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ABSTRACT

Zeek is an Intrusion Detection System (IDS) based on events and policy interpreters. Cur-

rently, these events are triggered in a general-purpose CPU, which analyses all incoming

packets. This process has become increasingly prohibitive with the rapidly increasing

network speeds. In this work, we propose an automatic code generation mechanism to

offload IDS operations to Programmable Data Planes (PDP). The mechanism is capable

of identifying the requirements for the desired set of Zeek Scripts, and, using reusable

templates, automatically generates code for the P4 switch and a Zeek Plugin. Templates

specify how a Zeek Event is offloaded to PDPs and can be reused for different scripts

that rely on the same events. The generated code offloads the initial packet filtering and

event identification procedure using hardware acceleration. The existing IDS engine then

analyzes and processes the triggered events. The proposed solution results in low de-

velopment costs demanded of a human operator while substantially alleviating resource

usage by Zeek.

Keywords: Zeek. P4. Programmable Data Planes. Security. Code Generation.



Um Mecanismo de Geração Automática de Código para Permitir Sistemas de

Detecção de Intrusão em Velocidades de Planos de Dados: Um Estudo Baseado no

Zeek

RESUMO

Zeek é um Sistema de Detecção de Intrusão (IDS) baseado em eventos e interpretadores

de políticas. Atualmente, esses eventos são processados em um processador de propó-

sito geral, que analisa todos os pacotes recebidos. Esse processo tornou-se cada vez mais

proibitivo com o rápido aumento das velocidades das redes. Neste trabalho, propomos um

mecanismo de geração automática de código para descarregar operações IDS para Planos

de Dados Programáveis (PDP). O mecanismo é capaz de, usando templates reutilizáveis,

identificar os requisitos para o conjunto desejado de scripts Zeek e gerar automaticamente

código para o switch P4 e um Plugin Zeek. Os templates especificam como um evento

Zeek é descarregado para PDPs e podem ser reutilizados para diferentes scripts que de-

pendem dos mesmos eventos. O código gerado descarrega a filtragem inicial de pacotes

e a identificação de eventos usando aceleração de hardware. O mecanismo IDS existente

analisa e processa os eventos acionados. A solução proposta resulta em baixos custos de

desenvolvimento exigidos de um operador humano enquanto alivia substancialmente o

uso de recursos pelo Zeek.

Palavras-chave: Zeek. P4. Planos de Dados Programáveis. Segurança. Geração de

Código.
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1 INTRODUCTION

In this globally connected world, more people depend daily on the Internet for

many tasks of their lives. This creates two challenges: rapidly increasing network speeds

and traffic, and more attack targets for malicious actors, resulting in a rise in computer

security incidents and an increase in the difficulty of detecting these attacks. According to

Akamai Technologies (2022), ransomware attacks caused 20 billion US dollars of damage

globally in 2021. Netscout (HUMMEL; HILDEBRAND, 2021) estimates the potential

revenue loss from Distributed Denial of Service (DDoS) extortion of Voice-over-IP (VoIP)

providers was between 9 and 12 million US dollars in that same year.

Various systems are used to mitigate and detect attacks, including Intrusion Detec-

tion Systems (IDS) and Network Intrusion Detection Systems (NIDS), e.g., Zeek (PAX-

SON, 1999), Suricata (The Open Information Security Foundation, 2022), and Snort

(Cisco Systems, 2022). These systems have one common problem: the difficulty of de-

tecting attacks and threats with high accuracy and high performance, especially given the

large volume of data modern network infrastructures are capable of transmitting (at high

rates). The root of the problem lies in the type of hardware architecture these systems use,

which are general-purpose servers that require copying data from the network to mem-

ory and then manipulating it. This is incompatible with the speeds we observe today. In

this scenario, together with the emergence of Software Defined Networks (SDNs) and

Programmable Data Planes (PDPs), there is an opportunity to execute intrusion detection

tasks directly in Programmable Forwarding Devices (PFDs) at line rate. For instance, Ilha

(2022) uses the benefits of PDPs to offload specific IDS tasks within the scope of some

case studies. This approach, although functional, needs to be manually extended for each

additional monitoring scenario, which requires the work of skilled software developers.

In this work, seeking to broaden the range of IDS tasks we can delegate to a Pro-

grammable Data Plane, we propose an approach that facilitates the offloading of specific

tasks, typically executed in general-purpose processors, to a PFD. More importantly, our

design enables fully-automated integration between IDS and PDP, thus eliminating the

need for a network operator to develop an ad-hoc approach for each specific offloading

task. To accomplish this, we propose additions to the RNA Framework by introducing a

mechanism that can parse Zeek Scripts, identify the operations to be offloaded, and, based

on templates, generate a complete approach to offload a set of Zeek scripts to PDPs.
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The remainder of this manuscript is organized as follows: in Chapter 2, we briefly

describe the “anatomy” of the attacks studied in this project, the Zeek Network Secu-

rity Monitor System and Programmable Data Planes, focusing on the P4 programming

language. In Chapter 3, we present the architecture our project is based on, the Reconfig-

urable Network Analytics framework (ILHA, 2022), and describe some of our additions

to that framework. In Chapter 4, we propose an automatic code generation mechanism

for offloading Zeek Scripts to PDPs. In Chapter 5, we describe some implementation

aspects of our prototype and evaluate the capabilities and performance of our approach.

To finalize, in Chapter 6, we conclude the text by summarizing the results and presenting

suggestions for future work.
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2 BACKGROUND

In this chapter, we briefly describe the main fundamental concepts and technolo-

gies related to this work. Specifically, we describe the monitoring scripts we considered

during the design and evaluation, the Zeek network security monitoring system, and the

P4 language for Programmable Data Planes (PDP).

2.1 Monitoring Scripts

In this section, we describe the monitoring scripts used to later evaluate our pro-

posals of Chapters 3 and 4. They were chosen based on simplification assumptions we

made to limit the scope of the project. The main assumption was that monitoring scripts

should not require stateful tracking, e.g., it should not be required to track if TCP connec-

tions have been successfully established.

FTP Bruteforce Attack

FTP Bruteforce attacks are a common method of gaining unauthorized access to

FTP servers. This attack consists of multiple and coordinated attempts to log on to a

server, each time trying a new potential password. An attacker tries all or various com-

binations of passwords until one of them is accepted, effectively discovering someone’s

password (ADAMS, 2019).

NTP Monlist

An NTP Monlist attack is an amplification reflection-based volumetric DDoS at-

tack, which exploits vulnerable Network Time Protocol (NTP) servers to attack other ser-

vices. Using IP-spoofed NTP queries, an attacker can lead exploited servers to generate a

large amount of traffic to a victim and overload its network (Cloudflare, Inc., 2022).

ICMP Pingback Tunnel

Pingback is a name given to a malware that uses ICMP messages to tunnel com-

munications between infected hosts and command and control (C2) servers. This gives

attackers a covert communication channel between C2 servers and infected hosts. Ana-
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lyzing network traffic enables network operators to identify compromised hosts and block

the operation of the malware (TAVARES, 2021).

Traceroute

Traceroute, differently from the above-mentioned attacks, is not an attack but a

network diagnosing tool. It can determine, using multiple low-TTL packets, the route a

packet took to reach a destination (GUPTA, 2021). Even not being an attack, we mention

traceroute here because it will be one of the monitored behaviors in our evaluation in

Chapter 5.

2.2 The Zeek Network Security Monitoring System

A Network Intrusion Detection System (NIDS) is a system that monitors a com-

puter network and is capable of generating alerts for network operators (Science Direct,

2022). These alerts help to prevent future and ongoing cyberattacks. Currently, there are a

number of different NIDS solutions, which include Snort (Cisco Systems, 2022), Suricata

(The Open Information Security Foundation, 2022), and Zeek (The Zeek Project, 2022b).

We focus on Zeek because of its open-source nature, and architecture focused on exten-

sibility and performance. Furthermore, it was the selected NIDS by Ilha (2022) for the

original RNA, which is the basis of our approach described in Chapters 3 and 4.

The Zeek Network Security Monitoring System (The Zeek Project, 2022c) is an

Intrusion Detection System originally named Bro, which was proposed by Paxson (1999).

Zeek is an IDS focused on high-speed monitoring, real-time notification, extensibility,

and clear separation between mechanism and policy (PAXSON, 1999). It was developed

in a layered architecture shown in Figure 2.1, which also enables the distribution of its

processing to account for high throughput networks. The arrows represent incoming data,

and the dotted lines represent control and management communication.

The first component of this architecture, from a bottom-up perspective, is the

Packet Capture. The Packet Capture layer filters incoming packets from the network,

ensuring only packets of interest reach the next layer, which is the Event Engine (EE).

The Event Engine introduces semantic value to packets, translating them into events. The

final layer, the Policy Script Interpreter (PSI), receives the event stream produced by the

EE and interprets these events, generating logs and real-time alerts, or notices, as Zeek

calls them. We now describe in more detail each component.
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Figure 2.1 – Zeek Architecture
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Policy Script Interpreter
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Event Engine
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Source: Ilha (2022), adapted from Paxson (1999)

Packet Capture

The Packet Capture layer provides an abstraction layer between the network and

the Event Engine. The original Zeek proposal (PAXSON, 1999) was composed only

by the libpcap library (JACOBSON; LERES; MCCANNE, 1994). With this extra layer,

Zeek is isolated from link-layer technologies, has improved compatibility with other Unix

systems, and becomes able to read from packet traces saved as PCAP files.

Event Engine

The Event Engine is the most important layer for our framework (presented in

Chapter 3) and where our solution is executed. It is responsible for parsing incoming

packets and generating events corresponding to those packets. As an example, we cite

parsing an incoming ICMP Echo Request and triggering the icmp_echo_request

event with all the required structured information associated with it.

The internal structure of the Event Engine, as explained by Ilha (2022), can be

divided into four stages: acquisition, packet analysis, session analysis, and application



17

layer parsing. In the acquisition stage, packets sent by the Packet Capture component are

received and forwarded to the next stage. In the packet analysis stage, the Packet Analysis

Framework (PAF) receives the packets as Protocol Data Units (PDUs) and processes each

layer of the packet. In this stage, where lower-layer protocols are analyzed, there is still

a clear definition of headers and payloads, and the headers usually contain information of

what is the next layer’s protocol. Using this information, the PAF processes each header,

extracting information and delivering its payload to the next layer until the transport layer

is reached. Each analysis layer in the Packet Analysis Framework is called an Analyzer.

Developers can also create new Analyzers and use them to process new protocols and

create different events.

Still in the Event Engine, the session analysis stage creates a Connection object

that, despite the name, does not only represent a connection as in network terminology

but also flows and sessions, for example, ICMP Echo Requests and Replies. This ses-

sion is then stored and used to associate requests and replies, facilitating parsing for the

next stage. After the session has been created, the application layer parser selects pos-

sible application layer analyzers based on well-known port numbers. Since services are

not strictly bound to specific ports, the application layer parser is able to dynamically

identify application layer protocols using Dynamic Protocol Detection (DPD), which was

introduced by Dreger et al. (2006). Throughout the whole execution of the Event En-

gine, it generates events that have semantic value, and that will be handled by the Policy

Script Interpreter (PSI). These events vary from lower-level events, such as a TCP con-

nection established, with the connection_established event, up to application-

layer protocols, for example, an FTP Request and Reply, represented respectively by the

ftp_request and ftp_reply events.

Policy Script Interpreter

The Policy Script Interpreter is an event-driven script interpreter. It processes

the events that were triggered by the Event Engine using scripts written in a domain-

specific language called ZeekScript. To process events, scripts define event handlers,

similar to functions that process the events to generate logs and alerts. Zeek comes with

multiple built-in scripts, such as those for FTP Bruteforce detection, traceroute detection,

and others. Users can also write scripts and run their policies.
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Candidate Operations for Offloading

The Zeek Network Monitoring System, as described above, has three different

components that could be considered for offloading. Some of those components are more

suitable than others to be offloaded to Programmable Data Planes. The Policy Script In-

terpreter requires interpretation and text parsing capabilities, which, while not something

very complex, are demanding and are not able to execute in the specific processing capa-

bility of a PDP device. Unlike this component, the Packet Capture and the Event Engine

perform tasks well suited for the type of processing executed in Programmable Data Plane

devices. As Ilha (2022) describes in his thesis, the best candidate operations for PDP of-

floading are those related to the Packet Capture and Event Engine layers. In these layers,

the best suitable operations are parsing protocols up to the transport layer (Ethernet, IPv4,

UDP, and others), packet filtering, and lightweight packet inspection.

2.3 Programmable Data Planes and the P4 Language

Programmable Data Planes emerged as a solution to program Software Defined

Network (SDN) devices even further, allowing network operators to define protocols and

network flow, effectively programming them. Domain-specific languages (DSLs) were

developed to program these devices, two notable mentions are POF (SONG, 2013) and

P4 (BOSSHART et al., 2014). In this project, we focus on P4.

P4 stands for Programming Protocol-Independent Packet Processing. It was pro-

posed by Bosshart et al. (2014) and is a domain-specific language for programming net-

work devices. P4 provides an abstraction for packet parsing and processing by providing

a generalized forwarding model (CORDEIRO; MARQUES; GASPARY, 2017). It is also

target-independent and can be executed in different types of switches.

A P4 program is organized into three sections: (a) data declaration, (b) parser

logic, and (c) match+action tables and control flow (CORDEIRO; MARQUES; GAS-

PARY, 2017). These sections can be seen in Figure 2.2. The data declaration section

defines all required data structures: the headers and the meta-data. These structures are

mapped to a header and meta-data bus, which is used throughout the whole pipeline. The

definition of a P4 structure is similar to a struct definition in C, i.e., a structure can con-

tain multiple data fields, and each field has a type and a length. Differently from C, whose

types have sizes expressed in bytes, P4 type sizes are defined by the number of bits. The
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parser logic specifies how packets are parsed and deparsed. This definition uses a state

machine to define parsing states, progressing from one protocol to another. Finally, the

match+action tables and control flow defines the control flow of the ingress and egress

pipelines. In this section, it is possible to define routing rules and forward packets to

specific ports. This is done using match+action tables, which match specific header field

values to actions to be executed.

Figure 2.2 – P4 Forwarding Model

Source: Cordeiro, Marques and Gaspary (2017), adapted from Kim and Lee (2016).
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3 RECONFIGURABLE NETWORK ANALYTICS

In this chapter, we present an extended version of the Reconfigurable Network

Analytics (RNA) framework, an approach for offloading some of Zeek’s operations dis-

cussed in Figure 2.2 to programmable forwarding devices compatible with P4. This pro-

posal enhances the RNA framework proposed by Ilha (2022). Since our approach adds

important capabilities to the original RNA, we describe the solution resulting from this

incremental step, highlighting the new functionality.

Figure 3.1 – RNA Framework

Zeek - Network Security Monitor

Policy Script Interpreter

Event Engine

RNA Host Engine

Configuration 
and Control

RNA Event Handler

RNA Translator

Programmable Forwarding Device

RNA Switch Engine

mRNA 
Messages

RNA Splicer

RNA Transcriber

RNA Parser

RNA Manager

Source: adapted from Ilha (2022)

Figure 3.1 illustrates the RNA framework. It consists of two high-level compo-

nents: the RNA Host Engine, which executes in one of Zeek’s worker nodes inside the

IDS cluster, and the RNA Switch Engine, which is executed in a P4-programmable switch.

Both components work together to offload packet analysis from Zeek to a programmable

forwarding device. The RNA Switch Engine is able to parse packets and identify some of

their characteristics, which are then summarized and sent to the RNA Host Engine. These

summarized packets are called mRNA messages. When the IDS receives an mRNA mes-
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sage, it is first processed by our Host Engine. It then converts the summarized message

into Zeek’s native structures, which can then be forwarded to Zeek’s normal processing

pipeline. This procedure allows us to bypass some operations that would be costly (such

as protocol parsing and state tracking) and deliver this information closer or even directly

to the Policy Script Interpreter (PSI, Figure 2.2) without disturbing Zeek’s internal infor-

mation flow. By doing so, we ensure no change is required on existing scripts running on

the PSI.

In the original concept of RNA, depending on the IDS scripts chosen to be mon-

itored by the operator, it is necessary to manually develop the additional software to be

executed both by the Host Engine and the Switch Engine. This ad-hoc development pro-

cess quickly becomes impractical when we increase the number of desired scripts to be

offloaded. For this reason, we propose an automatic code generation mechanism, de-

scribed later in Chapter 4, which allows RNA to be a modular solution, where varying

combinations of Zeek scripts can be chosen to be monitored without the need to write

new software by hand. Before detailing this automated process, we briefly review the

operation of RNA components.

3.1 RNA Components in a Nutshell

Using Figure 3.1 as a reference, we present the high-level components of the RNA

framework and their functionality. We start with the RNA Host Engine, since it is the

managing part of the framework, and then we describe the RNA Switch Engine.

The Host Engine unfolds into three components. The RNA Manager is the con-

trolling component of the deployment, which first configures the P4 switch, sets up a

monitoring session, and loads all P4 code that is required to execute the offloaded tasks.

After configuring the switch, now in the Host Engine, it registers into Zeek all RNA

Translators (one per protocol of interest), so they receive mRNA messages. Translators

are components responsible for waiting for such mRNA messages and translating them to

Zeek native structures, and using those structures to trigger events, which are then con-

sumed by the running scripts. The RNA Event Handler is another component that runs on

the PSI and is initialized by the RNA Manager. It is designed as a debugging and logging

component, capturing and handling events generated by the Translators.

The RNA Switch Engine is the program that executes in our P4-compatible pro-

grammable forwarding device. It has two components, and we will be following the route
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of an incoming packet to explain them. The first component that processes a packet is the

RNA Parser. It parses and extracts headers from each protocol, from the link layer, up

to the application layer if required. After all the headers have been extracted, the packet

enters P4’s ingress pipeline, where the RNA Transcriber is executed. It extracts useful

information from the packet and sets metadata that will later be used to build our summa-

rized message while filtering some undesired packets. Having all the required metadata

and going into P4’s egress pipeline, the RNA Splicer builds and sends our summarized

message, the mRNA, to the Host Engine with all information it may require to trigger a

native Zeek Event.

Another important structure is the mRNA Message. It is a summary of a packet

containing all the essential information that the Switch Engine extracted from it. Send-

ing an mRNA message is more efficient than sending a whole packet because the original

packet contains headers that would still need to be parsed, information that, in some cases,

is not necessary and has not been validated. In the summarized message, all information

from L2 up to the L7 layer is gathered, filtered, and, in some cases, even formatted ac-

cording to Zeek’s native structures, saving Zeek from doing these operations on its own.

The information-gathering process still needs to happen, but it is offloaded to the Switch

Engine, which runs in a purpose-built device, making it much more efficient for this task.

So the more information the switch is able to extract, the less Zeek has to do.

In an ideal world scenario, we would like to extract all information that Zeek needs

to trigger an event, but sometimes that is not possible. Zeek’s internal structures track

connection states and use detection heuristics, which, because of P4’s limited processing

power for general tasks, we are unable to implement. This requires the mRNA message

to be modular, allowing us to send, together with it, the parts of the packet that could not

be further processed in the switch. This ensures that P4 extracts all information it can,

leaving the rest for Zeek to finish analyzing.

3.2 Detailed Framework Design

This proposed version of the RNA framework, differently from the original frame-

work, goes further and specifies another level of subcomponents that make the framework

adaptable to variable situations with varying sets of monitoring scripts. Before explaining

the inner details of the framework, we will introduce two concepts that are fundamental

for its understanding and will serve later as inputs for our code generator mechanism.
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Those concepts are Offloader and Protocol Template:

• An Offloader Template is a set of files and settings that allows RNA to offload the

monitoring of new protocols and the generation of corresponding events of interest.

Like the idea of a module, it can be added and removed to the deployment without

needing to develop new software or change existing components.

• A Protocol Template is a set of files and settings that allows RNA to parse a new

protocol. An Offloader requires a set of Protocol Templates to be able to offload and

parse the protocols that are of interest to Zeek scripts chosen by a network operator.

To explain the details of the architecture behind RNA, presented in Figure 3.2, we

use the example of an incoming ICMPv4 Echo Request ("ping") packet and its trajectory

through a deployed instance of RNA. In this hypothetical deployed system, the network

operator also chooses other scripts that monitor protocols such as ARP, TCP, and UDP,

which are not triggered by this specific incoming ping packet.

3.2.1 Switch Engine

The RNA Parser

As the packet arrives at the P4 switch, it is first processed by the programmable

parser. The RNA Parser component is a state machine with all the parsers the Offloaders

may need. Each one extracts protocol-specific header fields from the packet and forwards

the payload to the next parser. Each protocol state and parsing instructions are provided

by the Protocol Template of that specific protocol.

In our example, shown in Figure 3.3, the first parser is the Ethernet one, extracting

its header, followed by the IPv4 and ICMP parsers. In the same figure, we also display

other parser states that were not reached in this example, such as ARP, TCP, and UDP,

each one provided by its own template. These unused parser states are displayed by dotted

lines, exemplifying where they would be linked in the general parser. After the packet’s

headers are parsed, they are sent to the ingress pipeline, where the RNA Transcriber will

process the incoming data.
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Figure 3.2 – RNA Framework - Detailed view
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RNA Transcriber

In the RNA Transcriber, as shown in Figure 3.2, there are two types of subcompo-

nents, namely, the Protocol Preprocessors and the Offloader Triggers, both of which may

have multiple instances. We start explaining the Protocol Preprocessors since they are the

first subcomponents to be executed inside this component.
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Figure 3.3 – Parsing States - ICMP Parsing Example
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The Protocol Preprocessors are functions that every Protocol Template may exe-

cute to extract protocol-related information from the packet and save it to the metadata

structure. This subcomponent is optional, and every Protocol Template may have only

one preprocessor. In our example, the preprocessor extracts the ICMP type field from

the header and saves it to the metadata.

The next subcomponents to be executed in the Transcriber are the Offloader Trig-

gers, which are conditions that identify which Offloader should be triggered. Each of

these conditions is checked, and the first Offloader to have its trigger condition valid is

marked as the triggered one in the packet’s metadata. In our example of an ICMP Echo

Request, our trigger condition is icmp.type = 8. This ensures the Offloader ICMP

Echo Request is triggered when a ping packet has arrived.

After a valid Offloader is found, a copy of this packet is created. Using this cloned

packet, the switch will be able to construct the mRNA message. The original packet will

follow its flow and be delivered to the originally intended destination.



26

RNA Splicer

The RNA Splicer is executed after the packet leaves the ingress pipeline and it

enters the egress pipeline1. The RNA Splicer is composed of three different types of

Splicers: the RNA Base Splicer, the General Offloader Splicer, and the Offloader Splicers.

The RNA Base Splicer constructs the base header for the mRNA message, the first

layer of the RNA protocol. This is a simple header that contains the RNA version and the

RNA message type. We decided to use this simple header to allow for more expandability

in the future, for example, adding debugging and other types of messages.

The next Splicer, The General Offloader Splicer, constructs a header that contains

general information, which all Offloaders share, and is executed for every Offloader. This

information includes, for example, source IP, destination IP, L3, and L4 protocols, and

triggered Offloader. In our example of the ICMP Echo Request, the General Offloader

Splicer sets both source and destination IPs, the L3 protocol to IPv4, the L4 protocol to

ICMP, and the offloader type to ICMP Echo Request.

The third type of Splicer is the set of Offloader Specific Splicers. These are

splicers that every Offloader has. Each Offloader Splicer constructs the header with the

extra information required to execute its functionality, which was not yet present in the

General Offloader Splicer. In our example, the ICMP Echo Request Splicer will construct

a header with information about the ICMP ping packet: icmp.type, icmp.code,

icmp.sequence, and icmp.id.

After every Splicer has finished constructing its headers, the mRNA message will

be ready. The payload and headers, which together form the mRNA, are then merged and

sent to Zeek’s monitoring interface, effectively finishing the processing on the Switch En-

gine. From now on, Zeek’s Translators will work to support the monitoring infrastructure.

3.2.2 Host Engine

In this section, we describe how the Host Engine receives the mRNA messages

and uses them to trigger the offloaded events to which the monitoring scripts are sub-

scribed. Figure 3.2 shows that the first components of the RNA Framework to receive

the mRNA message are the Translators. Before any RNA Analyzer (Translator) receives

1Since we are explaining the architecture behind RNA, we are not considering the inner workings of a
programmable data plane device, where a buffer connects the ingress and egress pipelines.
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its packet, the packet is first received by Zeek’s Ethernet Analyzer. When analyzing the

packet, the previously registered mRNA ethertype code will ensure all mRNA messages

are forwarded to our RNA Analyzer, as shown in Figure 3.4.

RNA Translator

The RNA Translator, similar to the RNA Splicer, is composed of three different

types of Analyzers, which are subcomponents responsible for parsing each layer of the

mRNA message. We use Figure 3.4 to explain how the analyzers are connected. First,

it is important to note that Analyzers with a gray background are Zeek-provided, and

Analyzers with a dashed border are Analyzers present in our deployment, but they are not

invoked in our ICMP ping packet example (explained at the beginning of Section 3.2).

Figure 3.4 – Analyzers - ICMP Translation Example
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28

The RNA Analyzer is the first Analyzer of the RNA architecture to receive the

mRNA packet. As explained in the previous section, the first layer of the mRNA message

format has a generic header that indicates only the protocol version and the message

type. This is the header that is extracted by the first Analyzer. In the case of this project,

the only message type we use is the Offloader type2. Using our previously described

example of the ICMP ping, the resulting mRNA packet will have its type set to Offloader,

forwarding it to the RNA Offloader Analyzer.

Next, the RNA Offloader Analyzer is the second Analyzer of our RNA imple-

mentation to receive the mRNA packet. It parses the header generated by the General

Offloader Splicer with Offloader generic information. This Analyzer is also responsible

for delivering the mRNA packet and its payload to the Offloader-specific Analyzer after

extracting its layer’s header by using the Offloader type code. In our example, the next

Analyzer to be executed is the ICMP Echo Request Analyzer.

The last Analyzer to be executed is the Offloader Specific Analyzer. This is a

subcomponent every Offloader must have. It is responsible for converting the received

information to Zeek’s native structures. It can then trigger one or more desired events,

which will be consumed by the monitoring scripts. In our example, the ICMP Echo

Request Analyzer is going to trigger Zeek’s native icmp_echo_request event. By

triggering this event, we ensure all scripts that subscribe to it will perform exactly as if

Zeek had processed the ICMP ping request entirely in its own built-in infrastructure.

As previously explained in Section 3.1, an Analyzer directly triggering a Zeek

Event is the ideal case, but not always possible. In the cases this is not possible, the

Analyzer has the option to extract the mRNA headers and forward the rest of the payload

to another Zeek-provided Analyzer. This other Analyzer, which is already part of Zeek’s

infrastructure, can then analyze the packet and trigger the proper events. This is also

called the fall-back mode by Ilha (2022).

2There are actually three types of Offloaders, but for simplification purposes, in this description, we
present the Offloader type as being one unique type.
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4 AUTOMATIC CODE GENERATION FOR RNA

In this chapter, we present a mechanism for automatic code generation for the

RNA Framework. This enables network operators to deploy the framework without hav-

ing the experience and knowledge to develop software for Zeek or programmable for-

warding devices (P4).

The code generation mechanism uses two sets of inputs: the Zeek scripts, whose

events should be offloaded, and a pool of Protocol Templates and Offloader Templates

(whose concepts we introduced in Section 3.2). These constructs are used as sources of

templates and resources in order to implement the software required to offload the events

subscribed by the desired scripts. We also propose the generation of a single Zeek Plugin

package, which, when initiated, automatically deploys the code for both the Host Engine

and the Switch Engine (instead of having two separate deployable packages).

4.1 Overview

In this section, we present an overview of the RNA Code Generation Mechanism,

starting with its inputs and expected output, which is illustrated in Figure 4.1. The main

input for the mechanism is the set of Zeek scripts, whose monitoring the network operator

is interested in. These scripts need to be provided in their entirety, so we can identify the

events to which they subscribe.

The second set of inputs is what we call templates, which can be either Protocol

Templates or Offloader Templates. They are a pool of known implementations of proto-

cols and events that can be used to offload scripts. A template being present in this pool

does not mean it will be included in the final output, but it means it is available in case its

implementation is needed by a script.

The desired output of our mechanism is a single Zeek Plugin following the struc-

ture previously presented in Section 3.1 and illustrated in Figure 3.2. This Zeek Plu-

gin, when executed, should: configure the switch by creating a mirroring session for the

Zeek monitoring system and deploying the P4 code; and configure Zeek by registering all

Translators in Zeek’s Event Engine and loading the RNA Event Handler. This eliminates

the need for the operator to coordinate the deployment of two separate systems, i.e., the

RNA Host Engine and the RNA Switch Engine.

To be able to execute this task, the first objective of the code generation process
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Figure 4.1 – RNA - Code Generation Mechanism
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is to analyze all the provided Zeek scripts and identify which are the observed events in

every script. Once this pool of events is known, we select Offloaders (from the templates

pool) that are capable of offloading those events. This step is finished and succeeds if we

find at least one Offloader for every event.

After all events and Offloaders have been selected, the mechanism must ensure

all templates for the protocols required by these Offloaders are available. The Protocol

Templates are required so the Offloaders can interpret the desired headers. After all this

knowledge model is complete, the mechanism generates all required source files.

4.2 Detailed Mechanism Design

The operation of our RNA Code Generation Mechanism can be described in three

different stages. The first stage identifies the events that our input scripts subscribe to.

The second stage is building our knowledge model, which receives as inputs all Protocol

Templates, Offloaders, and events of interest, that the network operator requested to be

offloaded. We call this knowledge model ProtocolGraph. The last stage is the actual code

merge and generation process using this structured and validated knowledge model from

the previous step. We start explaining the first stage of our mechanism, i.e., extracting the

subscribed events from the Zeek Scripts.
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4.2.1 Event Extraction

To identify which events a Zeek Script subscribes to, we first need to parse the

script as a whole. The mechanism does it using Zeek’s provided grammatical definition.

After parsing all the scripts, we search the Abstract Syntax Tree for event handlers, return-

ing their event identifiers. Figure 4.2 illustrates a fragment of a Zeek Script that detects

FTP Bruteforce attacks. For this particular example, the mechanism would identify the

event handler declaration on line 20, which is the ftp_reply event.

Figure 4.2 – Section of a Zeek Script

1 ##! FTP brute-forcing detector, triggering when too many rejected usernames or
2 ##! failed passwords have occurred from a single address.
3

4 @load base/protocols/ftp
5 @load base/frameworks/sumstats
6

7 @load base/utils/time
8

9 module FTP;
10

11 export {
12 # Hidden to enhance readability
13 }
14

15

16 event zeek_init() {
17 # Hidden to enhance readability
18 }
19

20 event ftp_reply(c: connection, code: count, msg: string, cont_resp: bool) {
21 local cmd = c$ftp$cmdarg$cmd;
22 if ( cmd == "USER" || cmd == "PASS" ) {
23 if ( FTP::parse_ftp_reply_code(code)$x == 5 ) {
24 SumStats::observe("ftp.failed_auth", [$host=c$id$orig_h], [$str=cat(c$id$resp_h)])

;
25 }
26 }
27 }

Source: the author (2022).

In this stage, the most important information to be forwarded to the next step is

the identifiers of the events we want to offload. Those will indicate the requirements of

our deployment. The name of the scripts are also passed to the knowledge model as a

logging and debugging asset but are no longer essential for the final functionality.
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4.2.2 Knowledge Model Builder

The core logic behind the implementation of our RNA Code Generation Mech-

anism relies on a structure we call ProtocolGraph. This is a graph structure that stores

all protocols required for our events of interest. The Offloaders are linked to their final

protocol layer in the graph, generating, in the end, a structure as presented in Figure 4.3.

This structure is a graph, with a node we assign as root, in most cases, the ETHERNET

protocol. The other protocols are linked to their respective parents. The Offloaders are

linked to the protocol they analyze, which does not need to be a leaf protocol.

Figure 4.3 – Knowledge Model - Protocol Graph
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The procedure to generate and validate the ProtocolGraph is outlined in Algo-

rithm 1. The pseudo-code will be used to describe and guide the explanation of our

method, and we will refer to the lines according to their respective roles.
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Algorithm 1: Knowledge Model Build Algorithm
Input: templates, events, forced_offloaders
Output: graph

1 VALIDATECOMPONENTLIST(templates)

2 protocols← FilterListByType(templates, ProtocolTemplate)
3 offloaders← FILTERLISTBYTYPE(templates, OffloaderTemplate)

4 offloaders← REQOFFLOADERS(offloaders, events, forced_offloaders)

5 if offloaders is empty then
6 raise exception ▷ nothing to be offloaded

7 root← FINDROOTPROTOCOL(protocols)
8 graph← LINKGRAPH(root, protocols)

9 if HASCYCLES(graph) then
10 raise exception ▷ protocol graph has cycles

11 protocols← REMOVEUNREACHABLEPROTOCOLS(graph, protocols)
12 ATTACHOFFLOADERS(graph, offloaders)

13 TRIMUNUSEDPROTOCOLS(graph)

14 SETPROTOCOLDEPTHS(graph)
15 SORTPROTOCOLS(graph)
16 SORTOFFLOADERS(graph)
17 SETOFFLOADERSUIDS(graph)

18 return graph ▷ successful graph generation

Template loading and filtering

As the mechanism is executed, the first step is to load all templates and validate

their versions, files, and requirements. All the templates are loaded and stored in a list,

even if they are not used later in the final model. After they are loaded, we separate them

between Protocol Templates and Offloader Templates (Algorithm 1, lines 1-3).

After all offloader templates are validated, we select what offloaders are required

(line 4). This selection process is based on two parameters: the event identifiers (pro-

vided by the Event Extraction stage) and a list of “forced” offloaders (provided by the

network operator when invoking the code generator mechanism). The first offloaders to

be assigned as required are the ones explicitly requested by the network operator. Next,

we select an offloader for each event, ensuring all events are covered. If, at the end of
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this process, one or more events do not have offloaders associated with them, the process

fails and is aborted. Otherwise, we proceed. We then check if the list of Offloaders is not

empty and proceed to the next section (lines 5-6).

Graph building

After the templates have been validated and the desired Offloaders have been se-

lected, the mechanism needs to find the root protocol. If none or more than one root

Protocol Template is found, an exception is raised, and the process is terminated (line 7).

Each Protocol Template has its own identifier, which is a unique string, as well as

the identifiers of the parent protocols. Using these identifiers, the Protocol Templates are

linked to their parent, making sure the links are all valid (line 8), for example, the ICMP

protocol is linked to its parent protocol, the IPv4. After linking, the algorithm validates

there are no cycles on the protocol graph (lines 9-10). The reason the protocol graph can

not have cycles is due to limitations on the algorithm’s P4 implementation, where protocol

headers can not be parsed twice for a single packet. By ensuring no cycles are present in

the ProtocolGraph, we ensure protocol headers can only be used once. After the graph is

built, the algorithm removes all unused protocols from the protocol list (line 11).

The algorithm links all the required Offloaders to their respective protocols (line

12). If any Offloader fails to be attached to its protocol, the algorithm aborts the execution.

At this point, the ProtocolGraph is fully built, but it may have unnecessary protocols still

attached to it. These protocols that have no Offloaders attached to them or any Offloaders

attached to their child protocols are removed on line 13. It might sound strange that we

build the graph to then trim and optimize it. Since the development of this mechanism

was incremental, this is how it was originally developed, but we acknowledge it could be

further optimized.

Sorting and Prioritization

After the ProtocolGraph is fully built, the mechanism sets the last metadata that

will be needed in the code generation stage. The first metadata to be set is the protocol

depth. For each protocol, the mechanism sets protocol depth as the maximum distance of

that protocol to the root protocol (line 14). The depth is used to then sort the protocols

and their Offloaders in a list (lines 15 and 16), which will later be consumed by the code

generator. A list based on Offloader priority is also created at this time. The last step is
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to set the unique identifier (UID) for the Offloaders (line 17). This ensures the Switch

Engine and the Host Engine have the same identifier referring to the same Offloaders.

4.2.3 Code Generation

The code generation mechanism is based on a master template with blank slots,

which are filled with the generated code. The code that fills the slots of the master template

is either fully generated by the mechanism or is pulled from the protocol and Offloader

templates.

During the design of the code generation mechanism, we decided between creating

a structure similar to an AST (Abstract Syntax Tree) and fully generating the required

code. The chosen solution was to use a combination of template files, with AST-like code

generation. This ensures flexibility and ease of development, allowing the structure of the

generated files to be quickly changed, as well as the generated code.

Next, we first describe how the code is generated for the P4 switch, and then we

explain how it is generated for the Zeek Plugin. This code generation process could be, in

most parts, parallelized since it is based on the previously generated ProtocolGraph, but

we did not see the necessity to implement the parallelism at this time.

Code Generation for the Programmable Switch (P4)

The P4 code is mainly composed of three files, which are headers.p4, parser.p4,

and main.p4. We explain this structure in a bottom-up approach, starting with the headers

file. The headers file, as the name suggests, contains all the headers and data structures

required by the output program. It is generated by merging all headers provided by the

templates, which include protocol headers, mRNA headers, and Offloader specific head-

ers1, and others.

The parser.p4 file contains all the information required for parsing and deparsing

protocols. The parser, as described previously in Section 3.2, is a state machine. The

states of the parser are all generated based on the information provided by the protocol

templates. It uses the next protocol selector field to select one of the child protocols.

Using our example from Section 3.2, shown in Figure 3.3, the Ethernet parsing state

would use the ethernet.ethertype field to select either the IPv4 or ARP protocols.

1The Offloader specific headers are headers created by the Offloader Splicer, which were explained in
Section 3.2.
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When parsing our example ICMP ECHO REQUEST packet, the value of the ethertype field

would point to IPv4. Likewise, the value of the Protocol field in the IPv4 datagram

would point to ICMP.

To support protocols with variable-size headers, the template has the option to use

a custom parsing code, which replaces the default header extractor. Instead of extracting a

fixed-size header based on a (fixed-size) structure, this custom code allows the templates

to determine the received header size and parse the right amount of bits from the packet.

The main P4 file is the entry point for our P4 program. It defines the ingress

and egress pipeline control structures while also loading the headers and the parser files.

When generating the ingress pipeline, we split it into two generated sections, the protocol

preprocessors, and the Offloader triggers. The protocol preprocessors section is generated

by merging the preprocessors provided by every protocol template, which were explained

in Section 3.2. The preprocessors are each wrapped with verification to ensure the pro-

tocol is valid for that packet, and are generated in bottom-up order. Figure 4.4 shows an

example of a section of the ingress pipeline. The generated protocol preprocessors are

displayed on lines 3 - 16, where each of the preprocessors is wrapped with an if statement

to ensure the protocol is valid before executing the preprocessor.

Still in the ingress pipeline, the Offloader triggers are conditions provided with

every Offloader template and are also wrapped with a test for protocol validity. They

are sorted based on the Offloader’s priority since only one Offloader may be triggered per

packet. This is an if statement, which, when met, sets the metadata.offloader field

to the Offloader’s UID, which is defined in the ProtocolGraph. Using Figure 4.4 again as

an example, on lines 20 - 39 the Offloader triggers are defined. The trigger condition for

the NTP Message Offloader is seen on line 26. If this condition is true, the P4 switch will

set the meta.offloader_type field to RNA_NTP_MESSAGE_UID (line 27).

Still in the main.p4 file, the egress pipeline is composed of one generated sec-

tion, the Offloader splicers. This code section is composed of if statements verifying the

metadata’s Offloader identifier. In the if body, the mechanism merges the splicer code,

which is provided by every Offloader template and will be executed if the Offloader UID

matches the one in the metadata. Figure 4.5 shows an example of the splicer section of

the egress pipeline. Lines 2 and 6 verify the triggered offloader, and lines 3 - 5 and 7 -

9 are the splicer code for the FTP Message Offloader and the NTP Message Offloader,

respectively.



37

Figure 4.4 – Section of the P4 Ingress Pipeline

1 // Hidden to enhance readability
2

3 if (hdr.ethernet.isValid()) {
4 meta.protocol_l3 = hdr.ethernet.ethertype;
5 }
6 if (hdr.ipv4.isValid()) {
7 meta.protocol_l4 = hdr.ipv4.protocol;
8 }
9 if (hdr.tcp.isValid()) {

10 meta.src_port = hdr.tcp.src_port;
11 meta.dst_port = hdr.tcp.dst_port;
12 }
13 if (hdr.udp.isValid()) {
14 meta.src_port = hdr.udp.src_port;
15 meta.dst_port = hdr.udp.dst_port;
16 }
17

18 // Hidden to enhance readability
19

20 if (hdr.tcp.isValid()) {
21 if(hdr.tcp.flags.PSH == 1 && (hdr.tcp.src_port == 21 || hdr.tcp.dst_port == 21)) {
22 meta.offloader_type = RNA_FTP_MESSAGE_UID;
23 }
24 }
25 if (hdr.udp.isValid()) {
26 if(hdr.udp.src_port == NTP_PORT || hdr.udp.dst_port == NTP_PORT) {
27 meta.offloader_type = RNA_NTP_MESSAGE_UID;
28 }
29 }
30 if (hdr.icmp_echo.isValid()) {
31 if(hdr.icmp.type_ == ICMP_ECHOREPLY || hdr.icmp.type_ == ICMP_ECHO) {
32 meta.offloader_type = RNA_ICMP_ECHO_MESSAGE_UID;
33 }
34 }
35 if (hdr.icmp_ipv4_context.isValid()) {
36 if(hdr.icmp.type_ == ICMP_DEST_UNREACH || hdr.icmp.type_ == ICMP_TIME_EXCEEDED) {
37 meta.offloader_type = RNA_ICMP_CONTEXT_MSG_UID;
38 }
39 }

Source: the author (2022).

Code Generation for the Zeek Plugin package

The generation of the Zeek Plugin is much simpler than the P4 code generation.

Most of the Zeek Plugin is composed of static files, which are copied from the master

template and from the templates. The rest of the generation consists of registering the

template’s Analyzers, defining constants, and creating read me and version files.

The most important files to be generated are the main plugin file (Plugin.cc),

the main Zeek Script file (main.zeek), and the building rules (CMakeLists.txt).

The main plugin file needs to include the C++ header files and register the Analyzers. The

main Zeek Script file needs to contain instructions to load the Analyzers and bind them

to the specific Offloader UIDs, which were defined by the ProtocolGraph. To ensure

all the template’s code files are properly compiled, the mechanism needs to add all their
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Figure 4.5 – Section of the P4 Egress Pipeline

1 // CONSTRUCT OFFLOADER SPECIFIC HEADERS
2 if (meta.offloader_type == RNA_FTP_MESSAGE_UID) {
3 hdr.ftp_message.setValid();
4

5 // Hidden for clarity, splicer continues here
6 } else if (meta.offloader_type == RNA_NTP_MESSAGE_UID) {
7 hdr.ntp_message.setValid();
8

9 // Hidden for clarity, splicer continues here
10 }

Source: the author (2022).

file paths to the CmakeLists recipe. The last step in the composition of the Zeek Plugin

package is to generate the README file, which describes what the plugin does, and the

VERSION file, which contains the version of the generated plugin.

The proposed mechanism was conceived to embed the P4 code in the Zeek Plugin

package so that when the RNA Manager is initiated, the P4 code can be deployed to

the programmable forwarding device. This was not implemented in the prototype, but

we briefly describe how it could be implemented. This could be implemented by first

generating the P4 code, then compiling it, either with a P4 command or even in a Docker

container, to ensure all dependencies are met. After that, when generating the Zeek Plugin

package, the mechanism would embed the output of the P4 code compilation (a JSON file)

and generate a function to load it to the switch when the RNA Manager was initialized.
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5 PROOF OF CONCEPT AND EVALUATION

In this chapter, we present how the automatic code generation mechanism pro-

posed in Chapter 4 was implemented in a fully functional proof of concept. We also

describe how we evaluated the gains in performance and ease of development and de-

ployment for users of our framework.

To facilitate the development of this project and to keep the scope within a defined

limit, we did not use P4-compatible hardware. Instead, we used the Behavioral Model

version 2 (BMv2) software-based switch (The P4 Language Consortium, 2020) to run the

P4 code. This enabled us to develop with high agility the generation tool and to test the

development more frequently, making sure the prototype was functional.

5.1 Prototype Implementation and Deployment

In this section, we describe some implementation details of the code generation

mechanism that were not previously discussed. We divide this explanation into three sub-

sections. We first explain the structure of the Protocol and Offloader Templates, which are

two of the main inputs for our mechanism. Then we explain some of the implementation

aspects of our prototype. To finalize, we explain how the output of our mechanism, the

automatically generated code, is deployed in a virtualized network with an emulated P4

switch.

5.1.1 Protocol and Offloader Templates

The Protocol and Offloader Templates have a similar structure based on a config-

uration file. This configuration file is in the Hjson (HJSON. . . , 2022) format, which is

based on the well-known JSON format. We first explain the Protocol Templates using

the example configuration shown in Figure 5.1. Each Protocol Template needs to provide

header definitions so it may be parsed. This is done by providing the name of the header

structure and the file where it was defined (lines 13 and 12). The protocols may optionally

have a custom ingress processor and a custom parser to enable parsing of variable-size

headers, both of which were explained in Section 3.2.

To enable a Protocol Template to be linked to its children, we need to define the
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Figure 5.1 – Template configuration file: icmp.hjson

1 {
2 "zpo_type": "PROTOCOL",
3 "zpo_version": "0.0.1",
4 "id": "icmp",
5 "parent_protocols": [
6 {
7 "id": "ipv4",
8 "id_for_parent_protocol": 1 // DECIMAL id to identify this protocol in the

parent protocol
9 }
10 ],
11 "header": {
12 "header_file": "icmp_header.p4",
13 "header_struct": "icmp_h"
14 },
15 "next_protocol_selector": "type_", // A field of the header template provided
16 "ingress_processor": "ingress_processor.p4" // Optional
17 }

Source: the author (2022).

parameter called next_protocol_selector. It specifies the field of the protocol

header that will be used to select the next protocol (line 15). To link the protocol to its

parent, we need to specify the parent protocol identifier (line 7) and specify what value

the next_protocol_selector parameter must have for the packet to be forwarded

to the child protocol (line 8). With this structure, the mechanism is able to generate all

required code for parsing the protocols in the Switch Engine.

An Offloader Template is also based on a configuration file, and we use Figure 5.2

as an example. Each Offloader needs to be associated with a Protocol Template by its

identifier (line 5). Each Offloader then must have a header structure definition (line 8) for

its mRNA message. This header structure is defined in a P4 file, which is also a part of

the template, and its path must be specified in the configuration (line 9). The rest of the

parameters used for the Switch Engine are extracted from separate P4 files, the splicer,

and the trigger condition (lines 10 and 11). For the Host Engine, the template must specify

the C++ code and header files, as well as the name and namespace of the Analyzer (lines

14 to 22). To finalize, the configuration also specifies what Zeek Events the Offloader is

capable of offloading (lines 23 to 26).

5.1.2 Prototype Implementation

Our prototype implementation of the code generation mechanism follows all ar-

chitectural details explained in Chapters 3 and 4. It was implemented in Python 3 in a
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Figure 5.2 – Template configuration file: icmp_echo_message.hjson

1 {
2 "zpo_type": "OFFLOADER",
3 "zpo_version": "0.0.1",
4 "id": "icmp_echo_message",
5 "protocol": "icmp_echo",
6 "is_ip_based": true,
7 "p4": {
8 "header_struct_name": "icmp_echo_message_h",
9 "header_file": "icmp_echo_message_header.p4",
10 "splicer_file": "constructor.p4",
11 "trigger_file": "identifier.p4"
12 },
13 "zeek": {
14 "analyzer_namespace": "zeek::packet_analysis::BR_UFRGS_INF::RNA::ICMP",
15 "analyzer_class": "RnaIcmpEchoAnalyzer",
16 "analyzer_id": "RNA_ICMP_ECHO",
17 "header_files": [
18 "RnaIcmpEchoAnalyzer.h"
19 ],
20 "cc_files": [
21 "RnaIcmpEchoAnalyzer.cc"
22 ],
23 "offloaded_event_ids": [
24 "icmp_echo_request",
25 "icmp_echo_reply"
26 ]
27 }
28 }

Source: the author (2022).

modular way so it could be maintained and further developed as the RNA Framework

grows. To explain further details of the implementation that were not yet discussed, we

follow the same structure used to explain the mechanism details in Section 4.2, and we

start with the Event Extraction part.

The Event Extraction component was a strong reason for choosing Python as

our programming language since Zeek provides its own Python library for parsing Zeek

Scripts. In this component, we parse the provided Zeek Scripts and search their Abstract

Syntax Tree (AST) for event handler declarations. Once those handler declarations are

found, we extract their identifiers and forward this list of identifiers to the next compo-

nent, the Knowledge Model Builder.

The Knowledge Model Builder uses as inputs the templates and the Zeek Script

events. In this component, we create a graph structure following Algorithm 1 and the

procedures explained in Section 4.2. In our implementation, we use exceptions to handle

the flow of the algorithm and abort when any requirements are not met. Since our imple-

mentation of the Knowledge Model Builder does not differ from the algorithm explained

in Section 4.2, we do not repeat the explanation in this section.
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The Code Generation component in our prototype uses template files with markers

to insert the generated code in the correct location. The files used for this purpose are

called master template files, and this is what defines the structure and organization of

the output of our mechanism. In the master template, markers are predefined strings in

specific formats that indicate where a specific code section will be inserted. To generate

code that will replace these markers, we use a structure similar to an AST, where each

code element is a node, implemented using a class containing its children nodes. The

mechanism first builds this structure, linking all nodes, then converts the root node to

a string. This conversion is done recursively for each node, returning, in the end, the

complete generated code. When the code is generated, we replace the corresponding

marker with the generated code and save the file to the output directory.

The output of our mechanism is also composed of code that is provided with each

template. To merge these provided sections of code, we use the same strategy as explained

in the previous paragraph. We use template files with markers to define where each part

of the code will be inserted. We also split some files, mainly on the Zeek Script, as no-edit

files. These no-edit files are copied to the output location unaltered because they do not

need any modifications, and some of them are static files required by the Zeek Package

structure.

When our mechanism is executed, it generates an output folder containing all the

automatically generated code. As explained in the previous chapter, we have not yet

implemented the deployment of the P4 code using the Zeek Package, so we split this

output folder into two sub-folders. One of the folders contains the P4 code for the switch,

and one contains the Zeek Plugin package. In the next section, we explain how the P4

code and the Zeek Plugin are deployed.

5.1.3 RNA Deployment

The deployment of the RNA framework takes place in a virtualized network and

uses an emulated P4 switch, so no specific hardware or Programmable Forwarding De-

vices (PFDs) are required to test our approach. To emulate the switch, we use the p4app

tool, which sets up a virtualized network and instantiates a BMv2 switch (The P4 Lan-

guage Consortium, 2020) within a Docker container. The p4app tool (The P4 Language

Consortium, 2019) compiles the P4 code and loads it into an emulated programmable

forwarding device. To set up the network, p4app uses a tool called mininet (LANTZ;
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HELLER; MCKEOWN, 2010), which creates all the interfaces for each of our devices

(hosts and switches) and allows us to simulate different network topologies. To run Zeek,

we use a custom Docker image that contains all required dependencies. When executing

Zeek, we link this Docker container’s network to the p4app container network, which

allows us to run Zeek on any interface of the virtual switch, but, usually, on the port setup

as a mirroring port.

In our tests, we used a simple topology with two hosts linked by an emulated P4

switch, with a mirroring port where Zeek is listening. The mRNA messages generated by

the switch are sent to the mirroring port, where Zeek is listening for incoming packets.

To generate the traffic that is analyzed by our mechanism, we used two different methods.

The first method is using p4app to open terminals in virtual hosts, where we are able to run

programs and generate traffic for the framework to process. The second method is using

packet traces that were previously captured and forwarding these traces to be processed

as incoming traffic.

5.2 Evaluation

We now present the evaluation of our proposed approach, both the RNA frame-

work and the automatic code generation mechanism. We assess the ability of our code

generator to generate correct code and how it enables an inexperienced network operator

to offload monitoring scripts to PDPs. Last, we assess the performance of the output of

our solution, the automatically generated instance of the RNA framework. These aspects

can be formalized as the following research questions (RQs):

• RQ1: Is the code generator mechanism able to correctly generate code to offload a

set of Zeek Scripts using RNA?

• RQ2: How many lines of code did the code generator yield? And how many extra

lines would a developer or network operator need to code to deploy the solution?

• RQ3: How does the performance of a Zeek deployment with RNA compare to a

deployment without RNA?

To answer those questions, we deploy an automatically generated instance of RNA

and test it using traces containing attacks that trigger warnings on a set of predefined

scripts. To limit the scope of this project, we decided that the supported scripts should (1)

not require any state management by the generated RNA code and should (2) not require
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any stream reassembly. Those scripts are:

• FTP Bruteforcing: This script detects FTP authentication brute-force attacks. It

triggers a warning after a number of unsuccessful login attempts by an FTP client.

• Detect traceroute: Detects trace-route attempts by monitoring ICMP Time Ex-

ceeded messages. This script is provided by Zeek, and originally it uses Signature

Detection (The Zeek Project, 2022a). Since we do not support this feature on RNA,

we disabled the usage of signatures on this script.

• ICMP Pingback: Developed by Reardon (2021), it detects the usage of ICMP ping

tunnels created by the Pingback C2 tool.

• NTP Monlist: This script detects NTP Monlist attacks (NTP Monlist Detection,

2021).

5.2.1 Experiment Workload and Dataset

The workload used for our experiments was a combination of a legitimate dataset

with an attack dataset, some of which were generated by us. The legitimate dataset used

was the CAIDA Anonymized Internet Traces 2016 (CAIDA, 2016), which comes from a

high throughput backbone. Since this packet trace was too big, we selected only a small

(but dense) ten-second window to use for our experiments, which we now refer to as our

legitimate dataset. This packet trace was then merged with smaller well-known attack

traces, whose combination we call attacks dataset, with 1200 packets. Combining these

two traces ensures our selected scripts trigger warnings. This combined dataset is the

one used for our experiments, which we refer to as the combined dataset. The workload

has 5.5 million packets, a mean of 556 thousand packets per second (kpps) and 3269

megabits per second (Mbps). Figure 5.3 shows the variation of packets per second (pps)

for our dataset, as well as the placement of the attacks used.

Merging different datasets, especially in our case, where one contains all mali-

cious packets, may raise concerns regarding the detection being facilitated due to, for

example, IP address and port distribution. In our case, this is not a problem since none

of the monitoring scripts used work by analyzing traffic patterns or using statistical meth-

ods. All monitoring scripts analyze packets for specific signals and behaviors of interest.

Therefore, merging those two datasets does not alter the detection ratio nor facilitates the

detection for the used scripts.
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Figure 5.3 – Packets Per Second (pps) for the dataset
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Source: the author (2022).

5.2.2 Experiment setup and methodology

In this section, we describe the setup of our experiment. The experiment used

the same technologies described in Section 5.1.3, relying on network virtualization, P4

emulation to run our switch, and containerization to run Zeek. The objective of our evalu-

ation was to compare the functionality and performance of the Zeek Scripts without RNA

compared with RNA.

Switch emulation does not perform as fast as a real P4 hardware switch, which

makes it impossible for us to execute our experiment with a P4 switch in real-time since

we only use emulated switches. In this scenario, the emulated switch would become a

bottleneck, preventing the traffic from reaching Zeek at the same rate as it enters the P4

pipeline. For this reason, we assess only the performance of the Zeek monitoring system.

We assume that a (hardware) programmable forwarding device would be able to execute

the program at line rate if the provided program fits the device’s memory.
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To overcome the performance deficit of emulated P4 switches, we process the

combined dataset before running the experiment, effectively creating a second dataset.

This second dataset represents a real-world output of a P4-switch, receiving our combined

dataset and processing it at line rate. We call this second dataset the RNA dataset.

To explain the generation of this second dataset, we use Figure 5.4. The first step

is to select from our dataset only the packets that may trigger an Offloader, which will

eventually generate an mRNA message. With this intermediate trace, we execute our

emulated P4 switch, which is now able to process the dataset faster due to the decreased

amount of traffic. This results in a dataset with only mRNA messages, the RNA dataset.

It is also important to note that in all datasets during this process, all packets have their

timestamps preserved, and real behavior is emulated.

Figure 5.4 – RNA dataset creation diagram
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Source: the author (2022).

Now that we have our two datasets, the combined dataset and the RNA dataset,

we need to execute Zeek in both scenarios and compare its output and performance. This

is done by running Zeek in a Docker container connected to the host computer by a vir-

tual network interface. In this network interface, we replay those two traces, one at a

time, and record the memory and CPU usage. Each scenario was executed fifteen times

to account for variability. The experiments were executed on a notebook with an Intel

Core i9-10885H (5.3GHz, 8 cores, 16 threads) CPU, 16GB (2×8GB) of DDR4 RAM

(3200MT/s), and a 1TB NVMe SSD. While the experiments were executed, in order not

to affect the results, no other non-essential services were executed on the computer.

5.2.3 Results

In this section, we describe the results of the experiment and functional assessment

of our code generation mechanism. We first present the functional results, answering
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research questions one (RQ1) and two (RQ2). We later present the performance results,

answering RQ3.

Functional results

To assess whether our proposed mechanism works, we used our prototype and

the attacks dataset to compare the output of a Zeek deployment with and without RNA.

After executing both setups and comparing the output of Zeek’s notices, we concluded

that our code generation mechanism was able to generate code to successfully offload

four different scripts, namely FTP Bruteforcing, Detect traceroute, ICMP Pingback, and

NTP Monlist. All of these scripts were able to detect, with complete accuracy, all the

attacks present in the workload of the experiment, resulting in no difference between the

execution with and without RNA in terms of detection.

To answer the second question, we manually inspect the generated code for RNA.

Our objective is to check whether our approach is helpful and facilitates the deployment

of RNA. Table 5.1 summarizes the main results obtained. The generated output instance

of RNA for offloading our four Zeek Scripts (described above in this section) has 2967

lines of code. To develop a new Protocol Template, according to Table 5.2, a median of

40 lines of code would need to be written, and for a new Offloader Template (Table 5.3),

a median of 224. This gives developers a big advantage over writing a fully standalone

solution since templates are small and easier to maintain than a complete solution. The

main advantage leans on the reuse of Protocol and Offloader Templates. Using templates,

a network operator is able to deploy RNA without writing a single line of code, only with

a command. The automatic code generator identifies the needed events to offload the

desired scripts and generates the complete code.

Table 5.1 – Lines of Code per Script Count

Monitoring Script Count Generated Lines Median
1 Monitoring Script 2113.5
2 Monitoring Scripts 2421.5
3 Monitoring Scripts 2714.0
4 Monitoring Scripts 2967.0

Source: the author (2022).



48

Table 5.2 – Lines of code of Protocol Templates

Protocol Template Lines of Configuration Lines of code Total Lines
Ethernet Protocol 13 13 26
IPv4 Protocol 17 26 43
IPv6 Protocol 17 20 37
ICMP Protocol1 59 77 136
TCP Protocol 22 45 67
UDP Protocol 21 10 31
Total 149 191 340
Median 19 23 40

Source: the author (2022).

Table 5.3 – Lines of code of Offloader Templates

Offloader Template Lines of Configuration Lines of code Total Lines
NTP Message 27 152 179
ICMP Echo Message 28 157 185
ICMP Time Exceeded 28 305 333
FTP Request and Reply 28 235 263
Total 111 849 960
Median 28 196 224

Source: the author (2022).

Performance results

To answer our third research question and assess the performance gain of offload-

ing scripts with RNA, we replayed both of our datasets, the combined dataset, and the

RNA dataset. When replaying the RNA dataset, we enabled our Zeek Plugin, which pro-

cessed the incoming mRNA messages. This resulted in a significant gain in performance.

As Figure 5.5 shows, the mean CPU2 usage without RNA is 109%, and memory usage

reaches a maximum of 960.64 MB by the end of the experiment. With RNA (simulated

by using the RNA dataset), mean CPU utilization was 1.9% and the maximum memory

usage was 235.07 MB. Additionally, without RNA, a mean of 35.24% of the packets was

dropped. The high dropped packet rate resulted in one of the attacks, the FTP Bruteforce

Attack, not being detected in 93.3% of the iterations executed without RNA. Using our

approach, no packets were dropped, and all attacks were detected in all executions of the

experiment.

2Usage of one CPU core. 100% represents usage of a full core, 150% represents usage of one and a half
CPU cores.
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In Figure 5.5, at time 5 s, we observe a significant change in the increase of mem-

ory and CPU usage. Our hypothesis is that this is the moment internal Zeek buffers are

filled, decreasing the rate packets are read, slowing down the increase of memory usage,

and increasing the CPU usage. In a real-world scenario, network operators would not

allow an IDS to drop packets and would increase the processing power or implement a

sampling strategy. Our intention with this comparison is to contrast the usage of a nor-

mal Zeek deployment compared to our RNA framework, which uses Programmable Data

Planes to offload IDS operations. Nevertheless, our results suggest that the observed re-

duction in CPU usage for the RNA-based setup would allow for the use of a smaller

cluster for the given scenario.

Another important note is that the Dynamic Protocol Detection (DPD), which we

presented in Figure 2.2, is unable to dynamically detect protocols when RNA is used,

potentially resulting in better performance, giving RNA an advantage. This is also one of

the assumptions we made to simplify the development of the mechanism.

Figure 5.5 – RNA Performance Evaluation
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6 CONCLUSION

In this project, we investigated the benefits of using Programmable Data Planes

to offload Zeek monitoring scripts. We also took the first step towards an automatic code

generation mechanism, which enables any network operator without programming knowl-

edge to offload Zeek scripts to programmable forwarding devices. We implemented an

automatic code generator that identifies which Zeek Events are required by a set of scripts

and, using templates, automatically generates P4 and Zeek code to offload these scripts.

After proposing additions to the RNA framework and implementing our proto-

typical automatic code generator, we evaluated the proposed approach and assessed its

capabilities of automatically generating code and enhancing performance. We showed

the mechanism generates almost 3 thousand lines of code, which, otherwise, a developer

would need to write manually in order to offload four Zeek Scripts. We demonstrated

that RNA can give a performance benefit compared to server-based intrusion detection,

resulting in 57× less CPU usage and 4× less memory usage for the workload used in the

experiments. Moreover, we have also shown that our approach can produce these ben-

efits for network operators without any previous P4 programming knowledge. It is also

important to note that these results are still to be confirmed with future experiments using

hardware PFDs.

This project took the first step towards adding automatic code generation to RNA.

Next, we describe some opportunities for future work and items that could be improved.

These items are both suggestions for RNA and the code generator mechanism.

Stateful Connections

The next step to allow better protocol handling, mainly of TCP connections, is

the implementation of stateful analysis into RNA. Stateful analysis will allow far more

significant performance benefits if executed in the data plane. It will offload a significant

part of Zeek state management, allowing P4 to analyze more connection-based protocols.

Multiple Offloaders

At the current state of RNA and our code generation mechanism, it is not possible

to trigger more than one Offloader per incoming packet. This limitation could impact

future deployments where many scripts are being executed. This is a problem that should
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be solved in the future.

Enhanced Zeek Connection Management

Zeek uses an object called Connection (not to be confused with an actual network

connection) to manage sessions internally. This object is not deallocated after usage in

our approach. Future work must develop a mechanism to handle protocol timeouts and

free resources after these are no longer needed. Some protocols also have timeout events,

which should also be triggered by the PDP.

Security analysis

While evaluating RNA and the code generation mechanism, we did not consider a

scenario where an attacker would try to attack Zeek through RNA or RNA itself. In future

projects, a security assessment should be performed to ensure that using RNA does not

introduce vulnerabilities to the infrastructure that attackers could exploit.
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