the neighbors listNs, i.e., the RCL from which s was selected. An important observation

is that the actual feasibility of a given design is known only after being selected from the

RCL and fully synthesized, due to possible estimation errors in the DTC computation.

4.4.2 Local Search Procedure

Algorithm 3 shows the Local Search (LS) procedure pseudo-code, where the in-

puts are the feasible design s and its neighbors list Ns built by the RGC procedure in the

main GRASP iteration. First, the neighborhood of s is sorted in ascending order of error

to obtain the sorted list N ∗
s . Next, we search for a locally optimal feasible design with

84

Algorithm 3 GRASP Local Search Procedure
procedure LS(s, Ns)
1: N ∗

s ← SORT_ASCENDINGϵ(Ns)
2: repeat
3: (DIR, ϵ)← REMOV E_FIRST (N ∗

s)
4: if ϵ ≥ sϵ then
5: return s
6: else
7: (DHDL,S)← HLS_BE(DIR)
8: (DBIT ,Θ, fmax,R)← SY NTH_P&R(DHDL)
9: (Cpath, w,Ψ)← WCET (DIR, fmax,S)

10: L ← (DIR,DBIT ,R,S,Θ, w, Cpath,Ψ, fmax, ϵ)
11: if LRt ≤ CRt ∀t ∈ T and Lw ≤ CW then
12: return L
13: end if
14: end if
15: until N ∗

s = ∅
16: return s
end LS

lower error than s by iteratively removing the first design in N ∗
s (line 3), along with its

error, to verify the optimality and feasibility against sϵ and the constraints CR and CW

respectively. The search proceeds until the first design in N ∗
s has an equal or higher error

than the current feasible design s we already have, a feasible design L with a lower error

than s is found, or N ∗
s becomes empty (lines 2-15).

Specifically, at each iteration, we first verify if the error ϵ of the design DIR re-

moved from the sorted neighbors list N ∗
s is lower than sϵ (line 4). If it is not, the search

stops, and the current design s is returned, i.e., the input s already is the locally optimal

feasible design (line 5). Otherwise, DIR is fully synthesized and characterized to verify

its feasibility, i.e., if all constraints are met (lines 7-10). If constraints are met, the design

L, characterized by the IR code (DIR), bitstream (DBIT), resources (R), scheduling (S),

netlist (Θ), WCET (w), time-critical execution path (Cpath), basic blocks’ execution count

(Ψ), maximum frequency (fmax), and error (ϵ) is returned as the locally optimal feasible

solution (line 12). Otherwise, the search proceeds to verify the next design inN ∗
s . At this

point, if N ∗
s is empty, the search stops, and the solution s is returned.

85

4.4.3 Fitness Function

As discussed in Section 4.4.1, the fitness of each approximate design candidate

is a function of their DTC and error at a given RGC iteration. After evaluating Equa-

tions (4.6) and (4.9) as a result of approximating PDIR
with the AC transformation γ ∈ Γ

and applying the standard compiler optimizations, we calculate the DTC of design Dγ as

DTC(Dγ) =

√
(1−RTS(Dγ))2 +

∑
t∈T

(1−RRSt(Dγ))2 (4.12)

Therefore, DTC(Dγ) measures the Euclidean distance of approximated design

Dγ to meet all constraints and thus become feasible. Finally, after evaluating Equa-

tion (4.12) and the EM for each approximation step, we can rank the approximate design

candidates according to their fitness, defined as

fit(Dγ) =
1

Ē(Dγ,Ω) ·DTC(Dγ)
(4.13)

where Ē(Dγ,Ω) is the EM measured for the approximated design at a given RGC itera-

tion, averaged over the set of training inputs. Not to lose generality, we define E = f or

E = 1/f depending if the EM is a function f that should be maximized or minimized,

respectively, such as the PA and the MSE. Thus, fit(Dγ) is a measure of the cost-benefit

of approximating PDIR
with the AC transformation γ at a given RGC iteration that can be

fine-tuned according to any adequate EM for the application at hand.

4.4.4 Generality and Scalability

As detailed in the previous sections, full synthesis and WCET analysis are per-

formed for the exact design before the first RGC iteration and for the approximate design

candidate chosen from the RCL at the end of each RGC iteration, aiming to verify their

feasibility regarding the specified constraints. The designs’ full characterization obtained

with such an approach is used not just to stop the RGC iterative process if constraints are

met but also to guide the heuristic decisions in the next iteration, if necessary, by using the

actual netlist, clock period, resources usage, WCET, execution counts of basic blocks in

the time-critical path, and scheduling information of the parent design used for further ap-

proximations to avoid accumulating possible resources and time savings estimation errors

86

as new approximations are applied across iterations. Moreover, by knowing the parent’s

design resources usage and WCET, the heuristic is able to make wiser decisions when

exploring approximation options to optimize the target design metrics, choosing coarse-

grained or more fine-grained AC transformations depending on how far each constraint is

from being met. Note that there are no restrictions for the input source code, except the

ones already defined by the chosen HLS tool.

Regarding the heuristic analysis runtime for each GRASP iteration (lines 10-15

in Algorithm 1), it is dominated by the characterization of the selected approximate de-

sign in the RGC and LS procedures (lines 15-17 in Algorithm 2 and 7-9 in Algorithm

3), which depends on the full synthesis and the WCET analysis, and the Monte Carlo

simulations for evaluating the error statistics of each approximate design candidate gen-

erated by the RGC inner loop (line 5-12 in Algorithm 2). Note that the circuit size and the

number of iterations needed to meet all constraints determine the total execution time of

the RGC procedure, i.e., more stringent constraints tend to increase the heuristic runtime.

As shown in Chapter 7, however, the number of RGC iterations needed to meet all con-

straints (outer loop in lines 2-19) is usually much lower than the number of approximate

design candidates to explore (hundreds even for small circuits). Therefore, the benefits

of characterizing parent designs with full synthesis and WCET analysis can be exploited

without excessive runtime penalty, as most of the DSE runtime is spent processing the

RGC procedure inner loop.

More specifically, the execution time of the RGC inner loop (lines 5-12) is di-

rectly proportional to the number of available design entities to approximate, which tends

to grow with circuit size, times the number of approximation options for such entities

made available by the set of implemented AC techniques (line 4). Thus, the RGC inner

loop runtime is determined by |Γ| (line 5) times the evaluation time of each approxi-

mate design candidate (lines 6-10), which is heavily dominated by the Monte Carlo sim-

ulations needed for error statistics evaluation (line 9). Nevertheless, as simulations are

performed at software-level, reasonable runtimes are expected even for relatively large

datasets. Moreover, note that the characterization of each approximate design candi-

date resulting from applying each available AC transformation can be parallelized, as

the evaluation of resources savings, time savings, and error can be performed indepen-

dently. Therefore, besides executing the GRASP iterations in parallel by assigning one

processor thread for each, as discussed in Section 4.1.2, the DSE runtime of each GRASP

iteration can be drastically reduced by parallelizing the execution of the RGC procedure’s

87

inner loop as well, especially if there are enough threads available. An analysis of the

runtime and quality of results trade-off with varying GRASP iteration counts (K) will be

presented in Chapter 7.

88

5 EXPERIMENTAL SETUP

This chapter presents the experimental setup used to produce the experimental

results discussed in Chapters 6 and 7, which includes the design flow implementation and

the set of applications considered for experimental evaluation.

5.1 Design Flow Implementation

Figure 5.1 shows the proposed AHLS methodology implemented within the LegUp

HLS tool and targeting the Intel Cyclone V FPGA (SoCKit). The inputs are the design

source code in C/C++, the set of AC techniques defined in Section 4.2, i.e., V2Z, V2M,

V2P, BWR, and LP, the real-time constraint (CW), the set of resource constraints (CR)

regarding LUT’s, REG’s, and DSP’s, the number of GRASP iterations (K), and disjoint

sets of training and test inputs for error measuring. First, the exact source code is com-

piled by the LegUp’s front-end into LLVM IR (DIR). Next, the IR code is delivered to

LegUp’s back-end to generate a synthesizable Verilog code (DV) and the scheduling re-

port (S) targeting the Intel Cyclone V FPGA. The Verilog code is then fully synthesized

using the Intel Quartus 15.0 synthesis tool to obtain the circuit’s netlist (Θ), the maximum

clock frequency (fmax), and the precise number of LUTs, REGs, and DSPs required (R)

for the target FPGA.

Given the IR code, the scheduling report, and the maximum clock frequency, we

use our IPET-based WCET analyzer implemented as an LLVM analysis pass to estimate

the WCET of the exact design (w) and to provide the set of basic blocks in the worst-case

execution path (Cpath) and their execution counts (Ψ). Next, the exact design feasibility

regarding constraints is verified. If the constraints are not met, the IR code and its char-

acterization are forwarded as the parent design P to K instances of our GRASP-based

heuristic, executed independently as K threads. At the RGC iteration, the tool automati-

cally explores the set of LLVM approximation transformations available for the parent’s

design IR code, as discussed in Section 4.4.1.

The approximated design candidates are then characterized regarding the relative

resources and time savings, as presented in Sections 4.3.1 and 4.3.2. We also calculate the

error by executing the approximate designs with LLVM’s x86 back-end and the provided

set of training inputs, as described in Section 4.3.3. Then, their outputs are compared with

the golden outputs previously generated to calculate the EMs herein considered (average

89

Figure 5.1 – Experimental setup and tool flow

�
Build the RCL

(Pareto-optimal designs only)

Design
(C/C++) </>

</>
LegUp

Back-End

LegUp
Front-End

GRASP ITERATION
(K INSTANCES)

Quartus
P & R

Test Inputs
Evaluate Error
(MSE or PA)

∀� ∈ � = � × �:
Evaluate error, resources, and time savings

Exact Design

AC Techniques (LLVM Passes)
� = {V2M, V2Z, V2P, BWR, LP}

Randomly selects a design s from the RCL
with a bias selection defined by fitness

...

Approximate IR

��� RGC
iteration

��� RGC
iteration

� ← �� � ← ��

No

� ⟵ ���

��

Get � from ��
∗

such that
�(�) < �(�)Yes

Feasible Design
�

WCET
Analyzer

____________�

�

Yes

No

Locally Optimal
Feasible Design

�

Constraints: ���∀t ∈ {LUT, REG, DSP} and ��

Training
Inputs

Constraints
Met?

Constraints
Met?

RGC

LS

Constraints

Feasibility Verification
(Cyclone V)

(�, �����, �)
����

���� �

����

���

��
��

�

Select optimal design over the K instances

IR

IR

IR

Error 0110
 01001
 11011

Final
Design

Source: The author

MSE and PA). If the application hangs or crashes, we consider that the solution is not

functional, and thus it is discarded as it is not feasible. Next, the RCL is built with all

Pareto-optimal designs regarding the error and the distance to constrain, and one of them

is randomly selected with a selection bias defined by fitness, as detailed in Section 4.4.3.

The selected design (s) is forwarded to the next RGC iteration as the new parent design

only if it is not feasible yet. Therefore, this process is repeated until a functional design

meeting constraints is selected from the RCL. The feasible design is then forwarded to

the LS iteration, where it is replaced by a locally optimal feasible design, as described in

Section 4.4.2. Finally, the optimal design over the K GRASP instances is delivered as the

final solution. Specifically, our design flow returns the design’s bitstream for the target

FPGA and the average EM calculated over the test inputs (MSE or PA).

5.2 Benchmarking Applications

The results are assessed for different applications and scenarios by exploring the

available set of AC techniques both separately and in conjunction to show that (i) a

constraint-aware approach for DSE can provide significant improvements over constraint-

oblivious methodologies for scenarios where designers must meet single or multiple sys-

tem requirements and suit to the available hardware substrate, which is a typical case

90

Table 5.1 – Benchmark kernels (synthesized for Intel Cyclone V)

Kernel Resource Usage WCET
(ms)

Avg. AHLS
Running Time

(min)

RGC Iterations
(min-max)

Quality
Metric

Benchmark
Suite

LUT REG DSP

ADPCM 3478 5706 64 860 123 6-24 MSE CHStone
FIR 569 684 2 1180 49 5-23 MSE AxBench
FFT 978 782 8 470 84 5-22 MSE AxBench

SOBEL 1269 1042 0 1420 111 9-24 MSE AxBench
JPEG 24148 18078 87 2630 438 5-23 MSE CHStone
3DR 8987 12522 11 12 149 8-22 MSE na Rosetta

MOTION 8033 7948 0 290 190 5-21 MSE CHStone
DIGIT 42527 35136 1 23 75 9-24 PA Rosetta

Source: The author

for FPGA-oriented synthesis (Chapter 6), and (ii) no single AC technique can outper-

form a proper mix of techniques, and thus the benefits of a methodology allowing seam-

less integration and exploitation of AC techniques within the standard design flow are

demonstrated (Chapter 7). For those purposes, we have synthesized a set of eight ker-

nels taken from the CHStone (Hara et al., 2009) (ADPCM encoder, JPEG decoder, and

MOTION Estimation), the AxBench (Yazdanbakhsh et al., 2017) (FIR filter, FFT, and

SOBEL), and the Rosetta (ZHOU et al., 2018) (3D Rendering and DIGIT Recognition)

benchmark suites. Additionally, as discussed in greater detail in Chapter 7, we have used

K ∈ {1, 2, 4, 8, 16} to evaluate how the number of GRASP iterations may impact the

results’ quality and the heuristic running time.

Table 5.1 lists the kernels, along with the implementation results (resources and

WCET) for the exact designs, the average AHLS running time and the range of RGC

iterations considering all evaluated scenarios, and the quality metric used for each bench-

mark (PA for DIGIT and MSE for the remaining kernels). Note that the MSE measures

were normalized (8-bit outputs) to ease comparing applications with distinct output value

ranges. Each kernel was compiled with the LegUp default settings for the target FPGA,

targeting an operating frequency of 50 MHz, and fully synthesized with the Intel Quartus

15.0 for evaluating design metrics. The test data are from the ITU-T (ITU-T, 2022), the

USC-SIPI (USC-SIP, 2022), and the MNIST (DENG, 2012) databases, divided into train-

ing inputs (80%) and testing inputs (20%). The experiments were executed on an Intel

Core i5-7500 at 3.4 GHz, with 16 GB of RAM, running Ubuntu 14.04 LTS.

Observe that the ADPCM and JPEG applications use substantially more DSP

blocks than the other kernels. These applications make extensive use of multiplications in-

side loops whose iterations can be parallelized through loop unrolling optimizations, and

91

Figure 5.2 – Code excerpt from the ADPCM encoder application

Source: The author

Figure 5.3 – Code excerpt from the JPEG decoder application

Source: The author

thus the use of dedicated resources like DSPs can be explored more widely. As shown

in the code excerpt in Figure 5.2, the ADPCM encoder performs multiply-accumulate

operations inside a loop to implement the quadrature mirror filters for the input samples.

Similarly, as shown in Figure 5.3, the JPEG decoder uses many multiplications inside

loops to perform the inverse discrete cosine transform, i.e., such operations can be easily

parallelized and optimized using DSPs. As will be seen in Chapter 6, heavy use of het-

erogeneous resources makes constraint-oblivious approaches inefficient in meeting usage

constraints of specific resources, as it is not able to focus on optimizing the operations

using them.

92

6 CONSTRAINT-AWARE HEURISTIC RESULTS

This chapter presents experimental results for each benchmark defined in Table 5.1

to show that different AC techniques may provide diverse trade-offs depending on the ap-

plication at hand, the optimization targets, and the stringency of the imposed constraints.

For that purpose, each design was approximated to meet resources and WCET constraints

separately and in conjunction. Resource constraints were defined to save a fraction of

the resources used by the exact implementation to simulate varied target areas, ranging

from 10% to 40% in steps of 10%. For the sake of comparison, we have defined the

same proportional reduction for each resource type (LUTs, REGs, and DSPs). Likewise,

WCET targets were defined considering this same range of savings over the WCET of

exact designs. The objective is to evaluate the quality of the approximate designs gen-

erated by the proposed constraint-aware heuristic in terms of MSE (ADPCM, FIR, FFT,

JPEG, SOBEL, 3DR, and MOTION) and percentage accuracy (DIGIT) as more stringent

constraints are imposed, considering single-technique approaches using each of the im-

plemented AC techniques (V2M, V2P, V2Z, BWR, and V2Z) separately. The number of

GRASP instances considered for the experiments herein presented is four (K = 4). The

reasoning for choosing this value for K is detailed in Section 7.2.

The advantages of a constraint-aware design methodology are also demonstrated

by evaluating the improvements that can be achieved with the proposed heuristic, where

approximation decisions are guided by the design metrics constraints, compared to a

constraint-oblivious approach representing error-oriented methodologies concerning how

they evaluate the cost-benefit of approximations, i.e., without considering the propor-

tional costs of operations mapped to heterogeneous resources in the FPGA fabric and

how close the approximate design candidates are from meeting the design objectives, as

discussed in Section 3.3 for AHLS methodologies proposed so far. Figures 6.1 to 6.8

shows the results for each application considering different scenarios regarding the AC

technique employed, the target optimizations (AREA, WCET, or BOTH), and the heuris-

tic (constraint-aware or constraint-oblivious). The results regarding using different AC

techniques for different target constraints and applications and the impact of constraint

awareness are discussed in detail in Sections 6.1 and 6.2 respectively. Section 6.3 closes

this chapter with a summary of the discussed results.

93

Figure 6.1 – Constraint-aware heuristic results for the ADPCM benchmark

BWR LP

V2M V2P V2Z

HEURISTIC

Constraint-Aware

Constraint-Oblivious

METRIC

AREA

WCET

BOTH

10 20 30 40 10 20 30 40

10 20 30 40

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

Savings (%)

M
S

E

Source: The author

6.1 Techniques Performance for Different Constraints and Applications

Figures 6.1 to 6.8 show that, for each target constraint considered for optimiza-

tion, there is a significant variation in error measures for both heuristics depending on the

application and the AC technique employed. Analyzing the constraint-aware approach,

the ADPCM application evaluated in Figure 6.1, for example, presents a better response

in general with the V2M technique for area and WCET savings of up to 30%, showing

a smooth quality degradation with reasonable MSE values ranging from 120 to 465. For

savings of 40%, error figures increase significantly, and the V2P technique becomes a bet-

ter choice. Still, the resulting MSE of 1222 is beyond what would be considered reason-

able for an application with 8-bit outputs (Lee; Gerstlauer, 2017; CASTRO-GODíNEZ et

al., 2020b). Such a result is expected, as stringent constraints steer the heuristic to select

approximate candidates with higher relative costs that often produce more errors. This

behavior depends not just on the application being approximated but also on the approx-

imation technique employed. Although the V2M technique seems to be the best choice

in a scenario of area savings of up to 30%, the BWR technique stands out for savings of

10% and 20%, mainly because it offers more fine-grained approximations that are ade-

quate for less comprehensive optimizations. However, the need for more iterations for

higher savings jeopardizes the gains achieved with BWR. An interesting observation is

94

Figure 6.2 – Constraint-aware heuristic results for the FIR benchmark

BWR LP

V2M V2P V2Z

HEURISTIC

Constraint-Aware

Constraint-Oblivious

METRIC

AREA

WCET

BOTH

10 20 30 40 10 20 30 40

10 20 30 40

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Savings (%)

M
S

E

Source: The author

that the LP technique is very inefficient for area savings, showing high and almost steady

error figures for all constraint scenarios. The reason is that eliminating loop iterations is

unlikely to provide area savings, except if loops are entirely eliminated as a result of suc-

cessive perforations, i.e., the LP technique cannot reduce area in smaller steps. A similar

situation can be observed with the V2Z and V2P techniques to a minor degree, i.e., they

produce higher quality degradation for savings of up to 30% if compared to the V2M and

BWR techniques.

Regarding WCET savings, the quality degradation for the ADPCM benchmark

presents a similar trend. However, although V2M is still a good option, especially for

savings of 10%, with an MSE of 102, the LP technique becomes the best choice for

savings between 20% and 40%, with MSE values of 268, 406, and 1046 respectively, as

it can offer fine-grained timing optimizations. In such a scenario, the BWR technique is

the one that becomes inefficient, as it reduces the cost of operations without eliminating

them. Thus the number of control steps is hardly affected. When both area and resource

savings are considered, it is clear that BWR and LP techniques are not good options to be

considered in isolation. In these cases, the best technique for savings of up to 30% is the

V2M, with an MSE ranging from 150 to 668, while the V2P is best for savings of 40%, but

with an unacceptable MSE of 1640. As expected, even though the best AC technique may

change when area and WCET savings are sought concurrently, such constraints produce

95

Figure 6.3 – Constraint-aware heuristic results for the FFT benchmark

BWR LP

V2M V2P V2Z

HEURISTIC

Constraint-Aware

Constraint-Oblivious

METRIC

AREA

WCET

BOTH

10 20 30 40 10 20 30 40

10 20 30 40

0

500

1000

1500

2000

2500

3000

3500

0

500

1000

1500

2000

2500

3000

3500

Savings (%)

M
S

E

Source: the author.

higher MSE figures for all scenarios.

The results produced with the BWR and LP techniques for the ADPCM bench-

mark are representative across all remaining applications. Unlike other techniques that

can optimize both area and WCET, these techniques are reasonable choices to optimize

specific design metrics, but still to a limited extent depending on the application at hand.

Thus they must be used carefully not to degrade the quality of results. For example, the

results presented in Figures 6.2, 6.3, and 6.7 for the FIR, FFT, and MOTION benchmarks

show that BWR is the best option only for area savings of 10%, with MSE values of 246,

156, and 86 respectively. In contrast, for the SOBEL and DIGIT benchmarks presented in

Figures 6.4 and 6.8, the BWR technique is the best option for area savings up to 30%, with

MSE and accuracy measures ranging from 186 and 91.8% to 479 and 80.6% respectively.

Note that the exact design for DIGIT offers an accuracy of 94.2%, i.e., BWR can provide

significant area reductions without reducing the percentage accuracy to unacceptable fig-

ures. Regarding the 3DR and JPEG benchmarks presented in Figures 6.5 and 6.6, BWR

is able to produce lower MSE values of 65 and 81 for area savings of 10%, and 158 and

177 for area savings of 20% respectively.

Conversely, the trade-offs offered by the LP technique are steadier across applica-

tions when constraining the WCET only. It stands out for savings of up 20% for FIR, with

MSE values of 320 for 10% and 544 for 20%, up to 30% for FFT, SOBEL, and MOTION,

96

Figure 6.4 – Constraint-aware heuristic results for the SOBEL benchmark

BWR LP

V2M V2P V2Z

HEURISTIC

Constraint-Aware

Constraint-Oblivious

METRIC

AREA

WCET

BOTH

10 20 30 40 10 20 30 40

10 20 30 40

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

Savings (%)

M
S

E

Source: The author

with MSE values ranging from 86 to 577, and in all scenarios for JPEG, 3DR, and DIGIT,

with MSE values ranging from 69 and 58 to 891 and 997 for JPEG and 3DR respectively,

and accuracy ranging from about 92.2% to 70.3% for DIGIT.

Analyzing the trade-offs offered by the V2M, V2P, and V2Z techniques, each of

them may be a good choice for any combination of area and WCET constraints, as such

techniques are commonly used to optimize area and performance. Nevertheless, as shown

by the experiments, there are significant differences among applications. For example, the

most aggressive technique, V2Z, is a reasonable choice only for higher savings of 40%,

especially for the FIR benchmark, where it is the best option for area, WCET, or both

constraints, with MSE values of 1005, 1244, and 1646 respectively. On the other hand,

V2Z is never the best option for ADPCM and FFT. Except for JPEG, where V2Z is the

best technique for 40% of area and both area and WCET savings, with MSE values of 831

and 1306 respectively, for the remaining applications it is the best option only for 40%

of both area and WCET savings. Still, with MSE figures ranging from 1080 (SOBEL)

to 1745 (MOTION) and an accuracy of about 66% for DIGIT, this technique is hardly a

good choice for a single-technique methodology intended to be a general solution, as its

worth only appears when stringent constraints are applied.

As for the V2M and V2P techniques, they are intermediate alternatives that present

similar results for SOBEL, 3DR, MOTION, and DIGIT, especially for savings up to 30%.

97

Figure 6.5 – Constraint-aware heuristic results for the 3DR benchmark

BWR LP

V2M V2P V2Z

HEURISTIC

Constraint-Aware

Constraint-Oblivious

METRIC

AREA

WCET

BOTH

10 20 30 40 10 20 30 40

10 20 30 40

0

500

1000

1500

2000

2500

3000

3500

0

500

1000

1500

2000

2500

3000

3500

Savings (%)

M
S

E

Source: The author

Specifically, V2M stands out when both area and WCET savings of 10% and 20% are

sought. It is the best option in these scenarios for ADPCM, FFT, SOBEL, 3DR, MOTION,

and DIGIT, with MSE values ranging from 82 (JPEG) to 223 (SOBEL) and from 262

(3DR) to 496 (MOTION) for savings of 10% and 20% respectively. The accuracy for

DIGIT is about 90.2% and 82.6% for these same savings, showing that V2M can provide

good trade-offs for a wide range of applications. As a general trend, the V2P technique

provides better results than V2M when more stringent constraints of 30% and 40% are

applied. It is the best option, for example, when both area and WCET constraints are set

to 30% for FFT, SOBEL, JPEG, 3DR, and MOTION, with MSE figures ranging from 505

(JPEG) to 848 (MOTION). Note that, although V2M and V2P provided similar results for

many scenarios, there are cases where the differences are significant, as for JPEG, where

the V2P technique is a better option in general.

6.2 Impact of Constraint Awareness

The constraint-oblivious approach is evaluated by using the same GRASP-based

heuristic described in Section 4.4, but with a modified version of the fitness function

defined by Equation (4.13). More specifically, in the constraint oblivious approach, the

98

Figure 6.6 – Constraint-aware heuristic results for the JPEG benchmark

BWR LP

V2M V2P V2Z

HEURISTIC

Constraint-Aware

Constraint-Oblivious

METRIC

AREA

WCET

BOTH

10 20 30 40 10 20 30 40

10 20 30 40

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Savings (%)

M
S

E

Source: The author

fitness of each approximate design candidate Dγ generated by applying an AC transfor-

mation γ ∈ Γ is calculated as

fitobl(Dγ) =
α ·

∑
t∈T RSt(Dγ) + β · TS(Dγ)

Ē(Dγ,Ω)
(6.1)

where RSt(Dγ) and TS(Dγ) are the resource and time savings defined by Equations (4.5)

and (4.8), respectively, and Ē(Dγ,Ω) is the average error calculated over the set Ω of

training inputs. For the DIGIT benchmark, we take the inverse of the error function, as it

calculates the percentage accuracy, which should be maximized. The parameters α and β

are set according to the target savings. For resource savings only, α = 1 and β = 0, while

for WCET savings only we have α = 0 and β = 1. When both resource and WCET sav-

ings are sought, α = β = 1. Although design constraints are disregarded for evaluating

approximate design candidates at each RCG iteration, the constraint-oblivious heuristic

still verifies if the aimed resource and time savings are met as part of the feasibility ver-

ification performed by the RGC and LS procedures and also allows a direct comparison

between the resulting error of both approaches for the same optimization thresholds.

Note that the changes made in the proposed methodology are restricted to how the

approximate design candidates are evaluated, i.e., the improvements achieved with the

constraint-aware heuristic are isolated from other variables that may affect the comparison

99

Figure 6.7 – Constraint-aware heuristic results for the MOTION benchmark

BWR LP

V2M V2P V2Z

HEURISTIC

Constraint-Aware

Constraint-Oblivious

METRIC

AREA

WCET

BOTH

10 20 30 40 10 20 30 40

10 20 30 40

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Savings (%)

M
S

E

Source: The author

fairness. Therefore, although the constraint-oblivious AHLS methodologies found in the

literature and discussed in Section 3.2, such as the ones proposed by Nepal et al. (2014),

Xu and Schafer (2017), Lee and Gerstlauer (2017), Nepal et al. (2019), Castro-Godínez

et al. (2020b), use different heuristics, tools, and benchmarks to evaluate area and per-

formance optimizations, the results herein presented are representative to demonstrate the

benefits of a constraint-aware approach, as the fitness function defined in Equation (6.1)

reflects the methods used in such works to characterize approximate design candidates.

Analyzing the results shown in Figures 6.1 to 6.8, it can be observed that the

constraint-oblivious results, indicated by dashed lines, always display higher error when

compared to their resource-aware counterparts, indicated by continuous lines. The bene-

fits of the former over the latter are significant, decreasing the MSE and increasing the ac-

curacy in all scenarios, ranging from 9.54% (10% of WCET savings for 3DR) to 52.23%

(40% of both area and WCET savings for JPEG), with an average of 29%, and from 1.65%

to 20.28% (10% and 40% of WCET and both area and WCET savings respectively for

DIGIT), with an average of 10.87%. Note that, for DIGIT, the accuracy improvements

are expressed in absolute values. Moreover, the differences tend to grow as more strin-

gent constraints are applied when considering each constraint scenario separately (AREA,

WCET, or BOTH). For example, the SOBEL benchmark showed MSE reductions ranging

from 22.81% to 31.93% for area savings only, from 13.28% to 24.40% for WCET sav-

100

Figure 6.8 – Constraint-aware heuristic results for the DIGIT benchmark

BWR LP

V2M V2P V2Z

HEURISTIC

Constraint-Aware

Constraint-Oblivious

METRIC

AREA

WCET

BOTH

0 10 20 30 40 0 10 20 30 40

0 10 20 30 40

40
45
50
55
60
65
70
75
80
85
90
95

40
45
50
55
60
65
70
75
80
85
90
95

Savings (%)

P
er

ce
nt

ag
e

A
cc

ur
ac

y

Source: The author

ings only, and from 25.36% to 33% for both savings. With some variations, this pattern

is observed for all evaluated applications.

Another important observation is that the differences are more significant when

area savings are sought. The reason is that there is more than one constraint involved

for area (LUTs, REGs, and DSPs), which allows the constraint-aware heuristic to focus

on approximation choices according to the proportional costs of each operation on the

target FPGA regarding the available resources. As the constraint-oblivious approach is

not guided towards the resource types that still need savings according to the specified

constraints, the RGC phase of the GRASP-based heuristic typically needs more iterations

until all constraints are met. In contrast, there is just one constraint for timing, and thus

the improvements achieved with a constraint-aware heuristic tend to be less aggressive.

Nevertheless, as the constraint-oblivious approach is not steered to select approximate de-

sign candidates with adequate trade-offs according to the time that still needs to be saved

at each RGC iteration, it typically performs more approximations than necessary, increas-

ing the error.

101

6.3 Summary of Results

Table 6.1 summarizes the main results herein presented, i.e., the best AC technique

(ACT), the resulting MSE or percentage accuracy, and the improvement of the constraint-

aware heuristic over the constraint-oblivious approach for all constraint scenarios. As can

be observed, the fine-grained techniques BWR and LP tend to provide better results when

exploited for optimizing specific design metrics. When resources must be saved, for ex-

ample, BWR can smooth the quality degradation, especially for less stringent constraints

of up to 20%, by enabling smaller approximation steps, i.e., the heuristic can make better

decisions when evaluating operations for fitness due to a broader design space. Beyond

that threshold, the more aggressive techniques V2M, V2P, and V2Z become better options

depending on the considered application. Conversely, for WCET savings, LP is clearly

the best option. It provides the best results in most cases, even when considering more

stringent constraints of up to 30% or even 40% for some applications. However, when

both resource and WCET savings are specified, the BWR and LP techniques become the

worst choices, as such techniques are very inefficient for WCET and resource savings,

respectively. The V2M, V2P, and V2Z techniques become better options in these cases,

where V2M and V2P provide better results for constraints of up to 30%, while V2Z is a

good option for stringent constraints of 40%.

Regarding the comparison between the constraint-aware and the constraint-oblivious

approaches, the former always provides the best results, with an average improvement of

about 29%, ranging from 9.54% to 52.23% across all applications and constraint sce-

narios. Moreover, for all applications, such an approach leads to greater improvements

when more constraints are involved. For area savings, which comprises three different

constraints (LUTs, REGs, and DSPs), and both area and WCET savings, it was able to

reduce the MSE, on average, by about 33.6% and 35.8%, respectively. As can be ob-

served, in these scenarios the constraint-aware approach was especially beneficial for the

ADPCM and JPEG applications, with average MSE reductions of 45.65% and 48.48%,

respectively. In contrast, for only WCET savings, an average reduction of 18% was ob-

served, which still is a notable improvement as other design metrics are not jeopardized.

The conclusion from the obtained results is that the best AC technique varies ac-

cording to the target application, the target optimization, and the constraints stringency.

Therefore, a general methodology to explore the design space of approximate designs

should be aware of the specific optimizations sought by designers by allowing the speci-

102

Table 6.1 – Summary of results for the constraint-aware GRASP-based heuristic

Design Metrics Constraints
AREA Savings (%) WCET Savings (%) AREA and WCET Savings (%)Benchmark Result

10 20 30 40 10 20 30 40 10 20 30 40

Best ACT BWR BWR V2M V2P V2M LP LP LP V2M V2M V2M V2P
MSE 125 247 465 1222 102 268 406 1046 150 366 668 1640ADPCM

Improv. (%) 41.28 44.90 45.09 47.01 14.63 17.73 17.96 21.27 43.74 46.62 47.95 48.59

Best ACT BWR V2M V2M V2Z LP LP V2P V2Z V2P V2M V2M V2Z
MSE 246 485 791 1005 320 544 865 1244 443 787 1261 1646FIR

Improv. (%) 21.97 25.57 29.61 32.67 15.40 14.32 20.41 20.86 23.69 29.88 31.95 34.74

Best ACT BWR V2M V2P V2P LP LP LP V2P V2M V2M V2P V2P
MSE 156 328 549 764 132 295 466 725 222 475 782 1054FFT

Improv. (%) 27.85 28.17 32.87 34.87 13.74 17.22 19.01 23.14 27.88 29.21 34.32 36.61

Best ACT BWR BWR BWR V2M LP LP LP V2M V2M V2M V2P V2Z
MSE 186 289 479 720 186 272 451 720 223 425 704 1080SOBEL

Improv. (%) 22.81 26.71 28.83 31.93 13.28 19.16 19.97 24.40 25.36 27.15 30.81 33.00

Best ACT BWR BWR V2P V2Z LP LP LP LP V2M V2P V2P V2Z
MSE 65 158 345 831 69 180 321 891 82 259 505 1306JPEG

Improv. (%) 45.02 45.73 48.85 49.30 14.32 12.13 20.85 23.24 46.74 48.97 50.99 52.23

Best ACT BWR BWR V2M V2P LP LP LP LP V2M V2M V2P V2Z
MSE 81 177 454 1046 58 170 282 997 93 262 596 15443DR

Improv. (%) 28.14 31.89 30.75 33.29 9.54 18.17 18.79 23.17 30.84 33.57 35.48 35.98

Best ACT BWR V2M V2M V2M LP LP LP V2M V2M V2M V2P V2Z
MSE 86 317 541 1190 86 338 577 1110 103 496 848 1745MOTION

Improv. (%) 22.61 24.48 27.41 31.49 12.88 16.55 21.38 21.61 25.12 28.19 30.47 33.09

Best ACT BWR BWR BWR V2M LP LP LP LP V2M V2M V2M V2Z
Accuracy (%) 91.80 86.10 80.60 71.70 92.21 85.41 82.54 70.29 90.24 82.63 77.98 66.04DIGIT

Improv. 7.88 9.79 10.79 11.69 1.65 3.80 6.39 6.71 13.72 17.49 20.23 20.28

Source: The author

fication of multiple design constraints. Such a conclusion is supported by the substantial

gains achieved with the constraint-aware approach over the constraint-oblivious one. Al-

though improvements may vary across applications, as shown in Table 6.1, the constraint-

aware approach is the best option for any evaluated scenario, with increasing gains as

more design metrics are considered and more stringent are the target constraints, showing

that such an approach is a promising option to optimize results, especially when opti-

mizations in multiple design metrics are required. Moreover, as the best technique for

different scenarios varies greatly, a general-purpose AHLS methodology should also be

able to explore multiple techniques in an automated way to relieve designers from the

task of choosing the best technique for each application and design objective, which is a

complex and error-prone decision that depends on multiple factors.

103

7 MULTI-TECHNIQUE HEURISTIC RESULTS

This chapter shows the experimental results for each application defined in Ta-

ble 5.1 (ADPCM, FIR, FFT, SOBEL, JPEG, 3DR, MOTION, and DIGIT) regarding a

comparison between our constraint-aware multi-technique approach and the best single

technique, as discussed in Chapter 6, for different combinations of resources and WCET

constraints. Note that the constraint-oblivious approach discussed in Section 6.2 is not

considered for comparison in this chapter, as it displayed worst results for all scenarios.

We used the same experimental setup for the experiments presented in Chapter 6, i.e.,

each design was approximated to save a fraction of the resources used by the exact im-

plementation to simulate varied target areas, ranging from 10% to 40% in steps of 10%,

with the same proportional reduction for each resource type (LUTs, REGs, and DSPs).

Likewise, WCET targets were defined considering this same range of savings over the

WCET of exact designs. However, in this chapter we consider a broader scenario, with

both area and WCET constraints used for disproportional savings as well. The objective

is to evaluate the quality of the approximate designs generated by our heuristic as more

stringent constraints are imposed and to verify the advantages of using a constraint-aware

composition of different AC techniques over a single-technique approach. The results re-

garding the multi-technique heuristic, the error and runtime variation for different values

of K (number of GRASP instances), and the contribution of each individual technique

for achieving the obtained results are discussed in Sections 7.1, 7.2, and 7.3 respectively.

Section 7.4 closes this chapter with a summary of the discussed results.

7.1 Comparing the Single-Technique and Multi-Technique Approaches

Figure 7.1 shows the improvements achieved with the multi-technique approach

for each application, where the AC techniques made available (BWR, LP, V2M, V2P, and

V2Z) are exploited in conjunction, over the single-technique approach that provided the

best result, as presented in Table 6.1. The error measures in Figure 7.1 are proportional

to the circles’ radius. The circles filled in green (MSE) and grey (PA) represent the pro-

posed multi-technique approach (ALL), with which the heuristic can choose any available

AC transformation across the GRASP RGC iterations, as discussed in Section 4.4.1. In

contrast, the empty circles with circumferences in varied colors represent the single AC

technique (BWR, LP, V2M, V2P, or V2Z) that provided the best result for each combina-

104

Figure 7.1 – Comparison between the multi-technique and the best single-technique approaches

-28% -25% -19%
-14%

-24% -21% -16% -12% -17%

-27% -25% -23% -19% -10%

-18% -15% -14% -15% -10%

-22% -20% -19% -23% -14%

-19% -26% -13% -12%

-21% -28% -16% -20% -11%

-27% -15% -12% -19% -11%

-22% -17% -10% -11% -24%

-23% -19% -20% -14% -8%

-20% -22% -19% -13%

-26% -17% -25% -29% -16%

-23% -12% -10% -14% -17%

-25% -21% -22% -20% -10%

-13% -15% -11% -6% -9%

-21% -16% -13% -19%

-24% -21% -18% -19% -10%

-21% -18% -14% -20% -14%

-22% -22% -12% -15% -10%

-29% -25% -19% -14% -8%

-24% -23% -12% -20%

-22% -20% -16% -30% -17%

-21% -28% -22% -15% -13%

-25% -8% -12% -14% -21%

-22% -16% -13% -11% -13%

+2.1% +3.1% +3.7% +4%

+1.9% +2% +2.5% +2.5% +5.3%

+3.6% +3.2% +2.6% +4.1% +4.6%

+3.1% +2.9% +2% +3.3% +3.1%

+6.5% +6.3% +4.2% +3.3% +4.8%

-26% -17% -12% -15%

-29% -23% -14% -19% -11%

-21% -17% -13% -16% -12%

-23% -21% -15% -15% -21%

-19% -14% -18% -11% -9%

-26% -21% -17% -17%

-23% -20% -18% -28% -11%

-22% -20% -15% -12% -10%

-24% -21% -16% -19% -5%

-15% -16% -13% -18% -10%

MOTION DIGIT

SOBEL JPEG 3DR

ADPCM FIR FFT

MSE
 250
 500

 750

 1000

 1250

 1500

PA

 70

 80

 90

ACT

 ALL

 ALL

 BWR

 LP

 V2M

 V2P

 V2Z

0 10 20 30 40 0 10 20 30

Resource Savings (%)
40

0 10 20 30 40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

W
C

E
T

 S
av

in
gs

 (
%

)

Source: The author

Figure 7.2 – Error variation for each application considering all constraint scenarios
ADPCM FIR FFT SOBEL JPEG 3DR MOTION

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

M
S

E

DIGIT

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

APPROACH Single-Technique Multi-Technique

Source: The author

105

tion of constraints, i.e., with a heuristic that uses a single technique for all RGC iterations.

Additionally, the percentage gain (relative for MSE and absolute for PA) of the multi-

technique approach over the best single technique is highlighted next to the circles.

The results presented in Figure 7.1 indicate sensible reductions in MSE, rang-

ing from 5% for the 3DR application with resource and WCET constraints of 40% and

30%, respectively, to 30% for the JPEG application with resource and WCET constraints

of 30% and 20% respectively. Regarding the DIGIT benchmark, the absolute gains in

accuracy varies from 1.9% to 6.5% for WCET savings of 10% and 40% respectively.

Moreover, note that the multi-technique approach outperforms single techniques for all

scenarios. Still, there is a slight tendency of higher improvements where BWR and LP of-

fer the best single-technique results. Although such techniques may provide good results

when resource and WCET savings are sought separately, as demonstrated in Section 6.1,

they seem to work better when combined with other techniques, with improvements rang-

ing from 21% to 29% for LP and 19% to 28% for BWR. Figure 7.2 provides a more

comprehensive view of the attained improvements with the multi-technique approach for

each application by showing the MSE and accuracy variations across all evaluated con-

straint scenarios. As can be observed, the decrease in average MSE (red dots) ranges from

17.13% (FFT) to 18.75% (ADPCM), with an average of about 17.7%. As for DIGIT, there

is an absolute increase of 3.5% in average accuracy.

7.2 Heuristic Running Time and Error Variation for Different Values of K

The results shown in Figures 7.1 and 7.2 were obtained with K = 4, i.e., we

used four processor threads to execute four GRASP instance in parallel. Nevertheless,

experiments were run for different values of K to show how the heuristic running time

and results may vary according to the number of performed GRASP iterations. Recall

from Section 4.4 that our GRASP-based heuristic selects the best feasible design (meets

constraints with minimum error) among all locally optimal feasible designs generated by

each GRASP iteration, i.e., the more iterations are used, the more likely the heuristic is to

converge to the globally optimal solution, considering the design space provided by the

available AC transformations. However, depending on the level of parallelism allowed

by the available setup, the drawback is increasing the design flow running time without

guaranteeing improved results.

Figure 7.3 shows the MSE and running time results over all applications (ex-

106

Figure 7.3 – Error and running time variation over all scenarios for different values of K

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

1 2 4 8 16

K

M
S

E

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200

1 2 4 8 16

K
D

es
in

g
F

lo
w

 R
un

ti
m

e
(m

in
)

Source: The author

cept DIGIT, which uses a different error metric) and constraint combinations for K ∈

{1, 2, 4, 8, 16}. As can be seen, there are respective reductions of about 15%, 22%, 24%,

and 25% in average MSE (red dots) for K = 2 to K = 16 when compared to using a

single instance (K = 1). Conversely, the average design flow running time increased by

7%, 18%, 242%, and 450%, respectively. Therefore, K = 4 is a reasonable choice, as the

small reductions in MSE for K = 8 and K = 16, relative to K = 4, do not justify the

substantial running time increase, especially for large designs. The almost steady running

time for K ≤ 4 was expected, as our experimental setup uses a quad-core processor with

four threads. Nevertheless, designers with more cores or threads available are likely to

slightly improve results while managing similar running times by defining greater values

for K. However, at least for the set of applications and AC techniques herein considered,

there is little room for error minimization with K > 4.

7.3 Techniques Contribution for Different Constraints and Applications

Figure 7.4 presents which AC techniques were chosen across the RGC iterations,

showing that a heuristic able to select an appropriate combination of techniques is cru-

cial to optimize results. In Figure 7.4, we consider resources and WCET constraints in

isolation and simultaneously (same proportional savings) to highlight that the techniques

chosen highly depend on the constraints. The BWR technique, for example, is only con-

sidered when resource savings are involved, especially if less stringent constraints of 10%

and 20% are imposed, and the primary goal is reducing area, where BWR is selected for

107

Figure 7.4 – Contribution of each AC technique over the total number of RGC iterations

ADPCM FIR FFT SOBEL JPEG 3DR MOTION DIGIT

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
0
2
4
6
8

10
12
14
16
18
20
22
24

Resource Savings (%)

ADPCM FIR FFT SOBEL JPEG 3DR MOTION DIGIT

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
0
2
4
6
8

10
12
14
16
18
20
22
24

WCET Savings (%)

It
er

at
io

ns

ADPCM FIR FFT SOBEL JPEG 3DR MOTION DIGIT

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
0
2
4
6
8

10
12
14
16
18
20
22
24

Resource and WCET Savings (%)

ACT BWR LP V2M V2P V2Z

Source: The author

108

most iterations. In such scenarios, fine-grained AC techniques may help reach the design

goals with lower error through more focused transformations. Regardless of the appli-

cation, if more stringent constraints of 30% or 40% are specified, BWR is no longer the

most chosen technique, even though it is still used. In contrast, the LP technique is never

chosen for resource savings, as it mainly impacts execution times. However, if WCET re-

ductions are the primary goal, the LP technique dominates in most scenarios, while BWR

is no longer selected. Moreover, note that the LP technique usage seems more regular for

different WCET savings than BWR for different resource savings.

If both resource and WCET reductions are needed, the heuristic automatically

balances using a varied combination of techniques. As more stringent constraints are im-

posed for all applications, more aggressive techniques like V2M, V2P, and V2Z come into

play, with V2Z being used more extensively only for savings of 30% or 40% for most ap-

plications. Although such techniques may introduce more errors, their usage may produce

more comprehensive optimizations within a single iteration, thus reducing the distance to

constraint more quickly as the RGC phase converges to provide a feasible design. As a

result, the number of iterations needed to meet constraints does not necessarily increase

proportionally to the resources or WCET to save, varying from 4 iterations for FIR with

10% of resources savings to 24 iterations for ADPCM, SOBEL, JPEG, and DIGIT with

40% of resources and WCET savings. Moreover, the most used technique for each sce-

nario matches the best single technique presented in Figure 7.1. However, it should be

noted that a different mix of techniques was used for each scenario across all heuristic it-

erations, indicating that no single approximation technique dominates the design solution.

Therefore, combining multiple techniques applied over different applications contributes

to broader the design space with improved design choices.

7.4 Summary of Results

The results presented in this chapter demonstrate that, besides adopting a constraint-

aware methodology to steer the DSE towards meeting specific target optimizations, as

shown in Chapter 6, an automated exploration of multiple techniques may provide even

more improvements. As different AC techniques provide different gains depending on

the constraints stringency for each design metric sought for optimization, the employed

heuristics should be able to focus on exploiting the best combination of AC techniques

for each specific scenario on a per-application basis. Although designers can manage the

109

design space by defining the AC techniques to be exploited, it becomes clear that just se-

lecting the best technique or using AHLS tools that implement such techniques for a given

scenario is not enough to optimize results. In that direction, providing a systematic way

for seamlessly integrating new techniques into the standard AHLS flow is crucial to offer

an automated exploration of unique trade-offs for the target constraints and applications.

On average, the multi-technique approach attained an MSE reduction of 17.7%, varying

from 5% to 30%, and an absolute increase in accuracy of 3.5%, from 1.9% to 6.5%.

Figure 7.5 summarizes the results obtained for each application and target con-

straint by comparing the constraint-oblivious and constraint-aware heuristics, consider-

ing the best single-technique for each scenario, and the constraint-aware multi-technique

methodology presented in this chapter. On average, reductions of 29% in MSE, ranging

from 9.54% to 52.23% depending on the target application and constraint, were obtained

with the single-technique constraint-aware approach compared to the constraint-oblivious

one. For the DIGIT application, an absolute increase in accuracy ranging from 1.65% to

20.28% is achieved, with an average of 10.87%. When comparing the single-technique

constraint-aware approach with the multi-technique one, average decreases of 17.7% in

MSE were achieved, varying from 5% to 30%, while an absolute increase between 1.9%

and 6.5% was attained for DIGIT, with an average of 3.5%. Finally, when adopting the

constraint-aware multi-technique approach over the constraint-oblivious single-technique

one, reductions of about 43% on average can be attained in MSE, ranging from 30% to

60%. As for DIGIT, an absolute increase in accuracy ranging from 3.52% to 25.03%

is achieved, with an average of 14.26%. Note this is the compound effect of constraint

awareness and the joint use of multiple techniques. As a general trend, more significant

improvements can be observed as more stringent constraints are imposed.

Moreover, as discussed in Chapter 6, greater improvements are displayed when

resource savings are involved, especially for the ADPCM and JPEG applications, where

average reductions of about 50% were obtained. These two applications are notably

different from the others for using many more DSPs, as shown in Table 5.1. As the

constraint-oblivious approach is not able to focus on the operation types that use spe-

cific resources that still need to be saved, such as DSPs, it typically approximates more

operations until all resource constraints are met, i.e., even though the constraint-aware

approach considerably reduces the error metrics in all scenarios, it is especially suitable

for designs with heavier use of heterogeneous resources. Therefore, as demonstrated

by experiments, a constraint-aware AHLS design methodology able to automatically ex-

110

Figure 7.5 – Summary of results for constraint-oblivious, constraint-aware, and multi-technique
design methodologies

ADPCM FIR FFT SOBEL JPEG 3DR MOTION

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200

Resource Savings (%)

DIGIT

10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

ADPCM FIR FFT SOBEL JPEG 3DR MOTION

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200

WCET Savings (%)

M
S

E

DIGIT

10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

ADPCM FIR FFT SOBEL JPEG 3DR MOTION

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200

Resource and WCET Savings (%)

DIGIT

10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

HEURISTIC Constraint-Oblivious Constraint-Aware Multi-Technique

Source: The author

111

Figure 7.6 – AHLS running time for different applications, constraints, and target design metrics

FIR FFT SOBEL ADPCM MOTION 3DR JPEG DIGIT

0

50

100

150

200

250

300

350

400

450

500

550

D
es

ig
n

F
lo

w
 R

un
ni

ng
 T

im
e

(m
in

)
SAVINGS (%) 10 20 30 40 METRIC AREA WCET BOTH

Source: The author

plore multiple AC techniques is a promising option to optimize approximate hardware

synthesized from high-level design specifications, especially when dealing with multiple

optimization targets.

Regarding the scalability of the proposed methodology, Figure 7.6 shows the

AHLS running time for each application, considering area, WCET, and both design met-

rics for savings ranging from 10% to 40%. Note that the deployed heuristic scales very

well concerning the constraint stringency for all applications and design metrics, mainly

because it is able to apply more aggressive approximations when more savings are needed.

Consequently, the number of RGC iterations to meet all constraints does not necessarily

increase proportionally to the constraint stringency, as discussed in Section 7.3. The Pear-

son correlation coefficient between the size of each application and the average AHLS

running time, as detailed in Table 5.1, is 0.28, i.e., even though the correlation is positive,

the relationship is weak. On the other hand, if we consider only the applications’ average

execution time, the correlation coefficient is 0.68, i.e., there is a tendency for high execu-

tion times going with high AHLS running times. Note that the average execution time of

each application is calculated by executing the binary code generated with the LLVM’s

x86 backend for all provided input vectors. This result shows that the time needed to eval-

uate the error measure for each approximate design candidate, which was done through

Monte Carlo simulations, has more impact on the heuristic running time than the number

112

of design candidates to evaluate, which increases with circuit size.

Nevertheless, as discussed in Section 4.4.4, the heuristic’s scalability is better ex-

plained by considering both the circuit size and the average execution time of each appli-

cation. In that case, the correlation coefficient is 0.94, showing that the heuristic running

time scales with the product between the circuit’s size and average execution time. For

example, even though the DIGIT application is the largest one, its average execution time

is also the lowest among all considered applications. As a result, the heuristic running

time for DIGIT is relatively low. On the other hand, the JPEG application has the higher

AHLS running times precisely because it is not just the second largest design but also by

far the slowest one.

113

8 CONCLUSION

This thesis proposed that a multi-technique AHLS methodology able to automat-

ically explore multiple approximation techniques to meet different design constraints,

separately or simultaneously, with minimum error, would provide better results than un-

constrained or error-constrained methodologies. More specifically, by prioritizing ap-

proximations with better trade-offs in terms of the estimated distance to constraints and

introduced error at each iteration, the proposed GRASP-based heuristic exploits the com-

bined effects of diverse approximation techniques towards meeting multiple constraints,

focusing on minimizing error metrics instead of adhering to a user-provided error thresh-

old, which typically results in sub-optimal designs and many attempts to attain the desired

trade-offs for each application at hand.

In that direction, the effectiveness of using software-level approximations to gen-

erate approximate hardware through a constraint-aware AHLS approach was first demon-

strated by allowing the specification of resource constraints for FPGAs regarding the het-

erogeneous resources offered by FPGA architectures. Rather than evaluating area as a sin-

gle measure, such an approach considers the fact that specific operations may be mapped

to different resources in the FPGA fabric (e.g., LUTs, REGs, DSPs, and BRAMs) and

thus their proportional costs regarding the target constraints can be leveraged to opti-

mize approximation decisions. These conclusions are based on the resource-constrained

results discussed in Chapter 6 and were initially published in (Leipnitz; Nazar, 2019a).

Following a similar approach, real-time constraints were studied to optimize the genera-

tion of approximate designs meeting WCET requirements. In this case, WCET analysis

is leveraged to steer the AHLS design space exploration towards focusing approxima-

tions on wort-case execution paths, producing better trade-offs than a constraint-oblivious

approach would provide. Similarly, these conclusions are based on the performance-

constrained results discussed in Chapter 6 and were initially published in (LEIPNITZ;

NAZAR, 2019b).

Although these results support the first contribution of this thesis, i.e., that a

constraint-aware AHLS design methodology where the DSE is directly steered by con-

straints on the design metrics of interest can optimize results, their scope is limited as

they focus on optimizing a single design metric (resources or WCET) through a single-

technique heuristic. However, a multi-technique approach allowing the specification of

multiple constraints can open the door for the exploration of multiple optimizations while

114

providing significant reductions in error measures. In that direction, the experimental re-

sults presented in Chapter 6 also support the second contribution of this thesis, i.e., that

different AC techniques offer different trade-offs depending on the application at hand

and the target optimizations. Thus, a constraint-aware approach should also explore dif-

ferent AC techniques to optimize results. Experiments realized over a set of eight image,

video, signal processing, and machine learning benchmarks showed that output error can

be reduced, compared to a constraint-oblivious approach where the evaluation of approxi-

mation options targeting the aimed optimizations disregards the specified constraints. The

proposed methodology attained, on average, a reduction of about 25% in MSE for the AD-

PCM, FIR, FFT, JPEG, SOBEL, 3DR, and MOTION benchmarks, ranging from 9.54% to

34.74%, and an absolute increase of 10.87% in accuracy for the DIGIT benchmark, rang-

ing from 1.65% to 20.28%. A significant error variation was displayed depending on the

considered application, the employed AC technique (BWR, LP, V2M, V2P, or V2Z), and

the target constraints (resources, WCET, or both), demonstrating that defining the best

technique for a given scenario is crucial to optimize results, but it is also a challenging

task that must be carried carefully by experienced designers, as it depends on multiple

factors.

In a complementary way, Chapter 7 supports the third contribution of this thesis,

showing that no single AC technique can outperform an adequate combination of tech-

niques which selection is steered by constraints on one or more design metrics of interest,

with all available AC techniques being used to improve results in different scenarios.

When compared to the best constraint-aware single-technique approach exploiting one of

the implemented techniques, the exploration of multiple techniques in conjunction can

reduce the average MSE by 17.7%, ranging from 5% to 30% for the ADPCM, FIR, FFT,

JPEG, SOBEL, 3DR, and MOTION benchmarks, and increase the average accuracy for

DIGIT by 3.5% (absolute), ranging from 1.9% to 6.5% depending on the application and

imposed constraints. Therefore, the obtained results show that a constraint-aware multi-

technique methodology is a promising option to optimize the generation of approximate

hardware through AHLS design flows.

8.1 Published Works

The work developed to support the constraint-aware multi-technique AHLS de-

sign methodology presented in this thesis resulted in the publication of five papers:

115

• LEIPNITZ, M. T.; NAZAR, G. L. High-level synthesis of resource-oriented approx-

imate designs for fpgas. In: Proceedings of the 56th Annual Design Automation

Conference 2019. New York, NY, USA: ACM, 2019a. (DAC ’19), p. 126:1–126:6.

ISBN 978-1-4503-6725-7.

• LEIPNITZ, M. T.; NAZAR, G. L. High-level synthesis of approximate designs

under real-time constraints. ACM Trans. Embed. Comput. Syst., Association

for Computing Machinery, New York, NY, USA, v. 18, n. 5s, oct 2019b. ISSN

1539-9087. Presented at the International Conference on Compilers, Architectures,

and Synthesis for Embedded Systems (CASES).

• LEIPNITZ, M. T.; NAZAR, G. L. High-level synthesis of throughput-optimized

and energy-efficient approximate designs. In: Proceedings of the 17th ACM In-

ternational Conference on Computing Frontiers. New York, NY, USA: Associa-

tion for Computing Machinery, 2020. (CF ’20), p. 221–224. ISBN 9781450379564.

• LEIPNITZ, M. T.; PERLEBERG, M. R.; PORTO, M. S.; NAZAR, G. L. Enhancing

real-time motion estimation through approximate high-level synthesis. In: 2020

IEEE Computer Society Annual Symposium on VLSI (ISVLSI). [S.l.: s.n.],

2020. p. 30–35.

• LEIPNITZ, M. T.; NAZAR, G. L. Throughput-oriented spatio-temporal optimiza-

tion in approximate high-level synthesis. In: 2020 IEEE 38th International Con-

ference on Computer Design (ICCD). [S.l.: s.n.], 2020. p. 316–323.

Additionally, the following papers were published with the contribution of the

author of this thesis:

• NAZAR, G. L.; KOPPER, P. H.; LEIPNITZ, M. T.; JUURLINK, B. Precep: Au-

tomatic insertion of partial redundancy based on critical error probability. Micro-

electronics Reliability, v. 126, p. 114226, 2021. ISSN 0026-2714. Proceedings

of ESREF 2021, 32nd European Symposium on Reliability of Electron Devices,

Failure Physics and Analysis.

• NAZAR, G. L.; KOPPER, P. H.; LEIPNITZ, M. T.; JUURLINK, B. Lightweight

dual modular redundancy through approximate computing. In: 2021 XI Brazilian

Symposium on Computing Systems Engineering (SBESC).[S.l.: s.n.], 2021. p.

1–8.

The ideas presented in two of these works (Leipnitz; Nazar, 2019a; LEIPNITZ;

NAZAR, 2019b) are directly derived from the proposed methodology, while the other

116

five works were published as a consequence of the thesis evolving process (LEIPNITZ;

NAZAR, 2020a; LEIPNITZ et al., 2020; LEIPNITZ; NAZAR, 2020b; NAZAR et al.,

2021b; NAZAR et al., 2021a). Another work, titled "Constraint-Aware Multi-Technique

Approximate High-Level Synthesis for FPGAs", was submitted to the IEEE Transactions

on Computers as a direct result of this thesis. It is currently under revision.

8.2 Future Works

The main future works derived from the conclusions of this thesis include adding

more AC techniques to the proposed design flow and investigating how other constraints

and design goals may steer approximation choices in different directions. Moreover, other

heuristics for evaluating the trade-offs offered by approximate design candidates may be

considered to explore the design space, i.e., the scope of the proposed AHLS method-

ology can be expanded to explore diverse design opportunities not yet considered in the

context of a constraint-aware multi-technique design flow aimed at selecting approxima-

tions toward meeting specific design objectives.

For example, energy consumption and power dissipation budgets are typical re-

quirements faced by designers, especially in the context of embedded systems and edge

computing applications. Although many works have proposed AHLS methodologies tar-

geting energy or power optimizations (Nepal et al., 2014; Li et al., 2015; Nepal et al.,

2019), none of them leverages a constraint-aware approach by allowing the specification

of energy or power constraints to steer the design space exploration. However, measuring

energy and power using RTL or gate-level simulations to profile the switching activity

of signals is a complex challenge as it is very time-consuming, thus it is unlikely to be

a viable general solution for characterizing approximation options. Therefore, to include

such optimizations in the proposed design flow, it is necessary to provide a method for

reasonably estimating savings quickly, as discussed in Sections 4.3.1 and 4.3.2 for re-

sources and WCET, respectively. For example, machine learning models can be used

for fast power inference, as proposed by Zhou et al. (2019). Nevertheless, even though

energy savings is not the focus of this thesis, it was demonstrated in the previous works

using gate-level simulations and a more limited scope (Leipnitz; Nazar, 2019a; LEIP-

NITZ; NAZAR, 2019b), that energy reduction is roughly proportional to the area and

time savings product. Therefore, given a method for quickly estimating savings for each

approximation option, other design metrics, such as energy and power, can be included as

117

new dimensions to be evaluated by the fitness function presented in Section 4.4.3.

Moreover, the proposed constraint-aware approach is not tied to the GRASP-based

heuristic detailed in Section 4.4. Although GRASP is a well-known approach for combi-

natorial optimization problems due to its flexibility, other metaheuristics may be explored

for constraint-aware AHLS, such as Monte Carlo Tree Search (AWAIS; MOHAMMADI;

PLATZNER, 2018), Non-dominated Sorting Genetic Algorithms (Nepal et al., 2019), or

Tabu Search (CASTRO-GODíNEZ et al., 2020b). As long as the implemented heuristic

does not constrain the design space to specific AC techniques, expanding approxima-

tions at the software or other abstraction layers is another possibility that can be explored.

For example, techniques such as variable-to-variable substitutions (Xu; Schafer, 2017),

memoization (Rahimi; Benini; Gupta, 2013), predictive models using linear regression,

multi-layer perceptrons, or artificial neural networks to replace and mimic the execu-

tion of compute-intensive blocks (XU; SCHAFER, 2019b), can be included to broaden

the design space toward optimizing results even more. Libraries of approximate compo-

nents can also be exploited at the HLS abstraction level, allowing the selection of pre-

characterized approximate operators and functions (CASTRO-GODíNEZ et al., 2020b).

As shown in this thesis, additional techniques expand the design space and are likely to

enable more efficient implementations. However, this expanded solution set warrants ever

more sophisticated heuristics to be explored in a timely manner, creating a challenging su-

perposition of future contributions.

118

REFERENCES

Aksoy, L.; Flores, P.; Monteiro, J. Approximation of multiple constant multiplications
using minimum look-up tables on fpga. In: 2015 IEEE International Symposium on
Circuits and Systems (ISCAS). [S.l.: s.n.], 2015. p. 2884–2887. ISSN 0271-4302.

ALAN, T.; HENKEL, J. Slackhammer: Logic synthesis for graceful errors under fre-
quency scaling. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, v. 37, n. 11, p. 2802–2811, 2018.

ANAM, M. A.; WHATMOUGH, P. N.; ANDREOPOULOS, Y. Precision-energy-
throughput scaling of generic matrix multiplication and discrete convolution kernels via
linear projections. In: The 11th IEEE Symposium on Embedded Systems for Real-
time Multimedia. [S.l.: s.n.], 2013. p. 21–30.

ARMBRUST, M. et al. A view of cloud computing. Commun. ACM, Association for
Computing Machinery, New York, NY, USA, v. 53, n. 4, p. 50–58, apr 2010. ISSN 0001-
0782. Available from Internet: <https://doi.org/10.1145/1721654.1721672>.

AWAIS, M.; MOHAMMADI, H. G.; PLATZNER, M. An mcts-based framework for
synthesis of approximate circuits. In: 2018 IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC). [S.l.: s.n.], 2018. p. 219–224.

BARBARESCHI, M.; IANNUCCI, F.; MAZZEO, A. A pruning technique for b&b based
design exploration of approximate computing variants. In: 2016 IEEE Computer Soci-
ety Annual Symposium on VLSI (ISVLSI). [S.l.: s.n.], 2016. p. 707–712.

Becher, A. et al. A lut-based approximate adder. In: 2016 IEEE 24th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines (FCCM).
[S.l.: s.n.], 2016. p. 27–27.

Bey Ahmed Khernache, M. et al. Hevc hardware vs software decoding: An objective
energy consumption analysis and comparison. Journal of Systems Architecture, v. 115,
p. 102004, 2021. ISSN 1383-7621. Available from Internet: <https://www.sciencedirect.
com/science/article/pii/S1383762121000199>.

BORKAR, S. Thousand core chips: A technology perspective. In: Proceedings of the
44th Annual Design Automation Conference. New York, NY, USA: Association for
Computing Machinery, 2007. (DAC ’07), p. 746–749. ISBN 9781595936271. Available
from Internet: <https://doi.org/10.1145/1278480.1278667>.

BROSS, B. et al. Developments in international video coding standardization after avc,
with an overview of versatile video coding (vvc). Proceedings of the IEEE, v. 109, n. 9,
p. 1463–1493, 2021.

Canis, A. et al. Legup: An open-source high-level synthesis tool for fpga-based proces-
sor/accelerator systems. ACM Trans. Embed. Comput. Syst., v. 13, n. 2, p. 24:1–24:27,
sep. 2013.

Cardoso, J. a. M. P.; Diniz, P. C.; Weinhardt, M. Compiling for reconfigurable computing:
A survey. ACM Comput. Surv., v. 42, n. 4, p. 13:1–13:65, jun. 2010.

https://doi.org/10.1145/1721654.1721672
https://www.sciencedirect.com/science/article/pii/S1383762121000199
https://www.sciencedirect.com/science/article/pii/S1383762121000199
https://doi.org/10.1145/1278480.1278667

119

CASTRO-GODíNEZ, J. et al. Axls: A framework for approximate logic synthesis based
on netlist transformations. IEEE Transactions on Circuits and Systems II: Express
Briefs, v. 68, n. 8, p. 2845–2849, 2021.

CASTRO-GODíNEZ, J. et al. Compiler-driven error analysis for designing approximate
accelerators. In: 2018 Design, Automation Test in Europe Conference Exhibition
(DATE). [S.l.: s.n.], 2018. p. 1027–1032.

CASTRO-GODíNEZ, J. et al. Approximate acceleration for cnn-based applications on iot
edge devices. In: 2020 IEEE 11th Latin American Symposium on Circuits & Systems
(LASCAS). [S.l.: s.n.], 2020. p. 1–4.

CASTRO-GODíNEZ, J. et al. Axhls: Design space exploration and high-level synthesis
of approximate accelerators using approximate functional units and analytical models. In:
2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD).
[S.l.: s.n.], 2020. p. 1–9.

Chakrapani, L. N. et al. Highly energy and performance efficient embedded computing
through approximately correct arithmetic: A mathematical foundation and preliminary
experimental validation. In: Proc. Int. Conf. Compilers, Architectures and Synthesis
for Embedded Systems. [S.l.: s.n.], 2008. (CASES ’08), p. 187–196.

Chan, W. T. J. et al. Statistical analysis and modeling for error composition in approximate
computation circuits. In: IEEE 31st Int. Conf. Computer Design (ICCD). [S.l.: s.n.],
2013. p. 47–53. ISSN 1063-6404.

CHANDRASEKHARAN, A. et al. Approximation-aware rewriting of aigs for error toler-
ant applications. In: 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). [S.l.: s.n.], 2016. p. 1–8.

CHANG, I. J.; MOHAPATRA, D.; ROY, K. A priority-based 6t/8t hybrid sram architec-
ture for aggressive voltage scaling in video applications. IEEE Transactions on Circuits
and Systems for Video Technology, v. 21, n. 2, p. 101–112, 2011.

CHEN, J.; RAN, X. Deep learning with edge computing: A review. Proceedings of the
IEEE, v. 107, n. 8, p. 1655–1674, 2019.

Chippa, V. K. et al. Analysis and characterization of inherent application resilience for
approximate computing. In: 2013 50th ACM/EDAC/IEEE Design Automation Con-
ference (DAC). [S.l.: s.n.], 2013. p. 1–9. ISSN 0738-100X.

CHIPPA, V. K. et al. Storm: A stochastic recognition and mining processor. In:
2014 IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED). [S.l.: s.n.], 2014. p. 39–44.

CHOWDHURY, P.; SCHAFER, B. C. Unlocking approximations through selective source
code transformations. In: Proceedings of the 2021 on Great Lakes Symposium on
VLSI. New York, NY, USA: Association for Computing Machinery, 2021. (GLSVLSI
’21), p. 359–364. ISBN 9781450383936. Available from Internet: <https://doi.org/10.
1145/3453688.3461498>.

https://doi.org/10.1145/3453688.3461498
https://doi.org/10.1145/3453688.3461498

120

CISCO. Cisco Annual Internet Report (2018–2023) White Paper. 2020.
Available from Internet: <https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.html>.

Cong, J. et al. High-level synthesis for fpgas: From prototyping to deployment. IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., v. 30, n. 4, p. 473–491, April
2011.

COUSSY, P. et al. An introduction to high-level synthesis. IEEE Design & Test of Com-
puters, v. 26, n. 4, p. 8–17, 2009.

DENG, L. The mnist database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, IEEE, v. 29, n. 6, p. 141–142, 2012.

DENNARD, R. et al. Design of ion-implanted mosfet’s with very small physical dimen-
sions. IEEE Journal of Solid-State Circuits, v. 9, n. 5, p. 256–268, 1974.

DRANE, T. A.; ROSE, T. M.; CONSTANTINIDES, G. A. On the systematic creation of
faithfully rounded truncated multipliers and arrays. IEEE Transactions on Computers,
v. 63, n. 10, p. 2513–2525, 2014.

DU, J. et al. Design of an approximate fft processor based on approximate complex multi-
pliers. In: 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). [S.l.:
s.n.], 2021. p. 308–313.

ERICSSON. Mobile data traffic outlook. 2022. Available from Internet:
<https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/
mobile-traffic-forecast>.

ESMAEILZADEH, H. et al. Dark silicon and the end of multicore scaling. In: 2011 38th
Annual International Symposium on Computer Architecture (ISCA). [S.l.: s.n.],
2011. p. 365–376.

ESMAEILZADEH, H. et al. Architecture support for disciplined approximate program-
ming. In: Proceedings of the Seventeenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems. New York, NY,
USA: Association for Computing Machinery, 2012. (ASPLOS XVII), p. 301–312. ISBN
9781450307598. Available from Internet: <https://doi.org/10.1145/2150976.2151008>.

ESMAEILZADEH, H. et al. Neural acceleration for general-purpose approximate pro-
grams. In: 2012 45th Annual IEEE/ACM International Symposium on Microarchi-
tecture. [S.l.: s.n.], 2012. p. 449–460.

FAN, Y. et al. A hardware-oriented ime algorithm for hevc and its hardware implementa-
tion. IEEE Transactions on Circuits and Systems for Video Technology, v. 28, n. 8, p.
2048–2057, 2018.

FARSHCHI, F.; ABRISHAMI, M. S.; FAKHRAIE, S. M. New approximate multiplier
for low power digital signal processing. In: The 17th CSI International Symposium on
Computer Architecture & Digital Systems (CADS 2013). [S.l.: s.n.], 2013. p. 25–30.

FEO, T. A.; RESENDE, M. G. Greedy randomized adaptive search procedures. Journal
of Global Optimization, Springer, v. 6, n. 2, p. 109–133, 1995.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/mobile-traffic-forecast
https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/mobile-traffic-forecast
https://doi.org/10.1145/2150976.2151008

121

FROEHLICH, S.; GROSSE, D.; DRECHSLER, R. Approximate memory: Data stor-
age in the context of approximate computing. In: Information Storage: A Multidisci-
plinary Perspective. Springer International Publishing, 2020. p. 111–133. ISBN 978-3-
030-19262-4. Available from Internet: <https://doi.org/10.1007/978-3-030-19262-4_4>.

FROEHLICH, S.; GROßE, D.; DRECHSLER, R. Error bounded exact bdd minimization
in approximate computing. In: 2017 IEEE 47th International Symposium on Multiple-
Valued Logic (ISMVL). [S.l.: s.n.], 2017. p. 254–259.

Ganapathy, S. et al. Mitigating the impact of faults in unreliable memories for error-
resilient applications. In: 2015 52nd ACM/EDAC/IEEE Design Automation Confer-
ence (DAC). [S.l.: s.n.], 2015. p. 1–6. ISSN 0738-100X.

GOGOI, S.; PEESAPATI, R. A hybrid hardware oriented motion estimation algorithm
for hevc/h.265. J. Real-Time Image Process., Springer-Verlag, Berlin, Heidelberg, v. 18,
n. 3, p. 953–966, jun 2021. ISSN 1861-8200. Available from Internet: <https://doi.org/
10.1007/s11554-020-01056-w>.

GOIRI, I. et al. Approxhadoop: Bringing approximations to mapreduce frameworks. SIG-
PLAN Not., Association for Computing Machinery, New York, NY, USA, v. 50, n. 4, p.
383–397, mar 2015. ISSN 0362-1340. Available from Internet: <https://doi.org/10.1145/
2775054.2694351>.

GRIGORIAN, B.; FARAHPOUR, N.; REINMAN, G. Brainiac: Bringing reliable ac-
curacy into neurally-implemented approximate computing. In: 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA). [S.l.: s.n.],
2015. p. 615–626.

GRIGORIAN, B.; REINMAN, G. Accelerating divergent applications on simd architec-
tures using neural networks. ACM Trans. Archit. Code Optim., Association for Com-
puting Machinery, New York, NY, USA, v. 12, n. 1, mar 2015. ISSN 1544-3566. Available
from Internet: <https://doi.org/10.1145/2717311>.

GUPTA, V. et al. Impact: Imprecise adders for low-power approximate computing. In:
IEEE/ACM International Symposium on Low Power Electronics and Design. [S.l.:
s.n.], 2011. p. 409–414.

Han, J.; Orshansky, M. Approximate computing: An emerging paradigm for energy-
efficient design. In: 18th IEEE European Test Symp. (ETS). [S.l.: s.n.], 2013. p. 1–6.

Hara, Y. et al. Proposal and quantitative analysis of the chstone benchmark program suite
for practical c-based high-level synthesis. Journal of Information Processing, v. 17, p.
242–254, 2009.

HASHEMI, S.; BAHAR, R. I.; REDA, S. Drum: A dynamic range unbiased multi-
plier for approximate applications. In: 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). [S.l.: s.n.], 2015. p. 418–425.

HASHEMI, S.; BAHAR, R. I.; REDA, S. A low-power dynamic divider for approxi-
mate applications. In: 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC). [S.l.: s.n.], 2016. p. 1–6.

https://doi.org/10.1007/978-3-030-19262-4_4
https://doi.org/10.1007/s11554-020-01056-w
https://doi.org/10.1007/s11554-020-01056-w
https://doi.org/10.1145/2775054.2694351
https://doi.org/10.1145/2775054.2694351
https://doi.org/10.1145/2717311

122

HASHEMI, S.; TANN, H.; REDA, S. Blasys: Approximate logic synthesis using boolean
matrix factorization. In: 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC). [S.l.: s.n.], 2018. p. 1–6.

HASSANI, A. M.; REZAALIPOUR, M.; DEHYADEGARI, M. A novel ultra low power
accuracy configurable adder at transistor level. In: 2018 8th International Conference
on Computer and Knowledge Engineering (ICCKE). [S.l.: s.n.], 2018. p. 165–170.

HAUCK, S.; DEHON, A. Reconfigurable Computing: The Theory and Practice of
FPGA-Based Computation. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007. ISBN 9780080556017.

HSIAO, H.; ANDERSON, J. H. Sensei: An area-reduction advisor for fpga high-level
synthesis. In: 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). [S.l.: s.n.], 2018. p. 25–30.

HU, J.; QIAN, W. A new approximate adder with low relative error and correct sign
calculation. In: 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). [S.l.: s.n.], 2015. p. 1449–1454.

HWANG, C.-T.; LEE, J.-H.; HSU, Y.-C. A formal approach to the scheduling problem
in high level synthesis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, v. 10, n. 4, p. 464–475, 1991.

IEA. Data Centres and Data Transmission Networks Report. 2021. Available from
Internet: <https://www.iea.org/reports/data-centres-and-data-transmission-networks>.

ITU-T. ITU-T Test Signals for Telecommunication Systems. 2022. Available from In-
ternet: <https://www.itu.int/net/itu-t/sigdb/menu.aspx>.

JOE, H.; KIM, Y. Efficient approximate image processor with low-part stochastic com-
puting. In: 2019 IEEE Asia Pacific Conference on Postgraduate Research in Micro-
electronics and Electronics (PrimeAsia). [S.l.: s.n.], 2019. p. 29–32.

Kahng, A. B.; Kang, S. Accuracy-configurable adder for approximate arithmetic designs.
In: Proceedings of the 49th Annual Design Automation Conference. New York, NY,
USA: ACM, 2012. (DAC ’12), p. 820–825. ISBN 978-1-4503-1199-1.

KHAN, W. Z. et al. Edge computing: A survey. Future Gener. Comput. Syst., Elsevier
Science Publishers B. V., NLD, v. 97, n. C, p. 219–235, aug 2019. ISSN 0167-739X.
Available from Internet: <https://doi.org/10.1016/j.future.2019.02.050>.

Koch, D.; Hannig, F.; Ziener, D. FPGAs for Software Programmers. 1st. ed. [S.l.]:
Springer Publishing Company, Incorporated, 2016. ISBN 3319264060, 9783319264066.

KRAUSE, P. K.; POLIAN, I. Adaptive voltage over-scaling for resilient applications. In:
2011 Design, Automation & Test in Europe. [S.l.: s.n.], 2011. p. 1–6.

KULKARNI, P.; GUPTA, P.; ERCEGOVAC, M. Trading accuracy for power with an
underdesigned multiplier architecture. In: 2011 24th Internatioal Conference on VLSI
Design. [S.l.: s.n.], 2011. p. 346–351.

https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.itu.int/net/itu-t/sigdb/menu.aspx
https://doi.org/10.1016/j.future.2019.02.050

123

KUNDI, D.-E.-S. et al. Axrlwe: A multilevel approximate ring-lwe co-processor for
lightweight iot applications. IEEE Internet of Things Journal, v. 9, n. 13, p. 10492–
10501, 2022.

KUNDU, S.; CHANDRAKAR, K.; ROY, S. Sat based scheduling in high level synthesis.
In: KUNDU, M. K. et al. (Ed.). Advanced Computing, Networking and Informatics-
Volume 2. Cham: Springer International Publishing, 2014. p. 533–542. ISBN 978-3-319-
07350-7.

LAHTI, S. et al. Are we there yet? a study on the state of high-level synthesis. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 38,
n. 5, p. 898–911, 2019.

Lattner, C.; Adve, V. Llvm: a compilation framework for lifelong program analysis trans-
formation. In: Int. Symp. Code Generation and Optimization (CGO). [S.l.: s.n.], 2004.
p. 75–86.

Lee, S.; Gerstlauer, A. Data-dependent loop approximations for performance-quality
driven high-level synthesis. IEEE Embedded Syst. Lett., v. 10, n. 1, p. 18–21, March
2017.

Lee, S.; John, L. K.; Gerstlauer, A. High-level synthesis of approximate hardware un-
der joint precision and voltage scaling. In: Proc. Conf. Design, Automation & Test in
Europe. [S.l.: s.n.], 2017. (DATE ’17), p. 187–192.

Leipnitz, M. T.; Nazar, G. L. High-level synthesis of resource-oriented approximate de-
signs for fpgas. In: Proceedings of the 56th Annual Design Automation Conference
2019. New York, NY, USA: ACM, 2019a. (DAC ’19), p. 126:1–126:6. ISBN 978-1-4503-
6725-7. Available from Internet: <http://doi.acm.org/10.1145/3316781.3317839>.

LEIPNITZ, M. T.; NAZAR, G. L. High-level synthesis of approximate designs under
real-time constraints. ACM Trans. Embed. Comput. Syst., Association for Computing
Machinery, New York, NY, USA, v. 18, n. 5s, oct 2019b. ISSN 1539-9087. Available from
Internet: <https://doi.org/10.1145/3358182>.

LEIPNITZ, M. T.; NAZAR, G. L. High-level synthesis of throughput-optimized and
energy-efficient approximate designs. In: Proceedings of the 17th ACM International
Conference on Computing Frontiers. New York, NY, USA: Association for Computing
Machinery, 2020. (CF ’20), p. 221–224. ISBN 9781450379564. Available from Internet:
<https://doi.org/10.1145/3387902.3394039>.

LEIPNITZ, M. T.; NAZAR, G. L. Throughput-oriented spatio-temporal optimization in
approximate high-level synthesis. In: 2020 IEEE 38th International Conference on
Computer Design (ICCD). [S.l.: s.n.], 2020. p. 316–323.

LEIPNITZ, M. T. et al. Enhancing real-time motion estimation through approximate
high-level synthesis. In: 2020 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). [S.l.: s.n.], 2020. p. 30–35.

Li, C. et al. Joint precision optimization and high level synthesis for approximate com-
puting. In: Proc. 52Nd Annu. Design Automation Conference. [S.l.: s.n.], 2015. (DAC
’15), p. 104:1–104:6.

http://doi.acm.org/10.1145/3316781.3317839
https://doi.org/10.1145/3358182
https://doi.org/10.1145/3387902.3394039

124

LI, Q. et al. Leveraging approximate data for robust fiash storage. In: 2019 56th
ACM/IEEE Design Automation Conference (DAC). [S.l.: s.n.], 2019. p. 1–6.

LI, R. et al. Approximate computing with stochastic transistors’ voltage over-scaling.
IEEE Access, v. 7, p. 6373–6385, 2019.

LI, S.; PARK, S.; MAHLKE, S. Sculptor: Flexible approximation with selective dynamic
loop perforation. In: Proceedings of the 2018 International Conference on Supercom-
puting. New York, NY, USA: Association for Computing Machinery, 2018. (ICS ’18),
p. 341–351. ISBN 9781450357838. Available from Internet: <https://doi.org/10.1145/
3205289.3205317>.

Li, Y. . S.; Malik, S. Performance analysis of embedded software using implicit path
enumeration. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, v. 16, n. 12, p. 1477–1487, Dec 1997. ISSN 0278-0070.

LIGNATI, B. N. et al. Exploiting hls-generated multi-version kernels to improve cpu-fpga
cloud systems. In: 2021 26th Asia and South Pacific Design Automation Conference
(ASP-DAC). [S.l.: s.n.], 2021. p. 536–541.

Lingamneni, A. et al. Synthesizing parsimonious inexact circuits through probabilistic
design techniques. ACM Trans. Embed. Comput. Syst., v. 12, n. 2s, p. 93:1–93:26, may
2013.

LIU, C.; HAN, J.; LOMBARDI, F. A low-power, high-performance approximate multi-
plier with configurable partial error recovery. In: 2014 Design, Automation & Test in
Europe Conference & Exhibition (DATE). [S.l.: s.n.], 2014. p. 1–4.

LIU, G.; ZHANG, Z. Statistically certified approximate logic synthesis. In: 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). [S.l.:
s.n.], 2017. p. 344–351.

LIU, W. et al. Design and analysis of inexact floating-point adders. IEEE Transactions
on Computers, v. 65, n. 1, p. 308–314, 2016.

LIU, W.; LOMBARDI, F.; SHULTE, M. A retrospective and prospective view of approx-
imate computing [point of view]. Proceedings of the IEEE, v. 108, n. 3, p. 394–399,
2020.

Lokuciejewski, P.; Marwedel, P. Worst-Case Execution Time Aware Compilation
Techniques for Real-Time Systems. [S.l.: s.n.], 2011. ISBN 978-90-481-9928-0.

MAZAHIR, S.; HASAN, O.; SHAFIQUE, M. Adaptive approximate computing in arith-
metic datapaths. IEEE Design & Test, v. 35, n. 4, p. 65–74, 2018.

MIAO, J. et al. Modeling and synthesis of quality-energy optimal approximate adders. In:
2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
[S.l.: s.n.], 2012. p. 728–735.

MIGUEL, J. S. et al. Doppelgänger: A cache for approximate computing. In: Pro-
ceedings of the 48th International Symposium on Microarchitecture. New York,
NY, USA: Association for Computing Machinery, 2015. (MICRO-48), p. 50–61. ISBN
9781450340342. Available from Internet: <https://doi.org/10.1145/2830772.2830790>.

https://doi.org/10.1145/3205289.3205317
https://doi.org/10.1145/3205289.3205317
https://doi.org/10.1145/2830772.2830790

125

Miguel, J. S.; Badr, M.; Jerger, N. E. Load value approximation. In: 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture. [S.l.: s.n.], 2014. p. 127–
139. ISSN 1072-4451.

Mittal, S. A survey of techniques for approximate computing. ACM Comput. Surv.,
v. 48, n. 4, p. 62:1–62:33, mar. 2016.

MOHAPATRA, D. et al. Design of voltage-scalable meta-functions for approximate com-
puting. In: 2011 Design, Automation & Test in Europe. [S.l.: s.n.], 2011. p. 1–6.

MOONS, B.; VERHELST, M. Dvas: Dynamic voltage accuracy scaling for increased
energy-efficiency in approximate computing. In: 2015 IEEE/ACM International Sym-
posium on Low Power Electronics and Design (ISLPED). [S.l.: s.n.], 2015. p. 237–
242.

MOORE, G. E. Cramming more components onto integrated circuits. Electronics, v. 38,
n. 8, April 1965.

Moreau, T. et al. Snnap: Approximate computing on programmable socs via neural ac-
celeration. In: 2015 IEEE 21st International Symposium on High Performance Com-
puter Architecture (HPCA). [S.l.: s.n.], 2015. p. 603–614. ISSN 1530-0897.

MULLER, J.-M. Elementary functions and approximate computing. Proceedings of the
IEEE, v. 108, n. 12, p. 2136–2149, 2020.

Nane, R. et al. A survey and evaluation of fpga high-level synthesis tools. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., v. 35, n. 10, p. 1591–1604, Oct 2016.

NAZAR, G. L. et al. Lightweight dual modular redundancy through approximate comput-
ing. In: 2021 XI Brazilian Symposium on Computing Systems Engineering (SBESC).
[S.l.: s.n.], 2021. p. 1–8.

NAZAR, G. L. et al. Precep: Automatic insertion of partial redundancy based on crit-
ical error probability. Microelectronics Reliability, v. 126, p. 114226, 2021. ISSN
0026-2714. Proceedings of ESREF 2021, 32nd European Symposium on Reliability
of Electron Devices, Failure Physics and Analysis. Available from Internet: <https:
//www.sciencedirect.com/science/article/pii/S002627142100192X>.

NDOUR, G. et al. Evaluation of variable bit-width units in a risc-v processor for ap-
proximate computing. In: Proceedings of the 16th ACM International Conference
on Computing Frontiers. New York, NY, USA: Association for Computing Machin-
ery, 2019. (CF ’19), p. 344–349. ISBN 9781450366854. Available from Internet: <https:
//doi.org/10.1145/3310273.3323159>.

Nepal, K. et al. Automated high-level generation of low-power approximate computing
circuits. IEEE Transactions on Emerging Topics in Computing, v. 7, n. 1, p. 18–30,
Jan 2019. ISSN 2168-6750.

Nepal, K. et al. Abacus: A technique for automated behavioral synthesis of approximate
computing circuits. In: Proc. Conf. Design, Automation & Test in Europe. [S.l.: s.n.],
2014. (DATE ’14), p. 361:1–361:6.

https://www.sciencedirect.com/science/article/pii/S002627142100192X
https://www.sciencedirect.com/science/article/pii/S002627142100192X
https://doi.org/10.1145/3310273.3323159
https://doi.org/10.1145/3310273.3323159

126

NGUYEN, D. T. et al. An approximate memory architecture for energy saving in deep
learning applications. IEEE Transactions on Circuits and Systems I: Regular Papers,
v. 67, n. 5, p. 1588–1601, 2020.

OLIVEIRA, G. F. et al. Employing classification-based algorithms for general-purpose
approximate computing. In: Proceedings of the 55th Annual Design Automation Con-
ference. New York, NY, USA: Association for Computing Machinery, 2018. (DAC
’18). ISBN 9781450357005. Available from Internet: <https://doi.org/10.1145/3195970.
3196043>.

Palem, K. V. et al. Sustaining moore’s law in embedded computing through probabilistic
and approximate design: Retrospects and prospects. In: Proc. Int. Conf. Compilers,
Architecture, and Synthesis for Embedded Systems. [S.l.: s.n.], 2009. (CASES ’09),
p. 1–10.

PARK, J.; CHOI, J. H.; ROY, K. Dynamic bit-width adaptation in dct: An approach
to trade off image quality and computation energy. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, v. 18, n. 5, p. 787–793, 2010.

PEJOVIć, V. Towards approximate mobile computing. GetMobile: Mobile Comp. and
Comm., Association for Computing Machinery, New York, NY, USA, v. 22, n. 4, p. 9–12,
may 2019. ISSN 2375-0529. Available from Internet: <https://doi.org/10.1145/3325867.
3325871>.

PERRI, S. et al. Efficient approximate adders for fpga-based data-paths. Electronics,
v. 9, n. 9, 2020. ISSN 2079-9292. Available from Internet: <https://www.mdpi.com/
2079-9292/9/9/1529>.

PESCE, M. Cloud Computing’s Coming Energy Crisis. 2021. Available from Internet:
<https://spectrum.ieee.org/cloud-computings-coming-energy-crisis>.

PRABAKARAN, B. S. et al. Approxfpgas: Embracing asic-based approximate arithmetic
components for fpga-based systems. In: 2020 57th ACM/IEEE Design Automation
Conference (DAC). [S.l.: s.n.], 2020. p. 1–6.

PRABAKARAN, B. S. et al. Demas: An efficient design methodology for building ap-
proximate adders for fpga-based systems. In: 2018 Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE). [S.l.: s.n.], 2018. p. 917–920.

Puschner, P.; Koza, C. Calculating the maximum execution time of real-time programs.
Real-Time Syst., v. 1, n. 2, p. 159–176, sep. 1989. ISSN 0922-6443.

RAHA, A. et al. Quality configurable reduce-and-rank for energy efficient approximate
computing. In: 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). [S.l.: s.n.], 2015. p. 665–670.

Rahimi, A.; Benini, L.; Gupta, R. K. Spatial memoization: Concurrent instruction reuse to
correct timing errors in simd architectures. IEEE Transactions on Circuits and Systems
II: Express Briefs, v. 60, n. 12, p. 847–851, Dec 2013. ISSN 1549-7747.

RAMASUBRAMANIAN, S. G. et al. Relax-and-retime: A methodology for energy-
efficient recovery based design. In: 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC). [S.l.: s.n.], 2013. p. 1–6.

https://doi.org/10.1145/3195970.3196043
https://doi.org/10.1145/3195970.3196043
https://doi.org/10.1145/3325867.3325871
https://doi.org/10.1145/3325867.3325871
https://www.mdpi.com/2079-9292/9/9/1529
https://www.mdpi.com/2079-9292/9/9/1529
https://spectrum.ieee.org/cloud-computings-coming-energy-crisis

127

RANJAN, A. et al. Approximate memory compression. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, v. 28, n. 4, p. 980–991, 2020.

RANJAN, A. et al. Aslan: Synthesis of approximate sequential circuits. In: 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE). [S.l.: s.n.], 2014.
p. 1–6.

REHMAN, S. et al. Architectural-space exploration of approximate multipliers. In: 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). [S.l.:
s.n.], 2016. p. 1–8.

RESENDE, M. G. C.; RIBEIRO, C. C. Greedy randomized adaptive search procedures:
Advances and extensions. In: Handbook of Metaheuristics. [S.l.]: Springer Interna-
tional Publishing, 2019. p. 169–220. ISBN 978-3-319-91086-4.

RODRIGUES, G. S.; KASTENSMIDT, F. L.; BOSIO, A. Approximate computing for
safety-critical applications. In: 2021 IEEE 22nd Latin American Test Symposium
(LATS). [S.l.: s.n.], 2021. p. 1–3.

ROLDAO-LOPES, A. et al. More flops or more precision? accuracy parameterizable
linear equation solvers for model predictive control. In: 2009 17th IEEE Symposium on
Field Programmable Custom Computing Machines. [S.l.: s.n.], 2009. p. 209–216.

RUBIO-GONZáLEZ, C. et al. Precimonious: Tuning assistant for floating-point preci-
sion. In: SC ’13: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. [S.l.: s.n.], 2013. p. 1–12.

SAADAT, H.; JAVAID, H.; PARAMESWARAN, S. Approximate integer and floating-
point dividers with near-zero error bias. In: 2019 56th ACM/IEEE Design Automation
Conference (DAC). [S.l.: s.n.], 2019. p. 1–6.

Samadi, M. et al. Paraprox: Pattern-based approximation for data parallel applications.
SIGARCH Comput. Archit. News, ACM, New York, NY, USA, v. 42, n. 1, p. 35–50,
feb. 2014. ISSN 0163-5964.

SAMPAIO, F. et al. Approximation-aware multi-level cells stt-ram cache architecture. In:
2015 International Conference on Compilers, Architecture and Synthesis for Em-
bedded Systems (CASES). [S.l.: s.n.], 2015. p. 79–88.

Sampson, A. et al. Enerj: Approximate data types for safe and general low-power com-
putation. SIGPLAN Not., ACM, New York, NY, USA, v. 46, n. 6, p. 164–174, jun. 2011.
ISSN 0362-1340.

SAMPSON, A. et al. Approximate storage in solid-state memories. ACM Trans. Com-
put. Syst., Association for Computing Machinery, New York, NY, USA, v. 32, n. 3, sep
2014. ISSN 0734-2071. Available from Internet: <https://doi.org/10.1145/2644808>.

SáNCHEZ-CLEMENTE, A. J.; ENTRENA, L.; GARCíA-VALDERAS, M. Partial tmr in
fpgas using approximate logic circuits. IEEE Transactions on Nuclear Science, v. 63,
n. 4, p. 2233–2240, 2016.

https://doi.org/10.1145/2644808

128

SCARABOTTOLO, I.; ANSALONI, G.; POZZI, L. Circuit carving: A methodology for
the design of approximate hardware. In: 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). [S.l.: s.n.], 2018. p. 545–550.

Schafer, B. C. Enabling high-level synthesis resource sharing design space exploration
in fpgas through automatic internal bitwidth adjustments. IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., v. 36, n. 1, p. 97–105, Jan 2017.

SCHLACHTER, J.; CAMUS, V.; ENZ, C. Design of energy-efficient discrete cosine
transform using pruned arithmetic circuits. In: 2016 IEEE International Symposium
on Circuits and Systems (ISCAS). [S.l.: s.n.], 2016. p. 341–344.

SCHLACHTER, J. et al. Design and applications of approximate circuits by gate-level
pruning. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 25,
n. 5, p. 1694–1702, 2017.

SENGUPTA, D. et al. Saber: Selection of approximate bits for the design of error toler-
ant circuits. In: 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).
[S.l.: s.n.], 2017. p. 1–6.

SHAFIQUE, M. et al. A low latency generic accuracy configurable adder. In: 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.: s.n.], 2015. p. 1–6.

Shafique, M. et al. Invited - cross-layer approximate computing: From logic to architec-
tures. In: Proceedings of the 53rd Annual Design Automation Conference. New York,
NY, USA: ACM, 2016. (DAC ’16), p. 99:1–99:6. ISBN 978-1-4503-4236-0.

Shaw, A. C. Reasoning about time in higher-level language software. IEEE Trans. Softw.
Eng., IEEE Press, Piscataway, NJ, USA, v. 15, n. 7, p. 875–889, jul. 1989. ISSN 0098-
5589.

SHIN, D.; GUPTA, S. K. A new circuit simplification method for error tolerant applica-
tions. In: 2011 Design, Automation & Test in Europe. [S.l.: s.n.], 2011. p. 1–6.

Sidiroglou-Douskos, S. et al. Managing performance vs. accuracy trade-offs with loop
perforation. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering. New York, NY, USA:
ACM, 2011. (ESEC/FSE ’11), p. 124–134. ISBN 978-1-4503-0443-6.

Sinha, S.; Zhang, W. Low-power fpga design using memoization-based approximate com-
puting. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 24,
n. 8, p. 2665–2678, Aug 2016. ISSN 1063-8210.

SJöVALL, P. et al. Fpga-powered 4k120p hevc intra encoder. In: 2018 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). [S.l.: s.n.], 2018. p. 1–5.

SLLAME, A.; DRABEK, V. An efficient list-based scheduling algorithm for high-level
synthesis. In: Proceedings Euromicro Symposium on Digital System Design. Archi-
tectures, Methods and Tools. [S.l.: s.n.], 2002. p. 316–323.

SOEKEN, M. et al. Bdd minimization for approximate computing. In: 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC). [S.l.: s.n.], 2016. p.
474–479.

129

St. Amant, R. et al. General-purpose code acceleration with limited-precision analog com-
putation. In: Proceeding of the 41st Annual International Symposium on Computer
Architecuture. Piscataway, NJ, USA: IEEE Press, 2014. (ISCA ’14), p. 505–516. ISBN
978-1-4799-4394-4.

STANLEY-MARBELL, P. et al. Exploiting errors for efficiency: A survey from circuits
to applications. ACM Comput. Surv., Association for Computing Machinery, New York,
NY, USA, v. 53, n. 3, jun 2020. ISSN 0360-0300. Available from Internet: <https://doi.
org/10.1145/3394898>.

TIAN, Y. et al. Approxlut: A novel approximate lookup table-based accelerator. In: 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). [S.l.:
s.n.], 2017. p. 438–443.

TOAN, N. V.; LEE, J.-G. Fpga-based multi-level approximate multipliers for high-
performance error-resilient applications. IEEE Access, v. 8, p. 25481–25497, 2020.

ULLAH, S. et al. Area-optimized low-latency approximate multipliers for fpga-based
hardware accelerators. In: Proceedings of the 55th Annual Design Automation Con-
ference. New York, NY, USA: Association for Computing Machinery, 2018. (DAC
’18). ISBN 9781450357005. Available from Internet: <https://doi.org/10.1145/3195970.
3195996>.

USC-SIP. The USC-SIPI Image Database. 2022. Available from Internet: <http://sipi.
usc.edu/database>.

VARGHESE, B. et al. Challenges and opportunities in edge computing. In: 2016 IEEE
International Conference on Smart Cloud (SmartCloud). [S.l.: s.n.], 2016. p. 20–26.

VASICEK, Z. Relaxed equivalence checking: a new challenge in logic synthesis. In: 2017
IEEE 20th International Symposium on Design and Diagnostics of Electronic Cir-
cuits & Systems (DDECS). [S.l.: s.n.], 2017. p. 1–6.

VASICEK, Z.; SEKANINA, L. Evolutionary approach to approximate digital circuits
design. IEEE Transactions on Evolutionary Computation, v. 19, n. 3, p. 432–444,
2015.

VASICEK, Z.; SEKANINA, L. Evolutionary design of complex approximate combi-
national circuits. Genetic Programming and Evolvable Machines, Kluwer Academic
Publishers, USA, v. 17, n. 2, p. 169–192, jun 2016. ISSN 1389-2576. Available from
Internet: <https://doi.org/10.1007/s10710-015-9257-1>.

VASSILIADIS, V. et al. A programming model and runtime system for significance-
aware energy-efficient computing. SIGPLAN Not., Association for Computing Machin-
ery, New York, NY, USA, v. 50, n. 8, p. 275–276, jan 2015. ISSN 0362-1340. Available
from Internet: <https://doi.org/10.1145/2858788.2688546>.

Vaverka, F.; Hrbacek, R.; Sekanina, L. Evolving component library for approximate high
level synthesis. In: IEEE Symp. Series on Computational Intelligence (SSCI). [S.l.:
s.n.], 2016. p. 1–8.

https://doi.org/10.1145/3394898
https://doi.org/10.1145/3394898
https://doi.org/10.1145/3195970.3195996
https://doi.org/10.1145/3195970.3195996
http://sipi.usc.edu/database
http://sipi.usc.edu/database
https://doi.org/10.1007/s10710-015-9257-1
https://doi.org/10.1145/2858788.2688546

130

Venkataramani, S. et al. Approximate computing and the quest for computing efficiency.
In: Proc. 52Nd Annu. Design Automation Conference. [S.l.: s.n.], 2015. (DAC ’15), p.
120:1–120:6.

VENKATARAMANI, S. et al. Quality programmable vector processors for approximate
computing. In: 2013 46th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). [S.l.: s.n.], 2013. p. 1–12.

Venkataramani, S. et al. Axnn: Energy-efficient neuromorphic systems using approximate
computing. In: 2014 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED). [S.l.: s.n.], 2014. p. 27–32.

VENKATARAMANI, S.; ROY, K.; RAGHUNATHAN, A. Substitute-and-simplify: A
unified design paradigm for approximate and quality configurable circuits. In: 2013 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE). [S.l.: s.n.],
2013. p. 1367–1372.

VENKATARAMANI, S. et al. Salsa: Systematic logic synthesis of approximate circuits.
In: DAC Design Automation Conference 2012. [S.l.: s.n.], 2012. p. 796–801.

VENKATESAN, R. et al. Macaco: Modeling and analysis of circuits for approximate
computing. In: 2011 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). [S.l.: s.n.], 2011. p. 667–673.

WAKABAYASHI, K.; SCHAFER, B. C. "all-in-c" behavioral synthesis and verification
with cyberworkbench. In: High-Level Synthesis: From Algorithm to Digital Circuit.
Dordrecht: Springer Netherlands, 2008. p. 113–127. ISBN 978-1-4020-8588-8. Available
from Internet: <https://doi.org/10.1007/978-1-4020-8588-8_7>.

WU, Y.; QIAN, W. An efficient method for multi-level approximate logic synthesis under
error rate constraint. In: 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC). [S.l.: s.n.], 2016. p. 1–6.

XU, Q.; MYTKOWICZ, T.; KIM, N. S. Approximate computing: A survey. IEEE Design
& Test, v. 33, n. 1, p. 8–22, 2016.

Xu, S.; Schafer, B. C. Exposing approximate computing optimizations at different levels:
From behavioral to gate-level. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
v. 25, n. 11, p. 3077–3088, Nov 2017.

XU, S.; SCHAFER, B. C. Deep: Dedicated energy-efficient approximation for dynam-
ically reconfigurable architectures. In: 2018 IEEE 36th International Conference on
Computer Design (ICCD). [S.l.: s.n.], 2018. p. 587–594.

XU, S.; SCHAFER, B. C. Approximating behavioral hw accelerators through selective
partial extractions onto synthesizable predictive models. In: 2019 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.], 2019. p. 1–8.

XU, S.; SCHAFER, B. C. Low power design of runtime reconfigurable fpgas through
contexts approximations. In: 2019 IEEE 37th International Conference on Computer
Design (ICCD). [S.l.: s.n.], 2019. p. 524–531.

https://doi.org/10.1007/978-1-4020-8588-8_7

131

XU, S.; SCHAFER, B. C. Toward self-tunable approximate computing. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, v. 27, n. 4, p. 778–789, 2019.

XU, S.; SCHAFER, B. C. On the design of high performance hw accelerator through
high-level synthesis scheduling approximations. In: 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE). [S.l.: s.n.], 2020. p. 1378–1383.

YAML. YAML Ain’t Markup Language. 2022. Available from Internet: <https://yaml.
org>.

Yazdanbakhsh, A. et al. Axbench: A multiplatform benchmark suite for approximate
computing. IEEE Design Test, v. 34, n. 2, p. 60–68, April 2017. ISSN 2168-2356.

YAZDANBAKHSH, A. et al. Axilog: Language support for approximate hardware de-
sign. In: 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). [S.l.: s.n.], 2015. p. 812–817.

YE, R. et al. On reconfiguration-oriented approximate adder design and its application. In:
2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
[S.l.: s.n.], 2013. p. 48–54.

Yeh, T. et al. The art of deception: Adaptive precision reduction for area efficient physics
acceleration. In: 40th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO 2007). [S.l.: s.n.], 2007. p. 394–406. ISSN 1072-4451.

YESIL, S.; AKTURK, I.; KARPUZCU, U. R. Toward dynamic precision scaling. IEEE
Micro, v. 38, n. 4, p. 30–39, 2018.

YIN, P. et al. Design and performance evaluation of approximate floating-point multipli-
ers. In: 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). [S.l.:
s.n.], 2016. p. 296–301.

ZERVAKIS, G. et al. Multi-level approximate accelerator synthesis under voltage island
constraints. IEEE Transactions on Circuits and Systems II: Express Briefs, v. 66, n. 4,
p. 607–611, 2019.

ZHANG, Q. et al. Approxann: An approximate computing framework for artificial neural
network. In: 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). [S.l.: s.n.], 2015. p. 701–706.

ZHANG, Q. et al. Approxit: An approximate computing framework for iterative methods.
In: 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.: s.n.],
2014. p. 1–6.

ZHAO, W. et al. Improving the energy efficiency of stt-mram based approximate cache.
In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).
[S.l.: s.n.], 2021. p. 1104–1109.

ZHOU, Y. et al. Rosetta: A realistic high-level synthesis benchmark suite for software
programmable fpgas. In: Proceedings of the 2018 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays. New York, NY, USA: Association for
Computing Machinery, 2018. (FPGA ’18), p. 269–278. ISBN 9781450356145.

https://yaml.org
https://yaml.org

132

ZHOU, Y. et al. Primal: Power inference using machine learning. In: Proceedings of
the 56th Annual Design Automation Conference 2019. New York, NY, USA: Associa-
tion for Computing Machinery, 2019. (DAC ’19). ISBN 9781450367257. Available from
Internet: <https://doi.org/10.1145/3316781.3317884>.

ZHU, N. et al. Design of low-power high-speed truncation-error-tolerant adder and its
application in digital signal processing. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, v. 18, n. 8, p. 1225–1229, 2010.

https://doi.org/10.1145/3316781.3317884

133

APPENDIX A — EXTENDED ABSTRACT IN PORTUGUESE (RESUMO

ESTENDIDO EM PORTUGUÊS)

Este apêndice apresenta de forma resumida esta tese de doutorado, intitulada "In-

tegração de Consciência de Restrições e Múltiplas Técnicas de Aproximação em Síntese

de Alto Nível para FPGAs".

A.1 Introdução

A adoção de Síntese da Alto Nível (HLS do Inglês High-Level Synthesis) visando

Field-Programmable Gate Arrays (FPGAs) aumentou à medida que as ferramentas mais

recentes de HLS evoluíram para fornecer resultados de alta qualidade enquanto aumentam

a produtividade e reduzem o time-to-market. Simultaneamente, inúmeras técnicas de

computação aproximativa (AC do Inglês Approximate Computing) foram desenvolvidas

para reduzir os custos de projeto em domínios de aplicação resilientes a erros, tais como

processamento de sinais e multimídia, mineração de dados, aprendizado de máquina e

visão computacional, para trocar a precisão da computação por economia de área e energia

ou melhorias de desempenho. Entretanto, a seleção de técnicas adequadas para cada

aplicação e otimização alvo é complexa, porém crucial para resultados de alta qualidade.

Neste contexto, muitos trabalhos propuseram incorporar técnicas de AC dentro do fluxo

de ferramentas HLS para aliviar a carga de explorar manualmente circuitos aproximados,

ou seja, os projetistas podem recorrer a ferramentas de HLS aproximativas (AHLS do

Inglês Approximate High-Level Synthesis) para automatizar a exploração das técnicas de

AC quando tentarem fazer um projeto atender os requisitos especificados.

A.2 Motivação e Contribuições

As metodologias atualmente disponíveis na literatura de AHLS não permitem es-

pecificar um conjunto de métricas de projeto para orientar a exploração de circuitos aprox-

imados no sentido de atender as otimizações pretendidas com o erro dentro dentro de um

limite aceitável. Além disso, esses métodos normalmente estão vinculados à uma única

técnica de aproximação ou à um conjunto de técnicas de difícil extensão, cuja exploração

não é totalmente automatizada ou orientada por objetivos de otimização. Portanto, as fer-

134

ramentas de AHLS disponíveis ignoram os benefícios de expandir o espaço de projeto,

misturando diversas técnicas de aproximação para atingir objetivos específicos de projeto

com o mínimo de erro. Neste contexto, a principal contribuição desta tese é uma nova

metodologia de síntese automatizada de circuitos aproximados dentro de fluxos de pro-

jeto baseados em HLS para FPGAs. Mais especificamente, propomos uma metodologia

de AHLS consciente das restrições impostas pelo desenvolvedor que combina automati-

camente múltiplas técnicas de AC para produzir hardware aproximado, explorando uma

vasta gama de oportunidades de otimização no sentido de satisfazer múltiplas restrições

simultaneamente com o mínimo de erro. A metodologia proposta centra-se em extensi-

bilidade, ou seja, a capacidade de expandir o espaço de projeto através da inclusão de

novas técnicas de AC, considerando os seus potenciais benefícios em conjunto com os já

disponíveis na tentativa de atender as restrições especificadas. Para esse objetivo, as téc-

nicas de AC são implementadas como transformações de código dentro da infraestrutura

de compilação de ferramentas HLS, permitindo a síntese de hardware aproximado a partir

de um conjunto de aproximações de nível de software de fácil extensão.

Em resumo, esta tese propõe que uma metodologia de desenvolvimento AHLS

para FPGAs diretamente orientada por uma ou mais restrições em métricas de pro-

jeto, e que combina múltiplas técnicas de AC, é capaz de sintetizar hardware aproxi-

mado com erro reduzido, quando comparada com abordagens de uma única técnica

ou que não consideram as restrições impostas pelo projetista. Portanto, destacamos

as seguintes contribuições:

• Mostramos que uma metodologia de projeto consciente das restrições, onde a ex-

ploração do espaço de projeto é diretamente dirigida por restrições nas métricas de

projeto de interesse do projetista, pode atender essas restrições com erro reduzido.

• Mostramos que diferentes técnicas de AC oferecem diferentes compensações de-

pendendo da aplicação considerada e das otimizações alvo, demonstrando as van-

tagens de uma abordagem consciente das restrições ao explorar múltiplas técnicas.

• Mostramos que nenhuma técnica de AC é capaz de oferecer melhores resultados

que uma combinação adequada de técnicas cuja seleção é orientada por restrições

nas métricas de projeto de interesse, com todas as técnicas de AC disponíveis sendo

utilizadas para melhorar os resultados em diferentes cenários.

Estas contribuições foram validadas experimentalmente através de uma imple-

mentação dentro da ferramenta de HLS LegUp (Canis et al., 2013). Um conjunto de

135

cinco técnicas de AC foram implementadas como passos de transformação dentro da es-

trutura de compilador LLVM (Lattner; Adve, 2004), visando reduzir o tempo de execução

de pior caso (WCET do Inglês Worst-Case Execution Time) e o uso de recursos de FPGAs

como look-up tables (LUTs), registradores (REGs), e blocos para processamento digital

de sinais (DSPs do Inglês Digital Signal Processing). A heurística empregada baseia-se

no Greedy Randomized Adaptive Search Procedure (GRASP) (FEO; RESENDE, 1995;

RESENDE; RIBEIRO, 2019) para identificar seqüências de aproximações que atendam

as restrições com o mínimo de erro. A natureza adaptativa do GRASP o torna uma opção

promissora para explorar múltiplas técnicas de AC, especialmente quando o objetivo é

atingir múltiplos objetivos de projeto que podem ser impactados de forma diferente por

diferentes técnicas de aproximação.

A.3 Resultados Experimentais

Resultados experimentais foram obtidos utilizando o conjunto de aplicações lis-

tadas na Tabela 5.1, envolvendo processamento de sinais, imagem, vídeo, e aprendizagem

de máquina. A Figura 7.5 resume os resultados obtidos para cada aplicação e restrição

alvo, comparando a heurística não consciente das restrições com a consciente das re-

strições. Adicionalmente, são analisadas a melhor técnica isolada para cada cenário e

a metodologia de multitécnica para o cenário consciente das restrições. Em média, re-

duções de 29% no erro quadrático médio (MSE do Inglês Mean Squared Error), variando

de 9,54% a 52,23% dependendo da aplicação e da restrição alvo, foram obtidas com a

abordagem de técnica única consciente das restrições, em comparação com a abordagem

não consciente das restrições. Para a aplicação DIGIT, um aumento absoluto na precisão

variando de 1,65% a 20,28% foi obtido, com uma média de 10,87%. Ao comparar a abor-

dagem de técnica única com a multitécnica, foram obtidas reduções médias de 17,7%

em MSE, variando de 5% a 30%, enquanto um aumento absoluto entre 1,9% e 6,5% foi

alcançado para o DIGIT, com uma média de 3,5%. Finalmente, ao adotar a abordagem

multitécnica consciente das restrições em relação à abordagem não consciente das re-

strições com técnica única, reduções de cerca de 43% em média podem ser alcançadas

em MSE, variando de 30% a 60%. Quanto ao DIGIT, um aumento absoluto na precisão

variando de 3,52% a 25,03% foi alcançado, com uma média de 14,26%. Observe que este

é o efeito composto da consciência das restrições e o uso conjunto de múltiplas técnicas.

Como tendência geral, melhorias mais significativas podem ser observadas à me-

136

dida que são impostas restrições mais rigorosas. Além disso, maiores melhorias são ex-

ibidas quando se trata de economia de recursos, especialmente para as aplicações AD-

PCM e JPEG, onde foram obtidas reduções médias de cerca de 50% no MSE. Estas duas

aplicações são notavelmente diferentes das outras por utilizarem muito mais DSPs, como

mostrado na Tabela 5.1. Como a abordagem não consciente das restrições não é capaz de

se concentrar nos tipos de operação que utilizam recursos específicos que ainda precisam

ser economizados, como os DSPs, ela normalmente aproxima mais operações até que to-

das as restrições de recursos sejam atendidas, ou seja, mesmo que a abordagem consciente

das restrições reduza consideravelmente as métricas de erro em todos os cenários, ela é

especialmente adequada para projetos com uso mais abrangente de recursos heterogêneos.

Os resultados demonstram que, além de adotar uma metodologia consciente das

restrições para orientar a exploração do espaço de projeto no sentido de atingir otimiza-

ções específicas, uma exploração automatizada de múltiplas técnicas pode proporcionar

resultados ainda melhores. Dado que diferentes técnicas de AC proporcionam ganhos

diferentes dependendo do rigor das restrições para cada métrica de projeto considerada

para otimização, a heurística empregada deve ser capaz de se concentrar na exploração

da melhor combinação de técnicas de AC para cada cenário específico relacionado à apli-

cação alvo. Embora os projetistas possam gerenciar o espaço de projeto definindo as

técnicas de AC a serem exploradas, torna-se claro que selecionar apenas a melhor técnica

ou usar ferramentas AHLS que implementam tais técnicas para um cenário específico não

é suficiente para otimizar os resultados. Nessa direção, fornecer uma maneira sistemática

de integrar novas técnicas ao fluxo padrão de AHLS é crucial para oferecer uma explo-

ração automatizada de otimizações únicas para as restrições e aplicações alvo. Portanto,

como demonstrado nos experimentos, uma metodologia de projeto AHLS consciente das

restrições capaz de explorar automaticamente múltiplas técnicas AC é uma opção promis-

sora para otimizar hardware sintetizado a partir de especificações de projeto de alto nível,

especialmente quando se busca otimizações em múltiplas métricas de projeto.

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation and Challenges
	1.2 Thesis Contributions

	2 Background
	2.1 Field-Programmable Gate Arrays
	2.2 High-Level Synthesis
	2.3 Approximate Computing
	2.3.1 Applications and Principles
	2.3.2 Software-level Techniques
	2.3.3 Architecture-Level Techniques
	2.3.4 Circuit-Level Techniques
	2.3.5 Current Challenges

	3 Related Work
	3.1 Approximate Logic Synthesis
	3.2 Approximate High-Level Synthesis
	3.3 Open Challenges Addressed by this Thesis

	4 Design Methodology
	4.1 Methodology Overview
	4.1.1 Optimization Problem
	4.1.2 Design Space Exploration Overview

	4.2 Approximate Computing Techniques
	4.2.1 Variable-to-Constant Substitutions
	4.2.2 Bit-width Reduction
	4.2.3 Loop Perforation
	4.2.4 Exploring Further Optimizations

	4.3 Design Metrics Evaluation
	4.3.1 Resource Savings
	4.3.2 Execution Time Savings
	4.3.3 Error Measurement

	4.4 GRASP-based Optimization Heuristic
	4.4.1 Randomized Greedy Construction Procedure
	4.4.2 Local Search Procedure
	4.4.3 Fitness Function
	4.4.4 Generality and Scalability

	5 Experimental Setup
	5.1 Design Flow Implementation
	5.2 Benchmarking Applications

	6 Constraint-Aware Heuristic Results
	6.1 Techniques Performance for Different Constraints and Applications
	6.2 Impact of Constraint Awareness
	6.3 Summary of Results

	7 Multi-Technique Heuristic Results
	7.1 Comparing the Single-Technique and Multi-Technique Approaches
	7.2 Heuristic Running Time and Error Variation for Different Values of K
	7.3 Techniques Contribution for Different Constraints and Applications
	7.4 Summary of Results

	8 Conclusion
	8.1 Published Works
	8.2 Future Works

	References
	Appendix A — Extended Abstract in Portuguese (Resumo Estendido em Português)
	A.1 Introdução
	A.2 Motivação e Contribuições
	A.3 Resultados Experimentais

