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“See you space cowboy.”
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ABSTRACT

Risk is a strategy board game with multiple variations published. In this work, we pro-

pose developing a pipeline capable of producing new Risk variants using evolutionary

game design. This pipeline consists of an automated playtest of the game with automated

agents, the extraction of metrics from these playtests, and the usage of these metrics to

generate new variations of game content through genetic programming. Through this pro-

cess, we generated 80 new Risk variations. Lastly, we analyze and discuss the quality of

these variations generated.

Keywords: Artificial Intelligence (AI). Board Games. Genetic Programming. Game

Design.



Gerando Variações fo Jogo de Tabuleiro Risk Utilizando Design de Jogos

Evolucionário

RESUMO

Risk é um jogo de tabuleiro de estratégia com múltiplas variações publicadas. Neste tra-

balho, nós propomos o desenvolvimento de um sistema capaz de produzir novas variações

de Risk usando evolutionary game design. Esse sistema consiste em um teste de jogo au-

tomatizado do jogo com agentes automatizados, a extração de métricas destes testes de

jogo e o uso dessas métricas para a geração de novas variações de conteúdo do jogo por

meio de programação genética. Utilizando esse processo, nós geramos 80 novas variações

de Risk. Por fim, analizamos e discutimos a qualidade destas variações geradas.

Palavras-chave: Inteligência Artificial (IA). Jogos de Tabuleiro. Programação Genética.

Design de Jogos.
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1 INTRODUCTION

Many new board games are designed and released yearly, each applying differ-

ent and innovative concepts in their design. From simple one-player games such as peg

solitaire1 to complex multiplayer games such as Monopoly2, a good amount of experi-

mentation and playtesting is necessary for a game designer to create successful games.

Various aspects influence how interesting a game may be for a player. A simple

and easily solvable game, like tic-tac-toe, may be enjoyable for a player for some time.

However, this enjoyability may quickly fade away as soon as the player notices that there

is a simple combination where, if both players play it optimally, the game always ends in

a draw. When this realization comes to the player, the game loses its challenging aspect

for them.

Thompson (2000) analyzes that there are different attributes that a game should

possess to be exciting and challenging for its players. Although some of these attributes

can be of a thematic, visual, or literary nature, one of the major aspects that interest

someone playing a game is the strategic aspect of it. When two players challenge each

other in a chess game, each turn can be seen as a complex puzzle where both participate in

discovering how to defeat their opponent. This complexity in a strategic game is not the

only factor that makes it interesting, and games that are too complex can be uninteresting

for most players. The elements that make games attractive to players are abstract and often

unquantifiable qualities, but a vast amount of literature in game design tries to explain

some of these aspects (SALEN; ZIMMERMAN, 2003).

Creating board games with the aforementioned desirable qualities is not some-

thing trivial. That is why much of game design revolves around an iterative playtesting

process (FULLERTON; SWAIN; HOFFMAN, 2004), where the designer puts their game

to be played by other people and can analyze how players will interact with the rules

and mechanics presented to them. This process can give insight to the game designer

about how players are likely to approach the game currently being developed, and it gives

valuable feedback regarding how the game is in its current state.

This reliance on playtesting conducted exclusively on humans can be costly and

take time. In these cases, automated agents can be employed to test the mechanics and

interactions of the game. This approach is not novel to electronic games (POLITOWSKI;

1Peg Solitaire is a simple one-player board game, known in Brazil as Resta Um.
2Monopoly is a popular board game published by Hasbro. In Brazil, it is published by Estrela under the

name Banco Imobiliário.
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PETRILLO; GUÉHÉNEUC, 2021) and is becoming more and more common in board

games. Various researchers have tested different approaches for automated playtesting

in board games these last few years (SILVA et al., 2017a), and other works have pro-

posed the creation of frameworks and pipelines for these implementations (GAINA et al.,

2020). Some of these works also revolve around creating game description languages

(GDL), such as Genesereth, Love and Pell (2005). These are description languages capa-

ble of expressing rules and mechanics for a plethora of different games. Alongside GDLs

are general game players (GGP), software systems capable of performing well across

different games.

Browne and Maire (2010) propose an innovative approach to game design called

evolutionary game design. In it, the authors created a framework for the automatic cre-

ation of novel board games. This can be accomplished through the Ludi framework,

created by the authors to manage an automated playtesting of games defined by a GDL

and the gathering of metrics that quantify the several attributes that make a board game

enjoyable to players. These metrics are then used as input in a evolutionary algorithm

that generates new games by modifying the rules description of the original game. This

work created Yavalath3, which was published as an original and novel game. The games

generated through the Ludi framework are restricted to the games describable by the Ludi

GDL, which limits the games generated in this work to only combinatorial board games.

In the present work, we aim to validate the usage of Browne’s concept of evo-

lutionary game design to generate new variations of modern non-combinatorial board

games. We propose to apply evolutionary game design to create new variations of a

non-combinatorial board game. We apply these concepts to generate new variations of a

simplified version of the game Risk4. To accomplish this, we present a pipeline that can

automatically playtest the game and capture the measurements of different quality crite-

ria for these playtests. We can then use these measurements as input to a evolutionary

algorithm capable of generating new variations of the original game.

Our work’s approach shows many benefits compared to Browne and Maire (2010),

such as:

• Specializing ourselves to only one type of game, instead of a variety of simple board

games used by Browne and Maire (2010), allows us to represent more complex

3Yavalath is a board game created through the Ludi framework and published by Browne. More of it
can be seen at https://boardgamegeek.com/boardgame/33767/yavalath.

4Risk is a multiplayer board game published in the United States by Hasbro. In Brazil, the game is
published under the name War by Grow.
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games in this pipeline.

• Using this approach, game designers can not only create novel variations of a board

game but also design new types of board games with innate randomness of con-

tent in their design, similar to the usage of procedural content generation (PCG) in

digital games (SHAKER; TOGELIUS; NELSON, 2016).

• Separating the base rules of the game, which are static, and other parameters like

the game’s map allows us to create a procedurally-generated board game that can

generate different content for its players based on qualities like game balancing or

length of playtime.

The remainder of this work is as follows. Chapter 2 provides information about

key concepts necessary for a better understanding of the proposed pipeline, as well as the

discussion of works that approach similar problems. In Chapter 3, we present the pipeline

for the generation of board game variants, our proposed solution for using evolutionary

game design to create new content for modern board games. In Chapter 4, we present

the results of our implementation. At last, Chapter 5 presents the final considerations

regarding this work.
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2 BACKGROUND AND RELATED WORKS

This chapter introduces fundamental concepts regarding board games, game ele-

ments representation, automated playtesting, and evolutionary game design, all necessary

to understand the present work. While introducing these concepts, we also overview and

discuss related work, their contributions, and their limitations.

2.1 Games

There are many different definitions of game. Of these definitions, we use the one

proposed by Salen and Zimmerman (2003), p. 80:

A game is a system in which players engage in an artificial conflict, defined by
rules, that results in a quantifiable outcome.

Separating each key element of this definition, we have:

• Players: A game is something that one or more agents actively take decisions to

play. Players are the agent that interact with the system of a game.

• Conflict: All games must embody some contest of powers. From cooperative to

competitive games, from solo to multiplayer games, every game must provide some

kind of conflict for the player(s) to solve.

• Rules: Rules play a crucial part of games, since they provide the structure out of

which players can interact with the system, delimiting what they can and cannot do.

• Quantifiable Outcome: Games must have a quantifiable goal and outcome. Each

game must have a goal, a state in which a player has either won, lost, or received

some kind of score that reflects their actions.

When analyzing the aforementioned definition from Salen and Zimmerman (2003),

Browne (2011) creates a simplified model of what a game is, called means-play-ends

model. A visual representation of this model is presented in Figure 2.1, and it consists of:

• Means: The equipment and rules used to play the game.

• Play: The interaction between players, which is defined implicitly by their plans

and explicitly by the moves made by them.

• Ends: The outcome that each move produces in the game.

The definitions and abstractions presented above are useful for us in a couple
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Figure 2.1: The means-play-ends model

Source: Browne (2011)

of ways. First, they allow us to separate the games under this work’s study from other

types of literary or interpretative games (like roleplaying games, for example). Second,

they define games as systems with specific elements that will be important in this work.

Elements such as having a specific goal in which the players compete or cooperate to

achieve quantifiable goals are important when we design the playtest of a game.

Of all types of games that can be represented in the definitions mentioned above,

a substantial amount of works in the literature focus on a specific subset called combina-

torial games. These games are:

• Finite: Outcomes are well-defined and the game ends in a finite number of turns.

• Discrete: They are turn-based, where each player acts in a different turn.

• Deterministic: There is no randomness or chance in the game.

• Perfect Information: The whole game state is always visible for both players.

• Two-players: In games with more than two players, coalitions between players may

arise, which can bring a social aspect to the game, which is out of the scope of

combinatorial games.

Combinatorial games are interesting because they provide a playground for a mul-

titude of mathematical and computational analysis for the creation of agents capable of

beating their opponent on them (FRAENKEL, 2004). Although our work is not a work

on combinatorial game theory, many related works cited here are focused on the study of

these types of games.
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Another important distinction that has to be made is the concept of game distance.

We use the definition provided by Browne (2011), p. 9, to determine what is a game

variant or an entirely new game:

The distinction between a variant and a new game is subtle but may be achieved
by representing both games as rule trees and performing standard tree compar-
ison to find the difference between them. Differences between rules would be
weighted more heavily, while differences between their attributes (would be)
weighted more lightly.

In this definition, changing a game like Tic-Tac-Toe from a board with three tiles

to a board with four tiles would be a simple variant of the game. On the contrary, changing

the board tiling from a square to a hex would cause us to modify the condition of when

the game ends, resulting in an entirely new game.

2.2 Game Elements and Representation

A vital step in proposing a pipeline capable of testing and generating new content

for a game is how a game and its elements are represented. To do that, we need to define

abstractions for each of the game’s components and how they interact with each other

through the game’s rules. Next, we analyze how different works approach this problem.

Genesereth, Love and Pell (2005) created a logic programming language to pro-

vide an environment for evaluating general game players (GGP) in a diverse array of

combinatorial games. This game description language (GDL) is the conceptual basis for

many other works in the area, including Ludi (BROWNE, 2011). This logic programming

language is similar to Prolog, purely declaratory, and offers restrictions that assure that

all questions of logical entailment are decidable.

Browne (2011) uses the concept of ludemes as a building block for the definition

of games. A ludeme is a fundamental element of play, often representative of a rule,

equivalent to a game’s component. Ludemes are notable because they are elements of a

game design that, according to the author, usually pass from one game or game class to

another. An example of two ludemes in the Ludi GDL can be seen in Figure 2.2. The first

ludeme declares that the tiling of the board will be composed of square tiles, while the

second declares that the size of this board will be 3x3.

The concept of a ludeme is interesting because it allows us to relate different

ludemes with another one, generating higher levels of a compound ludeme. That can be

seen in the Figure 2.3, where the definition of a 3x3 board with square tiling is presented:
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Figure 2.2: Ludeme in the Ludi GDL

Source: Browne (2011)

Figure 2.3: Ludemes in the Ludi GDL composing a higher level ludeme

Source: Browne (2011)

The abstraction of a ludeme is essential for the work of Browne because it allows

the succinct description of games. This view of game rules as interchangeable and encap-

sulated ludemes allows the author to propose ways to create new games using these rules

via genetic programming. An example of Tic-Tac-Toe in the Ludi GDL can be seen in

Figure 2.4.

Figure 2.4: Tic-Tac-Toe in the Ludi GDL

Source: Browne (2011)

As shown in Figure 2.4, the Ludi GDL infers considerable information from the

description of the games. The description of Tic-Tac-Toe has no ludeme related to how

players interact with the board, so the GDL infers that, if no specification is provided, the

players will take turns placing one piece on empty tiles. Although this is useful for the

easy specification of simple games, it cannot be used to describe complex games.

Gaina et al. (2020) presents the Tabletop Games framework (TAG), a Java-based
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platform for the benchmark of GGP in modern board games. To do that, TAG provides

the user with a common template for implementing board games, standardizing agents’

access to the games on the platform. The board games in the framework, instead of being

described in a declaratory language like in the works discussed above, are written in Java

classes that inherit base classes of the tool. The most important classes are the following:

• Game State: This class contains all the necessary information to describe the game’s

state. These can range from cards in the hands of players to the number of points

that a player has and is used by the agent to choose their actions.

• Forward Model: This class is responsible for setting up and advancing the game

state when provided a player action and computing all possible actions a player can

perform in the current game state. In this sense, since it is responsible for modifying

the game state, it indirectly implements the rules of the game.

• Actions: This class represents every decision the agents must make in a game, from

moving pieces to drawing cards.

TAG’s framework introduces many relevant aspects regarding the representation

of games to the present work, such as:

• The capability to represent complex multiplayer games, cooperative games, and

games with hidden information.

• A simple structure that allows the creation of a graphical user interface (GUI) for

the board games.

• The separation of the game’s rules and parameters. Each of the games currently

implemented in the framework has a list of valid parameters in which they can be

instantiated. Tic-Tac-Toe, for example, can be instantiated in TAG with a 3x3 grid,

a 4x4 grid, or a 5x5 grid. This separation makes it easier to implement variations of

a game on the platform.

2.3 Automated Playtesting

The TAG framework (GAINA et al., 2020) implements four different agents in the

platform. All games implemented in the platform require an heuristic that, given a game

state, returns a numerical value that indicates how close a player is to win. The agents

then use these heuristics to decide their actions. Two of the simplest agents implemented



19

are the random agent, which simply chooses actions at random, and the One Step Look

Ahead (OSLA) agent, which evaluates all possible actions from a single game state and

picks the one which leads to the highest valued state. The other two agents implemented

are Rolling Horizon Evolutionary Algorithm (RHEA) (PEREZ et al., 2013) and Monte

Carlo Tree Search (MCTS) (BROWNE et al., 2012). Since the purpose of the platform

is to measure the performance of GGP in modern board games, it allows for tournaments

between agents.

Mugrai et al. (2019) proposes the implementation of procedural personas for the

playtesting of games. These personas are created by modifying MCTS where, rather than

applying the Upper Confidence Bound 1 (UCB1) formula in the exploration of moves, the

authors use genetic programming to evolve a persona-specific formula (HOLMGÅRD et

al., 2018). Using this variation of MCTS, the authors tested these agents in a Match-3

game (similar to Candy Crush1). They developed four different personas, each following

a different type of playstyle: one that tries to maximize the game score, one that tries to

minimize the game score, one that tries to maximize the available number of moves, and

one that tries to minimize the available number of moves. The work also conducted a user

study with human players to establish a baseline. In the results, the authors analyze that

the performance of these different agents is a good way to define an upper bound and a

lower bound of the performance of an average player.

Silva et al. (2017b) presents an AI-based playtesting for the game Ticket to Ride2.

Since the game has a massive amount of states and is an imperfect information game,

agents using techniques such as A* or MCTS present a poor performance. Because of

that, the authors created four different rule-based agents with different playstyles. They

experimented with these agents on all 11 different commercially released variants of the

game and could analyze which different strategies would be dominant in each game vari-

ation. The work also analyzes specific aspects of the game’s original map, like the most

common routes and cities owned by the player who won the game. The authors also

managed to find, in the playtest, scenarios not covered by the rules of the game.

1Candy Crush is a popular mobile game where the user has to move pieces in order to match three or
more pieces of the same type.

2Ticket to Ride is a multiplayer board game published by Days of Wonder. In it, players must create
railways between cities in a map.
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2.4 Evolutionary Game Design

Browne (2011) proposes a pipeline for the generation of novel games through

automated playtest, evaluation, and synthesis of new games. The framework Ludi is

structured by the following components:

• GDL: defines the scope, structure and rules of the game.

• GGP module: interprets the rules of a given game and coordinates which actions to

take.

• Strategy module: informs move planning.

• Criticism module: measures the game quality.

• Synthesis module: generates new games through genetic programming (GP) (KOZA,

1992).

Since the present work focuses on creating content for a specific game, we will

skip Ludi’s general-purpose game generation aspects, primarily represented by the GGP,

strategy, and synthesis modules of the pipeline. These modules are focused on playtesting

generic games with different rules, and since we only deal with a game with constant rules,

they do not fit our work. The Ludi GDL has already been explained in Section 2.2, so here

we discuss the game evaluation and how they are used in the synthesis of new games.

The criticism module of Ludi measures games based on certain aesthetic criteria.

Browne (2011) primarily uses the definition of Thompson (2000) of which attributes a

game should be interesting to players. Brownie separates these aesthetic criteria into

three categories, shown in Figure 2.5, which are:

• Intrinsic: based on rules and equipment.

• Viability: based on game outcomes.

• Quality: based on trends of play.

The game’s rules define intrinsic criteria, which can be the win condition of a

game of the tiling type of a board, for example. These criteria, though, are not the focus

of discussion in our work since the game’s rules will be static. Viability criteria are those

based on the game’s outcomes. These are responsible for checking if a game is balanced

or the average turn duration of the game. Last, the quality criteria attempt to measure

the players’ engagement with the game through their moves’ effects on the game. These

are generally more difficult to measure and require a lead history of the playtest to be
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Figure 2.5: Ludi aesthetic model of games

Source: Browne (2011)

calculated. Lead history estimates which player is ahead in the game, generally with

an heuristic evaluation. In Browne’s work, the authors define 57 aesthetic criteria: 16

intrinsic criteria, 30 quality criteria, and 11 viability criteria.

An essential aspect of Browne’s work is the game ranking experiment done with

human players, where players rated games after playing against an AI. Authors ranked the

games according to this data and used the rankings do derive the 57 aesthetic quality cri-

teria. The criteria that best correlated with the game rankings were then used to calculate

the fitness function of the games in the evolutionary programming process.

2.5 Comparison of Related Works

This section will briefly discuss each related work analyzed here and compare their

proposals to ours. Following the structure of Section 2, we will separate this analysis

into the three elements discussed here: game elements and representation, automated

playtesting, and evolutionary game design.

Section 2.2 analyzed how different works represent different board games. Gene-

sereth, Love and Pell (2005) proposes a declarative language used to declare only com-

binatorial games for testing GGP, but it is an important work that inspired the creation of

the Ludi GDL. Browne (2011) represents games using a declaratory language, but the ele-

ments used to construct games are interchangeable to generate new games. This language

enables the Ludi framework to represent combinatorial games with a small amount of
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information but is limited in its capacity to represent more extensive and complex games.

Gaina et al. (2020) uses Java code to codify the elements of the games represented but of-

fers abstractions such as game parameters that allow us to modify certain aspects of them

without interacting with the code. Our work represents only a single game and all possi-

ble variations by implementing something similar to Gaina et al. (2020), but our focus is

on the game variants generation, not on playtesting.

Section 2.3 analyzed the approach of three different works related to automated

playtesting. In Gaina et al. (2020), the TAG framework implements four different GGP

used to playtest their games. Mugrai et al. (2019) implemented four procedural personas

for a single game’s playtest. These personas were used to evaluate players’ lower- and

upper-bound performance in the game. Silva et al. (2017a) created four rule-based AIs to

extract metrics regarding the optimal strategy of different game variations. In our work,

we use one rule-based agent to extract the metrics that will then be used to generate new

games in the evolutionary game design pipeline.

Section 2.4 analyzed the concept of Browne (2011) of evolutionary game design.

In it, the author generates new simple combinatorial games through the Ludi framework.

As mentioned before, our works differ in that this work focuses on implementing these

concepts in generating variations of a single non-combinatorial modern board game.
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3 PIPELINE FOR GENERATING RISK VARIANTS

This chapter presents our pipeline for the generation of Risk variants. We begin

by defining the rules and specific aspects of the board game we will implement (Section

3.1). We then explain the proposed pipeline in broader terms (Section 3.2). After that, we

focus on three important aspects of the pipeline: the automated playtest (Section 3.2.1),

the aesthetic measurements we define to measure quality in board games (Section 3.2.2),

and the usage of genetic programming to generate new board game variations (Section

3.2.3).

3.1 Simplified Risk

In order to validate the idea of evolutionary game design for the creation of more

complex games, we use a simplified version of the game Risk. Risk is a board game

published by Hasbro that has many variations, both in terms of rules and game styliza-

tion. Risk is a territorial control game where players control armies to conquer enemy

territories and take control of continents, trying to accomplish specific conditions given

at random from cards. Players take turns attacking other continents with their troops until

a player controls all territories of the map, which is then declared the winner. Due to its

overall popularity and variety of published content, the game has been chosen for this

work. Figure 3.1 shows the accessories and gameboard in a physical copy of the original

game.

Figure 3.1: Risk Board Game

Source: BoardGameGeek

Our game variation aims to reduce the number of possible states and simplify the
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execution of the playtest agents. To accomplish this, we removed the hidden information

aspects of the original game, which were cards that players would use and exchange for

troops in random territories. We also changed the game’s combat mechanics, giving an

advantage to the attacking player and encouraging aggressive behavior from players.

In our version of Risk, a player wins by conquering all territories across a map.

Each territory belongs to a continent, and players must mobilize troops across these terri-

tories to invade enemy territories. Players roll dices to decide which units win the conflict.

At the beginning of their turns, players will recruit new units to put in territories of their

choice, and bonus units will be recruited according to the number of continents a player

controls.

A game in this simplified version of Risk is comprised of two game phases: an

allocation phase, where players will take turns choosing their starting territories, and a

conflict phase, where players will take turns recruiting new units, capturing enemy terri-

tories, and moving units at the end of their turns. Figure 3.2 shows a simple schematic of

the game execution.

Figure 3.2: Simplified Risk Game Loop

Source: The Author

Since most of the game actions revolve around the conflict phase, we will use

the definition of a "turn" to define a whole turn in the conflict phase. In that sense, we

can think of the allocation phase as a setup for the beginning of the game. A turn in the

conflict phase has three stages:

• Add Units: At the beginning of each turn, the player will add new units to their

territories. This number is based on the number of territories they control plus the

bonus troops they get from controlling a whole continent. All these troops can,

then, be added to any of the player’s controlling territories of their choosing. An

important exception is that, in the first turn of the game, the player only adds troops
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based on their territories, not on their continents. This is done to minimize the

first-move advantage in the game.

• Attack Territories: After adding new units, the player can attack enemy territories.

When a player has more than one unit in a territory adjacent to an enemy territory,

they can attack it. The attacking player rolls dice up to the number of attacking

units, at a maximum of three units, and orders the values of the dice rolled from

higher to lower. The defending player rolls dice up to the number of defending

units, at a maximum of three, and orders these dice as well. Then, the players

compare each value of these sorted arrays of dice, and the player who rolled lower

loses a unit. In the case of draws, the player who defended loses a unit, which gives

the attacking player an advantage in these combats. If the defending player loses

all units in a territory, the attacking player conquers the territory. When conquering

a new territory, the attacking player must send one unit from the territory where the

attack comes to the newly conquered territory.

• Move Units: After the combats in the previous step, the player may move units from

territories adjacent to each other. The player may only move units from territories

they own to territories they own, and they must always leave one unit at each owned

territory.

After these steps, the player passes their turn to the next player. This game loop

repeats until a player owns all territories on the map.

In earlier steps of the pipeline development, we replicated the favoring of defen-

sive troops in combat draws. The length of these games, when tested with our agents,

would sometimes get into a stalemate of hundreds of turns. Because of that, another mod-

ification in the original game was altering the draw in combats, which now favors the

attackers instead of the defenders. Making this modification means rewarding aggressive

players and discouraging defensive players, making stalemates rare.

3.2 Proposed Pipeline

To validate the idea of applying evolutionary game design to generate variations of

a board game, we implemented a pipeline in Python available on GitHub1. The pipeline

implemented to generate new Risk variations can be broken down into three major steps:

1https://github.com/LeonardoBombardelli/Risk-Content-Generation
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the automated playtesting of the game, the gathering of metrics in order to check the

quality and viability of the game tested, and the usage of these metrics to generate new

variations of this game. A simplified visualization of this proposed pipeline can be seen

in Figure 3.3. The remainder of this subsection will give an overview of the current

implementation of this pipeline.

Figure 3.3: Overview of Proposed Pipeline

Source: The Author

We have a modularized implementation of the simplified Risk, separating the

game rules and parameters. The parameters are: the game map, represented as a undi-

rected graph where each node represents a territory, the continents, represented as a list of

territories that compose each continent, and how many units the ownership of the whole

continent provides to the player, represented as an integer. These parameters are modified

in the pipeline to generate new game variations. These parameters, represented in a JSON

file, are loaded into the game, where the user can see a visual representation of the map

and its elements.

Figure 3.4 shows a small map of the simplified Risk in our implemented user

interface. Each node of the map represents a territory, where inside it are two numbers:

the left one is the node identifier and the right one, under parenthesis, is the number of

troops currently present in the territory. The color on the outline of each node represents

to which continent it belongs. When a player captures a territory, the color inside the node

changes to the color of the player who captured it.
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Figure 3.4: Implemented Map GUI

Source: The Author

3.2.1 Automated Playtest

After loading the game parameters, we have an instantiated game that can be

playtested. The playtesting of this combination of game rules and parameters can be

repeated multiple times to obtain more precise metrics for the quality and viability evalu-

ation. In this playtesting, the following cycle repeats until the end of the game:

1. The game returns a game state to the agent responsible for taking actions for the

current player. Then, the player performs their actions until the end of their turn.

2. Using an heuristic, the game evaluates the current game state to gather metrics for

the calculation of the quality criteria and records this data for future usage.

3. The game changes the current player.

When a player wins the game, we log the winner’s data and turn count to use for

the calculation of the viability criteria later. All the records of the playtest are then passed

along to the Quality and Viability Criteria step of the pipeline.

There are two essential elements in the playtesting process that are important to

consider: the heuristic used to determine how ahead a player is from another and the

agent used to make decisions in the game. These elements are modularized in this im-

plementation, meaning they can be modified without changing the rest of the pipeline’s

structure.



28

We currently use Equation 3.1 as the heuristic, where h(i) is the heuristic value

for player i, terri and terrtotal are the territories of player i and the total number of

territories, respectively, and uniti and unittotal are the number of units of player i and the

total number of units, respectively:

h(i) =
terri

terrtotal
∗ wterr +

uniti
unittotal

∗ wunit (3.1)

wterr and wunit are values that serve as weights to each components of the equa-

tion. Although this heuristic is a simple weighted proportion of the player’s current terri-

tories and units in relation to the total amount, it is enough to measure how ahead a player

is compared to another.

At the start of the development of the pipeline, we tried to create an agent using

Vanilla MCTS (BROWNE et al., 2012). This agent, though, presented many problems

that made us realize the difficulties of creating a competent agent capable of playing the

simplified Risk. The poor performance of the agents when using MCTS revolved around

the massive amount of game states the agent would need to process to arrive at terminal

states. Even using a small version of the map developed by us, with eight territories in

total, and letting 30 seconds for the agents in each decision, they still had a degenerated

defensive behavior where they would only recruit new units and skip their turns. Given

that, in each turn, the agent has to make various small decisions, this approach would not

be feasible in the playtesting.

Difficulties in the creation of capable agents for board games were reported in

the work of Blomqvist (2020), where the author proposes a Risk agent developed using

a variation of AlphaZero. However, the author points out that the agent’s performance

is subpar compared to human players. In the work of Silva et al. (2017b), the authors

circumvent the problem of a poor performance by GGP agents by using a rule-based

agent capable of playing the game instead. Based on their work, we developed a simple

rule-based agent as well.

In the allocation phase, our agent attempts to capture the continent that yields the

highest number of troops. If no entire continent is available for the agent, it chooses a

random empty territory in his neighborhood. If no adjacent territory is empty, it chooses

a random non-adjacent territory.

In the conflict phase, the agent has a greedy and aggressive playstyle where:

• In the addition of new units, they distribute all new units to territories adjacent to
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enemy territories where troop values are lower or equal than three, or the lowest

value of them, whichever is lowest.

• When attacking, it always attack neighboring territories with fewer units, or if their

own territory has three or more units. Ties are broken by selecting the lesser de-

fended territory.

• When moving troops, they always move troops to the territories with fewer units

adjacent to enemy territories, leaving only one unit in territories that have no frontier

with enemy territories.

3.2.2 Aesthetic Measurements

As explained in Section 2.4, we use Browne’s definition of aesthetic criteria to

evaluate the quality of the game variants generated. These criteria are separated into

two categories based on what they measure: viability criteria, which measure attributes

based on the game’s outcomes, and quality criteria, which measure attributes based on

the player’s engagement with the player. We run the automated playtesting multiple times

per game variation to gather enough data to make these calculations. From each instance

of playtesting, we gather the data of both players’ heuristics values from the game state

of each turn, the game’s winner, and the number of turns. They are then used to measure

four criteria, two regarding game viability and two regarding game quality, which will be

described in this subsection.

3.2.2.1 Viability Criteria

Advantage (Cadv) is a measurement given by the ratio of wins for the first player

to move compared to the second player. It is used to measure if the game favors a specific

player in the turn order and is given by Equation 3.2, where winsf is the number of wins

the first player to move has and winss is the number of wins the second player to move

has. A game with an Cadv value of 0.5 is a balanced game with no advantages. Lower

values describe a game that favors the first player to move, and higher values the second

player.

Cadv =
winss

winsf + winss
(3.2)

Duration (Cdur) is a measurement representing the difference between the number
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of turns a game has and the desirable number of game turns. It is defined by the average

absolute deviation of each game length Tg from the preferred game length Tpref across all

games playtested G. Equation 3.3 presents this criteria. A game with a lower Cdur means

a game with its length closer to the preferred length. In contrast, a higher value means a

game with lengths more distant from the preferred length.

Cdur =
G∑

g=1

|Tpref − Tg|
Tpref

/
G (3.3)

3.2.2.2 Quality Criteria

Drama (Cdra) is a measurement representing the amount of disadvantage a player

that ultimately won a game had. This metric indicates how possible is for a player to

recover from bad positions in the game. Drama is calculated by taking only the measure-

ments of the turns where the winning player had a disadvantage. We then calculate the

difference between both players at those moments. This criteria is represented in Equa-

tion 3.4, where hw(tn) and hl(tn) are the heuristic values for the players who won and lost

the game, respectively, at a given turn tn. count is an operation that returns the number

of turns where this condition is true. This operation is done across all G games where

the playtest was realized. For drama, higher values mean a higher chance of the player

being able to come back from bad positions in the game, whereas lower values mean the

opposite.

Cdra =
G∑

g=1

hw(tn) < hl(tn){
√
hl(tn)− hw(tn)

count(hw(tn) < hl(tn))

/
G (3.4)

Lead Change (Clc) is a measurement that shows how much the lead of the game

changes between players. In it, we count how many times the game lead changes between

players and divide it by the number of turns the game had. The equation for this criterion is

expressed in Equation 3.5, where the leader operation returns the player whose heuristic

had a higher value in a given turn tn. count is an operation that, same as before, returns

the number of turns where this condition is true. G is the total amount of games simulated

in the playtest, and T is the number of turns that game had. With this metric, higher values

mean more lead changes occur in the game, whereas lower values mean the opposite.

Clc =
G∑

g=1

count(leader(tn) 6= leader(tn−1))

T

/
G (3.5)
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3.2.3 Genetic Programming

Genetic Programming (GP) is a group of methods that borrow concepts from nat-

ural evolution to produce computer programs representing particular solutions in the over-

all solution space (KOZA, 1992). In this work, we use it to generate new variations of

the simplified Risk. This process is shown in Figure 3.5 and explained below. It follows

the same structure and general concepts as those implemented in Browne (2011) but is

adapted to the generation of variations of the simplified Risk.

Figure 3.5: Game variation generation overview

Source: The Author

Our initial population is composed of six different map variations created by us

based on the game’s original map. We sort the population by their fitness value, described

below, and select two of them as parents through stochastic universal sampling (BAKER,

1987). Using this, we have a chance to select individuals from the entire population, but

those with a better fitness measurement will be selected more often. Our fitness function

determines only the sampling process, so no individuals are removed from the population.

We keep individuals with low fitness to encourage diversity in the generation of new

individuals.

After selecting two individuals from the population, we use our crossover function

to generate a new individual inheriting characteristics from both. This crossover is done

by selecting some continents from the first and second parents and combining them in

a new map, creating new connections between these continents’ territories. Now on the

new map, these continents will inherit the same territory structure and bonus units that the

parent’s continent has. Figure 3.6 illustrates the crossover operation between two maps,

with the coloring representing the continents being chosen and propagated to the new
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map.

Figure 3.6: Crossover operation between two maps

Source: The Author

After a new candidate has been generated through the crossover operation, we

mutate it. We have defined five operations of mutation, each having a 20% chance of

occurring in an individual, which are:

• Creating a new connection between two territories;

• Removing an existing connection between two territories;

• Moving a territory from one continent to another;

• Swapping the value of provided units of two continents;

• Modifying the value provided units of a continent by one.

In the crossover and mutation process, an individual may be modified to the point

that it cannot be a valid variation to the game. Because of that, we need to check if the

generated individual is a valid parameter by checking two characteristics: if the graph

generated by the territories’ connections is planar and connected. The reason is that terri-

tories’ connections represent the map on which the game is played, so it must be a planar

graph. Also, the players must be able to conquer all territories to win the game, so all

territories must be reachable. If an individual fails in either of these tests, it is discarded,

and we revert to the selection of new parents.

After generating a valid individual, we evaluate it through our automated playtest.

In it, we run the game with our agents a hundred times, gathering the turn metrics and

outcomes of each game. After this playtest, we calculate the individual’s quality and vi-

ability criteria and compare them with the estimated optimal criteria values (discussed in

Chapter 4). This comparison of the individual’s and optimal criteria is calculated through
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the Euclidean distance given by the Equation 3.6, where M is the criteria calculations

measured, I is the ideal criteria values, and C is the number of different criteria. We use

this evaluation to define the distance between the new individual and an ideal individual.

Since our fitness function is inversely proportional to this distance calculated, we nor-

malize this value across all other individuals of the population and calculate our fitness

function as 1− d(M, I)normalized.

d(M, I) =

√√√√ C∑
c=1

(Mc − Ic)2 (3.6)
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4 EVALUATION

In this chapter, we present and analyze the results of our proposed pipeline for the

generation of Risk variants. We begin by analyzing the quality and viability criteria of

the simplified Risk with our base game parameters (Section 4.1). We then choose the pre-

ferred values for these criteria and use them to generate new game variants (Section 4.2).

Still in this section, we analyze the game variants generated, discussing the individuals

with the best and the worst performance. Lastly, we discuss the obtained results (Section

4.3).

4.1 Setting Values for Optimization

For our proposed pipeline to generate new game variations, we need to provide it

the preferred values for each of the calculated criteria. These values are necessary for the

fitness calculation of each game variation generated and impact which kind of content the

pipeline will generate. Browne (2011), when proposing the framework for evolutionary

game design, realized an experiment with human players that would later be used to define

the criteria and values used in Ludi’s fitness calculation. This experiment is explained in

Section 2.4. Our approach is more simplistic, given that the time restrictions and scope of

this work made it impossible to playtest the simplified Risk with players.

Another set of values we need to set before experimentation are the weights for

the heuristic calculation from Equation 3.1. We use wterr and wunit as 0.8 and 0.2, respec-

tively. Since the control of more territories puts the player closer to the victory condition

and offers them more units in the next turn, they are given a higher weight on the formula.

In this work’s experimentation, we ran 500 playtests using the game’s original

map and parameters, with 42 territories and 6 continents. This experiment took around

two minutes, running in a single-threaded Python application. After these playtests, we

gathered their data and calculated the game’s current advantage, drama, and lead change

criteria, as well as the average game duration. These metrics, which will be analyzed

below, are used as an insight to determine the ideal criteria values for generating new

game variations.

Table 4.1 shows the measurements gathered from the playtests run in the original

Risk map. We have the four metrics gathered, their average value, and their standard

deviation (when applicable). From these metrics, we can notice that the parameters of
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the original Risk, when applied to our simplified Risk, is an unbalanced game. We can

see this lack of balance explicitly in the Advantage (Cadv) criterion. Advantage gives us

the information of how probable the first player to move in the game is to win it—an

Advantage of 0.5 means that the game is perfectly balanced. A value of 0.252 in this

criterion means that, in all 500 playtested games, the first player to move won 74.8% of

them.

Table 4.1: Metrics from the original Risk map
Metric Measured Average Value Standard Deviation
Advantage (Cadv) 0.252 Not Applicable

Drama (Cdra) 0.064 0.108
Lead Change (Clc) 0.074 0.148
Average Duration 15.558 4.681

Source: The Author

A possible explanation for the first player’s noticeable advantage can be seen in

the Drama (Cdra) and Lead Change (Clc) values in Table 4.1. Lead Change shows us how

frequent the change in the lead in the game is—values closer to zero mean that players

rarely change leads in the game. Drama values indicate how severe the lead disadvantage

a player who ultimately won the game had. Given that both values are closer to zero,

we can assume that players who get a lead in the game rarely lose it, and when they do,

they rarely manage to get it back. The standard deviation of these metrics is high because

many games had Lead Change and Drama values equal to zero (meaning the first player

always had the lead), corroborating this explanation. Our hypothesis for this unbalance is

that the first player in the game always has a chance to capture enemy territories and get

ahead, leading to a snowball effect1.

Analyzing the Average Duration of the games in Table 4.1, we can see that games

had an average duration of around 15 turns. However, the high standard deviation of the

metric indicates that some games can have a significant fluctuation in their game duration.

Figure 4.1 shows a boxplot representing the game duration of each playtest where we can

analyze this behavior. We can see in the figure that more than half of the games end

before 15 turns, and this distribution becomes more and more sparse as the number of

turns increases. Outliers in the graph show us that we still have games going far beyond

their average turn length, even with modifications in the game’s rules implemented to

prevent stalemates.

In Figure 4.2, we can analyze the turn duration of the games separated by the

1In games, snowball effect is a term used to describe when a player uses a slight initial advantage to
gain more advantage throughout the game.
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Figure 4.1: Boxplot of game duration (in turns) in the original Risk map

Source: The Author

game’s winner. In it, we can see that the median number of turns from the games where the

second player won is two turns higher than those where the first player won. The snowball

effect corroborates this correlation between game duration and higher turn counts. This is

because games where the first player could not dominate the map in the first few turns and

snowball their advantage take longer to complete, giving a chance for the second player

to take the lead.

Figure 4.2: Boxplot of game duration (in turns) by winner in the original Risk map

Source: The Author

Given the game’s notable advantage towards the first player to move, our ideal

values for the criteria in our experiments are those present in Table 4.2. The ideal value

of Cadv in our evaluation process is 0.5, incentivizing a balanced game. We establish our

Tpref as 16, the median of the duration of the games where the second player won, and

Cdur is set at zero. Clc and Cdra are set at 0.1 to incentivize some degree of lead change

and drama in the game. When comparing to the original average values in the table

below, we consider the average turn duration as the Tpref of the original game parameters,
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and since we had no Tpref defined when running the experiments, there was no way to

calculate Cdur.

Table 4.2: Values used for game evaluation
Metric Ideal Value Original Average Values
Cadv 0.5 0.252
Cdur 0 Not applicable
Tpref 16 15.558
Clc 0.1 0.074
Cdra 0.1 0.064

Source: The Author

4.2 Generation of New Games

Using our pipeline implementation to generate game variants described in Section

3.2.3, we created 80 new valid game variants for the simplified Risk. To accomplish it,

we created five different maps that, together with the original map, defined our initial

population. We used our fitness function with the ideal parameters defined in Table 4.2

to calculate the game’s evaluations, playtesting each game 200 hundred times to gather

the metrics. When checking the validity of the generated game variations, the pipeline

discarded 7 games, resulting in approximately 8% of all generated game variants. The

generation of each game variant took around 30 seconds for each iteration, resulting in

approximately 45 minutes of execution. Of all 80 valid game variants generated (out of all

87 generated games), the rest of this subsection will discuss the best and worst performing

individuals.

The worst performing game had a small 10-territory map with three continents.

Table 4.3 shows us the measured metrics from this game across all 200 playtests. This

variation’s Advantage (Cadv) indicates an even more unbalanced game than the original

game map, the value of 0.185 indicates that in 81.5% of the games, the first player to

move won. Figure 4.3, shows that games where the second player won were, in the

median, longer than those where the first player won. Although the Lead Change (Clc)

decreased, the amount of Drama (Cdra) in this playtest increased compared to the original

one. This indicates that lead changes occurred less frequently but were more impactful.

The best performing game had a 51-territory map with six continents. Table 4.4

shows us the measured metrics from this game across all 200 playtests. All metrics are

closer to the ideal metrics used in the evaluation in comparison to the original map. With
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Table 4.3: Metrics for the worst performing game variation
Metric Measured Average Value Standard Deviation
Advantage (Cadv) 0.185 Not Applicable

Drama (Cdra) 0.194 0.188
Lead Change (Clc) 0.053 0.116
Average Duration 6.965 4.706

Source: The Author

Figure 4.3: Boxplot of game duration (in turns) by winner in the worst performing game

Source: The Author

an Advantage (Cadv) of 0.32, the first player won 68% of the 200 games playtested. Both

in the Average Duration and Figure 4.4, we can see that games in this map were more

prolonged than in the other two variants analyzed here. Following the same trend of the

other games, the second player’s wins are, in the median, one to two turns longer than

those of the first player. Both the Lead Change (Clc) and the Drama (Cdra) values were

closer to the ideal values from Table 4.2 as well.

Table 4.4: Metrics for the best performing game variation
Metric Measured Average Value Standard Deviation
Advantage (Cadv) 0.320 Not Applicable

Drama (Cdra) 0.109 0.184
Lead Change (Clc) 0.087 0.071
Average Duration 17.308 5.115

Source: The Author

4.3 Discussion

We can examine the effectiveness of evolutionary game design in the context of

game variants by analyzing the game variations generated and the measurements of cri-

teria and game duration we extracted from them. The simplified Risk heavily favors the
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Figure 4.4: Boxplot of game duration (in turns) by winner in the best performing game

Source: The Author

first player to move, even with the modifications we made to amortize this advantage. In

all game variants generated by the pipeline, this advantage to the first player is present,

indicating that the game’s base rules may be the reason for this imbalance.

Some of the game variants generated by the pipeline were able to reduce this

first-player advantage. In the most balanced individual generated by the pipeline, the first

player won 68% of the games playtested. In contrast, in the original game’s map playtests,

the first player won 74.8% of the games. In the individual with the lowest fitness in the

pipeline, the first player won 81.5% of the games playtested. These results validate that

we can generate more balanced variants for the simplified Risk, but some problems in the

game design that originate from the base game’s rules may not be solvable using only it.

Analyzing the individuals generated and their playtest’s results, we can see that

longer games tend to give the second player more chances to win. We can explain this

trend by comparing a hypothetical first turn of a player on a map with a low amount of

territories and a map with a high amount of territories. In smaller maps, the impact of

attacking the enemy first and capturing these territories is higher since each territory in

this small map counts as a proportionally bigger control of the whole map. In a larger map,

this impact is diminished by the number of territories the second player will still control

after the first player’s turn. Our results reinforce this hypothesis: Figure 4.5 shows us the

relation between the number of territories of an individual and its calculated advantage.

Although some of these particular values may be skewed by the innate randomness of

the automated playtesting, we notice that smaller maps generate more unbalanced games

while larger maps do the opposite.
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Figure 4.5: Scatterplot of advantage by number of territories for game variation

Source: The Author
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5 CONCLUDING REMARKS AND FUTURE WORK

This work presented a pipeline for the generation of Risk variants through evo-

lutionary game design. We have implemented and validated this pipeline by generating

variants of a simplified version of the board game Risk.

In our evaluation, the original game’s parameters showed an unbalanced nature,

where the first player to move won 74.8% of the games playtested. By generating new

game variants and evaluating them through automated playtesting, our implemented pipeline

created a variant that mitigated this advantage, where the first player to move won only

68% of the games playtested. These new game variants also varied in length of dura-

tion, where games ranged from a median of 6 turns per game to a median of 17 turns per

game. Other metrics analyzed showed only a negligible variation between game variants,

indicating that they are more related to the game’s fixed rules than the game’s parameters

Our experiments validated that we can generate new Risk variations through our

proposed pipeline. However, we can observe that there are limitations regarding how

much impact this generated variant can have on the game’s fixed rules. Since we have no

control over the rules of how combat works, no game variation can modify the encour-

agement of aggressive behavior from players, and this can lead to immutable unbalance

in the game.

During the development of this pipeline, many ideas that were out of the scope of

this work were raised. We point out some of these below as propositions for future work.

An essential aspect for validating our game variants generated through evolution-

ary game design would be playtesting them with human players. This would require

groups that would play different game variations, including the original game’s parame-

ters, and a survey with these players regarding perceived balance, game length, and other

aspects defined by our proposed criteria.

An interesting development for future work would consist of extending an exist-

ing general game purpose framework and implementing the evolutionary game design

pipeline. The TAG framework (GAINA et al., 2020), for example, already supports the

definition of different game variants through different parameters for each game. It al-

ready implements a simple playtesting pipeline that gathers metrics equivalent to our via-

bility criteria. Extending an existing framework for generating new game variants through

evolutionary game design would allow us to test different games and agents already im-

plemented in the framework without implementing them from scratch.
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Adding new criteria in the evaluation would also be interesting for creating vari-

ants with specific qualities. We currently only use four criteria, and of these four, two

showed negligible variation in all game variants, indicating that they may be more con-

nected to the game’s base rules. Our current criteria are based on Browne’s work, but

since we are creating variants from a specific game, we can create new criteria specific to

this game. Criteria such as the number of continents, number of territories, the average

number of troops, or average recruited units per player would be a more direct approach

to make these variants have specific desirable qualities.

Much of the current pipeline revolves around the performance of the agents playtest-

ing the game. How these agents play the game influences all the criteria measurements

and can be a strong bias in the generation of new game variants. An essential step in

future work would be creating more competent agents for the game and creating different

agents that emulate a player’s actions and objectives. Both Silva et al. (2017a) and Mugrai

et al. (2019) show us that we can use different agents to emulate the behavior of human

players in a game.

Lastly, an exciting product that could come from this work is the usage of evo-

lutionary game design to create a new board game with the usage of procedural content

generation in its design. This approach is not novel in electronic games and has been ex-

perimented with in trading card games like KeyForge1, where each deck is procedurally

generated. With games that implement this in their design, the players have a more proac-

tive role while playing. Games with these concepts integrated into their designs bring

forth new emerging strategies in each new game, and players must figure them out as they

play.

1KeyForge is a card game published by Fantasy Flight Games where decks are created procedurally and
cannot be modified by players.
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