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Resumo

A andlise de variantes representa um processo critico no diagnéstico molecular e
0s programas in silico sédo especialmente usados quando nenhuma informacgao de
literatura esta disponivel. Diferentes programas avaliam os possiveis efeitos
gerados pela mutagao, considerando critérios como conservagao de aminoacidos
e nucleotideos, local e importancia estrutural da alteragdo e fatores bioquimicos.
Entretanto, esses critérios recebem pesos diferentes em cada programa e isso
pode impactar diferentes grupos de proteinas de forma desigual. Portanto, saber
qual programa é melhor para um gene especifico representa uma maneira de
aumentar a confianga na avaliagdo dos preditores. Porém, a obtencido desta
informagdo implica em extensa revisdo da literatura para avaliagdo dos
programas. O processamento de linguagem natural, uma técnica de mineragao de
texto, pode ser empregado como forma de automatizar a busca na literatura de
informacdes sobre as variantes e assim poder comparar os preditores com uma
base maior de informagdes. Portanto, o objetivo deste trabalho € desenvolver uma
ferramenta para comparar preditores in silico de acordo com o tipo de proteina.
Uma revisdo dos preditores mais e menos citados na literatura questiona os
critérios de escolha das ferramentas para avaliar variantes missense e discorre
sobre as caracteristicas dos principais preditores. Para estabelecer o workflow
para a ferramenta proposta e obter dados de validagcdo, foi realizada a
comparacao de 34 ferramentas in silico utilizando dados curados manualmente
para o gene IDUA. O desempenho dos preditores foi avaliado em dois grupos de
variantes, um criado a partir de critérios mais rigorosos (108 variantes) e o outro a
partir de critérios menos rigorosos (160 variantes). Os mesmos trés preditores
(BayesDel, PONP2 e ClinPred) apresentaram melhores desempenhos nos dois
grupos e foram usados para avaliar 462 variantes de significado incerto.
Finalmente, o pipeline de andlise utilizado nesta comparagcdo estd sendo
integrado com um algoritmo de mineragcédo de texto, ainda em desenvolvimento,
que realiza a extragdo automatizada das variantes relatadas na literatura com a
sua interpretacédo clinica. Espera-se que a automatizagdo de todo o processo
possa ser usada para a escolha dos melhores preditores para cada situacao

especifica.



Abstract

Variant analysis represents a critical process in molecular diagnosis and in silico
programs are traditionally used when no literature information is available.
Different programs evaluate the possible effects generated by the variant,
considering criteria such as conservation of amino acids and nucleotides, location
and structural importance of the alteration, and biochemical factors. However,
these criteria are given different weights in each program and this can have an
uneven impact on different groups of proteins. Therefore, knowing which program
is best for a specific gene is a way to increase confidence in predictor evaluation.
However, obtaining this information implies an extensive literature review to
evaluate the programs. Natural language processing, a text mining technique, can
be used as a way to automate the literature search for information about variants
and thus allow the comparison of predictors with a larger informational base.
Therefore, the aim of this work is to develop a tool to compare in silico predictors
according to the protein type. A review of predictors’ most and least cited in the
literature question the criteria for choosing tools to assess missense variants and
discuss the characteristics of the main predictors. To establish the workflow and
obtain validation data for the proposed tool, 34 programs were compared in silico
using manually cured data for the IDUA gene. The predictors' performance was
evaluated in two groups of variants, one created stricter criteria (108 variants) and
the other less stringent criteria (160 variants). The same three predictors
(BayesDel, PONP2, and ClinPred) had the best performance in both groups and
were used to evaluate 462 variants of uncertain significance. Finally, the analysis
pipeline used in this comparison is being integrated with a text mining algorithm,
still under development, which performs the automated extraction of the variants
reported in the literature with its clinical interpretation. It is expected that the
automation of the entire process can be used to choose the best predictors for

each specific situation.



Introdugao

O diagndstico molecular € um conjunto de técnicas amplamente aplicadas,
poderosas e sensiveis usadas para identificar marcadores bioldégicos em um
genoma e proteoma (Choe et al. 2015). A anadlise de variantes, uma importante
etapa do processo de diagndstico molecular, apresenta crescente complexidade
devido o avanco das técnicas moleculares como whole-exome sequencing (WES)
e whole-genome sequencing (WGS) que geram um elevado numero de dados
para serem analisados, comparados e principalmente, interpretados.

As diretrizes e padrbes para interpretacao de variantes foram publicadas
em 2015 quando o Colégio Americano de Genética Médica (ACMG) e a
Associacado de Patologia Molecular (AMP) se reuniram para compilar 28 regras
baseadas nas experiéncias de cada laboratério (Richards et al. 2015). Em 2017,
um grupo de pesquisadores insatisfeitos com aspectos das normas da
ACMG-AMP, principalmente no que diz respeito a subjetividade da interpretagao,
revisou essas normas e apresentou mudangas na estrutura de avaliacio,
desenvolvendo o Sherloc (Nykamp et al. 2017). Apesar de apresentarem
divergéncias, ambos os protocolos concordam que as evidéncias relatadas na
literatura, embora necessitem ser tratadas com atencdo, sido indicios muito
importantes na avaliagdo de uma variante.

Idealmente, o impacto funcional das variantes deveria ser determinado a
partir de estudos experimentais, por exemplo, usando a mutagénese sitio dirigida.
Além disso, estudos observacionais de analise de segregagcdo em um numero
significativo de individuos também pode contribuir para essa avaliacdo. Mas
considerando que as informagdes de um unico genoma podem chegar a 200 GB e
gerar um Variant Call Format (VCF) de 125 MB, com 3 milhdes de variantes cada,
€ compreensivel que a analise experimental ndo consiga acompanhar a
descoberta e a anotagdo de novas variantes (Wong et al., 2019). Assim, € comum
que nao sejam encontrados relatos na literatura sobre variantes ou mesmo que
exista divergéncia entre as interpretagcdes. Nesses casos, avaliagdes in silico,
apesar de nao validadas clinicamente, sdo uma importante ferramenta para

formar um nivel de evidéncia (Richards et al. 2015; Nykamp et al. 2017). Inclusive,



a analise in silico € empregada muitas vezes como a Unica ferramenta de
avaliacdo de impacto das variantes.

A analise in silico € menos utilizada para variantes do tipo nonsense, para
as quais existe certo consenso sobre a patogenicidade. Neste sentido é
importante ressaltar que tal concepg¢ao pode estar incorreta, dependendo da
localizacdo da alteracdo. A existéncia de um cdédon de parada prematuro
geralmente resulta em proteinas truncadas e rapidamente degradadas (Castiglia
and Zambruno, 2010). Quando isso ocorre a montante do ultimo éxon, é iniciado
um conservado processo de vigilancia celular que reconhece complexos de
juncdo de exon ou protetores de ligagdo de RNA a jusante do ribossomo,
chamado de processo de nonsense mediated mRNA decay (NMD), que degrada o
MRNA. Apesar de conservada, existem mecanismos de escape da via, como
variantes muito proximas ao coédon de iniciacdo, que podem ter a tradugao
iniciada a jusante do codon de parada prematuro, ou a “regra dos 50-55
nucleotideos” que diz que apenas variantes nonsense dentro dessa faixa na
juncao exon-exon sao reconhecidas (Dyle et al, 2019; Lindeboom et al, 2016).
Assim, nem todas as variantes nonsense podem ser tratadas como perda de
funcado, pois além desses mecanismos, uma alteragdo no ultimo exon pode néo
apresentar uma perda significativa para a funcionalidade da proteina.

Variantes de splice, sinbnimas, frameshift e in-frame apresentam um
crescimento no numero de ferramentas de anadlise. Os preditores de splice
costumam se basear no calculo de entropia (Jian, 2013), dados de expressao e
RNA-seq (Jaganathan et al., 2019). Deste grupo, tem o maior numero de
ferramentas especificas para avaliagdao. Existem poucos preditores especificos
para as variantes sinbnimas, frameshift e in-frame. A principal limitacdo das
variantes sindnimas € a falta de dados experimentais de validagdo (Zeng and
Bromberg, 2019). Ja as variantes in-frame costumam ser avaliadas por programas
que também avaliam variantes missense. Assim como as variantes nonsense, as
de frameshift sdo pouco avaliadas e geralmente consideradas patogénicas pelo
impacto causado na funcionalidade da proteina. Entretanto, também n&o sé&o
tratadas como perda de fungdo quando presentes ultimo exon (Lindeboom et al,
2016).



Ja as variantes missense representam um desafio para a andlise e nao
podem ser consideradas diretamente patogénicas (Nykamp et al. 2017). Para
essas variantes é necessaria uma avaliacdo por preditores computacionais,
construidos e baseados nos possiveis efeitos gerados por cada mutacéo,
considerando fatores como conservacdo de aminoacidos e nucleotideos, local e
importancia estrutural da alteragdo e fatores bioquimicos (Tang and Thomas,
2016). Estratégias para avaliagdo da patogenicidade de variantes missense
existem desde a década de 1970 e s&o o foco do presente trabalho.

Devido ao grande numero de ferramentas disponiveis, o primeiro capitulo
desta dissertacdo apresenta uma revisdo de 34 preditores encontrados na
literatura, comparando os mais e os menos utilizados, com base no numero de
citacbes. O capitulo estabelece um paralelo entre os dois grupos e avalia as
estratégias utilizadas por cada preditor.

Neste contexto de ampla oferta de possibilidades, a escolha do preditor
nem sempre segue parametros objetivos. No entanto, sabe-se que as
performances dos preditores variam amplamente de acordo com a sequéncia
proteica avaliada (Richards et al. 2015), tanto pelas estratégias utilizadas para
comparagao, quanto pelos grupos de treinamento dos algoritmos. Métodos
diferentes geram resultados diferentes e existem diversas estratégias de
aprendizado de maquina (machine learning-ML) disponiveis. A escolha do método
utilizado deve variar de acordo com o problema analisado (Ucar et al, 2019).
Outra importante etapa na elaboragdo de uma avaliagdo com ML é o conjunto de
treinamento. Os dados presentes nesse conjunto devem ser independentes dos
dados de validagdo para ndo gerar sobreajuste e influenciam diretamente no
desempenho dos programas. Outro possivel viés é a utilizagdo de dados néao
balanceados. Uma boa representacdo dos dados permite que os algoritmos sejam
treinados igualmente para checar todos os possiveis cenarios, enquanto dados
desbalanceados podem tendenciar a predicdo de um cenario sobre outro. Por
exemplo, o maior numero de variantes patogénicas no grupo de treinamento pode
levar os preditores a classificar variantes benignas como patogénicas. Quanto

melhor a representagdo dos dados, melhor o resultado final e, em casos de



disparidade, deve-se utilizar alguma das estratégias disponiveis para ajustar os
dados néo balanceados (Ucar et al., 2019).

Uma estratégia para fazer uma escolha mais objetiva e aumentar a
confiabilidade da analise in silico € avaliar o desempenho de cada preditor para
cada gene individualmente. Assim, saberiamos se os critérios empregados na
construcéo dos preditores sdo igualmente relevantes para todos os genes. Como
as proteinas podem ser agrupadas em familias de acordo com as suas fungdes e
estruturas, algo passivel de se considerar € que proteinas da mesma familia ou
subfamilia sejam avaliadas de forma parecida pelas ferramentas. Considerando
as caracteristicas de cada familia proteica, preditores diferentes podem avaliar
melhor um grupo em relagdo a outro devido as estratégias utilizadas na sua
analise. Assim é interessante comparar nao apenas as diferentes proteinas, mas
se proteinas da mesma familia ou subfamilia apresentam similaridades de
avaliacdo. Conhecer essas informacdes € importante para melhorar o
desempenho e a confianga das avaliagbes in silico existentes, além de guiar
NOvVos programas.

Para realizar essa comparagao € necessaria a constru¢ao de um banco de
dados de variantes com significado conhecido e subsequentes testes e avaliagcbes
de performance nos diversos preditores. Visando padronizar a realizagao dessas
analises, o segundo capitulo desta dissertagdo apresenta uma comparagao de 51
predicdes para 160 variantes do gene IDUA curadas manualmente da literatura,
bem como a avaliagdo de 426 variantes de significado incerto encontradas em
bancos de dados populacionais pelos preditores com melhores desempenhos.

No entanto, para gerar o banco de variantes com significado conhecido,
como feito neste trabalho, é necessario que cada pesquisador leia e avalie um
grande numero de artigos relacionados ao gene de interesse. Isso torna a criagcéo
do banco algo trabalhoso e, principalmente, demorado. Realizar essa curadoria
manualmente para um grande numero de genes em um curto periodo de tempo é
impossivel. Portanto, uma estratégia de automatizagao € necessaria.

Com o desenvolvimento da ciéncia da computacdo, diversas tarefas e
processos foram automatizados. A traducdo e interpretacdo de uma linguagem

natural € um processo complexo que esta em difusdo desde os anos 1950. Muitas
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estratégias ja foram desenvolvidas para realizar essa tarefa, mas uma em
especial vem ganhando destaque ao longo dos anos: o deep learning. O deep
learning tem como ideia o aprendizado pelo modelo de representacdes
intermediarias uteis, que apresentam varios niveis de representagao para serem
otimizados (Hirschberg and Manning, 2015).

O processamento de linguagem natural (natural language processing-NLP)
apresenta diversas etapas e métodos de mineracdo de texto para aprender,
compreender e produzir conteudo de linguagem humana (Esteva et al, 2019),
extraindo nao somente as informacgdes relevantes para o usuario, mas também
significado essas informagdes contextualmente. Considerando essa estratégia, o
terceiro e ultimo capitulo da dissertagao apresenta uma aplicacdo do processo na
busca de automatizar a comparagao e escolha dos preditores. O trabalho esta em
desenvolvimento e busca avaliar as performances dos preditores em diferentes
genes, tentando entender se existem estratégias mais adequadas para diferentes

grupos proteicos.

Objetivo Geral

O objetivo do trabalho é fazer a comparagao da performance de preditores
de variantes missense entre e intra diferentes grupos protéicos, utilizando como

base um banco de variantes curadas.

Objetivos especificos

1. Realizar uma revisao da literatura dos preditores de variantes missense mais e
menos citados na literatura.

2. Estabelecer as etapas de comparacao de desempenho dos preditores com um
grupo de variantes do gene IDUA,;

3. Automatizar a criagdo das bases de dados para comparar as predicdes de
diferentes ferramentas entre e intra grupos proteicos utilizando um algoritmo

de processamento de linguagem natural.
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Capitulo 1

No capitulo é apresentado um artigo de revisdo sobre preditores de
variantes missenses. O artigo foca nos principais preditores encontrados na
literatura, baseado no numero de citacbes e estabelece um paralelo entre os
preditores mais e menos citados.

O artigo esta em fase final de elaboragdo para submissdo no periodico

Bioinformatics.
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Introduction

The advance of genomic analysis contributed to generating new information and
bioinformatics consolidation. With the development of DNA-sequencing
technologies and the growing number of new variants starting in the 1990s and
exploding in the 2000s with large-scale projects, the in silico predictors gained
space and particular relevance. The discovery of a large number of variants
modified how we process and understand modern genetics, opening new

investigative routes on variant interpretation and how they relate to our health.

Variant interpretation is directly associated with human genetics, and there is
particular interest in distinguishing functionally neutral variants from those that
contribute to disease (Ng PC, Henikoff S, 2002). Several variants may alter
inherited traits by affecting gene transcription, pre-mRNA splicing, or protein
translation, thus impacting protein expression or function (Castiglia and Zambruno,
2010). The most complex variant type to assign a functional effect to is a missense
mutation, in which a change of amino acid is caused by a single nucleotide
substitution (Zhang et al., 2012). Indeed, tools for classifying these variants started
to be developed in the early 1970s. The Grantham score, developed in 1974,
compares the composition, polarity, and molecular volume differences between
amino acids. Estimating the extent to which observed exchanges could be
explained by conservation, the article presents a matrix with fixed values for each
amino acid substitution overall proteins and beginning generalized comparison and

evaluation of missense variants (Grantham, 1974).

In the 2000s, bioinformatics methods were developed considering evolutionary
conservation, structural effects, or a combination of both (Tang and Thomas,
2016). The first predictors were based on alignments and differed in punctuation
matrices and the probability determination (SIFT (Ng PC et al., 2001), PolyPhen
(Sunyaev S et al., 2001), and PANTHER (Thomas PD et al.,, 2003). These
programs relied on the availability of sequences in other species, which was not

the case in the early days of genomics. Shortly after, structural predictors were
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introduced (MAPP) (Stone and Sidow, 2005). However, this type of predictor
presented some limitations because they depended on the three-dimensional
protein structure, which was also scarce (Tang and Thomas, 2016). Combined
methods were developed to circumvent these problems, with the need for a
combined analysis of two types of data. The machine learning algorithms
appeared as a crucial informatic method for selecting the best ways to predict the
variants' pathogenicity based on the training group, considering combination

methods.

We currently have several prediction algorithms available to choose from when
evaluating the pathogenicity of a missense variant. So much so that we often find

ourselves questioning which tool best predicts outcomes for the protein of interest.

Often authors choose predictors previously used, which become the most
commonly cited tools. We compared the total number of citations of the original
articles of 34 predictors [SIFT (Kumar P et al., 2009; Ng PC et al., 2003; Ng PC et
al., 2001), SIFT4G (Vaser R et al., 2016), PolyPhen2 (Adzhubei | et al., 2013;
Adzhubei IA et al.,, 2010; Sunyaev S et al.,, 2001), LRT (Chun S et al., 2009),
MutationAssessor (Reva B et al., 2011; Reva B et al., 2007), FATHMM (Shihab HA
et al., 2014; Shihab HA et al., 2013; Shihab HA et al., 2013), MetaSVM/LR (Dong
C et al.,, 2015), CADD (Rentzsch P et al., 2019; Kircher M et al., 2014), VEST
(Carter H et al.,, 2013), PROVEAN (Choi Y et al., 2015; Choi Y et al., 2012],
fitConsx4 (Gulko B et al, 2015), REVEL (loannidis NM et al., 2016), DANN (Quang
D et al., 2015), MutationTaster2 (Schwarz JM et al., 2010], M-CAP (Jagadeesh KA
et al., 2016), LINSIGHT (Huang YF et al., 2017), MutPred (Li B et al., 2009),
PrimateAl (Sundaram L et al., 2019), BayesDel (Feng BJ, 2017), ClinPred
(Alirezaie N et al., 2018), LIST-S2 (Malhis N et al., 2020), GenoCanyon (Lu Q et
al., 2015), Eigen and Eigen-PC (lonita-Laza | et al., 2016), PhD-SNP (Capriotti E
et al., 2006), PANTHER (Mi H et al., 2013; Thomas PD et al., 2003), SNPs&GO
(Capriotti E et al., 2013), PSNPE (Bendl J et al., 2016; Bendl J et al., 2014),
FunSeq2 (Fu Y et al,, 2014), GWAVAE (Ritchie GR et al., 2014), SuSPect (Yates
CM et al.,, 2014), PMut (Lépez-Ferrando V et al., 2017; Ferrer-Costa C et al.,
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2005), CONDEL (Gonzalez-Pérez A et al., 2011), PON-P2 (Niroula A et al., 2015),
SNAP2 (Bromberg Y et al., 2007)] in Pubmed, Google Scholar and Web of
Science from 2001 to 2020. The sum of articles citing each predictor in all
databases was considered to calculate the percentage of citations for each
predictor. For instance, if a given predictor has 10, 20, and 30 citations in each
database, it has 60 citations in total, even though they might be repeated across
databases. If the sum of all citations for all predictors in all databases is 600, then

in this particular example, the predictor would have 10% of citations.

Among predictors with the highest number of citations, PolyPhen and SIFT
standout with 26.22 and 25.42% of citations, whereas the next are CADD with
9.29%, PANTHER 7.90%, PROVEAN with 5.55%, and MutationTaster2 with
4.86%. All others have less than 4% of citations. On the other end are LISTS2 with
0.002%, PrimateAl 0.20%, GenoCanyon 0.17%, ClinPred 0.07% and BayesDel
0.04%. All other predictors have more than 0.20%. The absolute number of
citations and the percentage for each predictor are present in Table 1 for the
predictor with the highest and lowest percentages. A complete list can be found in

supplementary table 1.

As expected, the overall number of citations is higher for older predictors. To better
evaluate more recent predictors, only citations from 2015 to 2020 were compared
(Supplementary figure 1). Four manuscripts describing three predictors
(PolyPhen2, 2010; SIFT, 2009; SIFT, 2003; CADD, 2014) have over 250 citations,
as shown in Figure 1a. These three predictors belong to the six most cited groups,
considering all periods (Figure 1b). Again, Polyphen and SIFT are among the first
described predictors, showing that predictors are continually cited from their
publication. Figure 1c shows the citation over time for the group of less cited

articles.
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Table 1: Articles per year for most and least cited predictors comparing 34 predictors in three different databases (Pubmed,

Google Scholar, and Web of Science).

Predictors Year Titles Pubmed SG;?SI; :::/iizg; oc/iot:cfi total
Articles of the most cited predictors

SIFT 2001 Predicting deleterious amino acid substitutions 1,025 2,374 1,628 4.520

PolyPhen 2001 Prediction of deleterious human alleles 436 1,210 878 2.270

SIFT 2003 SIFT: Predicting amino acid changes that affect protein function 1,874 4,588 3,081 8.581
PANTHER 2003 PANTHER: A Library of Protein Families and Subfamilies Indexed by Function 1,110 2,543 1,697 4.811
SIFT 2009 Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm 2,826 5,825 4,236 11.588
Polyphen2 2010 A method and server for predicting damaging missense mutations 5,069 10,298 7,479 20.543
MutationTaster2 2010 MutationTaster evaluates disease-causing potential of sequence alterations 1,118 2,361 1,766 4.716
PROVEAN 2012 Predicting the Functional Effect of Amino Acid Substitutions and Indels 903 2,011 899 3.429
Polyphen2 2013 Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2 939 2,022 - 2.662
PANTHER 2013 PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees 727 1445 1009 2.860
CADD 2014 A general framework for estimating the relative pathogenicity of human genetic variants 2,010 3,885 2,698 7.727
PROVEAN 2015 PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels 454 1,098 746 2.066
CADD 2019 CADD: predicting the deleteriousness of variants throughout the human genome 304 701 441 1.300

Articles of the least cited predictors

GenoCanyon 2015 A Statistical Framework to Predict Functional Non-Cc;c\iri]r:]%tI:teigri]oBZti; the Human Genome Through Integrated Analysis of 46 % 53 0.170
BayesDel 2017 PERCH: A Unified Framework for Disease Gene Prioritization 13 19 16 0.043
PrimateAl 2018 Predicting the clinical impact of human mutation with deep neural networks 44 106 62 0.191
ClinPred 2018 ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants 16 36 26 0.070
LIST-S2 2020 LIST-S2: taxonomy based sorting of deleterious missense mutations across species 1 1 0 0.002
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Figure 1: Number of citations over time: a) Most cited articles; b) all articles belong
to six predictors more cited; c) all articles belong to five predictors less cited. Note
the difference in both the x and y-axis in graphs.

A text mining R script from Edureka's Data Science was applied to all 46 articles
describing the in silico predictors. The most frequent seven words were present
over 200 times (Figure 2a): substitution, sift, score, annotation, deleterious, code,
and SNPs. The appearance of Sift highlights its use as a reference tool. A word
cloud was created for words with frequencies higher than 60 (Figure 2b).
Interestingly, the term "PolyPhen" is present in the word cloud but in the group with

frequencies lower than 100 times.
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Figure 2: Text mining analysis from all predictor articles. a) Words with frequency
higher than 100 times. b) Wordcloud with all terms with frequency higher than 60
times.

Although we cannot directly infer that these predictors are the most and least used

in clinical practice, we may assume that the number of citations may correlate to
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clinical use. Indeed, laboratory clinical reports often present predictions based on
SIFT and PolyPhen data, thus contributing to their popularity. As the choice of
tools is a critical point in bioinformatics analysis, especially in the absence of
literature information supporting the analysis, the recurrence of the same

predictors leads us to question why this occurs.

Table 2 summarizes the 11 predictors shown before with information about each
one's development to understand the continuous preference better. The most
popular tools have a web interface, while PrimateAl, BayesDel, and ClinPred need
local installation in the UNIX environment, thus requiring bioinformatics skills . This
little difference puts these tools at a disadvantage because the user needs to

install and run the script using a code line.

CADD, LIST-S2, GenoCanyon, and PrimateAl do not have an established cut-off
point. This is debatable, as some authors believe there is no ideal cut-off for
binarization deleterious/benign (LIST-S2). Some reasons they present is the loss
of information represented for binary cut-off and that other factors influence the
cut-off choice, as the severity of the phenotype, the inheritance pattern of the
disease or available for curation or experimental follow-up of variants (CADD),
beyond the fact that the output is an imperfect probability, that may vary from gene
to gene. LIST-S2 recommends in its documentation that each researcher

determines the cut-off value that is best suited to each analysis.

Also, the programs present diversified inputs. The user can obtain predictions
starting with chromosomal position and nucleotide change or with protein position
and amino acid change. Depending on the program, this choice influences the
result. MutationTaster2 also asks for the transcript id and some bases flanking the

variant position. About robust analysis, all predictors realize batch upload.
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Table 2: Summary of the top seven predictors cited in the literature.

Name Complete name Training data Information used Prediction model Score
PolvPhen2 5564 Mendelian disease mutations and 7539 eight sequence-based and three
I}IlDIV divergence SNVs from close mammalian 9 % e T naive Bayes classifier Tolerated: 0.0 t0 0.15
( ) Polymorphism homolog proteins structure-based predictive features Possibly damaging: 0.15 to
Phenotyping v2 - - 0.85
PolyPhen2 22196 disease associated SNVs and 21119 same as above same as above Damaging: 0.85 to 1.0
(HVAR) common SNVs
. . o o . Deleterious: 0.0 to 0.05
SIFT Sorting Intolerant 1750 deleterious anq 2254 tolerant nsSNVs of sequence homology based on PSI-BLAST position spec[flc scoring Tolerated (benign): 0.05 to
From Tolerant E. coli Lacl gene matrix 10
D: disease causing (>0.5)
MutationTaster2 ) SNVs from 1000 G (1000 Genomes Project), | conservation, splice site, mRNA features, naive Baves classifier A: disease causing automatic
HGMD protein features; regulatory features Y N: polymorphism (<0.5)
P: polymorphism automatic
PROVEAN Pé?f;e; A\ﬁzl}?;g] SNVs from UniProt/HUMSAVAR sequence homology Delta alignment score deleterious < -2.5 < neutral
Combined Annotation 16,627,775 “observed” variants and . . . Literature used >20 as cut off
e Dependent Depletion 49,407,057 “simulated” variants B et o (20 izsllles) (EET [ ) SUppen: VEEEr TEEIE for consider pathogenic
Protein ANalysis Neutral: 0 to 0.5
PANTHER THrough Evolutionary HGMD and dbSNP evolutionarily related sequences HMM modeling of protein families Diseasé' 05 to‘ 1
Relationships T
e (o =L Eeimiienn e 36 layers of convolutions, consisting of 0 (less pathogenic) to 1
PrimateAl - variants frompr:il;nn;?;\ss sggi es;x non-human roughly 400,000 trainable parameters deep neural networks (more pathogenic)
. . . . . Universal cutoff value (0.069
39,395 pathogenic variants and 39,978 neutral combined multiple deleteriousness .. . . )
EaiEEnE ; rom ClinVar and UniProtKB predictors to create an overall score e B e Maxﬁl\\;l:é)-&l(__)’)ﬂ i
11,082 variants from ClinVar, with 7,059 Incorporates allele frequencies from . . .
ClinPred - labeled as benign and 4,023 labeled as gnomAD and 16 individual prediction ol (3 (c;forest) ind g_::radledntlboosted EEEEe P I?r?nlgn..o. tgé).tS 1
pathogenic scores ree (xgboost) models athogenic: 0.5 to
Local Identity and EXAC, gnomAD, UniProt (been High Local identity Pairwise Sequence Alignment to all
LIST-S2 Shared Taxa - species 26,708 benign and 20,015 deleterious associated with diseases and cancer), h prlotgln _seqtl.encies; t'r?em'ft'est.thr} dmIOTt r.elevant £ Deéetepou: ; 3584
specific ClinVar omologies; estimates the potential deleteriousness o enign > 0.
mutations based on taxonomy distance of species
Genomic data for all the 22 annotations were
GenoCanyon - 1d§ gg?gigﬂmot::#ecrgSsigmstiﬁ:gﬁig 49 parameters unsupervised statistical learning cutoff point 0.5
parameters.
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An important aspect that contributes to some predictors being more used than
others is the ACMG-AMP recommendation (Richards et al., 2015), which cites
what they considered the “most used predictors” in 2015. All top predictors found
in our analysis are present in this list. As seen in Figure 1b, the number of citations
grows before 2015, although it is impossible to rule out the visibility that being part

of this list gives to these programs or measure the impact on citations directly.

Something also relevant is the citation of papers describing the first algorithms by
subsequent programs. This happens in two cases: predictors use others for
statistical comparisons and to demonstrate the new algorithms' performance. For
example, BayesDel includes three of the most cited predictors (PolyPhen2
(Adzhubei et al., 2010), SIFT (Kumar et al., 2009) and Mutation Taster (Schwarz et
al.,, 2010)) to create its overall score, and ClinPred uses SIFT, PolyPhen-2,
MutationAssessor, PROVEAN, and CADD in feature analysis. Other predictors
have similar comparisons and contribute to increasing the number of citations of

previous and more recognized programs.

Tools use different strategies to predict the pathogenicity of variants. Some
predictors agree in the method of choice, as PolyPhen2, MutationTaster2, and
BayesDel. These machine learning algorithms predict pathogenicity based on the
Naive Bayes classifier, a probabilistic model contingent on Bayes theorem that

calculates the probability of some “a” event happening, given that “b” has

occurred.

PolyPhen2 is based on several features comprising the sequence, phylogenetic
and structural information characterizing the substitution. This supervised
machine-learning has two models: HumDiv and HumVar. The differences between
training datasets make HumDiv preferred for evaluating rare alleles, dense
mapping of regions identified by genome-wide association studies, and natural
selection analysis, while HumVar is better for Mendelian diseases. The user can
choose, or the program will run HumDiv as default. Both report the probability that

a given variant is damaging, estimate false and true positive rates, and give a
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qualitative prediction, as benign, possibly damaging, or probably damaging
(Adzhubei | et al., 2013; Adzhubei IA et al., 2010; Sunyaev S et al., 2001).

MutationTaster2 calculates the alteration probabilities to be either a disease
mutation or a harmless polymorphism considering evolutionary conservation,
splice-site changes, loss of protein features, and changes that might affect the
amount of mMRNA. The probability varies from 0 to 1, and values close to 1 indicate
'high security' of the prediction (Schwarz JM et al., 2010). BayesDel creates an
overall score combining six deleteriousness predictors and three conservation
scores considered mutually independent. The scores are calculated as a weighted
product of likelihood ratios, and in the end, the model was optimized for the area

under the receiver operating characteristic curve (Feng BJ, 2017).

SIFT (Sorting Intolerant From Tolerant) evaluates position-specific information
obtained for alignment to predict pathogenicity. It is based on conserved
sequences in a protein family and the type of amino acid change. Conserved
positions are considered as intolerant to most changes, although poorly conserved
positions have different scores. All values obtained are directly related to the
diversity of the sequences in the alignment and how similar or not are the amino
acid changes (Kumar P et al.,, 2009; Ng PC et al., 2003; Ng PC et al., 2001),
SIFT4G (Vaser R et al., 2016).

Integrating diverse annotations correlated with molecular functionality and
pathogenicity and trained by a support vector machine, Combined
Annotation—Dependent Depletion (CADD) combines them to a single measure (C
score) for each variant. Considering that variants that reduce organismal fithess
are depleted by natural selection, CADD compares the annotation of simulated
variants with nearly fixed alleles in humans (Rentzsch P et al., 2019; Kircher M et
al., 2014).

PANTHER uses a statistical model for scoring the “functional likelihood” of amino

acid substitutions using evolutionarily related sequences. It calculates the score of
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a single amino acid at a particular position or the likelihood of converting one
amino acid to another and compares it with scores from known variants to
determine the pathogenicity (Mi H et al., 2013; Thomas PD et al., 2003).

PROVEAN (Protein Variation Effect Analyzer) predicts a delta score computed
from a substitution matrix (information on the substitution frequency and chemical
properties of 20 amino acid residues), gap penalties, percent identity threshold for
sequence clustering, number of top clusters generated, and can also be
determined by the neighborhood that surrounds the site of variation. The web
server supports PROVEAN Protein, Protein Batch, and Genome Variants functions
(Choi Y et al., 2015; Choi Y et al., 2012).

Random Forest is a machine learning classifier that uses a large number of
individual trees. Each tree has a class prediction, and the choice of model
happens for the class with the most votes. Although not frequently used in the
most cited predictors, this method has become common in newer predictors.
ClinPred uses gradient boosted decision tree (xgboost) models trained using either
balanced or equal weights. The prediction used 13 individual prediction scores and
three conservations scores (SIFT, PolyPhen, LRT, MutationAssessor, PROVEAN,
CADD, DANN, PhastCons, fitCons, GERP, PhyloP, and SiPhy) plus allele

frequencies of variants from gnomAD (Alirezaie N et al., 2018).

Two versions of the deep learning network were trained to discriminate variants in
PrimateAl: one with common unlabeled variants, as a control for aligning ability
between the species and humans, trinucleotide context, and sequencing coverage,
and one with the full benign labeled dataset. Both have human variants, but the
second also has six non-human primate species. As input, the program receives a
sequence with a length of 51 amino acids centered at a variant, used to generate
matrices from multiple sequence alignments of 99 vertebrates. The output is
solvent accessibility networks and secondary structure with the missense variant

substituted at the central position (Sundaram L et al., 2019).
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LIST-S2 (Local Identity and Shared Taxa - species-specific) have three modules
assembled hierarchically: position mutation module, position module, and mutation
module. The first determines if a mutation occurs in homolog close or distantly
related. The second establishes if the variation occurs in related species. The third
estimates the likelihood of changing the reference by the variant. The final score
combines the weighted scores from the two first modules with the third module.
The features that determine the score are: variant share among taxa, average
values of the top one-third of the shared taxa profile vector, average variant shared
taxa of all 19 possible variations, and the general amino acid swap-ability matrix
(Malhis N et al., 2020).

GenoCanyon treats the conservation measures, and the biochemical signals as
consequences of genomic function, where 1 is functional, and 0 is not. It models,
as function consequences, 22 conditionally independent annotations selected due
to their functional impacts that are relatively well studied and easier to model and
correspond to either conservation score or biochemical activity. The prediction
score is the posterior probability of the functional potential at this location (Lu Q et
al., 2015).

It is not straightforward to detect a trend on why some predictors are used more
often than others. To be web-based or a local program does not seem to matter.
As the Naive Bayes method, the same prediction models can be used by the most
and least cited programs. The training set and the information used do not differ
among programs and can even be the same for different predictors. However,
unexpectedly, results can be quite contradictory. A recent study from our group
evaluated 3,040 missense variants in five predictors (Polyphen2, MutPred,
PROVEAN, SIFT, and REVEL), and only 44.54% of them had a total consensus in
the five programs, whereas 31.84% had one disagreement and 23.62% had two

disagreements (Borges et al., 2019).

In the end, it is not clear if the selection of a predictor is a conscious choice made

by each researcher based on objective criteria or the following of a trend in the
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literature, set by the earlier use of predictors. Given the absence of consensus
among predictors (Borges et al., 2019; Guidugli et al., 2018; Rodrigues et al.,
2015) and the lack of studies comparing predictor’s performance for specific

proteins, the second hypothesis seems to be more likely.
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Supplementary Figure 1: Number of citations overtime for all predictor articles.
al1=BayesDel, 2017; a2=CADD, 2014; a3=CADD, 2019; a4=ClinPred, 2018;
a5=CONDEL, 2011; a6=DANN, 2015; a7=Eigen and Eigen-PC, 2016;
a8=FATHMM1, 2013; a9=FATHMM, 2013; a10=FATHMM, 2014; a11=fitCons x 4,
2015; a12=FunSeq2, 2014; a13=GenoCanyon, 2015; a14=GWAVAE, 2014;
a15=LINSIGHT, 2017; a16=LIST-S2, 2020; a17=LRT, 2009; a18=M-CAP, 2016;
a19=MetaSVM/LR, 2015; a20=MutationAssessor, 2007; a21=MutationAssessor,
2011; a22=MutationTaster2, 2010; a23=MutPred, 2009; a24=PANTHER, 2003;
a25=PhD-SNP, 2006; a26=PMut, 2005; a27=PMut, 2017; a28=PolyPhen, 2001;
a29=Polyphen2,  2010; a30=PON-P2, 2015; a31=PrimateAl, 2018;
a32=PROVEAN, 2012; a33=PROVEAN, 2015; a34=PSNPE, 2014; a35=PSNPE,
2016; a36=REVEL, 2016; a37=SIFT, 2001; a38=SIFT, 2003; a39=SIFT, 2009;
a40=SIFT4G, 2016; a41=SNAP2, 2007; a42=SNPs&GO, 2013; a43=SuSPect,
2014; a44=VEST, 2013; a55=PANTHER, 2013
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Supplementary Table 1: A complete list of articles of 34 predictors with total citation number in three different databases

(Pubmed, Google Scholar, and Web of Science) and the percentage of citations for each predictor.

Predictors Year Titles Pubmed sG:r?gger svﬁf;?é’; oc/?t:g o
Polyphen2 2010 A method and server for predicting damaging missense mutations 5069 10298 7479 20.543
SIFT 2009 Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm 2826 5825 4236 11.588
SIFT 2003 SIFT: Predicting amino acid changes that affect protein function 1874 4588 3081 8.581
CADD 2014 A general framework for estimating the relative pathogenicity of human genetic variants 2010 3885 2698 7.727
PANTHER 2003 PANTHER: A Library of Protein Families and Subfamilies Indexed by Function 1110 2543 1697 4.811
MutationTaster2 2010 MutationTaster evaluates disease-causing potential of sequence alterations 1118 2361 1766 4.716
SIFT 2001  Predicting deleterious amino acid substitutions 1025 2374 1628 4.520
PROVEAN 2012  Predicting the Functional Effect of Amino Acid Substitutions and Indels 903 2011 899 3.429
PANTHER 2013 PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees 727 1445 1009 2.860
MutationAssessor 2011 Predicting the functional impact of protein mutations: application to cancer genomics 694 1420 953 2.758
Polyphen2 2013  Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2 939 2022 - 2.662
PolyPhen 2001  Prediction of deleterious human alleles 436 1210 878 2.270
PROVEAN 2015 PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels 454 1098 746 2.066
LRT 2009 Identification of deleterious mutations within three human genomes 394 764 536 1.523
FATHMM 2013  Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models 371 751 516 1.473
CONDEL 2011 Improving the Assessment of the Outcome of Nonsynonymous SNVs with a Consensus Deleteriousness Score, Condel 379 708 502 1.429
SNAP2 2007  SNAP: predict effect of non-synonymous polymorphisms on function 318 721 507 1.390
MutPred 2009 Automated inference of molecular mechanisms of disease from amino acid substitutions 285 704 490 1.330
CADD 2019 CADD: predicting the deleteriousness of variants throughout the human genome 304 701 441 1.300
Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and

PhD-SNP 2006 evolutionary information 240 631 438 1177
MetaSVM/LR 2015 Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies 301 579 407 1.157
REVEL 2016 REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants 232 504 341 0.968
PMut 2005 PMUT: a web-based tool for the annotation of pathological mutations on proteins 214 488 368 0.962
DANN 2015 DANN: a deep learning approach for annotating the pathogenicity of genetic variants 208 486 310 0.903
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Functional annotation of noncoding sequence variants

SIFT missense predictions for genomes

PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations

M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity

A spectral approach integrating functional genomic annotations for coding and noncoding variants
Identifying Mendelian disease genes with the Variant Effect Scoring Tool

Determinants of protein function revealed by combinatorial entropy optimization

FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer

A method for calculating probabilities of fitness consequences for point mutations across the human genome
Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data
Predicting the functional consequences of cancer-associated amino acid substitutions

SuSPect: Enhanced Prediction of Single Amino Acid Variant (SAV) Phenotype Using Network Features
WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation
PON-P2: Prediction Method for Fast and Reliable Identification of Harmful Variants

Ranking non-synonymous single nucleotide polymorphisms based on disease concepts

Predicting the clinical impact of human mutation with deep neural networks

PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct
Genomic Regions

A Statistical Framework to Predict Functional Non-Coding Regions in the Human Genome Through Integrated Analysis of Annotation
Data

PMut: a web-based tool for the annotation of pathological variants on proteins, 2017 update

ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants
PERCH: A Unified Framework for Disease Gene Prioritization

LIST-S2: taxonomy based sorting of deleterious missense mutations across species
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44
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0.485
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0.272
0.264
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0.191
0.191

0.191

0.170

0.120
0.070

0.043
0.002
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Capitulo 2

O capitulo € uma analise comparativa de 33 preditores e um escore de
conservagao avaliados em um grupo de 160 variantes missense relatadas na
literatura para o gene IDUA. Os preditores que obtiveram melhor desempenho
foram utilizados para avaliar 426 variantes de significado incerto reportadas em
bancos de dados populacionais (ExAC v0.3.1, gnomAD v2.0.2, ABraOM, LOVD,
1,000 genomes (1,000 Genomes Project Consortium), dbSNP, Human Genome
Mutation Database (HGMD) and ClinVar). Além de investigar as variantes do gene
IDUA, o trabalho também serviu para estabelecer os parametros para busca na

literatura e analises estatisticas realizadas no capitulo 3.

O artigo esta em fase de formatagdo para envio para o peridédico Molecular

Genetics and Metabolism.
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Abstract

Mucopolysaccharidosis type | (MPS 1) is an autosomal recessive disease
characterized by the deficiency of alpha-L-iduronidase (/IDUA), an enzyme
involved in glycosaminoglycan (GAG) degradation. More than 200
disease-causing variants have been reported and characterized in the IDUA gene.
The gene also has several variants of unknown significance (VUS) and literature
conflicting interpretations of pathogenicity. This study evaluated 586 variants
obtained from the literature review, five population databases, in addition to
dbSNP, HGMD, and ClinVar. For the variants described in the literature, two
datasets were created based on the strength of the criteria. The stricter criteria
subset had 108 variants with expression study, analysis of healthy controls, and/or
complete gene sequence. The less stringent criteria subset had additional 52
variants found in the literature review, HGMD or ClinVar, and in dbSNP with allele
frequency higher than 0.001. The other 426 variants were considered VUS. The
two strength criteria datasets were used to evaluate 33 programs plus a
conservation score. BayesDel (addAF and noAF), PONP2 (genome and protein),
and ClinPred algorithms showed the best sensitivity, specificity, accuracy, and
kappa value for both criteria subsets. The VUS variants were evaluated with these
five algorithms. Based on results, 122 variants had total consensus among the five
predictors, with 57 classified as predicted deleterious and 65 as predicted neutral.
For variants not included in PONP2, 88 variants were considered deleterious and
92 neutral by all other predictors. The remaining 124 did not obtain a consensus

among predictors.

Keywords: Mucopolysaccharidosis type | (MPS [), missense variants, in silico

predictions, VUS classifications.
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Introduction

Mucopolysaccharidosis type | (MPS 1) is an autosomal recessive disease
characterized by the deficiency of alpha-L-iduronidase (IDUA) involved in
glycosaminoglycan (GAG) degradation (Scott 1991). This deficiency leads to
progressive lysosomal accumulation of heparan and dermatan sulfate and causes
a gradual deterioration of cells and tissues that culminates in early death in severe
cases (Lehman et al., 2011). MPS | has considerable phenotypic variation, with an
extensive range of clinical manifestations and well-defined extreme phenotypes.
Scheie syndrome (MPS I-S; OMIM# 607016) is the attenuated phenotype and
includes somatic involvement, while Hurler syndrome (MPS I-H; OMIM# 607014)
is the severe phenotype with important neurological impairment, among other
features (Kubaski et al., 2020). All phenotypes exhibit excessive GAG
accumulation and excretion in urine and are undistinguishable by routine
biochemical tests (Lehman et al., 2011; Viana et al., 2011).

More than 200 disease-causing variants have been reported and characterized in
the IDUA gene (Bertola et al., 2011). In a 2019 study with data from the MPS |
Registry, nonsense and missense variants corresponded, respectively, to 56.5%
and 33.6% of the reported variants (Clarke et al., 2019). Attenuated cases present
at least one allele with residual activity, generally due to missense variants,
regardless of the other allele and genotype-phenotype correlation has been
established for some missense pathogenic variants (Fuller et al. 2005).
Non-disease causing missense variants, such as p.Arg105GIn, p.GIn63Pro (Scott
et al., 1991), p.His33GIn (Scott et al., 1992), and p.Ala361Thr (Scott et al., 1993),
have also been described in the literature.

The broader use of massive parallel genetic sequencing increased the list of
variants of unknown significance (VUS). Functional molecular assessments do not
accompany the pace of detection of new genetic variants. Most variants present in
Exome Aggregation Consortium (ExAC) and The Genome Aggregation Database
(gnomAD) (Lek et al., 2016; Karczewski et al., 2020) have not been assessed for
their pathogenicity. Therefore, research and clinical laboratories use in silico
strategies to help understand the biological significance of VUS. These methods

are already considered in ACMG standard guidelines (Richards et al., 2015) to
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indicate some supporting evidence level when clinical information is insufficient or
nonexistent. Clinical laboratories also created their guideline on variant
interpretation, named Sherloc (semiquantitative, hierarchical evidence-based rules
for locus interpretation) (Keith Nykamp et al., 2017).

Even though computational analysis is often used, results must be viewed with
caution. Not only do different programs have discordant results for the same gene,
but algorithms may have different values of accuracy, specificity, and sensitivity
depending on the characteristics of the gene or protein. Therefore, ideally, a
performance assessment should be performed for each gene/protein to choose
the best algorithm for variant prioritization. However, this also needs reliable
standards as calibrators - and literature and curated databases also show
divergence.

This study aims to compare in silico predictors using two datasets of variants with
different degrees of confidence. Using the best predictors indicated by these two
datasets, we evaluated the VUS present in the IDUA gene in population

databases.

Methods

Curated variant selection:

We created a database with missense variants described in the literature, in
curated databases, and in population databases with frequencies greater than
0.001. First, we performed a manual review of all missense variants in the IDUA
gene published between 1991 and 2019. According to the variant classification
methods in each manuscript, variants from the literature were divided into two
subsets (stricter or less stringent evidence). Evidence was considered stricter if at
least one of the following was performed: expression study, evaluation of healthy
controls, or complete gene sequence corroborating the pathogenic or
non-pathogenic disease-causing variant status. The subset of variants with less
stringent criteria comprised all variants in the stricter criteria subset plus the rest of
missense variants described in the literature, variants from HGMD (Stenson et al.
2014) and Clinvar (with their classifications) (Landrum et al. 2014), and variants in

population databases with allele frequencies greater than 0.001. These two
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subsets were selected to evaluate the prediction programs' characteristics and to
compare the correlation between variants' predictions and literature information.

Variants that do not have any of these criteria were considered VUS.

In silico programs:

We analyzed 33 prediction algorithms and one conservation score. For those
predictors with more than one training set, such as PolyPhen HDIV and HVAR,
each training set was evaluated separately. So, in total we had 51 predictors: SIFT
(protein data training) (Kumar et al., 2009), SIFT4G (Vaser et al., 2016),
Polyphen2 (HDIV and HVAR) (Adzhubei et al., 2013), LRT (Chun; Fay, 2009),
MutationTaster2 (Schwarz et al., 2010), MutationAssessor (Reva et al., 2007),
FATHMM (Coding Variants-Weighted, MKL coding, and XF coding) (Shihab et al.,
2013), MetaSVM/LR (Dong et al, 2015), CADD (GRCh37/hg19 and
GRCh38/hg38) (Kircher et al., 2014), VEST4 (Carter et al., 2013), PROVEAN
(protein data training) (Choi et al., 2012), fitCons x4 (Gulko et al., 2015),
LINSIGHT (Huang et al.,, 2017), M-CAP (Jagadeesh et al., 2016), REVEL
(loannidis et al., 2016), MutPred (Li et al., 2009), PrimateAl (Sundaram et al.,
2019), BayesDel (addAF and noAF) (Feng, 2017), ClinPred (Alirezaie et al., 2018)
and LIST-S2 (Malhis et al., 2020). We also tested GERP++ conservation score
(Davydov et al., 2010) from dbNSFP v4.1a, a database developed for functional
prediction and annotation of all potential non-synonymous single-nucleotide
variants (nsSNVs) in the human genome (Liu et al., 2020).

The prediction of PhD-SNP (Capriotti et al., 2006), PANTHER (Thomas et al.,
2003), SNPs&GO (Capriotti et al., 2013), PredictSNP (Bendl et al., 2016), CADD
1.2, DANN (Quang et al., 2015), FATHMM (Coding Variants - Unweighted),
FunSeq2 (Fu et al., 2014), GWAVAE 1.0 (Ritchie et al., 2014), SuSPect (Yates et
al., 2014), PMut (Ferrer-Costa et al., 2005), CONDEL (Gonzalez-Pérez et al.,
2011), PROVEAN (genome data training), SIFT (genome data training), PON-P2
(identifier, protein and genome data training) (Niroula et al., 2015) and MutPred
were obtained from the web-based application. The variant classifiers were used
when provided by the algorithm. The scores of VEST4, REVEL, MutPred,
CADD_raw, CADD_phred, integrated_fitCons, SusPect, and GERP++_NR were
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transformed in binary classification. The cutoff of 0.5 was applied for SuSPect and
VEST4, 0.75 for MutPred and REVEL, 20 for CADD_phred, zero for CADD _raw,
0.4 for fitCons x4, and 0.047 for GERP++ as suggested by the authors.

Variants of unknown significance:

All missense variants in canonical IDUA sequence present in EXAC v0.3.1 (Lek et
al. 2016), gnomAD v2.0.2 (Karczewski et al. 2019), ABraOM (Naslavsky et al.
2017), LOVD (Fokkema et al. 2005), 1,000 genomes (1,000 Genomes Project
Consortium), dbSNP (Sherry et al. 2001) with frequencies lower than 0.0001, plus
variants in the Human Genome Mutation Database (HGMD) (Stenson et al. 2014)
with classification conflict and in ClinVar (Landrum et al. 2014) those without
classification were considered VUS. These variants were merged in a single
database to remove duplicates and exclude those included in the datasets

previously used to compare the algorithms.

Statistical analysis:

The statistical analysis was performed using SPSS (Statistical Package for the
Social Sciences) and python algorithms. The sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), accuracy, true positive
rate (TPR), false-positive rate (FPR), and the Fisher’s exact test were calculated
on python with libraries matplotlib.pyplot (Hunter, 2007), sklearn.metrics
(Pedregosa et al., 2011), pandas (The pandas development team, 2020), and
NumPy (Harris, 2020). The kappa value was generated with SPSS 18.03.

Results

A total of 586 unique variants were analyzed in this study obtained according to
the workflow presented in Figure 1. Each database's contribution can be seen in
supplementary figure 1. dbSNP (Sherry et al. 2001) and gnomAD v2.0.2
(Karczewski et al. 2019) databases had the larger number of variants, with 363
and 316, respectively, being 83 and 86 exclusives. EXAC v0.3.1 (Lek et al., 2016)
contributed with 266 variants, being only six exclusives. LOVD (Fokkema et al.

2005) presents 44 variants, and three were exclusive, whereas HGMD (Stenson et
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al. 2014) and ClinVar (Landrum et al. 2014) contributed with 3 and 19 exclusive
variants, respectively, from a total of 136 and 131. ABraOM (Naslavsky et al. 2017)
and 1,000 genomes (1,000 Genomes Project Consortium) presented 19 and 47

variants, respectively, but none was private.
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Figure 1: Workflow chart showing variant retrieval and curation.

First, 145 variants manually retrieved from the literature were combined with
variants in curated databases and population databases with frequencies higher
than 0.001. This formed a set of 160 unique variants used to compare the
algorithms. Another 426 variants were obtained from population databases and
considered VUS.

According to the type of evidence used for their description, variants in the first set
were divided into two subgroups. Out of the 145 variants from the literature, 108
had at least one of three measures that were considered stricter evidence criteria
(Figure 2). In this group of variants with stricter evidence, 91 were

disease-causing, and of these, 19 variants do not have expression studies, 48
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variants were not analyzed in healthy controls, and 50 variants were not described
in studies with complete gene sequencing (Supplementary Table 1). Of the 17
non-disease-causing variants in the group with stricter evidence, only five were not

analyzed by expression studies (Supplementary Table 2).

Normal controls
n=49

Expression Study
n=284

Evidence
. Disease Causing
. Non-disease Causing

d

Complete gene
sequencing

No strong evidence
n=37

n =48

Figure 2: Percentage of disease-causing and non-disease-causing variants in
each evidence criteria: variants with expression study (a), comparison with normal

controls (b), complete gene sequencing (c), and absence of stricter evidence (d).

The 160 variants (26 predicted neutral and 134 predicted deleterious) in the less
stringent criteria subset and 108 variants (17 benign and 91 pathogenic) in the
stricter criteria subset were used for evaluating 33 prediction algorithms plus one
conservation score. As one program may present more than one training dataset,
a total of 51 estimates were obtained. SIFT, PROVEAN, PolyPhen2, BayesDel,
CADD, FATHMM, fitCons, MutPred, and PON-P2 were evaluated for every
available training set.
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For the stricter criteria subset, only BayesDel (addAF and noAF), PONP2
(genome, protein, and identifier), and ClinPred presented accuracy higher than
90% and kappa value higher than 0.6, being PONP2 (genome database), ClinPred
and BayesDel (addAF) the ones with the best relation between sensitivity and
specificity and higher kappa value (0.692, 0.719 and 0.821) (Supplementary Table
3). One PPV could not be calculated because FunSeq classified all variants as
neutral. Three algorithms (integrated_fitCons, GM12878 fitCons and M-CAP)
classified all variants as deleterious and did not present NPV. Kappa value also
could not be calculated for these four predictors.

The lowest sensitivities (between 0 and 0.3) were observed in PrimeAl and
SusPect predictors. Excluding predictors that have maximum sensitivity and
minimal specificity, the algorithms Polyphen2 (HDIV), MutationTaster,
MutationAssessor, VEST4, DEOGEN2, BayesDel (addAF and noAF), ClinPred,
CADD (raw_hg38, phred_hg38, raw_hg19, phred_hg19), FATHMM (Coding
Variants - Weighted), H1hESC_fitCons, GERP++, CONDEL, and PON-P2
(identifier, protein, and genome) present large sensitivity (over 90%). Excluding
FunSeq, only SNPs&GO have specificity higher than 90%, and 14 algorithms have
specificity between 80 and 90% (Supplementary Table 3).

The less stringent criteria subset showed similar patterns as the stricter criteria
subset despite obtaining a general reduction in the calculated values, except for
the PON-P2 (identifier) algorithm that showed an increased sensitivity. The same
four algorithms classified all variants as only neutral or deleterious. In this subset,
no algorithm had specificity higher than 90%, and nine algorithms had specificity
between 80 and 90%, including PrimateAl and SNPs&GO (Supplementary Figure
2a and 2b). In this subset, PONP2 (genome database), ClinPred and BayesDel
(addAF) obtained accuracy higher than 90% (0.92, 0.91 and 0.93) and kappa
value higher than 0.6 (0.666, 0.680 and 0.743) (Figure 3a and 3b). All sensitivity,
specificity, accuracy, PPV, NPV, FPR, and Kappa values are displayed in

Supplementary Tables 3 and 4 for the stricter and less stringent criteria subsets.
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Figure 3: The sensitivity and specificity (a), and the accuracy and kappa value (b)
for the top five classifiers in blue (BayesDel-addAF, PONP2-genome, ClinPred,
PONP2-protein, and BayesDel-noAF algorithms) and the top six cited in yellow
(SIFT, CADD, MutationTaster2, PANTHER, PolyPhen2, and Provean) for the less

stringent criteria subset.

The Fisher's Exact Test was performed to test if less stringent criteria and stricter
criteria subsets present statistical differences in predictors’ performance. The ratio
of hits and errors for each program was compared between less stringent criteria
and stricter subsets, and none presented statistically significant values (Figure 4a).
When we compared the same subset estimates, both subsets have the same
pattern with several p-values lower than 0.05, as shown in Figure 4b for the less

stringent criteria subset.
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Figure 4: P-value of Fisher's Exact Test comparing less stringent criteria and

stricter subset (a) and the 51 estimates in a less stringent subset (b).

Not all 51 estimates were obtained for all 160 variants. MutationAssessor, LRT,
PrimateAl, PANTHER, GWAVAE, PMut, M-CAP, MutPred, and all three PON-P2
algorithms did not return a predicted classification for some variants (Figure 5). All
three PON-P2 training sets were the predictors that contained the most
unclassified variants, followed by MutPred and predictions obtained from dbNSFP.
The algorithms LRT (2), MutationAssessor (3), and PrimateAl (3) failed to classify
variants in the first amino acid (MutationAssessor and PrimateAl) or at the end of
the protein (LRT).

For the stricter criteria subset, all programs fail to report more deleterious variants
except for M-CAP. MutationAssessor, PrimateAl, PANTHER present the fewest
number of unclassified variants, and only for deleterious. MutPred dbNSFP
produces a larger number of unclassified variants both neutral and deleterious. For
the less stringent criteria subset, MutPred dbNSFP increased the number of
unclassified variants, exceeding the other programs (Figure 4). LRT and PMut had
one neutral and one deleterious uncategorized variant, respectively, in this subset.
M-CAP continued to show more neutral (8) than deleterious (2) variants

unclassified.
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Figure 5: Number of unclassified variants per software for the less stringent criteria

subset.

In silico VUS classification:

Based on values present in both evaluation subsets, the 426 VUS were classified
using the best five predictors: BayesDel (addAF and noAF), PONP2 (genome and
protein), and ClinPred algorithms. PONP2 (genome and protein) is the only of
these five predictors that do not classify every variant, with both failing to classify
267 variants plus six unclassified variants exclusive to PONP2-genome and other
six exclusives to PONP2-protein. Out of the 426 variants, 57 obtained a total
consensus of the five programs as predicted deleterious and 65 as predicted
neutral. For variants not included in PONP2, 88 variants were considered
deleterious and 92 neutral by all other predictors. The remaining 124 did not obtain

a consensus among predictors (Figure 6).
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Figure 6: VUS classified by all best softwares.

Discussion

In this study, we evaluated the prediction of 33 softwares plus a conservation
score for missense variants in the IDUA gene. Two datasets were created based
on literature information and public databases: the first dataset was used to
evaluate the best predictors for missense IDUA variants. The second dataset
comprised 426 VUS that were evaluated by the five best-performing algorithms.
For the first dataset, two subsets were separated based on standards:

modifications with specific literature information as stricter criteria subset and all
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variants present in literature review plus databases with variant classification and
high allele frequency. These variants were included to increase the amount of
non-disease-causing mutations in the curated dataset.

The subsets did not demonstrate a notable difference, although the less stringent
criteria subset presents lower overall values. The difference in performance may
be explained by the lower classification confidence of the less stringent criteria
subset. While the stricter criteria subsets represent a supervised subset and
include variants with a high confidence level of categorization, the less stringent
criteria and more flexible subset may contain incorrect classification. That may be
due to the relatively small number of variants introduced in the less stringent

criteria subset (52 added to the 108 in the stricter subset).

Despite that, both comparison groups present the same predictors with the most
satisfactory performances. BayesDel, the best performance predictor, is a
metascore that combines deleteriousness predictors in the naive Bayesian
approach and uses ClinVar variants as standard to determine cutoff value. For this
predictor, the set that integrates maximum and minor allele frequency across
populations (addAF) presents superior performance than without (noAF) (Feng,
2017). ClinPred had the second-highest value in the kappa test, and either uses
ClinVar as a training dataset and combines two machine learning algorithms:
random forest (cforest) and gradient boosted decision tree (xgboost) models
(Alirezaie et al., 2018). PON-P2 uses variation data from VariBench to train a
random forest selection features predictor for pathogenicity-association of amino
acid substitutions and accept variations in multiple formats. The primer format
(protein) is the most responsive, despite presenting a moderately more modest
performance than the genome format.

Classic and often used predictors such as SIFT (genome and protein) (Kumar et
al., 2009) and PolyPhen2 (HumDiv and HumVar) (Adzhubei et al., 2013) did not
perform well in both comparison subsets. For the stricter criteria subset,
PolyPhen2 (HDIV), preferred for evaluating rare alleles, had good sensitivity
(90%), accuracy (83%), and kappa value (0.372), but specificity lower than 50%
(supplementary table 3). CADD score (Combined Annotation Dependent
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Depletion) integrates multiple annotations into one metric (Kircher et al., 2014) and
presents sensitivity higher than 90% and accuracy higher than 80% for
GRCh37/hg19 and GRCh38/hg38. Unfortunately, it possessed one of the smallest
specificities and kappa value between evaluated programs. A recently developed
program, REVEL, an ensemble method that manages random forest (loannidis et
al., 2016), displays a compelling performance, despite not being one of the bests,
with higher specificity (88%) than sensitivity (75%)

Several predictors use ClinVar and HGMD databases as training datasets.
Therefore, some hits in our datasets are reanalysis of training variants and not an
accurate interpretation of pathogenicity, but this is not the case for all evaluated
variants. Also, it is not likely that this would bias our analysis, even though we
worked with variants native to these databases (Figure 2), as the training datasets
used for these programs incorporate many more variants in numerous genes.

A recurrent problem in performance evaluation is the disproportionality of training
and evaluation sets regarding the number of neutral and deleterious variants, a
discrepancy also found in our datasets. We observed a minimal absolute
difference between the properties of predicted deleterious and neutral
modifications, with the stricter criteria subset having 15.74% of neutral variants
while the less stringent criteria subset had 16.25%. This minor difference
demonstrates the difficulty of obtaining neutral variants for composing sets, even
implementing more comprehensive standards to evaluate these in silico predictors.
It also reflects the fact that in silico software are mostly trained with
disease-causing variants, which may cause a bias in the analysis. That was shown
by Niroula and Vihinen (2019), who compared ten predictors with a large set of
non-pathogenic variants only and found specificity over 80% in just three
predictors (PON-P2, VEST, and FATHMM). In our study, despite both subsets
presenting various programs with high specificity, the proportion of predicted
deleterious and neutral variants does not allow a proper evaluation of specificity or
to state which programs would exhibit significant differences in performance in a
set with more neutral variants.

This study does not replace the ACMG or Sherloc standards and guidelines.

However, it increases confidence in one stage of the classification process
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(computational predictive programs criterion-PP3, in Sherloc), mainly when used in
the absence of additional clinical information, as is the case of variants deposited
in public databases. As we do not have access to any clinical information about
the 426 variants identified in the public databases, these guidelines could not be
applied. Therefore, we used only the classification given by the best five predictors
previously selected. A classification for 122 variants (57 predicted deleterious and
65 predicted neutral variants) was obtained with a total consensus of the five
programs. The other 304 variants were unclassified by PON-P2 or did not reach
an agreement. If PON-P2 was excluded, then 311 variants reached a consensus
(predicted deleterious and neutral).

The difference between the number of variants with and without consensus is
common and represents a recurrent finding when only information from
computational predictive programs is available. This disagreement is probably
caused by the metrics used by each predictor and can be a problem when no

literature-based validation exists for that particular gene and predictor.

Conclusion

Variants in the IDUA gene were evaluated by 33 prediction algorithms and one
conservation score for all available training sets. Two subsets were created using
stricter and less stringent criteria based on literature information available for each
variant. The subsets demonstrated a small difference, with reduced values in the
less stringent criteria subset but the same most accurate predictors. The five most
accurate predictors were used for evaluating 426 VUS obtained from public
databases. Of these, 122 variants showed a total consensus of programs with high
confidence in classification, being 57 predicted deleterious and 65 predicted

neutral
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Supplementary figure 1: Contributions in the number of variants from each
database.
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Supplementary Table 1: Pathogenic variants reported in the literature. The table
presents protein consequences, the first reference, and reported level of evidence
(expression study, analysis of healthy controls, and/or complete gene sequencing).
Variants marked with 'Yes' had the demonstration in the first reference. The other
variants feature the reference that presents the evidence. For normal controls, if
the number is not indicated, at least 100 controls were analysed for comparison.

Ceties WL Agenn@o® - emammweos -
Cleioeo | Lgp Pmgmmc.Go9 - - .

Ghsthsy | GSID | Bunges. (1904 Bunges.(1998) | Yes | -
Tyr76Cys Y76C Bertola F. (2011) —

| HePo P Cemela(i9ey - e -
GWAR | GBA | moHGOT) - .-
| MG | RSO SeofH.(1999) | BungeS.(199) - MetoU(@003)
TwiOsPo | TIGP  BemF@om) - e Ye
CpsplisAn | DTSN CuengOK @OW®) | Ye - .
leiziPo | LZIP | UmadiAGUe - .-
oyiMVel | GV KememamM @09 - e -
wgiele | RiGA | LP@@) - e -

59



Phe177Ser F177S Chkioua L. (2011) - - -

CTiTys | TS GheshAGO) - - -
TeteSer | Wigos | PoliM.(0t) - .-
GuieNa | EMA BookeDA@OD Y - -
CPowsAg | PR VewiNQo) - .-
CysOSTy | C25Y | BeeskyC.0O) Y - -
CGyaBAsp | GD  LR@O) - e | Mateu@os)
lewtong | LR GuonN.(19%) Y - -
G219 | G2I9E | BeE@o™) - e | Ye
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Gy G2 umadiAGUe - .-
CSeo0Phe | SHOF | MatevQOO) Y - Y
GaSAg | GIR | YogalngamG.(00 | Yes - -
_Guablys | EZISK | Pommaank,(011) | OussorenE.(201)  Yes -
CTRGBLes | WAL | BereF @) - e | Yes
SISy | DSISY | SeotH(995) | VemeAQO - -
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Lys324Arg  K324R Uttarilli A.(2016) - - -

lewong | LMGR | TegYN@OD  Ye - -
AepSaOTy | DY VenwiN.(OO | WemeU@O3) - Mateu (@)
mgoHs | RGM . SwLeoW Y - -
ThGBAMel | TIOM | GuleeChen(i99T) | sretew - -
haaser | NaT2S | UmaiiAGU® - .-
CGnomg | QIBOR | SeomM(99%) - - Weteu@o)
ProdeSleu | PGS PmeaT@Ot - .-
ClewsPo | LGP UmadiAGU® - .-
ClewsoPro | LGP BemR @O - e Yes
 MaadPro | MG BermF @O - e Yes

98 controls-Bunge S.
Leu490Pro L490P Tieu P. (1995) Bunge S. (1998) (1995)

Proddbles | PAOL  TewP(1995 Y - .
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leusPro | Ls2P  PoldM.@OI) - -
Prosiles | PGINL  VoskobomvaEY.(18) - ®Cowos -
ASpSTOMs | DSTOH | LuengoWN.@OW)  Yes - .
leu7Gh | Ls7eQ  Chkowal () - -
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Arg619Gly = R619G Lee-Chen G. (1999) Yes

mooZilew | ROZIL  PhedeTeow | - - .
Apeaavel | DBV | GheshA GO - - -

TrozsSer | YOS | ChuamgCK.@UE) e - .
mgoZiPro | ROP  MatevQuO) | ves - e

Ser633Trp S633W Cobos PN. (2015) Yes - -
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Supplementary Table 2: Benign variants reported in the literature. The table
presents protein consequences, variant classification, the first reference, and
reported level of evidence (expression study, analysis of normal controls, and/or
complete gene sequencing). Variants marked with 'Yes' possessed the evidence in
the first reference. The other options feature the reference that presents the
evidence.

Poymorphism | VemuriN.(2002) | - - .
His33GIn H33Q Polymorphism Scott H. (1992) _ Bertola F. (2011) Bertola F. (2011)
parvis | NTSH | Poymorphism | AmK.Qo0) - - .

His82GIn H82Q Pseudodeficiency Yogalingam G. (2004) _—
Arg105GIn = R105Q Polymorphism Scott H. (1991) Bertola F. (2011) Bertola F. (2011)

Wasserstein MP.
Asp223Asn = D223N Pseudodeficiency (2019) Yes

Aa0OTIT | ASOOT | Psoudodofiency | AonodchEL (1996)  Yes - .
Aa3TTIC | AT Pohymophism | ScofH(199%) - BerlaF(2011) BeroiaF (2011)
Gi0SATg | GAOR | Pobmopsm | BaonG.(199%) | Yes - . |
| Vadsdle | VeS| Poymophism | BungeS.(19%) - BerlaF (2011) BeroiaF (2011)
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Supplementary Table 3: Values of sensitivity, specificity, accuracy, positive
predictive value (PPV), negative predictive value (NPV), false positive rate (FPR)
and kappa value for the stricter criteria subset.

SIFT p 0.790 0.760 0.790 0.950 0.410 0.240 0.409
SIFT4G 0.820 0.760 0.810 0.950 0.450 0.240 0.458
Polyphen2_HVAR 0.890 0.530 0.830 0.910 0.470 0.470 0.400
MutationTaster 0.910 0.530 0.850 0.910 0.530 0.470 0.441
PROVEAN p 0.860 0.650 0.820 0.930 0.460 0.350 0.432
VEST4 0.950 0.590 0.890 0.920 0.670 0.410 0.560
MetalLR 0.810 0.530 0.770 0.900 0.350 0.470 0.282
REVEL 0.750 0.880 0.770 0.970 0.390 0.120 0.419
MutPred_site 0.840 0.710 0.810 0.930 0.480 0.290 0.458
DEOGEN2 0.960 0.470 0.880 0.910 0.670 0.530 0.485
BayesDel_noAF 0.960 0.710 0.920 0.950 0.750 0.290 0.678
LISTS2 0.730 0.710 0.720 0.930 0.320 0.290 0.292
CADD m 0.350 0.850 0.890 0.550 0.650 0.348
CADD_hg19 0.930 0.240 0.820 0.870 0.400 0.760 0.203
FATHMMXF 0.740 0.760 0.740 0.940 0.350 0.240 0.339
FATHMM_C V_U 0.660 0.880 0.690 0.970 0.330 0.120 0.320

GM12878_fitCons 1.000 0.000 0.840 0.840 _ 1.000 _

64



HUVEC_fitCons 0.890 0.120 0.770 0.840 0.170 0.880 0.009

PhDSNP 0.760 0.710 0.750 0.930 0.350 0.290 0.330
SNPs&GO 0.480 0.940 0.560 0.980 0.250 0.060 0.202
CADD 1.2 0.520 0.880 0.570 0.960 0.250 0.120 0.199

e oew  omo  omm om0 om  om  om

PONP2_G 0.930 0.880 0.920 0.980 0.640 0.130 0.692
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Supplementary Table 4: Values of sensitivity, specificity, accuracy, positive
predictive value (PPV), negative predictive value (NPV), false positive rate (FPR)
and kappa value for the less stringent criteria subset.

_Poypnenz VAR | 086 00 08 0% 04 0so 03
| Mustorfaser | 0s2 00 08 0% 0s  0so 0431
_REEL 07 o 075 0% 0% 01y 0¥
_DEOGEN2 0% oa2 o8 08 055 0% 032
st o2 oes o7t 0% 031 0% 0283

FATHMM 0.335
(unweighted) 0.85 0.71 0.34 0.15

oMo ficons 100 000 084 084 - 100 -
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HUVEC _fitCons 0.87 0.12 0.75 0.84 0.15 0.88 -0.013

_POSW 0% oG o7 0% 0% 0% 036
 SWsaGO 04 085 0% 0m  0m 015 00
a1z 046 o8 0% 0% 0m 015 01
_ FATMMMAKL 0% 077 081 0% 0% 0m 01

PON-P2_G 0.94 0.77 0.92 0.96 0.67 0.23 0.666
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Capitulo 3

Esse capitulo foca na implementacdo de um script de NLP para extrair as
informacdes da literatura sobre as variantes, bem como utilizar as avaliagdes
realizadas no capitulo anterior para comparar o resultado de diferentes proteinas.
O capitulo apresenta as etapas preliminares da extracdo de informagao, bem
como os passos subsequentes.

A mineracao de texto € o processo de derivar informacgdes significativas de
texto em linguagem natural e envolve ao menos cinco etapas: obtencdo dos
dados, limpeza, analise, visualizagdo e extragdo do conhecimento (Liang et al.,
2017). A obtencdo dos dados depende do objetivo do trabalho. No caso de uma
busca na literatura cientifica, os artigos séo as fontes primarias de informacao. A
limpeza é uma etapa geral que filtra as palavras mais comuns dos textos, como
preposi¢cdes, conjungdes, artigos, pronomes e reduz o maximo possivel de
palavras ao seu radical a fim de realizar uma comparacao mais eficaz e direta. A
etapa de anadlise € a que possui maior gama de métodos para ser realizada,
dependendo da linguagem de programacgao escolhida, das bibliotecas disponiveis
e do objetivo do trabalho. Python € uma linguagem que apresenta muitos recursos
para esse tipo de analise, com diversas bibliotecas que trabalham desde a
extragdo e conversao do texto total do arquivo PDF para o TXT, como a pyPDF2,
até a analise de todos os dados, como Natural Language Toolkit (NLTK), Gensim,
spaCy. As etapas de visualizagdo e a extragdo do conhecimento sdo processos
finais onde pode-se trabalhar com as informagdes contidas nos dados originais.

Os artigos curados manualmente no capitulo dois foram transformados em
texto utilizando a biblioteca pyPDF2. O processo de converséao foi automatizado e
testado. A lingua inglesa, comum a maioria dos artigos cientificos analisados, é
considerada uma linguagem de altos recursos, o que facilita o seu processamento
(Hirschberg and Manning, 2015).

Para o passo de analise, € necessario construir uma rede neural artificial.
Isso esta sendo feito utilizando a biblioteca spaCy. O resultado desejado nessa

etapa € uma lista que relacione cada variantes com seu efeito clinico de acordo
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com o artigo analisado. Ainda néao foi possivel implementar a rede neural em sua
totalidade em fungéo da necessidade da adaptagdo do codigo fonte.

A predi¢ao das variantes sera buscada nos dados do dbNSFP4 v.4 (Liu et
al., 2020). Este banco de dados foi desenvolvido para predi¢ao funcional e
anotacdo de todas potenciais variantes ndo sinbnimas no genoma humano e
compila escores de 37 preditores. Os pontos de corte utilizados sao os padrdes
dos programas. A sensibilidade, especificidade, acuracia, valor kappa e o teste de
fisher sera realizado com as bibliotecas numpy pandas, openpyxl, scipy.stats,
sklearn.metrics and matplotlib.pyplot. Esse processo também ja esta
automatizado e validado, tendo sido utilizado no trabalho descrito no capitulo 2.

Sabe-se que a paridade no numero de variantes patogénicas e benignas é
importante para que se possa calcular corretamente a taxa de falsos positivos e
negativos e realizar as andlises estatisticas (Jargensen et al., 2018; Vadillo et al.,
2016). Porém, a maioria das variantes relatadas s&o encontradas em estudos que
descrevem pacientes e focam na busca de variantes causais, 0 que gera uma
uma desproporg¢ao de variantes patogénicas reportadas na literatura. A utilizagéao
de variantes encontradas em bancos de dados populacionais pode auxiliar no
incremento de variantes ndo patogénicas. Apesar de difundida, essa estratégia
deve ser tratada com atencéo, pois normalmente depende do estabelecimento de
um ponto de corte de frequéncia, que pode ser variavel de acordo com a doenca
(Kopanos et al., 2019).

Além disso, os resultados dos testes de acuracia de preditores variam de
acordo com certos parametros usados na validagdo. Por exemplo, os grupos de
treinamento e teste precisam ter tamanhos substanciais e, para obter esse volume
de dados, os programas juntam informagdes de todas as variantes disponiveis na
literatura, de diferentes proteinas (Niroula and Vihinen, 2019; Adzhubei et al.,
2010; Ng et al., 2001). Porém, é razoavel supor que um preditor possa avaliar
bem um certo grupo proteico mas seus resultados sejam menos confiaveis para
outro. No entanto, como o resultado é avaliado pela combinagcado dos diferentes
grupos proteicos, essa especificidade se perde, devido a heterogeneidade do
grupo de treinamento. Por isso, uma vez terminado o processo de automatizagao

e integracdo de todas as etapas descritas acima, a predicdo para diferentes
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grupos de proteinas sera comparada. Para analise, foram escolhidas proteinas
dos seguintes grupos: enzimas, proteinas transmembrana e proteinas
desestruturadas. Em cada grupo serdo buscadas proteinas associadas a doengas
genéticas e com o maior numero de variantes com evidéncias na literatura. Até o
momento, foram feitas as analises do subgrupo de enzimas. Foram selecionados
100 genes, pertencentes aos 7 subgrupos enzimaticos. O numero final de genes
utilizados na pesquisa sera confirmado apdés a automatizagdo da revisdo da
literatura.

Espera-se que, com esse pipeline, os pesquisadores possam, de maneira
simplificada, testar quais os melhores preditores para os seus genes de interesse
usando como referéncia dados curados da literatura. E preciso ressaltar que,
varios aspectos poderao influenciar o desempenho deste teste, como frequéncia e
penetrancia da doencga, as quais impactam diretamente o uso de bases de dados

populacionais.
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Consideragoes Finais

A escolha do preditor para analise de variantes impacta o resultado. Os
programas apresentam diferentes estratégias para avaliagdo, entretanto a
literatura e a analise critica sobre cada preditor ndo respondem diretamente qual
preditor devemos utilizar na avaliagdo como visto no capitulo um. Os preditores
mais citados e menos citados podem utilizar os mesmos principios de avaliagao e
terem as mesmas caracteristicas. Nao existe uma definicdo clara do porqué
alguns preditores sdo mais ou menos utilizados, a ndo ser o ano de surgimento do
preditor. Os primeiros preditores aparentam serem mais lembrados e citados que
os atuais.

A avaliacdo de desempenho de um determinado preditor para um conjunto
de variantes geralmente é realizada pela comparagédo com outros preditores ou
com dados curados da literatura. A curadoria manual desses dados é trabalhosa,
pois os artigos, apesar de serem fontes confiaveis, relatam diferentes tipos de
informacgdo. Assim, & necessario o estabelecimento de critérios para essas
informagdes e questionar se todos os significados clinicos relacionados as
variantes e relatadas na literatura sdo aceitaveis. Por exemplo, antigamente,
reportar uma variante encontrada em algum dos éxons analisados era o
suficiente, sem necessariamente realizar estudos de expressao ou comparar com
um numero suficiente de controles. Apds a difusdo e barateamento das técnicas
de biologia molecular, passou a ser comum a realizagdo do sequenciamento
completo do gene do paciente, a comparagdo com um numero significativo de
controles normais, além dos estudos de expressdo. No entanto, conforme
demonstrado no capitulo dois, a acuracia dos preditores nao parece ser
necessariamente influenciada pela qualidade da informagao contida na literatura.
Por outro lado, nota-se que os preditores mais recentes apresentam um
desempenho melhor do ponto de vista estatistico que alguns dos mais
comumente utilizados.

Porém, os dados obtidos para o gene IDUA nao podem ser
automaticamente transpostos para outros genes, pois € possivel que o

desempenho dos preditores varie de acordo com o tipo de proteina. Portanto,
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essa avaliagdo manual de uma grande quantidade de preditores deveria ser
realizada para cada gene ou pelo menos para cada familia de proteinas, que
possuem caracteristicas similares. No entanto, essa analise & extremamente
trabalhosa e nao ocorre de forma automatizada. Assim, o capitulo trés apresenta
uma estratégia para realizar essa avaliagdao com os preditores disponiveis a partir
de uma analise utilizando processamento de linguagem natural. Como a
interpretacdo dos dados da literatura contém dificuldades inerentes, a
implementagcdo de um algoritmo automatizado apresenta diversos desafios e
ainda nao foi finalizado. Uma vez implementado, esse algoritmo podera ser usado

para comparar preditores entre diferentes grupos proteicos.
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Anexo

Neste item consta um artigo publicado durante o periodo de mestrado em tema

relacionado ao da dissertacéao.
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Abstract

Background: In this study, the prevalence of different types of mucopolysaccharidoses (MPS) was estimated based
on data from the exome aggregation consortium (ExAC) and the genome aggregation database (gnomAD). The
population-based allele frequencies were used to identify potential disease-causing variants on each gene related to
MPS [ to IX (except MPS II).

Methods: We evaluated the canonical transcripts and excluded homozygous, intronic, 3/, and 5’ UTR variants.
Frameshift and in-frame insertions and deletions were evaluated using the SIFT Indel tool. Splice variants were evalu-
ated using SpliceAl and Human Splice Finder 3.0 (HSF). Loss-of-function single nucleotide variants in coding regions
were classified as potentially pathogenic, while synonymous variants outside the exon—intron boundaries were
deemed non-pathogenic. Missense variants were evaluated by five in silico prediction tools, and only those predicted
to be damaging by at least three different algorithms were considered disease-causing.

Results: The combined frequencies of selected variants (ranged from 127 in GNS to 259 in IDUA) were used to
calculate prevalence based on Hardy—Weinberg's equilibrium. The maximum estimated prevalence ranged from 0.46
per 100,000 for MPSIIID to 7.1 per 100,000 for MPS I. Overall, the estimated prevalence of all types of MPS was higher
than what has been published in the literature. This difference may be due to misdiagnoses and/or underdiagnoses,
especially of the attenuated forms of MPS. However, overestimation of the number of disease-causing variants by in
silico predictors cannot be ruled out. Even so, the disease prevalences are similar to those reported in diagnosis-based
prevalence studies.

Conclusion: We report on an approach to estimate the prevalence of different types of MPS based on publicly avail-
able population-based genomic data, which may help health systems to be better prepared to deal with these condi-
tions and provide support to initiatives on diagnosis and management of MPS.

Keywords: Mucopolysaccharidoses (MPS), Estimated prevalence, Exome aggregation consortium (ExAC), Genome
aggregation database (gnomAD), In silico analysis

Introduction glycosaminoglycans (GAGs) which are constituents of
The mucopolysaccharidoses (MPS) are a group of lys-  the extracellular matrix. When there is a disturbance in
osomal diseases characterized by the deficiency of their activities this leads to downstream consequences at
one of eleven enzymes involved in the breakdown of the cellular level affecting multiple organs and systems.
The MPS may be divided into different types according
to the enzyme deficiency and the accumulated substrate
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where impaired activities can lead to a spate of negative
consequences both at the cellular and the physiological
levels. Affected individuals usually have coarse facial fea-
tures, cardiac and pulmonary problems, and, depending
on the MPS type, bone dysplasia (dysostosis multiplex)
and/or neurological impairment such as behavioural
problems and developmental delay [1-3]. The severity
of the diseases is variable, and individuals with MPS I,
II, IVA, VI, and VII may benefit from market-approved
enzyme replacement therapy, while there are novel thera-
pies such as fusion proteins, gene therapy, and genome
editing under investigation for several MPS [4].

Incidence and prevalence data are important to back
up health system decisions and are necessary to calculate
the cost—benefit of new therapies and treatment. Despite
extensive molecular characterization having been done
for the genes that encode the enzymes involved in these
diseases with over 2,109 pathogenic variants reported
in the Human Gene Disease Database (HGMD®) [5],
there is still lack of specific epidemiology data on MPS.
Newborn screening programs that include lysosomal
diseases have arisen worldwide and may bring valuable
information. However, such programs are still largely
restricted to very few countries and most types of MPS
are not included in the list of screened diseases [6, 7].
Population-based genomic data can help narrow the
information gap, since now it is possible to rely on carrier
frequency instead of the incidence of a disease among
live births. However, care must be taken when using in
silico predictors to classify genetic variants in order to
have the most reliable data possible.

Herein, we used the frequency of potential disease-
causing variants present in population-based genomic
databases such as the Exome Aggregation Consortium
(ExAC) [8] and the Genome Aggregation Database (gno-
mAD) [9], to estimate the prevalence of the different
types of MPS after applying Hardy—Weinberg principles
[10].

Results

Table 1 shows the number of variants present in each
database and after the merger, which ranged from 961
(IDS) to 2988 (GALNS). After subsequent filtering
steps, these numbers were reduced, ranging from 31
(IDS) to 259 (IDUA) (Table 2). A detailed description of
the excluded variants can be found in Additonal file 1:
Table S1.

The number of variants excluded due to homozygosis
ranged between 3 in GNS and GUSB to 113 in IDS (in
homozygosis or hemizygosis); none of them were stop
gain, stop loss, or start loss. The overall number of hete-
rozygous canonical and non-canonical splice site variants
considering all genes was 452, with 224 being considered
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Table 1 Number of variants in each gene present in EXAC
and gnomAD

MPS type Gene  ExAC gnomAD Common Retained
variants variants variants**

MPS | IDUA 1246 1439 680 2005
MPS I IDS 300 920 259 961

MPS A SGSH 1188 1400 545 2043
MPSIIIB  NAGLU 640 805 397 1048
MPSIIC ~ HGSNAT 598 1456 521 1533
MPSIID — GNS 429 1116 404 1141
MPSIVA  GALNS 1390 2254 656 2988
MPSIVB  GLBI* 871 1322 564 1629
MPS VI ARSB 407 1122 370 1159
MPSVII GUSB 593 1067 519 1141
MPS IX HYALT 669 700 287 1082

*Variants may be associated with GM1 Gangliosidosis or with MPS IVB
**Retained variants represent unique variants after merging both databases

deleterious by the in silico algorithms. One splice site
variant could not be analysed by HSF nor SpliceAl
(Additonal file 3: Table S3). In addition, 213 out of 218
frameshift and 188 in-frame insertions and deletions
were considered deleterious. Variants that could not
be analysed by SIFT Indel were excluded from further
analysis. All variants considered deleterious by only one
splice program as well as frameshift and nonsense vari-
ants in the last exon or located < 50 nucleotides upstream
of the 3’ most splice-generated exon-exon junction were
excluded from the calculations of minimum frequency.
The number of variants considered deleterious in each
category is shown in Table 2.

All 3,111 missense variants were analysed by five dif-
ferent in silico tools. A consensus on pathogenicity was
reached for 588 variants, while 548 variants were classi-
fied as pathogenic by four tools and 382 variants by three.

The allele frequencies of each variant for a given gene
were added together and considered as the minimum
and maximum frequency of the deleterious recessive
allele. This number was then used to calculate mini-
mum and maximum prevalence of disease based on the
Hardy—Weinberg equilibrium (Table 3). As the number
of variants retained for IDS was very low (31 variants),
the estimated frequency of MPS II must be viewed with
caution. It is worth noticing that variants on GLBI can be
associated either with MPS IVB or GM1 gangliosidosis.

Only two of the 2,061 retained variants have frequen-
cies over 0.001—p.(His356Pro) in NAGLU with 0.007993
and p.(Asp152Asn) in GUSB with 0.001153. After all five
tier variant selections, maximum and minimum esti-
mated disease prevalence was calculated based on global
allele frequency (Table 3).



Borges et al. Orphanet J Rare Dis (2020) 15:324 Page 3 of 9
Table 2 Number of variants considered deleterious per category for each gene
Frameshift** In-frame Splice site** Start loss Stop gain** Stop loss** Missense** Total**
insertion/
deletion
IDUA 17-18 12 16-37 1 10-15 0-1 86-175 142-259
IDS 0 1 1-2 0 0 0 4-28 6-31
SGSH 8-14 7 5-7 0 4-14 0 73-194 97-236
NAGLU 11-20 2 6-10 1 8-16 0 87-176 115-225
HGSNAT I 4 22-37 0 8-9 0 18-98 63-159
GNS 5 3 14-23 0 4 0-1 29-91 55-127
GALNS 11 7 14-26 1 10-11 0-1 57-187 100-244
GLBT* 12-13 3 18-34 1 11-13 0 67-161 112-225
ARSB 9-12 5 10-18 0 8-12 0 48-141 80-188
GUSB 11-13 6 17-27 2 13-14 0-2 62-160 111-224
HYALT 12-13 8 1-3 1 8-9 0 57-107 87-141
All genes 107-130 58 124-224 7 84-117 0-5 588-1515 968—2059

*Variants may be associated with GM1 Gangliosidosis or to MPS IVB

**Numbers represent minimum and maximum frequencies. In the case of frameshift, stop gain or stop loss minimum frequency excludes variants in the last exon or
located < 50 nucleotides upstream of the 3’ most splice-generated exon-exon junction. For splice site and missense variants, minimum frequency considers only

variants deemed pathogenic by a consensus of all software packages

Table 3 Estimated disease prevalence based on allele
frequencies of potentially disease-causing variants
for each gene

Gene Disease- Clin 100,000 (max) Clin 100,000 (min)
causing
variants
IDUA 259 7.103-7.096 2479-2476
IDS 29 0.0108-0.0107 0.00014-0.00013
SGSH 236 2.365-2.363 04116-04112
NAGLU 225 1.532-1.530 0.366-0.365
HGSNAT 159 1.566-1.565 0.107-0.106
GNS 127 0.459-0.458 0.0549-0.0548
GALNS 224 2.363-2.361 0.25-0.25
GLB1* 225 1.677-1.676 0.456-0.455
ARSB 188 1.119-1.117 0.1761-0.1758
GUSB 224 1.144-1.141 0.2081-0.2078
HYALT 141 0.4393-0.4388 0.1081-0.1079

*Variants may be associated to GM1 gangliosidosis or to MPS IVB.
Cl=Confidence interval

In addition to estimated overall disease prevalence, the
prevalence of MPS in specific populations was calculated
for eight ethnic groups present in the databases (Figs. 1, 2
and Additonal file 4: Table S4).

Discussion

In this study, we used public data from WES and WGS
to estimate the prevalence of different types of MPS.
As MPS symptoms usually show up in the first decade
of life, it is unlikely that severely affected individuals

would be part of such databases. However, the possibil-
ity of undiagnosed individuals with milder phenotypes
being included in those cannot be ruled out. Impor-
tantly, individuals homozygous for rare variants pre-
sent in any MPS gene (Additonal file 2: Table S2), which
could represent individuals with attenuated forms of
the disease were filtered out in the second-tier variant
selection.

The estimated global frequency for all types of MPS
except for type VI found in this study was either above
or at the upper limit in comparison to frequencies of
MPS in different countries based on the number of
diagnosed cases in reference centres [20] (Table 4).
Worthy of note is the fact that the maximum prevalence
as reported by Khan et al.,, 2017 is for a limited num-
ber of countries, whereas our data was calculated col-
lectively for the different ethnic backgrounds present in
the databases. This means that we may have overesti-
mated the prevalence of diseases in the general popula-
tion. A recent study estimated the prevalence of MPS in
Brazil based on 600 affected individuals with all types
of MPS included in a national network database [21].
The researchers found discrepancy when comparing the
estimated prevalence based on diagnosis (0.24/100,000)
to the estimated prevalence based on genetic screen-
ing for the most common pathogenic variant in IDUA
among healthy volunteers (0.95/100,000), for exam-
ple. Furthermore, the estimated prevalence of MPS
VI in Brazil was the second highest in the world, with
prevalence similar to that found in the present study
(1.02/100,000 compared with 1.12/100,000).
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IDUA unique variants in EXAC and GnomAD: 2005
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Fig. 1 Schematic example showing all steps of maximum (a) and minimum (b) variant selection for the IDUA gene (MPS 1)
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Fig. 2 Estimated maximum (a) and minimum (b) prevalence of the MPS types per 100,000 individuals in different ethnic groups. Data for MPS Il not
included (see discussion)

Several measures were taken to reduce the chance of
prevalence overestimation. For example, variants were
filtered in sequential steps, in order to obtain the most
specific data possible. Also, both homozygotes and vari-
ants with frequency higher than 0.001 were excluded.

Additional filtering based on functional predictions was
also performed in order to include only variants more
likely to affect protein function. After that, all variants
remaining for analysis had allele frequencies below 0.001
and most of them have not been previously reported as
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Table 4 Estimated prevalence in the present study
compared to the incidence (in 100,000) as reported
by Khan et al., 2017 for each MPS type

MPS type Gene This study (max.-min.) Khan et al.
2017 (max.—-
min.)

MPS | IDUA 7.10-2.48 3.62-0.11

MPS I IDS 0.0108-0.00013 2.16-0.1

MPS HIA SGSH 2.36-0.41 1.62-0.08

MPS 1IIB NAGLU 1.53-0.37 0.72-0.02

MPS IIC HGSNAT 1.57-0.11 042-0.03

MPS 11D GNS 0.46-0.05 0.10-0.09

MPS IVA GALNS 2.36-0.25 1.30-0.15

MPS IVB GLB1 1.68-0.46% 0.14-0.01

MPS VI ARSB 1.12-0.18 7.85-0.02

MPS VI GUSB 1.14-0.21 0.29-0.02

MPS IX HYALT 044-0.11 NA

*Combined frequency of GM1 Gangliosidosis and MPS IVB

disease-causing. This was expected since variants clas-
sified as of uncertain significance (VUS) based on the
standards and guidelines of the American College of
Medical Genetics/Association of Molecular Pathology
(ACMG/AMP) [10] are known to account for a substan-
tial part of disease-causing variants for MPS and have a
significant impact on incidence estimates. For example,
Clark et al. [22] showed that 25% of VUS analysed in MPS
IIIB were potentially disease-causing and cause reduced
enzyme activity.

It is worthy of note that sequential filtering steps and
use of consensus scores do not guarantee that only path-
ogenic variants are selected or that only non-pathogenic
variants are discarded. However, the estimation error
is not directly measurable. Furthermore, the high fre-
quency filter is necessary to exclude variants with fre-
quencies incompatible with MPS disease. Although this
may lead the possibility of underascertainment, frequen-
cies like 0.007993 and 0.001153 for variant c.1067A > C;
p.(His356Pro) in NAGLU and the c¢.454G>A;
p.(Asp152Asn) in GUSB are not found in clinical prac-
tice. These were the only two variants excluded because
of high frequency. We considered using curated variants
reported either on ClinVar or Human Genome Muta-
tion Database (HGMD), however, this would significantly
reduce the number of retained variants (for instance,
from 259 to 47 for IDUA, data not shown). Different in
silico tools were used to estimate the likelihood of a vari-
ant being disease-causing. However, as no data on the
sensitivity and specificity of such softwares are available
for MPS genes, it is impossible to estimate the number
of false-positive results. For instance, several well char-
acterized pathogenic variants reported in HGMD had
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low deleteriousness scores as evaluated by the Combined
Annotation-Dependent Depletion (CADD) [23] that
has an overall higher performance than other predictors
(data not shown).

The existence of compound heterozygotes cannot be
ruled out. In fact, most individuals with MPS who are
not a result of from consanguineous marriage are indeed
compound heterozygotes. However, due to the structure
of both databases used in this study, it is impossible to
set up conditions where the occurrence of variants in cis
cannot be ruled out, which would contribute to the over-
estimation of disease prevalence.

Despite these limitations, a similar approach has been
used by Appadurai et al.,, 2015 to estimate the prevalence
of cerebrotendinous xanthomatosis (CTX). As in the pre-
sent study, the authors suggested an apparent underdiag-
nosis of CTX based on the allele frequency of potentially
disease-causing variants present in EXAC. Interestingly,
the discrepancy between genomic data and the diagno-
sis-based incidence is more pronounced for the rarest
MPS diseases, such as MPS IIIC, IIID, IVB, VII, and IX.
For some forms of MPS 1, II, VI, and IX, it is possible that
variants leading to deficient enzyme activity are not clini-
cally recognized due to attenuated phenotypes [24—26].
On the other hand, severe cases of MPS VII may lead to
premature death before the diagnosis is reached or even
sought [27].

Notably, data emerging from large datasets of WES and
WGS are disclosing novel phenotypes for well-known
diseases, especially intermediate phenotypes [28-30].
This may also be the case for MPS and could help explain
the higher prevalence predicted by our work, with
patients not being recognized clinically due to an unusual
presentation.

In the case of MPS IVB, there is an additional com-
plexity since the same gene is involved in another lyso-
somal disorder with different accumulated substrate and
clinical features, called GM1 gangliosidosis [31]. In this
study, variants of GLB1 were considered disease-causing
regardless of the associated phenotype. Therefore, the
overall frequency of alleles was used to estimate the prev-
alence of MPS IVB, whereas in fact only about 13.3% of
curated disease-causing variants in this gene are associ-
ated with MPS IVB, the rest leading to the three types of
GM1 gangliosidosis [32].

After the filtering steps, IDS had a limited number
of retained disease-causing variants (29 variants), and
therefore the estimated prevalence for MPS II was lower
than what has been previously reported [20]. The higher
prevalence observed in studies based on reference cen-
tres and diagnostic laboratories may be related to the
proportion of patients having de novo variants. Pol-
lard et al. [33] show that this happens in 22.5% of MPS
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IT cases. In addition, recombination events between IDS
and its pseudogene IDS2 are a common cause of the dis-
ease, with structural variants such as gross rearrange-
ments and complete or partial deletions seen in between
10 and 28% of affected individuals [34—40]. Those types
of variants could not be taken into account in our esti-
mates because of the structure of the populational data-
bases used. As a result, the estimated prevalence of MPS
I is not as reliable as it is for the other types of MPS. It is
worth mentioning that the other study that uses a simi-
lar method for two X-linked diseases (Menkes disease
and ATP7A-related disorders) [41] also found a very low
number of variants, which could suggest that this strat-
egy is not the best approach for X-linked disorders.

Conclusions

In summary, we report on an approach to estimate the
prevalence of the different types of MPS based on pub-
licly available population-based genomic data that may
help to better tailor screening and diagnostic programs
for these diseases, to prepare the health systems to
deal with a more precise estimated number of patients,
and may serve as a starting point for other rare-disease
initiatives.

Methods

Database

Genetic variants (GRCh37/hgl9) from ExAC V0.3.1 and
gnomAD v2.0.2 [8, 9] were used to estimate the prevalence
of different types of MPS. These public data aggregated
information from 125,748 WES and 15,708 WGS col-
lected from unrelated individuals and 1,756 parent—off-
spring trios with no known rare disease. The genetic data
were collected from case—control studies of adult-onset
common diseases, spanning six global and eight sub-con-
tinental ancestries, determined by ancestry-informative
markers [9). Although related individuals can have an
influence upon the frequency of variants, the size of the
database which has a total of 141,456 individuals makes
the influence of 1,756 trios irrelevant.

The data was retrieved separately for each gene, and
then merged to create one single unified database. When
variants were common to both databases, the allele fre-
quencies from gnomAD were used for further analysis, as
it includes ExAC data.

First-tier variant selection

Variants of the gene located in 5’ and 3’ UTR, upstream
and downstream, as well as intronic and non-coding
transcript exons, were excluded assuming that no dis-
ease-causing variant has been described in such positions
for any MPS. In addition, synonymous variants outside

Page 7 of 9

the exon—intron boundaries were also excluded, as well
as variants in non-canonical transcripts.

Second-tier variant selection

In second-tier analysis, missense, nonsense, stop gain
and stop-loss, frameshift, and splice site variants present
in homozygosis (and hemizygosis for IDS) were excluded
based on the assumption that neither ExAC and gno-
mAD include MPS-affected individuals as they exclude
samples from patients with severe pediatric diseases and
their relatives [8]. Therefore, any homozygous variant
should not be pathogenic. Heterozygous loss-of-function
variants such as stop gain, stop loss, and start loss were
considered as potentially disease-causing, considering
the impact on protein function and strong evidence of
pathogenicity as per the ACMG/AMP guidelines [10].

Third-tier variant selection

Heterozygous alterations in canonical or non-canonical
splice site were analysed using Human Splice Finder [11]
and SpliceAl [12]. In-frame insertions, deletions and
frameshift variants outside the last exon were analysed
using SIFT Indel [13]. Variants were classified based on
the default algorithms parameters for deleteriousness.

Fourth-tier variant selection

The analysis of missense variants was made using five
in silico algorithms: MutPred [14], PolyPhen2 [15],
PROVEAN [16], SIFT [17], and REVEL [18]. Since Poly-
phen2 provides more than two categories, results were
transformed into binary data considering "possibly path-
ogenic" and “probably pathogenic” as deleterious. For
REVEL, an ensemble algorithm, a rank score over 0.75
was considered deleterious. To calculate the maximum
prevalence of the disease, a variant was considered del-
eterious when at least three software packages agreed on
pathogenicity. For the minimum prevalence, we included
missense variants for which all in silico tools agreed on
pathogenicity.

Fifth-tier variant selection

The remaining variants were analysed to make sure that
only rare alleles were retained. Therefore any variant with
a frequency greater than 0.001 was excluded, as no vari-
ants associated with low enzymatic activity (<15% wild
type) were found with higher allele frequencies [19].

Calculation of disease prevalence using Hardy-Weinberg
principles

The frequency of a given variant retained as being dis-
ease-causing was calculated by dividing the number of
chromosomes bearing the genetic change by the total
number of chromosomes subjected to analysis in this
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position. Then the sum of all variant frequencies for each
gene was used as the frequency of the recessive allele
(q). The prevalence was then calculated as g% from the
Hardy—Weinberg formula p*42pq+q> The incidence
for each specific population was calculated using the
population-specific frequencies.

Calculation of confidence Interval

A script in R was used to estimate the confidence inter-
val. The variances in the frequency of variants and in the
prevalence estimate were calculated equally as exhibit
eqautions 5 and 13 from Clark et al. [22]. The confidence
intervals were adapted to consider the sum of allele fre-
quencies instead of probability, as suggested by Clark
et al. [22].

Supplementary information
is available for this paper at https://doi.org/10.1186/513023-020-01608-0.

Additonal file 1.The number of variants excluded at each category for
each MPS gene at the calculated maximums frequency. Bold numbers
identify retained variants.

Additional file 2. The total number of variants excluded for homozy-
gosis for each MPS gene and the number of homozygosis variants with
frequency less than 0.001.

Additional file 3. The number of variants excluded from the analysis for
each MPS gene.

Additional file 4. The number of variants excluded from the analysis for
each MPS gene.
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