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Abstract: The southeastern Amazon region has been intensively occupied by human settlements
over the past three decades. To evaluate the effects of human settlements on land-cover and land-use
(LCLU) changes over time in the study site, we evaluated multitemporal Landsat images from the
years 1984, 1994, 2004, 2013 and Sentinel to the year 2017. Then, we defined the LCLU classes, and a
detailed “from-to” change detection approach based on a geographic object-based image analysis
(GEOBIA) was employed to determine the trajectories of the LCLU changes. Three land-cover (forest,
montane savanna and water bodies) and three land-use types (pasturelands, mining and urban areas)
were mapped. The overall accuracies and kappa values of the classification were higher than 0.91
for each of the classified images. Throughout the change detection period, ~47% (19,320 km2) of
the forest was preserved mainly within protected areas, while almost 42% (17,398 km2) of the area
was converted from forests to pasturelands. An intrinsic connection between the increase in mining
activity and the expansion of urban areas also exists. The direct impacts of mining activities were
more significant throughout the montane savanna areas. We concluded that the GEOBIA approach
adopted in this study combines the advantages of quality human interpretation and the capacities of
quantitative computing.
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1. Introduction

Digital image classification of remote sensing data has been intensified over the past few decades
with the advancement of computer science technology, accessibility of satellite-based earth observations
and availability of software to process digital images. Supervised pixel-based classification has been
usually applied for land-cover and land-use multitemporal mapping and change detection [1,2].
In 2000, the first software using the geographic object-based image analysis (GEOBIA) approach
was commercialized [3]. During the last decade, the “per-pixel” classification approach has been
criticized due to its focus on the digital number (i.e., brightness value) of each pixel [3] and its
insufficient exploration of the spatial concepts of neighborhood, proximity and homogeneity [4].
The GEOBIA approach has many advantages over the pixel-based classification. This approach
can remove “salt-and-pepper” effects, and a large set of features (e.g., objects generated from the
spectral, spatial and textural properties of a group of pixels) can be produced as additional information
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to improve image classification accuracy [5]. Primarily, GEOBIA has been able to be applied due
to the advent of very high (spatial)-resolution images that show mainly land-cover and land-use
(LCLU) changes within urban areas [6], forests [7], and agriculture areas [8], where image objects are
digitally constructed from dozens to hundreds of pixels [9,10]. However, the use of GEOBIA has been
increasingly expanded to include moderate-resolution images if a higher hierarchical image-object
level is applied [11–14].

In a global and regional context, the investigation of variations in the LCLU constitute a broad
field in terms of the diversity of remote sensing methods that are available to map and monitor the
different types of human-driven changes in the environments. Although many change detection
techniques have been developed at the per-pixel level, new insights have been obtained from GEOBIA
and hybrid methods centered on “from-to” change trajectories to better qualify and quantify LCLU
change patterns [15].

In the Amazon region, the dynamics of forest conversion to pastureland are well documented
using a per-pixel approach [2], and the findings of these studies are mainly provided in annual
reports on the Satellite Monitoring System of the Brazilian Amazon Forest (PRODES) (www.dpi.inpe.
br/prodesdigital/prodes). Nevertheless, information is lacking regarding the conversion of forests
and montane savanna regions to mining infrastructure, with the exception of a few studies on gold
mining using high-resolution images [16]. Recent publications have demonstrated the influence of
mining projects on the LCLU changes in the Brazilian Amazon from “pixel-to-pixel” approach [17–19].
Furthermore, these LCLU conversions have collaborated to climate and water discharge changes in the
context of river watersheds in the southeastern Amazon [20–22]. In this article, we investigate LCLU
changes in the context of a tropical region, the Itacaiúnas River watershed (IRW) that encompasses
the Carajás Mineral Province (CMP), which is one of the largest mining provinces in the world and is
located in an arc of deforestation caused by large-scale human settlements over the last 30 years in the
southeastern Amazon region (Figure 1). The purposes of this study are the following: (1) to present
a combined object-based classification and manual interpretation methodology for the quantitative
assessment of LCLU changes from a multitemporal Landsat and Sentinel dataset spanning 1984 to
2017; (2) to recognize the spatiotemporal trajectories of LCLU classes based on a “from-to” change
detection approach; and (3) to evaluate the impacts of major human-driven activities on original land
cover. Hence, it will be possible to evaluate LCLU changes from the GEOBIA approach and to better
understand the spatial distribution of the changes in a tropical watershed.

2. Dataset and Methods

2.1. Study Area

The study area is situated in the IRW, which covers an area of approximately 41,300 km2 in the
southeastern area of the Brazilian Amazon region. The IRW has a basin relief marked by the Carajás
Ridge, which reaches an altitude of 900 m [23]. In this region, tropical rainforest and montane savanna
areas dominated the pristine landscape. During the past two decades, a variety of land uses were
established, and pasturelands are predominant in the landscape [20]. By the mid-1970s, the Brazilian
government’s strategy for human settlements in the Amazon had changed. Instead of agricultural
settlements of small farmers, large development projects such as mining projects, hydroelectric dams
and ports for mining exportation were planned and implemented in the Amazon region [24]. One of
the main strategies of the Brazilian government to conserve natural forests in the Amazon region
was the creation of indigenous lands and protected areas (ILPAs) [25], which stretch across an area of
11,700 km2. This is approximately 25% of the study area (Figure 1).
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considered [18]; however, industrial mining is directly responsible for the conversion of restricted 
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driver of LCLU changes in the IRW was associated with the opening of a rudimentary road network 
associated with settlements and cattle ranching that facilitated inland timber exploitation in the 
southeastern Amazon region [26–28]. From 1973 to 2013, 50% of the tropical rainforest in the IRW 
(approximately 20,000 km2) was converted to pasturelands [20]. Although cattle ranching remains 
the dominant form of land use in the Amazon region, large-scale commercial agriculture, such as 
soybean croplands, have fundamentally changed the landscape in the southeastern Amazon [29,30]. 
However, in the IRW, large-scale commercial agriculture is still incipient. In the Amazon region, 
deforestation occurred primarily on larger properties (higher than 500 ha) dominated by large and 
very large landholders, whose properties were more concentrated in older areas that had better 
infrastructure, such as roads, and thus, they were connected to markets [31]. 

Studies on approximately three decades of deforestation in the Amazon demonstrated that 
LCLU changes have affected the regional hydroclimate [20,32], specifically in the southeastern area 
of the Amazon, whose geographical position is in climatological (i.e., a tropical zone without a dry 
season or monsoon) and ecological (i.e., consisting of tropical rainforest and Brazilian savanna) 
transition zones that have facilitated LCLU changes [20]. At the time of the study, the climate was 
characterized by monsoons [33], where the average seasonal precipitation was ~1600 mm and 100 
mm, distributed in the well-defined wet (November to May) and dry (June to October) seasons, 
respectively, with mean temperatures ranging from 26 and 28 °C, respectively [34]. 

Figure 1. Map of the study area on the 2013 LCLU map generated from an interpretation of Landsat-8
OLI mosaic images. IL = indigenous lands; EPA = environmental protected areas.

Mining activity expanded mainly in the context of the Carajás mining projects, which started
in the early 1980s. The role of mining activity in the process of clearing forests has been widely
considered [18]; however, industrial mining is directly responsible for the conversion of restricted areas
covered by forest or mountain savannas in the mining areas [19]. On the other hand, the main driver of
LCLU changes in the IRW was associated with the opening of a rudimentary road network associated
with settlements and cattle ranching that facilitated inland timber exploitation in the southeastern
Amazon region [26–28]. From 1973 to 2013, 50% of the tropical rainforest in the IRW (approximately
20,000 km2) was converted to pasturelands [20]. Although cattle ranching remains the dominant form
of land use in the Amazon region, large-scale commercial agriculture, such as soybean croplands,
have fundamentally changed the landscape in the southeastern Amazon [29,30]. However, in the IRW,
large-scale commercial agriculture is still incipient. In the Amazon region, deforestation occurred
primarily on larger properties (higher than 500 ha) dominated by large and very large landholders,
whose properties were more concentrated in older areas that had better infrastructure, such as roads,
and thus, they were connected to markets [31].

Studies on approximately three decades of deforestation in the Amazon demonstrated that LCLU
changes have affected the regional hydroclimate [20,32], specifically in the southeastern area of the
Amazon, whose geographical position is in climatological (i.e., a tropical zone without a dry season or
monsoon) and ecological (i.e., consisting of tropical rainforest and Brazilian savanna) transition zones
that have facilitated LCLU changes [20]. At the time of the study, the climate was characterized by
monsoons [33], where the average seasonal precipitation was ~1600 mm and 100 mm, distributed in
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the well-defined wet (November to May) and dry (June to October) seasons, respectively, with mean
temperatures ranging from 26 and 28 ◦C, respectively [34].

2.2. Remote Sensing Dataset and Field Data Collection

In this study, four mosaics containing five images were constructed from 1984, 1994 and 2004
Landsat-5 TM images and 2013 Landsat-8 OLI images. One mosaic of the 2017 Sentinel 2A satellite
was composed of twelve images. The images were acquired during the dry season (from May to
September) due to minimal cloud coverage (less than 10%). Table S1 provides general information
about satellite images used in this study that were downloaded from the United States Geological
Survey Earth-Explorer website (http://earthexplorer.usgs.gov). All the images were acquired in the
Level 1 Terrain (L1T) format and were orthorectified onto the Universal Transverse Mercator (UTM)
cartographic projection, in the WGS84 datum [35]. Fieldwork was carried out between April-May 2014
and August-September 2017 to recognize the LCLU classes using panoramic digital photographs and
ground control points (GCPs), which were acquired using a differential global position system with a
decimeter-level accuracy for reliable real-time positioning. Along approximately 2400 km of roads
in the study site, 2200 GCPs were collected to validate the 2013 Landsat-8 OLI mosaic classification
(Figure 1). Training and validation samples were defined per class based on the GCPs (Figure 2).
These data were complemented by Google Earth Pro online high-resolution imagery. Despite the up to
30 year difference between the images and field data acquisition, all georeferenced field descriptions
and photographs obtained in the field in 2014 and 2017 matched the previous LCLU classes observed
in the 1984, 1994 and 2004 Landsat 5 mosaics.

During the processes of visual image analysis and fieldwork data collection, patterns and patches
were identified in the landscape using color composite mosaic images. Hence, three land-cover
(i.e., forests, montane savannas and water bodies) and three land-use classes (i.e., pasturelands, mining
and urban areas) were identified based on Di Gregorio [36], Ellis [37], and Junk [38]. A brief description
of each class identified in this study is presented in Figure 2.
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2.3. Digital Image Processing

Each digital number (DN) of 1984, 1994, and 2004 Landsat-5, 2013 Landsat-8 and 2017 Sentinel-2A
mosaics were converted to ground reflectance (GR). Conversions from DN to GR were carried out
in the Atmospheric Correction (ATCOR) module of the software PCI Geomatica 2016 [39]. For each
Landsat and Sentinel mosaic date, we derived the normalized difference vegetation index (NDVI)
to identify vegetated areas with exposed soils [40]. We also used the Landsat-8 6/4 band ratio and
the Landsat-5 5/3 band ratio, which represent the ratio between the long and short wavelengths, to
identify iron ore deposits [41]. NDVI and band ratios were used only during the classification process
after image mosaic segmentation. Subsequently, we generated mosaics of Landsat and Sentinel images
that were 30 m and 10 m in pixel size respectively, to quantify human-driven changes throughout
the IRW.

2.4. Geographic Object-Based Image Analysis (GEOBIA)

2.4.1. Segmentation

The segmentation process includes three user-defined parameters: (i) the spectral parameter wsp,
trading spectral homogeneity versus object shape, is included in order to obtain spectrally homogenous
objects; (ii) the compactness parameter wcp, trading compactness versus smoothness, adjusts the object
shape between compact objects and smooth boundaries, and (iii) the scale parameter hsc, which
corresponds to the threshold of heterogeneity, controlling the object size has been selected in order
that the minimum object size match to the Minimum Mapping Unit (MMU), i.e., the smallest size area
entity to be mapped as a discrete area [42].

A multiresolution segmentation algorithm was conducted for the band 2 (B2), B3, B4, B5, B6, B7
and B8 GR reflectance bands of the Landsat-8 OLI images using weights of 5, 15, 15, 10, 15, 15 and 15,
respectively. The segmentation procedure was also applied to band 2 (B2), B3, B4, B5, B7, and B5/B3
GR bands of the Landsat-5 TM images using weights of 15, 15, 10, 15, 15 and 5, respectively. The same
segmentation process was applied to band 2 (B02), B03, B04 and B08 GR bands of the Sentinel-2A
mosaic using weight of 1 to all bands. Different weights were chosen to Landsat bands from a trial and
error (heuristics) approach to attempt to enhance specific objects that were effectively differentiated in
predetermined spectral bands [43]. Since we were unsure of the relationships between the spectrum
versus the shape and between the compactness versus the smoothness, the shape parameters (wsp) and
compactness (wcp) were both set equal to 0.5 [11].

In relation to the definition of the scale parameter (hsc), several unsupervised and supervised
methods exist to define the optimal scale parameter [44,45]. However, for many authors, the
selection of appropriate scale parameter settings has been heavily dependent upon trial and error
exploration, which is iterative and time-consuming [46–48], due to the lack of an obvious mathematical
relationship between the scale parameter and the success of the segmentation [44]. In this study, hsc

was progressively increased and set at 50 in the Landsat-8 OLI and Landsat-5 TM multispectral bands
and 10 in the Sentinel-2A. The high hsc allowed more heterogeneity and resulted in larger segments [48]
that were more adequate to delineate forest and pastureland areas. Hence, each segment in the Landsat
mosaics presented a minimum object size (equal to the minimum mapping unit (MMU) of 25,000 m2

or approximately 28 pixels, while in the Sentinel-2A mosaic presented an MMU of 5000 m2 or 50 pixels.
Thus, the variation in the size of the segments in both images should be minimal. It is important to
mention that “from-to” change analysis was carried out only after the merging classification process.
Thus, the size of the original segments does not have much influence on this change detection approach.

2.4.2. Multiresolution Classification

We used membership functions to define the relationship between feature values and the degree of
membership to a class using fuzzy logic. This allowed integrating various features in the description of
classes by logical operators. During the automatic classification process, we adopted the membership
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functions to describe specific properties of the objects. The selection of features was assisted by
an analysis of separability of the comparable classes (Sample Editor, Image Object Information
and Feature View Tools of eCognition Developer 9). Each class was classified separately in the
domain of image object level, using the class filter “unclassified”. The classification algorithm
was used to delimitate the LCLU classes from a combined manual interpretation and automatic
classification synergy from GEOBIA. We observed spectral similarities among the mining, bare soil,
and urban classes. Furthermore, since the montane savanna class and the mining and urban areas were
represented by a small number of segments, we decided to manually edit the thematic vector objects
(mining, urban and montane savanna classes). In essence, this technique combines the advantages of
semiautomated fine-level object generation and classification with visual human interpretation [49].
Then, a set of rules was established to automatically classify objects associated with black water
bodies, whitewater bodies, bare soil, pasture/croplands, and forest. Posteriorly, black-white water
bodies and bare soil-pasture/croplands were grouped through merge region algorithm in two large
classes: water bodies and pasturelands. Each class was classified from a simple membership function
(e.g., Gaussian—∩, larger than—

∫
, full range—Π), which played a role of thresholds in different

spectral bands. Table 1 summarizes the main steps used during the GEOBIA analysis referenced as
process tree, the different child process carried out associated to the recognition of different classes,
the algorithm used during the multi-resolution segmentation, and the membership function with
their intervals.

The selection of features was supported by a separability analysis of the comparable classes.
Each class was classified separately on an image-object level, using the class filter “unclassified”,
according to the following order: (1) mining, urban and montane savanna classes (manual
editing), (2) blackwater bodies, (3) white-water bodies, (4) bare soil, (5) pasture/croplands, and
(6) forests (automated classification). Subsequently, black- and white-water bodies and bare soil and
pasture/croplands were grouped using an algorithm to merge the regions into two large classes:
water bodies and pasturelands, respectively. An overview of the steps of the GEOBIA is illustrated
in Figure 3.

2.4.3. Classification Accuracy Assessment of the LCLU Classes

An object-based accuracy assessment is different from a pixel-based validation due to the sampling
unit, i.e., objects vs. pixels [50]. However, a generally accepted approach is that classified polygons
can be validated by GCPs [51]. To perform the classification accuracy assessment, we used 1060 and
2100 GCPs over 2013 Landsat-8 OLI and 2017 Sentinel-2A mosaics, respectively. As older GCPs and
thematic maps were unavailable through 2004, 1994 and 1984 Landsat-5 TM mosaics, 512 validation
points were randomly stratified per class in each mosaic using PCI Geomatica 2016 software [39].
The number of training and validation points per class used in each multitemporal image is presented
in Figure 2. Hence, an accuracy assessment of the multitemporal Landsat image classification was
conducted using nonnormalized and normalized confusion matrices [52]. The producer and user
accuracies [53], kappa per class, kappa index of agreement and overall accuracy [51] as well as the
quantity disagreement (QD) and allocation disagreement (AD) indexes [54] were calculated for each
multitemporal mosaic.
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Table 1. The process tree, child processes, algorithms, and membership functions used in the LCLU classification following the GEOBIA approach.

Process Tree Child Processes Algorithm Membership Functions with Their Intervals

OLI Bands TM Bands Sentinel 2A

1. Segmentation Multiresolution
segmentation

hsc = 50
wsp = 0.5
wcp = 0.5

hsc = 50
wsp = 0.5
wcp = 0.5

hsc = 10
wsp = 0.5
wcp = 0.5

2. Classification

(2.1) Classify
black-water bodies

Classification, filter
unclassified
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 B1: 4.8–10.6  B2: 5.1–11.3  NDVI: −0.9–0.5 
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 B5: 4.1–22.2  B4: 4.2–24.4   

   B5: 0.8–14.9   
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filter 
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     B04: 0–6 

B4: 27.6–48.1
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Figure 3. Empirical GEOBIA workflow that illustrates the principles of the segmentation procedure:
(a) remote sensing data set analysis, (b) multiresolution segmentation, (c) manual image object editing,
(d) classification process based on segmentation, (e) image classification per class, and (f) merging and
quantifying the classifications, which incorporates GIS concepts.

2.4.4. Object-Based Change Detection Analysis

The object-based change detection analysis was performed on the 1984, 1994, 2004 Landsat-5
TM, 2013 Landsat-8 OLI and 2017 Sentinel-2A mosaics. The change detection analysis revealed and
quantified either the expansion-contraction or lack of change (no change) of specific classes relative
to one another to understand their spatiotemporal dynamics. More specifically, a detailed LCLU
“from-to” change detection approach [15] was used to recognize the trajectories of the LCLU classes
based on an object-based change detection analysis from 1984–1994, 1994–2004, 2004–2013, 2013–2017
and 1984–2017.

We identified five unchanged classes (forests, montane savannas, pasturelands, and urban and
mining areas) and the six main possible change trajectories related to the “from-to” conversions
of forests-pastureland, forests-mining areas, forests-urban areas, montane savanna-mining areas,
pastureland-forests, and pastureland-urban area. To apply the object-based change detection analysis,
we used a hierarchical biannual image object approach.
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3. Results

3.1. Overall Classification and Accuracy Assessment of Multitemporal LCLU Maps

A multiresolution classification based on the synergistic combination of manual interpretation and
automatic classification with a GEOBIA approach effectively classified the Landsat and Sentinel-2A
images into six LCLU classes. Figure 4 shows the LCLU classes distributed throughout the study
site during the years 1984, 1994, 2004, 2013 and 2017, with the largest proportion of primary forests
occurring in 1984 and its progressive conversion to pastureland occurring by 2017. The overall
accuracies of all the classified mosaics are higher than 94%, while the kappa indexes are higher than
0.91, and the AD and QD are lower than 3.5 and 2.0, respectively (Tables S2 and S3). In general, the
kappa index per class is higher than 0.8, except for the mining class in 1984 (Figure 5a). Therefore, the
overall disagreement is very low. On average, the AD is higher (1.4%) than the QD (0.9%), which is
higher only for forest areas in 2004 and 2013, mountain savanna areas in 1994, mining areas in 1984
and 1994, and water each year (Figure 5b). User and producer’s accuracy is higher than 80%, except
for the mining class in 1984 (Figure 5c,d).
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Figure 4. (Left) Classified Landsat images showing temporal and spatial variations in LCLU in the
IRW for the years 1984 (a), 1994 (b), 2004 (c), 2013 (d), and 2017 (e) (modified from [20]). (Center)
A specific site in the IRW illustrated from color composite Landsat images. (Right) Maps generated
from GEOBIA.
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Figure 5. Kappa index (a), allocation and quantity disagreements (b), user (c) and producer’s
(d) accuracy per class for 1984, 1994, 2004, 2013 and 2017mosaic images in the IRW.

3.2. Analysis of Multitemporal LCLU Changes

The classification results showed that forests occupied most of the study site in 1984 but decreased
rapidly in 1994 and 2004. In contrast, pasturelands increased rapidly during the same period and
occupied the largest extent of the IRW in 2017. From 1984 to 2017, forest areas were progressively
restricted to within ILPAs, while pasturelands were expanded into other areas of the watershed.
We can confirm that only a small area of forests was used for pasturelands in 1984 (4.154 km2, which
corresponds to 10% of the total studied watershed). However, pasturelands occupied approximately
28%, 46%, 50.2% and 50.6% of the entire watershed in 1994, 2004, 2013 and 2017, respectively.
Pasturelands currently correspond to approximately 20,900 km2. Overall, 20,870 km2 of forests
have been cleared, mostly due to the expansion of pasturelands. The evolution of the total area of each
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LCLU class during the studied period is presented in Figure 6. In general, in the ILPAs, the land cover
remained almost untouchable in comparison to non-protected areas.
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The montane savannas were less affected by land-use dynamics and occupied an area of almost
~116 km2 in 1984. This area was reduced to 103 km2 in 2017, corresponding to a decrease of 11%.
Mining activity expanded mainly in the context of the Carajás mining projects, which started in the
early 1980s [55]. We observed a simultaneous increase in urban area from 117 km2 in 1984 to 187 km2

in 2017, with more accelerated urban expansion in the past decade.

3.3. LCLU “from-to” Change Detection Analysis

The analysis of the LCLU datasets described above provides an overall dynamic view of the
LCLU changes. However, this analysis did not reveal the change trajectories from one LCLU class to
another class type. The LCLU areas and the detailed percentages of their unchanged and “from-to”
variations among different LCLU classes can be observed in Table 2.

Table 2. Summary of LCLU class change trajectories from the object-based approach between 1984–1994,
1994–2004, 2004–2013, 2013–2017 and 1984–2017.

LCLU Change Class
1984–1994 1994–2004 2004–2013 2013–2017 1984–2017

Area
(km2) % Area

(km2) % Area
(km2) % Area

(km2) % Area
(km2) %

Forest—Mine 26.33 0.07 24.89 0.06 36.44 0.09 22.94 0.06 111.38 0.27
Forest—Pasture 7924.76 19.81 7956.45 20.02 3006.22 7.54 1632.03 3.97 17,397.93 42.23
Forest—Urban 7.18 0.02 4.22 0.01 8.96 0.02 1.97 0.00 91.49 0.22

Pasture—Forest 652.10 1.63 722.59 1.82 1387.83 3.48 1432.81 3.48 555.06 1.35
Pasture—Urban 12.26 0.03 0.00 0.00 75.15 0.19 55.99 0.14 82.18 0.20
Savanna—Mine 3.88 0.01 5.60 0.01 4.86 0.01 11.72 0.03 22.66 0.06

Unchanged Forest 28,178.47 70.44 20,462.89 51.50 18,070.91 45.30 18,392.93 44.73 19,319.24 46.89
Unchanged Mining 13.59 0.03 34.01 0.09 54.89 0.14 117.19 0.28 20.86 0.05

Unchanged Savanna 102.26 0.26 99.32 0.25 94.24 0.24 86.04 0.21 82.44 0.20
Unchanged Pasture 3073.03 7.68 10,398.94 26.17 17,102.48 42.87 19,227.57 46.76 3502.21 8.50
Unchanged Urban 11.31 0.03 27.42 0.07 51.00 0.13 138.21 0.34 13.54 0.03

The LCLU change detection analysis between 1984 and 1994 indicates that unchanged forest was
the largest class with almost 28,178 km2 (70% of the study area). Approximately 7925 km2 of forest
in 1984 was converted to pasturelands in 1994, while 26 km2 and 7 km2 of forests were converted to
mining and urban areas, respectively. Unchanged pastureland encompassed ~3100 km2, and secondary
forests increased by 652 km2. Approximately 4 km2 of montane savanna was converted to mining areas
(Table 2). In the subsequent decade, between 1994 and 2004, the unchanged forest class represented
approximately 20,463 km2, while unchanged pastureland covered 10,400 km2. The conversions from
forest to pastureland and from forest to mining areas in this period were similar to those observed
in the preceding evaluation period. However, the changes from montane savanna to mining areas
were 5.6 km2, which is significantly larger than that during the period 1984–1994. Approximately
723 km2 of pasturelands were converted to forests. The change detection analysis between 2004 and
2013 and 2013 to 2017 was marked by an accentuated decrease in LCLU changes, with unchanged
forests and unchanged pasturelands occupying areas of approximately 18,000 km2. The conversion
from forest to pastureland was halved in that time, while forest recovery from pasturelands reached its
maximum intensity (1400 km2). This finding indicates a clear tendency of stabilization of the LCLU
changes in the watershed in the last decade. Throughout the period of change detection (1984–2017),
we observed that 47% of the area was still covered by forests and patches of forests. Almost 42% of the
LCLU changes were associated with the conversion from forests to pasturelands (~17,400 km2), while
3.505 km2 remained as unchanged pasturelands. Figure 7 illustrates the unchanged LCLU classes and
the “from-to” change detection classes based on a bi-temporal mosaic image analysis.
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The “from-to” change detection analysis revealed that forests were converted mainly into
pasturelands, with annual rates greater than 720 km2 per year from 1984 to 1994 and from 1994
to 2004. However, from 2004 to 2013 and from 2013 to 2017, the conversion rate decreased to 300
and 326 km2 per year, respectively, as well as an increase in the regrowth of forest-like vegetation
(secondary forest) in the pasturelands occurred (Figure 8a). Furthermore, a clearly increasing trend
in the conversion of forests to mining areas and savanna to mine areas was observed (Figure 8b).
The conversion of pastureland into forest-like vegetation was only detectable due to the “from-to”
changes detection approach.
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4. Discussion

4.1. Issues of Accuracy for Multitemporal LCLU Classes

The accuracies yielded for the four decadal image classifications were highly satisfactory (Figure 5,
Tables S2 and S3), but some considerations regarding the number and spatial distribution of the
validation points are important. The collection of validation points in the field for the more recent
images was constrained by accessibility, so that their spatial distributions may be not ideal statistically
(e.g., randomly distributed). Consequently, it is likely that some points will carry the effect of spatial
autocorrelation, resulting in the measured agreement being higher [56]. However, the accuracy was
similar to that of the other three scenarios providing some confidence that this was not significant since
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their sampling schema was different based on stratified map units and visual recognition. Moreover,
this result suggests that the validation strategy was consistent throughout the series of the LULC maps.

Another consideration is that the overall accuracy and kappa index [57] were intended to
measure the degree of agreement with the validation points, with no information about the
nature of disagreements. For this purpose, AD and QD provided measures of discordance due
to the imperfect spatial allocation of class polygons and due to the incorrect extent of classes,
respectively [54]. Allocation disagreement is important to change detection as spatial mismatches
during map comparisons may result with the detection of false transitions. Quantity disagreement,
on the other hand, is important when the aim is to compute areal differences in classes among maps.
In this study, AD was approximately 1.5 times greater than the quantity most of the time, indicating
that the area of the classes tended to be more accurate for this purpose. However, the change detection
between different years tended to be less reliable than the computed areas; however, as both measures
were never low, none of the results were expected to be significantly affected.

Nevertheless, additional information about specific classes can be obtained from the confusion
matrices (Tables S2 and S3). Producer accuracy and omission error, for example, show how well
the validation points were classified in the maps of LCLU [52,58]. The producer accuracies were
relatively close in value and uniform for all classes in all mosaics, in general above 90%, and thus, the
omission errors were correspondingly low. The user accuracy and commission error show how “pure”
a class tends to be and the proportion of different classes that have been assigned to it, respectively [58].
These measures presented higher variation between classes and between years, meaning that sometimes
certain classes included major proportions of other classes, which was more noticeable for classes with
small occurrences. Mining, for example, presented the lowest user accuracy in three of the four decadal
images (1984, 1994 and 2013), with corresponding higher commission errors. Therefore, changes related
to small classes probably were overestimated.

4.2. LCLU Assessment Using Time Series Satellite Images and GEOBIA

The high classification accuracies of the satellite images were due to a combination of the ability
of visual human interpretation to recognize and define specific classes (e.g., mining and urban areas)
with those of an automated fine-level object classification (e.g., forest, bare soil, pastureland-cropland
and water bodies).

4.3. LCLU “from-to” Change Detection Approach

The object-based change detection approach for unchanged and “from-to” variations in the LCLU
showed that approximately 50% of the forests remained, while the other 50% was converted into
pasturelands. Figure 9a shows the strong negative correlation between forests versus pasturelands
throughout the past four decades, which suggests that the incremental growth in pastureland is
directly related to deforestation processes. Throughout the whole Amazon region, the Amazon arc
of deforestation has had the highest rates of deforestation [59] since the opening of roads in the
beginning of the 1970s, which allowed the establishment of new rural settlements and the expansion
of pasturelands [26,27]. In addition, deforestation occurred preferentially on larger properties with
>500 ha dominated by large and very large landholders, whose properties were more concentrated
in older areas that had better infrastructure, such as roads, and thus were connected to markets [31].
The scars of the initial forest exploration efforts can be observed in the 1984 classified mosaic images;
those scars expanded gradually along the roads over the subsequent decades (Figure 4). A clear spatial
relationship between this expansion and the location of major roads, such as PA-275, PA-279 and
PA-150, existed (Figure 1). Hence, one of the greatest environmental impacts associated with the
conversion of forests to pasturelands over the past 30 years was related to pronounced climatic and
hydrological changes, which were responsible for decreases in relative humidity and increases in air
temperatures and water river discharges [20].
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Mining activity typically contributes substantially to deforestation [60]. However, the findings
demonstrate that the mining area represents less than 0.3% of the deforested area in the context of
the IRW. Hence, we can conclude that the role of mining activities in deforestation processes was
slight. Moreover, collaboration between the governmental agencies responsible for environmental
management and mining companies was recognized as essential to ensuring forest preservation
in protected areas [61]. At the same time, the expansion of mining areas was only significant in
the montane savannas, 20% of which were converted into mining areas by 2017. A high negative
correlation between montane savanna versus mining and montane savanna versus forest areas has been
found since the expansion of mining areas has been focused to the savannas and forests (Figure 9b,c).
This correlation was not inclusive because the largest expansion of the mining areas originated from
forests (Table 2). To explain the low conversion rate of pristine land-cover types into mining areas, we
noted that mining activities are subjected to strict environmental rules and are strongly controlled
by government agencies. In addition, a large part of this conversion occurred within protected areas,
which reinforces the need for constraints on mining exploration. These results represent the first
estimates of land-cover conversion to mining areas within the CMP, largest mining province of the
Brazilian Amazon region. Previous studies have evaluated only the impact of gold mining in the
Madre de Dios region of the Peruvian Amazon [16]. In that area, LCLU changes have been recorded
by high-spatial-resolution satellite images, and the ecosystem destruction related to gold extraction
has been estimated as the loss of approximately 19 km2 of forests per year from 2006 to 2009. This rate
of deforestation was much more intense than that observed in the CMP, where the maximum annual
deforestation rates reached 4.6 km2 per year over the past five years. Therefore, mining projects were
responsible for only a small proportion of direct land-use changes in the study site. In other words,
mining activities in the CMP can be considered more sustainable to miners, communities, customers
and the environment, when compared with other mining sites in South America [62].

Urban expansion occurred principally within pasturelands, whose area stabilized from 2013
(Figure 6, pasture), while urban area is still increasing (Figure 6, urban; Figure 9d). The increased
annual rates of urban growth showed behavior similar to that of mining activity in that both showed a
high positive correlation (Figure 9e). The annual rate of mining expansion during the 1980s increased
more rapidly than that of urban expansion. We can explain the expansion of mining in the first two
decades as a consequence of the development and implementation of the Carajás Mineral Program
from 1979 to 1990 [24]. As a result of the development and expansion of the Carajás polymetallic ore
mining complex, during the last decade, employment pressure for the large projects has gradually
increased, promoting the growth of small villages at the foot of the ridge and inducing a rapid and
uncontrolled expansion of urban areas [63].

5. Conclusions

The methodological approach used in this study combined the advantages of visual human
interpretation of segmented images to identify and define specific classes (e.g., mining and
urban areas) with those of an automated fine-level object classification (e.g., for forest, bare soil,
pastureland-cropland and water bodies). Moreover, we observed that forests were converted primarily
into pasturelands and that urban areas have been expanded due to the establishment of different
human-related activities.

We conclude that the synergistic combination of manual interpretation (the aggregation and
discrimination of fine-level objects at a high contrast in association with urban, mining and
montane savanna classes) with automatic classification (for coarse-level objects related to forests
and pasturelands) is more effective when there is a need to avoid misclassification of objects with
similar features. This approach combines the advantages of quality human interpretation with the
capacities of quantitative computing. Therefore, this study is useful for not only practitioners working
across tropical regions but also those who investigate large-scale LULC changes and those interested
in using remote sensing data for conservation tasks.
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45. Drăguţ, L.; Tiede, D.; Levick, S.R. Esp: A tool to estimate scale parameter for multiresolution image
segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [CrossRef]

46. Kavzoglu, T.; Erdemir, M.Y.; Tonbul, H. A region-based multi-scale approach for object-based image analysis.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 241–247. [CrossRef]

47. Lowe, S.H.; Guo, X. Detecting an optimal scale parameter in object-oriented classification. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2011, 4, 890–895. [CrossRef]

48. Mesner, N.; Ostir, K. Investigating the impact of spatial and spectral resolution of satellite images on
segmentation quality. APPRES 2014, 8, 1–14. [CrossRef]

49. Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented
fuzzy analysis of remote sensing data for gis-ready information. ISPRS J. Photogramm. Remote Sens. 2004,
58, 239–258. [CrossRef]

50. Radoux, J.; Bogaert, P.; Fasbender, D.; Defourny, P. Thematic accuracy assessment of geographic object-based
image classification. Int. J. Geogr. Inf. Sci. 2011, 25, 895–911. [CrossRef]

51. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.;
CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009; p. 183.

52. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ.
1991, 37, 35–46. [CrossRef]

53. Story, M.; Congalton, R. Accuracy assessment—A user’s perspective. Photogramm. Eng. Remote Sens. 1986,
52, 397–399.

54. Pontius, R.G.; Millones, M. Death to kappa: Birth of quantity disagreement and allocation disagreement for
accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [CrossRef]

55. Sa, P.; Marques, I. The carajas iron ore project: The strategy of a third world state- owned enterprise in a
depressed market. Resour. Policy 1985, 11, 245–256.

56. Guiot, J.; de Vernal, A. Is spatial autocorrelation introducing biases in the apparent accuracy of paleoclimatic
reconstructions? Quat. Sci. Rev. 2011, 30, 1965–1972. [CrossRef]

57. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, XX, 37–46. [CrossRef]
58. Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201.

[CrossRef]
59. Fearnside, P.M. Deforestation in brazilian amazonia: History, rates, and consequences deforestación en la

amazonía brasileña: Historia, tasas y consecuencias. Conserv. Boil. 2005, 19, 680–688. [CrossRef]
60. Ferreira, J.; Aragão, L.E.O.C.; Barlow, J.; Barreto, P.; Berenguer, E.; Bustamante, M.; Gardner, T.A.; Lees, A.C.;

Lima, A.; Louzada, J.; et al. Brazil’s environmental leadership at risk: Mining and dams threaten protected
areas. Science 2014, 346, 706–707. [CrossRef] [PubMed]



Remote Sens. 2018, 10, 1683 22 of 22

61. Martins, F.D.; Mendonça, M.V. Floresta nacional de carajás: Compatibilizando a mineração com a
preservação. In A Diversidade Cabe Na Unidade?: Áreas Protegidas Do Brasil; Bensusan, N., Prates, A.P., Eds.;
IEB: Brasília, Brazil, 2014; pp. 580–591.

62. Souza-Filho, P.W.M.; Gianninia, T.C.; Jaffé, R.; Furtini Neto, A.E.; Gastauer, M.; Oliveiraa, G.; Mota, J.A.;
Guimarães, J.T.F.; De Souza, E.B.; Imperatriz-Fonseca, V.L.; et al. Understanding sustainable development in
mining based on science oriented approach: A study case in the carajás mineral province, amazon region,
brazil. Resour. Policy 2018. in review.

63. Roberts, J.T. Squatters and urban growth in amazonia. Geogr. Rev. 1992, 82, 441–457. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


