
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

CASSIANO MARQUES BARTZ

Empirical Evaluation on Approaches to
Transform Tabular Data into Textual Input

for QA systems

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Dante Barone
Coadvisor: Mr. Eduardo Cortes

Porto Alegre
October 2022

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitoria de Ensino (Graduação e Pós Graduação): Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

ACKNOWLEDGEMENT

Words cannot express my gratitude to my family and friends for being by my side.

I’m also grateful for my advisor and coadvisor for being understanding and helping me

throughout this work.

ABSTRACT

Question answering (QA) systems aim to automatically and precisely answer a specific

question provided in natural language over a knowledge base. Although there are models

that already work well with regular textual knowledge bases for those systems, when it

comes to tabular data this scenario changes. Transforming tabular data into a textual in-

put for a model is a difficult task and this research explores different approaches for this

transformation of data by testing on JarvisQA, a prototype QA system which uses BERT

pre-trained models to answers questions on top of the Question Answering Benchmark

for Scholarly Knowledge (SciQA). SciQA is benchmark developed with the collaboration

of researchers from different Universities that leverages the Open Research Knowledge

Graph (ORKG).The proposed methodology consists of: (1) creating an approach to gen-

erate text from tabular data, (2) running JarvisQA using the text generated by the approach

as knowledge base for the benchmark questions and (3) perform an empirical evaluation

of the results. The analysis on these approaches, their results and the difficulties faced can

help researchers dealing with such scenarios.

Keywords: Question Answering. BERT. JarvisQA. SciQA. ORKG.

Avaliação Empírica em Abordagens para Transformação de Dados Tabulares em

Entrada Textual para Sistemas de Pergunta e Resposta

RESUMO

Sistemas de pergunta e resposta tem como objetivo responder automaticamente e preci-

samente perguntas específicas feitas em linguagem natural usando uma base de conheci-

mento. Embora existam modelos que funcionam bem com bases de conhecimento textu-

ais para estes sistemas, quando envolve dados tabulares esse cenário muda. A transfor-

mação de dados tabulares em dados de entrada textuais para modelos é uma tarefa difícil

e essa pesquisa explora diferentes abordagens para essa transformação, testando em cima

do protótipo JarvisQA, que utiliza modelos pré-treinados baseados em BERT para respon-

der as perguntas em cima do benchmark Question Answering Benchmark for Scholarly

Knowledge (SciQA). SciQA é um benchmark que foi desenvolvido em colaboração de

pesquisadores de diferentes universidades que utiliza o Open Research Knowledge Graph

(ORKG). A metodologia proposta é a seguinte: (1) criação de uma abordagem para gerar

textos através de dados tabulares, (2) utilizar o texto gerado através da abordagem como

base de conhecimento do JarvisQA enquanto respondendo as perguntas do benchmark e

(3) executar uma avaliação empírica dos resultados. A análise dessas abordagens, seus

resultados e as dificuldades encontradas podem ajudar pesquisadores lidando com tais

cenários.

Palavras-chave: Question Answering, BERT, JarvisQA, SciQA, ORKG.

LIST OF FIGURES

Figure 1.1 Example of Tabular Data transformation into textual input10
Figure 1.2 Example of question on top of textual input..11

Figure 2.1 General Architecture of a QA System. ..14
Figure 2.2 Overall pre-training and fine-tuning procedures for BERT...........................15
Figure 2.3 Example of JarvisQA Tabular Transformation..17
Figure 2.4 JarvisQA Working Flow ..18
Figure 2.5 SciQA benchmark collection workflow...19

Figure 3.1 Methodology stages workflow...21

Figure 4.1 Split Input Example ...26

LIST OF TABLES

Table 2.1 Example of Questions Table Provided for JarvisQA16
Table 2.2 Example of Domain for Specific Question ...16
Table 2.3 Evaluation results of running JarvisQA against SciQA benchmark questions.20

Table 4.1 JarvisQA results with Input Split approach...28
Table 4.2 JarvisQA running time with Input Split approach ..28
Table 4.3 Example of a dataset with a numeric column ...29
Table 4.4 Example of Numeric Explosion Output ..29
Table 4.5 JarvisQA results with Numeric Column Text Explosion approach30
Table 4.6 JarvisQA running time with Numeric Column Text Explosion approach31
Table 4.7 Example of output for Sum Approach ..31
Table 4.8 JarvisQA results with Sum for Numeric Columns approach32
Table 4.9 JarvisQA running time with Sum for Numeric Columns approach33
Table 4.10 Example of Highest and Lowest Row Explosions Output33
Table 4.11 JarvisQA results with Highest and Lowest Row Explosion approach35
Table 4.12 JarvisQA running time with Highest and Lowest Row Explosion approach 35
Table 4.13 JarvisQA Normal Results with All Approaches Combined..........................35
Table 4.14 JarvisQA Running Time With All Approaches Combined36

LIST OF ABBREVIATIONS AND ACRONYMS

QA Question Answering

ORKG Open Research Knowledge Graph

SciQA Question Answering Benchmark for Scholarly Knowledge

SPARQL Simple Protocol and RDF Query Language

RDF Resource Description Framework

CONTENTS

1 INTRODUCTION...10
1.1 Motivation..10
1.2 Objective ..11
1.3 Contribution ..11
1.4 Proposed Structure ...12
2 BACKGROUND..13
2.1 Question Answering..13
2.2 BERT..14
2.2.1 Tokens Size Limitation ..15
2.3 Related Work...16
2.3.1 JarvisQA ..16
2.3.2 Question Answering Benchmark for Scholarly Knowledge..................................19
2.3.2.1 Current JarvisQA results with SciQA benchmark ..20
3 METHODOLOGY ...21
3.1 Analysis on questions..22
3.2 Computational System Used For Evaluations..23
4 APPROACHES ...25
4.1 Input Split ..25
4.1.1 Implementation ..26
4.1.2 Results and Analysis ..27
4.2 Numeric Column Text Explosion...29
4.2.1 Implementation ..29
4.2.2 Results and Analysis ..30
4.3 Sum for Numeric Columns ..31
4.3.1 Implementation ..31
4.3.2 Results and Analysis ..32
4.4 Highest and Lowest Row Explosions...33
4.4.1 Implementation ..33
4.4.2 Results and Analysis ..34
4.5 Combining all Approaches...35
5 CONCLUSION AND FUTURE WORK ..37
REFERENCES...40

10

1 INTRODUCTION

Question answering (QA) is a field of study with the objective of answering cor-

rectly and automatically questions in natural language. Recently, with the improvements

of graphics processing units (GPUs) and parallelism (NARAYANAN et al., 2021), which

allows for robust training of models, the field has had significant advancements. Trans-

formers, which are deep learning models, are now being used to answer questions based

on a textual input, and while the results have been promising when asking questions on a

given contextual input, the research on question answering over tabular data and how to

transform this data in text is relatively new. In this monography we are going to research

how to transform tabular data into a textual input for fine-tuning deep learning models.

1.1 Motivation

In the last years a few studies emerged trying to address question answering over

tables using neural networks, like TableQA (VAKULENKO; SAVENKOV, 2017), which

is a prototype that in it’s architecture the model is trained with tabular input, or studies

that involve search across tables (SUN et al., 2016), for example. On the other hand,

the usage of pre-trained models like BERT (DEVLIN et al., 2019) with tabular data is a

relatively uncharted territory, and since the model is not prepared for tabular data as is, a

transformation to textual data is needed for this kind of usage.

Figure 1.1: Example of Tabular Data transformation into textual input

We can see in Figure 1.1 an example of transforming tabular data into text. On top

11

we see a table which is the contextual information to be queried upon, and below we see

the text which was created based on it. Using the generated text as input for the model

enables the QA System to answer contextual questions in it.

Figure 1.2: Example of question on top of textual input

We can see in Figure 1.2 an example of question being made on top of the text

generated.Although this example shows what the tabular data transformation into text is,

it is a simple and basic example, and when questions that would normally require a query

in the table are made, if the textual input is too simple, the QA system will be unable

to answer it.For example, in this scenario a question about the total number of patients

across all studies would not be able to be answered.

1.2 Objective

With the problem presented in the Motivation section, related to more complex

questions being made on top of the tabular data, this research proposes to investigate

different approaches to generate input texts that have meaningful information attached,

so QA Systems are able to answer these questions on top of the provided data. This

research also studies the limitations of these approaches, their performance impact and if

they bring improvements when compared with the results before the implementation.

1.3 Contribution

The contribution of this research is:

• Analysis on questions which are difficult to answer on regular tabular data transfor-

mation in text

12

• Proposal of approaches to enhance tabular data transformation into text

• Empirical evaluation of these approaches

1.4 Proposed Structure

The structure of this research is organized as follows: Chapter 2 discusses the

background of the field covered in this study. Chapter 3 presents the methodology used in

the research, along with information of the computational system (hardware and software)

used in performance tests. Chapter 4 presents the approaches created in this work and their

analysis. Finally Chapter 5 wraps it up with the conclusion of this work.

13

2 BACKGROUND

This chapter describes the background for this research. First we present the QA

Area, focusing on what it is.Then we present the BERT model, a machine learning frame-

work for natural language processing (NLP), and after that we present the JarvisQA pro-

totype and related works for this research.

2.1 Question Answering

Question Answering (QA) is a field that aims to answer correctly and automati-

cally a question provided by an user in natural language. QA systems may be specific to

a certain domain or can be general. While restricted domain QA systems focus on a spe-

cialized area, general domain systems answer questions from diverse fields (OLVERA-

LOBO; GUTIÉRREZ-ARTACHO, 2011). QA systems also differ in another character-

istic, for example the knowledge source which the system is using to query information,

which can be (1) documents, where the system query for information in raw text docu-

ments, files and websites, or the system can use (2) linked data as a knowledge source,

for example knowledge graphs (CORTES; BARONE, Forthcoming).

The questions can be categorized as factoid and non-factoid. Factoid questions

require a fact as an answer such as a name or a location, while non-factoid questions

require extensive or complex information as the answer. Factoid and non-factoid QA

systems present a similar architecture, as seen in Figure 2.1, which contains three main

components: Question Processing, Information Retrieval and Answer Processing, with

differences appearing inside the components (CORTES; BARONE, Forthcoming).

14

Figure 2.1: General Architecture of a QA System.

Source: (CORTES; BARONE, Forthcoming)

2.2 BERT

BERT (DEVLIN et al., 2018), short for Bidirectional Encoder Representations

from Transformers, is a Machine Learning (ML) model for natural language processing. It

was developed in 2018 by researchers at Google AI Language and serves as a swiss army

knife solution to some of the most common language tasks, such as sentiment analysis

and named entity recognition. Aside for the aforementioned tasks, BERT can also be

used for Question Answering, Text Prediction, Text Generation and Summarizing.

There are two steps in BERT’s framework, pre-training and fine-tuning, which we

can see in figure 2.2. During pre-training, the model is trained on unlabeled data, usually a

large dataset, and it can learn inner representations of the language of the data used which

can be useful for downstream tasks, like text classification for example. For fine-tuning

step, the pre-trained model is re-trained using the custom data provided to it, and as a

result, the model is updated to account for the characteristics of the domain data supplied.

Recently, substantial work has shown that pre-trained models (PTMs) on large

corpus can learn universal language representations, which is beneficial for downstream

natural language processing (NLP) tasks and can avoid training a new model from scratch

(QIU et al., 2020). Several PTMs are available to use, which varies in language and

case/uncased text input.When using a pre-trained BERT model in a QA System, if the

15

system is restricted domain, the model is fine-tuned using data for the specific domain

and this avoids large computational costs compared to if the model had to be fully trained,

and it will be able to answer questions in this domain.

Figure 2.2: Overall pre-training and fine-tuning procedures for BERT

Source: (DEVLIN et al., 2018). Overall pre-training and fine-tuning procedures for BERT. Apart

from output layers, the same architectures are used in both pre-training and fine-tuning. The same

pre-trained model parameters are used to initialize models for different down-stream tasks. During

fine-tuning, all parameters are fine-tuned.

In this research, we use pre-trained models in a prototype QA System called

JarvisQA (JARADEH; STOCKER; AUER, 2020), which fine-tunes the PTM with con-

textual data for each question, and this data comes in form of tables which the prototype

is going to transform into text. After this fine-tuning process, we can answer the question

provided.

2.2.1 Tokens Size Limitation

BERT has a limitation of 512 tokens for the input used for fine-tuning, and this

size is calculated from the question and input combined. In case more than 512 tokens

are fed to the model, it will truncate and only use the first 512 tokens. These tokens are

sub-words as BERT uses WordPiece (DEVLIN et al., 2019) to generate them.

This presents a challenge in this study since the objective is to enhance the context

for the question, but depending on the size of the original context, there may not be enough

space to add information. This scenario will be explored in this research.

16

2.3 Related Work

In this section we present the related work, consisting of a prototype QA System

called JarvisQA, which was used to implement the approaches seen in this research, and

the SciQA article, where a benchmark of complex questions was created to challenge

current QA Systems.

2.3.1 JarvisQA

JarvisQA is a BERT based system made to answer questions on tabular views of

scholarly knowledge graphs. It was developed by Mohamad Yaser Jaradeh, Sören Auer

and Markus Stocker in a collaboration between L3S Research Center in the University

of Hannover and TIB Leibniz Information Centre for Science and Technology, both in

Germany. JarvisQA was presented for a submitted article Question Answering on Schol-

arly Knowledge Graphs (JARADEH; STOCKER; AUER, 2020). It receives a table of

questions, which has columns for the question itself, the table name for the context of the

question, the type of the question and the expected answer, as can be seen in Table 2.1.

Table 2.1: Example of Questions Table Provided for JarvisQA
Question Table Type Answer

Which system has the worst recall? R6946 normal YodaQA
What is the most common location in the studies? R111045 normal China

Which ontology has the most classes? R8342 normal EXPO
How many studies are published after 2019? R110393 normal 3

The "Table" column represents the name of the contextual table file in the prototype folder. This
table will be used for the fine-tuning.

Table 2.2: Example of Domain for Specific Question
Paper System Dataset Precision Recall

Answering over linked data (QALD-5) YodaQA DBPedia 2015 0.28 0.25

Answering over linked data (QALD-5) SemGraphQA DBPedia 2015 0.31 0.32

Answering over linked data (QALD-5) QAnswer DBPedia 2015 0.46 0.35

Answering over linked data (QALD-9) Xser DBPedia 2016 0.74 0.72

The data showed in this table is fictional. In the context of Table 2.1 this would be the table named

R6946.The main objective of the open challenge on question answering over linked data (QALD)

is to provide up-to-date, demanding benchmarks that establish a standard against which question

answering systems over structured data can be evaluated and compared.(UNGER et al., 2014)

17

Along with the table of questions, JarvisQA also expects all the tables required

for each question listed. These tables can contain any columns and are the domain for the

specific question. These tables will be used for the fine-tuning process of the pre-trained

models used. An example of such table can be seen in Figure 2.2.

JarvisQA will read the question and fetch the context table file and transform it

into a readable text to feed a BERT model for fine-tuning. An example of this transfor-

mation has already been presented in Figure 1.1. Along with the basic transformation, the

system already has some approaches of enhancing the input text built-in, like adding in-

formation about the maximum and minimum values of numeric columns, and most/least

common entries in string columns. On Figure 2.3 we can see an example of the tabular

transformation using as base the Table 2.2.

Figure 2.3: Example of JarvisQA Tabular Transformation

Using the Table 2.2 as base for the transformation.

In Figure 2.4 we can see the overall JarvisQA flow. The dataset to be used must

be within the project folder and consists of a file for the questions table, and in the same

location, it must have a folder called csv which will contain all the files for the contextual

tables. Once the dataset has been provided, the user can define which pre-trained models

to run JarvisQA upon, and it will go through the process of reading the questions table,

and for each question, translate the associated context table, supplying it to BERT for

18

fine-tuning. Once the question has been provided, JarvisQA will compared the received

answer with the expected answer, and record it accordingly. After all questions have been

answered, the metrics for the current model are going to be recorded in an output file.

This process repeats until all specified models have been evaluated.

Figure 2.4: JarvisQA Working Flow

In this research we use the JarvisQA system and enhance the translation step for

the contextual table. The objective is to generate contextual texts with more information,

by trying to predict most common questions that could be asked about the current context,

and by doing this, enabling JarvisQA or another QA system with similar architecture to

answer more questions.

19

2.3.2 Question Answering Benchmark for Scholarly Knowledge

Figure 2.5: SciQA benchmark collection workflow

The first part of this research was the collaboration for the creation of the Question

Answering Benchmark for Scholarly Knowledge (SciQA benchmark). QA benchmarks

and systems are so far mainly geared towards encyclopedic knowledge graphs such as

DBpedia and Wikidata (AUER et al., Submitted). In the article, we developed a set of

a hundred complex questions, along with their SPARQL queries on top of ORKG, and

peer-reviewed each question to guarantee it’s correctness. In figure 2.5 you can see the

workflow for the creation of the questions.

First a research field was selected, for example engineering, and a comparison for

this field in ORKG. Comparison is a core type for ORKG content and represents a list

of contributions towards a research problem. Then the comparison was analysed for the

creation of a question, and for this question, it’s SPARQL Query. Then the metadata for

the question was collected, like the type of question (factoid or non-factoid) and the query

shape (like tree or chain). After the metadata collection, it was passed to peer review

to other researchers involved in the article. The objective of the article is to create a

challenging benchmark for the next-generation QA systems.

SciQA benchmark leverages the Open Research Knowledge Graph (ORKG) and

has a set of a hundrer complex questions which can be answered with the ORKG. JarvisQA

was used in a subset of those questions to check how pre-trained models based on BERT

performed in such complex questions.

20

In this research we are going to use JarvisQA again on top of the SciQA bench-

mark, but applying changes in the step responsible for translating the question context

table into text for BERT fine-tuning. The results which were originally obtained in the

SciQA Article are going to be used as baseline to compare the approaches developed in

this research.

2.3.2.1 Current JarvisQA results with SciQA benchmark

Since JarvisQA only works with tabular data, out of 100 questions which were

created for the SciQA benchmark, only 52 are answerable by the system. In the SciQA

article (AUER et al., Submitted) the QA system ran in 7 different pre-trained models

and the result can be seen in the below table. For the metrics used, Precision is a formula

TP/TP+FP , where TP stands for True Positive and FP stands for False Positive. Recall

is calculated by TP/TP + FN , where FN stands for False Negatives. As for F1 Score,

it is calculated by 2 ∗ (Recall ∗ Precision)/(Recall + Precision). As for k values, it is

the number of answers requested to the model.

Table 2.3: Evaluation results of running JarvisQA against SciQA benchmark questions.
JarvisQA Setup Normal Overall

Precision Recall F1 Precision Recall F1

@1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

BERTBUS .1905 .2712 .1906 .2713 .1905 .2712 .1364 .1905 .1364 .1905 .1364 .1905

BERTLCS .1935 .2542 .1937 .2545 .1936 .2543 .1379 .1786 .1379 .1786 .1379 .1786

BERTBCS2 .1343 .1875 .1344 .1876 .1343 .1875 .0978 .1348 .0978 .1348 .0978 .1348

BERTLUS2 .1693 .2883 .1692 .2881 .1692 .2882 .1222 .2024 .1222 .2024 .1222 .2024

DistBERTBUS .1343 .2459 .1343 .2459 .1343 .2459 .0978 .1744 .0978 .1744 .0978 .1744

ALBERTXLS2 .1719 .3393 .1719 .3394 .1719 .3393 .1250 .2346 .1250 .2346 .1250 .2346

ALBERTXXLS2 .1692 .2459 .1692 .2459 .1692 .2459 .1222 .1744 .1222 .1744 .1222 .1744

JarvisQA setups follow similar notations as introduced in (JARADEH; STOCKER; AUER, 2020).

Top performing setup is indicated in bold, second best is underlined

In this study, we are going to focus on BERTLCS and ALBERTXLS2 since those

were the two models that best performed in k=1 and k=10 respectively. By using these

two models we can evaluate the created approaches and avoid performance issues, since

some evaluations can only run in the CPU and might take hours to complete.

21

3 METHODOLOGY

In this chapter we present the methodology, the analysis of questions used in this

research and the information about the machine used during this work.

The methodology is divided into three stages: (1) Evaluation of questions being

incorrectly answered by the QA system prototype in it’s current state, (2) design a generic

approach that would generate text from the table which would answer one or more of the

questions evaluated, (3) integrate this approach in the prototype1 and (4) evaluate the re-

sults of the approach by comparing the results with the baseline and also the performance

impact.

Figure 3.1: Methodology stages workflow

For the start of this research, a list of all wrongfully answered questions from

SciQA benchmark were recorded, along with the answers provided by the model. From

there, generic patterns were analysed, for example, questions which would be looking for

the sum of an column, questions that would be looking for the highest or lowest value in a

column, and/or other patterns. Once these patterns have been analysed, approaches to try

and generate text with generic functions were designed, implemented and integrated into

JarvisQA. After the implementation, the approach was evaluated with the same metrics

1The code and results for the evaluations performed in this research are found in:
https://github.com/cassianobartZ/JarvisQA

22

as the baseline results, Precision, Recall and F1-Score in the SciQA benchmark. Along

with those metrics, the time which the QA system took to evaluate the model using the

approach was also recorded, to have a baseline of performance cost. All approaches

were evaluated by themselves to try and have the most optimal scenario for performance

evaluation, with the exception of Split Input approach, which will be discussed further on.

3.1 Analysis on questions

In order to improve the results presented in subsection 2.3.2.1, we need to analyse

the questions the QA system is failing to correctly answer. From there, we will check ap-

proaches in this research which will focus on enhancing the system’s table to text feature

in order to supply BERT with more context data.

BERT works really well for simple answer questions, for example, running

BERTLCS for the question What type of data does the system proposed in paper titled

"Open Research Knowledge Graph" support? wields:

Expected Answer: Free Text

BERT output: [’score’: 0.17584075762448137, ’start’: 260, ’end’: 272, ’answer’: ’Free

text’]

We can see that in the case above BERT managed to answer correctly, but if we

take a look at questions that need some kind of calculation on top, we start to see some

issues if this calculation is not already done in the context. For the question What is the

total number of patients in the studies? we get the following result:

Expected Answer: 6452

BERT output: [’score’: 0.1977839599400255, ’start’: 3303, ’end’: 3307, ’answer’:

’2124’]

We can see that since there was no previous treatment in the context and BERT is

only analysing the text, such questions can’t be answered yet. Some other examples:

Which system has the worst recall?

Expected Answer: YodaQA

BERT output: QALD-5

23

For which country of study overall prevalence of epilepsy is the highest?

Expected Answer: England

BERT output: France

As discussed in the beginning of the chapter, we can see some patterns in the

questions shown above. The question What is the total number of patients in the studies?

is looking for a sum of an specific column, while the question Which system has the worst

recall? is looking for the smallest number in a column. For these kinds of questions

we were able to design approaches to answer them in this research, because given any

table, it’s possible to make generic transformations to it in order to extract this kind of

information.

But for some complex questions, it is very hard to develop such an generic ap-

proach without knowing the question beforehand. For example, for the question How

many studies are published after 2019?, it would be needed to make a calculation on

a certain column, but using only specific cells. These kind of questions prove to be a

challenge in the architecture being used in JarvisQA.

3.2 Computational System Used For Evaluations

For the evaluations done in this research, the execution time was recorded to anal-

yse performance impact. The configurations of the computational system used is as fol-

lows:

Core i7 12700K
32GB DDR5 6000mhz
GeForce RTX 3080 10GB
Windows 10 Pro Version 21H2
Microsoft Visual Studio Code 1.71.2
Python 3.8.10
PyTorch 0.12.0+cu113

All the executions were done without background processes running, and when

feasible, running in the GPU. Versions of Python and PyTorch are described above. Not

all executions were possible in the GPU because of memory allocation issues. Some mod-

els, for example ALBERTXXLS2, wouldn’t run in GPU mode for this machine because it

demands more than 10GB of memory, and would fail execution. Without the Split Input

approach, presented in this research, other models presented the same error when running

in the machine. When possible, all tests were executed in the GPU because of the differ-

24

ence in performance, since GPU is more suited for this kind of application than CPU and

delivers consistently better performance (SUN et al., 2019). The record of time was done

in the code and saved with the evaluations file exported by the prototype. For the time

evaluation, for each approach the prototype ran three times in order to get an average.

25

4 APPROACHES

In this chapter we will evaluate approaches of pre-processing the contextual tab-

ular data provided for the questions to try and answer some of the wrongfully answered

questions as presented in section 3.1.

4.1 Input Split

The first approach was implemented not for the reason of trying specifically to

answer a group of questions, but because of the previously mentioned tokens limitation of

BERT in subsection 2.2.1. It was identified in this research that in some of the questions

for the SciQA benchmark, the contextual data table by itself would already be larger than

512 tokens when transformed into text. In this scenario, we wouldn’t be able to validate

any approach in this research since we would need to fit the table data itself, plus the extra

data generated in the approaches in 512 tokens, otherwise any extra information would be

ignored by the model.

This situation can happen when the provided contextual table have a large number

of rows, columns or both. One example is the same question which was mentioned in

section 3.1: What is the total number of patients in the studies?. The contextual table

provided for this question has a Title column, and some of the rows have very long titles.

This caused the translated contextual text for this table to have the size of 1402 word

tokens, which by itself surpasses the 512 limitation.

Please note that BERT uses sub-word tokens generated by WordPiece (DEVLIN

et al., 2019), so the actual size is most certainly higher than that. To be able to enhance the

context data with more information to better answer the questions, this approach called

Input Split is going to detect possible situations were the contextual text will be larger

than 512 tokens, and split in different inputs.We can see in Figure 4.1 a visual explanation

of what is happening in this approach.

Having n splits for a given input, now we need to use all those splits. Instead of

fine-tuning the BERT model one time per question, as it previously did, now we have to

make n fine-tunings, one for each split. In the next subsections we will speak about the

implications of this.

26

Figure 4.1: Split Input Example

Using the Table 2.2 as base for the transformation. This figure shows the Split Input method

splitting a 800 token input string into two different inputs.

4.1.1 Implementation

For the implementation of this approach, we go to the t2t.py file for JarvisQA and

modify the table_2_text method. This file is responsible for the translation of tabular data

into text for the QA system, and the method mentioned is responsible for generating a

readable text for each row of the csv context file and combine everything into a input

string. The modification made is to test in each row, if the addition of this new row

is going to exceed the input size.If the new row makes the input bigger than 500 word

27

tokens, the input is split at this point and a new string is created to continue the process.

The number 500 was chosen to leave room for sub-token generation made by WordPiece,

but the actual value to be used would require further research. Let’s take a look at the

code:

f u l l _ c o n t e x t _ t e x t = ’ ’

c o n t e x t s = []

f o r row i n rows :

r o w _ t e x t = s e l f . r o w _ 2 _ t e x t (row , header , empty)

f u l l _ c o n t e x t _ t e x t _ s i z e _ t e s t =

f u l l _ c o n t e x t _ t e x t + ’ \ n ’ + r o w _ t e x t + ’ \ n ’ + e x t r a _ i n f o

i f l e n (f u l l _ c o n t e x t _ t e x t _ s i z e _ t e s t . s p l i t ()) > 500 :

c o n t e x t s . append (f u l l _ c o n t e x t _ t e x t + ’ \ n ’ + e x t r a _ i n f o)

f u l l _ c o n t e x t _ t e x t = r o w _ t e x t

c o n t i n u e

f u l l _ c o n t e x t _ t e x t = f u l l _ c o n t e x t _ t e x t + ’ \ n ’ + r o w _ t e x t

As mentioned in subsection 2.3.1, JarvisQA already makes some processing of the context

data, such as average in numeric columns for example. In the above code, extra_info is

an string with this kind of information. Please note that in this approach we are testing

for word tokens, so it is still possible that the input is truncated depending on the number

of sub-word tokens generated inside the model.

4.1.2 Results and Analysis

We can see in Table 4.1 that the results for the split are mixed. Let’s try to analyse

why. With Input Split, JarvisQA is actually calling BERT n-times, where n corresponds

to the number of splits. If we imagine a hypothetical scenario where a question has three

inputs and a k value of 1, we will have three different answers from BERT with different

scores. The answer with the highest score will be selected.

Since now the context is split into different calls, the score can be influenced by

this separation of the knowledge. This situation creates the question: What is the best

way to treat the score in a separation scenario like this one?

Another point is with a value of top_k different than one. If BERT is being called

three times with a top_k of ten, in the end we will have thirty answers, to which, in the

28

case of this study, the ten with the highest score would be returned. This can explain

some of the situations were the result was worse, because in some cases it was identified

the correct answer was out of the first ten answers. One example is the question What is

the base URL of "The Document Components Ontology"?, which the correct answer was

found in the nineteenth position of thirty and was ruled out for not being in the first ten.

Table 4.1: JarvisQA results with Input Split approach
JarvisQA Setup Precision Recall F1

@1 @10 @1 @10 @1 @10
BERTLCS (Normal) .2258 (.1935) .2459 (.2542) .2258 (.1937) .2459 (.2545) .2258 (.1936) .2459 (.2543)
BERTLCS (Overall) .1609 (.1379) .1744 (.1786) .1609 (.1379) .1744 (.1786) .1609 (.1379) .1744 (.1786)
ALBERTXLS2 (Normal) .1719 (.1719) .3158 (.3393) .1719 (.1719) .3158 (.3394) .1719 (.1719) .3158 (.3393)
ALBERTXLS2 (Overall) .1236 (.1250) .2195 (.2346) .1236 (.1250) .2195 (.2346) .1236 (.1250) .2195 (.2346)

Improvements are colored green and worse results are colored red. Between parenthesis is the
baseline score running JarvisQA without Split Input

Table 4.2: JarvisQA running time with Input Split approach
JarvisQA Setup Time Before Time After
BERTLCS 00h38m19s 00h40m47s
ALBERTXLS2 01h49m53s 10h16m53s

Execution done in CPU

We can see in Table 4.2 that this approach also comes with a performance cost.

Although the difference for BERTLCS is marginal, for ALBERTXLS2 we see a drastic

increase in execution time. As already mentioned, BERT is going to be called more times

and this can be an expensive. In this small subset of 52 questions, we can see a major

increase in time for execution, but it is worth to mention that this is directly related to the

size of the contexts provided for each question, and the number of questions, so the times

will vary for different scenarios.

This execution is the only in this study that needed to be run in CPU mode, which

is much slower than running in the GPU. This is because without the Input Split, the

application would crash because of lack of memory to be allocated. This can also be a

benefit of the Input Split approach.

Even with this additional performance cost, this approach is valuable to validate

the other approaches in this study since it will enable for more information to be added

overall in the context. For better results, it is really important to dive deeper into the BERT

scores and try to understand how we can use them better for ordering the answers, as this

has a direct impact on the metrics. Also it is important to better analyse the sub-word

tokens generation, in order to best choose the splitting point, since in this research a value

of 500 was used, but for optimal results this needs to be explored deeper.

29

4.2 Numeric Column Text Explosion

Going forward, the next approaches are going to focus into adding information to

the input. This approach which is called Numeric Column Text Explosion has the idea

of creating expanded texts for each numeric row. To better understand this approach lets

take a look at the table 4.3, which is an example table we will be using to demonstrate

some approaches, and for the data in this example, the approach is going to generate the

text presented in table 4.4.

Table 4.3: Example of a dataset with a numeric column
Study Location Number of Patients
Study One Brazil 150
Study Two Argentina 100

Table 4.4: Example of Numeric Explosion Output
Row Output Text

First Row The Number of Patients of Study One is 150

First Row The Number of Patients of Brazil is 150

Second Row The Number of Patients of Study Two is 100

Second Row The Number of Patients of Argentina is 100

As you can see from the example, from the two rows present in Table 4.3 it was

generated an output of four strings combining the name of all string columns to the values

in the numeric column.

4.2.1 Implementation

For the implementation of this approach, we go to the t2t.py file for JarvisQA

and create a new method called append_text_for_numeric_column, which we can see the

code below. This method is being called inside the append_aggregation_info, which is

an existing method in JarvisQA specifically created to add extra information to the input.

30

d e f a p p e n d _ t e x t _ f o r _ n u m e r i c _ c o l u m n (i n f , numericColumnName , d f) :

columns = l i s t (d f)

f o r indexValue , numericColumnValue i n enumera t e (d f [numericColumn]) :

f o r i n d e x I t e r a t i o n C o l u m n , i t e r a t i o n C o l u m n i n enumera t e (columns) :

i f i s _ n u m e r i c _ d t y p e (d f [i t e r a t i o n C o l u m n]) :

c o n t i n u e

i t e r a t i o n C o l u m n V a l u e = df . i l o c [i n d e x V a l u e] [i t e r a t i o n C o l u m n]

i n f o . append (

f ’ The { numericColumnName } of { i t e r a t i o n C o l u m n V a l u e }

i s { numericColumnValue } \ n ’

)

r e t u r n i n f o

As we see from the code, the basic idea is to navigate all rows for the numeric column,

and for each other column of the table combine a text with this numeric row value. We

are skipping other numeric columns in this code to avoid strings without meaning.

It’s worth noting that this method is called for each column, so the total complexity

is O(n3) where n is the number of columns.

4.2.2 Results and Analysis

The results for this approach are also mixed, as we can see in table 4.5. We see

a decrease in k=1 across the board and a small increase in k=10 when comparing to the

results for the Split Input. The dataset is too small to make a conclusion on the reason,

but what could be observed is that this approach can suffer from the same issue as the

Split Input, where a change in BERT scores can lead to a different order of answers. This

could explain why we see a decrease in k=1 but for k=10 the result is marginally better.

Table 4.5: JarvisQA results with Numeric Column Text Explosion approach
JarvisQA Setup Precision Recall F1

@1 @10 @1 @10 @1 @10
BERTLCS (Normal) .1538 (.2258) .2500 (.2459) .1538 (.2258) .2500 (.2459) .1538 (.2258) .2500 (.2459)
BERTLCS (Overall) .1111 (.1609) .1765 (.1744) .1111 (.1609) .1765 (.1744) .1111 (.1609) .1765 (.1744)
ALBERTXLS2 (Normal) .1692 (.1719) .3571 (.3158) .1692 (.1719) .3571 (.3158) .1692 (.1719) .3571 (.3158)
ALBERTXLS2 (Overall) .1222 (.1236) .2469 (.2195) .1222 (.1236) .2469 (.2195) .1222 (.1236) .2469 (.2195)

Improvements are colored green and worse results are colored red. Between parenthesis is the
result with Split Input Approach in Table 4.1

We can also see another downside of this approach, while it brings mixed results,

it also brings a lot of computational overhead. This is explained because this approach

31

Table 4.6: JarvisQA running time with Numeric Column Text Explosion approach
JarvisQA Setup Time Before Time After
BERTLCS 00h12m02s 00h55m44s
ALBERTXLS2 00h12m34s 01h03m47s

Execution done in GPU. Time Before is from running Split Input Approach

adds N ∗ M ∗ O lines to the input, where N is the number of numeric columns, M is

the number of rows and O is the number of non-numeric columns. We can see that with

bigger tables this escalates very quickly.

Since the dataset is small it is really hard to fully analyse this approach, but looking

at this scenario indicates that using this approach does not bring the expected results for

the additional computation expense. This can occur because in this specific dataset, we

don’t see a lot of questions that asks for a specific value linked to some column in the

table, so this approach would need to be investigated better with larger datasets.

4.3 Sum for Numeric Columns

Moving on to the next approach, this one focus on adding a simple information for

each numeric column, which is the sum of all values in it. The idea behind this approach

is to try and answer questions in the format of ’What is the total...?’.

Table 4.7: Example of output for Sum Approach
Output Text
The total Number of Patients is 250
Example with input from the Table 4.3

The reasoning behind this approach is very simple, as is the implementation which

we will see in the next subsection. Since JarvisQA already has a similar logic being used

for appending information like minimum and maximum, the effort in this approach is not

very big.

4.3.1 Implementation

This implementation is really simple, we go to the t2t.py file for JarvisQA and

inside the existing append_aggregation_info, which is an existing method in the proto-

type system specifically created to add extra information to the input, we add along the

information of the sum.

32

d e f a p p e n d _ a g g r e g a t i o n _ i n f o (s e l f , d f : pd . DataFrame) −> s t r :

i n f o = []

f o r column i n d f :

i f i s _ n u m e r i c _ d t y p e (d f [column]) :

column_df = df [column] . f i l l n a (0)

max_value = column_df . max ()

min_va lue = column_df . min ()

a v g _ v a l u e = column_df . mean ()

sum = column_df . sum ()

i n f o . append (f ’ The maximum v a l u e o f { column } i s { max_value } \ n ’

f ’ t h e minimum v a l u e o f { column } i s { min_va lue } \ n ’

f ’ and t h e a v e r a g e v a l u e o f { column } i s { a v g _ v a l u e : . 2 f } \ n ’

f ’ t h e t o t a l { column } i s {sum } \ n ’)

. . .

r e t u r n i n f o

This method already existed and the logic for minimum, maximum and average already

existed before.

4.3.2 Results and Analysis

We can see from the results in Table 4.8 that although there’s a slight decrease in

k=1 for BERTLCS , we see improvements in k=10 and also see improvaments across the

board on ALBERTXLS2. We can also see from Table 4.9 that the performance overhead

is marginal. The decrease in k=1 could be explained once again by ordering of scores,

but this would need to be studied better with a larger dataset.

Since the method for adding numeric information like minimum, maximum and

average already existed in JarvisQA, the performance impact is negligible and it is so

similar that any margin of time can be an external effect, even though measures were

taken to minimize this. The final evaluation is this approach has a simple implementation,

low performance cost and brings expected results for the target questions.

Table 4.8: JarvisQA results with Sum for Numeric Columns approach
JarvisQA Setup Precision Recall F1

@1 @10 @1 @10 @1 @10
BERTLCS (Normal) .2063 (.2258) .2881 (.2459) .2063 (.2258) .2881 (.2459) .2063 (.2258) .2881 (.2459)
BERTLCS (Overall) .1477 (.1609) .2024 (.1744) .1477 (.1609) .2024 (.1744) .1477 (.1609) .2024 (.1744)
ALBERTXLS2 (Normal) .2063 (.1719) .3571 (.3158) .2063 (.1719) .3571 (.3158) .2063 (.1719) .3571 (.3158)
ALBERTXLS2 (Overall) .1477 (.1236) .2469 (.2195) .1477 (.1236) .2469 (.2195) .1477 (.1236) .2469 (.2195)

Improvements are colored green and worse results are colored red. Between parenthesis is the
result with Split Input Approach in Table 4.1

33

Table 4.9: JarvisQA running time with Sum for Numeric Columns approach
JarvisQA Setup Time Before Time After
BERTLCS 00h12m02s 00h11m11s
ALBERTXLS2 00h12m34s 00h12m43s

Execution done in GPU. Time Before is from running Split Input Approach

4.4 Highest and Lowest Row Explosions

This approach is an enhancement of an existing method inside JarvisQA. If we

look at the example shown in Figure 2.3, we see that a logic for highest and lowest values

already exist in the code, which can be seen from the string The maximum value of Preci-

sion is 0.74, the minimum value of Precision is 0.28, and the average value of Precision

is 0.45.

Similarly, if the context table contained a column named "Title", JarvisQA would

also generate the string The paper with the maximum Precision is "Answering over linked

data (QALD-5)" and the paper with the minimum Precision is "Answering over linked

data (QALD-5)".

The idea of this approach is to link the information from highest/lowest numeric

column values for all other columns in the table, not just "Title". We can see in Table 4.10

and example of what this approach produces when using the Table 4.3 as a base.

Table 4.10: Example of Highest and Lowest Row Explosions Output
Output Text
The Study with the highest Number of Patients is Study One
The Location with the highest Number of Patients is Brazil
The Study with the lowest Number of Patients is Study Two
The Location with the lowest Number of Patients is Argentina

Output for Highest and Lowest Row Explosions approach based on data from Table 4.3

What this new approach brings is an explosion similar as seen in section 4.2,

except instead of expanding for all numeric values, which was really expensive in terms

of performance and didn’t bring much result, this approach is just an expansion for the

highest and lowest values.

4.4.1 Implementation

For the implementation of this approach, we go to the t2t.py file for JarvisQA

and create a new method called append_text_for_highest_and_lowest_numeric_column,

which we can see the code below. This method is being called inside the same method

34

mentioned before in the other approaches, append_aggregation_info.

d e f a p p e n d _ t e x t _ f o r _ h i g h e s t _ a n d _ l o w e s t _ n u m e r i c _ c o l u m n (

i n f o : s t r ,

numericColumnName : s t r ,

d f : pd . DataFrame

) −> s t r :

columns = l i s t (d f)

column_df = df [numericColumnName] . f i l l n a (0)

rowForHighes tNumer icVa lue = df . i l o c [column_df . argmax ()]

rowForLowestNumericValue = df . i l o c [column_df . a rgmin ()]

f o r i n d e x I t e r a t i o n C o l u m n , i t e r a t i o n C o l u m n i n enumera t e (columns) :

i f i s _ n u m e r i c _ d t y p e (d f [i t e r a t i o n C o l u m n]) :

c o n t i n u e

l o w e s t R o w I t e r a t i o n C o l u m n V a l u e =

rowForLowestNumericValue [i t e r a t i o n C o l u m n]

h i g h e s t R o w I t e r a t i o n C o l u m n V a l u e =

rowForHighes tNumer icVa lue [i t e r a t i o n C o l u m n]

i n f o . append (

f ’ The { i t e r a t i o n C o l u m n } wi th t h e h i g h e s t

{ numericColumnName } i s { h i g h e s t R o w I t e r a t i o n C o l u m n V a l u e } \ n ’

)

i n f o . append (

f ’ The { i t e r a t i o n C o l u m n } wi th t h e l o w e s t

{ numericColumnName } i s { l o w e s t R o w I t e r a t i o n C o l u m n V a l u e } \ n ’

)

r e t u r n i n f o

This method is called for every column, so it has a complexity of O(n2) where n is the

number of columns.

4.4.2 Results and Analysis

The results on Table 4.11 are good. Although we see a slight decrease in k=1 for

BERTLCS like in the other approaches, we see a good increase for k=10 and also a good

increase across the board for ALBERTXLS2.

As far as performance cost, we do see a 50% increase in time for this specific

scenario as shown in Table 4.12, but if we compare with the results seen in Section 4.2,

the increase is not as expressive and we get better results. A possible reason for the better

results is that this dataset has questions that are looking for information on highest/lowest

35

values while it does not contain a lot of questions that asks for values linked to an specific

column.

From the improvement in the k=10, it indicates that this approach could success-

fully answer one or more questions regarding highest or lowest value present in a table.

Table 4.11: JarvisQA results with Highest and Lowest Row Explosion approach
JarvisQA Setup Precision Recall F1

@1 @10 @1 @10 @1 @10
BERTLCS (Normal) .2063 (.2258) .3103 (.2459) .2063 (.2258) .3103 (.2459) .2063 (.2258) .3103 (.2459)
BERTLCS (Overall) .1477 (.1609) .2169 (.1744) .1477 (.1609) .2169 (.1744) .1477 (.1609) .2169 (.1744)
ALBERTXLS2 (Normal) .2258 (.1719) .3818 (.3158) .2258 (.1719) .3818 (.3158) .2258 (.1719) .3818 (.3158)
ALBERTXLS2 (Overall) .1609 (.1236) .2625 (.2195) .1609 (.1236) .2625 (.2195) .1609 (.1236) .2625 (.2195)

Improvements are colored green and worse results are colored red. Between parenthesis is the
result with Split Input Approach in Table 4.1

Table 4.12: JarvisQA running time with Highest and Lowest Row Explosion approach
JarvisQA Setup Time Before Time After
BERTLCS 00h12m02s 00h18m07s
ALBERTXLS2 00h12m34s 00h18m39s

Execution done in GPU. Time Before is from running Split Input Approach

4.5 Combining all Approaches

After taking a look at the previous approaches one by one and comparing it’s

results against the results seen in Table 4.1 for Split Input approach, it’s time to combine

all of them together and see how much the score for JarvisQA increased when answering

the questions from SciQA benchmark.

The results increased across the board for both models analysed. We can see the

biggest improvements in k=1 in all metrics, with the metrics in ALBERTXLS2 almost

doubling the original. The increase in k=10 was not as large, but still considerable.

Table 4.13: JarvisQA Normal Results with All Approaches Combined
JarvisQA Setup Precision Recall F1

@1 @10 @1 @10 @1 @10
BERTLCS (Normal) .2667 (.1935) .3571 (.2542) .2667 (.1937) .3571 (.2545) .2667 (.1936) .3571 (.2543)
BERTLCS (Overall) .1882 (.1379) .2469 (.1786) .1882 (.1379) .2469 (.1786) .1882 (.1379) .2469 (.1786)
ALBERTXLS2 (Normal) .3103 (.1719) .4340 (.3393) .3103 (.1719) .4340 (.3394) .3103 (.1719) .4340 (.3393)
ALBERTXLS2 (Overall) .2169 (.1250) .2949 (.2346) .2169 (.1250) .2949 (.2346) .2169 (.1250) .2949 (.2346)

Improvements are colored green and worse results are colored red. Between parenthesis is the
original results in Table 2.3

36

Table 4.14: JarvisQA Running Time With All Approaches Combined
JarvisQA Setup Time Before Time After

BERTLCS 00h12m02s 00h18m07s

ALBERTXLS2 00h12m34s 00h18m39s
Execution done in GPU. Time Before is from running Split Input Approach Only, because GPU

mode on original code won’t run for lack of memory.

For the execution time, unfortunately since the machine used for testing was un-

able to run the original code in GPU mode, we have to compare the time for all approaches

against the execution time for Split Input approach. Looking at the execution time, we can

see a similar impact as to running the numeric explosion approach as seen in Table 4.6.

Since in this testing all approaches were used, we can see an inconsistency here, where

the Numeric Explosion approach was used along with the others, but we did not see the

same performance impact as to running only that approach by itself. This behavior is hard

to pinpoint the reason, and more metrics would have to be collected to generate a better

picture of the performance impact these approaches have, and not only execution time.

For the results, since these approaches were designed by analysing the questions,

each approach had a different target of questions in mind. This can explain why com-

bining all the approaches increases the metrics so much, because when compared to the

baseline, we certainly have a higher number of correct answers.

37

5 CONCLUSION AND FUTURE WORK

The SciQA benchmark proves to be a really difficult benchmark for the BERT

algorithms tested in this research. This is because BERT is fine-tuned with a textual

input before trying to answer questions, and the models analysed in this research are

not made by design to handle tabular data. While factual and simple questions could be

answered, if the question needs some form of specific calculation or processing to be done

in the tabular data, it is not going to answer correctly unless the question was predicted in

some way when preparing the textual input. This can be extremely challenging for really

complex and/or really specific questions.

In this monography we analysed some approaches that not only prepare the input

data for simple and factual questions, but also the approaches represent a fairly easy way

to process tabular data generically. Let’s take a look at some examples from the dataset

which wouldn’t be able to be answered without previous knowledge of the question:

How many studies do use Chloride as major anion?

How many studies are published after 2019?

As outlined in section 3.1, in the questions above, it would be needed to query

the tabular data in an specific manner and then count the occurrences to add in the input

text. This is extremely challenging without knowing the question, and to try and predict

it in a generic way, the process would generate extremely large inputs because of the data

explosions needed. It doesn’t seen viable.

Are children examined in the studies?

Is Cobb-Douglas functional applied in the studies?

With the example questions above, BERT seemed to have a difficulty when an-

swering Is/Are questions. While the expected answers would be in the Yes/No format,

BERT seemed to return texts for these questions, sometimes returning the subject of the

question back.

What are the objectives for Sepsis prediction?

Last but not least, it was also difficult in this research to deal with List answers.

38

BERT got really close to answering some of these questions, but often it would miss some

of the items or answer all of them but in separated across different answers. To deal with

this scenario at the level of input processing would be very difficult, as once again we

would need some kind of prediction of the question.

As for the results presented, it is also worth mentioning again that the dataset is

small and for that, the changes can have a bigger impact, be it as an increase or as a

decrease in metrics. This happens because of the small set of questions, where one more

question answered correctly or incorrectly can have a big impact in the calculation. It is

though still interesting to see these results, specially when looking at some results that

almost doubled the metrics. In the end with a small dataset like this one, the metrics

certainly were affected in a drastic way, so it would be best to also test these approaches

in larger datasets in the future.

For the execution times, the tests were all executed in the same machine and with-

out background processes running to try and have a stable baseline for a study like this

one. Unfortunately it was not possible to generate all metrics wanted because of limi-

tations in the machine. Some of the testing had to be done in CPU mode which uses

RAM because the GPU would not have enough memory to be allocated, and this kind

of processing is really slower to run in the CPU. As we saw from the combined results,

the execution time by itself was not consistent enough to understand all the impact, so

this along with the allocation memory problem presents a opportunity to dive deeper into

the manner and collect more information, and not only execution time, as with this infor-

mation we will be able to understand better all the impact of each approach. It was still

interesting to see these results, because since BERT models have the size limitation for

fine-tuning, the variables which would affect most the execution time are really the size

of the context table and the processes being done on translation of the table to text.

In conclusion, while possible to enhance the metrics with the approaches pre-

sented, these approaches only tackle simple and easy to predict questions. For the future,

more research is needed for approaches that could answer more complex questions in

the field of translating tabular data into text, along with more research on top of already

presented approaches for improvements.

During this work, a collaboration for the creation of the SciQA benchmark was

seen in subsection 2.3.2. This was an internacional collaboration between the TIB –

Leibniz Information Centre for Science and Technology (Germany), L3S Research Cen-

ter from Leibniz University Hannover (Germany), Institute of Informatics from Federal

39

University of Rio Grande do Sul (Brazil), Department of Informatics and Telecommu-

nications from University of Athens (Greece) and Laboratory of Information Science

and Semantic Technologies from ITMO University (Russia). The paper called SciQA

– A Question Answering Benchmark for Scholarly Knowledge was submitted to Scientific

Data (SDATA-22), International Semantic Web Conference (ISWC 2022) and Scientific

Reports. For ISWC, although the reviews were positive, it was not published due to the

number of papers submitted to the conference. For SDATA-22, it was not accepted be-

cause of the scope, as it would need not just the dataset created, but also a tool to facilitate

data sharing. At the time of writing this work, we are still waiting for the reply from

Scientific Reports.

40

REFERENCES

AUER, S. et al. SciQA – A Question Answering Benchmark for Scholarly
Knowledge. Submitted.

CORTES, E. G.; BARONE, D. A. C. Advancements in Multi-Documents Non-factoid
Question Answering. Forthcoming.

DEVLIN, J. et al. BERT: pre-training of deep bidirectional transformers for
language understanding. CoRR, abs/1810.04805, 2018. Available from Internet:
<http://arxiv.org/abs/1810.04805>.

DEVLIN, J. et al. BERT: Pre-training of deep bidirectional transformers for language
understanding. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, 2019. p. 4171–4186. Available from Internet:
<https://aclanthology.org/N19-1423>.

JARADEH, M. Y.; STOCKER, M.; AUER, S. Question answering on scholarly
knowledge graphs. In: HALL, M. et al. (Ed.). Digital Libraries for Open Knowledge.
Cham: Springer International Publishing, 2020. p. 19–32. ISBN 978-3-030-54956-5.

NARAYANAN, D. et al. Efficient Large-Scale Language Model Training
on GPU Clusters Using Megatron-LM. arXiv, 2021. Available from Internet:
<https://arxiv.org/abs/2104.04473>.

OLVERA-LOBO, M.-D.; GUTIÉRREZ-ARTACHO, J. Open-vs. restricted-domain qa
systems in the biomedical field. Journal of Information Science, Sage Publications
Sage UK: London, England, v. 37, n. 2, p. 152–162, 2011.

QIU, X. et al. Pre-trained models for natural language processing: A survey.
Science China Technological Sciences, Springer Science and Business Media
LLC, v. 63, n. 10, p. 1872–1897, sep 2020. Available from Internet: <https:
//doi.org/10.1007%2Fs11431-020-1647-3>.

SUN, H. et al. Table cell search for question answering. In: Proceedings of the com-
panion publication of the 25th international conference on World Wide Web. ACM
- Association for Computing Machinery, 2016. Available from Internet: <https://www.
microsoft.com/en-us/research/publication/table-cell-search-for-question-answering/>.

SUN, Y. et al. Summarizing CPU and GPU Design Trends with Product Data. arXiv,
2019. Available from Internet: <https://arxiv.org/abs/1911.11313>.

UNGER, C. et al. Question answering over linked data (qald-5). In: CLEF. [S.l.: s.n.],
2014.

VAKULENKO, S.; SAVENKOV, V. Tableqa: Question answering on tabular data. arXiv
preprint arXiv:1705.06504, 2017.

http://arxiv.org/abs/1810.04805
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2104.04473
https://doi.org/10.1007%2Fs11431-020-1647-3
https://doi.org/10.1007%2Fs11431-020-1647-3
https://www.microsoft.com/en-us/research/publication/table-cell-search-for-question-answering/
https://www.microsoft.com/en-us/research/publication/table-cell-search-for-question-answering/
https://arxiv.org/abs/1911.11313

	Acknowledgement
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Contribution
	1.4 Proposed Structure

	2 Background
	2.1 Question Answering
	2.2 BERT
	2.2.1 Tokens Size Limitation

	2.3 Related Work
	2.3.1 JarvisQA
	2.3.2 Question Answering Benchmark for Scholarly Knowledge
	2.3.2.1 Current JarvisQA results with SciQA benchmark

	3 Methodology
	3.1 Analysis on questions
	3.2 Computational System Used For Evaluations

	4 Approaches
	4.1 Input Split
	4.1.1 Implementation
	4.1.2 Results and Analysis

	4.2 Numeric Column Text Explosion
	4.2.1 Implementation
	4.2.2 Results and Analysis

	4.3 Sum for Numeric Columns
	4.3.1 Implementation
	4.3.2 Results and Analysis

	4.4 Highest and Lowest Row Explosions
	4.4.1 Implementation
	4.4.2 Results and Analysis

	4.5 Combining all Approaches

	5 Conclusion and Future Work
	References

