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ABSTRACT

This work addresses the problem of identification in linear dynamic networks. These
networks are defined as a set of node signals that are related by causal transfer functions.
Each node signal may be subject to additive external signals to the network. These
signals could be known to the user, in which case they are used as inputs, or they could
be unknown to the user, in which case they act as disturbances in the network. The
identification problem consists of identifying the causal transfer functions relating the
node signals on the basis of network data. More specifically, this work deals with the
problem of characterizing whether or not a network model can be uniquely recovered from
data. If this is possible, we say that the network model is identifiable. Identifiability of a
dynamic network is characterized by the experimental setting under which the network is
submitted. We address this issue by determining all experimental conditions, here called
Excitation and Measurement Patterns (EMP), for a number of networks with different
topologies. Necessary and sufficient conditions on the identifiability are provided for some
network topologies, specifically for isolated cycles and acyclic networks with parallel
interconnections. These conditions took the form of indicative conditions on the nodes
that need to be excited and the ones that need to be measured. They characterize a set of
candidate EMPs that render a network identifiable. A new problem to select the EMP that
yields the most accurate estimates is posed, and a framework for which different EMPs
can be compared with respect to the precision of the estimates is introduced. A structural
property – how the excitations and measurements are distributed in the EMP – is shown to
be a key factor in the selection of the most accurate EMP. Furthermore, a guideline for the
selection of the most accurate EMP is developed for two network topologies – branches
and isolated cycles.

Keywords: Network Identification, Identifiability, Complex Systems, Dynamic Net-
works.



RESUMO

Este trabalho aborda o problema de identificação em redes dinâmicas lineares. Essas
redes são definidas por um conjunto sinais de nós que estão relacionados através de funções
de transferências causais. Cada sinal de nó pode ser influenciado pro sinais externos à
rede. Tais sinais externos podem ser conhecidos ao usuário, nesse caso, eles são utilizados
como entradas da rede, e alguns esses sinais podem ser desconhecidos ao usuário, nesse
caso, esses sinais atuam como distúrbios na rede. O problema de identificação é o de
identificar as funções de transferência que estão relacionados com os sinais de nós da rede
com base nos dados coletados da rede dinâmica. Especificamente, esse trabalho trata do
problema de caracterizar se um modelo de rede pode ou não ser unicamente identificado
com base nos dados provindos da rede. Se isso for possível, dizemos que o modelo
da rede é identificável. A identificabilide de uma rede dinâmica é caracterizada pela
configuração experimental em que a rede está submetida. Nós endereçamos esse problema
determinando todas as condições das configurações experimentais, aqui denominadas
de Padrões de Excitação e Medição (EMP do inglês), para várias redes dinâmicas com
diferentes topologias. Condições necessárias e suficientes para a identifificabilidade de
redes dinâmicas são fornecidas para algumas topologias de rede, especificamente para
ciclos isoladas e redes acíclicas com conexões em paralelo. Essas condições possuem
a forma de condições indicativas dos nós que precisam ser excitados e os que precisam
ser medidos. Elas caracterizam um conjunto de EMPs candidatos que tornam uma rede
identificável. Um novo problema para selecionar o EMP que determina as estimativas mais
precisas é proposto, e uma estrutura para a qual diferentes EMPs podem ser comparados
com relação a precisão das estimativas é apresentada. Uma propriedade estrutural – em
relação a distribuição de excitações e medições na rede – se mostra um fator chave na
seleção do EMP que gera as estimativas mais precisas. Além disso, uma diretriz com os
principais fatores na seleção do EMP com estimativas mais acuradas é desenvolvido para
duas topologias de rede.

Palavras-chave: Identificação de Redes, Identificabilidade, Sistemas Complexos, Re-
des Dinâmicas.
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1 INTRODUCTION

We live in an interconnected world. From the air we breathe to charging our phone
in the electric power grid, every element interacts with many other elements that together
form a complex system. The behavior of such a system is composed of the behavior of its
individual elements and the behavior of their interaction. This interaction scheme among
different elements in a complex system is what we call a network, which represents the
interconnections among the systems. Examples of networks are brains, social systems, the
internet, power distribution systems, and Earth system – the conjunction of all material
processes – to name a few. A traditional way in the scientific method to study these complex
systems is to isolate them from their neighborhood and study it as a single part separated
from the assembled system. However, in reality the elements are interconnected and each
element is influenced by others, such that the general behavior of such a complex system
is not simply the sum of the behaviors of its individual elements isolated. The structure
of these interactions plays a major role in the behavior of such complex phenomena
(LATORA; NICOSIA; RUSSO, 2017; WATTS; STROGATZ, 1998). In order to fully
understand this complex behavior of such system, the knowledge of the isolated elements
alone is usually not enough and the complex system must be analyzed as a whole.

The focus of this work is on networks whose elements represent scalar time signals
with dynamic relationships among them, the so-called dynamic networks. These signals
may represent a wide range of variables of interest. Examples are voltage and current in
electrical machines, flow and pressure in hydraulic systems, stock prices and currencies
quote in financial systems. We will refer to those internal signals of the network as nodes
signals, with each node of the network representing a scalar time signal.

The interconnection links may represent a wide range of objects, for example, transmis-
sion lines, pipes and financial transactions. In this work, connections represent dynamic
relationships among the nodes of the network. These interconnections are defined by
discrete-time linear time-invariant (LTI) systems and will be referred to as modules.

There are external variables to the network that can influence its behavior. Some of
these external variables may affect the node signals and they can be manipulated by the
user, for this reason, we call them network inputs. On the other hand, there are also external
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variables that are unknown to the user and they are not in control of the user. These external
signals are typically disturbances or noise processes that randomly affect the behavior of
the network.

This kind of network can represent many classes of complex structures, that ranges
from physical systems to networks of protein interactions in biology and the formation of
consensus networks. Therefore, this research theme has an intrinsic multidisciplinary char-
acter among many fields of science and has a potential to be beneficial for the advancement
of many others.

This work addresses the subject of system identification in the dynamic networks.
Identification methods are an important tool for building mathematical models from data.
These methods are adequate for large scale systems, since they use only data to generate
the models and usually require little expert knowledge. A module representation and
a framework for the study of network identification was proposed in VAN DEN HOF
et al. (2013). In the literature we can distinguish among three major areas of research
for dynamic network identification. The first area of research addresses the problem of
identifying a single module embedded in a dynamic network (VAN DEN HOF et al., 2013;
GEVERS; BAZANELLA; DA SILVA, 2018). The second concerns the identification of all
modules of the network (BAZANELLA; GEVERS; HENDRICKS, 2019; HENDRICKX;
GEVERS; BAZANELLA, 2019; FONKEN; RAMASWAMY; VAN DEN HOF, 2022).
Finally, a third area concerns the identification of the interconnection structure, i.e. topology
of the network (DIMOVSKA; MATERASSI, 2020; INNOCENTI; MATERASSI, 2012;
MATERASSI; SALAPAKA, 2010; VAN WAARDE; TESI; CAMLIBEL, 2019). This
work addresses the problem of identifying all modules of a dynamic network.

For identification of a single module several methods have been proposed in the
literature (WEERTS et al., 2020; VAN DEN HOF; DANKERS; WEERTS, 2018; JAHAN-
DARI; MATERASSI, 2021). Many of them are extensions of the methods applied in the
closed-loop approach of classical system identification. Another important feature that
characterizes this research area is the selection of variables that must be part of the identifi-
cation in order to comply with certain objectives, such as to obtain consistent estimates
(DANKERS et al., 2016). This problem is particularly challenging due to the parallel
interconnections and feedback loops that induce correlation among the node signals. The
choice of which variables must be part of the identification process is also crucial from an
experiment design perspective. For some choices of variables it may not be even possible to
uniquely recover some modules of the network, i.e. some modules will be not identifiable.

In the following, some examples of dynamic networks are presented that can be applied
to model complex phenomena. Afterwards, we provide a brief overview of the methods
presented in the literature of network identification. We conclude this chapter formally
introducing the research problems investigated in this thesis and providing an overview of
the contents of this work.
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1.1 Examples

The study of complex networks is crucial in the scientific investigation and many
challenges lie ahead. Here we provide some examples that illustrate the importance of the
study of dynamic networks in a broader context.

The climate crisis is one of the major (if not the biggest) challenges of humanity in
the years to come (MASSON-DELMOTTE et al., 2021). Mitigation actions for climate
change is an important issue to be addressed in order to cope with the many difficulties of a
rapid (from a geological perspective) changing world. Several models have been proposed
in the literature to explain some key variables in Earth science that together define how
the earth atmosphere behave. However, such a system is full of interconnections and
feedbacks among many different systems that compose the earth climate: different layers
of the atmosphere, cloud circulation, carbon feedbacks, the thermodynamic of the oceans,
tectonics plates, and the interaction with large ecosystems and economic systems that
influence the behavior of such systems (SKINNER; MURCK, 2011). Modeling the Earth
system – the geosphere, hydrosphere, atmosphere, biosphere, and anthroposphere – is a true
multi-disciplinary field which involves a number of subsystems and their interconnection
structure.

The current setting for scientific assessment of the climate is composed of a myriad
of models that are jointly evaluated and compared under the umbrella of the Coupled

Model Intercomparison Project (CMIP) (EYRING et al., 2016). Therefore, advances on
how these models are coupled together can be of paramount importance to the scientific
understanding of the complex network of systems that make the Earth system. The
interaction of these large systems shape the complex behavior of Earth, which should be
interpreted as a complex system and evolving network. Such interactions interfere in a
wide range of other subsystems. As an example, consider that tectonic activity and the
resulting motion of continental plates is an important trigger for the formation of ocean
currents, which transport energy in terms of heat that is transferred to the atmosphere and
thus determine the climate on large scale (SALTZMAN, 2001). The presence of ice sheets
(which are influenced by the oceanic currents) in high latitudes is known to influence both
the dynamics of the Earth body via pressure forces and the climate system (through the
well-known ice-albedo feedback related to the reflection of solar irradiation) (DONNER
et al., 2009).

Another subsystem that is of paramount importance to regulate the climate on Earth is
the carbon cycle. Figure 1 depicts a conceptual interaction among many different factors
that contribute to the carbon cycle. Notice that this is one of the subsystems that are part of
the Earth system, and therefore it interacts with many other subsystems. The carbon cycle
is the process in which carbon flows from an environment to another. This is a natural
process and it has slow and fast actuation mechanisms.



19

Figure 1 – The carbon cycle.

Source: (Carbon Cycle, March, 2022)

A series of chemical reactions and tectonic activity make carbon move, over a period of
100-200 million years, between rocks, ocean and atmosphere. The cycle from atmosphere
to rocks happens through the formation of carbonic acid, a combination of water and
carbon, which drops from atmosphere along with the rains. Once this carbonic acid enters
in contact with the rocks, a series of chemical reactions occurs that will finally land carbon
at the ocean, in which it will be used as a source for organisms (corals and plankton). These
organisms will ultimately die and sink into the seafloor. Over time, layers of sediment
will form and these layers will store carbon into the stones. The carbon finally returns
to the atmosphere through volcanoes. This cycle is then repeated between the ocean,
land, and atmosphere. The ocean is also responsible for the fast carbon cycle. In the
ocean surface carbon dioxide gas dissolves in and ventilates out of the ocean in a steady
change with atmosphere. This cycle is responsible for the degree of acidification in the
oceans. Over the last century, anthropogenic activities have been disturbing the carbon
cycle under a point that might profoundly modify the climate beyond any unseen level
before (MASSON-DELMOTTE et al., 2021).

Another class of problems that can be represented by dynamic networks comes from
the field of social systems. The interaction between humans and how we form our beliefs
and opinions can be modeled as a dynamic network (ANDERSON et al., 2020). Indeed, we
have many interactions with our closest friends, neighbors, acquaintances, and from many
people over the internet - by itself another network - which can have a particular influence
over our behavior (BOND et al., 2012; MARENGO et al., 2021) . This interactive network
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can have profound significance over our life, not only in how we think, vote, but also in
our emotional states and even dietary patterns (FLETCHER; BONELL; SORHAINDO,
2011; KRAMER; GUILLORY; HANCOCK, 2014). In fact, a single behavior in a social
media can tell with high probability when we are near to have a new romantic relationship
with just little information as the pattern in which we post on social media (DIUK, 2014;
KRAMER; GUILLORY; HANCOCK, 2014). The pattern of our likes in such social
networks can tell much of our opinions, in such a way that algorithms from social media
can predict some of our traits better than our family (YOUYOU; KOSINSKI; STILLWELL,
2015). Understanding how people reach consensus is very important to propose effective
communication strategies to target a number of necessary policies. This is remarkably
important not only for an efficient communication program but also for decision-making
in important sectors from environmental issues to health policies, such as vaccinations
campaigns (D’I TREEN; WILLIAMS; O’NEILL, 2020; BALL; MAXMEN, 2020).

Let us consider a very simple mathematical network model that can represent a number
of network systems, such as opinion in social networks and wireless communication
systems. Our opinion can be modeled as a probabilistic distribution over a certain topic.
We update our opinions according to the information available from our social circle.
Let individual i have its own subjective pdf pi(k) at instant k in the social network of
n individuals. This individual is a node in the social network and the edges represent
the social interactions with the neighborhood. Each individual will associate to other
individuals a weighting factor that will represent the confidence on their opinion. Now,
the individuals will revise their own opinion based on their neighborhood as pi(k +

1) =
∑n

j=1 aijpj(k), where aij denotes the weight that individual i assigns to the pdf of
individual j. Each weight aij must be non-negative and they must obey

∑n
j=1 aij = 1.

This update rule is known as the French-Harary-DeGroot model of opinion dynamics
(BULLO, 2018). It can be represented in matrix form as p(k + 1) = Ap(k). This model
represents an averaging system in which the opinion of each individual will be the average
of its neighborhood. The same principle can be used for measuring variables in a network
of wireless sensors.

Our final example is inspired by the biological field: gene regulatory networks (GRN).
A gene is a section of nucleotides in the deoxyribonucleic acid (DNA) and it is a basic
unit of heredity in evolution. These networks are a collection of molecular regulators that
interact with each other and also with other substances in the cell to govern gene expression
levels of mRNA and proteins (ALBERTS et al., 2015). A gene expression is the process in
which a cell converts a nucleotide sequence of genes into a sequence of RNA molecules
and then into amino acids sequence of proteins, which in turn, will perform a number of
functions in the cell.

There are a number of functions in a cell that are determined by the interaction of
these molecules. The regulators can be DNA, RNA, proteins, and a complex collection
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of these. The nodes of such network can be these molecules, while the edges correspond
to individual biochemical reactions through which the products of these molecules affect
those of another. These networks are responsible for a number of different processes in a
cell, which can globally affect an organism. For instance, they are involved in regulating
complex biological oscillators such as the circadian cycle (rhythm) (YAN et al., 2008). The
circadian cycle is a biological process that regulates the sleep-wake stages of an organism,
roughly for a period of twenty four hours according to its environment.

We have presented a number of examples in which network models can be a key factor
in the analysis of complex phenomena. These examples are just a small subset of all
possible processes for which dynamic networks can be used to analyze and understand
these behaviors. The applications for dynamic networks are multidisciplinary and they
cover a wide range of different disciplines, from social networks to engineering systems.

1.2 Literature review

System Identification is a research field that seeks to obtain mathematical models from
input-output data. The extension of the framework of closed-loop systems to identifica-
tion of general dynamic networks was originally proposed in DANKERS et al. (2012);
VAN DEN HOF et al. (2012, 2013). The framework for the study of network identification
was proposed in these works. The objective of these contributions was to obtain consistent
estimates of a module embedded in a dynamic network. Their approach was to extend
the classic methods from identification of closed-loop systems - direct, indirect, and joint
input-output approaches - to dynamic networks. This approach took advantage of the
interpretation that dynamic networks can be seen as a general extension of closed-loop
systems (VAN DEN HOF; DANKERS; WEERTS, 2017).

Identification in dynamic networks have a number of additional challenges with respect
to the classical system identification setting of Single Input Single Output (SISO) systems.
This is due to a network being full of feedbacks and parallel connections, which increase
the difficulty because of possible correlation among the signals involved. Furthermore, the
number of signals involved may increase the complexity of the problem at hand. This gives
rise to the necessity of choosing the set of signals that can be used to estimate a module
within the network. Under this scenario, some contributions addressed the problem of
selecting the input predictors for consistent estimates for the direct method in DANKERS;
VAN DEN HOF; HEUBERGER (2013) and for the two stage identification approach
in DANKERS et al. (2013). Sufficient conditions for the problem of prediction input
selection were derived in DANKERS et al. (2016).

In the same spirit, some methods from classic identification literature were extended to
the dynamic network framework. Instrumental variables methods were also employed for
the estimation of continuous time modules in dynamic networks in DANKERS; VAN DEN
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HOF; BOMBOIS (2014). This method was also explored in the identification of dynamic
networks subject to process and measurement noises sources in DANKERS et al. (2015).
Nonparametric identification was addressed in DANKERS; VAN DEN HOF (2015).

A common assumption in all these works was that all nodes are measured and one
would only need to deal with input selection. In order to consistently estimate a module, it
is necessary to guarantee that the signals involved are persistently exciting (GEVERS et al.,
2009; BAZANELLA; BOMBOIS; GEVERS, 2012; LJUNG, 1999). Sufficient conditions
on the richness of input signals were derived for the consistent estimates of a module
in GEVERS; BAZANELLA (2015). Path based conditions that depend on the topology
of the network for data informativity of a single module were given in RAMASWAMY;
VAN DEN HOF (2021). A practical method for the identification of one module was
proposed in GEVERS; BAZANELLA; DA SILVA (2018), that was based on the selection
of which variables should be measured and excited in order to identify the desired module.
This problem of local identification was further explored in the contributions VAN DEN
HOF et al. (2019); RAMASWAMY; VAN DEN HOF; DANKERS (2019); DANKERS;
VAN DEN HOF (2015). An overview of identification methods in dynamic networks can
be found in VAN DEN HOF; DANKERS; WEERTS (2018).

The majority of works presented so far were primarily interested in obtaining consistent
estimates for a single module embedded in a network. In WAHLBERG; HJALMARSSON;
MÅRTENSSON (2009) the authors analyzed the effects of common dynamics in the
variance of the modules for the particular class of cascade networks. Further works that an-
alyzed accuracy aspects for specific cascade structures followed in HÄGG; WAHLBERG;
SANDBERG (2011). A strategy inspired by these results was introduced in GUNES;
DANKERS; VAN DEN HOF (2014), where a slight modification in the cost function of
the two state identification method was used to reduce the variance of the estimates.

A Bayesian setting for identification of a module embedded in a dynamic network is
presented in EVERITT et al. (2016); EVERITT; BOTTEGAL; HJALMARSSON (2018).
The application of more recent kernel based identification results for the local identification
of a module was addressed in RAMASWAMY; BOTTEGAL; VAN DEN HOF (2018).

For the identification of the whole network several methods have been proposed
based on methods from the system identification literature. The weighted null space fitting
(GALRINHO; ROJAS; HJALMARSSON, 2019) was used for identification of the modules
in a cascade network in GALRINHO et al. (2018); FERIZBEGOVIC; GALRINHO;
HJALMARSSON (2018). This identification scheme was further applied for identification
of ARMAX dynamic networks in WEERTS et al. (2018).

One of the key challenges in the identification of dynamic networks is the correlation
among the signals. In VAN DEN HOF et al. (2019) dynamic networks with correlated
noise were analyzed for identification of one module within the network. A prediction
error identification for rank reduced noise which led to maximum likelihood properties
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was addressed in WEERTS; VAN DEN HOF; DANKERS (2018a) for the identification
of the whole network. Obtaining maximum likelihood properties for local identification
techniques with correlated noise was a major concern in RAMASWAMY; BOTTEGAL;
VAN DEN HOF (2021).

Whether the modules could be uniquely recovered from network data, a problem
known as network identifiability, was investigated in a number of works. In GEVERS;
BAZANELLA; PARRAGA (2017) it was shown that network identifiability heavily de-
pends on prior knowledge about the structure of the network. Single module identifiability
was addressed in WEERTS; VAN DEN HOF; DANKERS (2018b). The main conclusions
of these works was that identifiability would depend on the excitation and noise structure
of the network. Identifiability with singular noise spectra was addressed in WEERTS;
VAN DEN HOF; DANKERS (2018c). In GEVERS; BAZANELLA; PIMENTEL (2019) it
was shown that for the case of rank reduced noise the conditions on identifiability could be
slightly modified and remained similar to the full rank case.

One of the first works to consider network identification with partial measurement
was BAZANELLA et al. (2017), which addressed conditions on the measurement of
some nodes in order to render a subset of modules identifiable, and eventually the whole
network, from network data. This lead to the introduction of the concept of generic
identifiability in HENDRICKX; GEVERS; BAZANELLA (2019), which was based on
path-based conditions that depend upon the network topology rather than the rank of
certain transfer matrices. This work was fundamental as allowed checkable (in polynomial
time) path-based conditions to determine identifiability of a given network, and inspired a
flurry of contributions on this theme.

Generic identifiability, briefly speaking, is a definition that says that a network is
identifiable for almost all network parameters, with exception of a thin set in the param-
eter space. It inspired many works to characterize identifiability from a graph theoretic
perspective. Graphical conditions for identifiability were given in VAN WAARDE; TESI;
CAMLIBEL (2018a,b). For the partial measurement case a graphical algorithm was
proposed in VAN WAARDE; TESI; CAMLIBEL (2019) to deal with identifiability for
all networks parameters. In CHENG; SHI; VAN DEN HOF (2019, 2022) the algebraic
conditions for generic identifiability were used to introduce the concept of pseudo-trees,
which could allocate the inputs in a network in order to guarantee generic identifiability. In
SHI; CHENG; VAN DEN HOF (2020, 2022) similar conditions were derived for allocation
of inputs for single module identifiability.

Identification of single module under partial measurement was also addressed in
(MATERASSI; SALAPAKA, 2015). Sufficient and necessary graphical conditions were
presented for the local identification of a module in a dynamic network in JAHANDARI;
MATERASSI (2021).

The first work to address network identification with partial measurement and partial
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excitation was BAZANELLA; GEVERS; HENDRICKS (2019), where conditions on the
excitation and measurement of some nodes were given. Conditions for local identifiability
under partial excitation and measurement were formulated in LEGAT; HENDRICKX
(2020). In SHI; CHENG; VAN DEN HOF (2021) single module identifiability was
addressed under this scenario.

For topology identification, a number of approaches have been proposed in the litera-
ture. The main objective of this research area is to recover the structure of the network. This
area can be seen as a part of the network identification problem. Here, we provide, by no
means exhaustive, references on the literature of topology identification. In MATERASSI;
INNOCENTI (2010); MATERASSI; SALAPAKA (2010) is presented an algorithm for
topology detection in dynamic networks, which is based on a distance measure from
different structures. An ordinary least squares approach is used to identify the topology
of the network in MATERASSI et al. (2011). Methods based on Wiener filtering the-
ory for topology identification were proposed in INNOCENTI; MATERASSI (2012). A
more recent result for continuous time networks is presented in VAN WAARDE; TESI;
CAMLIBEL (2019), that is based on constrained Lyapunov equations. Conditions for
topology identifiability were given in VAN WAARDE; TESI; CAMLIBEL (2019) along
with a reconstruction scheme based on subspace methods. Compressing methods for topol-
ogy identification were analyzed in JAHANDARI; MATERASSI (2018); SANANDAJI;
VINCENT; WAKIN (2011).

1.3 Research problems

In this thesis we will focus on two issues regarding the area of network identification.
We focus on the problems of obtaining identifiability conditions for dynamic networks
and in obtaining the most accurate parameter estimates for the identification method. We
formulate a new problem regarding the selection of network inputs and outputs.

We have seen from the literature review that an appropriate selection of which nodes to
measure and which nodes to excite is a crucial problem in network identification. Typically,
identifiability conditions will depend on which variables are available for measurement
and which are known to the user. Our first problem is to provide a framework to study
which experimental settings render a network identifiable, that is, the allocation of inputs
and measurements in the network. Our objective is to determine conditions on the nodes
of a network that need to be excited and on the nodes that need to be measured. Ultimately,
these conditions will depend on the topology of the network. We therefore analyze some
general classes of networks in order to provide conditions on the experimental setting such
that we can uniquely recover all modules from a given network. The first research problem
can be stated as follows.

Problem 1. Given a dynamic network with a known topology. Determine the allocation of
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excitations and measurements for a dynamic network which renders the network modules

identifiable from network data.

The answer to this problem will allow us to characterize all experimental scenarios
under which a given network can be uniquely identified. Naturally, there will be a number
of such experimental scenarios from which a user will have to choose. A second problem
we face is how to determine the experimental setting based on a quality criterion to use
in the identification of the whole network. We introduce a framework for comparison
among the different experimental scenarios with the objective of choosing the one that
yields the most accurate estimates. We investigate what are the ingredients that make
an experimental setting more attractive than other candidates. In analyzing this problem
we try to answer the following questions. Is there any structural property based on the
topology of the network that makes a particular experimental setting preferable? Are there
any factors that contribute to the selection of inputs and outputs? Is there any equivalence
between exciting or measuring a particular node?

This problem is fundamental from an experiment design perspective, as it allows the
users to choose an appropriate experimental setting according to their objectives. We can
state this problem as follows.

Problem 2. Given a dynamic network with a known topology and a set of identifiable

experimental scenarios. Determine which experimental setting yields the most accurate

parameter estimates.

These two problems are intimately connected by the experimental settings applied
in a network. By answering them we can formulate experimental strategies for dynamic
network identification. This will result in more accurate models using less resources from
the network.

The next chapter will introduce the framework for the study of identification of dynamic
networks and the basic tools to apply identification methods. In Chapter 3 we focus on
Problem 1 and we present a number of results for some classes of dynamic networks. The
problem of whether the modules of a network can be uniquely identified is reframed as to
determine the experimental settings in which the network is identifiable. In Chapter 4 we
focus on Problem 2 for the selection of the most accurate experimental setting for dynamic
networks. Finally, we present our mains conclusions for this work in Chapter 5.

Associated with Chapters 3 and 4 a number of contributions were submitted to journals
and conferences. They are listed below.

Chapter 3

1. E. Mapurunga and A. S. Bazanella. Identifiability of Dynamic Networks from
Structure, IFAC-PapersOnLine, vol. 54, no 7, p. 55–60, jan. 2021. Presented at the
19th IFAC Symposium on System Identification.
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2. E. Mapurunga, M. Gevers, and A. S. Bazanella. Necessary and Sufficient Conditions
for the Identifiability of Isolated Loops, IEEE Control Systems Letters, vol. 6, p.
2276–2280, 2022.

3. E. Mapurunga, M. Gevers, and A. S. Bazanella. Excitation and Measurement
Patterns for the Identifiability of Directed Acyclic Graphs, Accepted to the 61st IEEE

Conference on Decision and Control, 2022.

Chapter 4

1. E. Mapurunga and A. S. Bazanella. Optimal Allocation of Excitation and Measure-
ment for Identification of Dynamic Networks, IFAC-PapersOnLine, vol. 54, no 7, p.
43–48. Presented at the 19th IFAC Symposium on System Identification.

2. E. Mapurunga and A. S. Bazanella. Optimal excitation and measurement pattern for
cascade networks, Submitted to Automatica, set. 2021.

3. E. Mapurunga and A. S. Bazanella. Optimal excitation and measurement pattern for
isolated cycles, To be submitted.
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2 NETWORK IDENTIFICATION

This chapter presents the necessary tools used for identification of dynamic networks.
Here, the basic setup is presented for models that are able to represent interconnected
systems. We start by providing a brief overview of the prediction error method in the
general context of system identification. We proceed by presenting the mathematical
background of dynamic networks and some preliminary concepts from graph theory.
Afterwards, we show how the prediction error method can be applied for identification in
dynamic networks. The conclusions of this chapter are presented at the end.

2.1 Prediction error method

The prediction error method (PEM) is a method and a general framework used in the
literature of system identification (LJUNG, 1999; SÖDERSTRÖM; STOICA, 1989). Not
only the approach of using the prediction error is very general, but also PEM encompasses
a number of other methods as special cases under some mild assumptions (LJUNG, 1999).
The framework adopted in PEM requires a model parametrization for the system to be
identified. In order to present all ingredients of the prediction error identification, consider
a discrete-time single-input single-output (SISO) system described as

S : y(t) = G0(q)u(t) + v0(t), (1)

where y(t) ∈ R is the output of the system, u(t) ∈ R is the input of the system, v0(t) ∈ R
is the corrupting noise, and q is the forward shift operator, i.e. qu(t) = u(t + 1). The
corrupting noise {v0(t)} is assumed to be a stationary random process with rational spectral
density Φv0(ω), that is, this process can be equivalently modeled as (LJUNG, 1999):

v0(t) = H0(q)e0(t), (2)

where H0(q) is a monic, proper rational transfer function, stable and inversely stable, and
{e0(t)} is a stationary white noise process with zero mean and variance λ0.

The problem in system identification is to obtain a representation of the system that
better fits an input-output data set ZN = {u(t), y(t)}Nt=1 collected from the system S.



28

There are many ways in which a model can be fitted to a particular data set, the purpose of
this section is to deal with parametric methods for which PEM is one of these methods. In
order to apply the prediction error method, we first need to define a parametric model of
system S:

M(θ) : y(t) = G(q, θ)u(t) +H(q, θ)e(t), θ ∈ Dθ ⊆ Rd, (3)

with θ the parameter vector that describes the model through the parametrized transfer
functions G(q, θ) and H(q, θ). The signal {e(t)} is a stationary white noise process with
zero mean and variance λ. The idea of the prediction error method is to select among the
model candidates (3) in the model set:

M∗ , {M(θ)|θ ∈ Dθ ⊆ Rd}, (4)

the one that minimizes a quality criterion based on the prediction error, which is defined
as:

ε(t, θ) , y(t)− ŷ(t|t− 1, θ), (5)

where ŷ(t|t − 1, θ) is the optimal one-step ahead predictor. The problem of finding the
model that best fits the data in the set of candidate models is then translated into finding a
parameter vector that provides a model that better explains the data. This problem can be
recast as an optimization problem. That is, the problem is to find the parameter vector that
minimizes a criterion based on the prediction error:

θ̂N = arg min
θ
VN(θ), (6)

VN(θ) =
1

N

N∑
t=1

l (ε(t, θ)) . (7)

With l(·) an appropriate norm function. A standard criterion for system identification is
the quadratic cost criterion:

VN(θ) =
1

N

N∑
t=1

ε(t, θ)2. (8)

The optimal one-step ahead predictor can be shown to be the conditional expectation:

ŷ(t|t− 1, θ) = E[y(t)|t− 1; θ] = Wy(q)y(t) +Wu(q)u(t), (9)

Wy(q) = −(1−H(q, θ)−1), (10)

Wu(q) = H(q, θ)−1G(q, θ), (11)

where t− 1 stands for input-output data up to time t− 1, i.e. Zt−1 = {u(k), y(k)}t−1k=−∞,
and with E[·] denoting the mathematical expectation operator.
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Now, there are a number of desirable properties that an estimator should have. These
properties will depend on whether there exists a “true” representation of the system at
hand. In other words, if there exists a parameter vector θ0 such that G(q, θ0) = G0(q)

and H(q, θ0) = H0(q). In this case, we say that the system S is contained in the model
set: S ∈ M∗. For the analysis of estimation methods, such an assumption is usually
required, otherwise little could be said about the precision obtained by the identification
method. Among the desirable properties an estimator should have is consistency. Under
some technical conditions on the data set, the estimator (6) converges as the number of
data samples (N ) tends to infinity with probability 1 to (LJUNG, 1999):

θ∗ , arg min
θ
V (θ), (12)

V (θ) , E[ε(t, θ)2], (13)

where E[·] , limN→∞
1
N

∑N
t=1 E[·]. Consistency is the property that asserts that an

estimate converges to a “true” representation θ0 as the number of data goes to infinity.
If S ∈ M∗, the model structure is identifiable at θ0, and the data set is sufficiently rich,
then the prediction error method is a consistent estimator. This means that the estimate
θ̂ → θ0 as the number of data go to infinity N →∞. Furthermore, it can be shown that as
the number of data tends to infinity the parameter error converges to a Gaussian random
variable:

√
N
(
θ̂N − θ0

)
→ N(0, Pθ0), (14)

where

Pθ0 = M−1
θ0 , (15)

Mθ0 = Eψ(t, θ)[λ0]−1ψT (t, θ)
∣∣∣
θ=θ0

, (16)

ψ(t, θ) =
∂ŷ(t|t− 1, θ)

∂θ
. (17)

The matrix Pθ0 is the normalized asymptotic covariance matrix of the parameter estimates,
which is also the inverse of the information matrix defined in (16). The information matrix
can be computed by using the gradient of the optimal predictor (9). Another important
property that an estimator should ideally have is to produce estimators that have a degree
of dispersion as small as possible. That is, if the identification experiment is performed
a number of times it is expected that the different estimates are close enough of each
other. A natural measure for this dispersion is the covariance matrix. For any consistent
estimator there is a lower bound for the covariance matrix, known as Cramer-Rao lower
bound (LJUNG, 1999):

cov(θ̂N) �M−1
θ0 . (18)
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Notice that this lower bound on the accuracy of the estimates can be computed as the
inverse of the information matrix. The prediction error method achieves the Cramer-Rao
lower bound under mild conditions on the data set. (LJUNG, 1999; SÖDERSTRÖM;
STOICA, 1989). An unbiased estimator that achieves the Cramer-Rao lower bound is
said to be an efficient estimator. If there is any estimator that achieves the Cramer-Rao
lower bound, then this estimator is also the maximum likelihood estimator (LEHMANN;
CASELLA, 1998).

In conclusion, we have presented the main ingredients for the prediction error identifi-
cation. The prediction error method is a parametric method that requires a parametrized
model. PEM is also a consistent and efficient estimator provided the “true” system is in
the model set and under some weak conditions on the data set. We are now ready to apply
the prediction error method for identification in dynamic networks.

2.2 Dynamic networks setting

In this work, our focus is to deal with discrete-time systems, that is, systems that depend
on the discrete time variable t ∈ Z. The setup adopted here to represent dynamic networks
was first introduced in the seminal work VAN DEN HOF et al. (2013) for identification in
dynamic networks. A network is composed of the following basic entities that together
represent a dynamic network.

• Nodes – the nodes in a network represent scalar measurable signals, also called
node signals. These signals represent quantities of interest in a particular system,
for instance, voltages and currents across some electrical components, pressure and
flow rate in a hydraulic system, or temperature in a thermodynamic system. A node
signal is the sum of all signals that enter a node.

• Modules – they represent the dynamics among the nodes of a network. The modules
are modeled as Single-Input Single-Output (SISO) discrete-time proper rational
transfer functions.

• External signals – They represent external signals that act over the network. Some
of these signals are known to the user, which we refer to them as inputs. Some
external signals are unknown disturbances that affect the network. The inputs of
the network are signals that can be directly manipulated by the user, while the
disturbances are not in control of the user.

Figure 2 depicts an RC electrical circuit that can be represented as a dynamic network.
The node signals of the system are the voltages across the capacitors V1, V2, V3, while the
external signal is the voltage supply u. Each node of the circuit in Figure 2-a) represents a
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corresponding voltage and the interconnections are the electrical components, i.e. volt-
age supply, resistors and capacitors. Whereas in the dynamic network representation, as
depicted in Figure 2-b), the nodes still represent the capacitor voltages, but the intercon-
nections are now transfer functions. Notice that the transfer functions in Figure 2-b) are in
the continuous-time domain, but they can be transformed to a discrete-time domain to be
in the adopted framework for dynamic networks.

Figure 2 – An RC circuit and its dynamic network representation.
a) An RC circuit with three RC stages.

b) A block diagram that represents the RC circuit as a dynamic network. The nodes are
represented by the summing points, while the modules are the transfer functions associated
with the node signals.

Source: The Author.

A dynamic network is characterized by its number of nodes, by its modules and by
the interconnection structure of their elements. Each scalar node signal is denoted as
{wj(t)}, j = 1, 2, . . . , n and represents a signal associated with a particular node. To
every node we denote and refer to it through a label, typically a numeric label j ∈ Z. We
denote byW , {1, 2, . . . , n} the set of node labels of a dynamic network. A given node
signal may have the influence of other node signals {wi}, j 6= i ∈ W , external excitation
signal {rj}, j ∈ W , and/or unknown disturbance {vj}, j ∈ W . This relationship is
mathematically described by the following equation.

wj(t) =
∑
k∈N−j

G0
jk(q)wk(t) + bjrj(t) + νjvj(t). (19)

The variable bj ∈ Z2 , {0, 1} is a variable that indicates whether {rj(t)} is applied to
node j or not. Similarly, νj ∈ Z2 defines whether the unknown noise process affects node
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j. The set N−j collects the node signals that enter node j. Figure 3 depicts the relationship
among the signals affecting the node signal j.

Figure 3 – The dynamics in node j. Node j represents the sum of filtered node signals
i, k, l ∈ N−j , an input rj(t), and an unknown vj(t) disturbance.

Source: The author.

Collecting all equations (19) for j ∈ W one obtains the dynamic relationship for all
nodes in matrix notation as:

w(t) = G0(q)w(t) +Br(t) + V v(t), (20)

where w(t) =
[
w1(t) w2(t) . . . wn(t)

]T
is the vector of nodes signals, r(t) ∈ Rnr is

a column vector of stacked inputs, v(t) ∈ Rnv is the column vector of stacked unknown
noise processes, and B ∈ Zn×nr

2 and V ∈ Zn×nv
2 are binary matrices responsible for

selecting which external signals affect the nodes of the network. They have in common
the property that each row has at most one 1 and they are full column rank. Equation (20)
represents the dynamics of the network, where the modules of the network are collected in
the network matrix G0(q). The general form of the network matrix is as follows:

G0(q) =


0 G0

12(q) · · · G0
1n(q)

G0
21(q) 0

. . . · · ·
... . . . . . . G0

1,n−1(q)

G0
n1

(q) · · · G0
n,n−1(q) 0

 . (21)

As we consider that not all node signals are available for measurement, the following
equation describes the output of the network with matrix notation:

y(t) = Cw(t) + e(t), (22)

where y(t) ∈ Rny is a vector containing the output of the networks, e(t) is a stationary
stochastic process that represents measurement noise, and C ∈ Zny×n

2 is a binary matrix
responsible for selecting which node signals are available for measurement. This matrix
has at most one 1 at each row and is full row rank. Associated with the binary selection
matrices B and C are the corresponding set of excited B and measured C nodes.
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In this thesis we will be concerned with the problem of identifying the modules of the
network from input-output data {r(t), y(t)}. For this purpose, it is useful to rewrite the
equations describing the dynamics of the network in the input-output form

y(t) = CT 0(q)Br(t) + v(t), (23)

with v(t) , CT 0(q)V v(t) + e(t) and

T 0(q) , (In −G0(q))−1. (24)

The following assumption will hold throughout this work regarding the inputs, distur-
bances and the modules of the dynamic network.

Assumption 2.1. trick

1. Each module G0
ji(q) is represented by a rational proper transfer function;

2. There are no self-loops in the network, i.e. G0
jj(q) = 0,∀j ∈ W . We refer to network

matrices with this property as hollow;

3. The input signals {r(t)} are statistically independent of the unknown disturbance

processes {v(t)};

4. The input signals {r(t)} are statistically independent of the unknown measurement

noise {e(t)};

5. The unknown disturbance {v(t)} is a stationary random process with rational

spectral density Φv(ω);

6. The network is stable, i.e. all entries of T 0(q) are stable transfer functions;

These assumptions are standard from network identification literature. As not every
node is affected by all other nodes in (21), there are some known zeros in the network
matrix. This zero/nonzero pattern in the network matrix characterizes the topology of
the network. Regarding the topology of the network, we adopt the following assumption,
which is standard in the field of dynamic network identification.

Assumption 2.2. The topology of the dynamic network is known.

In order to identify the modules using the prediction error method we need to provide
a parametrized model of the dynamic network. This can be done as in (3) for each module
of the network, or more generally for the network matrix. The parametrized input-output
model is

M : y(t) = CT (q, θ)Br(t) + v(t), θ ∈ Dθ ⊂ Rd. (25)
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with T (q, θ) , (I − G(q, θ))−1 and v(t) = CT (q, θ)V v(t) + e(t). The prediction error
method can consistently identify the Multiple-Input Multiple-Output (MIMO) transfer
matrix CT (q, θ)B from input-output data. If v(t) has a rational spectrum Φv(z), then
by the spectral factorization theorem (SÖDERSTRÖM; STOICA, 1989; LJUNG, 1999),
we can rewrite v(t) = H̃(q, θ)e(t), with H̃(q, θ), monic, proper, real, rational, stable
and inversely stable transfer function. Hence, we can define the one-step ahead optimal
predictor as in (9), from which we can recover the modules Gji(q, θ). Therefore, the
identification problem is to recover G(q, θ) from the input-output data.

Figure 4 depicts an example of a dynamic network. In the left side the network is
depicted in the graph representation, while in the right side the same network is represented
in the more usual way of control systems through a block diagram. As it will become
clear in the next section, the graph representation of the network has a close relationship to
graph objects from graph theory.

Figure 4 – Two representations of the same network system.
a) Graph representation. b) Block diagram.

Source: The Author.

2.3 Digraphs

In the study of dynamic networks we will find useful to study some topological
properties of the interconnection structure. We will associate the structure of the network
to a graph object using the tools provided from graph theory. In this section we formally
introduce the concept of digraphs, terminology, notation, and other useful tools for these
objects. These concepts and terminologies are standard in graph theory and can be found
in textbooks such as BANG-JENSEN; GUTIN (2008); DIESTEL (2006).

A graph is defined as a tuple G , (V , E), where V is a non-empty finite set of elements
called vertices (nodes) of the graph G and E ⊆ V × V is the set of pairs of elements called
edges, which connect the vertices of G. The edges are also called arcs and we refer to E
as edge set. The edges in a graph are unordered pairs. Thus, an edge (j, i) is the same as
(i, j) for j, i ∈ V . The size of a graph is the number of vertices in the vertex set V , which
is equivalent to the cardinality |G| , |V|.

A directed graph (or digraph) is a generalization of the concept of graph, which is also
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defined as a tuple G , (V , E). The vertex set V and the edge set E are defined similarly
as for a graph. However, in a digraph the order of the elements of the edges matter, i.e.
(j, i) 6= (i, j) for j, i ∈ V . Hence, the edges in E of a digraph are ordered pairs.

For an edge (j, i), we say that this edge leaves vertex i and enters vertex j. We also
say that j is an out-neighbor of node i and that i is an in-neighbor of node j if (j, i) ∈ E .
We define the set of all out-neighbors of node i as N+

i , {j ∈ V|(j, i) ∈ E}. Similarly,
let the set of all in-neighbors of node j be defined as N−j , {i ∈ V|(j, i) ∈ E}. The set
N−i is called the in-neighborhood of i, while the set N+

j is called the out-neighborhood
of vertex j. A vertex i which has no in-neighbors (N−i = ∅) is called a source, while
a vertex j that has no out-neighbors (N+

j = ∅) is called a sink. We denote by F the
set of all sources of a digraph: F , {i ∈ V|N−i = ∅}. The set of all sinks from a
digraph is denoted as S , {j ∈ V|N+

j = ∅}. Vertices that are neither a source nor a
sink are called internal vertices. We collect all internal vertices from a digraph in the set
I , {i ∈ V|N+

i 6= ∅ and N−i 6= ∅}.
To the network matrix G0(q) we can associate a digraph G = (V , E), with V = W

representing the nodes of the dynamic network and the edges in E representing the modules
of the network. An edge (j, i) is contained in E if and only if G0

ji(q) 6= 0. The vertices of a
digraph are to the nodes of a dynamic network as the edges are to the modules. Therefore,
in some occasions, we may refer to the identification of an edge when we are actually
referring to the identification of a module whose transfer function is associated with this
edge.

Now, let us introduce some concepts from graph theory that will be useful in the
analysis of dynamic networks. A path P (VP , EP) is a digraph defined by a sequence
of vertices VP = {v1, v2, v3, . . . , vk−1, vk}, such that all vertices are distinct, and the set
of edges is EP = {(v2, v1), (v3, v2), . . . , (vk, vk−1)}. A cycle is a path in which the last
vertex is equal to the first vertex vk = v1. A pair of paths P1,P2 are said to be mutually
vertex-disjoint paths if the two paths share no common vertices: VP1 ∩VP2 = ∅. A digraph
Gs (Vs, Es) is said to be a subdigraph of G (V , E) if Vs ⊆ V , and Es ⊆ E . That is, all
vertices and edges from a subdigraph Gs must be present in the digraph G. This concept
will be particularly useful in the analysis of large networks, for which we can decompose
the network matrix using subdigraphs. A digraph is said to be weakly connected if there
is a path connecting every vertex i ∈ V to any other vertex j ∈ V . A digraph is called
disconnected if there is a node that is not reachable from any node of the network and has
no paths to any other nodes, i.e. a node without neighborhood. All dynamic networks in this
thesis will have network matrices with corresponding graphs that are weakly connected.

In order to clarify the terminology used in this thesis, Figure 5 depicts an example of
a digraph. In this figure, there are three nodes that are sources: 1, 2, and 3, since they
do not have in-neighbors. We collect the sources in the set F = {1, 2, 3}. On the other
hand, nodes 16, 17 and 18 are sinks, as they do not have any out-neighbors. Similarly,
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the nodes classified as sinks are collected in the set S = {16, 17, 18}. The set of internal
nodes for this digraph is I = {x|x ∈ N, 3 < x < 16}. The subdigraph formed by the
nodes Vpath = {4, 8, 13} with the set of edges Epath = {(8, 4), (13, 8)} is a path. A cycle is
represented by the subdigraph formed by the set of nodes Vcycle = {6, 10, 11, 15} and the
corresponding set of edges Ecycle = {(11, 6), (15, 11), (10, 15), (6, 10)}.

Figure 5 – An example of digraph. The set of sources is F = {1, 2, 3}, whose nodes are
depicted in yellow. The set of sinks is S = {16, 17, 18}, whose nodes are depicted in
brown. A cycle formed by the nodes 6, 10, 11, and 15 is depicted in the color green. A
path formed by the nodes 4, 8 and 13 is represented by pink nodes.

Source: The Author.

In this section, we have presented a number of definitions and terminology from graph
theory that will be useful later on when dealing with identifiability of dynamic networks in
Chapter 3.

2.4 Conclusions

In this chapter we have presented the mathematical objects that we are going to use in
the analysis of dynamic networks. The identification problem for dynamic networks was
introduced and the framework for identification of the modules of a dynamic network was
presented. A brief overview of the prediction error method was given and the application
of this method to dynamic networks was presented. We concluded this chapter with the
terminology and concepts from graph theory, which will be particularly useful in the
analysis of dynamic networks.
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3 IDENTIFIABILITY OF DYNAMIC NETWORKS

In this chapter we address the problem of identifiability in dynamic networks. We start
by introducing the concept of identifiability and how this concept is applied for dynamic
networks. We proceed by presenting the concept of generic identifiability for dynamic
networks, on which the analysis of this chapter is based. Afterwards, we formally introduce
the problem of generic identifiability for dynamic networks. Then, we pursue an approach
for identifiability that is based on the experimental setting applied at the network. We then
present necessary and sufficient conditions for generic identifiability of some classes of
networks.

3.1 Introduction

Identifiability is a property related to the identification task. Briefly speaking, this
property is related to the ability to distinguish between different models that could produce
the same data. If two different models produce exactly the same data, we therefore could
not hope to distinguish these two models based solely on data. This ability to discern
different models is on the core of the identifiability property.

There are many definitions for identifiability in the literature and some of them evolved
in different fields of research. In the control community, identifiability was first conceived
as the property of an estimator to yield consistent estimates (LJUNG, 1976; BAZANELLA;
GEVERS; MIŠKOVIC, 2010). This consistency-based identifiability asserted that a model
would be identifiable if it is possible to consistently recover the “true” system. As the field
gained maturity and system identification started to be perceived as a method to obtain
approximate models from data, the search for a “true” system lost its prominence. The
identifiability concept then acquired a uniqueness oriented feature. The question of interest
was not anymore to search for the “true” system, rather the objective was to guarantee that
no two models could generate the same data. Thus, a model would be unique with respect
to a data set. An interesting account of the evolution of the concept of identifiability and
an insightful overview were presented in BAZANELLA; GEVERS; MIŠKOVIC (2010).

The original concept of identifiability was separated into two distinct concepts that
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allow us to distinguish different models from data: identifiability of the model structure and
data informativity. Identifiability of the model structure is related to the question of whether
there exists a single parameter vector that uniquely describes a particular model, i.e. two
different parameter vectors cannot produce the same model. Notice that this uniqueness-
oriented definition of identifiability concerns only the model structure. It is related to the
injectivity of the mapping from the parameter space to the model structure. In other words,
it is a concept independent of the data. On the other hand, data informativity is related to
the experimental conditions on the data set (GEVERS et al., 2009). If any two models
within a given model structure do not generate the same predictor (9) – consequently the
same prediction error – for a given data set, then we say that data is informative with
respect to the given model structure.

For an identification method to obtain consistent estimates it is necessary that the
employed model structure is identifiable. Therefore, it is crucial to know whether some
model structure is identifiable, since this property is independent of the data. In this chapter,
our main interest is to determine under what conditions we can guarantee that a given
dynamic network is identifiable.

3.2 Dynamic network identifiability

In this section we introduce the concept of identifiability for dynamic networks as
presented in GEVERS; BAZANELLA; PARRAGA (2017). The identifiability problem for
dynamic networks consists in testing whether there is a unique network model structure able
to represent the “true” network. Let us recall the network identification problem introduced
in Section 2.2. We are going to first present the case where there is no measurement
noise (e(t) ≡ 0) and all nodes are measured (y(t) = w(t)). Notice that networks with
measurement error can be equivalently represented by a single noise source using the
spectral factorization theorem. Hence, the “true” network is described by the following
matrix equation:

w(t) = G0(q)w(t) +B0(q)r(t) + v(t). (26)

with B0(q) an unknown transfer matrix of dimension n× nr. In this thesis we assume that
B0(q) is a known binary selection matrix. However, in this section, we consider that B0(q)

is an unknown transfer matrix and it is part of the identification problem. As the process
noise v(t) has rational spectral matrix, it can be equivalently modeled as:

v(t) = H0(q)e(t). (27)

The corresponding input-output representation is given by:

y(t) = (I −G0(q))−1︸ ︷︷ ︸
T 0(q)

B0(q)r(t) + (I −G0(q))−1H0(q)v(t)

= T 0(q)B0(q)r(t) + T 0(q)H0(q)e(t). (28)
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From the prediction error method, we know that this is a MIMO input-output model for
which PEM can consistently identify the transfer matrices T 0(q)B0(q) and T 0(q)H0(q).
A corresponding parametrized input-output model is defined as

Mio(θ) , (T (q, θ)B(q, θ), T (q, θ)H(q, θ)) . (29)

In this way, the transfer matrices T 0(q)B0(q) and T 0(q)H0(q) are uniquely recovered from
PEM, and therefore we assume that they are known. Recall that the objective is to estimate
the network matrix G0(q), B0(q), and H0(q). The network model is characterized by a
tripleM(θ) = (G(q, θ), B(q, θ), H(q, θ)).

The identifiability problem of dynamic networks can be recast into the problem of
whether or not we can uniquely recover the network matrix G0(q), B0(q), and H0(q) from
knowledge of T 0(q)B0(q) and T 0(q)H0(q). This can be solved by a two step procedure.
In the first step we consistently estimate the input-output representation from (possibly
asymptotic) input-output data. Afterwards, we recover the matrices G0(q), B0(q), and
H0(q) from the input-output estimates. We formally give a definition for the identifiability
originally introduced in GEVERS; BAZANELLA; PARRAGA (2017).

Definition 3.1. (GEVERS; BAZANELLA; PARRAGA, 2017) Consider a true network (26)

defined by the tuple S = (G0(q), B0(q), H0(q)) and a parametrized model structure

M∗ = {M(θ) = G(q, θ), B(q, θ), H(q, θ), θ ∈ Dθ}, such that M(θ0) = S for some

θ0 ∈ Dθ. Let Sio = (T 0(q)B0(q), T 0(q)H0(q)) be the corresponding true input-output

network system defined in (28). We say thatM(θ0) is network identifiable if there exists

no other network model structure M̃∗ = {M̃(θ̃) = (G̃(q, θ̃), B̃(q, θ̃, H̃(q, θ̃)), θ̃ ∈ D̃θ̃}
such that C(I − G̃(q, θ̃0))−1B̃(q, θ̃0) = T 0(q)B0(q) and C(I − G̃(q, θ̃0))−1H̃(q, θ̃0) =

T 0(q)H0(q) for some θ̃0 ∈ D̃θ̃ with (G̃(q, θ̃), B̃(q, θ̃), H̃(q, θ̃)) 6= (G0(q), B0(q), H0(q)).

We first notice that this definition is related to the mapping of a transfer function space
(G0(q), B0(q), H0(q)) to another transfer function space (T 0(q)B0(q), T 0(q)H0(q)). This
definition is based on the injectivity between these two spaces of transfer functions. The
usual definition of identifiability in LTI system identification is related to the mapping
between the parameter space and the transfer function space. Moreover, this definition
says that for a network model to be identifiable is required that there are no other models
in any other network model structure resulting in the same input-output relationship.

A first key result for identifiability of dynamic networks is that without prior knowledge
about the network structure, any compatible network matrix G̃(q) could generate the same
input-output data, see Theorem 5.1 in GEVERS; BAZANELLA; PARRAGA (2017). This
means that if two networks (G̃(q), K̃(q), H̃(q)) and (G0(q), K0(q), H0(q)) are driven by
the same signals {r(t), e(t)} they would generate the same node signal {w(t)}. Therefore,
these two networks are indistinguishable by using input-output data {r(t), w(t)}. Hence, a
dynamic network (26) is not identifiable without some prior knowledge from the network
structure.
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An important remark is that Definition 3.1 is independent of any identification method.
It depends only on the injectivity of the mapping between the two transfer function spaces.
From now on, we are going to assume that B0(q) is a known binary selection matrix. In
the next section we introduce the concept of generic identifiability, which will be our main
definition for the identifiability analysis.

3.3 Generic identifiability

In this section we formally introduce the concept of generic identifiability that will
be used in the analysis of dynamic networks. The concept of generic identifiability
was introduced in HENDRICKX; GEVERS; BAZANELLA (2019). It was inspired by
the field of structural systems where some properties of the system hold for almost all
systems within the same structure, regardless of the numerical values that describe them.
A structural system is defined by a set of parameters that describe the physical quantities
of the system and its zero/nonzero pattern (DION; COMMAULT; VAN DER WOUDE,
2003). This zero/nonzero pattern is the knowledge associated with how the variables
that describe a particular system are related to each other. For a dynamic network, this
zero/nonzero pattern corresponds to the topology of the network. To the network topology
we can naturally associate a direct graph, as pointed out in Sections 2.2 and 2.3. Let us
now formally introduce the concept of a generic property.

Definition 3.2. A property P is called generic if it holds for almost all elements of a set A,

except for those lying on a subset of measure zero.

Once P is satisfied for a system, then property P is true for almost all other systems
within the same class. This simplifies the analysis since one can simply verify if a property
holds for a single system within the class. Notice that this definition allows a probabilistic
interpretation. If P holds generically and we randomly select an element a ∈ A, then
property P holds true for a almost surely, i.e. it holds with probability one.

In this thesis we are interested in properties associated with dynamic networks. The
concept of a generic property is related to the concept of structural properties in the field
of structural systems, first introduced in LIN (1974) for the analysis of controlability in
linear systems. Not all properties of a system are generic. One system theoretic property
that is not generic is stability. There are other relevant system theoretic properties that
are generic, such as controllability and observability (DION; COMMAULT; VAN DER
WOUDE, 2003; MONTANARI; AGUIRRE, 2020; MONTANARI et al., 2022). Generic
properties are important in the analysis of structured systems because one can perform the
analysis entirely based on the topology (structure) instead of the specific numeric values
of the system. This means that the analysis can be carried out in the associated digraph
that defines the topology. Moreover, there are many graph theoretic tools that can be used
to verify whether a generic property holds. The property that we are interested here is
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identifiability, which has also been shown to be a generic property for a given network
topology in HENDRICKX; GEVERS; BAZANELLA (2019).

In HENDRICKX; GEVERS; BAZANELLA (2019) the problem of identifiability in
dynamic networks has been given an algebraic reformulation. It was shown that the
problem of identifiability of dynamic networks with partial measurement is equivalent to
solving a linear system of transfer functions. Thus, the identifiability problem of finding
a unique solution for the modules of the network is then translated into checking the
rank of a sub matrix of the input-output relationship. This fundamental link allowed a
characterization of the identifiability problem in terms of the topological properties of the
associated graph corresponding to the dynamic network.

This new framework was made possible due to an algebraic characterization of the
identifiability problem. Under the partial measurement case, we have that

w(t) = G0(q)w(t) +Br(t) + v(t)

y(t) = Cw(t)
, (30)

with B = I and C chosen arbitrarily. In this case, the problem is to find a unique G(q)

from input-output data such that:

CT 0(q)(I −G(q)) = C. (31)

Recall that CT 0(q) can be consistently identified from input-output data, the problem
of identifiability is thus whether we can find a unique solution G(q) = G0(q) for (31).
In other words, the identifiability problem for dynamic networks consists in uniquely
recovering the network matrix G0(q) from the input-output representation CT 0(q). The
problem of obtaining a unique solution for a particular module was characterized in the
following lemma.

Lemma 3.1. (HENDRICKX; GEVERS; BAZANELLA, 2019) LetN+
i be the out-neighbors

of node i. Let T 0
C,N+

i

denote the restriction of T 0 to the rows selected by C and to the

columns corresponding to N+
i . Let ∆ , G(q)−G0(q) and ∆N+

i ,i
denote a restriction of

the i-th column of ∆ to the rows selected byN+
i . Then, G0

ji is identifiable from CT 0 if and

only if

T 0
C,N+

i
∆N+

i ,i
= 0 =⇒ ∆ji = 0. (32)

Proof. See HENDRICKX; GEVERS; BAZANELLA (2019).

The implication in (32) only holds if T 0
C,N+

i

is full row rank. A first result that
characterized the rank of a rational transfer matrix in terms of graph theoretical properties
was given in VAN DER WOUDE (1991). The author has shown that the rank of a transfer
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matrix is associated with the number of vertex-disjoint paths in an associated graph –
see Section 2.3. Building up on this concept, the result for general dynamic networks
was further extended in HENDRICKX; GEVERS; BAZANELLA (2019). To properly
introduce this notion we need to give a parametrization to every module in the network.
This can be done as follows

Gji(q, θ) = θji1 q
−kji q

nji
b + qn

ji
b −1θjinb+na+1 + · · ·+ θjina+2

qn
ji
a + qn

ji
a −1θjina+1 + · · ·+ θji2

. (33)

for real parameters {θjik }. Let us collect all parameters in the vector θ ∈ Rd and denote
G(q, θ) the transfer function obtained by a specific parameter. For a dynamic network, a
property is said to hold generically for G0(q) if, for any network matrix G(q, θ) consistent
with the graph associated with G0(q), the property holds for G(q, θ) for all parameters
θ except possibly those lying on a zero measure set on Rd. In a similar fashion, we say
that a property is generic for T 0(q) = (I − G0(q))−1 if for any parametrization G(q, θ)

consistent with the graph associated to G0(q) it holds for T (q, θ) = (I − G(q, θ))−1 for
almost all θ. We are now ready to define the concept of generic identifiability for a dynamic
network. First, the following lemma shows that for any parametrization consistent with
G0(q) if there exists a parametrization such that a property holds, then this property holds
for almost all parametrizations.

Lemma 3.2. (HENDRICKX; GEVERS; BAZANELLA, 2019). Let Q(·) : Cn×n → C be an

analytic function and consider a network matrix G0(z). If there exists a matrix A ∈ Cn×n

consistent with the graph associated to G0(z) such that Q(A) 6= 0, then Q(G0(z)) is

generically not identically zero as a function of z (for polynomial or rational Q(·), it then

has finitely many roots). Otherwise, Q(G(z)) ≡ 0 for every G(z) consistent with the

directed graph.

When we use this lemma with the determinant of (I −G(θ, z))−1 as the function Q(·)
we see that the rank of T 0(z) is a generic property. Since identifiability is dependent on
the rank of a subset of rows and columns of T 0(q) as shown in Lemma 3.1, we have that
identifiability of dynamic networks is a generic property for a given network topology.
Before introducing the concept of generic identifiability, recall that B denote the set of
excited nodes and C denote the set of measured nodes. We can now state the concept
of generic identifiability for dynamic networks as posed in HENDRICKX; GEVERS;
BAZANELLA (2019).

Definition 3.3. (HENDRICKX; GEVERS; BAZANELLA, 2019). A network matrix G0(q)

is generically identifiable from a set of measured nodes defined by C if, for any rational

transfer matrix parametrization G(θ, q) consistent with the directed graph associated to

G0(q), there holds

C(I −G(θ, q))−1 = C(I −G0(q))−1 =⇒ G(θ, q) = G0(q), (34)
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for almost all parameters θ except possibly those lying on a zero measure set in Rd.

This definition given in HENDRICKX; GEVERS; BAZANELLA (2019) was motivated
by the problem of partial measurement. That work was the first to address identifiability
using either partial measurement or the dual problem of partial excitation. Definition 3.3
can be naturally extended to the case of partial excitation and partial measurement. An
extension was formally introduced in BAZANELLA; GEVERS; HENDRICKS (2019) and
is defined in the following.

Definition 3.4. (BAZANELLA; GEVERS; HENDRICKS, 2019). The network matrix G0(q)

is generically identifiable from excitation signals applied in B and measurements made at

C if, for any rational transfer matrix parametrization G(θ, q) consistent with the directed

graph associated to G0(q), there holds

C(I −G(θ, q))−1B = C(I −G0(q))−1B =⇒ G(θ, q) = G0(q). (35)

for all parameters θ except possibly those lying on a zero measure set in Rd, where G(q, θ)

is any network matrix consistent with the graph.

Recall that CT 0(q)B can be consistently identified from MIMO identification tech-
niques using input-output data provided the model structure is general enough to contain
the “true” network and if a sufficiently rich input signal is applied (LJUNG, 1999). Hence,
for any pair of selections matrices B and C we can recover the input-output relationship
of the network. The problem is then recast into an algebraic problem to verify whether
or not we can uniquely recover the modules in the network matrix G0(q) from knowl-
edge of CT 0(q)B. From now on, we are going to assume that CT 0(q)B is known, since
this relationship can be consistently identified from input-output data. Definition 3.4 of
identifiability will be adopted as the main concept of identifiability in dynamic networks
throughout this thesis. An important remark is that the noise process can contribute to the
identifiability of the modules of the network through the spectrum Φv(z). In this chapter,
the focus will be on identifiability as stated in Definition 3.4.

Now, let us give an example that illustrates how these concepts can be applied and
what almost all parameters in the definition of generic identifiability means.

Example 3.1. (Adapted from HENDRICKX; GEVERS; BAZANELLA (2019)). Consider

the following network matrix:

G0(q) =


0 0 0 0 0

G0
21(q) 0 0 0 0

G0
31(q) 0 0 0 0

0 G0
42(q) G0

43(q) 0 0

0 G0
52(q) G0

53(q) 0 0

 .
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Suppose that nodes 1, 2 and 3 are excited, while nodes 4 and 5 are measured. This means

that B = {1, 2, 3} and C = {4, 5}, from which the associated matrices B and C can be

formed. We need to verify whether the implication in (35) is satisfied. For this purpose,

consider any parametrization G(θ, q) , G consistent with the directed graph associated

with G0(q). Using Definition 3.4 we can write omitting the arguments:

C(I −G)−1B = CT 0B[
G42G21 +G43G31 G42 G43

G52G21 +G53G31 G52 G53

]
=

[
T 0
41 T 0

42 T 0
43

T 0
51 T 0

52 T 0
53

]
, (36)

from which we can uniquely recover

G42 = T 0
42 = G0

42,

G43 = T 0
43 = G0

43,

G52 = T 0
52 = G0

52,

G53 = T 0
53 = G0

53.

Therefore, equation (36) implies that G42 = G0
42, G43 = G0

43, G52 = G0
52, and G53 = G0

53.

It only remains to verify under what conditions the remaining modules (G21, G31) can be

uniquely recovered. This can be done by using the information obtained from the other

relationships (T 0
41, T

0
51) in (36). The remaining unknown modules can be identified from

the following linear system: [
G0

42 G0
43

G0
52 G0

53

][
G21

G31

]
=

[
T 0
41

T 0
51

]
.

The remaining modules can be uniquely recovered from this linear system if and only if the

transfer matrix in the left hand side is full rank, or equivalently if

G42(q, θ0)G53(q, θ0) 6= G52(q, θ0)G43(q, θ0). (37)

This means that G0(q) is identifiable from measurements made at nodes {4, 5} and exci-

tations applied at nodes {1, 2, 3} for almost all parameters, except for those that obey

G0
42G

0
53 = G0

52G
0
43 . Hence, G0(q) is generically identifiable.

What this example shows is that for some networks we can uniquely recover the
modules of a network, except for a subset that obeys very particular equalities. The use of
the concept of generic identifiability is very useful, as it is linked to concepts from graph
theoretic tools. The first major advantage is that one does not need to be concerned with
the particular numeric values of θ. Once any particular θ is shown to yield identifiability,
then this property holds for almost all parameters values. Secondly, the verification of
identifiability is translated from verifying the rank of some matrices to verifying the
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number of vertex-disjoint paths from the associated directed graph of the network matrix
(HENDRICKX; GEVERS; BAZANELLA, 2019). This is particularly useful for large scale
networks as verification can be performed in polynomial time. Several graph-theoretic
conditions are given in HENDRICKX; GEVERS; BAZANELLA (2019) for the case where
all nodes are excited but only a subset of nodes are measured and for the dual problem of
full measurement and partial excitation. Within the same framework, in VAN WAARDE;
TESI; CAMLIBEL (2019) a graph simplification process is introduced and, based on it,
necessary and sufficient topological conditions were presented for the stronger notion of
global identifiability. Briefly speaking, this definition of identifiability concerns the ability
to recover the network matrix for all parametrizations as opposed to the concept of generic
identifiability where the property holds for almost all parametrizations. The concept of
generic identifiability was further extended to cope with the other definitions from literature.
See for instance SHI; CHENG; VAN DEN HOF (2022). The main objective of these works
is to give topological conditions under which the network matrix is generically identifiable.

An alternative approach to the identifiability problem for dynamic networks is to de-
termine what conditions on the experimental setting are necessary to guarantee generic
identifiability of the dynamic network. These conditions do not take the form of topological
conditions, rather the focus is to determine which nodes need to be excited and which
nodes need to measured such that the experiment render the network identifiable. That is,
the conditions for identifiability take the form of excitation/measurement conditions on the
nodes of the network. Thus, this approach consists of solving a synthesis problem: how to
allocate excitation signals and measurements that render a network generic identifiable.
This approach is specially useful from an experiment design perspective, since one must
decide which nodes to measure and which ones to excite before performing the identifica-
tion experiment. This new look at the identifiability problem for dynamic networks was
formally stated in MAPURUNGA; BAZANELLA (2021a).

From now on, we are going to focus on this alternative approach. When dealing
with the problem of identifiability, we are going to determine what are the experimental
conditions on the nodes that need to be excited and on the nodes that need to be measured
such that the network can be uniquely identified. For this purpose, let us introduce the
following definition that characterizes an excitation and measurement pattern (EMP) for a
dynamic network.

Definition 3.5. (MAPURUNGA; BAZANELLA, 2021a). Let G0(q) be a network matrix,

for which different selection matrices are considered. A pair of selection matrices B and

C, with its corresponding node sets B and C, is called an excitation and measurement
pattern - EMP, for short. An EMP is said to be a valid EMP if it is such that the network

(30) is generically identifiable. Define | EMP |= |B|+ |C|1 as the cardinality of an EMP.

1| · | standing for the cardinality of a set.
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A given EMP is said to be a minimal EMP if it is valid and there is no valid EMP with

smaller cardinality.

This definition establishes the framework for which we are going to tackle the problem
of identifiability in dynamic networks. One possible approach is to characterize all
minimal EMPs for a given network. This approach is also useful from an experiment
design perspective, since one can identify the network modules using the minimum number
of external excitation signals and measurements combined. We are going to first focus on
determining conditions for the minimal EMPs, and from that we are going to discuss how
to further extend these conditions such that all valid EMPs are characterized. Usually, the
extension from minimal EMPs to valid EMPs is straightforward because a valid EMP can
be obtained from minimal EMPs by adding an excitation or measurement at a particular
node.

In fact the requirement for excitation or measurement of some nodes depends on the
local topology of the node, i.e. its neighborhood. In order to render a network generically
identifiable, some nodes will need to be excited, while other nodes will need to be measured.
The next result presents a necessary condition for two types of nodes: sources and sinks.

Theorem 3.1. (BAZANELLA et al., 2017) The network matrix G0(q) is generically identi-

fiable from excitation signals applied to B and measurements made at C, only if F ⊆ B
and S ⊆ C, i.e. all sources are excited and all sinks are measured.

This theorem gives a necessary condition for generic identifiability of a dynamic
network. If a source node is not excited, then one can not uniquely recover the out-
neighbors of this source node. A dual argument is valid for sinks, if they are not measured,
then we can not uniquely recover their in-neighbors. In other words, all sources from a
network must be excited, while all sinks need to be measured. Hence, in order for an EMP
to be valid it must obey these excitation and measurement conditions for sources and sinks.
The excitation of a sink provides no useful information from which we can recover the
modules from the available equations. The dual argument is valid for sources, measuring a
source provides no useful information about the modules.

We have seen that sources need to be excited and sinks need to be measured. What
more can we say about the necessity of exciting or measuring a given particular node?
When any particular node is considered, the following theorem gives a necessary condition
for the identifiability of the modules that enter and leave any particular node.

Theorem 3.2. (BAZANELLA; GEVERS; HENDRICKS, 2019) If a node is neither ex-

cited nor measured, then none of its corresponding incoming and outgoing modules are

identifiable.

This theorem presented a necessary condition for identifiability of the in(out)-neighbors
of any node in a network. This means that every node must participate in the EMP if
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the objective is to render the network identifiable. In other words, each node of the
network must be either excited or measured to guarantee that the corresponding modules
are identifiable. Hence, the cardinality of a minimal EMP must be at least equal to the
number of nodes in the network, otherwise this EMP would not allow the recovery of some
modules of the network.

To summarize the findings of this section. We have given an overview of some key
previously known results for the identifiability problem for dynamic networks. Particularly,
we have presented that the identifiability problem of a dynamic network can be recast into
an algebraic problem, for which the solution depends on the rank of certain submatrices.
Moreover, we have presented results that show that identifiability is a generic property for
a given network topology, that is, it is valid for almost all parametrizations consistent with
the digraph associated to the network matrix. This concept was formalized by the definition
of generic identifiability. An attractive feature of this concept is that allowed it to provide
conditions based on the topology of the network, instead of the rank of certain matrices.
We have formulated an alternative approach that consists in determining the identifiability
conditions based on the experimental setting – EMPs – of the network. Based on this
approach, we have formally introduced the concept of valid EMP: one that renders the
network generic identifiable; and minimal EMP: a valid EMP with minimum cardinality
among all valid EMPs. We have presented results for excitation and measurement of a
network. Any valid EMP must obey the following conditions:

• Any source must be excited: F ⊆ B;

• Any sink must be measured: S ⊆ C ;

• Every node must be either excited or measured: B ∪ C =W .

3.4 Combining structures

In this section we present conditions to infer whether a dynamic network is generically
identifiable by separating the network into well-defined internal structures with known
identifiability conditions and their interconnections. The question of interest is which addi-
tional conditions may be required for the generic identifiability of the whole network given
that it can be subdivided into known structures, each of which is generically identifiable.

We consider that a dynamic network can be split up into two particular structures,
each being associated to a directed graph Gj = (Wj, Ej), for j = 1, 2. We assume that
these two structures have at least two nodes each, that they share no nodes between them
(W1 ∩W2 = ∅), that there may exist edges connecting G1 to G2, but none from G2 to G1.
Figure 6 depicts an example of network subdivided into two subnetworks.
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Figure 6 – An example of a dynamic network divided into two subnetworks with no shared
nodes.

Source: The author.

Thus, the network matrix can be partitioned as:

G0(q) =

[
G0

1(q) 0

G0
21(q) G0

2(q)

]
, (38)

where G0
i (q) ∈ Cni×ni are the network matrices associated with the graphs Gi for i = 1, 2.

The matrix G0
21(q) ∈ Cn2×n1 represents the edges that connect the first part of the network

to the second part.

From the network matrix (38) we have that:

T 0(q) =

[
T 0
1 (q) 0

T 0
21(q) T 0

2 (q)

]
=
(
In1+n2 −G0(q)

)−1
=[

(In1 −G0
1(q))

−1
0

(In2 −G0
2(q))

−1
G0

21(q) (In1 −G0
1(q))

−1
(In2 −G0

2(q))
−1

]
, (39)

where T 0
1 (q) and T 0

2 (q) are nonsingular. The IO representation of this network is given by:

CT 0(q)B =

[
C1 0

0 C2

][
T 0
1 (q) 0

T 0
21(q) T 0

2 (q)

][
B1 0

0 B2

]

=

[
C1T

0
1 (q)B1 0

C2T
0
21(q)B1 C2T

0
2 (q)B2

]
, (40)

where B1 ∈ Zn1×m1
2 , C1 ∈ Zp1×n1

2 , B2 ∈ Zn2×m2
2 , and C2 ∈ Zp2×n2

2 are the selection
matrices corresponding to each part of the network.

By hypothesis, it is possible to recover all modules of G0
1(q) and G0

2(q), since we
assume that both parts are generically identifiable, that is, we can recover G0

1(q) from
C1T

0
1 (q)B1 and G0

2(q) from C2T
0
2 (q)B2. Knowledge of G0

21(q) can only be recovered
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from C2T
0
21(q)B1 where T 0

21(q) is given by the bottom-left part of (39). From the IO model
(40) and (39) we have:

C2T
0
2 (q)G0

21(q)T
0
1 (q)B1 = C2T

0
21(q)B1. (41)

Therefore, the problem is whether we can identify G0
21(q) from (41) given that C2T

0
2 (q),

T 0
1 (q)B1 and C2T

0
21(q)B1 are known, by knowledge of G0

1(q), G
0
2(q), and hence T 0

1 (q),
T 0
2 (q). Whether G0

21(q) is generically identifiable depends on the topology defined by the
interconnection between the two subnetworks. Therefore, the problem we investigate in
this section is equivalent to determining which additional measurements may need to be
made at the nodes of G2 and which additional nodes of G1 may need to be excited in order
to guarantee that G0

21(q) is generically identifiable using (41).
The next theorem states a number of results regarding the conditions under which

G0
21(q) is generically identifiable from the excitations in G1 and measurements at G2.

Before presenting the results, we will introduce two concepts that will be useful in the
following.

Definition 3.6. The Kruskal rank of a matrix A ∈ CI×L denoted by kA is the maximum

value of k such that any k columns of A are linearly independent.

Notice that kA = 1 if A has at least two colinear columns and kA = 0 if and only if it
has a zero column. Finally, we call two edges G0

ji(q), G
0
kl(q) vertex-disjoint if j 6= k and

i 6= l. Notice that this is a particular case of vertex-disjoint paths, see Section 2.3. Now, we
are ready to state the identifiability results when the unknowns in G0

21(q) have a specific
structure.

Theorem 3.3. Consider a dynamic network with network matrix (38) divided into two

substructures that are generically identifiable with a given EMP, and let dk be the number

of edges connecting them, i.e. the number of non-zero elements of G0
21(q). The following

conditions hold.

(a) The edges of G0
21(q) can be recovered from (41) only if m1p2 ≥ dk;

(b) If all nodes of G1 are connected to all nodes of G2, then all edges of G0
21(q) are

generically identifiable if and only if all nodes of G1 are excited and all nodes of G2
are measured;

(c) If only one node j in G1 is connected to G2, and it is connected to all of its nodes,

then G0
21(q) is generically identifiable if and only if all nodes of G2 are measured

and the corresponding jth row of T 0
1 (q)B1 is not identically zero;

(d) If all nodes of G1are connected to node j in G2 and the nodes of G1 are not connected

to any other node of G2, thenG0
21(q) is generically identifiable if and only if all nodes

of G1 are excited and the corresponding jth column of C2T
0
2 (q) is not identically

zero;
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(e) Let all dk edges from G1 to G2 be vertex-disjoint, then G0
21(q) is generically identifi-

able if m1p2 ≥ dk and k(T 0
1 (q)B1)T + kC2T2 ≥ dk + 1.

Proof. We can rewrite (41) using the Kronecker product:(
[T 0

1 (q)B1]
T ⊗ C2T

0
2 (q)

)
vec(G0

21(q)) = vec(C2T
0
21(q)B1), (42)

where vec(·) is the operation that stacks the columns of a matrix into a single column. A
restriction on the columns of BT

1 T
0T
1 (q)⊗ C2T

0
2 (q) is defined by removing the columns

corresponding to the n1n2 − dk known zeros of G0
21(q). The corresponding linear system

can be written as Ax = b with A a rational matrix of dimension m1p2 × dk. A unique
solution is obtained only if A is generically full column rank. Thus, if m1p2 < dk no
unique solution is obtained, which proves item (a).

The scenario stated in item (b) implies dk = n1n2. In this case, a unique solution is
obtained if and only if rank

(
BT

1 T
0T
1 (q)⊗ C2T

0
2 (q)

)
= n1n2. Note that, by a property of

the Kronecker product, we have

rank
(
BT

1 T
0T
1 (q)⊗ C2T

0
2 (q)

)
= rank(T 0

1 (q)B1)rank(C2T
0
2 (q)) = m1p2,

because T 0
1 (q) and T 0

2 (q) are nonsingular. Thus, if all elements of G0
21(q) are unknown,

they can be recovered if and only if m1 = n1 and p2 = n2, which means that B1 = In1 and
C2 = In2 , i.e. all nodes of G1 are excited and all nodes of G2 are measured.

Now, let us prove item (c). Since node j in G1 is the only node connected to G2 and
since it is connected to all its nodes, it means that only the jth column of G0

21(q) is nonzero
with all its elements being nonzero. Hence, there are exactly dk = n2 unknowns in G0

21(q).
We can rewrite the expression (T 0

1 (q)B1)
T ⊗ C2T

0
2 (q) in (42) as a function of its columns:[

[(T 0
1 (q)B1)

T ]1 ⊗ [C2T
0
2 (q)]1 · · · [(T 0

1 (q)B1)
T ]1 ⊗ [C2T

0
2 (q)]n2 · · ·

· · · [(T 0
1 (q)B1)

T ]n1 ⊗ [C2T
0
2 (q)]n2

]
, (43)

where [·]i is used to denote the ith column. Removing the columns with known zeros in
G0

21(q) we obtain from (43) the following:[
[(T 0

1 (q)B1)
T ]j ⊗ [C2T

0
2 (q)]1 · · · [(T 0

1 (q)B1)
T ]j ⊗ [C2T

0
2 (q)]n2

]
=

[(T 0
1 (q)B1)

T ]j ⊗ C2T
0
2 (q). (44)

Using the Kronecker rank property, a unique solution is obtained if and only if

rank([(T 0
1 (q)B1)

T ]j) rank(C2T
0
2 (q)) = n2. (45)

This means, equivalently, that [(T 0
1 (q)B1)

T ]j is not identically zero and that C2 = In2 ,
because T 0

2 (q) is nonsingular. Hence, G0
21(q) is generically identifiable if and only if G0

2(q)



51

is fully measured and column [(T 0
1 (q)B1)

T ]j is not identically zero. The proof of item (d)
follows from duality with result (c).

Finally, consider item (e). It follows from the assumptions that each row of G0
21(q)

contains at most one non-zero element. By a relabeling of the nodes,G0
21(q), of size n2×n1,

can always be rewritten in a form such that the upper-left block is a diagonal matrix of
dimension dk, with dk ≤ min(n1, n2), while all other elements are zero. Eliminating the
columns corresponding to the known zeros of G0

21(q) in (43) yields:[
[BT

1 T
0T
1 (q)]1 ⊗ [C2T

0
2 (q)]1 [BT

1 T
0T
1 (q)]2 ⊗ [C2T

0
2 (q)]2 · · ·

[BT
1 T

0T
1 (q)]dk ⊗ [C2T

0
2 (q)]dk

]
= [BT

1 T
0T
1 (q)]1:dk � [C2T

0
2 (q)]1:dk , (46)

where� represents the column-wise Khatri-Rao product (BREWER, 1978). A useful result
for this kind of operation was given in Lemma 1 of SIDIROPOULOS; BRO; GIANNAKIS
(2000), which states that A� B is full column rank if kA + kB ≥ R + 1 for A ∈ KS×R

and B ∈ KL×R. Applying this result in (46) we have that the resulting linear system is
generically full column rank under the conditions stated.

It is interesting to note that condition (e) in Theorem 3.3 depends on the structure of
each part of the network. The results from Theorem 3.3 give a motivation for searching
identifiability conditions for particular structures, as one can combine them to identify some
modules and eventually the whole network. The next results present sufficient conditions
for the case where no additional conditions for generic identifiability are required for the
network.

Corollary 3.1. Let a network be divided into two subnetworks as in (38), with G0
21(q)

containing only vertex-disjoint edges. The whole network is generically identifiable if a

valid EMP is applied at each subnetwork and all nodes of subnetwork G1 are excited or all

nodes of subnetwork G2 are measured.

Proof. All modules within each subnetwork can be recovered since a valid EMP is applied
at each subnetwork. It remains to identify the interconnection structure between the sub-
networks. Under the assumptions stated, the interconnection G0

21(q) has dk = min(n1, n2)

unknowns. If all nodes of G0
1(q) are excited or all nodes of G0

2(q) are measured, then item
(e) from Theorem 3.3 is satisfied.

This result shows that for subnetworks interconnected through vertex-disjoint edges,
in addition to applying a valid EMP in each part of the network, it is sufficient to either
excite all nodes of subnetwork G1 or to measure all nodes from subnetwork G2. The next
corollary shows that when there is only one edge connecting the two subnetworks, then it
is enough to apply a valid EMP in each subnetwork.
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Corollary 3.2. Let a network be divided into two subnetworks as in (38), with G0
21(q)

containing only one nonzero element. The whole network is generically identifiable if each

subnetwork is subjected to a valid EMP.

Proof. Since each valid EMP must have at least one excitation and one measurement, the
result follows directly from item (e) from Theorem 3.3 with dk = 1.

These results can be used within a divide and conquer strategy: divide the networks into
subnetworks with known identifiability conditions, and from that determine the additional
requirements. One may combine known identifiability results, and repeating the procedure
for each known subnetwork one can identify the whole network. We have shown that the
fundamental problem for identifiability when we apply valid EMPs to the substructures is
to recover the interconnection structure between the two subnetworks. This indicates that if
the network matrix can be written in a lower triangular form, then by applying a valid EMP
in each subnetwork, the only edges that we need to identify are the local edges that connect
the two subnetworks. The identifiability conditions on the experimental setting depend
upon the nodes that are excited in the first subnetwork and the nodes that are measured
in the second subnetwork. In the next section, we are going to investigate identifiability
conditions for particular classes of acyclic networks.

3.5 Identifiability of acyclic dynamic networks

In this section, we investigate the identifiability conditions based on the experimental
setting approach introduced in the previous section for some classes of networks, namely
trees, parallel networks, and directed acyclic graphs (DAGs). Some conditions are derived
for these classes of networks based on the concept of valid EMPs. The approach adopted
here is to pursue identifiability conditions for specific classes of network in order to be used
in more general networks. In this way, one can build upon existing results for structures
within a more complex dynamic network.

3.5.1 Trees

In this section, we consider the class of dynamic networks whose corresponding graph
is a tree. A tree is a connected directed graph which contains no cycles, even if the order
of the edges are not considered, and every node must be connected to another node by at
most one path. We are going to assume that the nodes have been labeled sequentially, such
that there is an edge (j, i) in the associated digraph only if j > i. Notice that the nodes
of any tree can be labeled sequentially through a sorting algorithm (KAHN, 1962). An
example of a tree is depicted in Figure 7. A formal definition is given as follows.

Definition 3.7. A tree is a weakly connected graph, with the following properties: there

are no cycles, every node is connected to any other node by at most one path, and it is
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minimally connected – removal of any edge makes the tree to be disconnected.

As a tree is minimally connected, there are exactly n− 1 edges in a tree with n nodes.
The following theorem states necessary and sufficient conditions for generic identifiability
of a tree.

Theorem 3.4. (BAZANELLA; GEVERS; HENDRICKS, 2019). A tree is generically identi-

fiable if and only if the following conditions hold:

• F ⊆ B: all sources are excited;

• S ⊆ C: all sinks are measured;

• B ∪ C =W: every node is either excited or measured;

This theorem states that for a tree the necessary conditions on the EMP for any network
are also sufficient. Therefore, a minimal EMP for a tree has cardinality n and all valid
EMPs can be obtained from the minimal EMPs by simply adding more excitations and/or
measurements. A tree is composed of branches, which are trees with only one source and
one sink. The associated digraph of a branch is also called line or path. A formal definition
of a branch is given in the following.

Definition 3.8. A branch is a tree with only one source and one sink.

A direct application of Theorem 3.4 to the case of branches results in the following
corollary.

Corollary 3.3. (BAZANELLA; GEVERS; HENDRICKS, 2019). A branch is generically

identifiable if and only if the following conditions hold:

• the source is excited;

• the sink is measured;

• every node is either excited or measured.

Figure 7 – An example of tree network.

Source: The Author.
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In the next chapter we will analyze the accuracy of the estimates for networks with
the topology of a branch. This corollary characterizes all minimal EMPs for a branch.
These results produce the basic building blocks for minimal EMPs in dynamic networks
with tree/branch structure. For a tree network, only the sinks and sources need a specific
requirement of being measured and excited, respectively. In order to determine the number
of minimal EMPs we are going to recall the concept of internal node – see Section 2.3.

Definition 3.9. An internal node is one in which there is at least one in-neighbor and one

out-neighbor.

An internal node is any node that is neither a source nor a sink. Let m be the total
number of internal nodes from a tree: m , |W| − |F| − |S|. The number of minimal
EMPs for a tree is 2m, and specifically for a branch is 2n−2.

A more general network topology is a multitree, defined as follows.

Definition 3.10. A multitree is a weakly connected graph in which there are no cycles and

any two nodes are connected by at most one path.

A multitree is a more general graph for which a tree is special case. The key difference
between these two structures is that a multitree is not restricted to be minimally connected
as a tree. In Figure 8 is shown an example of multitree network.

It is straightforward to extend the results presented for trees in Theorem 3.4 to multitrees.
In fact, there is no additional experimental requirements for mutitrees and the same
procedure to identify trees can be applied to multitrees. We formally state necessary and
sufficient conditions for identifiability of dynamic networks whose topology correspond to
a multitree in the following.

Figure 8 – An example of multitree network.

Source: The author.
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Theorem 3.5. A dynamic network with topology of a multitree is generically identifiable if

and only if F ⊆ B; S ⊆ C; B ∪ C =W .

Proof. The stated conditions were shown to be necessary for any dynamic network in
Theorems 3.1 and 3.2. To show sufficiency, consider a source in the multitree and all
paths that link it to sinks. This subnetwork corresponds to a tree and all its edges can be
identified using Theorem 3.4. Apply the same reasoning to every source in the multitree
and the result follows.

This theorem shows that a multitree is generically identifiable under the same conditions
in which a tree can be identified. These two structures are very general acyclic graphs,
whose identifiability conditions will be useful later on to determine the identifiability of
more general networks.

In this section we have presented necessary and sufficient conditions for two classes
of networks: branches and trees. The former is a special case of the latter. It turns out
that for these classes of networks the necessary conditions that apply for identifiability
of any dynamic network are also sufficient. We have introduced the class of multitrees
networks. Moreover, we have demonstrated that the conditions under which this network
is generically identifiable are exactly the same as for trees. This means that the minimal
EMPs for these classes of networks have cardinality equal to the number of nodes in the
network.

3.5.2 Parallel networks

In this section we investigate the role which parallel paths play in the generic identifia-
bility of dynamic networks. These results will be important because we can effectively
combine previously known results for trees with new conditions for parallel paths. Combin-
ing these results, one can obtain general conditions for a wide class of dynamic networks.
A formal definition of a parallel network is given in the following.

Definition 3.11. A parallel network is a network composed of a single source and a single

sink. There are np paths from the source to the sink. These paths share only two nodes: the

source and the sink.

This network represents a network whose two particular nodes are connected by an
arbitrary number of paths. Before addressing the identifiability problem for this class of
network, we will start the analysis with a simple parallel network in order to gain insight
on the excitation and measurement requirements. A simple parallel network is defined as
follows.

Definition 3.12. A simple parallel network is a parallel network for which each path from

the source node to the sink contains exactly three nodes.
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Examples of a simple parallel network and a parallel network are depicted in Figure 9.
An n-node simple parallel dynamic network is defined by the following network matrix,
assuming that the nodes have been labeled sequentially.

Figure 9 – Examples of parallel networks.
a) An example of simple parallel network
with five nodes.

b) An example of parallel network.

Source: The author.

G0(q) =



0 0 · · · · · · 0

G0
21(q) 0 · · · · · · ...
...

... · · · · · · ...

G0
n−1,1(q) 0 · · · · · · ...

0 G0
n2(q), · · · G0

n,n−1(q) 0


. (47)

The next theorem states necessary and sufficient conditions that characterize all valid
EMPs for a simple parallel network.

Theorem 3.6. (MAPURUNGA; BAZANELLA, 2021b). A parallel network with network

matrix in (47) is generically identifiable if and only if the following conditions hold: F ⊂ B,

S ⊂ C, B ∪ C =W , and in addition: |B \ F ∩ C \ S| = n− 3, i.e. at least n− 3 nodes,

which must be neither a sink nor a source, are both excited and measured.

Proof. The first three conditions are known to be necessary for any network. They imply
that node 1 must be excited and node n must be measured. Now, from the structure of the
network, one can form the input-output representation from

(In −G0(q))−1 =

[
GE 0

−GM 1

]−1
=

[
G−1E 0

GMG
−1
E 1

]
,
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where

GE =

[
1 0

−Gs In−2

]
, GM =

[
0 Gi

]
,

Gs =
[
G0

21(q) G0
31(q) · · · G0

n−1,1(q)
]T
,

Gi =
[
G0
n2(q) G0

n3(q) · · · G0
n,n−1(q)

]
.

Combining these expressions one can find that:

T 0(q) =

 1 0 0

Gs In−2 0∑
i∈I G

0
ni(q)G

0
i1(q) Gi 1

 . (48)

The question is which elements of T 0(q) must be identified in order to recover Gs and
Gi from (48). Inspection of this equation shows that there is a total of 2n − 4 edges to
be identified from 2n− 3 elements of T 0(q) that depend on them, thus providing useful
information. The modules G0

j1(q) (G0
nj(q)) for j ∈ I can be recovered from either T 0

j1(q)

(T 0
nj(q)) or T 0

n1(q). However, we can only recover at most one edge from T 0
n1(q), leaving all

other modules to be identified from T 0
j1(q) and T 0

nj(q). Assume that nodes l, c ∈ I are not
excited, while all other nodes are both excited and measured. Since T 0

nl(q) and T 0
nc(q) are

not available, it only remains T 0
n1(q) to recover both G0

nl(q) and G0
nc(q). After identifying

all modules, we are left with one equation and two remaining unknowns (argument q
omitted):

GnlT
0
l1 +GncT

0
c1 = T 0

n1 −
∑

i∈I\{l,c}

T 0
niT

0
i1.

A similar argument can be made for the situation where l and c are not measured. Hence,
it is not possible to identify some edges when more than two internal nodes are not excited
and measured. To show sufficiency, assume that the conditions stated in the theorem
hold. Suppose that node c ∈ I is either excited or measured. We can recover the transfer
functions as:

Gj1(q) = T 0
j1(q), for j 6= c, (49)

Gnj(q) = T 0
nj(q), for j 6= c, (50)

Gc1(q) =
−∑i∈I\{c} T

0
i1(q)T

0
1i(q)

T 0
nc(q)

, Gnc(q) = T 0
nc(q), if c ∈ B, (51)

Gc1(q) = T 0
c1, Gnc =

−∑i∈I\{c} T
0
i1(q)T

0
1i(q)

T 0
c1(q)

, if c ∈ C. (52)

In this way, a network with parallel structure must have almost all nodes excited and
measured, leaving just one to be relaxed from this condition. As a consequence, a minimal
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EMP for this topology has cardinality 2n− 3, which corresponds to almost the worst case
– exciting and measuring all nodes. This is a strong restriction, since a minimal EMP with
this cardinality would be enough to identify a wide number of other networks. Now, we
are going to generalize the results obtained for the simple parallel network to the class
of parallel networks, in which the paths have length larger than one from the source to
the sink. The next result states necessary and sufficient conditions for general parallel
networks.

Theorem 3.7. Consider a parallel network from Definition 3.11 with one source 1 ∈ F
connected through nj ≥ 2 paths

(
P1,P2, . . . ,Pnj

)
to one sink n ∈ S. Let VPi

,

{1, ki1, ki2, . . . , kipi , n} be the set of nodes in path Pi, for i = 1, . . . , nj . This class of

network has the property that PV1 ∩ PV2 ∩ · · · ∩ PVnj
= {1, n}, i.e. all paths have in

common just the first and last nodes. A parallel network is generically identifiable if and

only if F ⊂ B, S ⊂ C, B ∪ C = W , and in addition for each path among nj − 1 paths,

there exist at least k′j, k
′′
j ∈ VPj

\ {1, n}, such that k′j ≤ k′′j , k′j ∈ B, k′′j ∈ C.

Proof. Necessity: The first three conditions are known to be necessary for any network.
It remains to show the last condition, let us prove it by contradiction. Assume that two
paths Pi and Pj do not obey the last condition, this implies that there are three possibilities:
1) all internal nodes of a particular path are excited, 2) all internal nodes of a path are
measured, or 3) the first l internal nodes of a path are measured and the remaining are
excited. Assume, without loss of generality, that each path Pk for k = 1, 2, . . . , nj , has
pk + 2 nodes. Since each path only shares the first and last nodes with any other path,
this implies that there are pk + 1 modules in path Pk. Another consequence of this fact
is that each module appears only in its respective path. Therefore, each module for each
path could only be identified with information from its own path. If every node in Pi is
excited (or measured), we would get exactly pk + 1 useful equations from which we could
recover its modules. This is the maximum number of useful equations that we could get
from a path without obeying the last condition of the theorem. Hence, by either exciting or
measuring all nodes in Pi and Pj , we will have pj + pi + 2 unknowns for pj + pi + 2 useful
equations. However, as both paths have the same start and end nodes, this means that one
of the useful equations will be the same for both paths. Specifically, T 0

n1(q) represents
the same information for all paths. This implies that there is pj + pi + 1 different useful
equations from which we need to recover pj + pi + 2 unknowns.

Sufficiency: Let us consider that path Pm does not obey the condition stated in the
theorem. For each path Pl 6= Pm we can identify its edges as follows. Let VPl

=

{1, kl1, kl2, . . . , klpk , n}, and assume that node kli is excited and node klj is measured, with
klj ≥ kli. The transfer functions corresponding with the edges of Pl can be identified as
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follows:

if kl1 ∈ B, Gl
k1,1

(q) =
T 0
klj ,1

(q)

T 0
klj ,k

l
1
(q)

; (53)

if kl1 ∈ C, Gkl1,1
(q) = T 0

kl1,1
(q). (54)

Consider now kl2. If kl2 ∈ C then we can recover Gkl2,k
l
1
(q) =

T 0

kl2,1
(q)

G
kl1,1

(q)
. Conversely, if

kl2 ∈ B, then we can recover Gkl2,k
l
1
(q) =

T 0

kl
j
,1
(q)

T 0

kl2,1
(q)G

kl1,1
(q)

. We can apply the same reasoning

for all nodes k = kl1, k
l
2, . . . , k

l
j . In a similar fashion we can recover the remaining transfer

functions as:

if klj + 1 ∈ B, Gklj+1,kj
(q) =

T 0
n,kl1

(q)

T 0
klj ,k

l
i
(q)T 0

n,klj+1
(q)

; (55)

if klj + 1 ∈ C, Gklj+1,kj
(q) =

T 0
klj+1,kli

(q)

T 0
klj ,k

l
i
(q)

. (56)

Applying this reasoning for the remaining nodes k = klj + 1, klj + 2, . . . n in Pl one
can recover all transfer functions. The only remaining path is Pm, whose set of nodes
corresponds to VPm = {1, km1 , km2 , . . . , kmpm , n}. Notice that if Pm obeyed the condition
stated in theorem, there would be nothing else to proof. For this reason, we assume that Pm
does not obey the last condition of this theorem. We can recover all modules in a similar
way as we did for path Pl, except for one module in each case. Suppose that km1 is excited,
in order to the last stated condition to be false, all other nodes from Pm need to be excited.
In this situation, we can recover all transfer functions from Pm, except G0

km1 ,1
(q). Suppose

now that kmpm is measured, then Pm does not obey the last stated condition if all other nodes
from Pm are measured. In a similar way, we can recover all transfer functions from Pm,
except G0

n,kmpm
(q). The last case is where the first (km1 , k

m
2 , . . . , k

m
j ) are measured and the

remaining (kmj+1, . . . , k
m
pm) are excited. For this case, we can recover all modules from Pm,

but G0
kmj+1,k

m
j

(q). In all cases, there will be only one remaining unknown in the network. As
everything else is known, the remaining unknown module can be successfully recovered
from T 0

n,1(q).

Theorem 3.7 provides necessary and sufficient conditions for the class of parallel
networks. The conditions state that there are a number of minimal EMPs with minimal
cardinality – |EMP| = n. The main restriction is that in nj − 1 paths, we must have a node
excited followed by a measured node somewhere in each of these n− j − 1 paths. This
restriction is less severe for the cardinality of minimal EMPs than exciting and measuring
a node, since we can have minimal EMPs with the least achievable cardinality n. What we
can conclude from these conditions is that if there are two or more parallel paths from one
node to another, then in order to uniquely identify all modules there should be an excitation
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followed by a measurement in every additional parallel path. This condition allows us to
recover some modules within each path independently of the remaining paths. Thus, we
must guarantee that some modules within each path are known or can be identified from
the available input-output data.

In summary, we now have necessary and sufficient conditions for identifiability of edges
in parallel paths from one source to one sink. We can use these results to determine what
additional excitations and measurements are required for each path in more complicated
structures. These results can be instrumental to the analysis to the case of more general
acyclic dynamic networks, which will be investigated in the next section.

3.5.3 Directed acyclic graph

In this section, we investigate generic identifiability conditions for dynamic network
whose associated digraph corresponds to a very general class of graphs: a directed acyclic

graph (DAG). This topology is very general and allows many type of connections, except
for feedbacks in the network. This means that this class of networks do not allow any
cycle - see Section 2.3, i.e. there is no path P starting in node k and ending in node k. In
all discussion that follows, we will assume that the nodes have been labeled sequentially.
Recall that this can be done by a sorting algorithm (KAHN, 1962).

Before tackling the general identifiability problem for acyclic dynamic networks, we
are going to consider special cases of these networks. Notice that the previously analyzed
parallel and tree networks are just special cases of a DAG.

We will call a feedforward network an acyclic dynamic network with DAG topology
whose every node is fully connected to all other nodes ahead of it. Recall that no cycles
are allowed. The network matrix of a feedfoward network corresponds to a strictly lower
triangular network matrix.

G0(q) =



0 0 0 · · · 0

G0
21(q) 0 0 · · · 0

G0
31(q) G0

32(q) 0 · · · 0
... . . . . . . . . . ...

G0
n1(q) G0

n2(q) · · · G0
n,n−1(q) 0


(57)

For a more general DAG, some G0
ji(q) in (57) for j > i are known to be zero and the

corresponding network matrix can be obtained from (57) by just using the knowledge of
which G0

ji’s are zero.
We formally define these two network structures in the following.

Definition 3.13. A feedfoward network is one network whose network matrix can be

written as (57) with G0
ji(q) 6= 0 for j > i.

The structure in (57) has one source and one sink and each node has a different number
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of parallel interconnections, depending on its distance to the sink: node l has n− l outgoing
edges. Figure 10 illustrates an example of feedforward network with four nodes.

As for a directed acyclic graph (DAG), it is the more general class of acyclic digraphs,
which we formally define as follows.

Definition 3.14. A directed acyclic graph is a digraph in which there are no cycles.

We are now going to obtain some relationships among the G0
ji’s and T 0

ji’s for the
network matrix in (57). These expressions will be useful for the input-output description
and the analysis of identifiability. They are formally stated in the next lemma.

Lemma 3.3. Consider a dynamic network with n nodes and network matrix (57). The

following relationships hold for l > j:

T 0
ll(q) = 1, T 0

jl(q) = 0, (58)

T 0
lj(q) =

l−1∑
i=j

G0
li(q)T

0
ij(q), (59)

T 0
lj(q) =

l∑
i=j+1

T 0
li(q)G

0
ij(q), (60)

G0
lj(q) = T 0

lj(q)−
l−1∑
i=j+1

G0
li(q)T

0
ij(q), (61)

G0
lj(q) = T 0

lj(q)−
l∑

i=j+1

T 0
li(q)G

0
ij(q). (62)

Proof. Relationship (58) follows from straightforward calculations. Let G0
n(q) denote a

network matrix in the form (57) with n nodes. Consider a network matrix with n−1 nodes.
We can write G0

n(q) as a function of G0
n−1(q) from (57) as:

G0
n(q) =

[
G0
n−1(q) 0

G0
n,r(q) 0

]
, (63)

whereG0
n,r(q) =

[
G0
n1(q) G0

n2(q) · · · G0
n,n−1(q)

]
. We can obtain the IO representation

from T 0
n(q) , (I −G0

n(q))−1 and (63) as

T 0
n(q) =

[
(In−1 −G0

n−1(q))
−1 0

G0
n,r(q)(In−1 −G0

n−1(q))
−1 1

]
=

[
T 0
n−1(q) 0

G0
n,r(q)T

0
n−1(q) 1

]
. (64)

It follows from (64) that the last row of T 0
n(q) can be written as:

T 0
n1(q)

T 0
n2(q)

...
T 0
n,n−1(q)


T

=


G0
n1(q)

G0
n2(q)

...
G0
n,n−1(q)


T

T 0
n−1(q).
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As T 0
n−1(q) does not depend on T 0

n(q), relationship (59) follows for l = n. Relationship
(61) follows from (59) by isolating G0

lj(q) and using (58). Finally, relationships (60) and
(62) follows from the fact that:

T 0(q) , (I −G0(q))−1 ⇐⇒ T 0(q)(I −G0(q)) = I = (I −G0(q))T 0(q)

⇐⇒ T 0(q)G0(q) = G0(q)T 0(q). (65)

and using (58) in (65) gives the desired result.

An important remark is that (59) remains valid for any DAG network, provided we
substitute the edges that do not exist by zero. With these expressions, we are now able to
obtain conditions on the minimal EMPs. For a feedforward network a minimal EMP must
excite and measure all internal nodes, as it is proven in the following theorem.

Figure 10 – A feedforward network with four nodes.

Source: The Author.

Theorem 3.8. A feedfoward dynamic network is generically identifiable if and only if

F ⊆ B, S ⊆ C, and I ⊆ B ∩ C.

Proof. First, the IO model of the network obeys (58) and (59).
Necessity: From Theorem 3.1, every source must be excited and every sink must be

measured. This network has a total of n(n−1)/2 unknowns. After removing the equations
that have no information (58), it only remains n(n− 1)/2 useful equations. Hence, if one
node in I is not measured or excited we will have more unknowns than available equations.

Sufficiency: The conditions in the statement are known to be sufficient for any network
– see Theorem 6.2 in GEVERS; BAZANELLA; PARRAGA (2017).

These are very strong conditions that this class of networks must satisfy, since they
would provide generic identifiability even for a “full” network, that is, one which would
also have feedback paths. On the other hand, it is not surprising, since most nodes need
to be excited and measured in a simple parallel network – see Theorem 3.6. This strong
requirement is due to the presence of some parallel connections among the nodes. In
fact, certain internal nodes must be excited while other type of nodes must be measured.
Before introducing the special kind of nodes, we say that node i is connected to node j if
G0
ji(q) 6= 0. We now introduce the two types of internal nodes that will be useful in the

analysis.
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Definition 3.15. An internal node j is called a dource if it has at least one out-neighbor

that is connected to all in-neighbors of j.

Definition 3.16. An internal node j is called a dink if it has at least one in-neighbor that

connects to all out-neighbors of j.

Notice that these two definitions depend solely on the neighborhood of the node,
whether or not a node can be classified as a dource or dink depends on the interconnection
of its neighborhood. Furthermore, a given internal node can be both dource and dink.
Figure 11 depicts an example of acyclic network, where nodes 2 and 5 are classified as
dources and node 4 is a dink. Notice that for a feedfoward network, as depicted in Figure
10, all internal nodes are both dources and dinks.

Figure 11 – An example of acyclic dynamic network where nodes 2 and 5 are dources and
node 4 is a dink.

Source: The Author.

A more general class of feedforward networks is one in which not all of the forward
paths exist, which corresponds to the class of directed acyclic graphs (DAGs) – see
Definition 3.14. For this class of networks, the following theorem provides a necessary
condition on the EMP requirements of dources and dinks.

Theorem 3.9. Consider an acyclic dynamic network whose corresponding graph associ-

ated to the network matrix is a directed acyclic graph. All transfer functions of the network

are generically identifiable only if B ∪ C =W , all sources and dources are excited, and

all sinks and dinks are measured.

Proof. The first condition is known to be necessary for any network as presented in
Theorem 3.2. That sources and sinks must be excited and measured, respectively, was
presented in Theorem 3.1. Let us start by showing that dources must be excited. For this
purpose, we are going to divide the network into two subnetworks, such that the network
matrix (57) can be partitioned as (38). The first subnetwork has the set of nodes defined by
W1 = {1, 2, . . . , l}, while for the second part the set of nodes isW2 = {l+1, l+2, . . . , n},
with l a dource. As l is a dource, there exists a j ∈ N+

l such thatG0
jk(q) 6= 0 for all k ∈ N−l .

We have seen in (41) that all modules of each subnetwork can be identified if a valid EMP
is applied to each subnetwork. It remains to know whether the edges of the submatrix
G0
W2,W1

(q) = G0
21(q) are identifiable. Consider that node l is not excited. Now, to recover
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G0
21(q) we can form the linear system Ag21 = b as in (42), where g21 = vec(G0

21(q)),
b = vec(C2T

0
21(q)B1) and

A = (T 0
1B1)

T ⊗ C2T
0
2 =



C2T
0
2 t21C2T

0
2 t31C2T

0
2 · · · · · · tl1C2T

0
2

0 C2T
0
2 t32C2T

0
2 · · · · · · tl2C2T

0
2

0 0 C2T2 t43C2T
0
2 · · · tl3C2T

0
2

...
... . . . . . . ...

...
0 · · · · · · · · · C2T

0
2 tl,l−1C2T

0
2


,

(66)

where tji is the (j, i) element of T 0
1B1. From now on we drop q as argument for notation

convenience. Notice that as l is not excited, the corresponding Tkl’s are not present in (66)
as they are not available for identification. The edges from g21 can be uniquely identified if
and only if A is full column rank. Each block column of A is related to some edges in G0

21,
specifically, its columns. From (59), the last block column of (66) can be written as:

tl1C2T
0
2

tl2C2T
0
2

...
tl,l−1C2T

0
2

 = Gl1


C2T

0
2

0
...
0

+Gl2


t21C2T

0
2

C2T
0
2

...
0

+ · · ·+Gl,l−1


tl−1,1C2T

0
2

tl−1,2C2T
0
2

...
C2T

0
2

 . (67)

Notice that (67) implies that the last block column of (66) is a linear combination of the
other block columns that depend on the incoming edges of l: G0

lk for k ∈ N−l . Recall that
for a DAG some G0

ji are zero. Now, each block column in (67) is associated with a group
of edges in G0

21 through g21. If some edge from g21 is zero, then the corresponding column
in A is multiplied by zero and we can remove it from A. Now, if the edges in g21 associated
with the blocks columns corresponding to G0

lk are different from zero, then A will be rank
deficient. If l is a dource, then there exists a nonzero edge (G0

jk, with k ∈ N−l ) in g21 for
each corresponding block column related to the incoming edges G0

lk in (67). Thus, A is
rank deficient and the corresponding edges can not be identified.

Let us now consider the measurement of dinks. The proof follows from very similar
arguments, except that this time the network will be divided in two subnetworks such
that the first part has the nodes set asW1 = {1, 2, . . . , l − 1} and the second partW2 =

{l, l + 1, . . . , n}, with l a dink. Since l is a dink, there exists a j ∈ N−l such that G0
kj 6= 0

for all k ∈ N+
l . In a similar fashion, we can form a linear system (Ag21 = b) on the

unknowns and get a similar matrix as (66):

A = [T 0
1B1]

T ⊗ C2T2 =



C2T2 t21C2T2 t31C2T2 · · · tl1C2T2

0 C2T2 t32C2T2 · · · tl2C2T2

0 0 C2T2 · · · tl3C2T2
...

... . . . . . . ...
0 · · · · · · · · · C2T2


.
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Notice that

rank(A) = rank
(
(T 0

1B1)
T ⊗ C2T

0
2

)
=

rank
(
(T 0

1B1)
T
)

rank(C2T
0
2 ) = rank

(
C2T

0
2 ⊗ (T 0

1B1)
T
)
.

It will be more useful to analyze rank of A′ , C2T2 ⊗ (T 0
1B1)

T instead of the rank of A.
For notation convenience, assume without loss of generality that B1 = I , i.e all nodes
from the first subnetwork are excited. The structure of A′ is as follows

A′ =


t21[T

0
1 ]T [T 0

1 ]T 0 · · · 0

t31[T
0
1 ]T t32[T

0
1 ]T [T 0

1 ]T · · · 0
...

... . . . . . . ...
tn−l+1,1[T

0
1 ]T tn−l+1,2[T

0
1 ]T · · · · · · [T 0

1 ]T

 , (68)

where tji is the (j, i) element of C2T
0
2 . Matrix A′ has the same structure of (66). Similarly

one can write the first block columns of A′ as:
t21[T

0
1 ]T

t31[T
0
1 ]T

...
tn−l+1,1[T

0
1 ]T

 =Gnl


0
...
0

[T 0
1 ]T

+Gn−1,l


0
...

[T 0
1 ]T

tn−l+1,n−l[T
0
1 ]T

+ · · ·

+Gl+1,l


[T 0

1 ]T

t32[T
0
1 ]T

...
tn−l+1,2[T

0
1 ]T

 . (69)

The dual conclusion can be made for this case if any of {G0
l+1,l, . . . , G

0
nl} is zero and for

the unknowns in g21 associated with each block column of A′. Since l is a dink, there
exists nonzero edges (G0

kj for k ∈ N+
l ) in g21 that cause a rank drop in A′.

This result allows one to determine which nodes must be excited and which nodes must
be measured in a quite general class of dynamic networks whose topologies correspond
to a directed acyclic graph. The condition presented in this theorem is very useful from a
local perspective. This means that a necessary condition for excitation or measurement
of an internal node i ∈ I is based just on its in-neighbors (N−i ) and out-neighbors (N+

j )
– see Definitions 3.15 and 3.16. The reason why a feedfoward network has such strong
conditions is due to the fact that all internal nodes of this class of networks are dources and
dinks. Using this result we can determine which nodes need to be excited and measured
based only on the neighborhood of the nodes. This condition is, however necessary,
not sufficient to determine whether some node should be excited (measured) or not. A
requirement for a node to be excited (measured) could come from the applied EMP in the
network. That is, even if a node l ∈ I does not obey the conditions in Theorem 3.9, it
could need to be excited (measured) due to other conditions on the EMP.
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In order to illustrate the usefulness of this result we provide the following example.

Example 3.2. Consider the dynamic network depicted in Figure 12. From the topol-

ogy of the network we determine the set of sources (F = {1, 2, 3, 4}), and sinks (S =

{28, 29, 30, 31, 32}). The former need to be excited, while the latter need to be measured.

We now determine which nodes are dources or dinks based on the neighborhood of each

node. Consider node 23, for which we haveN−23 = {16, 17} andN+
23 = {31, 32}. Node 23

is a dource because nodes 16 and 17 are connected to node 32. For this reason, it must be

excited. Node 23 is also a dink since node 16 is connected to nodes 31 and 32. Thus, node

23 must also be measured. For the other nodes in the network we find that the following

nodes are dources {5, 7, 10, 13, 23, 27}, while the following are dinks {8, 13, 23}.

Figure 12 – An example of acyclic dynamic network.

Source: The Author.

Theorem 3.9 allows us to allocate excitation for nodes that are dources and measure-
ments for dinks in a general class of acyclic dynamic networks. In this way, as shown
in this example, we can determine by inspection the nodes that must be excited and the
ones that must be measured. This is a necessary condition that is independent of the EMP
applied in the network and only depends on the local topology of the node. However, it
may be the case that for a given particular EMP, node i would need to be excited, even
if it is not a dource, due to the EMP employed. A similar remark can be made for nodes
that need to be measured in a DAG network. The fundamental result is that if a node l
is a dource and a dink, then every valid EMP must contain node l as both excited and
measured.

We are now going to present results related to paths embedded in a general acyclic
network. These results can be used along with the necessary conditions for excitation
and measurements presented in Theorem 3.9 and the results for general parallel networks
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presented in Theorem 3.7. For all results that follow, we consider paths, say P , with the
property that no two nodes from a path P are connected through any other path in the
network. We refer to paths with this property as a channel path. The following result
gives a sufficient condition for recovering the modules within a channel path in an acyclic
dynamic network.

Theorem 3.10. Consider a path P(VP , EP), with nodes VP = {k1, k2, . . . knp} such that

k1 is connected to knp only through P embedded in a dynamic network with topology of a

directed acyclic graph. If there exists a node s ∈ B such that some path Ps connects s to

k1 but no other path connects s to {k2, . . . , knp}, then all edges from EP can be generically

identified if VP ,⊆ B ∪ C and knp ∈ C.

Proof. If k1 ∈ B then all edges from P can be uniquely identified following the Theorem
3.4. Now, consider that k1 ∈ C. If k2 ∈ C then we can recoverG0

k2,k1
(q) = T 0

k2s
(q)/T 0

k1s
(q),

otherwise k2 ∈ B and we can recover G0
k2,k1

(q) = T 0
knps

(q)/(T 0
k1s

(q)T 0
knpk2

(q)). We can
proceed similarly for the next node. Suppose k3 ∈ C, then we can identify

G0
k3k2

(q) = T 0
k3s

(q)/(T 0
k1s

(q)G0
k2k1

(q)), (70)

otherwise k3 ∈ B and we can recover G0
k3k2

(q) = T 0
knps

(q)/(T 0
k1s

(q)G0
k2k1

(q)T 0
knpk2

(q)).
We can do this ∀i ∈ {2, 3, . . . , np}:

G0
ki,ki−1

(q) =
T 0
knps

(q)

T 0
knpki

(q)G0
ki−1,ki−2

(q) · · ·G0
k2k1

(q)T 0
k1s

(q)
, if ki ∈ B, (71)

G0
ki,ki−1

(q) =
T 0
kis

(q)

T 0
k1s

(q)G0
ki−1,ki−2

(q) · · ·G0
k2k1

(q)
, if ki ∈ C. (72)

This theorem is related to channel paths, those with the property that no two nodes
within the path are connected through other paths in the network. For this kind of path, this
theorem shows that we can identify all edges from a channel path provided there exists
some excited node in the network connected to the first node of that path, but it is not
connected to any other node from that path. The next theorem provides a dual result for
the case where there is some measured node ahead of a channel path.

Theorem 3.11. Consider a path P(VP , EP), with nodes VP = {k1, k2, . . . knp} such that

k1 is connected to knp only through P embedded in a dynamic network with topology of a

directed acyclic graph. If there exists a node s ∈ C such that some path Ps connects knp

to s, but no other path connects {k1, k2, . . . , knp−1} to s, then all edges from EP can be

identified if VP ⊆ B ∪ C and k1 ∈ B.

Proof. If knp is measured, then all edges from P can be identified following Theo-
rem 3.4. Now, consider that knp ∈ B. If k2 ∈ C, then we can recover G0

k2k1
(q) =
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T 0
k2k1

(q), otherwise if k2 ∈ B we can recover G0
k2k1

(q) = T 0
sk2

(q)/T 0
sk1

(q). Proceed-
ing in a similar fashion for the next nodes. Suppose k3 ∈ B, then we can recover
G0
k3k2

(q) = T 0
sk1

(q)/(T 0
sk3

(q)G0
k2k1

(q)), otherwise if k3 ∈ C we can recover G0
k3k2

(q) =

T 0
k3k1

(q)/(G0
k2k1

(q)). Applying the same reasoning for i ∈ {2, 3, . . . np}:

G0
kiki−1

(q) =
T 0
sk1

(q)

T 0
ski

(q)G0
ki−1ki−1

(q) · · ·G0
k2k1

(q)
, if ki ∈ B, (73)

G0
kiki−1

(q) =
T 0
kik1

(q)

G0
ki−1ki−1(q)

· · ·G0
k2k1

(q)
, if ki ∈ C. (74)

This theorem presents the dual result of Theorem 3.10. If the first node of the channel
path P is excited and all its other nodes are either excited or measured, then we can
identify all modules associated with P provided there exists some measured node in the
network after P , assuming that the nodes have been labeled sequentially, such that all paths
connecting the nodes from P to that measured node are connected only through P . The
next result provides a sufficient condition that it is a combination of the previous results.

Theorem 3.12. Consider a path P(VP , EP), with nodes VP = {k1, k2, . . . knp} such that

k1 is connected to knp only through P embedded in a dynamic network with topology of a

directed acyclic graph. If there exist nodes f ∈ B, s ∈ C, a path Pf that connects f to k1,

and a path Ps that connects knp to s, and all paths from f to s pass through P , then all

edges from EP can be identified if VP ∈ B ∪ C.

Proof. This result can be obtained by combining Theorems 3.10 and 3.11. If there is
some node kj ∈ C, then all edges before kj can be recovered using Theorem 3.10. On
the other hand, if there is some node ki ∈ B, then all edges after it can be recovered
using Theorem 3.11. The remaining edge that can not be identified from the results of
these theorems is G0

kl+1,kl
(q), with kl ∈ C, kl+1 ∈ B. This edge can be recovered as

G0
kl+1,kl

(q) = T 0
sf (q)/(T

0
klf

(q)T 0
skl+1

(q)).

This theorem relaxes the necessity of exciting the first node of the channel path or
measuring the last node of the channel path. It can be interpreted as a combination of
the results of the previous Theorems 3.10 and 3.11. By combining these results, we can
investigate how to deal with parallel paths embedded in a general cyclic dynamic network.
The following result gives a sufficient condition to identify the modules of a path linking
any two nodes when there is more than a single path connecting these two nodes.

Theorem 3.13. Consider a dynamic network whose topology corresponds to a directed

cyclic graph. Suppose that there are np parallel paths
(
P1,P2, . . . ,Pnp

)
from a node i

to a node j in this network, such that VP1 ∩ VP2 ∩ · · · ∩ VPnp
= {i, j}. Consider the

nodes from path P1: VP1 = {i, k1, . . . , knp1
, j}. Suppose there exist nodes f ∈ B, s ∈ C, a
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path Pf that connects f to i, a path Ps that connects j to s, and that all paths from f to

j and from i to s pass through only one of the paths Pk, for k = 1, . . . , np. All transfer

functions related to the edges of P1(VP1 , EP1) are generically identifiable if VP1 ⊆ B ∪ C,

and in addition, all edges from the other np − 1 paths (P2, . . . ,Pnp) are known or can be

identified from the excitation and measurement pattern.

Proof. If there exist two nodes i and j in the network that are linked through np parallel
paths, we could collect all these nodes and form a subnetwork with parallel structure –
see Definition 3.11. The last condition in Theorem 3.7 guarantees that all edges from
the np − 1 can be generically identified. Since it is assumed that all edges from EPk

for
k = 2, . . . , np are known, all edges from EP1 can be identified using Theorem 3.12.

This theorem provides a sufficient condition on the excitation and measurement pattern
of parallel paths embedded in a general dynamic network. It asserts that if all edges
from the parallel paths are known, or can be identified from other relationships such as in
Theorems 3.10 - 3.12, then we can recover all edges from the remaining path by simple
exciting or measuring all its nodes.

All these results can be combined to identify the modules of a wide range of dynamic
network whose topology corresponds to a DAG. A useful result for this class of networks
is to identify all incoming edges or outgoing edges for a particular node in the network.
The following lemma gives a sufficient condition to identify these edges related to a node
in an acyclic network.

Lemma 3.4. Consider a dynamic network whose topology corresponds to a directed

acyclic graph. For any node l in this dynamic network, we can recover the outgoing edges

of l from:

T 0
{l+1,...,n},N+

l
(q)G0

N+
l ,{l}

(q) = T 0
{l+1,...,n},{l}(q). (75)

The outgoing edges of l can be identified as:

[T 0
N−l ,{1,...,l−1}

(q)]T [G0
{l},N−l

(q)]T = [T 0
{l},{1,...,l−1}(q)]

T . (76)

Proof. These relationships follow by forming a linear system with the incoming and
outgoing edges of node l using expressions (61) and (62) in Lemma 3.3.

This lemma provides a sufficient condition to identify the incoming and outgoing edges
of a particular node in an acyclic dynamic network. Notice that a particular module G0

ji(q)

can be identified from either the incoming edge of j in (75) or as outgoing edge of node
i in (76). Now, we can combine all these results to determine a valid EMP for a general
network with DAG topology. In order to demonstrate the usefulness of these results, let us
now revisit Example 3.2.
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Example 3.3. Consider the acyclic dynamic network from Example 3.2 depicted in Fig-

ure 12. From the previous example we have shown that the following nodes must be

excited: B = {1, 2, 3, 4, 5, 7, 10, 13, 23, 27} , while the following must be measured

C = {8, 13, 23, 28, 29, 30, 31, 32}. For every excited node we are going to verify the

channel paths that exist in the network. Let us apply the Theorems 3.10 - 3.12 in order

to determine whether to excite or measure the remaining nodes. The next table provides

all channel paths from each excited node to the other nodes in the network. In this

example we adopted the following convention v1 → v2 → · · · → vp to denote a path

P = (VP = {v1, v2, . . . , vp}, EP = {(v2, v1), (v3, v2), . . . , (vp, vp−1)}).

Table 1 – All channel paths from the set of excited nodesB = {1, 2, 3, 4, 5, 7, 10,13, 23, 27}
to other nodes from network depicted in Figure 12.

node path node path node path

1
1→ 5→ 11

23
23→ 31

27
27→ 30

1→ 6→ 14 23→ 32 27→ 31

2
2→ 6→ 13

4
4→ 7→ 13→ 19→ 24→ 28 27→ 32

2→ 8→ 15→ 22 4→ 8
13

13→ 20→ 26

2→ 8→ 15→ 27 4→ 10→ 16 13→ 19→ 24→ 28

3

3→ 6→ 13

5
5→ 11

7
7→ 13→ 19→ 24→ 28

3→ 21→ 27 5→ 12 7→ 15→ 22

3→ 9→ 16→ 22 5→ 13 7→ 15→ 27

3→ 9→ 16→ 23

10
10→ 17

10→ 16→ 22→ 26→ 30

This table shows all channel paths from every node that needs to be excited to every

other node in the network. That is, for every channel path there is no other path that links

the two nodes for a particular excited node. This induces a subgraph with a topology of a

multitree for every node that is excited in the network. Figure 13 depicts the union of all

multitrees induced by the excited nodes and their respective edges.

We can now use Theorems 3.5, 3.10-3.12 to assign a valid EMP for each multitree

and recover their respective edges. For instance, take node 1, which is a source and it

needs to be excited. If we excite {1, 5} ⊂ B, measure {11, 14} ⊂ C, and either excite or

measure 6, then we can recover G0
51(q), G0

61(q), G0
11,5(q), and G0

14,6(q). Applying the same

procedure for every source and dource, all dotted edges in Figure 13 can be recovered if

{1, 2, 3, 4, 5, 7, 10, 13, 23, 27} ⊂ B, {8, 11, 12, 13, 14, 17, 22, 23, 26, 27, 28, 30, 31, 32} ⊂
C, and {6, 9, 15, 16, 19, 20, 21, 24} ⊂ B ∪ C.

As we can recover the dotted edges in Figure 13, the edges G0
12,1(q), G0

14,3(q), G0
15,4(q),

G0
17,4(q), G

0
22,9(q). G0

23,17(q), and G0
32,17(q) can be recovered by using Theorem 3.13.

Take the subnetwork formed by nodes {1, 5, 12} and edges {(5, 1), (12, 5), (12, 1)} as an

example. Since we can recover G0
51(q) and G0

12,5(q), the remaining edge G0
12,1(q) can be
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Figure 13 – The collection of multitrees induced by the excited nodes and their edges. The
nodes that are part of the collection of multitrees are depicted as dashed in green color,
while their edges are dashed arrows also in green.

Source: The Author.

identified from T 0
12,1(q) as node 1 is excited and 12 is measured. Similar arguments can be

made for the other edges.

Let us do the same procedure of listing all unique paths as in Table 1, but this time

for all measured nodes in the network. The next table shows all channel paths from some

nodes of the network to all measured nodes from previous steps.

Table 2 – All channel paths from other nodes of the network to the measured nodes.
node path node path node path

8
2→ 8

23
3→ 9→ 16→ 23

29
18→ 24→ 29

4→ 8 17→ 23 20→ 25→ 29

13

2→ 6→ 13

30

18→ 24→ 30

31

17→ 23→ 31

3→ 6→ 13 25→ 30 22→ 31

4→ 7→ 13 27→ 30 21→ 27→ 31

5→ 13 10→ 16→ 22→ 26→ 30 28 4→ 7→ 13→ 19→ 24→ 28

32

21→ 27→ 32

22→ 32

23→ 32

Table 2 shows all channel paths from other nodes of the network to the set of sinks and

dinks. Figure 14 depicts all multitrees generated by these channel paths.

Notice that most edges that could be recovered by this step were already identified in the

previous steps. Therefore, we must allocate the excitations and measurements to identify

only the unknown edges. We proceed by exciting the following nodes {18, 20, 22, 25} ⊂ B.

Now, let us use Theorem 3.13 to identify some edges in the parallel paths as we did before,

such as G0
28,18(q).
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Figure 14 – The collection of multitrees induced by the measured nodes and their edges.
The nodes that are part of the collection of multitrees are depicted as dashed in green color,
while its edges are dashed arrows also in green.

Source: The Author.

The remaining edges can be recovered from the expressions in Lemma 3.3 or 3.4. Take

node 5 as an example, to identify the outgoing edges of node 5 we can form the linear

system from (76) (omitting q):

1 0 0 0

0 1 0 0

0 0 1 0

T 0
18,11 T 0

18,12 0 0

T 0
19,11 T 0

19,12 T 0
19,13 0

0 T 0
20,12 T 0

20,13 1

T 0
24,11 T 0

24,12 T 0
24,13 0

T 0
25,11 T 0

25,12 T 0
25,13 T 0

25,20

0 T 0
26,12 T 0

26,13 T 0
26,20

T 0
28,11 T 0

28,12 T 0
28,13 0

T 0
29,11 T 0

29,12 T 0
29,13 T 0

29,20

T 0
30,11 T 0

30,12 T 0
30,13 T 0

30,20




G11,5

G12,5

G13,5

G20,5

 =



T 0
11,5

T 0
12,5

T 0
13,5

T 0
18,5

T 0
19,5

T 0
20,5

T 0
24,5

T 0
25,5

T 0
26,5

T 0
28,5

T 0
29,5

T 0
30,5



. (77)

The only unknown in this system of equations is G20,5(q). Thus, we can recover it by

also exciting node 12 as

G20,5(q) =
T 0
26,5(q)− T 0

26,12(q)G
0
12,5(q)− T 0

26,13(q)G
0
13,5(q)

T 0
26,20(q)

. (78)

Now, we can repeat the same procedure and verify if there are more parallel paths in

which there is only a single path with unknowns edges and apply Theorem 3.13. Repeating
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this procedure for the other nodes we obtain the following valid EMP:

B = {1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27}, (79)

C = {8, 11, 12, 13, 14, 17, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32}. (80)

This EMP has cardinality equal to 37.

This example illustrates a procedure to obtain a valid EMP for a large acyclic dynamic
network with topology corresponding to a DAG. It has been obtained by combining
the results presented so far. Particularly, the role played by the channel paths forming
subnetworks with multitree topology was responsible for allocating most excitations and
measurements in the network.

In this section we have presented a number of conditions for exciting or measuring
a particular node within a general acyclic dynamic network. These conditions can be
combined to generate an algorithm for the synthesis of valid EMPs for any dynamic network
whose topology corresponds to a directed acyclic graph (DAG). We have derived necessary
and sufficient conditions for the identification of all modules for parallel interconnections
between a source and a sink, here called parallel network. We have provided sufficient
conditions to uniquely identify the edges from a path embedded in an acyclic network.
Moreover, we have demonstrated a necessary condition for excitation/measurement of a
node within a DAG that depends only on the neighborhood of the node of interest.

3.6 Isolated cycles

In this section we aim to provide necessary and sufficient conditions for the generic
identifiability of dynamic networks whose topology corresponds to a cycle – see Section
2.3. A cycle graph (also called loop graph) is a graph that consists of a single loop and
nothing more. Its network matrix is in the form

G0(q) =



0 0 . . . 0 G0
1n(q)

G0
21(q) 0 . . . 0 0

0 G0
32(q) . . . 0 0

... . . . ...
0 0 . . . G0

n,n−1(q) 0


. (81)

The cycle we are interested in can be a graph by itself, as in (81), or part of a larger
graph. When the cycle of interest is part of a larger graph, some of its nodes may belong to
other cycles. When this is not the case – that is, no other cycle in the graph contains any of
the nodes of the loop of interest – we will say that it is an isolated cycle. All results in this
section pertain to the identifiability of isolated cycles.

The necessary condition B ∪ C = W of Theorem 3.2, which applies to all dynamic
networks, means that all nodes must be involved in the identification process: they must be
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either measured or excited. When it comes to cycles, we would like to determine whether
there is any EMP satisfying that necessary condition that would make G0(q) identifiable (it
would then be a minimal EMP with smallest cardinality), or whether additional conditions
apply.

In BAZANELLA; GEVERS; HENDRICKS (2019) a sufficient condition for identifia-
bility of cycles was given. The authors have shown that adding a single measurement or a
single excitation to such EMP is sufficient to achieve generic identifiability of an isolated
cycle. This result is formally stated in the next theorem.

Theorem 3.14. (BAZANELLA; GEVERS; HENDRICKS, 2019). All transfer functions in

an isolated cycle are generically identifiable if B ∪ C =W and B ∩ C 6= ∅.

In order to provide necessary and sufficient conditions for the identifiability of an iso-
lated cycle, we now derive some properties of cycles. We first recall some expressions and
properties derived in the proof of Theorem V.2 of BAZANELLA; GEVERS; HENDRICKS
(2019).

Assume, without loss of generality, that the node indices in the cycle go from 1 to n
and that the arrows go from i to i + 1 in the cycle, as in (81). Define the product of all
transfer functions in the cycle as follows:

R , G0
1n(q)G0

n,n−1(q) . . . G
0
32(q)G

0
21(q). (82)

Observe that the closed loop transfer function from one node to itself is

T 0
ii(q) = (1−R)−1. (83)

For distinct i, k, we also define

Rik , G0
i,i−1(q)G

0
i−1,i−2(q) . . . G

0
k+1,k(q) if k < i, (84)

Rik , G0
i,i−1(q)G

0
i−1,i−2(q) . . . G

0
1n(q)G0

n,n−1(q) . . . G
0
k+1,k(q) if k > i. (85)

The next lemma provides relations between the quantities R,Rik, T
0
ik(q) and G0

ik(q)

that will be useful for proving our main result of this section.

Lemma 3.5. The transfer functions R,Rik, Tik and G0
ik(q) are related by the following

expressions for any i, k, j:

T 0
ik(q) = Rik(1−R)−1, (86)

R = RkiRik, (87)

G0
i+1,i(q) =

Rji

Rj,i+1

=
Ri+1,j

Rij

=
T 0
ji(q)

T 0
j,i+1(q)

=
T 0
i+1,j(q)

T 0
ij(q)

. (88)
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Proof. Expressions (86) and (87) follow immediately from the input-output relationship
and definition of Rik. The expressions in (88) can be verified by direct computation. For
j > i+ 1, we have

Rji

Rj,i+1

=
G0
j,j−1(q)G

0
j−1,j−2(q) · · ·G0

i+2,i+1(q)G
0
i+1,i(q)

G0
j,j−1(q)G

0
j−1,j−2(q) · · ·G0

i+2,i+1(q)
= G0

i+1,i(q). (89)

When i > j, the same relationship can be obtained using (87).

With these expressions under our belt, we are now ready to prove our main result. We
first consider the special case where the cycle has either 2 nodes or 3 nodes, i.e. n = 2 or
n = 3.

Theorem 3.15. All transfer functions in an isolated cycle with n ≤ 3 are generically

identifiable if and only if B ∪ C =W and B ∩ C 6= ∅.

Proof. For n = 2 we have:

T 0(q) =

[
1

1−G0
12(q)G

0
21(q)

G0
12(q)

1−G0
12(q)G

0
21(q)

G0
21(q)

1−G0
12(q)G

0
21(q)

1
1−G0

12(q)G
0
21(q)

]
. (90)

For n = 3 we have:

T 0(q) =


1

1−G0
13(q)G

0
21(q)G

0
32(q)

G0
13(q)G

0
32(q)

1−G0
13(q)G

0
21(q)G

0
32(q)

G0
13(q)

1−G0
13(q)G

0
21(q)G

0
32(q)

G0
21(q)

1−G0
13(q)G

0
21(q)G

0
32(q)

1
1−G0

13(q)G
0
21(q)G

0
32(q)

G0
13(q)G

0
21(q)

1−G0
13(q)G

0
21(q)G

0
32(q)

G0
21(q)G

0
32(q)

1−G0
13(q)G

0
21(q)G

0
32(q)

G0
32(q)

1−G0
13(q)G

0
21(q)G

0
32(q)

1
1−G0

13(q)G
0
21(q)G

0
32(q)

 . (91)

Sufficiency follows directly from Theorem 3.14 above, which has been proven in
BAZANELLA; GEVERS; HENDRICKS (2019). For necessity, inspection of the T 0(q)

matrix shows that if no node is excited and measured, then for n = 2, T 0(q) contains only
a single known element (impossible to recover 2 G0

ji(q)). For n = 3, there are only 2
independent elements of T 0(q) (impossible to recover 3 G0

ji(q)).

What this theorem shows is that for an EMP to guarantee generic identifiability of a
cycle with less than four nodes it must have at least one node excited and measured, while
the others must be either excited or measured. A minimal EMP is therefore characterized
by one node being excited and measured, which results in a total of four minimal EMPs
for n = 2 and twelve minimal EMPs for n = 3.

We now consider isolated cycles that have at least 4 nodes. In BAZANELLA; GEVERS;
HENDRICKS (2019) it was shown that the conditions B ∪ C =W and B ∩ C 6= ∅, which
are necessary and sufficient conditions for isolated cycles with 2 or 3 nodes, are actually
sufficient conditions for isolated loops of any size. An alternative sufficient condition for
identifiability, also derived in BAZANELLA; GEVERS; HENDRICKS (2019), applied to
cycles that have an even number of nodes, larger than 3. It was shown that identifiability
is achieved if the EMP obeys the following interleaving condition between excited and
measured nodes.
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Theorem 3.16. (BAZANELLA; GEVERS; HENDRICKS, 2019). Let n be even and larger

than 3. All transfer functions in an isolated loop can be identified if its nodes are alternately

measured and excited.

This interleaving condition on the EMP is clearly not necessary for identifiability of an
isolated cycle, as follows from Theorem 3.14, but it has inspired the development of the
necessary and sufficient conditions for identifiability of an isolated cycle formally stated in
the next theorem.

Theorem 3.17. All transfer functions in an isolated cycle are generically identifiable if

and only if B∪C =W and, in addition: (i) either B ∩ C 6= ∅, or (ii) there exist at least two

measured nodes in the cycle, each of which is immediately followed by an excited node.

Proof. That each node must be excited or measured follows from Theorem 3.2.

Sufficiency:

If (i) holds, the cycle is identifiable by Theorem V.2 of BAZANELLA; GEVERS;
HENDRICKS (2019). Consider now that (ii) holds. Without loss of generality let nodes k
and n be the two measured nodes that are followed immediately by nodes k+1 and 1, which
are excited. From these measurements and excitations we obtain: T 0

k1(q), T
0
n1(q), T

0
n,k+1(q),

and T 0
k,k+1(q), and we can form the product:

T 0
n1(q)T

0
k,k+1(q)

T 0
k1(q)T

0
n,k+1(q)

=
Rn1Rk,k+1

Rk1Rn,k+1

= RnkRkn = R,

where the equalities follow from Lemma 3.5. Once R is known, the transfer functions
G0
ji(q) can be calculated step by step from the available T 0

ji(q), remembering that each
node in the cycle is either measured or excited.

Suppose node 2 is excited, we can recover G0
21(q) = T 0

k1(q)/T
0
k2(q). If 2 is measured,

we can identify G0
21(q) = T 0

21(q)(1 − R). Consider that the next node 3 is excited,
then we can recover G0

32(q) = T 0
k1(q)/(G

0
21(q)T

0
k3(q)). If 3 is measured, we identify

G0
32(q) = T 0

31(q)(1−R)/G0
21(q). Proceeding in a similar fashion we can recover G0

i,i−1(q)

from knowledge of the previous identified modules as:

G0
i,i−1(q) =

T 0
n1(q)

Ri−2,1T 0
ni(q)

, if i ∈ B, (92)

G0
i,i−1(q) =

T 0
i1(q)(1−R)

Ri−1,1
, if i ∈ C, (93)

for i = 3, . . . , n. The last transfer function can be recovered from R since G0
1n(q) =

R/Rn1.
Necessity:

Consider that no node is both excited and measured. We show that condition (ii) must
then hold to guarantee identifiability. If only one node is excited, then we can identify only
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n− 1 transfer functions T 0
ji(q); hence we cannot identify the n elements G0

ji(q). The same
holds if only one node is measured. This shows that we need at least two excited and two
measured nodes in the loop. Suppose now that the loop contains at least two measured
nodes and two excited nodes, but that condition (ii) does not hold. This implies that all
the measured nodes are consecutive, and so are all the excited nodes. Without loss of
generality, let nodes 1 to k be the excited nodes and let k + 1 to n be the measured nodes.

Then, with Rik defined in (84) for i > k, the corresponding matrix input-output
CT 0(q)B has the following form.

CT 0(q)B = (1−R)−1


Rk+1,1 Rk+1,2 . . . Rk+1,k−1 Rk+1,k

Rk+2,1 Rk+2,2 . . . Rk+2,k−1 Rk+2,k

...
...

...
...

Rn1 Rn,2 . . . Rn,k−1 Rnk

 .

It now follows from (88) that the first row of CT 0(q)B allows one to successively com-
pute G0

21(q), G
0
32(q), . . . , G

0
k,k−1(q). It follows from (88) that all elements of the second

row of CT 0(q)B are equal to the corresponding elements of the first row multiplied by
G0
k+2,k+1(q). Thus, knowledge of the second row allows one to compute one additional

element of G0(q), namely G0
k+2,k+1(q). Pursuing row by row downwards up to the last

row shows that we can compute G0
k+2,k+1(q), . . . , G

0
n,n−1(q). Collecting these results

shows that, with this EMP (i.e. the cycle consists of k consecutive excited nodes fol-
lowed by n− k measured nodes), the corresponding CT 0(q)B allows one to identify the
edges G0

21(q), G
0
32(q), . . . , G

0
k,k−1(q) as well as the edges G0

k+2,k+1(q), . . . , G
0
n,n−1(q) can

be identified, but not the edges G0
k+1,k(q) and G0

1n(q).

We assume from now on that the cycles we consider have at least 3 nodes, noting
that a cycle with two nodes is just a simple feedback system for which the identifiability
conditions are well established. The following corollary provides an alternative formulation
for the results of Theorem 3.15 and Theorem 3.17 which yields an even simpler way of
checking the identifiability of an isolated cycle.

Corollary 3.4. All transfer functions in an isolated cycle are generically identifiable if

and only if B ∪ C = W and, in addition: (i) either B ∩ C 6= ∅, or (ii) the excited nodes

(and hence also the measured nodes) are not all consecutive along the cycle.

Proof. The result is included in the proof of Theorem 3.17. For the special case of n = 3,
it is easy to see that if B ∪ C = W and B ∩ C = ∅, then necessarily condition (ii) is
violated.

Not only are the conditions of Corollary 3.4 necessary and sufficient, but in addition
their verification on a given cycle graph is trivial: it can be done by visual inspection.
Conversely, if the objective is to establish minimal EMPs for the identification of a cycle
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graph, condition (ii) in this Corollary provides all minimal EMPs. There is a total of
2n−n(n− 1)− 2 minimal EMPs from which the user can choose from. Once the minimal
EMPs are characterized, all other valid EMPs can be obtained by just picking at least
one node to be both excited and measured. These EMPs correspond to a number of∑n−1

k=1 2n−kn!/(k!(n− k)!) + 1 out of the total EMPs.
It is easy to spot invalid EMPs. Consider, for instance, the two EMPs for a 5-node

cycle depicted in Figure 15, where the one on the left is minimal and the one on the right
is not valid. An EMP satisfying the necessary conditions of Theorem 3.2 is invalid only if
no node in the cycle is both excited and measured, and all excitations and measurements
are arranged in an uninterrupted sequence as in Figure 15-b); in other words, the excited
nodes (and therefore the measured nodes) are all contiguous.

When we consider all possible EMPs, the number of valid EMPs outnumber those that
are not generically identifiable for any number of nodes in the cycle, since it is sufficient to
have at least one node excited and measured with any combination of the remaining nodes.
This means that if the user were to choose randomly an EMP, it is likely that the chosen
EMP is identifiable. Table I is a clear illustration of this. It provides, for cycles having 2 to
10 nodes, the number of minimal EMPs, of valid EMPs, and of invalid ones, assuming that
in all cases the necessary condition is satisfied, i.e. each node is either excited or measured.

Table 3 – Number of minimal/valid/invalid EMPs for a cycle where each node is at least
excited or measured.

nodes minimal EMPs valid EMPs invalid EMPs

2 4 5 2
3 12 19 8
4 2 67 14
5 10 221 22
6 32 697 32
7 84 2143 44
8 198 6503 58
9 438 19609 74
10 932 58957 92

In conclusion, we have derived necessary and sufficient conditions for the generic
identifiability of a cycle network. The conditions are very simple to check by visual
inspection of the corresponding graph. Unlike the other results on identifiability of
networks, no recourse to rank conditions or to vertex disjoint paths are required, as in the
results of the previous sections. Besides the necessary requirement that each node must
be either excited or measured, as is the case for all network structures, the requirement
for cycles with 4 nodes or more is that either one node is both excited and measured,
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Figure 15 – Two possible EMPs for a 5-node loop. E stands for an excited node and M for
a measured node.

a) A minimal EMP. b) Not valid EMP.

Source: MAPURUNGA; GEVERS; BAZANELLA (2022).

or that not all measured (and hence not all excited) nodes are contiguous. Our results
make it extremely easy to choose an EMP that makes the network identifiable and that is
convenient for the user from a practical point of view.

3.7 Examples with mixed structures

In this section we consider examples to illustrate the theorems presented in the previous
sections. We deal with dynamic networks with more complex structures, which may
contain many sub-graphs and feedback loops. The results presented so far were valid for
particular network structures and they should be valid even when they are embedded in
more complex structures. The identifiability conditions obtained for these structures can
then be combined in order to obtain valid EMPs for the whole network by following a
strategy of divide and conquer. Let us analyze the following example to see whether we
can obtain valid EMPs by combining the identifiability results for the structures presented
so far.

Example 3.4. Consider the dynamic network depicted in Figure 16. The network matrix

has the following form:

G0(q) =



0 0 0 0 0 0

G0
21(q) 0 G0

23(q) 0 0 0

0 G0
32(q) 0 0 0 0

G0
41(q) 0 0 0 0 0

0 0 0 G0
54(q) 0 0

0 0 G0
63(q) 0 G0

65(q) 0


. (94)

This network is a combination of a parallel network with a two-node cycles in one path.

We have presented necessary and sufficient identifiability conditions for parallel networks

in Theorem 3.7 and for cycles in Theorem 3.17. First, for any dynamic network we must



80

Figure 16 – A parallel network with a 2-node cycle embedded.

Source: The author.

have that each node is either excited or measured: B ∪ C = W . Additionally, from the

conditions presented for these particular structures, it is expected that at least one node in

the cycle must be both excited and measured, that is, either node 2 or 3 in Figure 16. As

for the parallel network, from Theorem 3.7 we must obey one of the following conditions:

either node 2 or 3 must be excited and measured (same for the cycle), node 2 is excited

and 3 is measured, either node 4 or 5 is both excited and measured, and node 4 is excited

and 5 is measured.

Taking all the conditions together we must have: each node must be either excited or

measured, node 1 must be excited because it is a source, node 6 must be measured as it is a

sink, either node 2 or node 3 must be excited and measured. This leads to the valid EMPs:

1 ∈ B, 6 ∈ C, {3, 4, 5} ⊂ B∪C, {2} ⊂ B∩C with cardinality 7. For this network there is a

single minimal EMP with cardinality equal to 6: EMPm = (B = {1, 3, 4}; C = {2, 5, 6}).

One can recover the modules from the input-output relationship as follows (omitting q)

G0
21 = T 0

21 −
T 0
23

T 0
63

(
T 0
61 −

T 0
64T

0
51

T 0
54

)
,

G0
23 = T 0

23 −
[T 0

23]
2

T 0
63T

0
21

(
T 0
61 −

T64T
0
51

T 0
54

)
,

G0
32 =

T 0
54T

0
61 − T 0

51T
0
64

T 0
21T

0
54T

0
63 + T 0

23 (T 0
51T

0
64 − T 0

54T
0
61)
,

G0
41 =

T 0
51

T 0
54

,

G0
54 = T 0

54,

G0
63 = T 0

63 −
T 0
23

T 0
21

(
T 0
61 −

T 0
64T

0
51

T 0
54

)
,

G0
65 =

T 0
64

T 0
54

.

Thus, the conditions for each subnetwork are sufficient for generic identifiability of the

composed network, but not necessary. This implies that it is not necessary to comply with

the excitation and measurement requirements of the cycle to make the network identifiable.

Notice that the conditions on isolated cycles are for the identification of the cycle only. If

we are willing to identify all modules from the network, it may be the case that we can
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identify the modules corresponding to the cycle with other excitation/measurement from

outside the cycle, as in the case here. Nevertheless, we can apply these conditions and

obtain valid EMPs with cardinality n+ 1 = 7, which need only an additional measurement

when compared to the minimal EMP. All valid EMPs with cardinality equal to seven are

displayed in Table 4.

Table 4 – Valid EMPs with cardinality equal to seven for dynamic network from Figure 16.

EMP (B; C) EMP (B; C)

EMP1 ({1, 3}; {2, 3, 4, 5, 6}) EMP2 ({1, 3, 5}; {2, 4, 5, 6})
EMP3 ({1, 3, 5}; {2, 3, 4, 6}) EMP4 ({1, 3, 4}; {2, 4, 5, 6})
EMP5 ({1, 3, 4}; {2, 3, 5, 6}) EMP6 ({1, 3, 4}; {1, 2, 5, 6})
EMP7 ({1, 3, 4, 6}; {2, 5, 6}) EMP8 ({1, 3, 4, 5}; {2, 5, 6})
EMP9 ({1, 3, 4, 5}; {2, 4, 6}) EMP10 ({1, 3, 4, 5}; {2, 3, 6})
EMP11 ({1, 2}; {2, 3, 4, 5, 6}) EMP12 ({1, 2, 5}; {2, 3, 4, 6})
EMP13 ({1, 2, 4}; {2, 3, 5, 6}) EMP14 ({1, 2, 4, 5}; {2, 3, 6})
EMP15 ({1, 2, 3}; {3, 4, 5, 6}) EMP16 ({1, 2, 3}; {2, 4, 5, 6})
EMP17 ({1, 2, 3, 5}; {3, 4, 6}) EMP18 ({1, 2, 3, 5}; {2, 4, 6})
EMP19 ({1, 2, 3, 4}; {3, 5, 6}) EMP20 ({1, 2, 3, 4}; {2, 5, 6})
EMP21 ({1, 2, 3, 4, 5}; {3, 6}) EMP22 ({1, 2, 3, 4, 5}; {2, 6})

From this table we can see that EMPs2,4,8,9 allow us to relax the excitation and mea-

surement for the cycle at the cost of exciting and measuring either node 4 or 5. With

exception of EMPs6,7, all other valid EMPs from Table 4 can be obtained by using the

results of Theorems 3.17 and 3.7.

What this example shows is that we can combine the known identifiability conditions
for the structures forming the network and still obtain valid EMPs. Although applying the
identifiability conditions in the subnetworks render the whole network identifiable, one
can not simply infer a minimal EMP from these conditions. Let us now analyze another
example in which we can use the identifiability conditions for the structures and their
interconnection.

Example 3.5. Consider the dynamic network depicted in Figure 17.

The network matrix is given by:

G0(q) =



0 0 0 0 0 0

G0
21(q) 0 0 0 0 0

0 G0
32(q) 0 0 0 0

0 0 0 0 0 0

0 G0
52(q) 0 G0

54(q) 0 0

0 0 G0
63(q) G0

64(q) G0
65(q) 0


. (95)
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Figure 17 – An example of network divided into two subnetworks: G1 is a branch, while
G2 is a feedforward network.

Source: The author.

For this particular network there are two structures for which we can exploit the identifia-

bility results, namely a branch subnetwork indicated as G1 and a feedforward subnetwork

denoted as G2 in Figure 17. For the branch subnetwork we can use the results from Corol-

lary 3.3, while for the feedforward network we can the results of Theorem 3.8. Combining

these results we see that all edges within G1 and G2 can be uniquely identified if we excite

nodes 1, 4, 5, measure nodes 3, 5, 6, and in addition to that we need to either excite or

measure node 2. The question is now whether we can uniquely recover the modules G0
52(q)

and G0
63(q). In order to answer this question we can use item (e) from Theorem 3.3. Using

the partition in Figure 17 we have that T 0
i (q) = (I −G0

i (q))
−1:

T 0
1 (q) =

 1 0 0

G0
21(q) 1 0

G0
32(q)G21(q) G0

21(1) 1

 , (96)

T 0
2 (q) =

 1 0 0

G0
54(q) 1 0

G0
65(q)G

0
54(q) +G0

64(q) G0
65(q) 1

 . (97)

The k-rank (See Definition 3.6) of (T 0
1 (q)B1)

T is always equal to 1 if B1 6= I . Notice that

from the perspective of G1, there is no requirement for exciting node 3 since this node is

a sink for G1. As for G2 we need to measure at least nodes 5 and 6. This implies that the

k-rank of C2T
0
2 (q) is equal to 2, and the sufficient condition in item (e) from Theorem 3.3

holds. This results in the EMP B = {1, 4, 5}, C = {3, 5, 6}. Therefore, we can apply valid

EMPs for the two subnetworks and this is sufficient for the whole network to be identifiable.

Even though for the subnetwork G2 node 5 needs to be both excited and measured,

the case for the whole network is that node 5 does not need to be excited, but it needs

to be measured. This follows from Theorem 3.9 by examining the neighborhood of node

5. Since there is one in-neighbor (2 ∈ N−5 ) of node 5 that is not connected to the single
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out-neighbor (N+
5 = {6}) of node 5, then node 5 is not a dource – see Definition 3.16 –

and might not be excited. However, node 5 is a dink and must be measured. One valid

EMP that does not have this requirement is (B = {1, 3, 4}, C = {2, 3, 5, 6}) .

These examples show that identifiability conditions for particular structures are useful
to determine valid EMPs for more complex dynamic networks. This can be the case
even when the known subnetworks are embedded in a larger network. However, there is
no guarantee that the combination of minimal EMPs for each subnetwork will lead to a
minimal EMP for the whole network. Example 3.4 have illustrated one occasion where
this does not happen.

3.8 Conclusions

In this chapter we presented the concept of the identifiability in dynamic networks.
Conditions on the identifiability of dynamic networks usually depend on the rank of certain
submatrices. An algebraic formulation for the identifiability of dynamic networks was
presented which led to the concept of generic identifiability. This definition allowed to
provide topological conditions for the identifiability problem using tools from graph theory.

Identifiability in dynamic networks can be equivalently expressed in terms of the
experimental setting applied at the network. The concept of minimum excitation and
measurement pattern (EMP) was introduced, which is based on the experimental setting to
achieve network identifiability. This new approach to look at the identifiability problem
is to determine which nodes need to be excited and which nodes need to be measured.
Based on this new approach, we have thus characterized the minimal EMPs for some
classes of networks. Necessary and sufficient conditions for parallel, feedforward, and
cycle networks were derived. Furthermore, we have derived necessary conditions for
excitation/measurement of certain nodes in an acyclic dynamic network that are based on
the local topology of the nodes.

We have also explored how these EMPs can be applied to subnetworks and whether
additional conditions were necessary to achieve identifiability of the whole network. These
conditions depend on the excitation and measurement of some nodes of the subnetworks.
We have provided examples that illustrated how these developed conditions can be used in
more complex networks.

The results of this chapter generated two publications: MAPURUNGA; BAZANELLA
(2021b); MAPURUNGA; GEVERS; BAZANELLA (2022). A third paper is currently
under preparation (MAPURUNGA; BAZANELLA; GEVERS, 2022).
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4 SELECTION OF EMPS FOR DYNAMIC NETWORKS

This chapter deals with the problem of selecting, among all possibles excitation and
measurement patterns, the one which yields the most accurate parameter estimates. For
identifying the modules of the network we use the prediction error method, which under
some mild conditions achieves the Cramer-Rao lower bound. The analysis is focused
on two classes of networks: branches and cycles. This chapter begins by presenting
the problem under analysis and providing the framework under which it will be solved.
Afterwards, we focus in solving the problem for branch networks and then for cycles.
We provide a number of key principles that can be used as guidelines to choose the best
experimental setup according to certain objectives.

4.1 Introduction

Experiment design is one of the fields of research in the system identification com-
munity. This field of research deals with the design of the variables involved in the
identification experiment. Examples of such variables are the number of samples N to
collect from the experiment, the sampling time employed in the experiment, the decision
of which variables will be used as inputs and which variables will be used as outputs.

One of the main problems in the experiment design for system identification is the
selection of an appropriate input signal to adequately excite the system at hand. Many
methods for designing an appropriate input signal have been proposed in the literature,
many of them can be cast into an convex optimization problem. This is particularly
advantageous because there are plenty of optimization algorithms available for this task.
For the prediction error method to provide consistent estimates it is necessary that the
model structure is identifiable and also that the input-output data used are informative
enough with respect to the model structure. Therefore, an appropriate design of the input
signal is of paramount importance for the identification method performance.

A crucial aspect when dealing with multivariable systems is the selection of which
variables should be used as inputs and which variables should be used as outputs. In some
scenarios, the user may not have access to the measurement of certain signals or there may
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be some constraints that make the manipulation of certain signals unfeasible. Furthermore,
the associated costs of exciting may be different across the possible inputs of the system.
This issue can be drastically aggravated when we deal with large interconnected systems.

A relevant problem of the experiment design is how to appropriately choose the inputs
and outputs of the system at hand. This problem becomes of paramount importance when
dealing with large-scale networks. How to obtain relevant information content from the
network dynamics depends on the experimental setting applied to the network. The focus
of this chapter is to provide an answer to the problem of how to select the inputs and
outputs in a dynamic network, that is, its Excitation and Measurement Pattern (EMP). Is
it better to excite or measure a certain node? Are there some EMPs that provide most
accurate estimates than others? We provide answers and principles for these questions and
we analyze the structural property that an appropriate input-output selection can make on
the accuracy of the parameter estimates.

We will see that there are some key principles that can be used to determine which
EMP yields the most accurate estimates. They will serve as guidelines for the user to
appropriately select which nodes to excite and which nodes to measure in a dynamic
network. We will provide these answers for two particular classes of networks: branches
and cycles. The principles presented here for these two classes of networks can, under
some conditions, serve as guiding principles for more general topologies.

4.2 Network setup and assumptions

We have seen in Chapter 3 that there are many combinations of inputs and outputs that
render a particular class of network identifiable. In fact, the conditions for identifiability
of the networks took the form as conditions on which nodes to excite and which nodes
to measure. In other words, the conditions are based on the excitation and measurement
pattern (EMP) of the network. For a given network there is typically a number of EMPs
available for the user to choose. Here, we are interested in providing a framework for the
user to choose an appropriate experimental setup with the best possible accuracy.

Let us recall how we have defined a dynamic network model. For the analysis, we are
going to consider that only some nodes are available for direct measurement and only some
nodes can be excited by a known excitation signal. The data is generated by the following
network given the standard module representation without process noise (VAN DEN HOF
et al., 2013):

w(t) = G0(q)w(t) +Br(t),

y(t) = Cw(t) + e(t),
(98)

where w(t) ∈ Rn represents the internal signals of the network. r(t) ∈ Rm is the vector
of external excitation signals, y(t) ∈ Rp is the vector of available measurements of the
network corrupted by sensor noise e(t) ∈ Rp. We assume that the topology of the network
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is known. Recall that matrices B and C are selection matrices responsible for indicating
where the inputs are applied in the network and which measurements are taken. Associated
with these matrices are the set of excited nodes B and the set of measured nodes C, together
they define an EMP – see Definition 3.5. The data generating system (98) can be written
into an input-output representation:

y(t) = CT 0(q)Br(t) + e(t), T 0(q) , (I −G0(q))−1. (99)

The modules associated with the network matrix can be identified from input-output
data {r(t), y(t)}, t = 1, . . . , N . In order to identify the modules from G0(q), we are going
to use the prediction error method (PEM) and the parametrized model:

y(t, θ) = C (I −G(q, θ))−1Br(t) + e(t). (100)

The corresponding optimal one-step ahead predictor of y(t) is given by:

ŷ(t|t− 1, θ) = C (I −G(q, θ))−1Br(t) = CT (q, θ)Br(t). (101)

For the identification of the modules of the network the following assumption will be
valid throughout this chapter.

Assumption 4.1.

(a) the transfer functions G0
ji(q) are proper and T 0(q) , (I −G0(q))−1 is stable;

(b) There exists a unique parameter vector θ0 such that G(q, θ0) ≡ G0(q);

(c) Each module in G(q, θ) is independently parametrized: Gji(q, θji);

(d) The input-output data is sufficiently rich so that for any pair C, B, the transfer

matrix CT 0(q)B can be consistently estimated from network data.

(e) the external signals {ri(t)} are independent zero mean white noise processes with

variance σ2
i and uncorrelated with all noise processes {ej(t)};

(f) the corrupting noise sequences {ej(t)} are independent stationary Gaussian white

noise processes with zero mean and variance λj .

Notice that assuming that the inputs are white noise process is not a practical restriction,
since one can approximate the spectrum of a white noise process by using a pseudo-binary
random signal (PRBS) (LJUNG, 1999). We further assume that the nodes have been
labeled sequentially in the network.

Whether the modules can be uniquely recovered from input-output data will depend on
the choice of the matrices B and C. There may be many combinations of these matrices
such that the whole network is identifiable. For this purpose, we use valid EMPs, see
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Definition 3.5 from Chapter 3. Recall that a valid EMP is a tuple of the set of excited and
measured nodes that renders a network generically identifiable.

Our interest is to determine which minimal EMP – one with the minimum number of
excitations and measurements combined – yields the most accurate parameter estimates.
The search for minimal EMPs can be justified by the minimum requirements that the user
must use to identify a network. Furthermore, these EMPs provide a framework in which
comparison between exciting and measuring certain nodes is possible. It should be noted
that valid EMPs can be obtained from a minimal EMP by just adding more excitations
and/or measurements.

In order to determine which minimal EMP yields the most most accurate results, we
must assess the accuracy of the parameter estimates θ̂ from input-output data {r(t), y(t)}.
It is well-known that PEM achieves asymptotically the Cramer-Rao lower bound under the
Gaussian assumption (LJUNG, 1999; SÖDERSTRÖM; STOICA, 1989; SÖDERSTRÖM,
2006). The asymptotic covariance matrix of PEM can be evaluated as:

P =
1

N
[Eψ(t, θ)Λ−1ψT (t, θ)]−1|θ=θ0 ,M−1, (102)

where E denotes mathematical expectation, ψ(t, θ) is the gradient of the prediction error
(y(t) − ŷ(t|t − 1, θ)) with respect to the parameter vector θ, Λ is the noise covariance
matrix, and M is the information matrix. We will be concerned with the choice of the
minimal EMP that achieves the most accurate parameter estimates according to a measure
of the asymptotic covariance matrix P . We point out that all the analysis in the following is
based on the Cramer-Rao lower bound, and therefore it is valid for any efficient estimator.
The problem we tackle in this chapter can be formulated as follows. Given a dynamic
network satisfying Assumption 4.1, determine which minimal EMP provides the smallest
trace of the asymptotic covariance matrix P .

Here we adopted the trace of P as a criterion, which in the literature of optimal exper-
iment design is known as A-optimally criterion (PUKELSHEIM, 2006). This criterion
will allow us to choose a minimal EMP according to the precision it yields for the param-
eter estimates. We remark that similar conclusions can be derived if one considers the
determinant of P , which is known as D-optimality criterion.

There are various factors that compete against each other to determine which EMP
leads to the most accurate estimates: the parametrization of the modules, the location of
poles and zeros of each transfer function, signal-to-noise ratio at some nodes. In order
to isolate these factors and provide meaningful insights with respect to the choice of the
minimal EMPs, the following assumptions are instrumental in the theoretical analysis
provided in this chapter.

Assumption 4.2. All transfer functions of the dynamic network are identical: G0
k(e

jω) ≡
G0(ejω).
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Assumption 4.3. The external excitation signals {ri(t)} have the same variance σ2
i = σ2

for i = 1, 2, . . .m. The covariance matrix Λ associated with the noise e(t) can be written

as λIp, where Ip is the identify matrix of size p.

These assumptions are not going to be employed in all results that follow. They may
seem restrictive, but they are necessary to isolate particularities of the modules from the
structural property of the experimental setting. Furthermore, a fair comparison should
consider an equally exciting scenario for all EMPs. This is precisely what Assumption 4.3
does. Notice that Assumption 4.3 implies that all excitation signals have the same second-
order statistical properties, the same is valid for the measurement noise. When this
assumption holds, the comparison among different EMPs does not depend on the magnitude
of the variances of the input and noise signals. We refer to an EMP where Assumption 4.3
holds as an equally excited EMP. Regarding this assumption, it will be not used in all
results that follow. For this reason, we will introduce the following definition that will be
useful later on.

Definition 4.1. The signal-to-noise ratio from excitation at node i to measurement taken

from node j, denoted as SNRji, is defined as σ2
i /λj .

This definition is related to the ratio of input energy from excitation {ri(t)} in node j
with respect to the measurement noise {ej(t)}. The larger the SNRji is, the better is the
information content from node i to node j. The next definition concerns the excitation and
measurement of a particular module.

Definition 4.2. A module G0
ji(q) is called a direct module if i ∈ B and j ∈ C.

Direct modules will be one of the key factors for determining which minimal EMP
provides the most accurate results for dynamic networks. For the remainder of this chapter,
we are going to adopt the following index for the modules: G0

ji(q) , G0
i (q), that is, we

use only the in-neighbor i to refer to module G0
ji(q).

4.3 Computation of the information matrix

Before we start the analysis of which EMP provides the most accurate outcomes, we
are going to show how the information matrix can be computed for a given EMP. In
order to compute the asymptotic covariance matrix we only need to compute the gradient
ψ(t, θ) of the optimal predictor and we need to know the noise covariance matrix. If the
noise covariance matrix is not known, it can be estimated from data and used to get an
approximation of the asymptotic covariance matrix. For the purpose of our analysis we
will assume that both the “true” parameter system θ0 and the noise covariance matrix are
known. This is, of course, no limitation of the prediction error method as when the number
of data grows the PEM estimate will asymptotically converge to θ0, assuming that a model
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structure capable of representing the “true system” has been selected. Let us define the
gradient with respect to output j and input i as:

ψji(t, θ) ,
∂Tji(q, θ)ri(t)

∂θ
. (103)

With this definition we can decompose the gradient of the optimal predictor as follows:

ψ(t, θ) =
[∑

i∈B ψc1i(t, θ)
∑

i∈B ψc2i(t, θ) · · ·
∑

i∈B ψcpi(t, θ)
]
, (104)

for ck ∈ C. We can use this decomposition to simplify the calculation of the information
matrix under Assumption 4.1. For this purpose, let us define the partial information matrix.

Definition 4.3. The partial information matrix from input ri(t), i ∈ B to output yj, j ∈ C
is defined as

Mji ,
N

λj
Eψji(t, θ)ψTji(t, θ). (105)

With this definition at hand, we can further simplify the computation of the information
matrix as formally stated in the following lemma.

Lemma 4.1. Consider a dynamic network defined in (98). Under Assumption 4.1, the

information matrix can be written as

M =
∑

i∈B,j∈C

Mji. (106)

Proof. Under the stated assumption the information matrix can be computed as M =

NEψ(t, θ)Λ−1ψ(t, θ). Using (104) and the fact that Λ = diag(λc1 , λc2 , . . . λcp), we can
decompose M as:

M =
N

λc1
E
∑
i∈B

ψc1,i(t, θ)
∑
i∈B

ψTc1,i(t, θ) +
N

λc2
E
∑
i∈B

ψc2,i(t, θ)
∑
i∈B

ψTc2,i(t, θ)+

· · ·+ N

λcp
E
∑
i∈B

ψcp,i(t, θ)
∑
i∈B

ψTcp,i(t, θ).

Since all inputs are mutually independent, it holds that the terms Eψk,i(t, θ)ψTl,j(t, θ) = 0,
for k, l ∈ C and i 6= j ∈ B. As all these terms are zero, the remaining terms are the ones in
(106).

This lemma states that, under Assumption 4.1, we can compute the information matrix
of a given EMP by considering the contribution of the partial information matrices from
each input to each output. This result will be particularly useful in the analysis that follow,
specially for cycles. We are now ready to start our analysis for branches and cycles.
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4.4 Branch networks

Before tackling the problem of which minimal EMP provides the most accurate pa-
rameter estimates for a branch network, let us recall what characterizes a branch network.
Recall that a branch network is composed of n nodes sequentially linked, where each node
is only connected to the next node until the last node is reached, assuming that the nodes
have been labeled sequentially. The first node is the source, while the last node is the
sink of the branch. A branch network can be characterized by the structure of its network
matrix, which has the following form

G(q, θ0) =



0 0 0 · · · 0

G1(q, θ
0
1) 0 0 · · · 0

0 G2(q, θ
0
2)

. . . · · · ...
... · · · . . . . . . ...
0 · · · · · · Gn−1(q, θ

0
n−1) 0


. (107)

Recall that we have labeled the modules according to its in-neighbor node: G0
ji(q) ,

G0
i (q). A branch network is also called a cascade network. The accuracy of such networks

has been investigated in WAHLBERG; HJALMARSSON; MÅRTENSSON (2009). More
recent works include EVERITT; ROJAS; HJALMARSSON (2013, 2014). In all these
works, the interest was either in a particular module within the network or in analyzing the
effects of common dynamics of the modules. The analysis provided in them is valid for
just one EMP: where the source is excited and all other nodes are measured.

Recall that the identifiability conditions and the EMPs for this class of network were
presented in Chapter 3. In summary, the source node must be excited, the sink node must be
measured, and all other nodes must be either excited or measured. In this way, depending
on the number of nodes, there will be a considerable number of EMPs to analyze, more
precisely 2n−2. The set of candidate minimal EMPs is characterized by the conditions
formally stated in the next corollary.

Corollary 4.1. (BAZANELLA; GEVERS; HENDRICKS, 2019). In a branch network (98)

with network matrix (107) an EMP is minimal if and only if 1 ∈ B, n ∈ C, B ∪ C = W ,

B ∩ C 6= ∅.

This corollary is a restatement of the conditions presented for generic identifiability for
branches in Corollary 3.3 of Chapter 3. Here, we are interested in the different experimental
settings that give the best accuracy of the parameter estimates, that is, which minimal
EMPs will have the most accurate results.

Let us first see how to compute the information matrix associated with branch net-
works. We are going to proceed by using the concept of partial information matrix – see
Definition 4.3. In order to compute the information matrix we first need the expression of
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the input-output relationship for branch networks. For a branch network we have that:

T 0
ii(q) = 1, for i ∈ W , (108)

T 0
ij(q) = 0, for i < j ∈ W , (109)

T 0
ji(q) , ρ0ji(q) =

j−1∏
i=1

G0
i (q) for i < j ∈ W . (110)

Using these expressions we are able to obtain the general form of the gradient of the
optimal predictor ψ(t, θ). By decomposing the gradient ψ(t, θ) according to (104) we
obtain for i < j < n:

ψTji(t, θ) =
∂Tji(q, θ)ri(t)

∂θ

T

=
[
0i−1

∂ρji
∂θi

T · · · ∂ρji
∂θj−1

T
0n−j

]
=
[
0i−1 G

′T
i

ρji
Gi(q,θi)

· · · G
′T
j−1

ρji
Gj−1(q,θj−1)

0n−j

]
, (111)

where ρji ,
∏j−1

k=i Gk(q, θk)ri(t), and 0k is a zero matrix with dimension corresponding
to either the first Gk(q, θk) modules or the last Gk(q, θk) modules. The prime denotes
differentiation with respect to the parameter vectors: G′i ,

∂Gi(q,θi)
∂θi

. We will start the
analysis using small branch networks with just a few nodes to provide the key insights for
the problem at hand. We further extend these results by increasing the number of nodes in
the network.

4.4.1 3-node branches

We start our analysis by looking into branch networks with three nodes. A branch
network with three nodes has the following network matrix.

G(q, θ) =

 0 0 0

G1(q, θ1) 0 0

0 G2(q, θ2) 0

 . (112)

This dynamic network has two modules G1(q, θ1) and G2(q, θ2) to be identified. The set
of minimal EMPs for this network is given in Corollary 4.1. They are characterized as
follows. The first node needs to be excited and the last node needs to be measured. The
second node could be either excited or measured, and this defines the two minimal EMPs
for this network:

I. EMP1 = (B = {1}, C = {2, 3});

II. EMP2 = (B = {1, 2}, C = {3}).

The decision between these two minimal EMPs can be equivalently stated as the decision
on whether to excite or measure the second node. In WAHLBERG; HJALMARSSON;
MÅRTENSSON (2009) minimal EMP1 was analyzed and some insights were given assum-
ing identical transfer functions (G0

1(q) ≡ G0
2(q)), i.e. under Assumption 4.2. Under this
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premise, the covariance matrix for EMP1 was derived in WAHLBERG; HJALMARSSON;
MÅRTENSSON (2009) as:

P1 =

[
A−1 −A−1
−A−1 A−1 +B−1

]
, (113)

where

A ,
N

λ2
E[G′1r1 ×G′T1 r1], (114)

B ,
N

λ3
E[G′2G1r1 ×G′T2 G1r1]. (115)

From now on, we drop the arguments q and t in order to stress the dependence on the mod-
ules Gk(q) for these matrices expressions. The subscript in P1 is used to refer to minimal
EMP1, we will adopt this convention for the rest of this chapter. Under Assumption 4.2,
the main conclusions drawn in WAHLBERG; HJALMARSSON; MÅRTENSSON (2009)
were

• The quality of the estimate θ̂1 is not improved by measurement of {y3(t)}.

• The covariance of estimate θ̂2 is larger than or equal to covariance of θ̂1.

The first observation is intriguing, since one would expect that by adding more infor-
mation with two measurements would improve the quality of the estimates. The second
observation is related to the influence of the direct modules, as pointed out in MAPU-
RUNGA; BAZANELLA (2021a), direct modules – in this caseG1(q, θ1), see Definition 4.2
– are estimated more accurately.

Before tackling the problem of whether to excite or measure node 2 in this network, let
us provide a dual analysis for minimal EMP2 under Assumption 4.2. The gradient of the
minimal EMP2 is as follows:

ψ2(t) =

[
G′1G2(q, θ2)r1(t)

G′2G1(q, θ1)r1(t) +G′2r2(t)

]
. (116)

The asymptotic covariance matrix can be found as the inverse of the information matrix:

cov

([
θ̂1

θ̂2

])
∼M−1

2 , (117)

where

M2 =

[
F H

HT B + L

]
, (118)
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F ,
N

λ3
E[G′1G2r1 ×G′T1 G2r1], (119)

H ,
N

λ3
E[G′2G1r1 ×G′T1 G2r1], (120)

L ,
N

λ3
E[G′2r2 ×G′T2 r2]. (121)

If the two modules are identical then F = H = B. In this case, the asymptotic
covariance matrix is:

P2 =

[
L−1 +B−1 −L−1
−L−1 L−1

]
. (122)

Hence, under Assumption 4.2, we can make the following observations with respect to
minimal EMP2:

• The covariance of estimate θ̂1 is larger than or equal to the covariance of θ̂2.

• The quality of θ̂2 is not improved by excitation {r1(t)}, since cov(θ̂2) does not
depend on {r1(t)} – see (122).

These conclusions are dual to those for the EMP1, in this case we are analyzing
the effect of the addition of an excitation source instead of a new measurement. The
measurement {y3(t)} in EMP1 is to cov(θ̂1) as the excitation signal {r1(t)} in EMP2 is to
cov(θ̂2). Furthermore, we observe again that the direct module, in this case G2(q, θ2), is
estimated more accurately. These conclusions will also be observed for branch networks
with more nodes, by maintaining the structures of these two EMPs. In EMP1 we only excite
the source and measure the remaining nodes, and for EMP2 we only measure the sink and
excite all other nodes. In fact, Assumption 4.2 is not necessary for this phenomenon to
happen as we will see later.

The next theorem allows to decide whether to measure or excite node two based on the
trace of the covariance matrix.

Theorem 4.1. Consider a 3-node branch network with network matrix given in (112).

Under Assumption 4.2, EMP2 yields a smaller trace of the covariance matrix if and only if

SNR32 in EMP II is larger than SNR21 in EMP I:

σ2
2

λ3
>
σ2
1

λ2
, (123)

otherwise EMP1 is more accurate. Under Assumptions 4.2 and 4.3, it holds that both

EMPs result in the same trace of the covariance matrix.
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Proof. According to (113) and (122), the trace of the covariance matrices of the minimal
EMPs are:

tr(P1) = tr(A−1) + tr(A−1 +B−1). (124)

tr(P2) = tr(L−1) + tr(L−1 +B−1), (125)

From these expressions, we see that the difference in the trace of the covariance matrix
relies on tr(A−1) and tr(L−1). We can extend the expressions for A and L as:

A =
N

λ2
E[G′1r1 ×G

′T
1 r1] = ΓAN

σ2
1

λ2
,

L =
N

λ3
E[G′2r2 ×G

′T
2 r2] = ΓLN

σ2
2

λ3
,

where ΓA, ΓL � 0 are associated with the covariance function of the vector signal
G′i(q)ri(t) for i = 1, 2. Since G0

1(q) ≡ G0
2(q) we have that ΓA = ΓL. In this way, if

λ2/σ
2
1 > λ3/σ

2
2 then tr(A−1) > tr(L−1), implying that EMP2 is more accurate. Otherwise,

EMP1 is the more accurate. Under Assumption 4.3, SNR21 is equal to SNR32, then we
have that tr(P1) = tr(P2).

The choice of EMP2 over EMP1 is equivalent to the decision of either exciting or
measuring node 2. As stated in this theorem, this choice depends on whether SNR32 of
EMP2 is larger than SNR21 of EMP1 – see Definition 4.1. Notice that this implies that
the choice is related to the power applied in the direct modules – G0

1(q) for EMP1 and G0
2

for EMP2. If the users have control over the input energy, they can use (123) as a tool to
choose a value σ2

2 > σ2
1
λ3
λ2

, for which a better precision will be achieved by using EMP2.
In order to understand the role that direct modules play in the accuracy of the EMPs

we will consider specific parametrizations for the modules of the network. We start by
analysing FIR modules:

Gji(q, θ
0
k) =

nji∑
i=0

θ0kiq
−i. (126)

Recall that a transfer function is completely characterized by its impulse response. The
next result shows how the numeric values of the parameters influence the accuracy obtained
by the minimal EMPs.

Theorem 4.2. Consider a 3-node branch network with first order FIR modules: Gk(q, θ
0
k) =

θ0kq
−1 for k = 1, 2. Under Assumption 4.3, minimal EMP1 yields a least trace of the co-

variance matrix when compared to EMP2 if and only if

[θ01]
2 > [θ02]

2. (127)
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Proof. For notation convenience, we drop the superscript from θ0k in all expressions that
follow. With modules Gk(q, θk) = θkq

−1 for k = 1, 2, the asymptotic covariance matrices
for EMPs1,2 are:

P1 =

[
λ2
σ2
1

−λ2θ2
σ2
1θ1

−λ2θ2
σ2
1θ1

λ2θ22+λ3
σ2
1θ

2
1

]
, (128)

P2 =

[
λ3θ21
σ2
2θ

2
2

+ λ3
σ2
1θ

2
2
−λ3θ1
σ2
2θ2

−λ3θ1
σ2
2θ2

λ3
σ2
2

]
. (129)

Now, by applying the trace for each covariance matrix we have the following expression:

tr(P2)

tr(P1)
=
λ3θ

2
1 (σ2

1θ
2
1 + σ2

1θ
2
2 + σ2

2)

σ2
2θ

2
2 (λ2θ21 + λ2θ22 + λ3)

. (130)

Under Assumption 4.3, we have that σ2
1 = σ2

2 and λ2 = λ3. Now, we can rewrite (130) as:

tr(P2)

tr(P1)
=
θ21
θ22
, (131)

from which follows that tr(P2) > tr(P1) if and only if (131) is larger than one. That is,
minimal EMP1 is most accurate than EMP2 if and only if θ21 > θ22.

This theorem illustrates the role the direct module plays in the decision of the most ac-
curate EMP. The most accurate EMP will be one where the module with largest magnitude
of the network is a direct module. For this simple network we have demonstrated that the
selection of the most accurate EMP also depends on the numeric values of the parameters.

In conclusion, if the network is fully symmetrical then both EMPs give the same overall
accuracy, which is due to the fact that the EMPs are “mirrored” (see Definition 4.4) – one
is obtained from the other by changing each excitation for a measurement and vice-versa,
except the sink and the source. Moreover, each module is identified more accurately when
it is a direct module. On the other hand, when the SNRs are not uniform, best overall
accuracy is obtained by the EMP in which the direct module has a larger SNR. These are
general principles that, as will be seen further ahead in this chapter, also apply to more
general networks.

4.4.2 4-node branches

In this section we consider branch networks composed of four nodes. For this class
of networks, there are three modules to be identified: G0

1(q), G
0
2(q), and G0

3(q). From
Corollary 4.1, there are four different minimal EMPs from one to choose, listed below:

I EMP1 = (B = {1} , C = {2, 3, 4});

II EMP2 = (B = {1, 2, 3} ; C = {4});
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III EMP3 = (B = {1, 2} ; C = {3, 4});

IV EMP4 = (B = {1, 3} ; C = {2, 4}).

Minimal EMPs1,2 in the four-node case can be seen as an extension of the minimal
EMPs1,2 from the three-node case, since they preserve a similar structure. For these two
EMPs, we will show that the results from the previous section also apply for the four-node
case and more generally for any number of nodes.

Now, under Assumption 4.2, i.e. identical modules G0
1(q) = G0

2(q) = G0
3(q), with the

following parametrization Gk(q, θ
0
k) , G∗ for k = 1, 2, 3. The information matrix for the

minimal EMP1 becomes:

M1 =

A1 +B1 + C1 B1 + C1 C1

B1 + C1 B1 + C1 C1

C1 C1 C1

 , (132)

where

Ai ,
N

λi+1

E[G′∗ri ×G
′T
∗ ri], (133)

Bi ,
N

λi+2

E[G′∗G∗ri ×G
′T
∗ G∗ri], (134)

Ci ,
N

λi+3

E[G′∗G∗G∗ri ×G
′T
∗ G∗G∗ri]. (135)

For minimal EMP2 one can find in a similar way:

M2 =

C1 C1 C1

C1 B2 + C1 B2 + C1

C1 B2 + C1 A3 +B2 + C1

 . (136)

Information matrix of minimal EMP3 is as follows:

M3 =

B1 + C1 B1 + C1 C1

B1 + C1 A2 +B1 +B2 + C1 B2 + C1

C1 B2 + C1 B2 + C1

 . (137)

Finally, minimal EMP4 yields the information matrix:

M4 =

A1 + C1 C1 C1

C1 C1 C1

C1 C1 A3 + C1

 . (138)
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Table 5 – Covariance of the parameter estimates for each EMP under Assumptions 4.2 and
4.3.

EMP/θ cov(θ̂1) cov(θ̂2) cov(θ̂3)

EMP1 A−11 A−11 +B−11 B−11 + C−11

EMP2 B−12 + C−11 A−13 +B−12 A−13

EMP3 [A2 ? B1 +B2 ? C1]
−11 [A2 +B1 ? B2 ? C1]

−1 [A2 ? B1 +B2 ? C1]
−1

EMP4 A−11 A−11 + A−13 + C−11 A−13

By inverting the information matrix of each EMP we obtain the covariance matrices
for each parameter estimates, which are displayed in Table 5. If we additionally adopt
the conditions stated in Assumption 4.3, we have that Ai = A, Bi = B and Ci = C for
i = 1, 2, 3 in (132)-(138) and in Table 5.

Notice that EMPs1,2 are symmetrical, that is, they yield the same results but in the
reverse order. The reason for that is that these EMPs are related by a symmetry related
to the distribution of excitations and measurements, which we will further explore later
on. For these two EMPs the key observations made in the previous section are also valid
as can be seen from Table 5. The covariance matrix of θ̂1 does not depend on additional
measurements in EMP1, while cov(θ̂3) in EMP2 does not depend on the first and second
input signals. We will show later that this result also holds for an arbitrary number of
nodes. If we consider the covariances of θ̂1 and θ̂2 from EMP1 in the three-node case, we
can see from Table 5 that EMP1 in the four-node case does not improve the corresponding
accuracy of θ̂1 and θ̂2 with respect to the three-node counterpart. This implies that adding
a new measurement (from three nodes to four nodes) for EMP1 does not improve the
precision of the parameter estimates under Assumptions 4.2 and 4.3. A dual argument
holds for EMP2. The covariances of θ̂1 and θ̂3 are the same in EMP4, which corresponds to
θ̂1 in EMP1 and θ̂3 in EMP2 . This phenomenon is linked to how the location of excitations
and measurements is distributed in the EMPs. We will show later in Section 4.4.3 when
this effect happens for general branch networks.

Conversely to the three-node branch network case, where all minimal EMPs lead to
equivalent overall accuracy, in the four-node case there is a minimal EMP that provides
better precision. The next result shows that minimal EMP3 yields a smaller trace of the
covariance matrix than EMPs1,2.

Theorem 4.3. Consider a 4-node branch network with dynamic matrix (107), for n = 4.

Under Assumptions 4.2 and 4.3, minimal EMP3 yields a smaller trace of covariance matrix

than minimal EMPs1,2:

tr(P3) < tr(P1) = tr(P2). (139)

1A ? B , [A−1 +B−1]−1, A ? B ? C , [A−1 +B−1 + C−1]−1.
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Proof. To prove (139) we are going to compare the covariance of each module of both
minimal EMPs in Table 5 under Assumptions 4.2 and 4.3. If the following conditions hold:

A−1 � (A+ (2B−1 + C−1)−1)−1, (140)

A−1 +B−1 � [[A−1 +B−1]−1 + [B−1 + C−1]−1]−1, (141)

B−1 + C−1 � [[A−1 +B−1]−1 + [B−1 + C−1]−1]−1, (142)

then tr(P1) > tr(P3). This follows from the implication: A � B =⇒ tr(A) > tr(B),
with A � B in the sense that A−B � 0 is positive definite. The above conditions can be
made equivalent to:

A−1(A−1 +B−1 +B−1 + C−1)−1A−1 � 0, (143)

A−1 +B−1 � 0, (144)

B−1 + C−1 � 0, (145)

after some manipulation and using the fact that A < B ⇐⇒ A−1 4 B−1. The last
two conditions hold true since they define the covariance matrices of θ̂2, θ̂3 in Table 5 for
EMP1. Condition (143) holds by definition and it was obtained using the matrix inversion
lemma.

This result implies that under Assumptions 4.2 and 4.3 using EMP3 is more advanta-
geous than EMPs1,2. As for EMP4 there are values of the modules for which EMP4 can be
made better than the others. EMP3 will be more accurate than any other minimal EMP if:
tr(P1) ≤ tr(P4). From Table 5, this could be achieved as:

3A−1 + C−1 < A−1 + 2B−1 + C−1

A−1 < B−1 ⇐⇒ B < A.

From (133)-(134) we notice that for “large” values of G the above expression will hold
true. The rationale is that A is filtered by G to produce B, which implies that for “large”
values of G the expression B − A will tend to be positive definite. In this scenario, EMP3

will be the experimental setting that yields the smallest trace of the covariance matrix.
In order to analyze the influence of the numeric values of the modules we will analyze

whether EMP3 is better for state-space branch networks, i.e. a network with first order FIR
modules as in (126). The following result shows that for a first order FIR network EMP3

yields the most accurate results.

Theorem 4.4. Consider a 4-node branch networks with network matrix in (107). Assume

that the modules have the following structure Gk(q, θ
0
k) = θ0kq

−1. Under Assumptions 4.2

and 4.3, EMP3 yields the smallest trace of the covariance matrix among the minimal EMPs.
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Proof. That EMP3 yields a smaller trace of covariance matrix than EMPs1,2 has been
proved in Theorem 4.3. Now, it remains to show that under the stated assumptions EMP3

is most accurate than EMP4. Under Assumption 4.2 we have that Gk(q, θ
0
k) = θ0q−1 for

k = 1, 2, 3. The covariance matrices of EMP3 and EMP4 under the stated assumptions are:

P3 =


λ4

σ2
1 [θ

0]2
− λ4
σ2
1([θ

0]2+1)
0

− λ4
σ2
1([θ

0]2+1)

λ4(2[θ0]2+1)
σ2
1([θ

0]4+2[θ0]2+1)
− λ4
σ2
1([θ

0]2+1)

0 − λ4
σ2
1([θ

0]2+1)
λ4

σ2
1 [θ

0]2

 , (146)

P4 =


λ4
σ2
1

−λ4
σ2
1

0

−λ4
σ2
1

λ4(2[θ0]4+1)
σ2
1 [θ

0]4
−λ4
σ2
1

0 −λ4
σ2
1

λ4
σ2
1

 , (147)

from which we can form
tr(P4)

tr(P3)
=

4[θ0]8 + 8[θ0]6 + 5[θ0]4 + 2[θ0]2 + 1

4[θ0]6 + 5[θ0]4 + 2[θ0]2
. (148)

We have that EMP3 yields a smaller trace of the covariance matrix if and only if (148) is
larger than one, which is equivalent to:

4[θ0]8 + 4[θ0]6 + 1 > 0. (149)

This expression is positive for all real values of θ0.

This theorem shows that for a first order FIR module structure, EMP3 is the most accu-
rate among the minimal EMPs. As we have seen in Theorem 4.2 by relaxing Assumption
4.2, the choice of the best EMP depends on the “size” of the numeric parameters of the
modules. The next result provides a result regarding which minimal EMP is more accurate.

Theorem 4.5. Consider a 4-node branch network with modules with a FIR structure

Gk(q, θ
0
k) = θ0kq

−1. Under Assumption 4.3, EMP3 is the most accurate minimal EMP if

|θ02| > |θ01| and |θ02| > |θ03|.

Proof. For notation convenience, we drop the superscript θ0k in all expressions that follow.
Under Assumption 4.3, assume without loss of generality that σ2

i = λj = 1 for i ∈ B, j ∈
C. We can write the asymptotic covariance matrices of the minimal EMPs as:

P1 =


1 − θ2

θ1
0

− θ2
θ1

θ22+1

θ21
− θ3
θ21θ2

0 − θ3
θ21θ2

θ23+1

θ21θ
2
2

 , P2 =


θ21+1

θ22θ
2
3
− θ1
θ2θ23

0

− θ1
θ2θ23

θ22+1

θ23
− θ2
θ3

0 − θ2
θ3

1

 (150)

P3 =


θ21+1

θ22(θ23+1)
− θ1
θ2(θ23+1)

0

− θ1
θ2(θ23+1)

θ21+θ
2
3+1

θ21θ
2
3+θ

2
1+θ

2
3+1

− θ3
θ2(θ21+1)

0 − θ3
θ2(θ21+1)

θ23+1

θ22(θ21+1)

 , P4 =


1 − θ2

θ1
0

− θ2
θ1

θ22
θ23

+
θ22
θ21

+ 1
θ21θ

2
3
− θ2
θ3

0 − θ2
θ3

1

 .
(151)
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After lengthy manipulations, we can compare EMP1 and EMP3 using the covariance
expressions:

tr(P1)− tr(P3) =

θ21(θ
2
1 + θ42θ

2
3 + θ42 + θ22θ

4
3 + θ22θ

2
3 + θ22 + 2) + θ42θ

2
3 + θ42 + θ22θ

2
3 + θ22 − θ63 − 2θ43 − θ23 + 1

θ22θ
2
3 (θ21θ

2
3 + θ21 + θ23 + 1)

.

Since we assume that |θ2| > |θ1| and |θ2| > |θ3|, we have that

θ22 − θ23 > 0;

θ42θ
2
3 − θ63 > 0 ⇐⇒ θ42 − θ43 > 0;

θ22θ
2
3 − θ43 > 0 ⇐⇒ θ22 − θ23 > 0;

θ42 − θ43 > 0,

which implies that tr(P1) − tr(P3) > 0. A similar argument holds for tr(P2) − tr(P3),
provided the necessary changes are made. Proceeding in a similar way for comparison
between EMP3 and EMP4:

tr(P4)− tr(P3) =

θ41θ
4
2θ

2
3 + θ41θ

4
2 + 2θ41θ

2
2θ

4
3 + θ41 + θ21θ

4
2θ

4
3 + 2θ21θ

4
2θ

2
3 + θ21θ

4
2 + θ21θ

2
2θ

4
3 + 2θ21θ

2
2θ

2
3 + θ21θ

2
2

θ21θ
2
2θ

2
3 (θ21 + 1) (θ23 + 1)

+

−θ61θ22θ23 − 2θ41θ
2
3 − θ21θ63 − 2θ21θ

4
3 − 2θ21θ

2
3 + θ42θ

4
3 + θ42θ

2
3 + θ22θ

2
3 + θ22 + θ23

θ21θ
2
2θ

2
3 (θ21 + 1) (θ23 + 1)

.

Now, we can verify that if θ22 > θ21 and θ22 > θ23 then:

θ41θ
4
2θ

2
3 − θ61θ22θ23 > 0 ⇐⇒ θ22 − θ21 > 0;

θ21θ
2
2θ

2
3 − θ41θ23 > 0 ⇐⇒ θ22 − θ21 > 0;

θ21θ
2
2θ

2
3 − θ21θ43 > 0 ⇐⇒ θ22 − θ23 > 0;

θ42θ
2
3 − θ41θ23 > 0 ⇐⇒ θ42 − θ41 > 0;

θ21θ
4
2 − θ21θ43 > 0 ⇐⇒ θ42 − θ43 > 0;

θ21θ
2
2 − θ21θ23 > 0 ⇐⇒ θ22 − θ23 > 0;

θ22θ
2
3 − θ21θ23 > 0 ⇐⇒ θ22 − θ21 > 0;

θ21θ
2
2θ

4
3 − θ21θ63 > 0 ⇐⇒ θ22 − θ23 > 0,

from which follows that EMP3 yields the least trace of the covariance matrix.

This theorem shows the influence of the numeric values on the accuracy obtained by
the EMPs. We have shown that if the corresponding numeric value of G2(q, θ

0
2) is large

than the other modules, then EMP3 is the most accurate EMP under Assumption 4.3. This
result is in line with the one in Theorem 4.2 for a 3-node branch network, in which the
selection of the best EMP depends also on the numeric values.
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The dominance of EMP3 with respect to the others is related to its structure. In this
EMP, nodes near the source are excited, while nodes near the sink are measured. This
structure represents a more balanced pattern since EMP3 has equal shares of excitations
and measurements and they are distributed such that half of the network is excited and
the other half is measured. This kind of EMP will also have an advantage over others in a
branch network with n number of nodes.

Now if we relax Assumption 4.3 and consider Assumption 4.2 only, one can get a
similar result as Theorem 4.1 by inverting (132), (136), and (137).

Theorem 4.6. Consider a branch network with four nodes and dynamic matrix as in (107).

Under Assumption 4.2 we have the following.

1. If SNR43 > SNR21 and SNR42 > SNR31, then EMP2 yields more accurate results

than EMP1.

2. If SNR32 > SNR21, then EMP3 results in better accuracy than EMP1.

3. If SNR32 > SNR43, then EMP3 is more accurate than EMP2.

Proof. Let us start with item 1. We first notice that under Assumption 4.2 the following
holds: Ai =

σ2
i

λi+1
ΓA, and Bi =

σ2
i

λi+2
ΓB . From (132)-(138) and Table 5 we have that EMP2

is more accurate than EMP1 if:

A3 − A1 � 0 ⇐⇒
(
σ2
3

λ4
− σ2

1

λ2

)
ΓA � 0,

B2 −B1 � 0 ⇐⇒
(
σ2
2

λ4
− σ2

1

λ3
−
)

ΓB � 0,

from which follows the expressions for item 1. Now, items 2 and 3 can be proved in a
similar fashion, for this reason we prove only the former. From the information matrix
(137) and the expressions (140) and (141) in Theorem 4.3 we have that EMP3 is more
accurate than EMP1 if:

A−11 � [A2 + [B−11 +B−12 + C−11 ]−1]−1 ⇐⇒

[B−11 +B−12 + C−11 ]−1 +

(
σ2
2

λ3
− σ2

1

λ2

)
ΓA � 0

A−11 +B−11 � [[A−12 +B−11 ]−1 + [B−12 + C−11 ]−1]−1 ⇐⇒
[[A−12 +B−11 ]−1 − [A−11 +B−11 ]−1] + [B−12 + C−11 ]−1 � 0

=⇒
(
σ2
2

λ3
− σ2

1

λ2

)
ΓA � 0.

From the above expression one can infer the conditions stated in this theorem, since
expression (142) holds generally also in this case.
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The first result is a direct extension of the result in Theorem 4.1. These results reveal
that the selection of the best EMP will also depend on the SNRji relationship among some
nodes. It is worth noticing the comparison between EMP3 and EMP1 and also between
EMPs2,3. In both cases, the key factor is the difference among the SNRji’s of the direct
modules of EMP3 (G2), EMP1 (G1), and EMP2 (G3).

We have shown that the principles from the previous section are valid for the four
nodes branch networks. As demonstrated in the last section, EMPs1,2 provide equal overall
accuracy, since they are mirrored versions of each other. However, in contrast with the case
of networks with three nodes, EMP3 yields better precision when compared to EMPs1.2.
For FIR branch networks EMP3 dominates over all other minimal EMPs. A principle that
emerges from this result is that EMP3 yields better accuracy due to its uniform pattern
with equal shares of excitations and measurements. This principle is also valid for branch
networks with more nodes as we will show in Section 4.4.3. When the network is not
uniformly excited, we have extended the result from the previous section and we have
shown that comparison among the EMPs1−3 can be made based on the SNRji of the direct
modules. The influence of the direct modules is clear in the case of FIR networks, when
other factors are equal, i.e. in a uniformly excited network, the EMPs with “large” direct
modules have an advantage over the others.

4.4.3 Branches with n nodes

In the previous sections we considered branch dynamic networks with just a few
number of nodes. Under Assumptions 4.2 and 4.3, we have observed the following.
Minimal EMPs1,2 yield the same accuracy for branch networks with three and four nodes.
However, in the four-node case, EMP3 outperforms EMPs1,2 with respect to the trace of the
covariance matrix. In this section, we will show that the phenomenon of yielding similar
covariance matrices is not unique to EMPs1,2. We provide a result that characterizes all
minimal EMPs with same overall accuracy. Furthermore, we will show that, as in the
4-node case, there is a minimal EMP that results in better estimates when compared to
other minimal EMPs.

The reason that minimal EMPs1,2 yield, under Assumptions 4.2 and 4.3, same overall
accuracy is due to the symmetry of excitation and measurements. This happens because
these EMPs are mirrored versions of each other. For EMP1, we excite only the source and
measure the other nodes, while for EMP2 it holds the converse, only the sink is measured
and the other nodes are excited. We now introduce the concept of mirrored EMP as follows.

Definition 4.4. Consider an n-node branch network, for which minimal EMP1 (B1, C1)
and minimal EMP2 (B2, C2) apply. Minimal EMP1 is a mirrored version of minimal EMP2

if the set of excited and measured nodes are formed as B1 = {n − j + 1 | j ∈ C2} and

C1 = {n− j + 1 | j ∈ B2}.
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This definition implies that there is a symmetry with respect to the source and sink
nodes for any minimal EMP and its mirrored version. If there is an excited (measured)
node that is k nodes ahead from the source, then in the mirrored EMP the node that is
k nodes behind the sink must be measured (excited). Using this definition we see that
EMP2 is a mirrored version of EMP1 and vice-versa. With this definition at hand we are in
position to state the next result, which relates the accuracy of a given EMP and its mirrored
version.

Theorem 4.7. Consider an n-node branch network for which there are minimal EMPs

that apply. Under Assumptions 4.2 and 4.3, a minimal EMP and its mirrored version yield

the same trace of the asymptotic covariance matrix.

Proof. We are going to show that for a minimal EMP and its mirrored version, the
information matrix can be written as:

M = QMQT (152)

where M is the information matrix associated with the mirrored version of an EMP and

Q =


I

...

I

I

 .
Notice that Q = QT = Q−1 is a permutation matrix, thus both trace and determinant of
M and M are equal. The effect of pre and pos multiplying Q is equivalent to reversing
the order of the rows and columns of M . Therefore, we just need to show that a mirrored
version of an EMP has information matrix with reversed rows and columns. Now, recall
that we can decompose the gradient of the optimal predictor according to the transfer
function from input i to output j as (111) for i < j < n:

ψji(t, θ) =



0i−1
∂ρji
∂θi
...

∂ρji
∂θj−1

0n−j


=



0i−1

G′i
ρji

Gi(q,θi)
...

G′j−1
ρji

Gj−1(q,θj−1)

0n−j


, (153)

where ρji ,
∏j−1

k=i Gkri, and 0k is a zero matrix with dimension corresponding to either
the first Gk(q, θk) modules or the last Gk(q, θk) modules. The partial information matrix
– see Definition 4.3 – associated with input i and output j is Mji , N

λj
EψjiψTji. We can

compute the information matrix from the partial information matrices using Lemma 4.1
as M =

∑
j∈C,i∈BMji. From the structure of ψji(t, θ), the first i − 1 block rows and

columns of Mji are zero. Similarly, the last n− j block rows of Mji are also zero. Under
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Assumptions 4.2 and 4.3, it holds that all nonzero elements of ψji(t, θ) are equal, which
implies that the elements of Mji are the same. Consider an arbitrary EMP defined by its
set of excited nodes B and measured nodes C. For every pair j ∈ C and i ∈ B, there is a
reflected version of ψji in the mirrored EMP, such that:

ψn−i+1,n−j+1(t, θ) =



0n−j

G′n−j+1
ρn−i+1,n−j+1

Gn−j+1(q,θn−j+1

...
G′n−i

ρn−i+1,n−j+1

Gj−1(q,θj−1

0i−1


. (154)

This means that ψn−i+1,n−j+1(t, θ) is a reversed, from top to bottom, version of ψji(t, θ).
From this relationship, we have that Mn−i+1,n−j+1 can be written as QMjiQ

T . Therefore,
the information matrix of the mirrored EMP is as follows

M =
∑

k∈C,l∈B

Mkl =
∑

j∈C,i∈B

QMjiQ
T = QMQT .

This theorem gives a framework for which one can exchange an excitation for a
measurement (or the converse) without affecting the overall accuracy of the estimates. This
property reveals a duality between excitation and measurement for which the key property
is the symmetry of the EMPs for the branch network. Among the EMPs there is always a
mirrored EMP that yields the same accuracy under Assumptions 4.2 and 4.3. However, for
some minimal EMPs, the mirrored equivalent is not a different EMP but the EMP itself.
This will be the case when the EMP is symmetrical with respect to the excitations and
measurements. For branch networks with an odd number of nodes, there are no minimal
EMPs identical to their mirrored versions. Therefore, the number of minimal EMPs to
be analyzed is halved with respect to the total number of minimal EMPs (2n−2), since a
mirrored EMP produces the same accuracy. When the number of nodes in the network is
even, there will be a total of 3 · 2n−4 minimal EMPs yielding different covariance matrices.
The phenomenon of equal trace of covariance matrices for EMPs1,2 in the case of three
and four nodes is therefore a general result and valid for any number of nodes in a branch
network.

In a similar way, the observations made in Section 4.4.1 for minimal EMPs1,2 can
be further generalized. As we have seen in Section 4.4.1 and 4.4.2, accuracy of the first
module in EMP1 is not improved by other measurements and its quality is related to the
equality between the first two modules of the network. In WAHLBERG; HJALMARSSON;
MÅRTENSSON (2009), the authors have conjectured that a similar phenomenon would
apply instead to the last module in EMP1, but they have shown that this does not happen.
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However, an extension of this reasoning holds when we consider EMP2. This conclusion
is dependent on the EMP employed. The next result formalizes the above statements.

Theorem 4.8. Consider an n-node branch network with dynamic matrix as in (107), for

which minimal EMPs apply. The following holds:

1. The accuracy of θ̂1 in any minimal EMP such that 2 ∈ C and G1 ≡ G2 is not

improved by any additional excitation signals or measurements;

2. The accuracy of θ̂n−1 in any minimal EMP such that n− 1 ∈ B and Gn−2 ≡ Gn−1

is not improved by any additional excitation signals or measurements.

Proof. First, let us prove item 1. We decompose the gradient of the optimal predictor
as in (111). Thus, the information matrix can be written as M =

∑
j∈C,i∈B

N
λj
EψjiψTji.

Notice, however, that for any ψji(t, θ) for j, i ≥ 3 there is no dependence on G1(q, θ1) and
G2(q, θ2). The only terms that have the influence of G1(q, θ1) and G2(q, θ2) are ψk1(t, θ)
for k = 2, . . . , n. Since we assume that G0

1(q)
0 ≡ G0

2(q), we have that the first and second
block rows of any ψji(t, θ0) are exactly the same. Therefore, the same holds for M with
exception of the first block element. Since 2 ∈ C the term ψ21(t, θ

0) appears in M and is
the term which adds only to the first block element. Thus, we can write M as:

M =


A+X1 X1 · · · Xn

X1 X1 . . . Xn

...
... M̃11 M̃12

Xn Xn M̃T
12 M̃22

 ,
where A , N/λ2EG′1r1G′1r1. Now, define:

Q ,


I −I 0 · · · · · · 0
0 I 0 · · · · · · 0
...

... Q̃11 Q̃12

0 0 Q̃T
12 Q̃22

 .
The covariance matrix can thus be obtained as P1 = QTM

−1
Q, where

M
−1

=

[
A−1 0

0 S̃22

]
.

Thus, the accuracy of the first module is independent of the rest of the network signals under
the conditions stated. We can proceed similarly in the proof of item 2. However, for this
case, we have that the last two block rows are exactly the same, since G0

n−2(q) ≡ G0
n−1(q)

and n − 2 ∈ B. The term ψn,n−1(t, θ
0) adds only to the last block element in last block

row. The corresponding covariance matrix can be obtained as:

P2 =

[
P̃11 P̃12

P̃ T
12 A−1

]
,
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where A , N/λnEG′n−1rn−1G
′T
n−1rn−1. Therefore, the accuracy of the last module is

independent of the network signals under the conditions stated.

The results presented in this theorem come as no surprise. They can be interpreted as
follows. The additional information about G0

1(q) that the network signals could provide is
only through the measurements. Thus, not even in the case when all signals are measured
the accuracy of G0

1(q) is improved when G0
1(q) ≡ G0

2(q) and 2 ∈ C. The dual situation
happens with Gn−1 and the additional excitation signals.

We have shown in Theorem 4.3 that for a four-node branch network, EMP3 achieves
better overall accuracy when compared to EMPs1,2. A principle that emerged from this
result is that it would be better to excite the nodes near the source and measure the
remaining nodes close to the sink. This observation will also be true for networks with
an arbitrary number of nodes as shown in Section 4.4.4. Before analyzing whether this
principle is valid for branches with an arbitrary number of nodes, The next result will be
useful in the analysis o the next theorem.

Lemma 4.2. Consider an n-node branch network with network matrix as in (107). Under

Assumptions 4.2 and 4.3, minimal EMP1 = (B = {1}, C = {2, 3, . . . , n}) yields the

following asymptotic covariance of the parameter estimates:

cov(θ̂1) = X−11 , (155)

cov(θ̂i) = X−1i +X−1i+1, for i = 2 . . . n− 1, (156)

with Xi = N/λEG′
∏i−1

k=1Gr ×G′T
∏i−1

k=1Gr.

Proof. Let G , G0
i (q) and λ , λi for i = 1, 2, . . . , n − 1. The gradient of the optimal

predictor for minimal EMP1 is the following.

ψ1(t, θ) =


G′r1 G′Gr1 · · · G′Gn−2r1

0 G′Gr1 · · · G′Gn−2r1
... . . . . . . ...
0 0 · · · G′Gn−2r1

 .

It can be shown that the information matrix of the minimal EMP1 has the following
structure:

M1 =



∑n−1
i=1 Xi

∑n−2
i=2 Xi

∑n−1
i=3 Xi · · · Xn−1∑n−1

i=2 Xi

∑n−2
i=2 Xi

∑n1−
i=3 Xi · · · Xn−1∑n−1

i=3 Xi

∑n−1
i=3 Xi

∑n−1
i=3 Xi · · · Xn−1

...
...

... · · · ...
Xn−1 Xn−1 · · · · · · Xn−1


,



107

where Xi , N/λEG′Gi−1r1G
′Gi−1r1. Now, define:

Q1 ,



I −I
I −I

. . . . . .
. . . −I

I


.

Let M1 , bdiag(X1, X2, . . . , Xn−1), with bdiag(·) referring to a block diagonal matrix.
We have that M1 = Q1M1Q

T
1 , from which we can recover the covariance matrix as

P1 = QT
1M

−1
1 Q1, yielding:

P1 =


X−11 −X−11 0

. . .

−X−11 X−11 +X−12 −X−12
. . .

... . . . . . . . . .

0 · · · X−1n−2 X−1n−1 +X−1n−2

 .

This lemma provides the asymptotic covariance expressions for EMP1. The next
theorem states that for EMP1 in Lemma 4.2 it is better to exchange the measurement of
the second node by an excitation.

Theorem 4.9. Consider a branch network with network matrix in (107). Under Assump-

tions 4.2 and 4.3, a smaller trace of the asymptotic covariance matrix is obtained by EMP2:

({1, 2}, {3, . . . , n}) when compared to EMP1: ({1}, {2, . . . , n}).

Proof. Under Assumptions 2.1 and 2.2 we have that Gk(q, θk) = G for k = 1, . . . , n −
1, σ2

i = σ2 and λj = λ for i ∈ B, j ∈ C. Let X1 , N
λ
EG′r × G′T r and Xi ,

N
λ
EG′

∏i−1
k=1Gr × EG′

∏i−1
k=1Gr. The covariance of the parameter estimates for EMP1

follows from Lemma 4.2:

cov(θ̂11) = X−11

cov(θ̂12) = X−11 +X−12

cov(θ̂13) = X−12 +X−13

...

cov(θ̂1n−1) = X−1n−2 +X−1n−1.

As for EMP2, the information matrix can be obtained by using the partial information
approach in Lemma 4.1 and (111). The desired result can be obtained by making the
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following comparison among the covariances of the parameter estimates for both EMPs:

cov(θ̂11) � cov(θ̂22)

cov(θ̂12) � cov(θ̂21)

cov(θ̂13) � cov(θ̂23)

cov(θ̂14) � cov(θ̂24)

cov(θ̂15) � cov(θ̂25)

...

cov(θ̂1n−1) � cov(θ̂2n−1)

, (157)

where the superscript i refers to EMPi. Now, Recall that X1 ? X2 , (X−11 + X−12 )−1.
After lengthy calculations using the Schur’s complement, (157) is equivalent to

X−11 � [X1 + [X−12 + [X2 ? X3 +X3 ? X4 +X4 ? X5 + · · ·+Xn−2 ? Xn−1]
−1]−1]−1

X−11 +X−12 � [X1 ? X2 +X2 ? X3 +X3 ? X4 + · · ·+Xn−2 ? Xn−1]
−1

X−12 +X−13 � [X2 + [Z−11 + [X2 +W1]
−1]−1]−1

X−13 +X−14 � [X3 + [Z−12 + [X3 +W2]
−1]−1]−1

X−14 +X−15 � [X4 + [Z−13 + [X4 +W3]
−1]−1]−1

...

X−1n−2 +X−1n−1 � [Xn−2 + [Z−1n−3 + [Xn−2 +Wn−3]
−1]−1]−1,

(158)
where Wi =

∑n−2
k=1 Xk ? Xk+1 −Xi ? Xi+1 and

0 ≺ Z1 , X3 − [X2 +X3][X1 + 2X2 +X3]
−1[X2 +X3]

0 ≺ Z2 , X4 − [X3 +X4][X2 + 2X3 +X4]
−1[X3 +X4]

0 ≺ Z3 , X5 − [X4 +X5][X3 + 2X4 +X5]
−1[X4 +X5]

...

0 ≺ Zi , Xi+2 − [Xi+1 +Xi+2][Xi + 2Xi+1 +Xi+2]
−1[Xi+1 +Xi+2].

To verify that (158) is indeed positive definite, we just need to apply the matrix inversion
lemma to the right side. With an appropriate relabel of variables we have:

X−11 � [X1 +H−11 ]−1 ⇐⇒ X1 ≺ X1 +H−11

X−11 +X−12 � [X1 ? X2 +W1]
−1 ⇐⇒

X−11 +X−12 � X−11 +X−12 − [X1 ? X2]
−1[[X1 ? X2]

−1 +W−1
1 ]−1[X1 ? X2]

−1 ⇐⇒
[X1 ? X2]

−1[[X1 ? X2]
−1 +W−1

1 ]−1[X1 ? X2]
−1 � 0

X−1i +X−1i+1 � [Xi +H−1i ]−1 ⇐⇒ X−1i +X−1i+1 � X−1i −X−1i [X−1i +Hi]
−1X−1i ⇐⇒

X−1i+1 +X−1i [X−1i +Hi]
−1X−1i � 0.

(159)
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Now we have established that there is a minimal EMP which provides better accuracy
than at least another minimal EMP. Since mirrored EMPs yield equal overall accuracy, the
same conclusion is valid for the mirrored versions of EMPs stated in this theorem. This
is a key observation. To fully appreciate it, consider the special case of a network with
five nodes (n = 5). The difference between EMP1 and EMP2 is that we exchange the
measurement of the second node by an excitation signal. Since we are adding one more
excitation, one should wonder whether adding more excitations would be beneficial to
the accuracy. This is clearly not the case, since EMP1 = ({1, 2, 3, 4}, {5}) is a mirrored
version of EMP1. Therefore, there is a trade-off between the number of excitations and
measurements in a branch network.

It is better to excite the first half of the network and measure the last half. This was
formally shown for 4-node branches, and by applying Theorem 4.9 to the 5-node case we
reach the same conclusion. Thus, it is expected that this result also extends to an arbitrary
number of nodes. For a more general case where Assumptions 4.2 and 4.3 do not hold, we
expect that the EMP2 from Theorem 4.9 will tend to be more accurate. Indeed, this will
be observed in the numerical results presented in the next section. We also point to the
fact that EMP1 applied to an n-node branch network does not improve any estimates with
respect to a network with n− 1 nodes. This does not happen with other minimal EMPs,
like those where the first nodes are excited and the last ones are measured.

In summary, we have established three principles that influence the accuracy of the
module estimates in a branch network. Firstly, we demonstrated that “mirrored” minimal
EMPs provide the same overall accuracy for a fully symmetric network. Therefore, we
expect that when all quantities involved are arbitrary, there is no preferred choice between
a particular EMP and its mirrored version. This choice will depend upon the magnitude
of certain modules within the network and the SNRji at some nodes. Moreover, we
demonstrated a topological principle for branch networks: minimal EMPs where the nodes
near the source are excited and the nodes close to the sink are measured yield most accurate
results under Assumptions 4.2 and 4.3. This principle was previously observed for 4-node
branch networks and it is once more confirmed for general branch networks. Finally,
the key observations in WAHLBERG; HJALMARSSON; MÅRTENSSON (2009) – see
Section 4.4.1, were shown to be dependent not only on common dynamics between some
modules but also on the experimental setting employed. We have seen that direct modules
play an important role in the selection of the best EMP for branches with three nodes.
While this is not necessarily the case for branches with 4 nodes, where a specific EMP is
often better than the others, they serve as an strong indicator for which EMPs should be
considered.
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4.4.4 Numerical analysis

In this section we analyze how the different factors presented so far work together
and how they compare with each other. This is done through numerical experiments that
demonstrate that the guiding principles developed until now also apply to the general case
of n-node networks.

For the numerical experiments we consider that the following will be valid in all
experiments. A total of 10,000 network simulations will be performed. In each run we
consider branch networks with cardinality from four to eight nodes. All signals involved are
realizations of Gaussian white noise processes. The input {ri(t)} is zero-mean Gaussian
with variance σ2

i for i ∈ B, while the corrupting noise {ej(t)} is also a zero mean process,
but with variance λj for j ∈ C. A new realization of the random signals involved is
performed at each run of the simulation. With respect to the EMPs, we will consider two
scenarios:

(i) Assumption 4.3 holds. For this scenario we have chosen σ2
i = 1, ∀i ∈ B and

λj = 0.01, ∀j ∈ C.

(ii) For the second analyzed scenario the variances σ2
i and λj will be drawn from a

uniform distribution U (0.001, 50) .

We remark that the numerical values of the SNR in the first scenario do not influence
the decision of the best minimal EMP, since in this case the choice depends only on the
numerical parameters and the EMP itself. For each cardinality of the network we will
choose at every run a best EMP, the one with smallest trace of the covariance matrix. We
are going to list the two best minimal EMPs for each cardinality. With respect to the
structure of each model we will consider two structures: first and second order transfer
functions. The first order module is parametrized as:

Gi(q, θi) =
bi

q + ai
, (160)

where θi = [ai bi]
T . In each run of the numerical simulation each parameter is randomly

selected. Each module parameter ai is sampled from U (0.1, 0.9), while bi’s are sampled
from U(0.5, 2). The results obtained for the first order transfer function (160) under
scenarios (i) and (ii) are displayed in Table 6. This table shows the frequency (in percentage
with respect to the total number of runs) in which the two most selected EMPs were chosen
as the best for branch networks with number of nodes from 4 up to 8.

The results from this table show that for all network cadinalities the best minimal EMP
was the one where the nodes near the source were excited and the nodes near the sink were
measured. Thus, the results obtained for branch networks with four nodes are also valid
for larger networks even when Assumptions 4.2 and 4.3 do not hold.
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Table 6 – How often the two best ranked minimal EMPs(B, C) were selected considering
first order modules for scenario (i) - under Assumption 4.3 - and (ii) where all quantities
were randomly selected.

n Scen. best EMP % runner-up EMP %

4
(i) ({1, 2}, {3, 4}) 54.12 ({1, 3}, {2, 4}) 21.25
(ii) ({1, 2}, {3, 4}) 50.22 ({1, 3}, {2, 4}) 18.55

5
(i) ({1, 2}, {3, 4, 5}) 24.79 ({1, 2, 3}, {4, 5}) 24.72
(ii) ({1, 2, 3}, {4, 5}) 23.58 ({1, 2}, {2, 4, 5}) 23.1

6
(i) ({1, 2, 3}, {4, 5, 6}) 18.88 ({1, 2, 4}, {3, 5, 6}) 16.72
(ii) ({1, 2, 3}, {4, 5, 6}) 17.08 ({1, 2, 4}, {3, 5, 6}) 13.55

7
(i) ({1, 2, 3, 4}, {5, 6, 7}) 12.47 ({1, 2, 3}, {4, 5, 6, 7}) 11.78
(ii) ({1, 2, 3, 4}, {5, 6, 7}) 10.56 ({1, 2, 3}, {4, 5, 6, 7}) 10.36

8
(i) ({1, 2, 3, 4}, {5, 6, 7, 8}) 10.81 ({1, 2, 3}, {4, 5, 6, 7, 8}) 8.3
(ii) ({1, 2, 3, 4}, {5, 6, 7, 8}) 9.15 ({1, 2, 3}, {4, 5, 6, 7, 8}) 7.64

For small cardinalities, such as four nodes, the difference in frequency was more than
two times with respect to the runner-up EMP, while for larger cardinalities a slightly
increase in the frequency was observed. Notice that the best EMP and the runner up for
five and seven nodes are mirrored EMPs and they provide similar accuracy. This means
that together they account for almost half of the selections for five nodes and a fifth for
seven nodes. The decrease in percentage of the best EMP when we increase the cardinality
of the network is also due to the large number of available minimal EMPs, for instance, for
a network with cardinality eight there are a total of 64 minimal EMPs to choose.

Once we have observed that exciting the first nodes and measuring the last ones is
the best approach, we wonder by how much the best EMP yields better precision than
the others. This is a crucial aspect since one could benefit simply from choosing the
structure of excitations and measurements in the network. To answer this question we have
compared the ratio of the trace of covariance matrices obtained by the best EMP and the
runner-up. In addition, we have also compared the ratio between the best EMP and the
worst EMP for the results. We depict in Table 7 the median of the ratio best/runner up and
best/worst for the two scenarios analyzed.

We see in this table that for small network cardinalities (four and five nodes) we can
have from 30% up to almost double precision improvement compared to the runner-up
minimal EMP. Whereas in the case for larger cardinalities we have improvements of at
least 8% (for the eight nodes case). The situation dramatically changes when the best
EMP is compared to the EMP that yielded worst accuracy. For a network with few nodes
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Table 7 – Median of the trace of covariance matrix ratio between the best EMP and the
runner up and between best EMP and worst EMP for first order modules.

(i) Under Assumption 4.3 (ii) All random

n runner-up worst EMP runner-up worst EMP
4 1.59 10.23 1.96 15.45
5 1.31 26.14 1.54 46.40
6 1.19 56.64 1.36 111.69
7 1.12 111.42 1.24 240.86
8 1.08 227.18 1.19 555.80

we have at least ten times better precision, and for larger networks this number grows
even bigger to 555 (for eight nodes). The large difference observed for cardinalities with
more than six nodes is partly due to well-known fact that when we increase the number
of parameters the variance also increases. Therefore, for larger networks it is even more
important to not choose an EMP arbitrarily.

Now, let us consider a second order transfer function with the following structure:

Gi(q, θi) =
θi1q + θi2

q2 + θi3q + θi4
. (161)

The poles of Gi(q, θi) are randomly selected from the right side of the unitary disk, while
the zeros are drawn from a disk with radius three. We have performed the same experiments
that we have done for first order modules. Similar results to Table 6 are presented in Table 8.

Table 8 – How often the best minimal EMPs(B, C) were selected for second order modules
under scenarios (i) (Assumption 4.3) and (ii).

n Scen. best EMP % runner-up EMP %

4
(i) ({1, 2}, {3, 4}) 57.38 ({1, 3}, {2, 4}) 17.7
(ii) ({1, 2}, {3, 4}) 49.7 ({1}, {2, 3, 4}) 18.09

5
(i) ({1, 2, 3}, {4, 5}) 29.06 ({1, 2}, {3, 4, 5}) 28.64
(ii) ({1, 2}, {3, 4, 5}) 27.55 ({1, 2, 3}, {4, 5}) 23.86

6
(i) ({1, 2, 3}, {4, 5, 6}) 24.36 ({1, 2, 4}, {3, 5, 6}) 17.76
(ii) ({1, 2, 3}, {4, 5, 6}) 18.78 ({1, 2, 4}, {3, 5, 6}) 12.83

7
(i) ({1, 2, 3}, {4, 5, 6, 7}) 13.56 ({1, 2, 3, 4}, {5, 6, 7}) 13.17
(ii) ({1, 2, 3}, {4, 5, 6, 7}) 11.05 ({1, 2, 3, 4}, {5, 6, 7}) 10.2

8
(i) ({1, 2, 3, 4}, {5, 6, 7, 8}) 10.6 ({1, 2, 3, 5}, {4, 6, 7, 8}) 6.85
(ii) ({1, 2, 3, 4}, {5, 6, 7, 8}) 7.22 ({1, 2, 3}, {4, 5, 6, 7, 8}) 5.33
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As can be observed from this table, the results observed for first order modules are
also valid for second order modules. Once more, there is a minimal EMP that is selected
more often than others, the one where nodes near the source are excited and the nodes near
the sink are measured. These results suggest that the principles derived from the analysis
under Assumptions 4.2 and 4.3 can be applied as guidelines for the selection of the best
EMPs.

We also have analyzed the gains in accuracy of the best EMP compared to the runner
up EMP and the worst EMP, which are displayed in Table 9.

Table 9 – Median of the trace of covariance matrix ratio between the best EMP and the
runner up and between the best EMP and worst EMP for second order modules.

(i) Under Assumption 2.2 (ii) All random

n runner-up worst EMP runner-up worst EMP
4 1.72 7.46 2.09 11.72
5 1.52 17.57 1.75 31.35
6 1.44 37.10 1.61 71.29
7 1.39 72.41 1.51 153.80
8 1.37 136.27 1.47 288.92

Once again, we have observed that the selection of the minimal EMP is crucial in the
precision of the parameter estimates. In the case of second order modules, the difference
from the runner up is even larger than in the first order module, ranging from at least 37%
better to more than two times the precision.

From the thousands of numerical experiments performed we have seen that the princi-
ples derived for the analytical results are also observed in the more general case where the
network is arbitrarily excited and with different modules. First, mirrored EMPs tend to
have a similar performance on the accuracy of the estimates. Second, we have observed
that minimal EMPs where the first half of the nodes are excited while the remaining
nodes are measured tend to give the most accurate results. For any minimal EMP there
are competing factors that will influence the decision of which EMP provides the most
accurate estimates. On the one hand, there is the influence of the SNR at some nodes on
the precision of the parameter estimates. On the other hand, the magnitude of the module
parameters may be a key decider for accuracy of the estimates. In any case, the structure
of the excitations and measurements plays a major role in the selection of the best EMP as
evidenced by the numeric examples.

4.4.5 Summary

We have established a number of key factors that influence the accuracy in branch
networks based either on analytical results or on an extensive numerical analysis, or both.
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These factors together form fundamental principles that an experiment design should
account for when the objective is to decide which EMP yields the most accurate results.
The first factor is a topological principle that states that EMPs where the first half nodes are
excited and the remaining nodes are measured yield the most accurate estimates. Second,
a large signal-to-noise ratio should be applied in the direct modules of the EMPs. If, in
addition to that, some prior knowledge is available, then the user should choose EMPs
for which direct modules have a large magnitude. Third, we have shown that some EMPs
result in the same overall accuracy, which allows the user to exchange excitations for
measurements and vice-versa without losing precision of the estimates.

Last, but not least, a very important finding is the large difference observed in the
precision of the estimates when the best excitation and measurement pattern is compared
to other candidates.

4.5 Cyclic networks

In this section, we address the accuracy analysis for cyclic dynamic networks in a
similar fashion to what was done for branch networks. Our approach will be the same used
for branch networks, we start with small cyclic networks with just 2 nodes, and from that
we proceed by increasing the number of nodes. Recall that an isolated cycle network can
be described by its network matrix, which has the following form:

G0(q) =



0 0 0 · · · G0
n(q)

G0
1(q) 0 0 · · · 0

0 G0
2(q)

. . . · · · ...
... · · · . . . . . . ...
0 · · · · · · G0

n−1(q) 0


. (162)

Recall that we have relabeled the modules as G0
ji(q) , G0

i (q). Notice that this structure is
very similar to the branch case, the main difference is in the additional transfer function
G0
n(q) that closes the loop. There are n modules to be identified for a cycle network with n

nodes. In the analysis that follows, it will be useful to analyze the features of this network
by analyzing a particular case of (162)

G(q, θ0) =

[
0 θ0n

diag(θ01, θ
0
2, . . . , θ

0
n−1) 0

]
q−1. (163)

Recall that diag(·) refers to a diagonal matrix. We refer to (163) as a state-space network
matrix. We are interested in providing key insights on how to determine which EMPs
are equivalent, which produce the same overall accuracy, and which ones yield the most
accurate estimates. For this purpose, we need to establish a general formula for computing
the information matrix of a cycle network. This is what we do in the following.
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4.5.1 The information matrix for cycles

In order to compute the information matrix we need an expression for ψ(t, θ). Recall
that we can compute the information matrix from Lemma 4.1 as the sum of partial
information matrices associated to a given EMP. Therefore, we just need to provide a
general formula for ψji(t, θ) as defined in (103).

Let us briefly recall the expressions for the input-output description (82)-(88) of a
cycle:

R , G1(q, θ1)G2(q, θ2) · · ·Gn(q, θn), (164)

Rik , Gi−1(q, θi−1)Gi−2(q, θi−2) · · ·Gk(q, θk) for k < i, (165)

Rik , Gi−1(q, θi−1)Gi−2(q, θi−2) · · ·Gn(q, θn)Gn−1(q, θn−1) · · ·Gk(q, θk) for k > i,

(166)

R = RikRki, (167)

Rii , 1. (168)

From the input-output relationship given in Lemma 3.5 one can compute the expressions
for the gradient as follows:

∂Tii(q, θ)

∂θk
=
RikRk−1,iG

′
k

(1−R)2
(169)

∂Tji(q, θ)

∂θk
=
RjkRk−1,iG

′
k

(1−R)2
, if Gk(q, θk) ∈ Rji (170)

∂Tji(q, θ)

∂θk
=
RjiRikRk−1,iG

′
k

(1−R)2
, if Gk(q, θk) 6∈ Rji, (171)

where Gk ∈ Rji means that Gk is a term of Rji. From these expressions, we can form the
gradient for j > i as follows:

ψji(t, θ) =
1

(1−Rii)2



RjiRi1R0,iG
′
1

...
RjiRiiRi−1,iG

′
i

Rji+1Ri1G
′
i+1

Rji+2Ri+1,1G
′
i+2

...
RjjRj−1,1G

′
j

RjiRij+1Rj,iG
′
j+1

...
RjiRi,n−1Rn−2,iG

′
n−1



. (172)
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As for j < i we have the following gradient:

ψji(t, θ) =
1

(1−Rii)2



Rj1R0,iG
′
1

Rj2R1,iG
′
2

...
Rjj−1Ri,j−1G

′
j−1

RjiRijRj−1,iG
′
j

RjiRij+1RjiG
′
j+1

...
RjiRiiRi−1iG

′
i

Rji+1Ri,iG
′
i+1

...
Rj,n−1Rn−2,iG

′
n−1



. (173)

The information matrix of a cycle for a given EMP can be constructed from these
gradients using Lemma 4.1. More generally, the partial information matrices are related
under the conditions of the following lemma.

Lemma 4.3. The partial information matrix Mi+l,i from node i to i + l is related to the

partial information matrix Mi+l+k,i+k from node i+ k to i+ l + k:

Mi+l,i = QMi+l+k,i+kQ
T , (174)

if λi+l/σ2
i = λi+l+k/σ

2
i+k and Ri+l,i = Ri+l+k,i+k with Q an appropriate permutation

matrix.

Proof. If ψi+l,i(t, θ) = Qψi+l+k,i+k(t, θ) and λi+l/σ2
i = λi+l+k/σ

2
i+k, then (174) holds.

These gradients will have the same elements if Ti+l,i = Ti+l+k,i+k, which is equivalent to
Ri+l,i = Ri+l+k,i+k. Under this condition, they have the same elements but with a different
order. Therefore, there exists a transformation matrix Q for which the partial information
matrix are similar up to a transformation Q.

This result will allow us to determine the conditions under which two minimal EMPs
yield the same, or a similar, covariance matrix of the parameter estimates. These conditions
will depend on whether the partial information matrices from a given minimal EMP are
similar up to a similarity transformation to those of another minimal EMP. It is immediate
from the definitions that

SNRii = SNRjj =
σ2
i

λi
=
σ2
j

λj
⇐⇒ Mii = Mjj.

This means that the partial information matrix from a node to itself will differ from another
node based solely on the SNRii applied at the nodes.
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4.5.2 2-node cycles

The simplest cycle network is the one composed of only two nodes. There are only two
modules to be identified G0

1(q) and G0
2(q). From the necessary and sufficient conditions in

Theorem 3.17, a 2-node cycle network has only four minimal EMPs, namely:

1. EMP1 = (B = {1, 2} ; C = {1}),

2. EMP2 = (B = {1, 2} ; C = {2}),

3. EMP3 = (B = {1} ; C = {1, 2}),

4. EMP4 = (B = {2} ; C = {1, 2}).

Figure 18 depicts each of these minimal EMPs for the two nodes cycle network.

Figure 18 – Minimal EMPs for the 2-node cycle network. Excited nodes are indicated by
incoming edges with label rj . Measured nodes are depicted in green color.

a) EMP1. b) EMP2.

c) EMP3. d) EMP4.

Source: The Author.

The following theorem provides the relationship among the minimal EMPs for a 2-node
cycle network.

Theorem 4.10. Consider a 2-node cycle dynamic network with network matrix in (162),

for which minimal EMPs1−4 apply. Under Assumptions 4.2 and 4.3, it holds

1. EMP1 and EMP4 yield the same asymptotic covariance matrix;

2. EMP2 and EMP3 yield the same asymptotic covariance matrix;

3. All minimals EMPs yield the same trace of the asymptotic covariance matrix.

Proof. We can compute the information matrices associated to each minimal EMP using
the partial information matrices:

M1 = M11 +M12,M2 = M21 +M22, (175)

M3 = M11 +M21,M4 = M22 +M12. (176)
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Let us start with items 1 and 2. Under Assumptions 4.2 and 4.3, we have M11 = M22 and
therefore M1 = QM4Q

T and M2 = QM3Q
T . To prove item 3 we only need to show that

M1 = QM3Q
T , which is equivalent to M12 = QM21Q

T . Under the stated assumptions,
we have from Lemma 4.3 that:

M12 = QM21Q
T .

This result shows that under Assumptions 4.2 and 4.3 all minimal EMPs yield the same
overall accuracy. In fact, these assumptions are not necessary for these results to hold. The
following theorem gives conditions when the minimal EMPs provide similar accuracy.

Theorem 4.11. Consider a 2-node cycle dynamic network with network matrix in (162),

for which minimal EMPs1−4 apply. Minimal EMP1 and EMP4 yield the same covariance

matrix and minimal EMP2 and EMP2 yield the same covariance matrix if and only if

SNR11 = SNR22.

Proof. The proof follows from the observation that M1 = M4 and M2 = M3 if and only if
M11 = M22. Since ψ11(t, θ

0) and ψ22(t, θ
0) have the same elements, they will be equal if

and only if σ2
1

λ1
=

σ2
2

λ2
.

This theorem shows that equality among some minimal EMPs for a cycle network with
2 nodes depends only on the SNRji at the nodes. In the next sections we are going to show
that this principle is more general to cycle networks.

Let us now investigate how the magnitude of the modules influence the accuracy of the
minimal EMPs. In order to perform this analysis, we will consider a state-space cycle with
network matrix (163) with n = 2 as follows:

G0(q) =

[
0 θ02

θ01 0

]
q−1. (177)

A similar analysis was provided for state-space branch networks in Theorems 4.2, 4.4,
and 4.5, where we have seen that the direct modules play a key role in the decision of
which minimal EMP yields most accurate results. For EMP1 one can obtain the following
variance of the parameter estimates:

var(θ̂12) =
λ1γ0
Nd1

(
σ2
1 + σ2

2θ
0
2
2
)
, (178)

var(θ̂11) =
λ1γ0

Nθ02
2
d1

(
θ01

2
σ2
1 + σ2

2

)
, (179)

where γk , ErF (t)rF (t− k), rFi (t) = ri(t)

(1−θ02θ01)
2 , and

d1 =
(
γ20

(
σ2
1 + σ2

2θ
0
2
2
)(

σ2
1 + σ2

2θ
0
2
2
)
−
(
γ20σ

2
1θ

0
1 + γ2σ

2
2θ

0
2

)2)
.
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These expressions follow from the information matrix, which is fully developed in Ap-
pendix A.1. Now, for EMP2 we have the following results:

var(θ̂22) =
1

N

λ2γ0

θ01
2
d2

(
σ2
1 + σ2

2θ
0
2
2
)
, (180)

var(θ̂21) =
1

N

λ2γ0
d2

(
θ01

2
σ2
1 + σ2

2

)
, (181)

where d2 =
(
γ20

(
σ2
1 + σ2

2θ
0
2
2
)(

σ2
1 + σ2

2θ
0
2
2
)
− (γ20σ

2
2θ

0
1 + γ2σ

2
1θ

0
2)

2
)

. As for EMP3, we
have the following results for the variances:

var(θ̂32) =
1

N

λ1λ2γ0

θ01
2
d3

(
λ1 + λ2θ

0
2
2
)

(182)

var(θ̂31) =
1

N

λ1λ2γ0
d3

(
θ01

2
λ1 + λ2

)
, (183)

with d3 = σ2
1

(
γ20

(
λ1 + λ2θ

0
2
2
)(

θ01
2
λ1 + λ2

)
− (γ20λ2θ

0
2 + γ2λ1θ

0
1)

2
)

. Finally, EMP4

yields the following variance of the estimates:

var(θ̂42) =
1

N

λ1λ2γ0
d4

(
λ1 + λ2θ

0
2
2
)
, (184)

var(θ̂41) =
1

N

λ1λ2γ0

θ02
2
d4

(
θ01

2
λ1 + λ2

)
, (185)

with d4 = σ2
2

(
γ20

(
λ1 + λ2θ

0
2
2
)(

θ01
2
λ1 + λ2

)
− (γ20λ2θ

0
2 + γ2λ1θ

0
1)

2
)

.

A number of conclusions can be drawn from these equations. The next theorem gives
conditions under which we can compare the minimal EMPs for state-space cycles.

Theorem 4.12. Consider a 2-node cycle network with network matrix in (177). Under

Assumptions 4.2 and 4.3, the direct modules of the minimal EMPs are estimated more

accurately. Under Assumption 4.3, the following holds

1. if [θ01]
2 > [θ02]

2 then tr(P1) = tr(P4) > tr(P2) = tr(P3).

2. if [θ01]
2 < [θ02]

2 then tr(P1) = tr(P4) < tr(P2) = tr(P3).

Proof. First notice that under Assumption 4.3 we have P1 = P4 and P2 = P3 from
Theorem 4.10. We are going to show now that direct modules are estimated more accurately.
Recall that θ02q

−1 is a direct module of EMPs1,4 and θ01q
−1 is a direct module in EMPs2,3.

Now we just need to compare (178)-(180) and (179)-(181):

var(θ̂12)

var(θ̂22)
=
(
θ01
)2
, (186)

var(θ̂21)

var(θ̂11)
=
(
θ02
)2
. (187)
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From the stability constraints we have that θ01θ
0
2 < 1, which under Assumption 4.2 implies

that [θ01]
2 = [θ02]

2 < 1. Therefore, we have that var(θ̂12) < var(θ̂22) and var(θ̂21) < var(θ̂11).
Finally, under Assumption 4.3 we have

tr(P1)

tr(P2)
=

(θ01)
2
(

(θ02)
2
(

(θ02)
2

+ 1
)

+ (θ01)
2

+ 1
)

(θ02)
2
(

(θ02)
2

+ (θ01)
2
(

(θ01)
2

+ 1
)

+ 1
)×

γ20 (θ02)
2

(θ01)
2

+ γ20 (θ01)
2

+ γ20 − 2γ0γ2θ
0
2θ

0
1 − γ22 (θ01)

2

γ20 (θ02)
2

(θ01)
2

+ γ20 (θ02)
2

+ γ20 − 2γ0γ2θ02θ
0
1 − γ22 (θ02)

2 . (188)

Now, if [θ01]
2 > [θ02]

2 then (188) is larger than 1 as

(θ01)
2
(

(θ02)
2
(

(θ02)
2

+ 1
)

+ (θ01)
2

+ 1
)

(θ02)
2
(

(θ02)
2

+ (θ01)
2
(

(θ01)
2

+ 1
)

+ 1
) > 1

(
θ01
)2 − (θ02)2 +

(
θ01
)4 − (θ02)4 + (θ02θ

0
1)

2
((
θ02
)2 − (θ01)2) > 0,

since [θ01θ
0
2]

2 < 1 and | (θ01)
2 − (θ02)

2 |> (θ02θ
0
1)

2 | (θ02)
2 − (θ01)

2 |. The last fraction of
(188) is also positive if [θ01]

2 > [θ02]
2. The dual argument is valid for the last item.

This result is in accordance with the ones obtained from branches. They mean that the
selection of the minimal EMP that provides the most accurate estimates depends upon the
numeric value of the modules. More specifically, this result shows that the direct modules
play a key factor in the selection of the best EMP. Furthermore, the direct modules are
estimated more accurately under Assumptions 4.2 and 4.3.

In summary, we have demonstrated that for cycles with two nodes some EMPs provide
equal accuracy and for a fully symmetrical scenario that all minimal EMPs provide the
same overall accuracy. We have also shown how the numeric values of the direct modules
influence the minimal EMPs that provide the most accurate estimates.

4.5.3 3-node cycles

Here we extend the analysis from 2-node cycle networks to cycle networks com-
posed of three nodes. For this class of networks there are three modules to be identified:
G0

1(q), G
0
2(q), and G0

3(q). From the necessary and sufficient conditions given in Theo-
rem 3.17, we know that at least one node must be both excited and measured, and every
other node must be either measured or excited. This produces a total of 12 minimal EMPs,
which are described in Table 10.

Let us start the analysis considering Assumptions 4.2 and 4.3. The following result
states which EMPs have overall similar accuracy for a three node cycle.

Theorem 4.13. Consider a 3-node cycle with dynamic network, for which the minimal

EMPs from Table 10 apply. Under Assumptions 4.2 and 4.3, the following holds
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Table 10 – The 12 minimal EMPs for a 3-node cycle.
EMP (B, C) EMP (B, C)
EMP1 B = {1, 2, 3} ; C = {1} EMP2 B = {1, 2, 3} ; C = {2}
EMP3 B = {1, 2, 3} ; C = {3} EMP4 B = {1} ; C = {1, 2, 3}
EMP5 B = {2} ; C = {1, 2, 3} EMP6 B = {3} ; C = {1, 2, 3}
EMP7 B = {1, 2} ; C = {1, 3} EMP8 B = {1, 3} ; C = {1, 2}
EMP9 B = {2, 3} ; C = {1, 2} EMP10 B = {1, 2} ; C = {2, 3}
EMP11 B = {1, 3} ; C = {2, 3} EMP12 B = {2, 3} ; C = {1, 3}

1. EMPs1−6 have the same trace of the asymptotic covariance matrix;

2. EMPs7,9,11 have the same trace of the asymptotic covariance matrix;

3. EMPs8,10,12 have the same trace of the asymptotic covariance matrix.

Proof. The proof will be based on similarity among the information matrices. The in-
formation matrices of EMPs1−6 can be computed by using the partial information matrix
as

M1 = M11 +M12 +M13;M2 = M22 +M21 +M23;M3 = M33 +M31 +M32;

M4 = M11 +M21 +M31;M5 = M22 +M12 +M32;M6 = M33 +M13 +M23.

Under Assumptions 4.2 and 4.3, we have that M11 = M22 = M33. Now, EMP1 and EMP5

will have similar covariance matrices if and only if M13 = QM32Q
T . This follows from

the stated assumptions and Lemma 4.3. Similarly, EMP2 and EMP6 will have similar
covariance matrices if and only if M13 = QM21Q

T . Using the same reasoning, EMP3 and
EMP4 will produce similar covariances matrices if and only if M32 = QM21Q

T . All this
follows from Lemma 4.3. Now, for EMP1 and EMP2 to produce a similar covariance matrix
we would need that M12 = QM23Q

T and M13 = QM21Q
T . The remaining relationships

all follow from Lemma 4.3 and Assumptions 4.2 - 4.3:

M21 ∼M13 ∼M32,

M31 ∼M12 ∼M23.

This theorem establishes that some minimal EMPs provide similar accuracy under
Assumptions 4.2 and 4.3. We should expect that in a more general situation the structure of
these minimal EMPs will carry no advantage over the other. In fact, Assumptions 4.2 and
4.3 are not necessary for some results to hold. The next theorem gives conditions under
which some minimal EMPs yield similar covariance matrices.
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Theorem 4.14. Consider a 3-node cycle with dynamic network (162), for which the

minimal EMPs from Table 10 apply. Under Assumption 4.3, the following holds

1. If G0
1(q) ≡ G0

2(q) then

tr(P1) = tr(P6), tr(P2) = tr(P5), tr(P3) = tr(P4),

tr(P7) = tr(P11), tr(P8) = tr(P12).

2. If G0
1(q) ≡ G0

3(q) then

tr(P1) = tr(P4), tr(P2) = tr(P6), tr(P3) = tr(P5),

tr(P10) = tr(P12), tr(P9) = tr(P11).

3. If G0
3(q) ≡ G0

2(q) then

tr(P1) = tr(P5), tr(P2) = tr(P4), tr(P3) = tr(P6),

tr(P8) = tr(P10), tr(P7) = tr(P9).

Proof. All results follow from Lemma 4.3 and the following implications.

R21 = R32 ⇐⇒ G0
1(q) = G0

2(q) and SNR21 = SNR32 =⇒ M21 ∼M32

R13 = R32 ⇐⇒ G0
3(q) = G0

2(q) and SNR13 = SNR32 =⇒ M13 ∼M32

R13 = R21 ⇐⇒ G0
3(q) = G0

1(q) and SNR13 = SNR21 =⇒ M13 ∼M21

R31 = R12 ⇐⇒ G0
1(q) = G0

3(q) and SNR31 = SNR12 =⇒ M31 ∼M12

R23 = R12 ⇐⇒ G0
1(q) = G0

2(q) and SNR23 = SNR12 =⇒ M23 ∼M12

R23 = R31 ⇐⇒ G0
3(q) = G0

2(q) and SNR23 = SNR31 =⇒ M23 ∼M31.

Notice that Assumption 4.3 is not necessary for these results to hold. It was only
used to unify the conclusions stated in this theorem. To see this, consider EMP1 and
EMP5. From Lemma 4.3 they will have similar covariance matrices if G0

3(q) = G0
2(q),

SNR11 = SNR22 and SNR13 = SNR32. Similar conclusions can be derived for the other
EMPs. These results reveals a symmetry for a cycle network. If some modules are equal,
then some EMPs will be equal due to the distribution of excitations and measurements in
the cycle network.

We now investigate whether there is a minimal EMP that yields the smallest accuracy
among the minimal EMPs. To this end, we consider a state-space 3-node cycle with the
following network matrix:

G(q, θ0) =

 0 0 θ03

θ01 0 0

0 θ02 0

 q−1. (189)
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In order to gain some insight into the choice of the best EMP, we have simulated
1, 000 cycle networks under an equally excited scenario – see Assumption 4.3 – with
different parameter values drawn from a uniform distribution U(−1, 1). The trace of the
asymptotic covariance matrix was used to assess the quality of each EMP. The results of
this experiment are shown in Table 11.

Table 11 – Number of times that each EMP was selected as the best from 1,000 randomly
generated systems.

EMP 1− 6 7 8 9 10 11 12

Occurrences 0 236 117 201 105 238 103

As there are many minimal EMPs, one might expect that new features arise for a 3-node
cyclic dynamic network when compared to the case of 2 nodes, and this is indeed the case.
These results suggest that a better approach is to excite and measure 2 nodes, since neither
the EMPs1−3 (just one node as excitation source) nor the EMPs4−6 (just one node was
measured) were selected as the best in any simulation. Additionally, the EMPs7,9,11 yielded
the best accuracy almost twice as often when compared to EMPs8,10,12. What EMPs7,9,11
have in common is that one excites (instead of measuring, as in EMPs8,10,12) the node
situated next to the node that is both measured and excited.

As we have seen for branches and 2-node cycles, the numeric values of the direct
modules have a key influence on the most accurate minimal EMP. In order to test whether
the largest module plays a crucial role in the selection of the best EMP, we will consider 7
different numerical experiments, described in Table 12.

Table 12 – Parameter values for the numerical experiments.
Exp. θ03 θ01 θ02 Exp. θ03 θ01 θ02

I 0.50 0.50 0.50 V 0.25 1.00 0.50
II 1.00 0.50 0.25 VI 0.25 0.50 1.00
III 1.00 0.25 0.50 VII 0.50 0.25 1.00
IV 0.50 1.00 0.25

From the results with 2-node cycle networks, we conjecture that EMPs for which the
largest parameters are direct modules should result in the smaller trace of covariance matrix.
The trace of the covariance matrix for EMPs7−12 in the different cases are displayed in
Table 13 with σ2

i = 1 and λj = 0.01, ∀j ∈ C and ∀i ∈ B. The results indicate that our
conjecture holds, since the best EMP was, in all cases, the one in which the direct module
is the largest parameter.

Furthermore, as seen in Table 13, in the fully symmetric case these same EMPs7,9,11
outperform the other three – EMPs8,10,12. This effect does not happen in the two node
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Table 13 – Trace of the covariance matrix for the cases in Table 12 and different EMPs, all
equally excited and measured.

EMP| Exp. I II III IV V VI VII

1 0.2029 0.1267 0.0393 1.0968 1.3204 0.4695 0.1094
2 0.2029 0.1094 0.4695 0.0393 0.1267 1.0968 1.3204
3 0.2029 1.3204 1.0968 0.4695 0.1094 0.0393 0.1267
4 0.2029 1.0968 1.3204 0.1267 0.0393 0.1094 0.4695
5 0.2029 0.4695 0.1094 1.3204 1.0968 0.1267 0.0393
6 0.2029 0.0393 0.1267 0.1094 0.4695 1.3204 1.0968
7 0.0782 0.3270 0.0930 0.3270 0.0930 0.0255 0.0255
8 0.1189 0.0290 0.1004 0.0290 0.1004 0.5840 0.5840
9 0.0782 0.0255 0.0255 0.0930 0.3270 0.3270 0.0929
10 0.1189 0.5840 0.5840 0.1004 0.0290 0.0290 0.1004
11 0.0782 0.0929 0.3270 0.0255 0.0255 0.0929 0.3270
12 0.1189 0.1004 0.0290 0.5840 0.5840 0.1004 0.0290

cycle network counterpart, where all EMPs lead to the same results for fully symmetric
network.

To further investigate this phenomenon, we have simulated under Assumptions 4.2 and
4.3 how the trace of the covariance matrices is distributed for θ0 ∈ (0, 1). In Figure 19 is
depicted the trace of the covariance matrices of the EMPs1,7,8 in a fully symmetric cycle
network. This figure shows that for |θ0| ∈ (0, 0.664] EMP7 yields the most accurate results,
whereas for θ0 ∈ (0.664, 1) EMP8 is the most precise EMP. This justifies why we have
observed in Table 11 that EMPs7,9,11 appeared twice as often as EMPs8,10,12. Notice that
for small magnitudes of θ0, EMPs1,8 are three times worse than EMP7, whereas for values
of θ0 close to one, these EMPs provide a similar accuracy. Moreover, the high values of
the variance near zero are due to the attenuation of the excitation signals in the network
caused by the numeric values of the parameters. If the nodes signals become too small,
the signal-to-noise ratio of the network approaches zero and deteriorates the quality of the
estimates.

In conclusion, for a three-node cycle we have observed that there are some EMPs that
provide the most accurate results with respect to the others under Assumptions 4.2 and
4.3. We have shown that these results also depend on the numeric values of the modules,
and that, in general, EMPs with equal shares of excitations and measurements provide the
most accurate estimates. Balancing the number of excitations and measurements in a cycle
is the strategy that tends to yield the best results.
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Figure 19 – Comparison of the trace of the covariance matrix for EMPs1,7,8 under Assump-
tions 4.2 and 4.3 for θ0 = (0, 1).

0.0 0.1 0.2 0.3 0.4 0.5
θ0

102

105

108

1011

1014

1017

1020

tr
(P

)

EMP1

EMP7

EMP8

0.5 0.6 0.7 0.8 0.9 1.0
θ0

100

101

tr
(P

)

EMP1

EMP7

EMP8

Source: The Author.

4.5.4 4-node cycles

Let us now focus on the class of cycles with four nodes. There are four modules to be
identified from a four-node cycle network: G0

1(q), G
0
2(q), G

0
3(q), and G0

4(q). For this class
of networks, there are only two minimal EMPs to be chosen from Theorem 3.17:

I. EMP1 = (B = {1, 3} , C = {2, 4}) ,

II. EMP2 = (B = {2, 4} , C = {1, 3}).

Similarly to the case of cycles with 2 nodes, when we consider Assumptions 4.2 and
4.3 both minimal EMPs yield the same overall accuracy as the next result formally states.

Theorem 4.15. Consider a cycle network with four nodes and network matrix (162), for

which EMPs1,2 apply. Under Assumptions 4.2 and 4.3, both minimal EMPs yield the same

trace of the asymptotic covariance matrix.

Proof. We can write the information matrices of these minimal EMPs as:

M1 = M21 +M41 +M23 +M43, (190)

M2 = M12 +M32 +M14 +M34. (191)

From Lemma 4.3 we have that M21 ∼ M32,M43 ∼ M14,M12 ∼ M41, and M23 ∼
M34.

This result states that for a fully symmetric network both EMPs yield same overall
accuracy. We can then expect that in a more general situation there will be no preferred
choice, and that the choice of the best EMP will depend on other factors. The key decider
for one EMP or the other will depend on the direct modules and on the SNRji applied
at the direct modules. In order to investigate the influence of the direct modules we will
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consider once again a state-space cycle network with four nodes and network matrix as
follows:

G(q, θ0) =


0 0 0 θ04

θ01 0 0 0

0 θ02 0 0

0 0 θ03 0

 q−1. (192)

We conducted a numerical experiment with 10,000 systems where the network parame-
ters were randomly selected from a uniform distribution U(0, 1). The following conjecture
was tested under Assumption 4.3: if |θ01θ03| > |θ02θ04| then EMP1 is the best, otherwise
EMP2. This conjecture comes from the extrapolation of the results observed in the previous
networks concerning direct modules: in EMP1 the modules θ01q

−1 and θ03q
−1 are the direct

modules, so one expects that if they are the larger modules then this will be the best EMP.
The same point is valid for EMP2 once the necessary changes have been made. From the
10, 000 systems tested, the conjecture proved correct in 99.64% of them, implying that,
those indicators can be used to determine which EMP will have the best accuracy for cyclic
networks with four nodes. Once again, it was observed that the gains obtained in choosing
the best EMP can be very significant: in 20% of the cases the ratio between the variances
of the two EMPs was above 100, and the median of this ratio was found to be 8.7.

Thus, the principle that EMPs where the larger modules are direct modules provide
better accuracy is confirmed once again.

4.5.5 Larger cycles

We now consider cycles with larger cardinalities. Recall that for cycles with n > 3 all
minimal EMPs have cardinality n and they can be easily spotted by using Corollary 3.4.
Any minimal EMP must have at least two excited nodes and two measured nodes, and the
distribution of excitations and measurements must not be contiguous.

Let us introduce the following definition that will be useful in the analysis of cycles.

Definition 4.5. An EMP2 = (B2, C2) is said to be circular to EMP1 = (B1, C1) if for a

k ∈ Z it holds B2 = {i+ k (mod n)|i ∈ B1} and C2 = {j + k (mod n)|j ∈ C1}.

This definition can be seen as just a proper relabeling of the nodes. It is useful for the
analysis of cycles because of their symmetry. Most minimal EMPs will be circular to other
minimal EMPs. A symmetric property with respect to the accuracy of the circular EMPs is
formally stated in the following lemma.

Lemma 4.4. Consider a cycle with network matrix (162) and any minimal EMP1 that

applies. Under Assumptions 4.2 and 4.3, all circular EMPs with respect to EMP1 yield the

same trace of the covariance matrix.



127

Proof. Under Assumptions 4.2 and 4.3, all quantities in the cycle are equal. The result
follows from just a relabel of the nodes in the cycle.

This result states that for fully symmetrical cycle networks, we can significantly reduce
the number of minimal EMPs under analysis because most EMPs are circular to others and
they yield the same overall accuracy under Assumptions 4.2 and 4.3. Another important
concept that will be useful in the analysis for cycles is defined in the following.

Definition 4.6. Consider EMP1 = (B1, C1) and EMP2 = (B2, C2) both with cardinality

n. We say that EMP1 and EMP2 are symmetrical opposite to each other if B1 = C2 and

C1 = B2.

EMP1 being symmetrical opposite to EMP2 means that the nodes that are excited in
EMP1 are measured in EMP2, while the nodes that are measured in EMP1 are excited in
EMP2. We are now going to present a result that is valid for any minimal EMP for cycles
with more than three nodes.

Theorem 4.16. Consider a cycle network with network matrix given in (162) with n ≥ 4,

for which a minimal EMP1 = (B1, C1) applies. Under Assumptions 4.2 and 4.3, a minimal

EMP2 = (B2, C2) such that B2 = C1 and C2 = B1 yields the same trace of the asymptotic

covariance matrix.

Proof. We are going to show that the two minimal EMPs from statement have similar
information matrix. Let B1 = {i1, i2, . . . , im} and C1 = {j1, j2, . . . , jp} such that i1 <
i2 < · · · < im and j1 < j2 < · · · < jp, without loss of generality. We are going to use
the partial information matrices associated with each i ∈ B1 and each j ∈ C1. Lemma 4.3
states that two partial information matrices are similar if there is constant difference in
their indexes, i.e. they are circular. For every partial information matrix Mji there is a total
of n similar matrices to Mji: Mj+k,i+k for k = 1, 2, . . . , n. We proceed by forming the
partial information matrices using the following procedure. Choose all jl and ik such that
jl− ik = 1. Repeat the same procedure by iterating jl− ik = ck for ck ∈ {1, 2, . . . , n− 1}.
For EMP2 we have exactly the opposite ik − jl = −ck. Thus, the difference in EMP1

jl − ik = ck is mapped into EMP2 as ik − jl = n − ck. The other way is also true, the
difference il−jk = ck in EMP2 is mapped into jk−il = −ck = n−ck for EMP1. Therefore,
for every jl − ik = ck, there exists an ik2 and jl2 such that ik2 − jl2 = ck and jl = ik2 + k,
ik = jl2 + k, k = 1, . . . , n. It follows from Lemma 4.3 that Mjl,ik = QMik2 ,jk2

QT . This
establishes the relationship between the two minimal EMPs.

This theorem reveals a duality that exists between excitations and measurements in
cycles. If every excitation is exchanged by a measurement, and vice-versa, the same overall
accuracy will be obtained. This means that EMPs that are are symmetrical opposite to each
other yield the same overall accuracy. These results will be fundamental in the analysis of
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cycles as they will significantly reduce the number of minimal EMPs under analysis. In
order to determine which minimal EMPs have some advantage over the others, we will
consider cycles with few number of nodes in the following.

5-node cycles.
In order to provide a better understanding of the problem of selecting the most accurate

EMP for cycles, let us focus now on cycles with five nodes. From Corollary 3.4 we have
all minimal EMPs for a cycle with five nodes, which are displayed in Table 14.

Table 14 – All minimal EMPs for a five nodes loop.

EMP B C EMP B C EMP B C

EMP1 {1, 2, 4} {3, 5} EMP2 {3, 5} {1, 2, 4} EMP3 {1, 3, 5} {2, 4}
EMP4 {2, 4} {1, 3, 5} EMP5 {1, 4} {2, 3, 5} EMP6 {2, 3, 5} {1, 4}
EMP7 {2, 4, 5} {1, 3} EMP8 {1, 3} {2, 4, 5} EMP9 {2, 5} {1, 3, 4}
EMP10 {1, 3, 4} {2, 5}

From Theorem 4.16 it follows that EMPs which are symmetrical opposite to others
yield similar accuracy under Assumptions 4.2 and 4.3. This means that even EMPs and
odd EMPs in Table 14 yield the same trace of the covariance matrix. Similarly to the
four-node case, there is no EMP that yields better accuracy under Assumptions 4.2 and 4.3
as the next theorem shows.

Theorem 4.17. Consider a five node cycle with network matrix in (162) for n = 5. All

minimal EMPs for this network yield the same trace of the asymptotic covariance matrix

under Assumptions 4.2 and 4.3.

Proof. It follows from Theorem 4.16 that even EMPs and odd EMPs in Table 14 yield the
same trace of covariance matrix. Let us show that the odds (even) EMPs give the same
results. Consider EMPs1,5, their information matrix for each EMP can be written as:

M1 = M31 +M32 +M34 +M51 +M52 +M54 (193)

M5 = M21 +M31 +M34 +M51 +M54 +M24. (194)

From Lemma 4.3 we have that M21 = QM32Q
T and M52 = QM24Q

T . Now, consider
EMPs4,7:

M4 = M12 +M14 +M32 +M34 +M52 +M54 (195)

M7 = M12 +M14 +M15 +M32 +M34 +M35. (196)

From Lemma 4.3 we have that M15 = QM54Q
T and M35 = QM52Q

T . Proceeding as
before, consider EMPs5,10:

M5 = M21 +M24 +M31 +M34 +M51 +M54 (197)

MX = M21 +M23 +M24 +M51 +M53 +M54. (198)
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Once again, from Lemma 4.3 we have M23 = QM34Q
T and M31 = QM53Q

T . Finally,
consider EMPs1,4. From Lemma 4.3 we have M12 = QM51Q

T and M31 = QM14Q
T .

From this we conclude that all minimal EMPs yield the same trace of covariance matrix
under stated assumptions.

This result is rather expected, by using the concept of circular EMP from Definition 4.5
and Lemma 4.4 we can see that all minimal EMPs are circular to either a minimal EMP
with two excitations or an EMP with three excitations. Therefore, under Assumptions 4.2
and 4.3 there are only two minimal EMPs to compare and they yield the same overall
accuracy. Notice that for equality among some EMPs, Assumptions 4.2 and 4.3 are not
necessary. Common dynamics among some modules is sufficient to result in equal overall
accuracy of certain EMPs. The next result shows under which circumstances two minimal
EMPs yield similar accuracy.

Corollary 4.2. Consider a cycle with network matrix in (162) with n = 5 nodes, for which

EMPs in Table 14 apply. The following results hold.

1. if G0
1(q) = G0

2(q), G
0
3(q) = G0

5(q) and SNR21 = SNR32, SNR52 = SNR24 then

tr(P1) = tr(P5);

2. if G0
1(q) = G0

3(q), G
0
4(q) = G0

5(q) and SNR15 = SNR54, SNR35 = SNR52 then

tr(P4) = tr(P8);

3. if G0
1(q) = G0

4(q), G
0
2(q) = G0

3(q) and SNR23 = SNR34, SNR31 = SNR53 then

tr(P5) = tr(P10);

4. if G0
1(q) = G0

5(q), G
0
2(q) = G0

4(q) and SNR12 = SNR51, SNR31 = SNR14 then

tr(P1) = tr(P7);

Proof. All results follow by using Definition 4.3 and Lemma 4.3.

Many other results are possible by simple checking the partial information matrix – see
Definition 4.3 – and by using Lemma 4.3. For cycles, in general, in order for two minimal
EMPs to yield similar results, it is sufficient to have some common dynamic among the
modules and that some SNRji are the same at some nodes.

In conclusion, we have observed that for fully symmetric networks all minimal EMPs
for a 5-node cycles yield the same overall accuracy. This is expected since most EMPs are
circular to EMPs that either have three excitations or three measurements. In Section 4.5.6
we are going to investigate how to choose between a minimal EMP with three excitations
or one with three measurements in different scenarios.

6-node cycles.
Let us now analyze whether the results for a 5-node cycle remain valid for a cycle with

six nodes, that is, if all minimal EMPs yield the same overall accuracy. For a cycle with
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six nodes there are six modules to be identified and a total of 32 minimal EMPs one can
choose. All minimal EMPs for a cycle with six nodes are displayed in Table 15.

Table 15 – All minimal EMPs for a cycle network with six nodes.
EMP (B, C) EMP (B, C) EMP (B, C) EMP (B, C)

1 ({1, 2, 3, 5}; {4, 6}) 2 ({1, 2, 4, 5}; {3, 6}) 3 ({1, 2, 4, 6}; {3, 5}) 4 ({1, 2, 4}; {3, 5, 6})
5 ({1, 2, 5}; {3, 4, 6}) 6 ({1, 3, 4, 5}; {2, 6}) 7 ({1, 3, 4, 6}; {2, 5}) 8 ({1, 3, 4}; {2, 5, 6})
9 ({1, 3, 5, 6}; {2, 4}) 10 ({1, 3, 5}; {2, 4, 6}) 11 ({1, 3, 6}; {2, 4, 5}) 12 ({1, 3}; {2, 4, 5, 6})
13 ({1, 4, 5}; {2, 3, 6}) 14 ({1, 4, 6}; {2, 3, 5}) 15 ({1, 4}; {2, 3, 5, 6}) 16 ({1, 5}; {2, 3, 4, 6})
17 ({2, 3, 4, 6}; {1, 5}) 18 ({2, 3, 5, 6}; {1, 4}) 19 ({2, 3, 5}; {1, 4, 6}) 20 ({2, 3, 6}; {1, 4, 5})
21 ({2, 4, 5, 6}; {1, 3}) 22 ({2, 4, 5}; {1, 3, 6}) 23 ({2, 4, 6}; {1, 3, 5}) 24 ({2, 4}; {1, 3, 5, 6})
25 ({2, 5, 6}; {1, 3, 4}) 26 ({2, 5}; {1, 3, 4, 6}) 27 ({2, 6}; {1, 3, 4, 5}) 28 ({3, 4, 6}; {1, 2, 5})
29 ({3, 5, 6}; {1, 2, 4}) 30 ({3, 5}; {1, 2, 4, 6}) 31 ({3, 6}; {1, 2, 4, 5}) 32 ({4, 6}; {1, 2, 3, 5})

As we have shown in Lemma 4.4 and Theorem 4.16, most minimal EMPs yield the
same overall accuracy under Assumptions 4.2 and 4.3. From now on, unless otherwise
stated, we will consider that Assumptions 4.2 and 4.3 hold for the rest of the section.
Recall that for the branch networks case, the principles derived under these assumptions
are extendable to some degree to more general scenarios. We are going to show that the
same holds for cycles in Section 4.5.6.

Let us focus on minimal EMPs that are not circular to each other in Table 15. For this
purpose, we remove all circular EMPs and those EMPs that are symmetrical opposite to
others. Recall that under Assumptions 4.2 and 4.3 EMPs that are circular or symmetrical
opposite to others yield the same overall accuracy. For a cycle with 6 nodes there are only
four minimal EMPs that are not circular to each other, listed below.

I. EMP1 = ({1, 2, 3, 5}, {4, 6});

II. EMP2 = ({1, 2, 4, 5}, {3, 6});

III. EMP4 = ({1, 2, 4}, {3, 5, 6});

IV. EMP10 = ({1, 3, 5}, {2, 4, 6}).

All other minimal EMPs can be obtained from these four EMPs by a proper relabel of
the nodes or by exchanging the excitations for measurements and vice-versa. By using
Lemma 4.4 and Theorem 4.16 the number of EMPs under analysis reduced from 32 to only
4 minimal EMPs. We are now interested in verifying whether there is one EMP among
these four minimal EMPs that yields the most accurate parameter estimates. Let us now
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consider a state space network matrix (163) for n = 6 with just one parameter:

G(q, θ0) =



0 0 0 0 0 θ0

θ0 0 0 0 0 0

0 θ0 0 0 0 0

0 0 θ0 0 0 0

0 0 0 θ0 0 0

0 0 0 0 θ0 0


q−1. (199)

We can compute the information matrices for each minimal EMP based on Lemma 4.1.
From the stability constraints we must have that θ0 < 1. Therefore, the analysis region for
this particular state space network must be constrained to this region. Figure 20 depicts the
comparison among the trace of the covariance matrices for the four minimal EMPs in the
stability region θ0 ∈ (0, 1).

Figure 20 – Comparison among minimal EMPs for a state-space cycle network with six
nodes under Assumptions 4.2 and 4.3.
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This figure shows that EMP10 is the one that yields most accurate estimates in the
stability region for cycles with six nodes under Assumptions 4.2 and 4.3. EMPs1,4 are tied
with the worst performance among the minimal EMPs, while EMP2 is the runner-up EMP
with most accurate estimates. The large difference in the precision obtained by the different
EMPs are prominent for small values of θ0. For very small values of θ0 the difference
is in the order of five times the magnitude. This difference drastically reduces when θ0

approaches 1. For θ0 = 0.2, the variance of EMPs1,4 are more than 200 times the variance
obtained by EMP10, while for θ0 = 0.4 this difference reduces to thirteen times. Contrary
to the case of branches, where one should choose EMPs where the first nodes are excited
and the last ones are measured, a principle that emerges for large cycles is to alternately
excite and measure their nodes.
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Differently from the cycles with five nodes, where all minimal EMPs yield the same
overall accuracy under Assumptions 4.2 and 4.3, there is a minimal EMP that yields the
most accurate results for cycles with six nodes. This minimal EMP obeys the principle of
equal shares between excitations and measurements and it is characterized by nodes that
are alternately excited and measured. The latter feature is what makes the best EMP to
standout among the others. Thus, for a cycle with six nodes there is a structural property
in how the excitations and measurements should be placed in order to improve the quality
obtained for the parameter estimates. We conjecture that this principle is more general and
extends to larger cycles with an arbitrary number of nodes. In order to test this hypothesis
we are going to consider cycles with seven nodes.

7-node cycles.

We now consider minimal EMPs for cycles with seven nodes. By considering this class
of networks, we aim to verify whether a minimal EMP where we alternatively excite and
measure the nodes of the cycle is the one which yields better accuracy. To this end, we
are going to perform the same analysis provided to cycles with six nodes. For the class
of cycle networks with seven nodes, there are seven modules to be identified. According
to Theorem 3.17, there is a total of 84 minimal EMPs for which the user can choose. All
minimal EMPs for a cycle network with seven nodes are displayed in Table 16.

Table 16 – All minimal EMPs for a 7-node cycle network.
EMP (B, C) EMP (B, C) EMP (B, C) EMP (B, C)

1 ({1, 2, 3, 4, 6}; {5, 7}) 2 ({1, 2, 3, 5, 6}; {4, 7}) 3 ({1, 2, 3, 5, 7}; {4, 6}) 4 ({1, 2, 3, 5}; {4, 6, 7})
5 ({1, 2, 3, 6}; {4, 5, 7}) 6 ({1, 2, 4, 5, 6}; {3, 7}) 7 ({1, 2, 4, 5, 7}; {3, 6}) 8 ({1, 2, 4, 5}; {3, 6, 7})
9 ({1, 2, 4, 6, 7}; {3, 5}) 10 ({1, 2, 4, 6}; {3, 5, 7}) 11 ({1, 2, 4, 7}; {3, 5, 6}) 12 ({1, 2, 4}; {3, 5, 6, 7})

13 ({1, 2, 5, 6}; {3, 4, 7}) 14 ({1, 2, 5, 7}; {3, 4, 6}) 15 ({1, 2, 5}; {3, 4, 6, 7}) 16 ({1, 2, 6}; {3, 4, 5, 7})
17 ({1, 3, 4, 5, 6}; {2, 7}) 18 ({1, 3, 4, 5, 7}; {2, 6}) 19 ({1, 3, 4, 5}; {2, 6, 7}) 20 ({1, 3, 4, 6, 7}; { 2, 5})
21 ({1, 3, 4, 6}; { 2, 5, 7}) 22 ({1, 3, 4, 7}; { 2, 5, 6}) 23 ({1, 3, 4}; { 2, 5, 6, 7}) 24 ({1, 3, 5, 6, 7}; { 2, 4})
25 ({1, 3, 5, 6}; { 2, 4, 7}) 26 ({1, 3, 5, 7}; { 2, 4, 6}) 27 ({1, 3, 5}; { 2, 4, 6, 7}) 28 ({1, 3, 6, 7}; { 2, 4, 5})
29 ({1, 3, 6}; { 2, 4, 5, 7}) 30 ({1, 3, 7}; { 2, 4, 5, 6}) 31 ({1, 3}; { 2, 4, 5, 6, 7}) 32 ({1, 4, 5, 6}; { 2, 3, 7})
33 ({1, 4, 5, 7}; { 2, 3, 6}) 34 ({1, 4, 5}; { 2, 3, 6, 7}) 35 ({1, 4, 6, 7}; { 2, 3, 5}) 36 ({1, 4, 6}; { 2, 3, 5, 7})
37 ({1, 4, 7}; { 2, 3, 5, 6}) 38 ({1, 4}; { 2, 3, 5, 6, 7}) 39 ({1, 5, 6}; { 2, 3, 4, 7}) 40 ({1, 5, 7}; { 2, 3, 4, 6})
41 ({1, 5}; { 2, 3, 4, 6, 7}) 42 ({1, 6}; { 2, 3, 4, 5, 7}) 43 ({2, 3, 4, 5, 7}; { 1, 6}) 44 ({2, 3, 4, 6, 7}; { 1, 5})
45 ({2, 3, 4, 6}; { 1, 5, 7}) 46 ({2, 3, 4, 7}; { 1, 5, 6}) 47 ({2, 3, 5, 6, 7}; { 1, 4}) 48 ({2, 3, 5, 6}; { 1, 4, 7})
49 ({2, 3, 5, 7}; { 1, 4, 6}) 50 ({2, 3, 5}; { 1, 4, 6, 7}) 51 ({2, 3, 6, 7}; { 1, 4, 5}) 52 ({2, 3, 6}; { 1, 4, 5, 7})
53 ({2, 3, 7}; { 1, 4, 5, 6}) 54 ({2, 4, 5, 6, 7}; { 1, 3}) 55 ({2, 4, 5, 6}; { 1, 3, 7}) 56 ({2, 4, 5, 7}; { 1, 3, 6})
57 ({2, 4, 5}; { 1, 3, 6, 7}) 58 ({2, 4, 6, 7}; { 1, 3, 5}) 59 ({2, 4, 6}; {1, 3, 5, 7}) 60 ({2, 4, 7}; {1, 3, 5, 6})
61 ({2, 4}; {1, 3, 5, 6, 7}) 62 ({2, 5, 6, 7}; {1, 3, 4}) 63 ({2, 5, 6}; {1, 3, 4, 7}) 64 ({2, 5, 7}; {1, 3, 4, 6})
65 ({2, 5}; {1, 3, 4, 6, 7}) 66 ({2, 6, 7}; {1, 3, 4, 5}) 67 ({2, 6}; {1, 3, 4, 5, 7}) 68 ({2, 7}; {1, 3, 4, 5, 6})
69 ({3, 4, 5, 7}; {1, 2, 6}) 70 ({3, 4, 6, 7}; {1, 2, 5}) 71 ({3, 4, 6}; {1, 2, 5, 7}) 72 ({3, 4, 7}; {1, 2, 5, 6})
73 ({3, 5, 6, 7};{1, 2, 4}) 74 ({3, 5, 6}; {1, 2, 4, 7}) 75 ({3, 5, 7}; {1, 2, 4, 6}) 76 ({3, 5}; {1, 2, 4, 6, 7})
77 ({3, 6, 7}; {1, 2, 4, 5}) 78 ({3, 6}; {1, 2, 4, 5, 7}) 79 ({3, 7}; {1, 2, 4, 5, 6}) 80 ({4, 5, 7}; {1, 2, 3, 6})
81 ({4, 6, 7}; {1, 2, 3, 5}) 82 ({4, 6}; {1, 2, 3, 5, 7}) 83 ({4, 7}; {1, 2, 3, 5, 6}) 84 ({5, 7}; {1, 2, 3, 4, 6})

We can use the results of Lemma 4.4 and Theorem 4.16 to reduce the number of
candidates EMPs in a similar fashion as we did for the class of cycles with six nodes.
Recall that these results are related to the concepts of circular and symmetrical opposite
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EMPs – see Definitions 4.5 and 4.6. All EMPs that are circular to a particular EMP1

yield the same accuracy under Assumptions 4.2 and 4.3 to EMP1. The same holds for the
symmetrical opposite (EMP84 in Table 16) of EMP1. All minimal EMPs in Table 16 can
be generated by the following six minimal EMPs using either Lemma 4.4 or Theorem 4.16:

I. EMP1 = ({1, 2, 3, 4, 6}; {5, 7});

II. EMP2 = ({1, 2, 3, 5, 6}; {4, 7});

III. EMP4 = ({1, 2, 3, 5}; {4, 6, 7});

IV. EMP5 = ({1, 2, 3, 6}; {4, 5, 7});

V. EMP8 = ({1, 2, 4, 5}; {3, 6, 7});

VI. EMP10 = ({1, 2, 4, 6}; {3, 5, 7}).

By using these results, we are able to reduce the number of EMPs under analysis, more
precisely, this number of candidates reduced from 84 minimal EMPs in Table 16 to only
six possible minimal EMPs that could yield different accuracy results. Notice that EMP10

is the EMP that is closer to be the “equivalent” to an EMP with alternate excitations and
measurements for a cycle with an odd number of nodes. This means that if the principle
derived for the network with six nodes is valid for cycles with larger number of nodes, then
we expect that EMP10 would overcome the other EMPs with respect to the accuracy of the
parameter estimates. In order to analyze if this is the case for cycles with seven nodes, we
will analyze once more a state-space network matrix (163) with a single parameter:

G(q, θ0) =

[
0 θ0

diag(θ0, . . . , θ0) 0

]
q−1.

Recall that there is a stability constraint for this network: θ0 < 1. We proceed as before by
computing the information matrices of each minimal EMP using the partial information
matrix approach as in Lemma 4.1. Figure 21 depicts the trace of the covariance matrix for
the minimal EMPs1,2,4,5,8,10.

This figure shows that minimal EMP10 is the one that yields the most accurate estimates
for state-space cycle networks with seven nodes. Thus, the principle that it is better
to alternatively excite and measure the nodes of a cycle is confirmed for this network
cardinality. Similar to the case of a cycle with six nodes, for “small” values of the true
parameter θ0 the difference between the best EMP and the other EMPs is significant. For
θ0 close to zero the difference between EMP1 and EMP10 is about five orders of magnitude.
This gap drastically reduces for larger magnitudes of the true parameter θ0, typically close
to 1. The difference between EMP1 and EMP10 for θ0 = 0.95 is 40%.

In summary, we have shown that for larger cycles there is a significant number of
minimal EMPs that are circular to each other. We have shown that circular EMPs yield
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Figure 21 – Trace of covariance matrices for minimal EMPs1,2,4,5,8,10 for a state-space
cycle network with 7 nodes under Assumptions 4.2 and 4.3.
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the same overall accuracy under Assumptions 4.2 and 4.3. Yet under these assumptions,
we have also shown that if we exchange the set of excited nodes for the set of measured
nodes for any minimal EMP, then the trace of the asymptotic covariance matrix is not
changed, i.e. symmetrical opposite EMPs produce similar accuracy. For a general cycle
we have demonstrated that equality between the EMPs depend on SNRji at some nodes
and on the equality among some modules. Therefore, for a cycle network we can relax
Assumptions 4.2 and 4.3, and still get the same overall accuracy for some EMPs. For
larger cycles we have verified that the principle derived for cycles with a small number
of nodes still holds, that is, it is better to choose EMPs with equal shares of excitations
and measurements. Furthermore, we have observed that the EMPs in which the nodes are
alternatively excited and measured tend to yield the most accurate outcomes. As in the
case of branch networks, there is a crucial difference in the magnitude of the resulting
accuracy. For small magnitude of the parameters, the gains in precision can be typically
large, while for larger magnitudes different EMPs could yield a similar overall accuracy.

4.5.6 Numerical analysis

In this section we provide a numerical analysis to verify if the principles derived so
far still hold in more general situations. Here, we are interested in determining to which
extent the relevant principles developed for smaller cycles also hold for larger ones. For
this evaluation, we are going to focus on aspects related to the “size” of the direct modules
and the structural advantages of different EMPs. To this end, we will consider state-space
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network matrices (163) of the form:

G(q, θ0) =

[
0 θ0n

diag(θ01, . . . , θ
0
n−1) 0

]
q−1. (200)

We are going to consider a number of different experiment scenarios to evaluate the
performance of the minimal EMPs for each network cardinality. We first try to understand
the role the numeric values of the modules play in the selection of the best EMP. In order to
evaluate the factors that are crucial in the selection of the most accurate EMP, we consider
an experiment setting in which the network is uniformly excited – under Assumption 4.3.
This analysis makes it possible to shed some light on the influence of the parameters in the
accuracy of the EMPs. For other scenarios we are going to evaluate the influence of the
module magnitudes in the selection of the most accurate EMP.

For this numeric experiment, we are going to simulate different cycle networks with
cardinalities ranging from 5 nodes to 8 nodes. For each network cardinality, we simulate
a total of 5, 000 random cycles with network matrices (200), such that each parameter is
drawn from a uniform distribution.

There are four types of experiment listed below.

1. Scenario S0 - The cycle is equally excited (Assumption 4.3) and every parameter is
drawn from a uniform distribution U(0, 1).

2. Scenario Sk - The cycle is equally excited, and the parameter magnitude of module
k is at least twice than any other module: θi ∼ U(0, 1) for i ∈ W \ {k} and
θk = 2 maxi∈W\{k} θi.

3. Scenario Skj - The cycle is equally excited, and module k and j have the same
parameter magnitude, which is at least twice than any other module: θi ∼ U(0, 1)

for i ∈ W \ {k, j} and θk,j = 2 maxi∈W\{k,j} θi.

4. Scenario S∗ - Modules are selected as in Scenario S0 with all input and noise
variances randomly selected from a uniform distribution: σ2

i ∼ U(60, 80), for i ∈ B
and λj ∼ U(30, 50) for j ∈ C.

Let us start the numerical analysis with cycles with five nodes. Consider a cycle with
five nodes, with network matrix in (200), with n = 5. Recall that all minimal EMPs for a
cycle with 5 nodes are given in Table 14. For a cycle with five nodes under the Assumptions
4.2 and 4.3, we have shown that all minimal EMPs provide similar accuracy. We then
expect that there is no preferred EMP in a more general setting when the SNRji’s are equal
at the nodes. The results of the numerical analysis for each experiment are depicted in
Table 17.

This table shows that for experiment S0, there is no preferred choice among the
EMPs. This is exactly the expected result since all EMPs yield similar accuracy under
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Table 17 – How often a minimal EMP of a 5 nodes cycles was selected as the most accurate
in different experimental scenarios.

Scenario EMPs (%)
1 2 3 4 5 6 7 8 9 10

S0 11.48 10.54 9.34 9.74 10.06 10.34 9.66 9.34 10.08 9.42
S1 1.82 1.38 65.16 0 25.9 0 0.4 2.5 0.48 2.36
S2 66.06 0 0.48 2.42 1.34 1.32 2.64 0.4 25.34 0
S3 0.48 2.3 2.38 0.34 0 26.26 0 65.16 1.64 1.44
S4 2.7 0.26 0 66.78 2.24 0.24 1.48 1.44 0 24.86
S5 0 23.8 1.52 1.56 0.54 2.48 67.28 0 2.44 0.38
S25 0 0 0.06 3.9 0.14 3.58 55.56 0 36.76 0
S35 0 52.92 3.42 0.1 0 39.9 0 0 3.58 0.08
S13 0.14 3.32 56.28 0 0 0 0 36.74 0.1 3.42
S14 3.8 0.12 0 0 53.28 0 0.1 3.12 0 39.58
S24 57.98 0 0 35.06 3.44 0.1 3.38 0.04 0 0

Assumptions 4.2 and 4.3 as shown in Theorem 4.17. For other experiments, there is a clear
preference for the most often selected EMPs in more than half of the runs. The key factor
here is the influence of the direct modules. EMPs3,5 are the most often selected EMPs
in experiment S1 because G1(q, θ

0) is the largest module and it is also a direct module
for these EMPs. Exactly the same happens in all other Sk experiments. Notice that for
scenarios S1,2,5 the most often selected EMP is the one with three excitations, while for
scenarios S3,4 the EMPs with two excitations were the most often selected. The scenarios
Sji come from the extrapolation of the results for 4-node cycles, where the product of the
direct modules was the key decider. In scenario S25 the largest modules are G2(q, θ

0) and
G5(q, θ

0), both are direct modules for EMPs7,9. As we can see from this table, these are the
most often selected EMPs, followed by the EMPs that have at least one of them as direct
module. The same is observed for all other experiments Sji. Similar to the experiments Sk,
we have that for scenarios Sji EMPs with three excitations were the most often selected in
three out of the five experiments. Once again, we have shown that the direct modules have
a key influence in the selection of the most accurate EMP.

The relevant question is now to decide whether it is better to choose an EMP with
three excitations or one with three measurements. This question can be answered based on
the direct modules of the EMPs. As in the four node case, the best EMPs are those that
have the largest modules as direct modules. In the same spirit of Table 17, we compared
the number of times a particular EMP with three excited nodes was more accurate than
another EMP with only two excitations given that the product of their direct modules was
larger than its contestant. This hold true in 98.5% of the 5,000 network simulations. This



137

means that the magnitudes of the direct modules are a key factor in the decision of the best
EMP. If the user has some prior knowledge about the module magnitudes, then it should
be better to choose an EMP whose “larger” modules are direct modules.

Let us now focus on cycles with six nodes and network matrix (200). All minimal
EMPs for this class of networks are given in Table 15. For this specific class of network,
we have shown that there is a particular EMP that yields most accurate estimates under
Assumptions 4.2 and 4.3. The results for the numeric analysis of 5, 000 cycle networks are
displayed in Table 18.

Table 18 – How often the nine six minimal EMPs were the most selected in a 5, 000

simulation runs for a cycle with six nodes in different experiment scenarios.

S0

EMP 10 23 5 29 22 8 14 31 26
(%) 22.26% 21.54% 5.12% 4.76% 4.62% 4.6% 4.48% 4.18% 3.98%

S1

EMP 10 14 7 15 9 16 13 11 8
(%) 24.2% 23.20% 9.82% 8.64% 6.94% 6.9% 6.34% 6.16% 5.90%

S2

EMP 5 23 26 2 3 27 25 4 22
(%) 24.26% 23.9% 9.68% 8.68% 6.92% 6.58% 6.42% 6.0% 5.78%

S3

EMP 10 20 18 31 1 11 19 12 29
(%) 24.36% 22.72% 10.04% 9.62% 7.08% 6.76% 5.96% 5.94% 5.78%

S4

EMP 8 23 7 15 24 4 17 28 14
(%) 24.42% 23.14% 10.34% 8.76% 7.36% 6.5% 6.2% 5.92% 5.82%

S5

EMP 10 22 26 2 30 6 5 13 19
(%) 24.9% 23.84% 9.6% 9.14% 6.84% 6.76% 6.28% 5.64% 5.54%

S6

EMP 29 23 31 18 21 25 32 28 20
(%) 25.78% 24.08% 12.48% 11.42% 11.4% 10.84% 10.22% 9.64% 7.7%

S∗
EMP 23 10 22 8 29 26 5 31 14
(%) 12.9% 12.02% 4.0% 3.72% 3.67% 3.66% 3.52% 3.44% 3.38%

This table shows that the principle derived for six node cycles remains valid in more
general scenarios. EMPs10,23 from Table 15 are the ones in which their nodes are alternately
excited and measured. For scenario S0 these EMPs are the most often selected EMPs,
together they account for almost half of the total. They were four times more often selected
than any other minimal EMP. For the other Scenarios Si we see that these two minimal
EMPs also stand out as the top two most selected EMPs. Once again, the main difference in
how often those EMPs were selected is influenced by the magnitude of the direct modules.
In all scenarios the two most selected EMPs are the ones in which the largest module
is a direct module. Finally, the Scenario S∗ where all quantities are randomly selected,
EMPs10,23 are still the ones that yield the best results. In this scenario, these EMPs are
four times more often selected than other candidates.
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Let us now focus on cycles with seven nodes. We proceed with the analysis in the very
same fashion as we did for cycles with five and six nodes. The results for this cycle are
displayed in Table 19.

Table 19 – How often the top nine most accurate minimal EMPs were selected for a cycle
with 7 nodes in different experimental scenarios.

S0

EMP 59 58 36 75 60 29 27 56 49
(%) 6.4% 5.94% 5.92% 5.80% 5.72% 5.68% 5.54% 5.52% 5.48%

S1

EMP 26 36 25 29 35 40 21 27 33
(%) 27.90% 26.68% 5.80% 5.06% 4.26% 4.04% 3.84% 3.34% 2.74%

S2

EMP 64 10 58 60 59 16 56 14 13
(%) 27.92% 25.84% 5.84% 5.26% 4.26% 3.70% 3.62% 3.54% 3.02%

S3

EMP 49 29 27 26 53 25 5 75 51
(%) 28.30% 26.26% 5.2% 4.54% 4.10% 3.96% 3.94% 3.92% 3.26%

S4

EMP 60 21 59 10 58 46 23 36 72
(%) 28.44% 26.22% 5.60% 5.06% 4.36% 4.0% 3.82% 3.70% 2.86%

S5

EMP 27 56 49 75 19 57 64 26 8
(%) 28.44% 25.82% 5.36% 5.02% 4.2% 4.02% 4.02% 3.66% 2.90%

S6

EMP 59 25 21 36 55 29 10 74 63
(%) 29.44% 25.26% 5.42% 5.12% 3.86% 3.8% 3.66% 3.40% 3.08%

S7

EMP 75 58 56 64 73 49 81 60 70
(%) 28.40% 27.06% 4.98% 4.96% 4.02% 3.62% 3.52% 3.48% 2.94%

S7

EMP 75 59 49 26 27 25 60 56 29
(%) 6.12% 5.92% 5.82% 5.60% 5.56% 5.52% 5.48% 5.44% 5.44%

This table shows that for Scenario S0 there is no EMP that stands out among the other
candidates. Recall that there are 84 minimal EMPs in Table 16 for this particular class of
network. However, minimal EMPs59,58,36,75,60,29,27,56,49 share something in common: they
are the equivalent of EMPs with nodes that are alternately excited and measured. Recall
that EMP10 from Figure 21 is equivalent to EMP59 under Assumptions 4.2 and 4.3. In fact,
EMPs21,25,26,49,56,58 are circular to EMP10 and EMPs27,29,36,60,64,75 are circular to EMP59.
These were the fourteen most often selected minimal EMPs, together they account for
77.8% of the selections out of the total simulation. Furthermore, they were on average five
times more likely to be selected than any other EMP that was not alternately excited and
measured. This means that the most accurate EMPs are those EMPs that obey the principle
of alternately exciting and measuring the nodes.

For Scenarios Si we reach the same conclusions with respect to the influence of the
direct modules. That is, the EMPs for which the largest module is a direct module are
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more likely to be selected as the best EMP in each run. However, in this case not all EMPs
for which the largest module is a direct module is equally likely to be selected. The key
factor here is the distribution of excitations and measurements in the cycle. Notice that
the two best minimal EMPs for each Si are a circular EMP either to EMP10 or EMP59.
Finally, as for Scenario S∗ all minimal EMPs in the top nine are circular to EMPs10,59 as in
Scenario S0. This confirms once again that it is better to choose an EMP where the nodes
are alternately excited and measured.

In conclusion, we have shown that the principles derived for larger cycles under
Assumptions 4.2 and 4.3 remain valid in more general scenarios. More specifically, for
cycles with state-space network matrix. Exactly the same have been shown for branches,
but with modules represented by general transfer functions. For larger cycles the principles
derived for small cycles are still valid. That is, EMPs where the largest module is a direct
module and with an equal shares of excitations and measurements are the most likely
to yield the best results. Moreover, we have shown that the EMPs where the nodes are
alternately excited and measured are the most likely to provide the most accurate results
for larger cycles.

4.6 Conclusion

In this chapter we have analyzed the accuracy of the parameter estimates for two classes
of dynamic networks, namely branches and cycles. Focus was given upon selecting the
EMP which provided the most accurate parameter estimates. In this way, one could select
the best experimental setting for identification of all modules of the dynamic network.
We have shown that there is a structural property regarding the allocation of excitations
and measurements that yield the most accurate estimates. For branches, we have shown
that there are some EMPs that are better than others. Specifically, those EMPs for which
the excitation signals are applied to the first half of the network, while the last half are
measured. In the case of cycles, we have derived some structural principles for the selection
of the best EMP. Fisrt, EMPs with equal shares of excitations and measurements were
most likely to give the most accurate results. Second, for larger cycles – typically with
more than 4 nodes – the best EMP is the one in which the nodes are alternately excited
and measured. These structural properties are not exclusive factors for the selection of the
most accurate EMP. We have also shown that the magnitude of the direct modules plays a
key role in the decision of the best EMP. Moreover, the signal-to-noise ratio at some nodes
also have an impact on the best outcomes, specially the SNRi+1,i of direct modules. It has
been observed that the gains in choosing an appropriate EMP can be hundred of times
better than choosing alternative EMPs. Therefore, it is fundamental that the choice of the
experimental setting for the identification task should not be chosen arbitrarily.
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5 CONCLUSIONS

Dynamic networks are models of interconnected linear time invariant systems that can
be used in a wide range of applications, from geological cycles to the electrical power grid.
Such models can improve the quality of many engineering systems and they could provide
a deep understanding of many phenomena in different disciplines. An advanced network
theory can be a fundamental cornerstone for the advancement of scientific knowledge
across many fields. However, in order to take maximum advantage of this modeling
approach it is necessary to first obtain such models. This thesis addressed the problem of
identifying dynamic networks models from data. Obtaining network models from data
pose several additional challenges with respect to the identification of single systems. In
particular, there is a considerable degree of flexibility in dealing with such a complex
system. To mention just a few examples, networks are full of feedback mechanisms and
parallel processes, which induces correlation among most signals involved. Furthermore,
the high flexibility with respect to the experiment setup, which add some freedom to the
user choice, and can impose some constraints in how to obtain network data.

In this thesis, we have paid special attention to two identification problems related to
dynamic networks. The first one is related to how to distinguish different network models
based on network data. This ability is of fundamental importance since if two different
network models generate exactly the same data, we could not hope to tell which one
produced the data, and therefore we could not identify a unique model. Hence, in order
to obtain consistent estimates is necessary that the corresponding models are identifiable
from data.

An important aspect to determine whether a dynamic network is identifiable or not
is the experimental setup in which the network is subjected. It turns out that this is a
crucial aspect to the identifiability of a dynamic network. This characteristic inspired the
concept of Excitation and Measurement Pattern (EMP) of a network, which can determine
whether a unique model can be obtained from network data. Our aim was to provide
conditions based on the distribution of the inputs and measurements, that is conditions on
the EMP, over the network such to render a network generically identifiable. For a given
topology, the conditions on the EMP took the form of indication conditions on the nodes
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that must be excited and on the nodes that must be measured. This approach also makes it
possible to provide an identification scheme for the modules of the network. Typically, the
conditions depend upon the topology of the network under analysis. For this reason, we
have investigated identifiability conditions for some classes of networks.

Using the concept of EMP we have provided necessary and sufficient conditions for
the network identifiability problem for some topologies. We have investigated the role
of parallel paths in the identifiability of acyclic dynamic networks. In a fully connected
acyclic dynamic network is necessary and sufficient to excite and measure all nodes,
except for sources that could be not measured and sinks that could not be excited. For
more general acyclic structures we have developed necessary conditions based on the
neighborhood of the nodes. Whether a node within an acyclic network must always be
excited or measured depends on its neighbors. Furthermore, we have developed necessary
and sufficient conditions that define all minimal EMPs for isolated cycle networks. All
these conditions can be combined to develop algorithms to analyze the identifiability of
more complex networks. An important feature of these conditions is that they are based on
the EMP applied at the network. Thus, the developed conditions are easy to verify.

Another contribution to the identifiability of dynamic network was to consider a divide
and conquer scheme. By recognizing known topologies within a large network, one could
divide a network into two subnetworks with known identifiability conditions, each of
which subjected to a valid EMP – one that renders a network generically identifiable. We
have then determined what are the additional conditions on the EMP for the identifiability
of the whole network given that the two subnetworks were known to be identifiable. Once
more, these conditions took the form of indicative conditions on the nodes that must be
excited and the ones that must be measured.

Identification of high quality models is crucial to the development of new technologies.
To obtain reliable models we must ensure that the identification method yields accurate
models. Improving such accuracy of the identification method can be performed by the
design of an appropriate experiment. There are many factors that play a role in the tuning
of an experiment for identification. In this thesis, the second problem we have tackled was
the allocating of inputs signals and the measurements from a network, that is, to choose the
distribution of inputs and measurements in the network. This is a structural problem since
it only deals with how the excitations and measurements are distributed in the network.

While identifiability conditions offer a number of different possible EMPs for the user
to choose from, there are no clear guidelines on how to select among all possible EMPs. A
framework for the selection of the EMP was introduced based on the number of excitations
and measurements, and on the trace of the asymptotic covariance matrix. We have studied
two different classes of dynamic networks, namely branches and cycles. From the analysis
of these classes of networks emerged key principles that can be used as guidelines for
the user to choose the most accurate EMP. First, we have shown that there is a structural
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feature in the selection of the best EMP. Not only the numeric values of the modules
and the signal-to-noise ratio at some nodes play a role in the selection of the EMP, but
the distribution of excitations and measurements can drastically improve or constrain the
accuracy obtained by the identified model. This is of fundamental importance, since one
could have significant gains simply by allocating the excitations and measurements in the
network.

For branches and cycles we have demonstrated that there exists a trade-off between
excitations and measurements. For branches we have established that EMPs where the
first half of the network is excited and the other half is measured yield the most accurate
parameter estimates. For cycles we have shown that EMPs with equal shares of excitation
and measurements tend to give the best results. Moreover, differently from branches, it is
better to alternately excite and measure the nodes of larger cycles.

Another important factor in the selection of the best EMP was the influence of the
direct modules. This is related to the magnitude of these modules. EMPs where the
largest module is a direct module tend to provide more accurate estimates. In addition,
we have also shown that the signal-to-noise ratio of the direct modules is a key factor in
the selection of the EMPs. A crucial aspect in the selection of the EMPs is the gain in the
accuracy when compared to candidate EMPs. In many cases, the best EMP was more than
a hundred times better than other EMPs. This attests to the importance of selecting an
EMP appropriately according to the network topology at hand.

This work can be extended in various directions. The selection of the most accurate
EMP is an interesting line of research for more complex network topologies, such as
trees and general acyclic dynamic networks (DAGs). To analyze in what conditions the
principles developed in this thesis also holds for these complex networks is certainly a
future topic of research. Another interesting topic is to analyze the influence of process
noise in the parameter estimates for networks. This could be complemented by the analysis
of dynamic networks with more specific model structures for the modules, e.g. FIR, ARX,
ARMAX, etc. Investigating the problem of selection an EMP that yields most accurate
estimates for a single module embedded in a network is also a promising topic.

For the identifiability problem, there are many interesting research directions. An
algorithm to provide the synthesis for excitations and measurements using the knowledge
of the local subnetworks is very appealing. Extending the conditions about the excitation
or measurement of some nodes based on their neighborhood to more general networks is
also crucial. Development of an algorithm that combines the conditions for parallel paths,
trees, multitrees, and the local topology of the nodes to provide a minimal EMP for general
acyclic network is also a very interesting topic.
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APPENDIX A COVARIANCE FORMULAE FOR CYCLIC
NETWORKS

In this Appendix we present the information matrix of state-space cycle networks for
the minimal EMPs. We provide the formulas for the covariance matrices for cycle with
two and three nodes.

A.1 Cycles with 2 nodes

Here we consider state-space cycle networks with two nodes. This kind of cycle
network is characterized by the following network matrix

G(q, θ0) =

[
0 θ02

θ01 0

]
q−1. (201)

We use the prediction error approach to compute the information matrix based on
the gradient of the optimal predictors under Assumption 4.1. Recall that for two-node
cycles there are four minimal EMPs that will be analyzed: EMP1 = ({1, 2}, {1}) EMP2 =

({1, 2}, {2}), EMP3 = ({1}, {1, 2}) EMP4 = ({2}, {1, 2}). The optimal one-step ahead
predictors are as follows:

ŷ1(t|t− 1) =
r1(t)

1− θ2θ1q−2
+
θ2r2(t− 1)

1− θ2θ1q−2
,

ŷ2(t|t− 1) =
r2(t)

1− θ2θ1q−2
+
θ1r1(t− 1)

1− θ2θ1q−2
.

For EMP1 the gradient of the predictor will be:

ψ1(t) =
1

∆

[
r2(t− 1) + θ1r1(t− 2)

θ2 (r1(t− 2) + θ2r2(t− 3))

]
,

where ∆ = 1− 2θ2θ1q
−2 + θ2

2θ1
2q−4. Then, the information matrix can be obtained as

M1 =
N

λ1

 γ0

(
σ2
1θ

0
1
2

+ σ2
2

)
θ02 (σ2

1θ
0
1γ0 + σ2

2θ
0
2γ2)

θ02 (σ2
1θ

0
1γ0 + σ2

2θ
0
2γ2) θ02

2
γ0

(
σ2
1 + σ2

2θ
0
2
2
)  , (202)
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where γik , E rFi (t)rFi (t − k)/σ2
i with rFi (t) , ri(t)/∆, for i = 1, 2. We drop the

superscript of γik since both inputs are filtered by the same filter and they share the same
second-order statistical properties. The autocovariance γk, for k = 0, 2 are as follows:

γ0 = − θ02
2
θ01

2
+ 1

θ02
6
θ01

6 − 3θ02
4
θ01

4
+ 3θ02

2
θ01

2 − 1
, (203)

γ2 =
2θ02

3
θ01

3

θ02
6
θ01

6 − 3θ02
4
θ01

4
+ 3θ02

2
θ01

2 − 1
. (204)

One can obtain the variance of the parameter estimates from the information matrix as:

var(θ̂12) =
λ1γ0
Nd1

(
σ2
1 + σ2

2θ
0
2
2
)
, (205)

var(θ̂11) =
λ1γ0

Nθ02
2
d1

(
θ01

2
σ2
1 + σ2

2

)
, (206)

where d1 =
(
γ20

(
σ2
1 + σ2

2θ
0
2
2
)(

σ2
1 + σ2

2θ
0
2
2
)
− (γ20σ

2
1θ

0
1 + γ2σ

2
2θ

0
2)

2
)

. Now, for EMP2

we can compute the gradient as follows:

ψ2(t, θ) =
1

∆

[
θ1 (θ1r1(t− 3) + r2(t− 2))

r1(t− 1) + θ2r2(t− 2)

]
,

which yields the following information matrix

M2 =
N

λ2

 θ012γ0 (σ2
1 + σ2

2θ
0
2
2
)

θ01 (σ2
2θ

0
2γ0 + σ2

1θ
0
1γ2)

θ01 (σ2
2θ

0
2γ0 + σ2

1θ
0
1γ2) γ0

(
σ2
1 + σ2

2θ
0
2
2
)  . (207)

Similarly, the variance of the parameter estimates are:

var(θ̂22) =
λ2γ0

Nθ01
2
d2

(
σ2
1 + σ2

2θ
0
2
2
)
, (208)

var(θ̂21) =
λ2γ0
Nd2

(
θ01

2
σ2
1 + σ2

2

)
, (209)

where d2 =
(
γ20

(
σ2
1 + σ2

2θ
0
2
2
)(

σ2
1 + σ2

2θ
0
2
2
)
− (γ20σ

2
2θ

0
1 + γ2σ

2
1θ

0
2)

2
)

. When EMP3 is
considered, the gradient of the optimal predictor has the following form:

ψ3(t, θ) =
1

∆

[
θ1r1(t−2)√

λ1

θ1
2r1(t−3)√

λ2
θ2r1(t−2)√

λ1

r1(t−1)√
λ2

]
.

This gradient yields the following information matrix:

M3 = N

σ2
1γ0θ

0
1
2
(
θ01

2

λ2
+ 1

λ1

)
σ2
1θ

0
1

(
θ01γ2
λ2

+
θ02γ0
λ1

)
σ2
1θ

0
1

(
θ01γ2
λ2

+
θ02γ0
λ1

)
σ2
1γ0

(
1
λ2

+
θ02

2

λ1

)  . (210)
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Thus, the variance of the parameter estimates are:

var(θ̂32) =
λ1λ2γ0

θ01
2
d3

(
λ1 + λ2θ

0
2
2
)

(211)

var(θ̂31) =
λ1λ2γ0
d3

(
θ01

2
λ1 + λ2

)
, (212)

with d3 = σ2
1

(
γ20

(
λ1 + λ2θ

0
2
2
)(

θ01
2
λ1 + λ2

)
− (γ20λ2θ

0
2 + γ2λ1θ

0
1)

2
)

. Finally, EMP4

has the following predictor gradient:

ψ4(t, θ) =
1

∆

[
r2(t− 1) θ01r2(t− 2)

θ02
2
r2(t− 3) θ02r2(t− 2)

]
, (213)

which gives the following information matrix:

M4 = N

 σ2
2γ0

(
θ01

2

λ2
+ 1

λ1

)
σ2
2b

0
12

(
θ01γ0
λ2

+
θ02γ2
λ1

)
σ2
2θ

0
2

(
θ01γ0
λ2

+
θ02γ2
λ1

)
σ2
2γ0θ

0
2
2
(

1
λ2

+
θ02

2

λ1

) . (214)

From that, one can recover the variance of the parameter estimates as:

var(θ̂42) =
λ1λ2γ0
Nd4

(
λ1 + λ2θ

0
2
2
)
, (215)

var(θ̂41) =
λ1λ2γ0

Nθ02
2
d4

(
θ01

2
λ1 + λ2

)
, (216)

with d4 = σ2
2

(
γ20

(
λ1 + λ2θ

0
2
2
)(

θ01
2
λ1 + λ2

)
− (γ20λ2θ

0
2 + γ2λ1θ

0
1)

2
)
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