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“If one cannot prove that a thing is, he may try to prove that it is not. And if he
succeeds in doing neither (as often occurs), he may still ask whether it is in his interest
to accept one or the other of the alternatives hypothetically, from the theoretical or the
practical point of view. Hence the question no longer is as to whether perpetual peace
is a real thing or not a real thing, or as to whether we may not be deceiving ourselves
when we adopt the former alternative, but we must act on the supposition of its being

real.”
— Immanuel Kant



ABSTRACT

Consider the problem of a set of n jobs which needs to be processed by a single ma-
chine. The processing time for each job is identical to all the others, and predefined.
Once on the machine, preemptions are not allowed. Every job has a release date be-
fore which it can not be scheduled. They also have due dates, before which they are
supposed to have completed processing by the machine. The jobs are weighted, and
the goal is to find a schedule which maximize the sum of weights of jobs complete
in time. Baptiste [1] approached a generic instance of this problem with a dynamic
programming solution which runs in O(n7) time. We use an additional hypothesis
related to release and due dates: for any job j, its release date is denoted by rj and
its due date by dj. We say that a set of jobs and release and due dates are agreeable
if, and only if, for two jobs j1 and j2, rj1 < rj2 ⇔ dj1 < dj2 . We model this problem
as an integer linear programming and run in general solvers like glpsol and CPLEX.
Finally, we present an alternative solution inspired on Baptiste’s original dynamic
programming to solve only instances whose release and due dates are "agreeable"
like we defined earlier. Our solution outperforms the original and the solvers when
the set of dates is agreeable, running in O(n3) time.
Keywords: Combinatorial Optimization. Scheduling. Single Machine Schedul-
ing Problem. SMSP. Dynamic Programming. Integer Linear Programming. ILP.
Computational Complexity Theory. Theoretical Computer Science.
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1 INTRODUCTION

Given a set of n jobs, we call a schedule the mapping of each job to a starting
time, at which the job starts executing on a machine up to its completion. The
general problem is about finding an optimal schedule of jobs in terms of predefined
optimality criteria. For example, to minimize makespan. Variations can be obtained
by adding other restrictions to this general concept, such as imposing for each job a
release date before which that job is not considered available for scheduling. Many
practical, real-life situations can be modeled as a scheduling problem with the proper
set of constraints.

Among these variations there are many for which a reasonable solution has
yet to be found. We will refer to each of these variations of the scheduling problem
by using the popular notation introduced by [2]. The problem of minimizing the
number of late jobs is written as 1 | ∑

Uj using the aforementioned notation. This
problem, without further constraints, consists in alloting penalties for jobs overdue,
and can be solved in polynomial time using the algorithm introduced by [3] in time
O (n log n) steps. In this particular case, to minimize unit time penalties altogether
means the same as maximizing the number of jobs completed before due. The
weighted version of this same problem mean some jobs are less desired to be on
time than others. This, and adding of release dates so a job cannot be scheduled
arbitrarily early, is noted as 1 | rj |

∑
wjUj and shown to be strongly NP-hard

[4]. The concept of tardiness, which, rather than lateness, consider overdue jobs to
be still of value, the difference between its due date and completion time, is none
easier in overall terms of complexity [5], with its weighted version being also strongly
NP-hard [6].

For the special case 1 | pj = p, rj |
∑
wjUj, with all jobs having identical pro-

cessing time, a dynamic programming algorithm was proposed in [1]. This solution
runs in polynomial time though having primarily O(n5) space complexity as well
as a O(n7) time complexity. It considers the problem of measuring up smaller job
sequences in different time intervals, later combining those in a bottom-up fashion.

This work will focus on a special case of 1 | pj = p, rj |
∑
wjUj, with

sets of release and due date ordered in a similar fashion. Namely, ∀i, j s.t. i ≤
j, ri ≤ rj ⇔ di ≤ dj. Henceforth, we will refer to this property as having sets of
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agreeable release and due dates. We study and implement the solution for the former
case, without agreeable sets, for purpose of comparing performance. We also model
this problem as a time-indexed ILP using AMPL, then solve them using CPLEX.
The results are compared to those obtained through the said implementation of
Baptiste’s solution. Furthermore, we propose a better solution for the special case of
agreeable release and due date sets, and generate another set of instances according
to said restriction. We show our solution is more efficient when Baptiste’s dynamic
programming runs over the same subset of instances having agreeable release and due
date sets. Finally, we present results for this subproblem that outperform CPLEX
for inputs of considerable size.
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2 PROBLEM

2.1 Overview

A Single Machine Scheduling Problem refers to the more general problem of
optimization of a given objective function applied to given a set of tasks or jobs, and
which has the only predetermined restriction of being a single machine alone, not
allowing assignments such that more than one job is processed at the same time.

A Multiple Machine Scheduling Problem refers to the somewhat relaxed ver-
sion of the aforementioned problem, since having more than one machine allow for
assignment of jobs to be processed at the same time on different machines·

Note that both definitions above are far from complete, and several con-
straints shall arise for a more specific version of both general problems as is. We
will use a more precise and formal definition for a Scheduling Problem:

A Scheduling Problem is defined as follows: suppose thatmmachinesMJ(j =
1, . . . ,m) have to process n jobs ji(i = 1, . . . , n). A schedule is for each job an
allocation of one or more intervals to one or more machines. The corresponding
scheduling problem is to find a schedule satisfying certain restrictions. Classes of
scheduling problems may be specified in terms of a three-field notation α | β | γ.

2.1.1 The α, β, γ Notation

Here α specifies the machine environment (i.e. single versus multiple ma-
chines, along with the possibilities for dedicated machines and parallel machines
of different sorts, such as identical, uniform, or unrelated). Field β relates to the
job specific characteristics, such as possibility of preemption, precedence relation
between them, presence of release and/or due dates, and deliberations about their
processing times. Field γ denotes the optimality criterion, that is, the objective
function. Examples are minimizing makespan. Ci=completion time of job ji.
Minimizing the makespan is to max(Ci|i = 1, ..., n). Other objective functions of
interest are minimizing the ∑j

i=1Ci, that is, the total flow time, and minimizing∑j
i=1wiCi, that is weighted total flow time. Other common objective functions
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are measuring of tardiness, lateness, among several others.[7].

A Single Machine Scheduling Problem is our topic of interest of in this paper.
It can be defined by having only one machine, which can process only one job at
time. Thus, a SMSP consists of a set J of n jobs j1, j2, . . . , jn that have to be
processed on a single machine M . In our case of interest, we will be interested in
minimizing the number of late jobs, rather than minimizin the makespan as in the
referenced paper.

Field β is related to the many possible constraints of the problem. These
range from allowing or not e.g. preemption, or if there are release and due dates for
each job.

The last field, γ is related to one of many possible optimizing function. We
already mentioned minimizing maxC where C is the completion time of jobs. This
is know as minimizing the makespan. Other important bottleneck function is mini-
mizing Lmax where L stand for lateness. Formally, LJ = max 0, CJ − dJ where dj
stands for the due date of job J .

Summmary of optimizing functions of interest:

• Tardiness: cJ − dJ

• Lateness: max{0, cJ − dJ}

• Unit Penalty: 0 if cJ ≤ dJ , otherwise 1

2.2 Baptiste’s approach for the general case without agreeable release
and due date sets

Baptiste [1] approached the general problem 1 | pJ = p, rJ |
∑
wjUj using a

dynamic programming iterating over a set Θ = {t = ri+ lp | ∃ ri∃ l ∈ {0, . . . , n}} of
possible start and completion times for every job. Baptiste proved that in any left-
shifted schedule the starting times of the jobs belong to Θ. Furthermore, he defined
sets Uk(s, e) and maximal Wk(s, e) such that ∀k, s, e, Wk(s, e) can be computed



14

through:

max
Wk−1(s, e), max

s′∈Θ
max{rk,s+p}≤s′≤min{dk,e}−p

wk +Wk−1(s, s′) +Wk−1(s′, e)
 ,

A bottom-up dynamic programming which calculate all possibilities and combina-
tions for s, s′ and s′, e so to determine the max. The main loop iterates from 1 to k,
which is O(k). Each s′ pairs with an s making an (s, s′) then iterates through every
possible values of e for (s′, e). s, s′, e ∈ Θ and, therefore have O(n2) possibilities
each. O(n2)3 = O(n6). Since this is an inner loop iterating from 1 to k the overall
time complexity of the algorithm is O(n7).

From this point onwards, what will we be referring to as “our problem”, are
instances of 1 | pJ = p, rJ |

∑
wjUj which have sets agreeable release and due dates.

Out of the scope of our work, the sets are supposed not to be agreeable unless
otherwise explicitly noted.

2.3 Approaching our Problem through ILP

Following the brief review about the subject at hand, we will now at out
problem of intetest, that is: 1 |, PJ = p, rJ |

∑
wJUJ , minimizing the weighted

number of late jobs, represented as a problem of maximization using a penalty unit
set Uj. Moreover, we add to our problem a unique processing time ∀j ∈ J, pj = p,
release and due dates. Specifically to the intererests of this work, we propose a
relation between rj and dj such that:

∀ji, jj ∈ J, ri ≤ rj ⇔ di ≤ dj

Henceforth, we may refer to this by simply stating that the problem has “agreeable
rk, dk for any given job k”, that is, agreeable release and due dates. Furthermore,
given the context, for the sake of clarity through avoidance of unnecessary repeti-
tions, any problem instance conformant to the prior definition may be refered just
as being agreeable.
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2.4 Our ILP Model

Discrete sets of agreeable and normal instances were used but this approach
was not particularly designed so to benefit from either. They were required, however,
as our main solution works only for the agreeable subset.

2.4.1 Explaining our modeling

Let N = {0 . . . n}. The processing time p remains constant for all n jobs.
We define Θ = {t | ∀j ∈ J,∃ l ∈ {0 . . . n}, t = rj + lp} as the set of all possible
times for a job to start or to finish processing, provided it starts as soon as possible.
Jobs are scheduled either at their release time, or are waiting for completion of
another job. If this other job which is currently being processes did not start at its
release date either, the same may apply to a subschedule like an "waiting queue",
so inductively backwards up to a very first one. Now we assume, as in [1], that
the jobs are sorted by their due dates, increasingly. Therefore, a unique first job
is determined, provided, if more than one job is made available simultaneously, the
one with the lowest index will be chosen. So, this job is guaranteed to run at its
release date, and to be completed at r1 + lp = (1)p = rj + p. Notice both starting
and ending times are members of Θ, with values of 0 and 1 for l, respectively.

For any job made available there are only two possibilities:

• The machine is free and the job is immediately selected and treated in a way
analogous to the first one

• The machine is busy processing another job. Let us say this waiting job is the
last in a "waiting queue" of m jobs. The one before it also had to wait, and so
on up to the first, which we will suppose to have been the kth to be scheduled.

For the latter case, we assume this kth job to have been immediately scheduled at its
release date rkth and finished processing at rkth + p, both being members of Θ with
l = 0 and l = 1, respectively again. Regarding the "waiting queue" aforementioned,
the next on line will start at the former’s completion time and be completed itself at
rkth + (l = 2)p, which is also in Θ. In such situation, the last job in the m-lengthed
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queue would start at rkth + (m− 1)p and be finished at rkth + mp. Once again, we
have only two possibilities:

• m+ k = n

• m+ k < n

Removing the k − 1 jobs scheduled before the kth, the latter inequality is shown to
be sound, for a kth plus the m-sized subschedule would need them to equal n.

The first possibility is trivial, as the kth job is the very first one, and the last
job in the queue of size m was already shown to start and end at instant times alike
those in Θ. k = 1 thus m−1 < m < n, which are both valid values for l ∈ {0 . . . n}.

For the second possibility, either there were k−1 jobs before the kth, or there
are more jobs waiting to be released after the last in the waiting queue. In the first
case, it follows that m+ k < m < n for any k, and both m− 1 and m are valid as l
again. In the second case, the total number of jobs is just shown yet bigger, making
the former inequalities and their implications of validity sound all the same.

With that, we had shown Θ has every and only possibilities for the starting
and ending times of every job.

Late jobs are scheduled arbitrarily late in timem, as they’re already late.

We, now, define another set, parameterized by Θ and also a subset of it: Let
Ht = {t′ | ∀t ∈ Θ, t ≤ t′ ≤ t + p}. As discussed so far, any t ∈ Θ is a possible time
for a job to start being processed. It will take t+ p time units until its completion.
Therefore, the members of a given Ht are the subset of times conflicting with a job
scheduled on t.
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2.4.2 The ILP

The original problem is thus presented as the following ILP:

maximize
∑
j∈J

∑
t∈Θ

wjXj,t (2.4.1)

subject to
∑
t∈Θ

Xj,t ≤ 1, ∀j ∈ J, (2.4.2)

∑
j∈J

∑
t′∈Ht

Xj,t′ ≤ 1, ∀t ∈ Θ (2.4.3)

Xj,t = 0, ∀j ∈ J, ∀t ∈ Θ, t ≤ rj (2.4.4)

Xj,t = 0, ∀j ∈ J, ∀t ∈ Θ, dj ≤ t+ p (2.4.5)

0 ≤ rj, dj, wj, ∀j ∈ J (2.4.6)

Xj,t ∈ {0, 1}. (2.4.7)

• The objective function maximizes the weighted number of jobs completed in
due time, iterating over all jobs and times to find the optimal solution.

• The first constraint iterates over times in Θ for all jobs and, obviously, for a
given job, only one starting time shall be assigned, hence the sum is 1 at most.

• The second constraint iterates over every job and their parameterized set of
conflicting times, for all possible starting time t ∈ Θ. Therefore, no jobs shall
overlap in time.

• The third constraint states, for every job and for all t ∈ Θ, a job can not be
scheduled if it was not yet released at that point in time.

• The fourth constraint states, for every job and for all t ∈ Θ, a job with a due
date smaller than its starting time plus the time it will take up to completion,
is already a late job.

• The remaining constraints defines X to be either 0 or 1 for every j and t.

2.5 An Example

To illustrate the purpose of each constraint, we made a small example of a
set J with seven jobs, described in Table 2.1:
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Table 2.1 – An illustrative example

job release date due date weight
j1 1 7 61
j2 1 7 50
j3 2 8 59
j4 2 9 45
j5 2 10 54
j6 3 10 83
j7 4 10 27

j6 j6

3 8 10 15
Figure 2.1 – X6,3 = 1 means that j6 starts at t = 3 then again at t = 10, since X6,10 = 1,

thus violating constraint (2.3.2) and making no sense, for each job only needs to be
processed once.

Now, suppose constraint (2.3.2) is violated. That is, there exists a j ∈ J for
which their sum over members of Θ is greater than 1. Let us try and see an example
with j6 in Figure 2.1.

Violating this constraint means that a single j start twice. It is not even
necessary to consider the possibility of overlapping, since our next example will talk
about this. Now, we will schedule j1 to start at t = 1, that is, as soon as possible.
It makes sense, since its weight is the second greatest overall. This simple scenario
is shown in Figure 2.2:

In order to violate constraint (2.3.3), another job would have to start in a
time t′ ∈ Ht, for example j3 starting at 3. That would be represented with X3,3.
Figure 2.3 shows the case where X3,3 = 1, that is, j3 is starting at t′ = 3 ∈ H1:

Clearly, constraint (2.3.3) is needed to avoid job overlapping. Constraints
(2.3.4) and (2.3.5) apply for all j ∈ J and t ∈ Θ. The first part needs no illustration:
it is impossible for any job to be scheduled ahead of its own release. As for the latter,
Figure 2.4 illustrates the problem of a job having a due date smaller than its starting
time plus the time it would take up to completion. Let j7 start at t > d7 − p:

It is impossible for j7 to be due. The two vertical lines representing d7 − p

j1

1 6
Figure 2.2 – j6 starting at t = 1
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j1 j1 and j3 j3

1 3 6 8
Figure 2.3 – X1,1 = 1 means that j1 starts at t = 1, but X3,3 = 1 means j3 starts at

t = 3 ∈ H1, thus violating constraint (2.3.3) and jobs overlap

dj7dj7 − p

j7

t > dj7 − p t + p > dj7

Figure 2.4 – Constraint (2.3.6) is violated by having X7,t>d7−p = 1 meaningless, since it’s
impossible for j7 to be due

and j7 help visualizing it. In short, constraint 2.3.4 is needed so the ILP modelled
work as expected. There are no issues with quantifying universally both j and t, for
the other aforementioned constraints guarantee no unfit combination of values can
happen. h
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3 ALGORITHMIC SOLUTION OF THE CASE WITH AGREEABLE

RELEASE AND DUE DATES

3.1 Problem

Mimimizing weighted late jobs with the same processing times or 1 | pj =
p, rj |

∑
wjUj in α | β | γ notation, for the special case of “agreeable” sets of release

and due dates. Two sets of release and due dates are said to be agreeable with each
other if, and only if, ∀ji, jj ∈ J, ri ≤ rj ⇔ di ≤ dj

3.2 Input

A set J = {j1, j2, . . . , jn} of n jobs, the processing time p that is the same
for every job, and their respective:

- Release dates r1, r2, . . . , rn

- Due dates d1, d2, . . . , dn

- Weights w1, w2, . . . , wn

3.3 Definitions

We assume that jobs are ordered by their due dates:

i ≤ j ⇔ di ≤ dj

Hence, by adding the hypothesis of agreeable sets of release and due dates,
we have

ri ≤ rj ⇔ di ≤ dj ⇔ i ≤ j (3.3.1)

We define any schedule of a subset J ′ ⊆ J to be feasible if and only if:

- No job starts before its release date
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- No jobs are late

- The execution intervals of the jobs do not overlap

We are looking for the subset X for which there exists a feasible schedule
σ(X) and whose weight is maximal. Every jk ∈ J \X that is late can be scheduled
arbitrarily late for it’s already late.

Proposition 1. If i < j then ji precedes jj in σ(X)

Proof. Either σ(X) is already ordered like this or it can be modified to be as such.
Let us call any feasible, optimal yet unordered schedule to be σ′(X). We show that
for every jj happening before ji in σ′(X) such that i < j, their positions can be
switched like follows:

- jj is surely available at the time ji starts, since it was scheduled before.

- If we swap the jobs, then jj completion time is the same as ji was before. σ′(X)
is feasible by definition, therefore ji was not late. From (3.3.1) it follows that
dj ≥ di, therefore jj is not late as well after the swap, and the resulting
schedule is still feasible

- ji can not become late since it is moving backwards in time

- All that is left is to show ji was already available at the starting time of jj in
σ′(X). Since σ′(X) is feasible, we know that jj started after its release date.
From (3.3.1) it follows that ri ≤ rj. Hence, ji is released either earlier or at
the same time as jj, and the schedule resulting from the switch is still feasible.

For k, e ∈ N, k ≤ n we define

Uk(e) = {ji | i ≤ k ∧ ri ≤ e− p} (3.3.2)

That is, the set of jobs:

- whose index is k or less; and

- whose release date is, at most, p time units less than e
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Also, we will define a function weight() returning either the sum of all job
weights in either a subset X ⊆ J , or in a schedule σ(X) of any subset X ⊆ J

Now, letWk(e) be the maximal weight of a subset X ⊆ Uk(e) such that there
is a feasible schedule σ(X) of these jobs:

- σ(X) starts within [rmin, rmin + p] that is the time interval of length p be-
ginning at the smallest release date rmin

- σ(X) ends at most at time e

Proposition 2. For k, e ∈ N and k ≤ n, Wk(e) is equal to Wk−1(e) if rk > e− p

and to the following expression otherwise:

W ′ = max{Wk−1(e), wk +Wk−1(min{dk, e} − p)}

Proof. We first prove W ′ ≤ Wk(e), then Wk(e) ≤ W ′.

1. W ′ ≤ Wk(e)
If W ′ = Wk−1(e) then W ′ ≤ Wk(e), since Uk−1(e) ⊆ Uk(e).
Otherwise, let X be the subset of jobs that has a feasible schedule σ′(X) that
realizes Wk−1(min{dk, e} − p). Then, σ′(X) either ends at min{dk, e} − p or
earlier. Hence, there exists a feasible schedule of X ∪ {jk} that ends exactly
at time dk, and that weighs exactly wk + Wk−1(min{dk, e} − p), but is not
necessarily maximal. Therefore, W ′ ≤ Wk(e).

2. Wk(e) ≤ W ′

Let Z be a subset that realizes Wk(e). If jk /∈ Z then

Wk(e) = Wk−1(e) ≤ max{Wk−1(e), wk +Wk−1(min{dk, e} − p)}

Otherwise, jk ∈ Z. Let X = Z \ {Jk}. The subschedule σ(X) immediately
before jk is formed by jobs with indexes up to k − 1, though not necessarily
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all of them.

σ(X) is feasible, and must end at min{dk, e} − p or before. Hence, X ⊆
Uk−1(min{dk, e}− p), and weight(σ(X)) won’t surpass Wk−1(min{dk, e}− p),
for the latter is maximal by definition

Wk(e) = weight (σ(Z)) for Z realizes Wk(e)

= weight (σ(X ∪ {jK}))

= weight (σ(X)) + wk

≤ Wk−1(min{dk, e} − p) + wk

≤ max{Wk−1(e), wk +Wk−1(min{dk, e} − p)} (3.3.3)

Q.E.D.

Notice there are at most n2 elements in Θ. Starting with the last, wk iterates
backwards, and 1 ≤ k ≤ n. Since for each k we have e iterating over values in Θ,
the overall complexity of our solution is O(n3).
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1 Function W(k,e):
Input : A set of n jobs j1, j2, . . . , jn with processing time p for

every job, due dates d1, d2, . . . , dn, release times
r1, r2, . . . , rn, and weights w1, w2, . . . , wn.

2 if table.find(key) then // key is in table
3 return value[key]
4

5 if k = 0 then // recursive base
6 return 0
7

8 if rk > e− p then // job released too late
9 result←− W (k − 1, e) // from proposition 2

table.insert(W (k − 1, e))
// register in table for memoization

10 return result

11

12 W (k, e) = max{W (k − 1, e), wk +W (k − 1,min{dk, e} − p)}
// from proposition 2

13 table.insert(W (k, e)) // register in table for memoization
return W (k, e)

Algorithm 1: Outline of the function W(k,e), which implements our top-down
solution recursively
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4 COMPUTATIONAL RESULTS

4.1 General Description

The experiments were performed based on three different approaches

• Original dynamic programming solution of Baptiste [1];

• An AMPL model for a time-indexed ILP run on CPLEX;

• Our own solution, also based on dynamic programming, but restricted to sub-
problems having the premise of agreeable release and due dates.

All experiments were conducted in a Intel Core i7 CPU 930 running at
2.80GHz 8-core 12 GiB RAM machine. The instances were randomly generated in
a fashion resembling that used for example in [8], with n in the set {70, 80, 90, 100}
and processing times p ∈ {5, 10, 15, 20, 25, 30}. For each pair of (n, p) 50 instances
were randomly generated. Hence a total of 1200 instances were tested for the general
case. Likewise, a different set of 1200 instances with agreeable rk, dk was generated.
We refer to the latter as the agreeable set and to the former as the “normal” set.

4.2 Representing Problem Instances

Both the implementation of Baptiste’s original dynamic programming and
our adapted solution for agreeable rk, dk have the same formatting for the input
files. This format consists of a plain text file with an “.in” filename extension and
such that:

• Zero or more comment lines are placed before anything else. A comment line
must start by the character ’c’ separated from the comment by a single blank
space.

• Exactly one parameter line describing the number n of jobs and the com-
mon processing time p of that specific problem instance. This parameter line
must start with the characters ’n’ and ’p’ immediately followed by the values
intended for n and p, each separated by a single blank space.
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• Exactly n job lines describing each of the jobs itself. A job line must start by
the character ’j’ and be followed by the values of release date, due date, and
weight associated to that job, in this same order, each separated by a single
blank space

Example of a valid input file:

c This i s a comment l i n e
c Another comment l i n e
c Next l i n e has va lue s f o r n and p (number o f j obs and durat ion time )
c Jobs are " j r d w" r = r e l e a s e date , d = due date , w = weight
n p 3 9
j 3 42 2
j 1 46 7
j 4 43 1
j 1 43 3
j 5 45 4

Input files formatted other than the above description, such as with a number
of job lines mismatching the parameter line or with multiple parameter lines, are
considered malformed. The implementation is correct (that is, returns the max
weight of an optimal schedule) for any input that is not malformed. Trying to
pass a malformed input file as argument to an implementation yields an undefined
behaviour.

A small set of utilities was implemented to aid the handling of input files and
formats:

• The gen tool takes two mandatory arguments n and p for generating a random
problem instance with n jobs and common processing time of p time units.
When invoked with the -G (or “–agreeable”) option, the generated file satisfies
the property of agreeable rk, dk.

• The inst− chkr tool tests if a given input file satisfies the property of agreeble
rk, dk. The agreeable instance set is one that was thereby tested for each of
its 1200 files and none failed.
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• The conv tool takes an input file.in as argument then outputs the correspond-
ing instance written in AMPL (more specifically, GNU MathProg) language.
For convenience, AMPL/GNUMathProg-formatted inputs have the .ampl file-
name extension. An AMPL input file can either be solved by glpsol directly
or converted into an .lp file first then solved by CPLEX.

Several tests ran simultaneously using GNU parallel. The tests were au-
tomatized through bash scripting and their overall performance measured by time.
The gen tool used the mt19937 implementation for the Mersenne Twister PRNG,
seeded with a generic random device. Job weights, release dates, and due dates were
randomly chosen from an uniform integer distribution, with slight different ranges.
Weights were in the range of the interval [1, 120]. The range for release dates was
different: [1, (n× 6)− p]. The interval from which the due date of job jk depended
on its release date: [rk + p, (n − 5) − p]. After generating n triples of release date,
due date, and weight, one for each job, they were sorted accordingly if the option
for generating an agreeable set was passed.

4.3 Table of Results

In this section we will provide and comment on the results of our experiments.
We will show tables with the (average) times for each combination of problem size
n and the processing time p, for purpose of comparison between proposed solutions.
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Table 4.1 – These are random instances lacking the agreeable premise, hence our own
solution do not apply. CPLEX results are shown in two columns corresponding to
running multi-threaded (default) and single-threaded, respectively. All times are in

seconds.

n p bap cpx1 cpx2

70 5 3.46 0.30 0.26
70 10 19.66 0.98 0.84
70 15 51.14 2.31 2.06
70 20 92.53 2.41 2.14
70 25 137.93 3.29 3.01
70 30 188.79 3.78 3.49

80 5 5.82 0.39 0.34
80 10 35.63 1.44 1.24
80 15 93.16 2.98 2.62
80 20 178.78 3.99 3.54
80 25 290.40 5.32 4.70
80 30 404.72 7.04 6.04

90 5 9.86 0.55 0.49
90 10 58.50 2.66 2.25
90 15 168.71 3.53 3.14
90 20 325.57 5.58 4.88
90 25 545.80 7.98 7.11
90 30 780.66 9.71 9.66

100 5 16.05 0.74 0.65
100 10 95.80 3.59 2.97
100 15 280.29 4.73 4.11
100 20 592.01 8.06 6.54
100 25 951.72 11.59 10.24
100 30 1367.37 15.47 15.22
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Table 4.2 – These instances have agreeable release and due dates, therefore our solution
was added for comparison. The columns for CPLEX mean the same as in 4.1. All times

are in seconds.

n p agbap bap cpx1 cpx2

70 5 0.00 3.69 0.32 0.27
70 10 0.01 20.41 1.01 0.87
70 15 0.01 51.24 1.80 1.60
70 20 0.01 91.83 2.33 2.01
70 25 0.01 144.92 3.16 2.72
70 30 0.01 200.74 3.88 3.33

80 5 0.01 6.31 0.44 0.37
80 10 0.01 37.94 1.75 1.48
80 15 0.02 95.39 2.35 1.98
80 20 0.02 191.25 3.71 3.14
80 25 0.02 315.28 5.65 4.66
80 30 0.02 447.09 8.13 7.49

90 5 0.01 10.61 0.57 0.48
90 10 0.02 62.25 2.61 2.21
90 15 0.03 172.41 3.58 2.91
90 20 0.03 366.69 6.01 5.23
90 25 0.03 609.65 7.90 7.01
90 30 0.04 869.02 10.71 9.27

100 5 0.01 15.83 0.78 0.64
100 10 0.03 100.42 3.64 2.96
100 15 0.04 290.57 5.23 4.90
100 20 0.05 625.77 9.09 7.83
100 25 0.05 1063.28 12.87 10.80
100 30 0.06 1522.97 16.63 14.50

Baptiste’s proposed solution is outperformed by our own for agreeable in-
stances, and, overall, by CPLEX. Its O(n7) time is costly, and for n = 100, p = 30
had run for over 20 minutes, whilst CPLEX took about 15 seconds.
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Our own solution could not be satisfactorily measured by the aforementioned
tests. In order to fix this, we increased the number of jobs and applied further
testing.

4.4 More Testing

The tests above failed to substantially measure our own solution, which lasted
no more than 0.06 sec for the greatest input size with n = 100 and p = 30. Nev-
ertheless, Baptiste’s original algorithm already hit about 30 min. Therefore, a new
set of tests was prepared, with n ranging from 120 to 200 (with increments of 20),
and p restricted to 20, 25, and 30. It compares our solution against CPLEX running
with default settings. The results were as follows:

Table 4.3 – Testing our solution and CPLEX for up to 200 jobs. CPLEX run default
(multi-threaded) mode for all these tests. All times are in seconds.

n p agbap CPLEX

120 20 0.13 16.01
120 25 0.14 20.72
120 30 0.16 41.12

140 20 0.24 34.98
140 25 0.27 46.44
140 30 0.30 61.37

160 20 0.39 52.17
160 25 0.45 77.05
160 30 0.49 125.61

180 20 0.59 68.60
180 25 0.68 148.51
180 30 0.75 218.35

200 20 0.89 101.84
200 25 1.04 200.55
200 30 1.15 258.19
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4.5 Correlation between processing time p and general results

The data so far presented seems to imply a small correlation between the
execution time for several instantes of n jobs, however variating p. The processing
time p is a parameter of the problem and, at first glance, there seems to be no
relation whatsoever with the input. We claim our algorithm to be polynomial as
a foundation hypothesis. Hence, if expressed solely in terms of the input size n,
T (n) = nβ. Finally, we claim that, if expressed in terms of both n and p, T (n, p) =
nβ1 · pβ2 → log(T (n, p)) = β1 log(n) + β2 log(p). Data was input in R and processed
so to estimate the interference of p as another variable in a multiple linear regression.
The results are shown in Figures 4.1 and 4.2. Figures 4.3 and 4.4 show the regression
along with points in Table 4.3.
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Figure 4.1 – Summary of multiple linear regression over data obtained from CPLEX.

Figure 4.2 – Summary of multiple linear regression over data obtained from our solution.
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Figure 4.3 – CPLEX linear regression and data plot.

Figure 4.4 – Our solution linear regression and data plot.

The data obtained from R summarized in 4.1 and 4.2 is consistent with
our polynomial hypothesis. We already shown our solution to run in time O(n3)
before. The value of ≈ 3.8 is consistent with our polynomial hypothesis about our
solution’s time complexity. The results also indicate that p has a minor influence
over the running time, having an exponent of ≈ 0.57. Both Multiple and Adjusted
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R-Squared were ≈ 9.99, and the very small p-value attest for the whole procedure
as both statistically reliable and significant.
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5 CONCLUSIONS

The tests showed that our ILP model models the problem correctly and
was used to solve instances in both glpsol and CPLEX. Results were compared for
correctness, attesting for the model.

We claim that our solution outperforms the original Baptiste dynamic pro-
gramming when release and due dates are agreeable. It also performs better than
CPLEX for greater input size. Both these claims are objectively supported by ob-
servable evidence provided by experiments results.

The additional testing showed through multiple linear regression that, for
both CPLEX and our solution, p has a small correlation but is negligible overall.
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