
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

LÚCIO PEREIRA FRANCO

Neural Networks for Solar Panels Efficiency
Prediction

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engeneering

Advisor: Prof. Dr. Lucineia Heloisa Thom
Coadvisor: Dr. Pascal Hirmer
From University of Stuttgart

Porto Alegre
May 2022

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Prof.a Patricia Helena Lucas Pranke
Pró-Reitora de Ensino (Graduação e Pós-Graduação): Prof.a Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Diretora da Escola de Engenharia: Profa. Carla Schwengber Ten Caten
Coordenador do Curso de Engenharia de Computação: Prof. Walter Fetter Lages
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro
Bibliotecária-chefe da Escola de Engenharia: Rosane Beatriz Allegretti Borges

The real test is not whether you avoid this failure, because you won’t.

It’s whether you let it harden or shame you into inaction, or whether you learn

from it; whether you choose to persevere.

— BARACK OBAMA

ACKNOWLEDGEMENTS

I want to acknowledge the institutions that held this work possible: the Federal

University of Rio Grande do Sul and the University of Stuttgart. Furthermore, I am grate-

ful to all the academics who taught me during my graduation, specifically those who

guided me while developing this work: Dr. Ana Franco, Prof. Dr. Lucineia Thom, and

Dr. Pascal Hirmer.

Thanks to Lucas Heck, Laura Corssac, Mariana Montoya, and Diana Farje, who

were the pilar of my sanity when lockdown hit Germany. You were my bit of home there

when I was away from my family. I extend my thanks to Christian Schmitz, Augusto

Boranga, and Lucas Flores, whose friendship during the graduation also kept me going

further.

Thanks to all friends who the university brought into my life. Henrique Valcanaia,

Cristiano Lunardi, Camila Schmidt, and Rodrigo Wuerdig, thank you for all the nights we

spent trying to solve (quite possible now) problems. Thank you for all the well-deserved

commemorations we did and the ones we will do.

My gratitude to the founders of NiC and my best friends: MSc Felipe Nepomu-

ceno, Ian Lane, Arthur Vedana, Rodrigo Scroferneker, and Gustavo Paese. Your partner-

ship made me who I am today. Thank you for all the countless funny moments, hearing

my complaints, and for supporting me during these years. I am really proud of loving you

guys.

A thousand thanks to my beloved girlfriend, Evelyn Holz, that lived with me,

giving support during all the paper publication and this work completion. You bring color

to life and make everything seems possible.

My deepest love and gratitude to all my family members, especially my father,

João, mother, Márcia, and two brothers, Bruno and Vitor, who did not measure efforts

to support me while I focused on my studies. You are my strength in challenging times

and my light through the uncertainties of life. I want to extend my special thanks to my

grandfather, a UFRGS Engineer, who recently passed away. I wish you could see me

graduate.

ABSTRACT

In 2018, more than 100GW worth of solar panels were installed worldwide. The in-

crease in solar energy systems is beneficial for the environment, but some companies have

trouble implementing it given its inconsistent generations of energy. This inconsistency

creates energy fluctuations that can overcharge the electrical grid or complicate load de-

mand predictions. This work proposes an approach that uses distributed data and machine

learning to reduce these risks by making these energy fluctuations more predictable. We

implemented neural network models to evaluate data that connects solar panels’ efficiency

with weather conditions. Companies and Smart Grid operators can use our approach and

models with forecasting data to predict the next-day solar energy generation and adapt

decisions considering fluctuations. Results show that our application achieved with an

absolute error of less than 10% in some studied cases.

Keywords: Machine Learning. Neural Networks. Solar Energy. Photovoltaic Systems.

Redes Neurais para Predição da Eficiência de Painéis Solares

RESUMO

Somente em 2018, mais de 100 GW em novos painéis solares foram instalados no mundo.

Mesmo que essa fonte energética seja benéfica para o meio ambiente, muitas organizações

enfrentam dificuldades em implementá-la devido à sua geração de energia inconsistente.

Essa inconsistência cria flutuações de energia que podem sobrecarregar a rede elétrica

ou complicar o cálculo da demanda de energia. Esse trabalho propõe uma abordagem

usando dados distribuídos e aprendizagem de máquina para reduzir esses riscos. Para

isso, nós implementamos modelos de redes neurais para analisarem dados que relacionam

a eficiência de painéis solares com condições climáticas. Companhias podem usar nossa

abordagem e modelos para prever a energia que será gerada no próximo dia e se programar

melhor para flutuações de energia. Os resultados mostram que a nossa abordagem atingiu

níveis de precisão prósperos, tendo menos de 10% de erro absoluto em suas medições em

alguns cenários estudados.

Palavras-chave: Aprendizagem de Máquina, Redes Neurais, Painéis Solares, Sistemas

fotovoltaico.

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

CSV Comma-separated values

CNN Convolutional Neural Network

GCPVS Grid-Connected Photovoltaic System

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

LSTM Long Short Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MSE Mean Square Error

PV Photovoltaic

RMSE Root Mean Square Error

LIST OF FIGURES

1.1 Global evolution of cumulative PV installations. ... 14

2.1 PV System workflow showing the components’ functionalities. 17
2.2 Information exchange using HTTP request via API....................................... 18
2.3 Example of a feedforward Deep Neural Network. ... 20

3.1 Process of flattening a JSON response. .. 27
3.2 Heat-map with features relation.. 29
3.3 Relation between key features and the chosen label....................................... 30

4.1 Data designations for training, testing and validations................................... 34
4.2 Plots describing training performance. ... 35
4.3 Evaluation of a new system in a known location.. 36

5.1 Pinpoint of PV Systems in the selected locations... 38
5.2 Result plots from Location B with summer dataset.. 42
5.3 Impact Analyses of new system at Location B... 43
5.4 Comparison between impact analyses and real system output for 2021. 43
5.5 Average daily incident shortwave solar energy in San Francisco................... 44
5.6 Average monthly rainfall in San Francisco... 44
5.7 Average monthly rainfall in Sydney. .. 45

A.1 Location A Loss Progression in different season. .. 53
A.2 Location A Pediction Erros in different season. ... 54
A.3 Location A True x Predicted in different season. ... 55
A.4 Location B Loss Progression in different season.. 56
A.5 Location B Pediction Erros in different season. ... 57
A.6 Location B True x Predicted in different season. ... 58
A.7 Location C Loss Progression in different season.. 59
A.8 Location C Pediction Erros in different season. ... 60
A.9 Location C True x Predicted in different season. ... 61
A.10 Location D Loss Progression in different season. .. 62
A.11 Location D Pediction Erros in different season. ... 63
A.12 Location D True x Predicted in different season. ... 64

LIST OF TABLES

2.1 Four different metrics for Error calculation.. 20

3.1 Dataset aspects sample. .. 30

4.1 Hyper-parameters and the evaluated choices.. 33

5.1 Number of PV Systems and collected data from each location...................... 38
5.2 Chosen hyper-parameters for each dataset using undivided data. 39
5.3 Neural Network models performance when predicting test data.................... 41

LIST OF ALGORITHMS

Algorithm 4.1 Example of Hyperas usage... 33

CONTENTS

1 Introduction 13
1.1 Research Questions and Goals.. 14
1.2 Text Organization.. 15

2 Foundations 16
2.1 Photovoltaic Systems.. 16
2.2 Python ... 16
2.3 HTTP Requests and APIs ... 17
2.4 NumPy and Pandas ... 18
2.5 Machine Learning... 19

2.5.1 Neural Networks .. 19
2.5.2 Tensorflow and Keras... 21
2.5.3 Hyperas .. 22

2.6 Related Works... 22
2.7 Summary... 24

3 Distributed Data 25
3.1 Data Sources ... 25
3.2 Data Collection ... 25

3.2.1 PV Data Collection .. 26
3.2.2 Weather Data Collection .. 26
3.2.3 Forecasting Data .. 27

3.3 Data Combination and Filtering ... 27
3.4 Data Aspects ... 28

3.4.1 Dataset Features ... 28
3.4.2 Learning Label ... 29

3.5 Summary... 31

4 Neural Network with Custom Configuration 32
4.1 Data Normalization... 32
4.2 Hyperas ... 32
4.3 Neural Network Training.. 33
4.4 Prediction Features ... 35

4.4.1 Impact Analysis ... 35
4.4.2 Day-ahead Forecasting... 36

4.5 Summary... 36

5 Evaluation 38
5.1 Neural Network Models Configurations... 39
5.2 Training Results .. 40
5.3 Prediction Results ... 40

5.3.1 Impact Analyses... 40
5.3.2 Day-ahead .. 41

5.4 Discussion... 42
5.5 Next Steps ... 45
5.6 Summary... 46

6 Conclusion 47

References 49

APPENDIX A — Appendix 52
A.1 Training Result Plots .. 53

A.1.1 Washington DC.. 53
A.1.2 San Francisco ... 56
A.1.3 Milan .. 59
A.1.4 Sydney.. 62

13

1 INTRODUCTION

The installation of solar panels has been growing exponentially since earlier records

of 2008 (DIRAC, 2019b). Despite the global COVID-19 pandemic, this growth has not

slowed down. In 2019, countries from the International Energy Agency (IEA) installed

more than 77,9 GW worth of solar panel systems (DIRAC, 2019b). The same group

installed 97,6 GW in 2020 (DIRAC, 2019a). The USA was responsible for 19,2GW

of those, an increase of approximately 44% compared to the previous year. Figure 1.1

depicts the total PV Systems’ power installed over the last decade. Of these systems,

95%-99% are Grid-Connected Photovoltaic Systems (GCPVS). GCPVS utilizes the grid

electricity as either an energy backup for less productive hours or as a gateway for more

productive hours (DIRAC, 2019b).

The increase in solar energy systems is beneficial for the environment, having

produced energy in 2020 that would otherwise have caused the emission of 800Mt of

CO2 (DIRAC, 2019b), though it also raises new challenges. One of them is the unpre-

dictability of the output power of Photovoltaic (PV) panels. These variations on GCPVS

hinder the ability of energy providers to plan and manage electricity demands accurately.

In fluctuation peaks, these systems can stress or overcharge the electrical grid (OBI;

BASS, 2016). They also make the load demand prediction more difficult because op-

erators cannot access behind-the-meter information.

Considering these challenges, models capable of predicting solar panels’ output

are interesting for designing a PV System or estimating load demand. Other authors have

already explored the subject of Solar Energy Forecasting. Previous research in this field

approached the problem using statistical models (SAFI; ZEROUAL; HASSANI, 2002).

A study from 2011 used linear regression to arrive at an equation capable of establishing

the relation between solar energy and weather factors (Sharma et al., 2011). A recent

study has proposed Long-Short Term Neural Networks (LSTM) with Convolutional Neu-

ral Networks (CNN) to solve the same problem and achieved promising results (Hossain;

Mahmood, 2020). These and similar works are discussed in Section 2.6.

The problem of predicting solar energy generation is well suited for machine

learning algorithms, given its non-linearity and the high volume of data available. Adel

Mellit et al. (MELLIT et al., 2020) reviewed several different machine learning ap-

proaches to solar energy prediction (e.g., Deep-NN, LSTM-NN, CNN). In their paper,

they noticed a lack of variability in the studies. Most of them focus on a single location

14

Figure 1.1: Global evolution of cumulative PV installations.

Source: IEA PVPS

(SON et al., 2018) (HANIFULKHAIR et al., 2020), and the authors noticed that little

work has been done with regional models (PIERRO et al., 2017). A model built with

data from a specific location or Photovoltaic System does not adapt well when predicting

events for other scenarios.

1.1 Research Questions and Goals

If the solar energy market continues to grow, applications to better manage these

technologies will be fundamental for improving performance and avoiding disasters. The

challenges mentioned previously and the available research on this topic raise the follow-

ing research questions:

• [RQ1:] Is it possible to predict solar energy generation of a PV System only by

using data from PV Systems around it?

• [RQ2:] Can we use distributed and weather forecasting information to predict re-

gional next-day energy generation?

To answer these two research questions, we propose an approach to predicting

solar energy generation with Deep Neural Networks (DNN) (MOOLAYIL, 2018). We

use open data from solar panel community owners and historical weather information to

train our machine learning model. Instead of analyzing a single PV System, our approach

15

uses multiple data sources, combining several PV Systems to compose our dataset.

This work aims for a more generic model capable of predicting regional solar

energy generation. With our findings, we hope smart grid operators can use weather

forecasting to estimate the regional next-day energy generation and prepare themselves

for grid fluctuations. We also intend to use our findings to analyze the impact of a new

system in a region.

1.2 Text Organization

We organize the remainder of this work into 6 Chapters. Chapter 2 explains, using

a high-level approach, all concepts, and technologies used to investigate our research

questions. It also presents related works from the same field for posterior comparison.

Chapter 3 describes the data used in our experimentation, its sources, and the scripts built

to gather it. Then, in Chapter 4, we describe how we used these data to build a model

capable of predicting solar energy generation. We present the results and evaluate the

proposed scenarios in chapter 5. In addition, Chapter 5 also discusses our findings and

compares them to related works. Finally, Chapter 6 concludes the text by giving an overall

picture of our contributions. Chapter A, the appendix, includes all result plots from our

training.

16

2 FOUNDATIONS

This chapter introduces the concepts and technologies used in this work. We will

explain in a high-level approach the following topics: Photovoltaic Systems, Python,

HTTP Requests and APIs, NumPy and Pandas, Neural Networks, and Tensorflow. We

encourage the reader to look for a more extensive explanation in the referenced works.

2.1 Photovoltaic Systems

Photovoltaic (PV) modules, also called PV Panels, are composed of Solar Cells.

The sunlight (photons) hits these solar cells, increasing their electrons’ energy, creating

current, voltage, and power (WHITE, 2014). The energy generated by the PV module

yields a Direct Current (DC) that can be used to charge batteries.

PV Systems contain one or more PV Panels but are not only composed of them.

Some have batteries to store the energy generated and charge controllers to prevent battery

over- and under-charging. Since most of the energy we use daily is Alternate Current (AC)

(e.g., our home appliances), PV systems usually contain one or more inverters. Inverters

can convert DC energy into AC and vice-versa. Converting energy consumes power and

impacts the performance of a PV System.

There are two types of PV systems: off-grid and grid-connected. Grid-connected

Photovoltaic Systems (GCPVS) are connected to the electrical grid. They use the grid as

a backup for when the PV Systems are not generating enough power (e.g., at night) and as

a gateway for not storable or usable energy. A GCPVS uses a power meter to measure the

energy used from the grid and the amount sent back to it. Off-grid Systems depend only

on batteries, and when the batteries are complete, they need to discard the excess energy.

2.2 Python

Python is a programming language created by Guido van Rossum around 1991 (ROSSUM;

BOER, 1991). It started with the core principles of being easy and intuitive, open-source,

as understandable as plain English, and suitable for everyday tasks. Python is a general-

purpose programming language, object-oriented, interpreted with dynamic semantics.

Frequently mentioned in the TIOBE Index (popularity) (BV, 2022), Python has an

17

Figure 2.1: PV System workflow showing the components’ functionalities.

Source: The Authors

extensive community that backs up its open-source nature and creates powerful libraries.

Travis E. Oliphant enumerates several of Python’s qualities (OLIPHANT, 2007) that con-

firm its excellence for scientific computing. Its large community and available libraries

for data manipulation and machine learning come in handy, so one does not need to build

applications from scratch.

2.3 HTTP Requests and APIs

Hypertext Transfer Protocol (HTTP) is an internet protocol that defines a set of

request methods for exchanging information (CONTRIBUTORS, 2021). Some services

create an Application Programming Interface (API) that works as an abstraction layer

to access these services. Clients then request information to an API via HTTP or other

protocols. Figure 2.2 depicts the information exchange between a client and an API where

18

the API communicates with the service and retrieves the data or executes an action.

The most common methods of HTTP Requests are: GET, POST, PUT, DELETE

(CONTRIBUTORS, 2021). The only one we use in this work is GET. The GET method

allows us to retrieve data from APIs. In Chapter 3, we explain the scripts built for gath-

ering data using GET. The API’s response can be received in JavaScript Object Notation

(JSON) format. This response contains a request status (e.g., failure or success) and the

requested data.

Figure 2.2: Information exchange using HTTP request via API

Source: The Authors

2.4 NumPy and Pandas

"NumPy is the fundamental package for scientific computing in Python" (HAR-

RIS et al., 2020). NumPy is a community-developed, open-source library for Python. It

combines the features of two older libraries: Numeric and Numarray. It provides multidi-

mensional Python arrays object and array-aware functions to operate on them.

Pandas is a Python library that offers data analysis tools. It has been devel-

oped since 2008 to close the gap between Python and statistical computing platforms

or database languages. It provides "dataframes" (objects to handle data) that translate

Comma-separated values (CSV) files to manageable python objects.(MCKINNEY, 2010)

Both libraries are high-value tools for data analysis applications (STANčIN; JOVIć,

2019). In this work, we take advantage of their data structures and features for organizing,

visualizing, filtering, and preparing our data. More about how we used these tools will be

disclosed in Chapter 3.

19

2.5 Machine Learning

"Machine learning is about extracting knowledge from data" (GUIDO; MUELLER,

2016). Machine learning applications can learn and improve from data without being ex-

plicitly programmed. An example of a commercial application is the machine learning

algorithm that recognizes people’s faces on Facebook photos (TAIGMAN et al., 2014)

In this work, we explore the field of supervised machine learning algorithms. A su-

pervised algorithm learns with labeled data to predict the output of unlabelled ones (GUIDO;

MUELLER, 2016). Take an algorithm that learns with a dataset composed of hotdogs and

sandwiches images. Each one is labeled "hotdog" or "sandwich". After the learning pro-

cess, the algorithm could classify a new image as one of these two options.

2.5.1 Neural Networks

For Neural Networks and Tensorflow, we based ourselves on the book "Learn

Keras for Deep Neural Networks" (MOOLAYIL, 2018).

Neural networks are a field inside machine learning inspired by the brain’s biolog-

ical process. Neurons emit an electrical signal in the brain when stimulated by an input.

In machine learning, multiple neurons compose layers that connect to create a structure

capable of learning new patterns. The first layer receives all the input information, each

middle layer processes the input from the previous one, and the final layer outputs a pre-

diction. In each step, every neuron transforms the data received and sends it to every

neuron of the next layer.

A learning algorithm compares the net prediction (output of the last layer) with

the one observed in reality (the label). It then updates how the neurons transform data to

minimize the difference between these two values. We call the process of adjusting the

neurons, through the use of comparisons and feedback, training (GUIDO; MUELLER,

2016).

Figure 2.3 depicts a representation of a neural network with an input layer, three

hidden layers, and an output layer. The information X1, X2, and X3 are inserted in the

network that processes it and outputs the prediction y’. That prediction is compared with

the actual label Y to calculate the error and update the model.

We validate the performance of a trained neural network by looking at the error

of its predictions. Therefore, we need to decide what we define as an error. Several dif-

20

Figure 2.3: Example of a feedforward Deep Neural Network.

Source: The Authors

ferent metrics are available to estimate that. Some used for regression problems, such as

Absolute Error and Root Mean Square Error (ANTONANZAS et al., 2016), and others

more used for classification problems as Accuracy and True Positives (GOODFELLOW;

BENGIO; COURVILLE, 2016). Table 2.1 details how we can calculate these examples.

Choosing an appropriate metric is essential for network learning, and it is highly depen-

dent on understanding the problem we are trying to solve with Neural Networks.

Table 2.1: Four different metrics for Error calculation.

Mean absolute error MAE = 1
n

∑n
t=1 |(Y observed− Y predicted)|

Root Mean Squared Error RMSE =
√

1
n

∑n
t=1(Y observed− Y predicted)2

Accuracy Accuracy = TruePositives+TrueNegatives
TruePositives+TrueNegative+FalsePositives+FalseNegatives

Precision Precision = TruePositives
TruePositives+FalsePositives

There are two main types of neural network supervised problems: classification

and regression (GUIDO; MUELLER, 2016). On the one hand, classification problems try

predicting a discrete class label. If we use an image as input of our neural network and

expect the output to be Dog or Cat, we have a classification problem. On the other hand,

regression tries to predict a continuous quantity, like the amount of gas needed to go from

one place to another given parameters, such as the car, road condition, and traffic.

Besides choosing the right error metric, a neural network needs a proper configu-

21

ration to achieve optimal performance. We call the networks’ setting parameters Hyper-

parameters. Some examples of hyper-parameters are:

• The number of Layers and Neurons: The number of layers and neurons in each

layer symbolizes the number of mathematical operations a neural network model

will do. While the accuracy is directly related to the number of layers/neurons, so

is the computation time.

• Activation Functions: It is the function each neuron uses to transform its input

into output. Most famous are Sigmoid, Tanh, and Relu.

• Learning Rate: It represents the magnitude that the learning algorithm updates the

neural network’s weights (the activation functions variables). A low learning rate

may delay the neural network convergence, while a big one may impossibility its

convergence.

• Batch Size: The amount of data the learning algorithm analyses before updating

parameters considering the feedback (e.g., 2, 4, 8, 16, 32, 64).

• Epochs: The number of times the training will run through all the data. The neural

network performance improves with analyzing many times the same data, but it can

cause overfitting.

• Layer Dropout: It is a method to avoid overfitting by canceling some neurons.

Dropping out some neurons of an layer brings generalization capabilities into the

neural network model.

2.5.2 Tensorflow and Keras

Tensorflow is a set of libraries for machine learning applications managed by

Google (ABADI et al., 2015). It includes other libraries, like Keras (MOOLAYIL, 2018),

and makes building learning models easier. Besides reducing coding time, these libraries

implement parallelism and optimize their execution for the processor architecture running

it.

Apart from the data, Tensorflow supports all the steps that involve Neural Net-

works in this work. It offers the tools to build the model structure, train it, validate it,

and save it. In Chapter 4, some functions like fit and evaluate are examples of Tensorflow

components.

22

2.5.3 Hyperas

Adjusting hyper-parameters to the data the network receives is called tuning (GUIDO;

MUELLER, 2016). There are manual ways to choose these parameters, but it requires ex-

perience and judgment from the developer. To minimize the effort of manual searching for

the optimal neural network parameters, Hyperas (PUMPERLA, 2020) has the objective

of selecting the most fitting hyper-parameters for a given configuration and data. Hyperas

is a Python library that works along with TensorFlow. It allows us to compare different

setups of neural networks and select better values for their number of layers, activation

functions, dropout percentages, batch sizes, and optimizer functions. Later, in Chapter

4, we describe how different data result in distinct neural network configurations, and

Hyperas helps us with that.

2.6 Related Works

Adel Mellit et al. (MELLIT et al., 2020) classifies PV system energy forecast-

ing methods based on four categories of forcast horizons: very short-term, short-term,

medium-term, and long-term. The difference between them is the range of prediction.

While very short-term ranges from a few seconds to some minutes, short-term predicts

up to 72h, medium-term to weeks ahead, and the time magnitude of long-term goes from

months to years. Most of the authors work with a day-ahead (24h ahead) forecast (ANTO-

NANZAS et al., 2016), which stands between the very short-term and short-term forecast

horizons.

The review authors also distinguish related works by data parameters and tech-

nology used. Regarding data parameters, they differentiate data with only PV energy

records, data only with historical weather information, and hybrid datasets with both con-

tents. Furthermore, they also distinguish datasets composed of one single location and

those consisting of several (forming a regional dataset). Concerning technology, they

list three traditional techniques of working with PV energy: physical methods, statis-

tical/probabilistic approaches, and artificial intelligence. Inside the latest technique is

machine learning, the focus of our research.

In their review, Antonanzas et al. (ANTONANZAS et al., 2016) explain that while

the forecast horizon is the amount of time between the present and predictions, the fore-

cast resolution describes the data time-frequency. Most of their referenced works used

23

datasets with one hour of frequency between measurements. Only two works (LONG;

ZHANG; SU, 2014) (OUDJANA; HELLAL; MAHAMMED, 2013) explore data contain-

ing energy generation in a daily frequency. The review also complements the difference in

predicting regional PV energy generation depending on the available information. They

concluded that the best scenario is when knowledge of power generation from all PV

systems is known. Then, models can execute a bottom-up strategy (summing individual

predictions) to arrive at a regional forecast.

The best way of classifying our work into these categories would be:

• Time Horizon: Day-ahead forecast;

• Time Resolution: 24-hour frequency;

• Data type: Hybrid and Regional;

• Method: feedforward Deep Neural Networks.

There are many methods for predicting solar energy, so finding related work that

precisely matches our approach is not trivial. We did find works that share some of our

approach characteristics. Son et al. (SON et al., 2018) evaluated the performance of a

feedforward Deep Neural network using hybrid data. Their approach aimed to reduce the

necessity of weather sensors on-site for learning experiments. Therefore, they used data

composed of their PV System on-site measurements and weather forecast from a national

weather service. They demonstrate that the trained model can achieve comparable or even

slight results to their previous system that relies on the on-site sensor.

Long et al. (LONG; ZHANG; SU, 2014) used a forecast resolution of 24 hours

to train an artificial neural network and other data-driven approaches. They collected

data from on-site sensors of a single rooftop PV System located on the Coloane island

of Macau and ran parameter analyses to select their models’ inputs. Evaluating the test

dataset, their artificial neural network model achieved a Mean Absolute Percentage Error

of 11.878%.

Pierro et al. (PIERRO et al., 2017) used satellite and weather data to build models

capable of predicting regional solar energy output. They divided the studied location into

clusters and upscaled the prediction on these to arrive at a region’s total energy generation.

They concluded that each cluster behaved like a single PV System, and accuracy improved

due to smoothing effects. They achieved RMSE and MAE of 7% and 4% for day-ahead

prediction.

Besides the related works similar to ours, new research with more sophisticated

24

machine learning techniques achieves exciting results. Wang et al. (WANG; QI; LIU,

2019) reviewed the difference between models that implemented Conventional Neural

Networks (CNN), Long Short Term Memory (LSTM) neural networks, and a hybrid

model that combined both. They show that the accuracy of the three models highly

depends on the size of the available data. They achieved 2.2% of the Mean Absolute

Percentage Error in their best-case scenario.

2.7 Summary

This chapter presented the foundations needed to comprehend our work. We start

by explaining the process of the main subject of our study, the Photovoltaic System. Then,

we explain some tools used in the conception of this work, such as Python, Pandas,

Numpy, API Requests, TensorFlow, and Hyperas. In addition, we show the main con-

cepts of neural networks, explaining how they work, their configuration parameters, and

the typical problems we can use them to solve.

We establish how our approach stands in this field categories identified by review

authors. We define it as a deep neural network (method) using hybrid and distributed data

with a frequency of 24 hours to predict the day-ahead forecast. Then, we summarize three

similar works (SON et al., 2018) (LONG; ZHANG; SU, 2014) (PIERRO et al., 2017)

that share some features with ours. The first one uses feedforward deep neural networks

collecting part of the data from a weather service to predict a single PV energy generation.

The second uses a forecast resolution of 24 hours and artificial neural networks to solve

the same problem. The last creates a regional model using satellite data and an up-scaling

model. Furthermore, we also review a research (WANG; QI; LIU, 2019) where the

authors explore the problem with more sophisticated neural network methods.

25

3 DISTRIBUTED DATA

This chapter describes our data parameters and the method used to collect all the

information needed for training a machine learning model. The usage of distributed open

data is a fundamental aspect of this work, and we desire to enable Smart Grid operators

to gather meaningful data for their specific scenarios. Considering that, we will elaborate

on completing the collection processes. We start by introducing our data sources. Then,

we describe the scripts we developed to obtain the data and the final datasets’ features and

labels.

3.1 Data Sources

Concerning the PV systems’ characteristics and past energy generation records,

we collected all data from a community of solar panel owners named PVoutput (PVOUT-

PUT, 2020). In this community, users can register their PV Systems and log their daily

energy generations. With numerous users contributing with high volume data from differ-

ent places, this community is essential to evaluate this work proposal. Furthermore, users

can also add any registered PV System to a favorite list on their platform. This feature

makes it possible to create a list of pre-selected systems with locations close to each other.

In Section 6, we are going to discuss the importance of that. Several filters are applicable

by users to find data that serve their goals.

The weather information originates from a service named World Weather On-

line (WORLD. . . , 2020). This website contains historical climate conditions, real-time

information, and forecasting. These different types of data are essential for our analysis.

3.2 Data Collection

We developed four different scripts to gather the data from these services. That

was necessary because of the specifics of each API and data format. Besides requests to

the websites, these scripts also filter data, eliminate corrupt entrances from the datasets,

and combine different data sources to compose the final datasets. All of them are available

on GitHub (FRANCO, 2020).

26

3.2.1 PV Data Collection

The first step in building the PV datasets is collecting a list of PV Systems we

want to use for training our model. Our first script1 starts by requesting this list from the

PVoutput community using our API key and the GET HTTP method. This key allows us

to access the API information and works as a reference to retrieve the systems we selected

as favorites. The script then saves this list as a CSV file, creating a file that contains all

characteristics of the to-be-studied PV systems.

For each system, the script makes new requests. These requests pull the daily

energy generation records from the installation of every PV system until the current day.

Since the PVoutput API allows requesting only 150 days interval records, we had to adapt

our script to request data until it retrieved all the logs. It saves the response of every

request, creating, for each system, a CSV file with all records.

3.2.2 Weather Data Collection

A second script2 is responsible for requesting the data from the World Weather

Online API. The script starts by accessing the saved information about the favorite PV

Systems. It creates a dictionary for each system, containing id, installation date, latitude,

and longitude information. Our algorithm uses this dictionary to construct the request’s

URL for the weather API.

Using GET HTTP, the script requests the historical weather information for the

location of each system. Since the World Weather Online API also limits the data per

request, we had to make multiple requests the same as we did for the system’s daily output.

It then returns all the weather conditions from the installation date until the current day.

This API may not find the historical weather information from a pinpoint location as we

requested. Instead, it will return the data from the nearby location it knows.

This API’s response is a multilevel JSON, i.e., it is composed of objects that may

have other objects inside them. Since we need a flat sheet as a dataset for machine learn-

ing, it may complicate our analysis. For that reason, we had to implement functions that

flatten the responses. Figure 3.1 depicts an example of multilevel JSON and how it looks

after being flattened.

1<https://github.com/lucio-lpf/SEPA/blob/main/data/pv_data.py>
2<https://github.com/lucio-lpf/SEPA/blob/main/data/weather_data.py>

https://github.com/lucio-lpf/SEPA/blob/main/data/pv_data.py
https://github.com/lucio-lpf/SEPA/blob/main/data/weather_data.py

27

Figure 3.1: Process of flattening a JSON response.

Source: The Authors

3.2.3 Forecasting Data

We created another script to retrieve forecasting information from the same weather

service. This new script3 requests the next five days forecasting every system on the fa-

vorites list. Then, it saves a list for each system with its characteristics and the forecasting.

At the time, these datasets do not include a label. After the forecast days, we include it

manually, knowing the actual energy generation.

3.3 Data Combination and Filtering

A fourth script4 combines each energy generation record with its PV system’s

characteristics and the weather information on each given day. The outputs of these

combinations are the neural networks’ final datasets for training. In this script, we used

Numpy to combine the different array of data and Pandas to select the features of our

dataset and filter it.

We noticed by analyzing the data that some entries were incorrect as the PV Sys-

tem had not generated energy on some particular days. We also noticed that the entrances

had a data feature, Condition, set to Not Sure when that happened, diverging from the

3<https://github.com/lucio-lpf/SEPA/blob/main/data/forecasting_data.py>
4<https://github.com/lucio-lpf/SEPA/blob/main/data/join_data.py>

https://github.com/lucio-lpf/SEPA/blob/main/data/forecasting_data.py
https://github.com/lucio-lpf/SEPA/blob/main/data/join_data.py

28

typical cases Sunny, Rainy, and Cloudy. After combining the different datasets, our script

filters them by dropping these corrupted entries.

The script finishes dividing the data into four datasets—one for each year’s season.

Mohammad et al. (Hossain; Mahmood, 2020) divided data to improve pattern recognition.

That increase happens because the climate difference between seasons makes neural net-

work pattern recognition difficult. In Chapter 5, we demonstrate the different learning

performances of dividing the data or not.

3.4 Data Aspects

We classify the collected data into two categories: prediction target and features.

Our prediction target is energy generation logs, and our features are the systems’ char-

acteristics and weather information. Table 3.1 shows a dataset sample from one of our

collections. In total, our dataset contains 23 features.

3.4.1 Dataset Features

From the PVoutput community, we retrieved the following PV system’s charac-

teristics: System Size, Number Of Panels, Panel Power, Number Of Inverters, Inverter

Power. Moreover, we also obtained the records that relate the energy generation to a

specific date. The weather service API delivers the following information: date, to-

talSnow_cm, mintempC, avgtempC, uvIndex, WindChillC, cloudcover, winddirDegree,

WindGustKmph, HeatIndexC, precipMM, FeelsLikeC, visibility, humidity, pressure, Dew-

PointC, windspeedKmph, maxtempC.

We did not remove any feature based on our presumptions of importance. Instead,

we let the neural network balance their weights on the predictions. The only filtering we

did was to discard the categorical features, such as Condition because we collected more

precised weather information. Then, all the parameters of our data are numerical values

and represented in float64. Figure 3.2 depicts a heat-map with the correlation of our

dataset features on a scale that ranges from -1 to 1. While a value of 1 means two features

have a proportional relationship, -1 represents an inverse correlation. Correlations close

to 0 symbolize a non-linearity between two features.

29

Figure 3.2: Heat-map with features relation.

Source: The Authors

3.4.2 Learning Label

Our prediction target is Efficiency (Wh/W), i.e., the amount of energy a system

produces (Wh), divided by its size (W).

Efficiency =
EnergyProduced

SystemSize
(3.1)

It represents the number of hours a PV System would generate power in optimal

capacity. This variable makes it easier to train our model with different systems because

it softens the range of energy generation using each system size. Therefore, it enables

gathering a larger dataset (not filtering per size) and generalizing our results to other

systems.

A study made at the University of Massachusetts Amherst (Sharma et al., 2011)

shows a strong correlation between solar intensity and parameters, such as the day of the

year, temperature, sky cover, precipitation, and humidity. In Figure 3.3, we can notice

organized patterns representing a significant correlation between our chosen label and

these parameters.

30

Table 3.1: Dataset aspects sample.

Feature Mean Min Max

Efficiency 3.187760 0.0 7.552
System Size 10085.003378 3750 38190
Number Of Panels 40.540875 15.0 133
Panel Power 268.553224 185.0 360
Number Of Inverters 27.685534 1.0 133
Inverter Power 3694.008520 195.0 11400
day of the year 180.099880 1.0 366
totalSnow_cm 0.135677 0.0 45.100
mintempC 10.277382 -19.0 29
avgtempC 15.501389 -14.0 37
uvIndex 4.021695 1.0 9
WindChillC 13.145747 -23.0 34
cloudcover 40.623977 0.0 100
winddirDegree 208.379964 7.0 348
WindGustKmph 15.563434 3.0 55
HeatIndexC 14.953082 -15.0 39
precipMM 4.603667 0.0 172.400
FeelsLikeC 13.699159 -23.0 39
visibility 9.101381 0.0 10
humidity 70.152316 27.0 100
pressure 1017.818069 985.0 1042
DewPointC 8.366827 -24.0 25
windspeedKmph 10.354778 2.0 39
maxtempC 18.783425 -11.0 41

Figure 3.3: Relation between key features and the chosen label.

Source: The Authors

31

3.5 Summary

This chapter introduces the two sources we used in this work to collect distributed

data for training our neural network models. We collected PV System energy generation

records from a community of solar panel owners (PVOUTPUT, 2020) and historical/-

forecasting data from a weather service (WORLD. . . , 2020). We detail how we used the

PVOutput platform to select data from the to-be-studied locations. We explain our scripts’

steps to request data from the sources’ API and combine the different data formats into

five datasets (one for each year’s season and one with undivided data).

We end the chapter by listing and analyzing our datasets’ aspects. We explain the

meaning of our chosen label, Efficiency, and relate it to the energy produced by a PV

System. We also show how our features correlate between themselves using a heat map

and how they relate to our label. To better illustrate the data we are working with, we

display an example of a dataset created from the process of data collection.

32

4 NEURAL NETWORK WITH CUSTOM CONFIGURATION

To investigate the research questions of this work, we implemented scripts for

analyzing our data using one of the Tensorflow (ABADI et al., 2015) neural network

libraries: Keras (CHOLLET et al., 2015). Furthermore, we also use other libraries, such

as Numpy, Pandas, Seaborn, and Matplotlib to transform the data we collected and display

the neural network results. This chapter explains how our learning algorithms work and

the motivations behind their proprieties.

4.1 Data Normalization

Table 3.1 shows that our dataset comprises features with different units and ranges.

These differences alone could cause the neural network to emphasize some features over

others. To minimize that, the first step in the training of a neural network model is the stan-

dardization of the dataset. We chose a z-score normalization represented by Equation 4.1

where: Z_score is the normalized value, O_value is the data original value, F_mean is the

feature mean, and F_std is the standard deviation. It divides the features by each range’s

standard deviation, containing 99% of data after three deviations. Then, all of our features

fall within similar ranges, and we work with equivalent metrics (KREYSZIG, 2010).

Z_score =
O_value− F_mean

F_std
(4.1)

To apply the Equation 4.1 to our dataset, we had to remove the columns that

contained only constants and would create an error in the script. For example, assume

that the weather data has a feature describing the snow cover, but our data comes from a

tropical place. This column would be filled only by zeroes, and the division would result

in not a number (NaN).

4.2 Hyperas

After preparing the data, the next step is configuring the neural network. Since we

propose an approach that different users can use to validate their scenarios, an immutable

configuration would not work. As discussed in Chapter 2, Hyperas (PUMPERLA, 2020)

is a library built to find the optimal hyper-parameters for a given dataset. Using this

33

library, we observe, in Chapter 5, that datasets from different places result in distinct

configurations of neural networks.

Hyperas works along with Keras. It analyzes multiple setups of neural networks

and returns the one with the best performance. Developers can establish choices to be

evaluated by Hyperas. Alg. 4.1 shows the difference between a simple Keras algorithm

and one that implements Hyperas choices. We implemented a script 1 that uses Hyperas

to select the configuration of our models depending on the data we are input it. Table 4.1

describes the hyper-parameter we used Hyperas to find and the choices it should analyze

for each one.

Table 4.1: Hyper-parameters and the evaluated choices.

Parameter Choices

Number of Hidden Layers 2, 3, 4, 5
Number of neurons per Layer 128, 256, 512, 1024
Layer Dropout Percentage 0 - 1
Layer Activation Function relu, sigmoid, tanh, linear
Optimizer rmsprop, ADAM, sgd
Training Batch Size 4, 16, 32, 64, 128

Algorithm 4.1: Example of Hyperas usage.

1 # PLAIN KERAS

2 model_layers . append (laye rs . Dense(256 , a c t i v a t i o n = ’ sigmoid ’))

3 model_layers . append (laye rs . Dropout (0.14325834324324327))

4

5 # KERAS WITH HYPERAS

6 model_layers . append (laye rs . Dense ({ { choice ([128 , 256 , 512 , 1 0 2 4]) } } ,

7 a c t i v a t i o n = { { choice ([’ r e l u ’ ,

8 ’ s igmoid ’ ,

9 ’ l i n e a r ’]) } }))

10 model_layers . append (laye rs . Dropout ({ { un i form (0 , 1) } }))

4.3 Neural Network Training

The script responsible for creating the neural network model2 starts by normaliz-

ing the dataset and dividing it into 90% for training and 10% for testing. This division

1<https://github.com/lucio-lpf/SEPA/blob/main/hyperas_select.py>
2<https://github.com/lucio-lpf/SEPA/blob/main/neural3.py>

https://github.com/lucio-lpf/SEPA/blob/main/hyperas_select.py
https://github.com/lucio-lpf/SEPA/blob/main/neural3.py

34

is critical for testing a trained model and guaranteeing that it is not overfitting our data.

Overfitting happens when a model gets too used to the training dataset, predicts it pre-

cisely, but can not predict new data it has never seen before (MOOLAYIL, 2018). Then,

our script builds a neural network model using an input shape equal to our data and the

hyper-parameters chosen by Hyperas.

After building the model, our script calls the function that executes training iter-

ations. Keras function fit trains our model using the normalized dataset and its labels. It

also receives some parameters: training batch size, number of epochs, and the percentage

of data designated for validation purposes. An early stop function uses this validation data

to monitor the training performance indicator, e.g., RMSE or MAE. It forces the training

to stop when this indicator stops improving. Figure 4.1 depicts all the data divisions

during the execution of this script.

Figure 4.1: Data designations for training, testing and validations.

Source: The Authors

Finally, our script tests the trained model with the Keras function evaluate. It uses

10% of the original dataset separated for testing. If the test results look similar to the

training, our model did not overfit our data, and we can save it for future predictions.

We compiled some of our training and testing information into plots to analyze

our model performance. Our script produces the following plots every time it trains and

evaluates a neural network: true values x predicted values, prediction errors, and loss

progression over epochs. Figure 4.2 depicts examples of these plots. The loss progression

plot, shown in Figure 4.2a, is important to investigate if a model is not overfitting the

dataset. It depicts the training performance along the epochs. Figure 4.2b depicts the

errors distribution of our model that resembles a Gaussian curve. In Figure 4.2c, the blue

line places the 1:1 proportion between the axis. The closer the dots are from that line, the

better the neural network predicted the testing dataset.

35

Figure 4.2: Plots describing training performance.

(a) Loss Progression (b) Prediction Errors

(c) True Values x Predicted

Source: The Authors

4.4 Prediction Features

We created two more scripts34 to test our two research questions in Section 1.1.

Both of them use a saved neural network model from the training step. For both cases,

we used the Keras function predict, which receives data features and outputs our chosen

label.

4.4.1 Impact Analysis

By training our neural network models with data from a determined location, we

can evaluate the impact of a new PV System near that place. We created a dataset with a

3<https://github.com/lucio-lpf/SEPA/blob/main/new_system.py>
4<https://github.com/lucio-lpf/SEPA/blob/main/predictions.py>

https://github.com/lucio-lpf/SEPA/blob/main/new_system.py
https://github.com/lucio-lpf/SEPA/blob/main/predictions.py

36

Figure 4.3: Evaluation of a new system in a known location.

Source: The Authors

new PV System’s configuration and a year of weather information from one of the nearby

systems used in the training process. It then uses a models trained with undivided data to

predict the energy the new system would generate that year. Figure 4.3 depicts an example

of our script output plot. The energy fluctuation in the plot marks the different seasons of

the year. The climate information came from the northern hemisphere, where the highest

energy generation is in the middle of the year. We hope to enable better planning for

building a PV System with this feature. Smart Grid operators can evaluate the impact of a

new system in a region, and customers can check what configuration satisfies their needs.

4.4.2 Day-ahead Forecasting

Our second script uses a weather forecasting dataset to predict the day-ahead en-

ergy generation of all systems from a location. It predicts each system’s next day Effi-

ciency and multiplies these values by the correspondent system size to arrive at the total

energy generation. The script outputs a value representing the regional generation for a

day ahead by combining all systems’ expected energy generations. We created this fea-

ture hoping that energy suppliers can plan for energy fluctuations instead of reacting to

them.

4.5 Summary

This section details our process of creating, training, and testing neural network

models using a Tensorflow (ABADI et al., 2015) library called Keras(CHOLLET et al.,

2015). It describes how we normalized our dataset using a standard deviation strategy and

37

how we had to drop features depending on the studied location. It follows to explain how

we used Hyperas (PUMPERLA, 2020) to ease the hyper-parameters selection. Hyperas

evaluates our datasets and chooses the best options for the number of layers, number of

neurons per layer, layer dropout percentage, layer activation functions, learning optimizer,

and training batch size. Then, the chapter detail the steps our script take to train neural

network models and the plots produced by each training.

This chapter also describes the prediction features we developed to answer our

research questions in Section 1.1: day-ahead forecasting and impact analysis. The first

uses weather data from a location to study how a system would behave there. The second

uses forecasting information to predict the energy generated by all systems at a location.

It then combines the measures to arrive at a regional day-ahead prediction.

38

5 EVALUATION

To evaluate our approach, we selected distributed data from four different loca-

tions. Each location resulted in five different datasets (one for each season and one for

all data combined). Figure 5.1 depicts the locations we chose to evaluate our approach,

where each pinpoint symbolizes one PV System. Our datasets comprise a total of 175074

entries from 122 PV Systems. Table 5.1 shows precisely the number of systems and the

amount of data from each location.

Figure 5.1: Pinpoint of PV Systems in the selected locations.

(a) Washington - District of Columbia - USA (b) San Francisco - California - USA

(c) Milan - Lombardy - Italy (d) Sydney - New South Wales - AUS

Source: The Authors

Table 5.1: Number of PV Systems and collected data from each location.

Location Number of Systems Total Entries

A 35 33001
B 28 36385
C 25 48876
D 34 56812

39

5.1 Neural Network Models Configurations

We used Hyperas to evaluate each dataset and find their neural network’s hyper-

parameters. Table 5.2 shows each location’s chosen neural network settings. In addition

to the layers described in that table, all models contain a final layer composed of one

neuron that outputs our regression result.

Table 5.2: Chosen hyper-parameters for each dataset using undivided data.

Location Optimzer Batch Size Layer n Neurons Droptout Activation Func.

A ADAM 16
1 256 0.0723 Relu
2 1024 0.1548 Relu
3 512 0.4480 Linear

B ADAM 8
1 1024 0.0523 Tanh
2 256 0.0030 Sigmoid
3 512 0.1045 Relu

C RMSprop 32
1 1024 0.317 Relu
2 128 0.3063 Tanh
3 256 0.0005 Tanh

D RMSprop 32
1 1024 0.052 Tanh
2 256 0.03015 Sigmoid
3 128 0.1545 Relu

The Early Stop function we implemented monitors the validation loss (MSE) and

has a patience of 10. This patience means our function will look for improvements in the

validation loss until it remains 10 epochs without improving, then it stops the training.

We set the training epochs to 200, meaning our learning algorithm will finish after going

through the entire training dataset 200 times or being interrupted by the Early Stop. Most

models did not complete all epochs.

Regarding metrics, we chose to evaluate our models using Mean Absolute Er-

ror (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error

(MAPE) (ANTONANZAS et al., 2016). While the MAE and RMSE unit is Efficiency

(Wh/W), MAPE is a percentage value. Their formulas are represented by equations 5.1,

5.2, and 5.3, respectively. Equation 5.4 represents the dimensionless weighted percentage

of MAE. We chose to add this metric because MAPE can be misleading when dealing

with values close to zero (KIM; KIM, 2016).

40

MAE =
1

n

n∑
t=1

|(Yobserved − Ypredicted)| (5.1)

RMSE =

√√√√ 1

n

n∑
t=1

(Yobserved − Ypredicted)2 (5.2)

MAPE =
100%

n

n∑
t=1

|(Yobserved − Ypredicted)

Yobserved

| (5.3)

MAE% = 100%× MAE

Mean
(5.4)

5.2 Training Results

We trained 20 neural network models to evaluate all datasets. Table 5.3 compares

the testing results of the neural network models of each location. The table’s values

represent results from data we did not input into the models for training. We included

an evaluation of the undivided datasets to analyze the influence of this strategy. The best

performance location and season was San Francisco in the summer. Figure 5.2 depicts the

three plots that our script outputs after successfully training our best performing model.

All other plots are available in Appendix A.1.

5.3 Prediction Results

We selected the model that better performed in training to evaluate our proposed

prediction features. We used the saved model that evaluated the undivided dataset for the

impact analyses. We selected the model from the season the forecasting was from for the

day-ahead prediction.

5.3.1 Impact Analyses

To investigate a new system’s impact, we searched the PVOutput community and

selected another system from Location B. This way, we could demonstrate this feature and

evaluate it. While Figure 5.3 depicts the typical output of our script, Figure 5.4 depicts a

41

Table 5.3: Neural Network models performance when predicting test data.

Location Season MAE RSME MAPE MAE%

A

Summer 0.39 0.57 15.53% 9.46%
Fall 0.31 0.46 21.59% 14.36%

Winter 0.35 0.55 27.51% 15.34%
Spring 0.38 0.55 12.08% 9.41%

Undivided 0.48 0.66 27.08% 14.90%

B

Summer 0.34 0.52 9.76% 6.87%
Fall 0.37 0.58 30.72% 13%

Winter 0.49 0.68 30.34% 17.52%
Spring 0.47 0.67 14.32% 9.49%

Undivided 0.47 0.66 21.98% 12%

C

Summer 0.47 0.71 16.73% 10.85%
Fall 0.37 0.54 35.33% 20.6%

Winter 0.36 0.52 30.30% 17.4%
Spring 0.52 0.75 19.57% 13.9%

Undivided 0.46 0.67 30.23% 14,5%

D

Summer 0.59 0.86 22.91% 14.35%
Fall 0.51 0.76 35.33% 16.75%

Winter 0.40 0.64 21.14% 15.28%
Spring 0.57 0.85 20.99% 13.90%

Undivided 0.50 0.78 23.89% 14.44%

comparison between the actual Efficiency and our model predictions for the year 2021.

5.3.2 Day-ahead

Of the 28 Systems, we used data to build the Location B dataset, 24 are active and

posting their daily energy generation. We used their data to test the regional day-ahead

energy prediction. For that, we gathered the on-day-ahead weather forecasting for each

system location. We waited for the actual next-day output and built a forecasting dataset.

All the 24 PV Systems combined generated 1,040,185 Wh of energy. Our neural network

model predicted these systems would generate 1,099,775 Wh that day, an error of 5.73%.

42

Figure 5.2: Result plots from Location B with summer dataset.

(a) Loss Progression (b) Prediction Errors

(c) True Values x Predicted

Source: The Authors

5.4 Discussion

Different causes may have affected the results of our models. The weather data

that composes our datasets do not necessarily inform the climate conditions of the PV

systems’ positions. It searches for the nearest point with accessible data given the coordi-

nates of each system. Also, the energy-generated data is uploaded by community users,

making it impossible to confirm the measurements. Even after filtering, we could find

some bad data that potentially harmed our training.

We noticed a strong correlation between the results and the location seasons dur-

ing experimentation. While separating the data into four datasets helped improve the

performance of seasons such as Summer and Spring, the performance of Winter and Fall

usually went worse than the undivided test. Figure 5.5 and Figure 5.6 1 depict that, in San

1Required reference: © WeatherSpark.com

43

Figure 5.3: Impact Analyses of new system at Location B.

Source: The Authors

Figure 5.4: Comparison between impact analyses and real system output for 2021.

Source: The Authors

Francisco, the winter season is characterized by lower solar incidence and rainfalls. The

first characteristic reduces the average energy generation, requiring a more precise pre-

diction to lower losses. The second one brings more variations that increase the difficulty

of a neural network model to recognize patterns. In contrast, when we analyze Location

D, Sydney, we notice that all models performed similarly. We can relate that to a more

even rain distribution throughout the year, as depicted in Figure 5.7.

Regarding the dynamic hyper-parameters approach, Hyperas chose a distinct con-

figuration for each location. The training with the chosen configurations showed signs of

overfitting depending on the season evaluated, e.g., as shown in Figure A.4. This overfit-

ting reveals that even though Hyperas found suitable configurations, we still need to make

fine adjustments to neural networks for the same location.

Analyzing the day-ahead feature, our model seems to perform better when pre-

dicting generation using forecasting. However, what happened was just an advantage of

working with distributed PV Systems. As we observe in Figure 5.2b, while our model

has overpredicted some energy generations, others it underpredicted. When we combine

all to calculate the regional prediction, our worst-case scenario would be similar to the

44

Figure 5.5: Average daily incident shortwave solar energy in San Francisco.

Source: WeatherSpark

Figure 5.6: Average monthly rainfall in San Francisco.

Source: WeatherSpark

training MAE, but these prediction errors may cancel themselves in the best case.

Most of the authors present their results in units such as power (W) or energy

generation(Wh) (MELLIT et al., 2020) (ANTONANZAS et al., 2016), but that does not

interfere when comparing our results with them. Equation 3.1 shows the direct relation-

ship between our label and these units. Therefore, we can compare the percentage error

values instead of absolute ones. When comparing our results to other works, the most

significant complication is the different characteristics between our approach and others.

Son et al. (SON et al., 2018) used a similar machine learning method and also used

weather data from outside their system’s environment. The main difference between our

approaches is that they used information from a single PV System instead of multiples and

their data had a time resolution of one hour. Their model outperformed ours, achieving an

45

Figure 5.7: Average monthly rainfall in Sydney.

Source: WeatherSpark

MAE% of 2.9%.

Long et al. (LONG; ZHANG; SU, 2014) shared the same daily frequency for time

resolution. Even though their artificial neural network model predicted data for a single

location with on-site sensors, some of our models achieved similar results to their MAPE

of 11.878%.

5.5 Next Steps

The PVOutput community (PVOUTPUT, 2020) has a significant number of sys-

tems enrolled. Although we selected PV systems that, at first sight, appeared to contain

healthy data, further analyses into the community to separate proper systems for building

a dataset are needed. In addition, we could employ feature selection in our data (LONG;

ZHANG; SU, 2014). These investigations may result in the drop of some features that do

not improve the prediction capabilities of their models.

Even though Hyperas eased our model hyper-parameter selection, we implemented

a basic feedforward Deep Neural Network to analyze our data. We could try evaluating

the same data with more sophisticated methods, such as Convolutional Neural Networks,

Long Short Term Memory, or a hybrid combination (WANG; QI; LIU, 2019) (Hossain;

Mahmood, 2020).

The process of data collection we created is still unstable and time-consuming.

Some unexpected errors may complicate who tries to use them. E.g., a PV System infor-

mation may not contain its installation date, or there are energy records previous to the

installation date that will conflict when matching weather and energy data. An application

in collaboration with the PV Output community to ease data collection would allow more

46

research using their data without unexpected struggles.

Finally, despite our focus on documenting all our scripts’ steps, they may still

be unfriendly to some users. A user interface that integrates our scripts could lower our

approach’s complexity and learning curve.

5.6 Summary

This chapter shows the four locations we collected data to build our training

datasets and specifies the amount and the number of systems. Then, the chapter details

the model’s hyper-parameters chosen by Hyperas (PUMPERLA, 2020) for each location,

the early stop configuration of our training, and the metrics with which we evaluate our

models. It displays the five datasets’ testing results of every location (one for each year’s

season and one containing all data). Our best performance model achieved 6.87% of

MAE% predicting summer energy generation. We used this model to demonstrate our

two prediction features. It predicted the day-ahead energy generation with an error of

5.73%.

The chapter discusses our findings, assigning some possible limitations of our

approach. It then analyzes the benefit of dividing the data into the season, identifying that

the strategy showed better results when we collected data from places with rainy seasons.

Furthermore, it compares our results with similar works discussing the main difference

between our approach and the ones of other authors.

Finally, the chapter concludes by listing the possible next steps of our work. Fur-

ther research can explore our approach using more sophisticated neural network methods.

We also discuss the necessity of user interfaces to interact with our developed scripts and

a better way of capturing data from the PVOutput community.

47

6 CONCLUSION

This work proposes an approach to predict regional solar energy generation using

distributed data and neural networks. Our approach aims to reduce the risks imposed by

solar energy fluctuations. We collected open data from distributed Photovoltaic Systems

and historical weather to accomplish that. The main source that allowed our analysis was

a community of solar panel owners named PVOutput. This work describes our steps to

create deep neural network models with custom configurations for each data group and

evaluate our collected data.

We developed scripts in Python using machine learning, data manipulation, and

web request libraries. These scripts were responsible for collecting, filtering, and com-

bining data from different sources. These scripts also created, configured, trained, and

tested deep neural network models, to evaluate the obtained data.

We demonstrate the training results of our neural network models with data from

four locations (Washington DC, San Francisco, Milan, Sydney). We concluded that our

models performed unsatisfactorily when predicting energy generation for seasons with

unstable weather. Besides the training evaluations, we also used our trained models to

answer our research question. We created scripts that, using these models, predict day-

ahead energy generation and impact analysis of new systems. We predicted the day-ahead

energy generation with satisfactory accuracy using our best-performing model.

We identified possible limitations to our approach regarding our chosen learning

method and the collected data. We set a feedforward deep neural network while recent

studies use more advanced techniques such as LSTM and CNN. In addition, we can not

confirm the measures each user uploads to the PVOutput community leading to possible

misslabeled data. Furthermore, we used weather data from a service and not from on-site

sensors. This service may not deliver data precisely from the point where PV Systems

situate.

To continue this work, we propose evaluating more sophisticated machine learning

methods or investing in data filters to select data that best correlate to our goals. Further

investigation can help us better understand if the limitations of our approach are in our

learning method or our data. Moving towards accessibility, we also believe in the benefits

of user interfaces to collect data and train models using these data.

The most significant contribution of this work is the demonstration that it is possi-

ble to create models for regional solar energy prediction using open distributed data from

48

a community of solar panel users. Furthermore, this work also shows how Hyperas can

be used to reduce the friction of selecting hyper-parameters and discuss the benefit of

separating data into seasons.

Part of this work was accepted for publication by the IEEE PES Innovative Smart

Grid Technologies (ISGT NA 2022) under "Regional PV Energy Forecasting using Dis-

tributed Data and Deep Neural Networks."

49

REFERENCES

ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. 2015. Software available from tensorflow.org. Disponível em: <http:
//tensorflow.org/>.

ANTONANZAS, J. et al. Review of photovoltaic power forecasting. Solar
Energy, v. 136, p. 78–111, 2016. ISSN 0038-092X. Disponível em: <https:
//www.sciencedirect.com/science/article/pii/S0038092X1630250X>.

BV, T. S. TIOBE Index for February 2022. 2022. <https://www.tiobe.com/tiobe-index/
>. Accessed: 2022-02-14.

CHOLLET, F. et al. Keras. 2015. <https://keras.io>.

CONTRIBUTORS, M. HTTP request methods. 2021. <https://developer.mozilla.org/
en-US/docs/Web/HTTP/Methods>. Accessed: 2022-02-14.

DIRAC, P. A. M. Snapshot 2021. [S.l.]: Clarendon Press, 2019. (International series of
monographs on physics). ISBN 9780198520115.

DIRAC, P. A. M. Trends in photovoltaic applications. [S.l.]: Clarendon Press, 2019.
(International series of monographs on physics). ISBN 9780198520115.

FRANCO, L. Solar Energy Prediction Application. 2020. <https://github.com/
lucio-lpf/SEPA>. Accessed: 2022-04-24.

GOODFELLOW, I. J.; BENGIO, Y.; COURVILLE, A. Deep Learning. Cambridge,
MA, USA: MIT Press, 2016. <http://www.deeplearningbook.org>.

GUIDO, S.; MUELLER, A. C. Introduction to machine learning with python: A
guide for data scientists. [S.l.]: O’Reilly Media, 2016. ISBN 9781449369415.

HANIFULKHAIR, K. b. et al. One day ahead prediction of pv power plant for energy
management system using neural network. In: 2020 International Seminar on
Intelligent Technology and Its Applications (ISITIA). [S.l.: s.n.], 2020. p. 107–112.

HARRIS, C. R. et al. Array programming with NumPy. Nature, Springer Science
and Business Media LLC, v. 585, n. 7825, p. 357–362, set. 2020. Disponível em:
<https://doi.org/10.1038/s41586-020-2649-2>.

Hossain, M. S.; Mahmood, H. Short-term photovoltaic power forecasting using an lstm
neural network and synthetic weather forecast. IEEE Access, v. 8, p. 172524–172533,
2020.

KIM, S.; KIM, H. A new metric of absolute percentage error for intermittent demand
forecasts. International Journal of Forecasting, v. 32, n. 3, p. 669–679, 2016.
ISSN 0169-2070. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0169207016000121>.

KREYSZIG, E. Advanced Engineering Mathematics. John Wiley & Sons, 2010.
1011-1015 p. ISBN 9780470458365. Disponível em: <https://books.google.com.br/
books?id=UnN8DpXI74EC>.

http://tensorflow.org/
http://tensorflow.org/
https://www.sciencedirect.com/science/article/pii/S0038092X1630250X
https://www.sciencedirect.com/science/article/pii/S0038092X1630250X
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://keras.io
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://github.com/lucio-lpf/SEPA
https://github.com/lucio-lpf/SEPA
http://www.deeplearningbook.org
https://doi.org/10.1038/s41586-020-2649-2
https://www.sciencedirect.com/science/article/pii/S0169207016000121
https://www.sciencedirect.com/science/article/pii/S0169207016000121
https://books.google.com.br/books?id=UnN8DpXI74EC
https://books.google.com.br/books?id=UnN8DpXI74EC

50

LONG, H.; ZHANG, Z.; SU, Y. Analysis of daily solar power prediction with data-driven
approaches. Applied Energy, v. 126, p. 29–37, 2014. ISSN 0306-2619. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0306261914003249>.

MCKINNEY Wes. Data Structures for Statistical Computing in Python. In: WALT
Stéfan van der; MILLMAN Jarrod (Ed.). Proceedings of the 9th Python in Science
Conference. [S.l.: s.n.], 2010. p. 56 – 61.

MELLIT, A. et al. Advanced methods for photovoltaic output power forecasting:
A review. Applied Sciences, v. 10, n. 2, 2020. ISSN 2076-3417. Disponível em:
<https://www.mdpi.com/2076-3417/10/2/487>.

MOOLAYIL, J. Learn Keras for Deep Neural Networks: A Fast-Track Approach to
Modern Deep Learning with Python. 1st. ed. USA: Apress, 2018. ISBN 1484242394.

OBI, M.; BASS, R. Trends and challenges of grid-connected photovoltaic systems – a
review. Renewable and Sustainable Energy Reviews, v. 58, p. 1082 – 1094, 2016.
ISSN 1364-0321. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S136403211501672X>.

OLIPHANT, T. E. Python for scientific computing. Computing in Science Engineering,
v. 9, n. 3, p. 10–20, 2007.

OUDJANA, S. H.; HELLAL, A.; MAHAMMED, I. H. Power forecasting of photovoltaic
generation. International Journal of Electrical and Computer Engineering, World
Academy of Science, Engineering and Technology, v. 7, n. 6, p. 627 – 631, 2013. ISSN
eISSN: 1307-6892. Disponível em: <https://publications.waset.org/vol/78>.

PIERRO, M. et al. Data-driven upscaling methods for regional photovoltaic power
estimation and forecast using satellite and numerical weather prediction data.
Solar Energy, v. 158, p. 1026–1038, 2017. ISSN 0038-092X. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0038092X17308617>.

PUMPERLA, M. Keras + Hyperopt: A very simple wrapper for convenient
hyperparameter optimization. 2020. <https://github.com/maxpumperla/hyperas>.
Accessed: 2022-04-24.

PVOUTPUT. 2020. <https://pvoutput.org/>. Accessed: 2022-04-24.

ROSSUM, G. van; BOER, J. de. Interactively testing remote servers using the python
programming language. CWI Quarterly, v. 4, n. 4, p. 283–304, dez. 1991.

SAFI, S.; ZEROUAL, A.; HASSANI, M. Prediction of global daily solar radiation
using higher order statistics. Renewable Energy, v. 27, n. 4, p. 647–666, 2002.
ISSN 0960-1481. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0960148101001537>.

Sharma, N. et al. Predicting solar generation from weather forecasts using machine
learning. In: 2011 IEEE International Conference on Smart Grid Communications
(SmartGridComm). [S.l.: s.n.], 2011. p. 528–533.

SON, J. et al. Sensorless pv power forecasting in grid-connected buildings through deep
learning. Sensors, v. 18, p. 2529, 08 2018.

https://www.sciencedirect.com/science/article/pii/S0306261914003249
https://www.mdpi.com/2076-3417/10/2/487
http://www.sciencedirect.com/science/article/pii/S136403211501672X
http://www.sciencedirect.com/science/article/pii/S136403211501672X
https://publications.waset.org/vol/78
https://www.sciencedirect.com/science/article/pii/S0038092X17308617
https://github.com/maxpumperla/hyperas
https://pvoutput.org/
https://www.sciencedirect.com/science/article/pii/S0960148101001537
https://www.sciencedirect.com/science/article/pii/S0960148101001537

51

STANčIN, I.; JOVIć, A. An overview and comparison of free python libraries for data
mining and big data analysis. In: 2019 42nd International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO). [S.l.:
s.n.], 2019. p. 977–982.

TAIGMAN, Y. et al. Deepface: Closing the gap to human-level performance in
face verification. In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition. [S.l.: s.n.], 2014. p. 1701–1708.

WANG, K.; QI, X.; LIU, H. A comparison of day-ahead photovoltaic power forecasting
models based on deep learning neural network. Applied Energy, v. 251, p. 113315,
2019. ISSN 0306-2619. Disponível em: <https://www.sciencedirect.com/science/article/
pii/S0306261919309894>.

WHITE, S. Solar Photovoltaic Basics. Routledge, 2014. Disponível em: <https:
//doi.org/10.4324/9781315770116>.

WORLD Werather Online. 2020. <https://www.worldweatheronline.com/developer/>.
Accessed: 2022-04-24.

https://www.sciencedirect.com/science/article/pii/S0306261919309894
https://www.sciencedirect.com/science/article/pii/S0306261919309894
https://doi.org/10.4324/9781315770116
https://doi.org/10.4324/9781315770116
https://www.worldweatheronline.com/developer/

52

APPENDIX A — APPENDIX

This chapter includes all plots resulting from our approach’s evaluation. Each fig-

ure contains the plot generated for each season and undivided data. Furthermore, all these

plots and the models that produced them are available on our Github page (FRANCO,

2020).

53

A.1 Training Result Plots

A.1.1 Washington DC

Figure A.1: Location A Loss Progression in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

54

Figure A.2: Location A Pediction Erros in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

55

Figure A.3: Location A True x Predicted in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

56

A.1.2 San Francisco

Figure A.4: Location B Loss Progression in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

57

Figure A.5: Location B Pediction Erros in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

58

Figure A.6: Location B True x Predicted in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

59

A.1.3 Milan

Figure A.7: Location C Loss Progression in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

60

Figure A.8: Location C Pediction Erros in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

61

Figure A.9: Location C True x Predicted in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

62

A.1.4 Sydney

Figure A.10: Location D Loss Progression in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

63

Figure A.11: Location D Pediction Erros in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

64

Figure A.12: Location D True x Predicted in different season.

(a) Summer (b) Fall

(c) Winter (d) Spring

(e) Undivided

Source: The Authors

	ACKNOWLEDGEMENTS
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Contents
	1 Introduction
	1.1 Research Questions and Goals
	1.2 Text Organization

	2 Foundations
	2.1 Photovoltaic Systems
	2.2 Python
	2.3 HTTP Requests and APIs
	2.4 NumPy and Pandas
	2.5 Machine Learning
	2.5.1 Neural Networks
	2.5.2 Tensorflow and Keras
	2.5.3 Hyperas

	2.6 Related Works
	2.7 Summary

	3 Distributed Data
	3.1 Data Sources
	3.2 Data Collection
	3.2.1 PV Data Collection
	3.2.2 Weather Data Collection
	3.2.3 Forecasting Data

	3.3 Data Combination and Filtering
	3.4 Data Aspects
	3.4.1 Dataset Features
	3.4.2 Learning Label

	3.5 Summary

	4 Neural Network with Custom Configuration
	4.1 Data Normalization
	4.2 Hyperas
	4.3 Neural Network Training
	4.4 Prediction Features
	4.4.1 Impact Analysis
	4.4.2 Day-ahead Forecasting

	4.5 Summary

	5 Evaluation
	5.1 Neural Network Models Configurations
	5.2 Training Results
	5.3 Prediction Results
	5.3.1 Impact Analyses
	5.3.2 Day-ahead

	5.4 Discussion
	5.5 Next Steps
	5.6 Summary

	6 Conclusion
	References
	Appendix A — Appendix
	A.1 Training Result Plots
	A.1.1 Washington DC
	A.1.2 San Francisco
	A.1.3 Milan
	A.1.4 Sydney

