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Pesquisadores da Universidade Federal do Rio Grande do Sul (UFRGS) desenvolvem 
um estudo de pontos multicriticos  em transições de fases presentes em compostos 
de urânio.

Porto Alegre, 2 de junio 2022: O grupo teórico de eléctrons correlacionados (CEG: 
Correlated electrons group) da UFRGS, liderado pelo Prof. Sérgio G. Magalhães, tem 
desenvolvidos um novo enfoque no estudo de pontos multicríticos  presentes em compostos de
Urânio. A idéia geral se concentra no fato de que os pontos multicríticos podem fornecer 
informações cruciais sobre a natureza das fases convencionais e não convencionais 
encontradas neste tipo de compostos.  O Prof. Sergio G. Magalhães, do Instituto de Física da 
UFRGS juntamente com o Prof. Peter Riseborough da Temple University, EUA, propuseram 
desde 2012 um modelo teórico, chamado Underscreneed Anderson Lattice Model -em inglês- 
para descrever a física presente nos compostos de urânio, especificamente no URu2Si2. Ao 
longo dos anos, eles encontraram resultados muito interessantes, tais como fases magnéticas 
bem definidas e um tipo de fase exótica, que é um forte candidato à descrição da Hidden 
Order presente no URu2Si2, um problema ainda em discussão desde os anos 80. Atualmente, o
modelo proposto tem servido como fonte de inspiração para o estudo do surgimento de pontos
multicríticos entre diferentes fases encontradas nos átomos de urânio, sob os efeitos da 
pressão externa e/ou campos magnéticos, e foi proposto que o tipo de ponto crítico pode 
fornecer informações relevantes sobre a natureza física de cada uma das fases envolvidas, 
como o comportamento da estrutura eletrônica, até as simetrias presentes nesses compostos. 
Este tipo de abordagem de pontos multicríticos poderia dar uma imagem mais clara das 
características de cada fase, sem a necessidade de um estudo individual de cada uma delas e, 
desta forma, incentivar o papel que certos pontos críticos desempenham nas características 
físicas de cada uma das fases presentes.  Estes novos resultados podem ser encontrados nas 
revistas: Physica Review B, Journal of Physics: Condenser Matter e Journal of Magnetism and 
Magnetic Materials.

Fig. 1: Diagrama de fase de T (temperatura) versus W (pressão). AF1 e AF2 correspondem a 
duas fases antiferromagnéticas, PM é uma fase paramagnética e IOSDW é uma fase exótica 
não magnética. BCP1 e BCP2 são dois pontos bicríticos, TCP é um ponto tricrítico. Fonte: J. 
Phys.: Condensed Matter, 33 295801 (2021).

Autor: Julián Faúndez, Doutorando em Física na Universidade Federal do Rio Grande do Sul 
(UFRGS).
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Abstract

Universidade Federal do Rio Grande do Sul
Instituto de Física

Doctor of Natural Sciences

Multicritical points in a model for 5f-electron systems under pressure
and magnetic field
by Julián FAÚNDEZ

We investigate the evolution of multicritical points under pressure and magnetic field
in a model described by two 5f -bands (labeled as α and β) that hybridize with a single
itinerant conduction band. This model is called Underscreened Anderson Lattice Model
(UALM). The interaction is given by Coulomb and the Hund’s rule exchange terms, U and
J , respectively. We have three cases of study: i) two conventional Spin Density Waves
(SDWs) where the magnetic field is applied longitudinally to x-axis for cubic lattice, ii)
two conventional SDWs for both cubic and tetragonal lattices when the magnetic field is
applied in z-axis and iii) two conventional SDWs and one exotic SDW for cubic lattice
when the magnetic field is applied in z-axis. The conventional SDWs, are characterized
by AF1 (mβ

f > mα
f > 0) and AF2 (mα

f > mβ
f > 0). The exotic SDW or Inter-Orbital

Spin Density Wave (IOSDW) is related to a band mixing given by the spin-flip part of
the Hund’s rule exchange interaction. As result, without magnetic field, in the cases i)
and ii) the phase diagrams of temperature (T ) versus pressure (given by the variation of
the bandwidth (W )) shows a first-order phase transition between AF1 and AF2 and for
the case iii) show a sequence of first-order phase transitions involving the three phases,
AF1, IOSDW and AF2. The application of Γf (magnetic field in x-axis) in the case i)
produce the separation of phases AF1 and AF2, acquiring a dome shape that is eventually
suppressed for large values of the applied field. For the case ii) we found that Hz (magnetic
field in z-axis) favours the phase AF2 while the phase AF1 is suppressed and specifically
in the tetragonal lattice, the phase AF2 is even more favored when Hz and c/a increases
continuously. For the case iii) the presence of hz (magnetic field in z-axis) has drastic effects
on part of the phase diagram and the location of the multicritical points. We propose that
the study of multicritical points can provide relevant information on the conventional and
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unconventional phases present in uranium compounds.

Keywork: Multicritical points, 5f -electron systems, conventional SDWs and
exotic SDW.



Resumo

Universidade Federal do Rio Grande do Sul
Instituto de Física

Doutorado em Ciências Naturais

Pontos multicríticos em um modelo para sistemas de elétrons 5f sob
pressão e campo magnético

por Julián FAÚNDEZ

Investigamos a evolução de pontos multicríticos sob pressão e campo magnético em um

modelo descrito por duas bandas 5f (chamadas α e β) que se hibridizam com uma única

banda de condução itinerante. Este modelo chama-se Underscreened Anderson Lattice

Model (UALM). A interacção é dada pelos termos de Coulomb e pelo termo de troca da

regra de hund, U e J , respectivamente. Temos três casos de estudo: i) duas Spin Denisty

Wave (SDWs) convencionais onde o campo magnético é aplicado longitudinalmente ao eixo

x em uma rede cúbica, ii) duas SDWs convencionais para as redes cúbica e tetragonal,

quando o campo magnético é aplicado no eixo z e iii) duas SDWs convencionais e um

SDW exótico em uma rede cúbica quando o campo magnético é aplicado ao longo do eixo

z. As fases convencionais SDWs, são caracterizadas por AF1 (mβ
f > mα

f > 0) e AF2

(mα
f > mβ

f > 0). O exótico SDW ou Inter-Orbital Spin Density Wave (IOSDW) está

relacionada com uma mistura de bandas dada pela parte spin-flip da interacção de troca

de regras do Hund. Como resultado, sem campo magnético, nos casos i) e ii) os diagramas

de fase de temperatura (T ) versus pressão (variação da largura de banda (W )) mostram

uma transição de fase de primeira ordem entre AF1 e AF2 e para o caso iii) mostram uma

sequência de transições de fase de primeira ordem envolvendo as três fases, AF1, IOSDW

e AF2. A aplicação de Γf (campo magnético no eixo x) no caso i) produz a separação das

fases AF1 e AF2, adquirindo uma forma de cúpula que é eventualmente suprimida para

grandes valores do Γf . Para o caso ii) descobrimos que Hz (campo magnético no eixo z)

favorece a fase AF2 enquanto a fase AF1 é suprimida e especificamente na rede tetragonal,

a fase AF2 é ainda mais favorecida quando Hz e c/a aumenta continuamente. Para o
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caso iii) a presença de hz (campo magnético no eixo z) tem efeitos drásticos sobre parte

do diagrama de fase e a localização dos pontos multicríticos. Propomos que o estudo de

pontos multicríticos possa fornecer informações relevantes sobre as fases convencionais e

não-convencionais presentes nos compostos de urânio.

Palavras claves: Pontos multicríticos, sistemas de elétrons 5f , convencional
SDWs e exótica SDW.
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Chapter 1

Introduction

The physics present in the 5f -electrons is quite intriguing, since a multiplicity
of quantum states of matter are found, from magnetism (localized and itinerant)
[1, 2], superconductivity [3, 4], to exotic and enigmatic states such as the Hidden
Order (HO), not yet understood, found in the URu2Si2 compound [5, 6, 7, 8, 9,
10, 11]. These multiplicities of quantum states can be tuned by pressure variation
(hydrostatic or chemical) in addition to the application of external magnetic fields.
This means that any microscopic model oriented to the study of 5f -electrons must be
able to track these external perturbations, which could determine the emergence and
evolution of conventional, non-conventional or even exotic collective quantum states.
Thus the different types of ordering that uranium compounds host makes these
systems a natural ground for the emergence of classical and quantum multicrıtical
points.

Recently, there have been several observations in these electron systems indi-
cating classical tricritical points (TCP) as, for example, in the compounds USb2

[12], UN [13], UAu2Si2 [14] and URu2Si2 [15] when a magnetic field is applied. An-
other example is the presence of a classical bicritical point (BCP) that appears in
URu2Si2 when the hydrostatic pressure is varied and this point is entirely related
to the competition between the puzzling state HO and an AF phase [16], see sec-
tion (1.1). Thus, the presence of classical multicritical points allows an alternative
development to the study of 5f -electron systems.

These classical critical points may eventually evolve, by varying some intensive
parameter, e.g., by increasing the pressure, applying a magnetic field or driven
by thermal fluctuations, to become quantum critical points [17] and thus possibly
exhibit a behavior that deviates from the standard Fermi Liquid [18, 19]. Also,
the presence of a specific type of multicritical point could be useful to elucidate an
unconventional symmetry breaking that may exist in uranium compounds. Still, the
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subject of classical multicritical points in the physics of 5f -electron systems has not
yet received due attention.

In general, at high temperatures, the 5f -electrons behave as localized magnetic
moments decoupled from the d-electrons. As the temperature decreases, the cou-
pling between the 5f -electrons and the d-electrons increases due to increased hy-
bridization, causing the 5f -electrons to lose their localized character and begin to
be itinerant. In other words, the formation of narrow bands appears with electrons
of higher effective mass. The presence of these narrow bands gives rise to strong
electronic correlation effects. Thus, depending on the itinerant or localized charac-
ter of the 5f -electrons, several theories have been proposed to explain, for example,
the nature of HO in URu2Si2. Among them, there is one, proposed by Profs. Peter
Riseborough, Bernard Coqblin and Sergio G. Magalhães [7], which is directly related
to the present PhD thesis. This theory utilizes the Underscreened Anderson1 Lattice
Model (UALM).

The UALM has been introduced as a generalization of the Underscreened Kondo
Lattice Model (UKLM) that has successfully described the coexistence of the Kondo2

effect and magnetism found in uranium monochalcogenides [20, 21]. Furthermore,
the UALM can describe, not only the AF ordering observed in the uranium-pnictides,
[22, 23] and UIrSi3 [24], but has also been proposed to describe the HO phase of
the URu2Si2 [7]. Since the UALM can be considered a generalization of the UKLM,
it might also be considered appropriate to describe some aspects of the 5f -electron
systems.

The UALM has a direct hopping between distinct orbitals (χ = α and β) which
gives rise to two quite narrow f -bands. These, by their turn, are hybridized with
a wide conduction band. Lastly, there are f -electron intra- and inter-orbitals in-
teractions. Remarkably, this model can host itinerant spins orderings where the
time-reversal symmetry (TRS) is broken or not [8, 25, 26]. This model consists
of two degenerate narrow 5f -bands (denoted by χ = α, β), which acquire itiner-
ant character by direct hopping between neighboring 5f−bands. The resulting two
narrow bands are also hybridized with a single itinerant conduction band. The in-
teraction is composed of the Coulomb interaction (U ) between electrons in the same
5f -band and the Hund’s rule exchange interaction (J ) between electrons in distinct
5f -orbitals. To know more about the UALM, see the chapter (2).

The UALM is also suited for the investigation of TRS breaking as source of
unfolding of phases and multicritical points. The Hund’s rule exchange interaction

1Philip Warren Anderson: Winner of Nobel Prize in Physics in 1977. Born on December 13,
1923, United states. Deceased on March 29, 2020, United Sates.

2Jun Kondo: Born on February 6, 1930, Japan. Deceased on March 11, 2022, Japan.
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term is essential to make the model spin-rotationally invariant [27] and opens distinct
routes to long-range ordering. As an example, a phase transition can be driven by
the spin-flip part of Hund’s rule exchange interaction, breaking spin-rotational and
space-translational symmetries but preserving the TRS. As a result, a novel ordered
state can be stabilized in which there is spontaneous 5f inter-orbital band mixing,
that does not involve magnetic order. This ordering exists due to a mixture of
electrons in different bands, with very special properties. It is an exotic type of
Spin Density Wave (SDW) with rotational and translational symmetry breaking,
but preserving the TRS and in other words, a non-magnetic SDW. This novel type
of long-ranged order has been proposed as describing the HO phase in URu2Si2
[7]. The interaction terms can also produce conventional SDW long-range order in
the UALM. This convencional SDWs appears below a magnetic phase transition
at which spin-rotational, space-translational and TRS are broken. This transition
gives rise to not one but two distinct competing conventional SDWs which have spin
gaps at the same ordering wave-vector. Therefore, in the transition between the two
conventional SDW phases, no further symmetries are broken. In this PhD thesis,
we have three different case studies.

As the first case, we consider two conventional SDW phases their respective order
parameters (OPs) as found in some uranium compounds [28, 29, 30]. The magnetic
field is applied longitudinally in x-axis. In this case, we investigate the temperature
- pressure - magnetic field phase diagram of the SDW phases within a mean-field
approximation. We assume that the bandwidth W can be varied by the application
of pressure while the hybridization, the Coulomb and the Hund’s rule interactions
remain constant. We also make the following assumptions: (a) The hybridization
matrix elements are k-independent. As a consequence, one may transform the basis
of the 5f -states into a new basis in which a linear combination of f -orbitals hybridize
and the remaining orthogonal states do not. This has been confirmed by the recent
observation of orbital selectivity of the Kondo effect in the uranium-dichalcogenide
USb2, [31] in which the Kondo interaction is caused by the hybridization which
only involves a subset of the f -orbitals and orbital Kondo effect in UTe2 [32]. The
asymmetric hybridization breaks the symmetry between the 5f -bands, so intra-band
nesting may occur simultaneously for both bands but, when W increases, one band
may become depart from the perfect nesting condition and, hence have a reduced
momentum. Ultimately, above some value W , both bands might not satisfy the
nesting condition and the material might become non-magnetic. (b) the conven-
cional SDWs has a OP which is fixed by an Ising-like anisotropy. This assumption
introduces a magnetic anisotropy which, in fact, is observed in some uranium com-
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pounds [28, 29, 30]. As a consequence, there are two types of field effects in the
conventional SDW bands [8, 33]. For a field aligned with the easy axis, the Zeeman
splitting between the spin-up and spin-down SDW sub-bands increases as the field
increases. On the other hand, for a field along a perpendicular direction, there is
a spin-dependent momentum-shift of the conventional SDW bands. However, the
choice for a transverse field brings the possibility that classical multicritical points
can evolve into quantum multicritical points due to spin-flipping effects. In the spe-
cific case of two different conventional SDWs (denoted as AF1 and AF2), each of the
magnetic phases are related to each 5f -band (no band mixing). Therefore, the phase
transition AF1 → AF2 would necessarily imply that the two spins gaps abruptly in-
terchange their sizes. Eventually, as pointed out above, a further variation ofW can
cause the complete suppression of the conventional SDW ordering. The sequence of
transitions AF1 → AF2 → PM should involve changes in the structure of the AF
bands and, therefore, should be accompanied by Fermi Surface (FS) reconstruction.
One may also expect that other sequences of phase transition involving conventional
SDW caused by increasing the magnetic fields in x-axis are also related to changes
in the electronic structure.

As second case of study, we have two conventional SDWs in the UALM under
simultaneous application of pressure and magnetic fields for both cubic and tetrag-
onal lattices when the magnetic field is applied in z-axis. The SDW is unfolded
into two types (with same nesting vectors) AF1 and AF2 which have finite distinct
staggered magnetization for each orbital label [10, 11]. Thus, the SDWs are charac-
terized by which orbital staggered magnetization is larger. For low pressure, there
is the onset of AF1 at lower temperature and when the pressure is increased, AF2

starts to compete by the stability with AF2. As a consequence, of pressure and/or
magnetic field, the level of metallicity can be also affected. Therefore, an evolu-
tion of the FS can be anticipated with some type of reconstruction as the combined
application of this two external parameters. We also highlight the possibility of
metamagnetic transitions [2, 34, 35, 36]. Since, the two SDWs are competing by
the stability when W is increased, the presence of the magnetic field modifying the
band structure can lead to transitions induced by the field [37, 38]. In addition,
one can expect that this particular aspect be highly sensitive to the specific lattice
structure, cubic or tetragonal. The occurrence of metamagnetic-like-transitions and
TCPs have been reported in different uranium compounds, for instance, USB2 [40]
and U(Pd1−xNix)2Al3 [41]. Moreover, the compound UNiGe showed the presence of
an AF phase at low magnetic fields and an uncompensated AF phase at high mag-
netic fields [42, 43]. In addition, the compound UNiGa exhibits various AF phases
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below TN = 39 K. Although the magnetic field along the c-axis induces phase tran-
sitions between the different AFM phases, a new AFM phase is induced at high
pressures [44, 45].

As as third case study, we highlight the role of the Hund’s rule exchange inter-
action in the UALM which gives a particular type of mixing of the two 5f -bands,
allowing the model to host a phase that break spin-rotational and space-translational
symmetry but invariant TRS. More precisely, this exotic SDW, which does not in-
volve magnetic moment formation, is specifically related to the spin-flip part of
Hund’s rule exchange interaction. Again we remark that this non-magnetic SDW
has been proposed to describe the HO in URu2Si2 [7]. From now on, we refer to
this phase as an Inter-Orbital Spin Density Wave (IOSDW) or exotic SDW with
a single imaginary OP. In addition, we have within the mean field approximation,
the competition between the IOSDW and the conventional SDWs in phase diagrams
where pressure and magnetic field are applied simultaneously. For this purpose,
we explore a scenario where the instability of the paramagnetic phase towards to
conventional and non-conventional SDWs occurs at the same nesting vector. In this
case, we assume that the applied pressure changes the inter-atomic distances and,
thereby, changes W . Within UALM, these SDWs - in the three cases of interest- are
characterized by a staggered magnetization for each band (here called α or β) given
by mα

f and mβ
f . The first SDW, called AF1, occurs when mβ

f > mα
f , while in the

other one, called AF2, when mα
f > mβ

f . Indeed, the prediction of the existence of a
critical end point (CEP) has been confirmed in the UALM [46]. In the case where
IOSDW is also stabilized, the coupling among OPs is more complicated since they
have distinct parity properties under TRS [25]. Therefore, in terms of a Landau
free energy expansion, the competition among AF1, AF2 and IOSDW can lead to
a bicritical point (BCP) or a tetracritical point (TTC) [39]. For further variation
of pressure or field, the nesting condition may no longer be satisfied leading to the
suppression of the ordered phases. This last phase transition line can present a
TCP [46]. Lastly, because of the asymmetry between the bands, we remark that the
simultaneous effects of pressure the magnetic field on the phases AF1, AF2, IOSDW
and, consequently on the multicritical points, are closely connected with changes
in the electronic structure of the problem. Particularly, the effects of the magnetic
field on each of the phases can be traced directly from changes in the quasiparticle
dispersion relations [8].

Our goal in this work is to show how classical multicritical points can emerge
from the competition between conventional and non-conventional SDWs hosted in
the UALM. We also show that by means of type of critical point it is possible to
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know the physical nature of the multiple phases present, e.g., as electronic properties
or broken symmetries, without the need for an individual study of each of them. In
addition, we try to make an analogy between the exotic SDW phase and HO.

1.1 Motivation of study of URu2Si2

In 1984 an unprecedented discovery was made with the observation of a super-
conducting state at a critical temperature of 1.5 K in a heavy fermion magnetic
compound based on uranium, specifically URu2Si2. It is now known that that su-
perconducting state is unconventional with d-wave function type, in addition to a
TRS breaking. However, the antiferromagnetic state, initially thought in this com-
pound, was not of magnetic nature but of a new and unknown type of non-magnetic
order to which the term hidden order was dominated. The Hidden Order (HO)
has been a problem still under discussion and the true nature of the HO may reveal
new mechanisms capable of generating a state with peculiar electronic and magnetic
properties [47].

The heavy fermion compound URu2Si2 has a body-centered-tetragonal (BCT)
crystal structure at high temperatures, with lattice constants a = 0.4124 nm,
b = 0.4126 and c = 0.9582 nm [48], see Fig. (1.1)(a). In Fig. (1.1)(b) on the
right side is the crystalline representation of only U atoms. These atoms have an
alignment on the c axis of symmetry which through experimental evidence present
small localized antimagnetic moments of the order (≈ 0.03µB), but the magnitude
of these localized antiferromagnet moments cannot give a crystal lattice stability,
therefore, the crystalline lattice cannot be defined with a definite magnetic order
[18, 19]. From developed experiments it is thought that the emergence of the HO is
due to the transformation of the URu2Si2 crystal lattice as it lowers the temperature,
from a BCT lattice to a tetragonal lattice [20, 21, 23]. But it is also thought that
the emergence of the HO has nothing to do with the lattice (distortions, impurities)
but with a purely electronic effect.

In the URu2Si2 a specific heat peak was observed at THO ≈ 17.5 K and below
this temperature a new transition to this superconducting phase appears at TS ≈ 1.5

K given by a new peak at Cv. The initial interpretation for the state formed in the
temperature range between the two Cv peaks is that this would be a conventional
antiferromagnetic manifestation that, at lower temperatures, would compete with
the superconducting phase. In the specific heat curve of the lower part there are
two peaks presented and between the temperature range [2 K - 17 K] the specific
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Figure 1.1: (a) Crystal structure of body-centered-tetragonal lattice
for URu2Si2 and the corresponding space group is the I4/mmm. (b)
Magnetic structure with only magnetic atoms and (c) specific heat as a
function of temperature. We have two specific heat peaks, the first at 2
K and the second at 17.5 K. The region between these two peaks has no
magnetic order and corresponds to the HO state region [22].

heat curve is given by the following:

C(T ) = γT + AT 3 + bε−∆/T , (1.1)

where the values of γ and A are given by the material characteristics, ∆ corresponds
to an energy gap. The first two terms describe to free electrons as well as lattice
vibrations, and the third part represents electrons present in the HO phase [8, 33].
Above temperature T= 17.5 K the Cv curve is characterized only by the first two
terms of Eq. (1.1). Thus it can be said that these specific heat peaks clearly show
the presence of phase transitions: SC and HO, but the nature of the emergence of
the HO in URu2Si2 is not shown.
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1.2 Hidden Order: Experimental Evidence

In the Fig. (1.2)(a) is the phase diagram of temperature versus pressure. As the
temperature decreases and at low pressures a first-order transition from a normal
state to a HO state is shown. As the pressure begins to increase at low temperatures
a first-order transition from the HO state to an antiferromagnetic state occurs. For
higher values of pressure and as the temperature begins to increase a second-order
transition from the antiferromagnetic state to a normal state is again shown. These
transitions are reflections of the presence of a BCP. In Fig. (1.2)(b) the formation
of magnetic moments as a function of pressure is shown. At low pressures the HO
phase exists and the formation of magnetic moments is nonexistent, but as the
pressure increases there is a strong change in the formation of magnetic moments,
which are constant at high pressures, here the system is in the antiferromagnetic
phase. In Fig. (1.2)(c) we have a phase diagram of temperature versus magnetic
field, we can see that at low magnitudes of magnetic field and as the temperature
begins to decrease a second-order transition occurs from the normal state to HO,
but for low temperatures and as the magnetic field is increasing a first-order phase
transition occurs from the HO state to a normal state. The presence of a TCP is
also shown. In this manner, several experiments in recent years have shown that the
nature of the HO state is much more complex than previously thought [18, 20, 23].
Experiments of inelastic neutron scattering measurements confirmed the existence
of localized magnetic moments. However, these magnetic moments are very small
on the order of magnitude (≈ 10−2µB) as to ensure a conventional magnetic order
[18]. The strangeness of the situation was confirmed by the measured entropy value
which is completely incompatible with the entropy calculated from the measured
magnetic moments. In other words, these results clearly indicate that the origin
of the gap found for T<THO = 17.5 K cannot be attributed to the presence of a
conventional magnetic state. Other experimental results complete the complexity
scenario of the problem, for example, finite pressure measurements showed a first-
order phase transition from the HO state to an antiferromagnetic phase (P = 0.75

GPA) with well-developed magnetic moments (0.4µB). Fig (1.2) (b) shows that as
the temperature goes down a new state arises but does not have a conventional
magnetic order. Also measured using the Haas-van Alphen effect showed that the
HO state and the antiferromagnetic phase have the same Fermi surface (FS) and
therefore the same nesting vector Q [20]. Finally, magnetic field measurements, see
Fig. (1.2)(c), showed that the HO state remains until a magnetic field value B = 35

T. The phase transition to HO state that was second-order in the absence of field
becomes first-order [8, 49]. Indications are strong that this anisotropy known as
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magnetic nematicity is one of the most important manifestations of the HO state in
URu2Si2. A crucial aspect of this problem is the role of spin-orbit interaction. It has
recently been shown that this coupling describes the giant magnetic anisotropy in the
antiferromagnetic phase of URu2Si2. This anisotropy is not the result of spontaneous
symmetry breaking, but a similar effect is found in both the paramagnetic phase
and the HO [50].

Ponto bicrítico

ponto tricrítico

(a) (b)

(c)

Figure 1.2: (a) Phase diagram for URu2Si2 of temperature versus pres-
sure. HO = Hidden Order and AF = Antiferromagnetic. At 17.5 K
there is a second-order phase transition from the HO to the paramag-
netic state and at 5 kbar there is a first-order transition from HO to
paramagnetic phase and for sufficiently high pressures and as the tem-
perature increases, a new second-order transition occurs. We can see
that at T ≈ 17.5 K and P ≈ 7.5 kbar there is a bicritical point (BCP).
(b) Behavior of magnetic moments as a function of pressure, both in
the HO and antiferromagnetic phases. (c) Phase diagram of URu2Si2 of
temperature versus magnetic field. We can see that at low magnitudes of
magnetic field and as the temperature begins to decrease a second-order
transition occurs from the normal state to HO, but for low temperatures
and as the magnetic field is increasing a first-order phase transition oc-
curs from the HO state to a normal state. The presence of a tricritical
point is also shown [22].

The difficulty in understanding the nature of the HO state in the URu2Si2
compound is strongly associated with the role of the 5f -electrons. As previously
mentioned at high temperature, 5f -electrons in heavy fermion compounds such as
URu2Si2 behave as uncoupled localized magnetic moments of conduction electrons.
As the temperature decreases, coupling with conduction electrons due to hybridiza-
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tion increases, causing the 5f -electrons to begin to lose their localized character by
becoming itinerant, forming narrow bands with increased effective mass electrons.
The presence of these narrow bands gives rise to effects of many complex bodies. On
the other hand, the discovery of superconductivity and heavy fermion behavior in
UBe13 [51] and UPt3 [52] compounds led to the study of other uranium-based com-
pounds in order to find anomalous behaviors. HO is a problem that has been open
for over 30 years and with different explanatory theories, but it is not yet possible
to find the OP responsible for the transition. Within the theories that have been
proposed to explain the nature of the HO phase are the multipolar order [53], the
unconventional SDW [11], the modulated spin liquid [54], as examples. These theo-
ries are separated into two major groups according to the model used: localized and
itinerant 5f -electrons, due to the dual nature of the 5f -electrons present in uranium
compounds. The central question to be answered can be put in the following terms:
what is the OP capable of characterizing the state or state HO in URu2Si2 ? what
are the symmetries that are broken? Some of these questions can be answered by
considering the HO phase as an analogy to the exotic SDW -present in this work-
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1.3 Thesis scope

This section is mainly dedicated to a brief introduction to each of the most
important points of this thesis.

• To begin with, in Chapter 2, we describe the UALM in two conventional SDWs
with their respective OPs, where the magnetic field is applied longitudinally
to x-axis for cubic lattice. The following is an extension of the study of two
conventional SDWs for both cubic and tetragonal lattices when the magnetic
field is applied in z-axis. Finally, we consider a competition between two con-
ventional SDWs and one exotic SDW, in cubic lattice, when the magnetic field
is applied in z-axis.

• In Chapter 3, we present the numerical results, for the three cases presented
above, when the pressure (variation of bandwidth (W )) and magnetic field are
applied. We show the respective phase diagrams, band structure and densities
of states.

• In Chapter 4, we present our general conclusions referring to the three case
studies carried out in this thesis work.

• In Chapter 5, we present possible future works.

• In Chapter 6, we present the articles published and in preparation during the
doctoral stage.

• Finally, in chapter 7, we thank the agencies that have provided financial sup-
port for the success of this work.



Chapter 2

Theory and Methodology

2.1 The Underscreened Anderson Lattice Model
(UALM)

The UALM Hamiltonian consists of three terms

Ĥ = Ĥf + Ĥd + Ĥfd. (2.1)

The f -electron part of Hamiltonian, Ĥf , is given by Ĥf = Ĥf,0 + Ĥf,int, where the
non-interacting part Hf,0 describes two degenerate narrow f -bands and is expressed
as

Ĥf,0 =
∑
k,σ

∑
χ

Eχ
f (k) f †χk,σf

χ
k,σ. (2.2)

The χ-bands (χ = α and β) in Eq. (2.2) obey the intraband and interband nesting
condition Eχ

f (k + Q) = −Eχ′

f (k) where χ = χ′ (intraband) or χ 6= χ′ (interband).
The f †k,σ(fk,σ) are the creation (annihilation) f -operators with k-momentum depen-
dence and spin σ = ±1. Fundamentals of second quantization of fermions is found
in the Appendix (A). The vector Q is a commensurate momentum transfer in the
Brillouin zone. The interaction between the f -electrons is described by

Ĥf,int =

(
U − J

2N

) ∑
k,k′,q,σ,χ 6=χ′

f †,χk+q,σ f
χ
k,σ f

†,χ′
k′+q,σf

χ′

k′,σ

+

(
U

2N

) ∑
k,k′,q,σ,χ,χ′

f †,χk+q,σ f
χ
k,σ f

†,χ′
k′,−σf

χ′

k′,−σ (2.3)

+

(
J

2N

) ∑
k,k′,q,σ,χ 6=χ′

f †,χk+q,σ f
χ′

k,σ f
†,χ′
k′+q,−σ f

χ
k′,−σ.

12
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where U is the Coulomb interaction and J is the Hund’s rule exchange term. The
conduction electron Hamiltonian Ĥd is expressed as

Ĥd =
∑
k,σ

εd(k) d†k,σ dk,σ (2.4)

where ε(k) describes the dispersion relation of conduction electrons labeled by the
Bloch wave vector k. The d†k,σ(dk,σ) are the creation (annihilation) d-operators with
k-momentum dependence and spin σ = ±1. The last term in Eq. (2.1) describes
the on-site hybridization process in the UALM by

Ĥfd =
∑
k,σ

∑
χ=αβ

(
Vχ(k) f †,χk,σ dk,σ + V ∗χ (k) d†k,σ f

χ
k,σ

)
. (2.5)

We include an applied magnetic field oriented along the x-axis which introduces an
additional term into the Hamiltonian Ĥext = Ĥf

ext + Ĥd
ext where

Ĥf
ext = −Γf

∑
k

(f †k,↑ fk,↓ + f †k,↓ fk,↑) (2.6)

with
Γf = gfµBhx. (2.7)

The term Ĥd
ext is the same of Eqs. (2.6) and (2.7), except that the f -operators

and the gyromagnetic factor gf are replaced by d-operators and gd, respectively. In
addition, we can consider the effects of a magnetic field applied parallel to the z-axis.
To include this field we must add an extra term in Eq. (2.1) given by

Ĥz
ext = −

∑
k

∑
σ=±

σ[Hf
z f
†
k,σfk,σ +Hd

z d
†
k,σdk,σ] (2.8)

with
Hf(d)
z = gf(d)µBhz. (2.9)

The value σ = 1 and −1 correspond to the up and down spin projections,
respectively. The 5f band Eχ

f (k) = εf + εf (k) and the conduction one εd(k) refer to
a simple tetragonal lattice. Thus

εA(k) = −2tA,a cos(kxa)− 2tA,a cos(kya)− 2tA,c cos(kzc) (2.10)

in which A = f or d, and a, b and c are the lattice parameters. If a = b = c, we
have a cubic lattice and for a tetragonal lattice, we have that the lattice parameter
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are a = b 6= c.

Figure 2.1: Underscreened Anderson Lattice Model (UALM): two 5f -
bands (α and β) interacting with a single conduction band (d-band), by
means of the hybridization terms, Vα and Vβ . Each of the 5f -bands
exhibits local Coulombian interactions and the interaction between the
5f -bands is given by the spin flipping part of the Hund’s rule of the
exchange term, U and J , respectively.

2.2 Two conventional SDWs with Γf in cubic lattice

From now on, we will focus on the two conventional SDWs with antiferromagentic
order (AF1 and AF2) and their associated phase transitions using mean field theory
(see Appendix C). We shall chose a basis set for the f -orbitals such that Vβ(k) = 0 in
Eqs. (D.9)-(D.10) simply to avoid the transformation to a new basis set. The choice
of basis states should not change the main physical results, as is discussed in ref. [7].
The simplest possibility of a conventional SDW ordering with Ising anisotropy in the
cubic lattice can be introduced by assuming that the lattice is bipartite. Therefore,
we consider that

nχf,q,σ =
nχf
2
δq,0 +mχ

f η(σ) δq,±Q (2.11)

where nχf = nχf,↑ + nχf,↓ (nχf is the f -electron average occupation of the χ-band),
η(↑) = +1 or η(↓) = −1 and Q = (π/a, π/a, π/a), is a commensurate nesting vector.
Therefore, the modulation of the expectation value of the z-component f -electron
spin density operator in real space for each orbital is 〈Ŝχz,rj〉 = mχ

f e
iQ . rj . The

conventional SDW OP, i.e., the staggered magnetizations mα
f and mβ

f are obtained
from

mχ
f =

1

2
(nχf,Q,↑ − n

χ
f,Q,↓). (2.12)
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In the Appendix (D) we present the general formulation for find the OPs that
describe each antiferromagnetic phase.

2.2.1 Order parameters with Γf = 0

The conventional SDW OPs follow directly from the correlation functions nχf,Q,σ
(see Eq. (2.12)) which can be expressed as

nχf,Q,σ =
1

N

∑
k,σ

∮
dω

2πi
f(ω) Gχχ

ff,σ(k,k + Q, ω). (2.13)

The contour of the path integral encircles the real axis without enclosing any poles
of of the Fermi-Dirac distribution. The correlations functions nχf,Q,σ are found from
the Green’s function given in Eqs. (D.20)-(D.24). Therefore, from Eq. (2.12), one
can obtain:

mβ
f = (Umβ

f + Jmα
f ) χββf (Q, 0) (2.14)

where

χββf (Q, 0) =
1

N

∑
k

f(E−(k))− f(E+(k))

E+(k) − E−(k)
(2.15)

and where f(ω) is the Fermi function.
The staggered magnetization of the α-bands can be derived in a similar manner

to Eq. (2.14). The result is

mα
f = (Umα

f + Jmβ
f ) χααf (Q, 0) (2.16)

where χααf (Q, 0) is now given as

χααf (Q, 0) =

1

2N

∑
k,σ

∮
dω

2πi
f(ω)

(ω − εd(k))(ω − εd(k + Q))

Dα(ω,k)
.

(2.17)

and where Dα(k, ω) is given in Eq. (D.25). The spin-independent quasiparticles
bands are given by the solutions of Dα(k, ω) = 0. Alternatively, one can formulate
the self-consistency equations in terms of the gaps ∆α(β) since

φ
α(β)
↑↓ = ∓ ∆α(β) (2.18)
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in which

∆α(β) = Um
α(β)
f + Jm

β(α)
f . (2.19)

The Hund’s rule interaction couples the gap of a given band to the staggered mag-
netization of the other band.

2.2.2 Order parameters with Γf 6= 0

For Γf 6= 0, the pole structure of the Green’s functions is much more complex.
For finite fields, the Green’s functions Gββ

ff,σ(k,k + Q, ω) and Gαα
ff,σ(k,k + Q, ω)

shown in Eqs. (D.12)-(D.16), can be used to obtain the OPs mα
f , m

β
f and the

gaps following the same steps outlined in Appendix (D). We assume that the d-
conduction electron band is uncorrelated and wider than the correlated f -bands.
We note that the magnetic field on the d-electrons, Γd, affects the OPs mα

f and mβ
f

mainly through the effect of the hybridization Vα(k) and is small compared to the α
and β bandwidths. Therefore, it is reasonable to disregard the effects of Γd on mα

f

and mβ
f .

2.3 Exotic SDW or IOSDW with hz in cubic lattice

We apply a mean field approximation to the fluctuations of the f -electrons op-
erators that produces two possible instabilities of the normal-paramagnetic phase in
the UALM, i. e., the Exotic SDW phase or IOSDW and the itinerant antiferromag-
netic phase. Therefore, we consider the normalized operators below related to each
instability:

ẑχ
′χ

q,σ =
1

N

∑
k

f †,χ
′

k+q,σ f
χ
k,σ (χ 6= χ′) (2.20)

and
n̂χχq,σ =

1

N

∑
k

f †,χk+q,σ f
χ
k,σ (χ = χ′). (2.21)

Thus, the interaction term of the Hamiltonian given in the Eq. (2.4) is expanded
in powers of

∆ẑχχ
′

q,σ = ẑχχ
′

q,σ − zχχ
′

q,σ (2.22)

and
∆n̂χχq,σ = n̂χχq,σ − nχχq,σ. (2.23)

The general formulation to obtain the OPs is in the Appendix (E).
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2.3.1 Order parameters with hz

The exotic SDW OP is given by the expectation value zχ′χq,σ . The staggered
magnetizations for each f -band, mα

f and mβ
f are obtained from Eq. (2.12). The

IOSDW OP is given by the expectation value of the non-hermitian operator given
in Eq. (2.20). Thus :

zαβ−Q,σ =
1

N

∑
k,σ

∫
C

dω

2πi
f(ω)Gβα

ff,σ(k,k + Q, ω), (2.24)

where f(ω) is the Fermi function and Gβα
ff,σ(k,k + Q, ω) is given in Eq. (E.11).

The integration contour closes the real axis and does not include the poles of the
Fermi-Dirac distribution. We can re-write Eq. (2.24) as

zαβ−Q,σ = κβα−Q,σX1,σ(Q) + φαα−Q,σφ
ββ
−Q,σX2,σ(Q) (2.25)

where

X1,σ(Q) =
1

N

∑
k

∫
C

dω

2πi
f(ω)×

gασ (k, ω)gβσ(k + Q, ω)− |κβα−Q,σ|2

DQ,σ(k, ω)
(2.26)

and

X2σ(Q, σ) =
1

N

∑
k

∫
C

dω

2πi

f(ω)

DQ,σ(k, ω)
(2.27)

with DQ,σ(k, ω) defined in Eq. (E.14). Moreover,

gχσ(ω,k) = (ω − Eχ
fσ(k)− ξχ(k, ω)) (2.28)

where ξ(k, ω) is given in Eq. (E.8). From Eqs. (E.9) and (2.25), one can see that
zβα−Q,σ and zβα−Q,−σ are coupled by the Hund’s rule exchange interaction. Actually,
the IOSDW solution implies that zβα−Q,σ = −zβα−Q,−σ. Therefore, for IOSDW to be
time reversal invariant, which is the reason for its non-magnetic character, the OP
needs to be a purely imaginary quantity [7, 8].

The real staggered magnetizations mχ
f (χ = α and β) (see Eq. (2.12)) are

obtained from the Green’s function Gχχ
ff,σ(k,k + Q, ω) given in Eqs. (E.12) and

(E.13). Therefore, the α and β-band staggered magnetizations are expressed as:

mχ
f =

∑
σ

σ[φχχ−Qσ X3,σ(Q) + |κβα−Q,σ|
2φχ

′χ′

−Q,σ X2,σ(Q)] (2.29)
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where χ 6= χ′, σ =↑, ↓ corresponds to +− and

X3,σ(Q) =
1

N

∑
k

∫
C

dω

2πi
f(ω)×

(gχ
′

σ (k, ω)gχ
′

σ (k + Q, ω)− (φχ
′χ′

−Qσ)2)

DQ,σ(k, ω)
. (2.30)

The Green function Gχχ
f,σ(k,k + Q, ω) is in Eqs. (E.12) and (E.13), so the OP

for the β-band is obtained from Eq. (2.12) and expressed as

mβ
f = (Umβ

f + Jmα
f )χββσ (Q,k) (2.31)

where

χββσ (Q,k) =
Np∑
i

f(Ei,σ(k))Aββi,σ(k) (2.32)

and similarly for the α-band

mα
f = (Umα

f + Jmβ
f )χαασ (Q,k) (2.33)

with

χαασ (Q,k) =
Np∑
i

f(Ei,σ(k))Aααi,σ(k). (2.34)

In Eqs. (2.26), (2.32) and (2.34), Ei,σ(k) are the quasi-particles dispersion rela-
tions obtained from Dσ(k,Q, ω) = 0 (see Eq. (E.14)), Np is its number and Aχχ

′

i,σ

correspond to their respective spectral values which, together with Ei,σ(k), which
are the quasi-particle dispersion relations that depend on the gaps φαα−Q,σ, κ

βα
−Q,σ

and φββ−Q,σ. are obtained numerically. It should be noticed that the three equations
for the order parameters are coupled through of quasi-particle dispersion relations
Ei,σ(k).

2.4 Two conventional SDWs with Hz in tetragonal

lattice

The general formalism when we have two conventional SDW with a magnetic
field applied on hz in a tetragonal lattice can be developed as in Appendix (E), but
considering that the order parameter describing the exotic SDW phase is null, i.e.
zβα−Q,σ = 0. Furthermore, we have to consider that in the dispersion relation equation
( Eq. (2.10)) a = b 6= c, which corresponds to a tetragonal lattice.
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2.4.1 Order parameters with Hz

The Green’s function given in Eqs. (E.12) and (E.13) form a closed set of equa-
tions, which can be solved exactly. Thus, the spin gap can be calculated directly
from in Eq. (E.10). Therefore, we can explore a scenario where the instability of
the paramagnetic phase towards to two distinct SDWs occurs at the same nesting
vector Q given by the spin gaps in distinct orbitals. However, it is important to be
noted that the spin gaps φασ and φβσ are, indeed, coupled. Moreover, the spin gaps
are proportional to the magnetic OPs and present exactly same behavior.



Chapter 3

Numerical Results

The numerical results presented in this section have been obtained assuming the
following numerical values and conditions. We have that the hybridization term
without k dependence and it exit only for the α-band, Vα(k) = Vα = 1/10 eV, the
total occupancy number is < nαf > + < nβf > + < nd >= 1.609, where < nd > is the
average occupation of the conduction electrons, < nα > and < nβ > corresponds to
average occupation of 5f -electrons. This occupation number is chosen to enhance
the PM phase instability and does not refer to any specific real 5f -electron system.
The nesting vector is Q = (π/a, π/a, π/a).

We have also chosen the following parameters: (i) the tight-binding parameters
are td = Wd/6, tf = Wd/20 and Wf/Wd = 0.3 where 2Wd(f) is the width of the
conduction band in order to be close to Ref. [46]. From here, we write Wd = W

and we also assume that the bandwidth, W , is sensitive to external pressure. Our
results are qualitatively robust to the numerical choice of parameters given above.
For the construction of OPs, phase diagrams (with and without magnetic field),
quasiparticle dispersion relation, density of states and study of multicritical points
we consider U=0.165 eV and J = U/5. The situation is more complicated when it
comes to choosing the J/U ratio and this point will be discussed also in this section.
The units of measurement of temperature are given in K (Kelvin), the kBT factor
and the pressure in eV (electron-volt), since the latter corresponds to the bandwidth
variation and the applied magnetic fields are measured in T (Tesla). On another
hand, the green functions that help to obtain each of the OPs are described by
means of polynomials of different degrees and in which, the sum in the reciprocal
space (k-momentum space) is given by means of an integral considering a constant
density of states, dependent on the spatial dimension, see Appendix (B).

20
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3.1 Two conventional SDWs when the magnetic field

is applied longitudinally to Γf for cubic lattice

3.1.1 Hund’s rule exchange interaction (J )

Firstly, each of the conventional SDWs are called AF1 and AF2, due to the
fact that they present a magnetic character. The phase AF1 is characterized by
mβ
f > mα

f > 0, while the phase AF2 occurs when mα
f > mβ

f > 0. Phase diagrams
are constructed from the self-consistent solutions of Eqs. (2.14) and (2.16) for the
OPs mχ

f (χ = α, β) as function of W , T and Γf . The effect of Hund’s rule exchange
interaction (J) on the boundaries of the phases AF1, AF2 and PM, as W increases
and when T = 0, is shown in Fig. (3.1). In this phase diagram we present three
phases: two antiferromagnetic phases (AF1 and AF2) and a single paramagnetic
phase (PM). Note that all the non-continuous lines shown in the phase diagram
J/U as a function of W correspond to first-order phase transitions. The first-order
line AF1 → AF2 ends at a quantum triple point (QTP) located at (J/U)tri ≈ 0.07

and Wtri ≈ 0.85 where the AF1, AF2 and PM phases coexist. For small values of
J/U , the asymmetry of the hybridization between the two bands affects the nesting
condition of both bands giving rise to re-entrant behaviour AF1 → PM → AF2 →
PM. For J/U ≥ 0.1, the phases appear in the sequence AF1 → AF2 → PM as W is
increased. This indicates that above a certain threshold of J , the AF phases consist
of two magnetic coupled subsystems that describe the α or β bands. We remark
the role of the Hund’s rule exchange (J) observed in this phase diagram. For J = 0,
mα
f and mβ

f are completely independent (see Eqs. (2.14) and (2.16)). In this case,
due to the asymmetry of hybridization, the nesting condition is satisfied for both
OPs in the region of W . 0.8, whereas for W & 1.1 only the α band satisfies the
nesting condition. In other words, the phase AF2 has only an α character, i. e.,
mα
f > mβ

f , where m
β
f = 0. In this case, it is the transition AF1 → PM and PM →

AF2 as W is increased which corresponds the sequence of phases. For J finite but
small, mα

f and mβ
f become finite in the AF2 phase. However, the nesting condition

for both bands is not satisfied within of an interval of W . As J further increases,
the coupling between the two OPs also increases. Above a certain value of J , the
nesting condition for both α and β bands is fully recovered. This indicates that
there is a threshold of J , where the direct transition AF1 → AF2 starts to occur.
This region above the threshold is the focus of the present investigation. Therefore,
from now on, we use J = U/5 with U = 0.165 above mentioned.
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Figure 3.1: The phase diagram for J/U versusW at T = 0. the dotted
lines are first-order transitions. There are three phases, AF1, AF−2 and
PM. The blue point is a quantum triple point (QTP).

3.1.2 Behaviour of order parameters

The results for the magnetizations mα
f and mβ

f at finite T are shown in Figs.
(3.2)(a) and (3.2)(b), respectively. For kBT = 0, both OPs exhibit two disconti-
nuities, one at W ≈ 1.05 and another at W ≈ 1.65. These discontinuities indicate
the occurrence of first-order phase transitions. The first transition, occurring at
W ≈ 1.05, is between two types of antiferromagnetic phases. The phase AF1 is
characterized by mβ

f>m
α
f>0 while the AF2 occurs when mα

f > mβ
f > 0. As kBT be-

gins to increase, those first-order transitions begin to decrease in magnitude (green
dome) until they disappear completely (c point) when kBT = 0.004 and at the same
time it is shown that mα

f and mβ
f decay more rapidly as W is varied. With the

behaviour of the OPs mα
f and mβ

f is possible to construct the phase diagram shown
in Fig. (3.3).

3.1.3 Phase diagram without magnetic field

The phase diagram of kBT as function of W is in Fig. (3.3). In this phase
diagram there are three phases: two antiferromagnetic phases (AF1 and AF2) and
a paramagnetic phase (PM). Firstly, there is a second-order transition at the Néel
temperature TN which is marked by the opening up of the AF gaps, AF1 → AF2,
respectively. Then, for 0.95 < W < 1.05, there is a direct first-order transition AF1
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Figure 3.2: (a) The behaviour of the magnetization mα
f as function of

W for different kBT values. (b) The magnetization mβ
f as function of W

for different kBT values. There in a one C point where the discontinuities
disappear.
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→ AF2 which ends at a CEP located at kBTCEP ≈ 0.0038 and WCEP ≈ 0.9826.
We remark that in the range TCEP < T < TN , the jump in the OPs becomes

smooth and the two AF phases can be continuously connected by a path which by
passes the CEP. The phase diagram is completed by a new line of transitions AF2

→ PM which occurs for 1.6 < W < 1.7. The line of transitions changes from a
second-order to a first-order transition at a TCP located at kBTTCP ≈ 0.0011 and
WTCP ≈ 1.6410.

CEP
TCP

Figure 3.3: The phase diagram for the kβT versusW . The solid and the
dashed lines denote second-order and first-order transition, respectively.
The blue circle is a critical end point (CEP) and the red circle is a
tricritical point (TCP). We have two phases, AF1 and AF2, with the
variation of KBT and W .

3.1.4 Partial density of states (p-DOS)

The α and β partial densities of states (p-DOS) are show in Fig. (3.4) for
different values of W at kBT = 0 and kBT = 0.004 in close proximity to the dashed
line, which separates the phases AF1 and AF2. In the AF1 phase, the β band
specifically shows the absence of electronic states at the Fermi energy (EF ) (dotted
black vertical line) despite the increase of kBT (see Figs. (3.4(a)-(3.4)(e)), while the
α band in the AF1 phase shows electronic states crossing the EF when kBT = 0 and
kBT = 0.004 (see Figs. (3.4(c)-(3.4)(g))). In the AF2 phase, both α and β bands are
shown to have electronic states crossing the EF , see Figs. (3.4)(b)-(3.4)(d)-(3.4)(f)
and (3.4)(h). These results, for α and β p-DOS, indicate that in the AF1 ground
state there is a mixed localized-itinerant character while AF2 only has an itinerant
character. The dashed line in the phase diagram of Fig. (3.3) denoted the locus
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where FS reconstruction occurs.
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Figure 3.4: The panels show the α (red) and β (gray) p-DOS for values
of W close to the dashed line (EF ) of the phase diagram (see Fig. 3.3).
The left panel represents the phase AF1 phase and the right panel to
phase AF2 phase.

3.1.5 Phase diagram with magnetic field

The zero field magnetic phase diagram changes drastically when a transverse
field hx is applied. The resulting kBT versus W phase diagram is shown in Fig.
(3.5) where the values of Γf are directly proportional to hx (see Eq. (2.7)). The
main effect of Γf is to separate the phases AF1 and AF2 creating a dome-shaped
region for this phase with two TCPs. As Γf increases, the AF2 domed-shaped region
decreases until its complete suppression. We remark that mα

f is less affected by Γf in
the region of W . 1 than in the region of W & 1. For Γf = 0.035, mα

f is completely
suppressed for W & 1. In fact, the behaviour of the OPs mα

f and mβ
f are closely

related to the nesting condition for the α and β bands. The magnetic field produces
a k-dependent shift which depends on the spin σ. Also, the EF is shifted to higher
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energies. Therefore, for sufficiently high values of Γf , the FS is no longer nested.
Nevertheless, the electronic characters of the AF1 and AF2 phases, are un-changed.
It has been considered µ = EF at T = 0. The evolution of the phase diagram of Fig.
(3.5) can be better understood in terms of the nesting condition between the β and
α bands. For Γf = 0, the β sheet of the FS is nested when Eβ

f (k) = Eβ
f (k+Q) = µ.

The presence of hx produces a k-dependent spin splitting of the dispersion relation
which and can result in a shift of µ.

TCP

TCP

TCP

TCP

TCP

Figure 3.5: The phase diagram of the T versus W for different values
of Γf . The solid lines denote second-order transitions while the dashed
lines denote first-order transitions. The red points are tricritical points
(TCPs). There are three phases, AF1, AF2 and PM, respectively.
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3.1.6 Quasi-particles dispersion relations

The evolution of the gapped regions of β and α bands with increasing Γf is shown
in Figs. (3.6) and (3.7). The α bands involve the hybridization Vα, which also affects
the band’s dispersion relation. In Fig. (3.6), the dispersion relation is calculated
for a W = 0.9, which places the system in the AF1 phase (see Fig. (3.5)). The
EF (dotted line) is positioned within the gap in the β-band dispersion relation for
all values of Γf . Meanwhile, at the gapped region, the extent to which the α-band
dispersion relation dips below the EF decreases with increasing Γf . Consequently,
the nesting of the α band is affected more strongly than the β band. The results
show that the AF phases are more stable than the paramagnetic phase, if the EF
(or µ) is inside of both, or either one or other of the α or β gaps. These results
indicate that in the AF1 ground state there is a mixed localized-itinerant character.
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Figure 3.6: The electronic dispersion relations for W = 0.9, T = 0
and different values of Γf in the AF2 phase. The blue and black colors
represent the up and down spin sub-bands, respectively. The dashed
black line is the EF .
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For W = 1.5 (AF2 region), we find a different situation, shown in Fig. (3.7).
The gap in the β band is always below the EF , whereas the EF lies within the gap
of the α band. However, as Γf increases, the EF tends to move to the bottom of
the α gap, until for Γf = 0.035 (not shown here), the EF falls below the gap as in
the β band case. When both gaps are below EF the bands are not nested, and the
paramagnetic phase is more stable. These results indicate that in the AF2 ground
state has an itinerant character.
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Figure 3.7: The dispersion relations for W = 1.5, T = 0 and different
values of Γf in the AF2 phase. The blue and black colors represent the
bands with spin-up and spin-down sub-bands respectively.

3.1.7 Summary on this topic

We have investigated the emergence of multicritical points due to the competition
between two conventional SDWs (antiferromagnetic phases) that appear in a multi-
orbital model suitable to describe uranium compounds. We use the UALM which
describes two narrow 5f -bands (α and β) hybridize asymmetrically with a single
conduction band. Besides the direct Coulomb interaction between electrons in the
same f -band, there is a Hund’s rule exchange interaction between electrons in the
different 5f -bands. We also consider that there is an asymmetry in the hybridization
between the f -bands and the conduction band. As result, we find a competition be-
tween two types of antiferromagnetic phases, AF1 and AF2. In absence of magnetic
field there is a CEP and a TCP, respectively, in the phase transitions AF1 → AF2
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and AF2 → PM. The presence of the CEP in our phase diagram is in accordance
with the description based on the generic two OPs Landau Free energy described in
ref. [57], where the OPs were assumed to present a TRS break.

As W increase, our results show that the β-band goes through an insulator →
metal transition while the α-band maintain its itinerant character. The scenario
for small W resembles the scenario describing half-metallic magnets [55] used in
spintronics. Here, the two spin directions are replaced by the two f -bands. Thus,
our electronic structure can be described in terms of a transition between half to
full metallicity. Below the CEP, this transition exactly coincides with the AF1 →
AF2 first-order transition. Therefore, our results indicate that the transitions in the
electronic structure are directly coupled with magnetic transitions.

For finite magnetic transverse field Γf , the nesting condition has a peculiar be-
haviour, which is lost and then recovered when the W increases. As a consequence,
the direct transition between the AF phases is replaced by a re-entrant sequence
of transitions AF1 → PM → AF2 → PM. The AF2 phase acquires a dome shape.
While the AF1 line transition has one TCP, the dome shaped AF2 line transition
has two TCPs. All TCPs are effected relatively weakly by further increases of Γf . In
fact, the dome is gradually suppressed by the field until its complete disappearance.
In contrast to the drastic changes in the magnetic phase diagram, the electronic
characters of the AF1 and AF2 phases are unaffected. They, respectively, remain of
mixed insulator-itinerant and itinerant characters. The data and analysis discussed
here were published in Phys. Rev. B 101, 064407 (2020).

3.2 Two conventional SDWs phases for both cubic

and tetragonal lattices when the magnetic field

is applied in z-axis

Firstly, we present results for a simple cubic lattice, for which a = c and tA,c =

tA,a, in the dispersion equation relation given in Eq. (2.10).

3.2.1 Behavior of order parameters of cubic lattice

The behavior of gaps φα and φβ as a function of Hz at T= 0, under different
values of W are shown in Fig. (3.8). This gaps are proportional to OPs. Both gaps
exhibit discontinuities which indicate the occurrence of first-order phase transitions.
The discontinuities denoted by the dotted lines mark first-order transitions between

https://doi.org/10.1103/PhysRevB.101.064407
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two competing antiferromagnetic phases, AF1 and AF2, or, at higher magnetic fields,
between a antiferromagnetic and a paramagnetic phase (PM).
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Figure 3.8: Behavior of gaps φα and φβ for the simple cubic lattice
as a function of Hz for T = 0 under different values of W . The dotted
lines denote the AF1-AF2 and AF2-PM first-order transitions while the
dashed lines are associated with metamagnetic-like transitions.

The phase AF1 is characterized by φβ > φα > 0, while AF2 denotes the phase
where φα > φβ > 0 and when the system evolves to the PM phase we have φα= φβ=
0. The discontinuities marked by the dashed lines, at lower magnetic field, suggests
metamagnetic-like transitions which resemble transitions reported in antiferromag-
netic systems [34].

Now, in the Fig. (3.9) displays the gaps as a function of the magnetic field Hz,
for a fixedW = 1.00 under different values of temperatures. These results show that
the effect of increasing of the T is to suppress the discontinues found at low magnetic
fields. For kBT = 0.004, the transition between the phases AF2 and PM change its
nature from first-order to second-order transition. On the other hand, the nature
of the transition AF1-AF2, is unaffected. Nevertheless, at higher temperature, for
kBT = 0.008, the AF1(2) → PM phase transition becomes a first-order transition
again. This behavior suggest the existence of TCPs.
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Figure 3.9: Behavior of the gaps φα and φβ for the simple cubic lattice
as a function of Hz for W = 1.00 and different values of T . The dotted
and the dashed lines play the same role as in Fig. (3.8).

3.2.2 Phase diagram with Hz of cubic lattice

The effect of the temperature on the boundary of the phases AF1, AF2, and PM,
is summarized in the phase diagrams shown in Fig. (3.10). The dotted lines indicate
first-order transitions while the solid lines represent second-order transitions. In the
panel (3.10)(a), it can be seen that the phase AF1 occurs mainly for low values of
W while the AF2 phase is predominant found at higher values of Hz. However, the
combination of high values of W and Hz, favors the AF2 phase. For T = 0, we
observe two lines representing transitions between the phases AF1 and AF2 which
end at two CPs localized at the region of W ≈ 1.6, between Hz = 0.03 and Hz =

0.04. The CPs are denoted by black solid circles. For finite temperatures, the AF2

phase is restricted to a small portion of the phase diagram at high magnetic fields
and low W , as shown in Figs. (3.10)(b) and (3.10)(c). On the other hand, the AF1

phase is much more robust to the effect of T . With increasing T , there are regions
where the first-order AF1(2) → PM phase transitions are replaced by second-order
phase transitions, in agreement with the results presented in Fig. (3.9). The red
solid circles indicate the positions of the TCP. In addition, the dashed lines denote
metamagnetic-like transitions. Such transitions can be observed in both AF phases,
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however for kBT = 0.004, the transitions occur only for low values of W . The
inset in Fig. (3.10)(b) highlights the region where the metamagnetic-like transitions
occurs. For kBT = 0.008 the metamagnetic-like transitions no longer appear in the
range of parameters considered.
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Figure 3.10: The phase diagram for a simple cubic lattice with W
versusHz for several temperatures. The solid and the dotted lines denote
second-order and first-order transition, respectively. The dashed lines
mark metamagnetic-like transitions. The black points are critical points
(CPs) and the red points are tricritical points (TCPs).

3.2.3 Partial density of states (p-DOS) in cubic lattice

In general, the discontinuities in the gaps as a function of Hz (see Fig. (3.8)), are
related to the position of the EF relative to the gaps in the partial densities of states
(p-DOS). In Fig. (3.11), the p-DOS associated with the sequence of transitions AF1

→AF2 →PM, are shown for T = 0 and W = 1.20. The vertical dashed red lines
indicate the position of the EF , for each case. The first and second columns of
the panels shown the p-DOS for the AF1 and AF2 phases, respectively. The third
column shown the p-DOS in the PM phase of the system. When Hz increases from
0.030 to 0.032, the EF moves out of the gap of the β-band p-DOS, ρβσ, resulting in
a discontinuity in the gap (see Fig. (3.8)) what gives rise to the AF1 →AF2 phase
transition. The positions of EF in both cases, are shown in Figs. (3.11)(g) and
(3.11)(h). In general, every time that EF moves out of a gap in the p-DOS, due to
an increase of either Hz or W , the gaps change discontinuously (see Fig. (3.8)) and
are accompanied by a phase transition or a metamagnetic-like transition. We can
see that both the character of the phase AF1 and AF2 is isolated-itinerant.
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Figure 3.11: The α (green) and β (magenta) p-DOS for W = 1.20,
T = 0, and different values of Hz. The values of Hz have been chosen
in order to show the p-DOS behavior inside each phase (AF1 and AF2)
of the diagram presented in the Fig. (3.10). The red dashed line is the
EF .

Now, we present results for the tetragonal lattice, i.e., a 6= c and r = tA,c/tA,a.
The crystalline symmetry lifts the degeneracy of the dispersion relations given in Eq.
(2.10). In order to stay relatively close to the cubic lattice case, most of the results
presented in this section were obtained using the next parameters: c/a = 1.10, and
r = 0.90.

3.2.4 Behavior of order parameters in tetragonal lattice

In Fig. (3.12), it is seen that behavior of the gaps for W = 0.80 and W = 1.00,
is very similar to the behavior observed for the cubic lattice in Fig. (3.8). However,
in the tetragonal case, a higher magnetic field is required to close the gaps. For
W = 1.20, with an increase of Hz, the system leaves the phase AF1 and enters in
the PM phase in which the gaps are zero, for small values of Hz. If the magnetic
field and therefore Hz is further increased, the system reaches the AF1 phase again.
When the magnetic field is increased to higher values, the system undergoes a first-
order transition to AF2 phase at Hz ≈ 0.028 and another first-order transition is
found at Hz ≈ 0.05 where the system enters the PM phase.
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Figure 3.12: Behavior of gaps φα and φβ for the tetragonal lattice
as a function of Hz for T = 0 and different values of W . The regions
with dashed lines denotes the AF1 → AF2 and AF2 → PM first-order
transitions.

3.2.5 Phase diagram in tetragonal lattice

The W versus Hz phase diagrams and their evolution with T are shown in Fig.
(3.13). For T = 0, the region where the AF1 phase occurs is similar to that of
the cubic lattice. However, the AF2 phase is concentrated in the region of higher
magnetic field while in the cubic lattice the AF2 phase also occurs for intermediate
values of Hz. Indeed, the β-DOS for the tetragonal lattice is asymmetric relative to
ω = 0 which results in the phase AF2 being favored. The asymmetry can be seen,
for example, in Fig. (3.14)(l). As in the case of the cubic lattice, two CPs (black
solid circles) are present in the T = 0 phase diagram. For kBT = 0.004, we observe
the presence of four TCPs (red solid circles) while in the cubic lattice the four TCPs
first occur at kBT = 0.008. Furthermore, the CP observed for kBT = 0.004 is still
present for kBT = 0.008. These facts indicate that the existence of CP and TCPs
are favored in the tetragonal lattice. On the other hand, the metamagnetic-like
transitions represented by the dashed lines in Fig. (3.13)(a), are less favored than
in the cubic lattice.
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Figure 3.13: The phase diagram for a tetragonal lattice with W versus
Hz, for different temperatures. The solid and the dashed lines denote
second-order and first-order transition, respectively. The black points are
crititcal points (CPs) and the red points are tricritical points (TCPs).
The parameters of the dispersion relation are c/a = 1.10 and r = 0.90.

3.2.6 Partial density of states in tetragonal lattice

The α and β p-DOS, ρα and ρβ, are shown in Fig. (3.14) for T = 0, W = 1.0 and
different values of Hz. The values of Hz in the AF1 and AF2 phases, were chosen in
order to be close to the AF1 → AF2 phase transition. The behavior of the gaps for
this set of parameters has been shown in Fig. (3.12).
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Figure 3.14: The α (green) and β (magenta) p-DOS for W= 1.0, T = 0,
and different values of Hz. The values of Hz have been chosen in order
to show the DOS behavior inside each phase of the diagram presented
in Fig. (3.13). The red dashed line is the EF .
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By comparing the results in Fig. (3.14) with those for the cubic lattice shown in
Fig. (3.8), it is possible to see that the results are slightly different, mainly for ρβ−σ.
For the phase AF1 with Hz=0.033, the position of the EF , which is represented by
the vertical dashed red line in Fig. (3.14), is found inside the gap for both ρβσ and
ρβ−σ, while for the cubic lattice the EF is found inside the gap only for ρβσ (see Figs.
(3.11)(g) and (3.11)(j)). This feature is related to the asymmetry of the p-DOS for
the tetragonal lattice. For instance, in Fig. (3.14)(j), the area of the ρβ−σ below the
EF (colored in red) is slightly larger than the area above the EF . In order to keep the
total occupation of the bands constant, the EF has been moved to lower energies,
i.e. into the gap of the ρβ−σ, which results in a phase AF1 that is less itinerant when
compared with the cubic case shown in Fig. (3.11), for which the ρβ±σ is symmetric.

3.2.7 Phase diagram of tetragonal lattice for c/a

The results presented so far in this section have been obtained considering small
deviations from the cubic lattice, for the parameters c/a and r. Now, we investigate
how the boundaries of the phases AF1, AF2 and PM behave when the parameters
c/a and r, are changed. Fig. (3.15)(a) exhibit the phase diagram with Hz versus
c/a, for fixedW and r, while Fig. (3.15)(c) exhibit the phase diagram withW versus
c/a, for Hz=0.0 and r fixed. While the phase AF1 is robust to the effects of Hz and
W when c/a is enhanced, the phase AF2 is significantly affected by the increasing
of Hz or W , in this same situation. Nevertheless, while the phase AF2 is favored
by the increasing of c/a when Hz is enhanced, the same phase is suppressed by the
increasing of c/a, when W is enhanced. Such feature is related to the way that Hz

and W affect the p-DOS, maily the ρβ±σ. While Hz shifts ρβσ to lower energies and
ρβ−σ to higher energies, the main effect of W is to increases the width of the bands.
Therefore, the effects of Hz combined with the asymmetry of the DOS ρβ±σ, relative
to the gap (see Fig. (3.14)), are the main reasons for the features present in the phase
diagrams of Figs. (3.15)(a) and (3.15)(c). In Figs. (3.15)(b) and (3.15)(d) it can
be noted that the effect of increasing r keeping c/a fixed, is similar to tthe effect of
keeping r while c/a varies. However, the effects of varying r are much less intense.
The dashed lines in Figs. (3.15)(a) and (3.15)(b) indicate the metamagnetic-like
transitions.
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Figure 3.15: Phase diagram for the tetragonal lattice with Hz and W
versus c/a in the first column and versus r in the second column. All
the transitions shown in the phase diagrams, have first order nature.

3.2.8 Summary on this topic

We have investigated the effects of pressure and magnetic field in z-axes on two
distinct itinerant phases using the UALM. We are assuming that pressure is asso-
ciated with bandwidth variation (W ) and the magnetic field is considered parallel
to this anisotropy direction. The Hund’s rule exchange interaction (J) couples the
gaps φα and φβ in different bands and gives rise to two competing antiferromagnetic
phases AF1 and AF2. The nature between such phases has first-order transition at
low W . In addition, in this section we analysed the UALM model for two cases, the
cubic and the tetragonal lattices.

In order to investigate the effects of Hz for different W , we constructed phase
diagrams with W versus Hz at different temperatures. The results show rich phase
diagrams for both lattices, mainly at T = 0. In a previous section (3.1), we investi-
gated the effects of a magnetic field oriented transverse to the z-axis with the same
UALM model. In that case, for a cubic lattice, the results showed that the increas-
ing of the transverse magnetic field suppresses the phase AF2 while the phase AF1

persist even at higher magnetic fields. In this section, we note an opposite situation,
i. e., the AF1 phase is replaced by the AF2 phase at higher magnetic fields Hz, while
the phase AF1 occurs for lower values of W and lower and intermediate values of
Hz. This dissemblance is related to the fact that the transverse field produces a
spin-dependent momentum shift of the quasi-particles bands. On the other hand,
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Hz splits the bands generating a spin-up and a spin-down sub-band [8]. The increas-
ing in Hz shifts the spin-up and the spin-down sub-bands, to opposite sides, in the
energy axis. The analysis of ρα±σ and ρβ±σ at T = 0, helps us better understand how
the field Hz favors the phase AF2. We demonstrated in Fig. (3.11) that in the phase
AF1, the EF is inside the gaps of ρα−σ and ρβσ, at least. On the other hand, if the EF
is out of the gaps of ρβ±σ, but is still inside the gap of ρα−σ, the system is found in
the phase AF2. Considering the fact that Hz shifts the spin-up and the spin-down
sub-bands in opposite sides in the energy axis, the configuration in which the EF is
out of the gaps of both ρβ−σ and ρβσ, is favored when Hz increases. Moreover, due
to the hybridization gap present in ρα±σ, the gap φα is less affected by the magnetic
field (see Fig. (3.8)), allowing the EF to stay inside the gap of ρα−σ, until higher
values of Hz. Indeed, these are the main reasons for which the AF2 phase is favored
by the magnetic field Hz. The data and analysis discussed here were published in J.
Magn. Magn. Mater. 560, 169531 (2022).

3.3 Competition between conventional and uncon-

ventional SDWs, in cubic lattice, when the mag-

netic field is applied in z-axis

3.3.1 Effect of Hund’s rule exchange interaction (J )

In Fig. (3.16), the phase diagram J/U vs the bandwidth W at T = 0 is shown.
For J = 0, there is a complete decoupling between zβα−Q,σ and zβα−Q,−σ as well as mα

f

and mβ
f (see Eqs. (2.25) and (2.31)). Although the AF1 and AF2 phases appear for

certain W ranges, the IOSDW phase does not exist for any W . When J/U is finite
but very small, the OPs re-couple weakly. As a consequence, besides phases AF1

and AF2 the IOSDW phase begin to appear within a very small range of W . As
J/U increases, the width of the PM region within the phase diagram decreases. This
behavior is accentuated until for a certain J/U threshold, the PM phase disappears
completely. This situation generates a PM dome, where above it there is a direct
transition AF1 → IOSDW → AF2.

https://doi.org/10.1016/j.jmmm.2022.169531
https://doi.org/10.1016/j.jmmm.2022.169531
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Figure 3.16: The phase diagram for J/U versus W for T = 0. The red
point represents a quantum triple point (QTP). AF1 and AF2 are two
antiferromagnetic phases, IOSDW is a exotic inter-orbital spin density
wave and PM is a paramagnetic phase.

In Fig. (3.17) is shown the behaviour of the OPs illustrating the evolution of
the phase diagram in Fig. (3.16). It should be noted that for J = 0 (see Fig.
(3.17-a)) the intermediate PM solution is more stable, although, mβ

f > mα
f = 0.

We remark that the presence of multicritical points in finite T phase diagrams is
entirely dependent on direct transitions between phases AF1 → IOSDW → AF2 at
T = 0. Therefore, for finite T diagrams, we will choose values of J/U where the
direct transition AF1 → IOSDW → AF2 appears at T = 0.

3.3.2 Behavior of order parameters

First, the following results are described in the simple three-dimensional cubic
lattice, where the lattice parameters are equal in all spatial dimensions. For this
case, the dispersion relation is described in Eq. (2.10). The OPs mα

f , m
β
f and zβα−Q,σ

as a function of W at different values of T and without the presence of hz are shown
in Fig. (3.18).
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Figure 3.17: Behavior of the OPs as a function of W for different
values of J/U at T = 0. We can see discontinuities of OPS (mα

f , m
β
f and

zβα−Q,σ).
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Figure 3.18: Behavior of the OPs as a function ofW for different values
of T with hz = 0.

We can also see that at T = 3 and T = 8 the presence of mα
f , m

β
f and zβα−Q,σ

is shown, and at T = 15 the existence of the three OPs, mα
f , m

βα
f and zβα−Q,σ is
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observed only for values of W < 1.02. For values of T = 25 a clear existence
of the OPs mα

f , m
β
f at low values of W is shown. As the temperature starts to

increase and at low magnitudes of W , only the presence of the OPs mα
f and mβ

f is
manifested. On the other hand, it is easy to see in Fig. (3.18) that the three gaps are
exhibited continuously and discontinuously in certain regions of W , which indicates
the occurrence of first-order transitions (dashed lines) and second-order transitions
(continuous lines). The behavior of the OPs for low magnitudes of W shows that
the existence of only mα

f , m
β
f while zβα−Q,σ = 0. As the intensity of W begins to

increase the OPs mα
f = mβ

f = 0 and the OP zβα−Q,σβ = 0. If W continues to increase
we show the existence again of mα

f and mβ
f and again zβα−Q,σ = 0. Thus, for extremely

high intensities of W there is no existence of any of the OPs, i.e., mα
f = mβ

f and
zβα−Q,σ = 0. These transitions reflect the existence of two conventional phases and a
single exotic phase under different magnitudes of W . The two conventional phases
are denoted, AF1 and AF2 while the exotic phase is called IOSDW. The AF1 phase
is characterized by mβ

f > mα
f and zβα−Q,σ = 0, while the AF2 phase occurs when

mα
f > mβ

f and zβα−Q,σ = 0. The IOSDW phase is presented when mβ
f = mα

f = 0 and
zβα−Q,σ 6= 0. Finally the PM phase is found when mβ

f = mα
f = 0 and zβα−Q,σ = 0.

3.3.3 Phases diagram without magnetic field

In this section we present the phase diagram of T versus W resulting from the
compositions of the OPs presented in the previous section. The phases diagrams
are constructed from the coupled equations for mα

f , m
β
f , z

βα
−Q,σ and zβα−Q,−σ (see Eqs.

(2.25) and (2.31)) which must be solved self-consistently. In terms of OPs, AF1

and AF2 appears when mβ
f > mα

f and mα
f > mβ

f , respectively. Both phases have
zβα−Q,σ = zβα−Q,−σ = 0. The IOSDW phase has zβα−Q,σ = −zβα−Q,−σ 6= 0 with mα

f=m
β
f = 0

and the PM appears when zβα−Q,σ = −zβα−Q,−σ = mα
f = mβ

f = 0.
Fig. (3.19) displays the phase diagram T vs W . When the temperature is

lowered, there are a second-order phase transitions from PM to any of phases AF1,
AF2 or IOSDW. Moreover, when W increases at lower T , the two magnetic phases
AF1 and AF2, i.e., phases with time reversal symmetry breaking, are separated by
the non-magnetic IOSDW phases. It appears the phase transitions sequence AF1 →
IOSDW→ AF2, with first order line transitions separating the phases. To complete
the sequence of phase transitions, there is a first order transition AF2 → PM. In
the transition AF1 → IOSDW both mβ

f and mα
f (with mβ

f > mα
f ) collapse and the

IOSDW becomes finite. In the transition IOSDW→ AF2 the opposite happens. The
IOSDW OP collapses and mβ

f and mα
f are abruptly finite. But now with mβ

f < mα
f .

Note that for T = 25, there is only a second order transition AF1 → PM.
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Figure 3.19: Phase diagram of T versus W . The continuous line rep-
resents a second-order transition while the dotted line is a first-order
transition. There are three phases, AF1, AF2 and IOSDW. The two
green points are bicritical points (BCPs) and the red point is a tricriti-
cal point (TCP).

3.3.4 Phase diagrams with magnetic field

In this section we present the evolution of the phase diagram under the presence
of an external magnetic field. In Fig. (3.20), the T vs W phase diagrams are shown
with increasing values of hz. The first significant effect is the lowering the critical
temperatures corresponding to the three transitions PM → AF1, PM → IOSDW
and PM → AF2. This lowering of critical temperatures is more pronounced for the
IOSDW and AF2 phases. Also, the locations of the first-order lines in the phase
transitions AF1 → IOSDW → AF2 and AF2 → PM are displaced to larger values
of the W . These two effects compose what we will call from now on, flattening
of phases. As consequence, there is a slight enlargement in the phase diagram of
the AF1 region at the expense of IOSDW one. The IOSDW and AF2 regions also
enlarge slight at the expense of AF2 and PM ones, respectively. We emphasize that
there is a different size of these effects for each of the phases. Therefore, the AF2

phases are subjected to greater flattening.
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Figure 3.20: Phase diagram T under W for several values of hz. The
continuous line (black color) shows a second-order transition while the
discontinuous lines show a first-order transition. There are three phases,
AF1, AF2 and IOSDW. The green points are bicritical points (BCPs)
and the red point is a Tricritical point (TCP).
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In Fig. (3.21), we fix the values of W in such way that we can evaluate the
evolution of phases AF1, IOSDW and AF2 when hz is varied (proportional to Hz).
We find that the three phases are completely suppressed above a certain value of
hz. However, there is a difference in the value of the suppression value of hz for
each phase, i. e., the IOSDW and AF2 phases have almost the same suppression hz
value while for AF1, the value is clearly smaller. Interestingly, our results indicate
the same process of flattening observed in the T vs W surface occurs in the T vs hz
one. Again, the IOSDW and AF2 phases are more affected by process than AF1.

=0.98

=1.03

=0.996

Figure 3.21: Phase diagram T versus hz for different W values. At
W = 0.98 only exit the AF1 phase, for W = 1.03 exit the IOSDW phase
and at W = 0.996 exit only the AF2 phase.

3.3.5 Quasiparticles dispersion relations

The quasiparticle dispersion relations Eχ
i,σ(k) for the bands α and β are obtained

fromDσ(k, ω) = 0 (see (E.14)). In absence of hz, the evolution of Eχ
i,σ(k) for different

W at T = 0 K is shown in Fig. (3.22). The case of the AF1 phase is shown in Fig.
(3.22 a)). Here, the double arrows indicate approximately the locus of the β and α
gaps. Notice that the EF crosses both α and β gaps. However, as an effect of the Vα
hybridization, the α band crosses the EF near the gap, giving a isolated-itinerant
character for the AF1 phase. In other words, the isolated-itinerant refers to the
situation where FS is reconstructed in only one of the bands. The same isolated-
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V =0.1

AF1 IOSDW

AF2 PM

Figure 3.22: Quasi-particle dispersion relations for: a) W = 1.00
(AF1), b) W = 1.04 (IOSDW), c) W = 1.08 (AF2), d) W = 1.14
(PM) in the absence of the magnetic field hz = 0. The dashed red line
indicates the position of the EF while the black and the blue lines show
the α and β bands, respectively.

itinerant character is observed in the band structure of the IOSDW phase shown
in Fig. (3.22)) b). In contrast, the band structure for the AF2 (see Fig. (3.22) c))
phase indicates a itinerant character.

Fig. (3.23) displays Eχ
i,σ(k) with increasing hz. Due to the spin dependence,

σ = ±1, the number of bands is doubled. The isolated-itinerant nature of the AF1

phase, Fig. (3.23) a), and the metallic nature of the AF2 phase, Fig. (3.23) c), are
maintained despite the increase in the hz. On the other hand, in the IOSDW phase,
Fig. (3.23) b), the increasing of the hz leads the system to a purely itinerant state
(isolated-itinerant→ itinerant). In general, as the hz increases, the system enhances
its itinerant electronic character, redistributing the FS, mainly due to the evolution
from isolated-itinerant → itinerant character of the IOSDW phase.
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Figure 3.23: Quasi-particles dispersion relations at T = 0 for two
distinct values of hz. The purple and green lines represent the spin up
(σ = 1) and spin down (σ = −1), respectively. Results are shown for
the three phases AF1 a), IOSDW b) and AF2 c). The dashed red line is
the EF .
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3.3.6 Multicritical points

The sequence of first and second order phase transitions, that place the non-
magnetic IOSDW phase between the AF1 and AF2 phases shown in Fig. (3.19)
gives rise to two bicritical points (BCPs). The BCP1 is the meeting point of the
second order transitions PM → AF1 and PM → IOSDW with the first order one
AF1 → IOSDW. While the second bicritical point BCP2 involve AF2 instead of AF1.
Moreover, there is also a TCP in the transition AF2 → PM.

The locations of BCP1, BCP2 and TCP in Figs. (3.20)(a)-(c)) when hz increases,
reflects the process of flattening of the phases mentioned above. The effects of such
process in the location of these multicritical points can be seen in the details in
Fig. (3.24). The mentioned process appears in the shift of the positions of the
multicritical points inW as hz increases. It can be seen that the BCP1 is less shifted
as compared to the BCP2 and the TCP. On the other hand, the displacement of the
TCP is even more pronounced than that of BCP2.

In Fig. (3.21), the phase transition lines feature three TCPs, TCP1, TCP2 and
TCP3 which are related to the transition lines AF1 → PM, IOSDW → PM and
AF2 → PM, respectively. The process of flattening of the phases AF1, IOSDW
and AF2 appears clearly in the ordering in T and hz of each of the TCP’s since
TTCP1 > TTCP2 > TTCP3 while hzTCP1 < hzTCP2 < hzTCP3 .

BCP1 BCP2 TCP

hz
hz

hz
hz

hz

= 0 [T]
13 [T]
24 [T]
33 [T]
42 [T]

hz 52 [T]
hz 57 [T]

Figure 3.24: Evolution of the bicriticals points (BCPs) and tricritical
point (TCPs) when hz increases.
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3.3.7 Summary about this topic

This section has described, within a mean field approximation, the emergence of
multicritical points coming from the competition among phases with different OPs,
which have distinct parity properties. Again we have used the UALM and we obtain
three distinct types of long-range order: (a) two conventional SDWs (AF1 and AF2)
and, (b) the non-magnetic inter-orbital spin density wave (IOSDW). This exotic
SDW is described by a purely imaginary OP that mixes the α and β bands. The
conventional SDWs are described by the real magnetization of each band mα

f and
mβ
f , where AF1 and AF2 are defined by mβ

f > mα
f and mα

f > mβ
f , respectively. It is

worth mentioning that the existence of a non-magnetic SDW has been suggested in
other context such as iron superconductors [56].

The competition among phases takes place with the variation of the W and hz.
In the absence of hz, the phase diagram T vs W displays at low T a sequence of
first-order phase transitions AF1 → IOSDW → AF2. We also found two BCP. The
first one, called BCP1, is the intersection of the second-order line transitions PM→
AF1 and PM → IOSDW with the first order one AF1 → IOSDW. For the second
BCP, called BCP2, AF1 is replaced by AF2. Lastly, there is a TCP in the transition
AF2 → PM. The location of the BCPs indicates that their existence is a direct result
of the distinct parity property under TRS of the phases AF1, AF2 and IOSDW. This
is in agreement with general arguments based on a Landau free energy expansion.

When hz is turned on, there are important changes in the IOSDW phase and
more markedly in the AF2 one. These two phases flatten out which means that
they stabilize at lower T but with higher W values as compared to the situation
without hz. This is reflected in the location of BCP2 and TCP. The evolution
of their locations with the field shows the tendency for these multicritical points
to disappear because of the flattening process of AF2 and IOSDW. The different
behavior of the phases when applying hz is related to the very nature of each one.
The AF1 is isolated-itinerant and the AF2 is totally itinerant. These two phases
retain the same nature when the hz is applied. Nevertheless, the IOSDW phase
change its nature when the field is applied. While one of the bands always has the
same FS and the other band has a totally constructed. The gradual change from
isolated to itinerant is the ultimate cause that leads the IOSDW phase to have the
flattening process more accentuated than AF1 phase, although not as much as the
AF2 one. The data and analysis discussed here were published in J. Phys.: Condens.
Matter 33, 295801 (2021).

https://doi.org/10.1088/1361-648X/abe476
https://doi.org/10.1088/1361-648X/abe476


Chapter 4

General conclusions

To conclude, we have shown that the Underscreened Anderson Lattice Model
(UALM) has a varied number of phase diagrams, which exhibit multiple critical
points. The model shows that, although the 5f -bands hybridize asymmetrically
with the conduction band, the Hund’s rule interaction directly couples the two
independent 5f-bands. We have shown that the UALM is a microscopic realization
of the situation envisaged in Ref. [57] that considers a Landau-Ginzburg free energy
containing a linear coupling between two AF order parameters, in the case i) with
two conventional SDWs (AF1 and AF2) when the magnetic field is applied in x-axis.

As a result, for the case ii) we observed that for a tetragonal lattice, there is
the presence of metamagnetic-like transitions which occurs in both AF phases under
the application of a magnetic field Hz. We highlight that such phenomelogy, the
metamagnetic-like transitions inside the antferromagnetic phases have been reported
in some antiferromagnetic heavy fermions [34] which also present a competition
between two distinct antiferromagnetic phases.

For the case iii) we believe that our results with two conventional SDWs and one
exotic SDW, the evolution of multicritical points with W and hz as described here
may be more general. For instance, motivated by the concept of adiabatic continuity
[58], one may suggest the possibility that the present problem with three OPs (two
of them real and one purely imaginary) can be described in a unified way in a single
OP. That would be similar to the interesting proposal made by Haule and Kotliar
that a complex OP accounts for the behavior of URu2Si2 under W and hz [49]. In
such scenario, it would be necessary to re-interpret the multicritical points. We are
currently investigating this possibility, in another work in progress. We propose the
IOSDW phase, which mixes bands, as an alternative in the study of the HO problem
present in URu2Si2, due to the fact that it does not exhibit magnetic momentum
formation. Finally, we highlight that our results show a detailed evolution of multi-
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critical points when pressure and magnetic field are applied simultaneously. As far
as we know, there are few theoretical results in the literature showing this particu-
lar evolution. Although our results refer to a specific model of two 5f degenerate
narrow bands, they can shed light on the growing field of the multicritical (classical
and quantum) points in the physics of uranium compounds. In general terms, we
emphasize that the identification of multicritical can provide relevant information
on the conventional and unconventional phases present in uranium compounds.



Chapter 5

Future works

• To study the possibility of describing the two conventional SDWs and the
non-conventional SDW phase by means of a single real-complex OP.

• Verify the possible solutions with conventional SDW and unconventional SDW
when spin-orbit coupling is included in the UALM.

• Specifically testing the UALM with spin-orbit coupling is able to describe
the superconducting phase present in URu2Si2 through fluctuations of the
unconventional SDW phase.

• Specifically testing the UALM with spin-orbit coupling is able to describe the
multiple superconducting phases in UTe2 via magnetic fluctuations.

• Investigate the effects of hybridization, Coulomb interactions, Hund’s rule, and
spin-orbit coupling using the tetragonal lattice (URu2Si2) and a symmetric
orthorbombic central structure (UTe2).

• Verify the effects of varying pressure and/or magnetic field on the phases
eventually found in the UALM with SOC.
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Appendix A

Second quantization formalism

The second quantization formalism was initiated by Paul M. Dirac1 for bosons,
and was extended to fermions by Eugene Wigner2 and Pascual Jordan3 with the
transformation that bears his name. When working with a fairly large number of
particles it is indispensable to introduce the second quantization formalism, which
is able to greatly simplify manipulations of multi-particle states. Thus, we begin by
defining a convenient way of specifying multi-particle states of identical particles,
called the occupation number representation. We define a set of single-particle
states, {|1〉, |2〉, |3〉, · · · } that form a complete orthonormal basis for the single-
particle Hilbert space H (1). Next, we construct multi-particle states by defining
the number of particles that are present in the |1〉 state denoted n1 and so on. In
this way,

|n1, n2, n3, . . . 〉 (A.1)

is defined as the appropriate multi-particle state.

A.1 Fock space

The second quantization formalism allows us to interpret quantum fields in terms
of particles. Each quantum state can be interpreted as a vector in Fock space. We
can make the representation of the occupation number more convenient to work with
by defining an "extended" Hilbert space, called Fock space, which is the space of
bosonic/fermionic states for an arbitrary number of particles. In the formal language

1Paul Adrien Maurice Dirac: Born on August 8, 1902, England. Deceased on October 20, 1984,
U.S.

2Eugene Wigner: Born on November 17, 1902, Austria-Hungary. Deceased on January 1, 1995,
U.S.

3Pascual Jordan: Born on October 18, 1902, German Empire. Deceased on July 1, 1980, West
Germany.
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of linear algebra, the Fock space can be written as

H F
S/A = H (0) ⊕H (1) ⊕H (2)

S/A ⊕H (3)
S/A ⊕H (4)

S/A ⊕ · · · , (A.2)

where, ⊕ represents the direct sum operation, which combines vector spaces
by directly grouping their basis vectors into a larger basis set. The subscript S/A
depends on whether we are dealing with bosons (S) or fermions (A). If H1 has
dimension d1 and H2 has dimension d2, then H1 ⊕H2 has dimension d1 + d2.

As a result any multiparticle state written in the occupancy number representa-
tion |n1, n2, n3, . . . 〉 is present in the Fock space, H F

S/A, forming a complete basis for
H F

S/A. Also, in the Eq. (A.2) the first term H (0) is the "0-particle Hilbert space",
which contains only one state vector given as

|∅〉 ≡ |0, 0, 0, 0, . . . 〉. (A.3)

The last Eq. (A.3) is the vacuum state, in which has no particles and follows
the standard normalization 〈∅|∅〉 = 1.

A.2 Second quantization for fermions

The creation operator for fermions can be defined as:

ĉ†u|n1, n2, . . . , nu, . . . 〉 =

(−1)n1+n2+···+nu−1 |n1, n2, . . . , nu−1, 1, . . . 〉 if nu = 0

0 if nu = 1

= (−1)n1+n2+···+nu−1 δnu0

∣∣n1, n2, . . . , nu−1, 1, . . .
〉
.

(A.4)

• If state u is unoccupied, then ĉ†u increments the occupation number to 1, and
multiply the state by a factor of magnitude (−1)n1+n2+...+nu−1 (i.e, +1 if there
is an even number of occupied states preceding u, and −1 if there is an odd
number). Note that this definition requires that the states of a single particle
be ordered in order to be able to speak of states ”prior” to u.

• If u is occupied, applying ĉ†u yields a zero vector and according to the Pauli
exclusion principle, there can be no occupancy greater than 1,

The annihilation operator for fermions is the conjugate operator, ĉu. We proceed
to take the Hermitian conjugate of the creation operator:

〈n1, n2, · · · , nu, · · · |ĉu = (−1)n1+n2+···+nu−1δnu0 〈n1, n2, · · · , nu−1, 1, · · · |. (A.5)
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Now, multiplying by |n′1, n
′
2, ...〉 we have that

〈n1, n2, · · · , nu, · · · |ĉu|n
′
1, n

′
2,···〉 = (−1)n1+···+nu−1δn1

n
′
1

· · · δnu−1

n
′
u−1

(δnu0 δ1
n′u

)δ
nu+1

n
′
u+1

· · · (A.6)

deducing finally that

ĉu|n′1, . . . , n′u, . . . 〉 =

 0 if n′u = 0

(−1)n
′
1+···+n′u−1|n′1, . . . , n′u−1, 0, . . . 〉 if n′u = 1.

= (−1)n
′
1+···+n′u−1 δ1

n′u

∣∣n′1, . . . , n′u−1, 0, . . .
〉
.

(A.7)

• if the state u is occupied, applying ĉu decreases the occupancy number to 0,
and multiplies the status by the factor of ±1.

• If the state u is unoccupied, then applying ĉu gives the zero vector.

With the definitions of creation/annihilation operators already established, we
can demonstrate the following anticommutation relations.

{ĉu, ĉv} =
{
ĉ†u, ĉ

†
v

}
= 0 (A.8)

and {
ĉu, ĉ

†
v

}
= δu,v (A.9)

where, {·, ·} denotes an anticommutator defined by{
Â, B̂

}
= ÂB̂ + B̂Â. (A.10)

This anticommutation relations can be derived by taking matrix elements with
occupation number states. We will demonstrate that

{
ĉu, ĉ

†
v

}
= δu,v. Thus, we

consider creation/annihilation operators acting on the same single-particle state u

〈
. . . , nu, . . .

∣∣ĉuĉ†u∣∣ . . . , n′u, . . . 〉 = (−1)n1+···+nu−1(−1)n
′
1+···+n′µ−1 δnu0 δ0

n′u

×
〈
n1, . . . , nu−1, 1, . . .

∣∣n′1, . . . , n′u−1, 1, . . .
〉

= δ0
n′u
· δn1

n′1
δn2

n′2
· · · δnun′u , · · ·

(A.11)

using a similar calculation,

〈
. . . , nu, . . .

∣∣ĉ†uĉu∣∣ . . . , n′u, . . . 〉 = δ1
n′u
· δn1

n′1
δn2

n′2
· · · δnun′u · · · . (A.12)

Now, adding these two previous Eqs. and using that δ0
n′u

+ δ1
n′u

= 1 we have
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〈
. . . , nu, . . .

∣∣ {ĉu, ĉ†u} ∣∣ . . . , n′u, . . . 〉 =
〈
. . . , nu, . . .

∣∣ . . . , n′u, . . . 〉 (A.13)

Therefore, {
ĉu, ĉ

†
u

}
= Î . (A.14)

The next step is to prove that
{
ĉu, ĉ

†
v

}
= 0 for u 6= u. Thus, by taking elements

of the matrix:〈
. . . , nu, . . . , nv, . . .

∣∣ĉuĉ†v∣∣ . . . , n′u, . . . , n′v, . . . 〉 = (−1)n1+···+nu−1(−1)n
′
1+···+n′v−1 δnu0 δ0

n′v

×
〈
. . . , 1, . . . , nv, . . .

∣∣ . . . , n′u, . . . , 1, . . . 〉
= (−1)n

′
u+···+n′v−1 δn1

n′1
δn2

n′2
· · ·
(
δnu0 δ1

n′u

)
· · ·
(
δnv1 δ0

n′v

)
· · ·

= (−1)1+nu+1+···+nv−1 δn1

n′1
δn2

n′2
· · ·
(
δ0
nuδ

1
n′u

)
· · ·
(
δ0
n′v
δ1
nv

)
· · ·〈

. . . , nu, . . . , nv, . . .
∣∣ĉ†ν ĉu∣∣ . . . , n′u, . . . , n′v, . . . 〉 = (−1)n1+···+nv−1(−1)n

′
1+···+n′u−1 δnv1 δ1

n′u

×
〈
. . . , nu, . . . , 0, . . .

∣∣ . . . , 0, . . . , n′v, . . . 〉
= (−1)nu+···+nv−1 δn1

n′1
δn2

n′2
· · ·
(
δnu0 δ1

n′u

)
· · ·
(
δnv1 δ0

n′v

)
· · ·

= (−1)0+nu+1+···+nv−1 δn1

n′1
δn2

n′2
· · ·
(
δnu0 δ1

n′u

)
· · ·
(
δnv1 δ0

n′v

)
· · ·

(A.15)

.
The two equations differ by a factor of −1, so adding them gives zero, checking{

cu, c
†
v

}
= δuv as stated in (A.9). We emphasize that due to the definitions of the cre-

ation and annihilation operators, the derivation of the fermionic anti-commutation
relations is rather tedious because of the (−1)(··· ) factors. Finally, we note that in
our work, the creation/annihilation operators can exhibit k-momentum, i site and
spin σ = ±1 dependence. This appendix can be viewed at Ref. [65] as a free access
textbook and in the Refs. [66, 67].



Appendix B

Density of states (DOS)

Before making a study for high spatial dimensions, we will investigate the be-
havior of the εσ(k) dispersion relation and its effects, depending on the spatial
dimension. The dispersion relation εσ(k) for a d-dimensional simple cubic lattice is
formally presented as:

εσ(k) = 2tσ

d∑
n=1

cos(kna), (B.1)

where a is the distance between the sites of lattice. If kn is independent of
each other, it implies that εkσ corresponds to an independent sum of 2tσ cos(kn).
This independent behavior can be seen in Fig. (B.1), where we show different DOS
from a 1-dimensional to 5-dimensional simple cubic lattice. In these dimensions the
dispersion relation is given by Eq. (B.1). In the case of d ≤ 3, we can see that the
DOS is governed by van Hove’s singularities and its configuration is very different
from the Gaussian distribution obtained in d → ∞. Now if we look at the case of
lattice with spatial dimensions higher than three (d > 3) we can see that the DOS
is closer to a well-defined Gaussian dispersion. The fact that in a spatial dimension
lattice five (d = 5) has a Gaussian type DOS allows us to approximate all other
remaining dimensions greater than five (d > 5) , such as infinite spatial dimension
lattice (d→∞).
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Figure B.1: DOS as function of ω of free electrons in a simple lattice
from one dimension to d→∞.

The limit of infinite spatial dimension (d → ∞), that is, the limit where the
coordination number Z tends to infinity, allows the construction of a dynamic mean
field theory, where the propagator G(ω), the

∑
(ω) self-energy and partition function

are the most important quantities to obtain. Since the self-energies are dynamic,
the results in d→∞ are also, thus allowing to write the effects of correlations such
as metal-insulator transitions, effect of temperatures on transport properties, dy-
namic excitations particle-hole in optical conductivity, and others interesting physic
problems [59, 60, 61, 62, 63].

When we are in a high spatial dimension (d → ∞) we can transform the sum
of momentum into an integral, where the DOS becomes a constant of integration.
This DOS is given as

ρ =
1

2D
, (B.2)

where D correspond to the spatial dimension and the f(d)-bands become inte-
gration variables so we can define the following.

• The conduction band is given by

εd(k) = ε. (B.3)

• When include the nesting term Q, the conduction band is

εd(k + Q) = −ε. (B.4)

• We also have to find the relations between the f -bands ( α and β ). First
there is a band-centering term called εf = 0.3. So each of the bands can be
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written as,
Eχ
f (k) = εf + εf (k) (B.5)

where ef = −0.3ε. Therefore, the α and β bands are given by

Eα
f (k) = 0.3− 0.3ε (B.6)

and
Eβ
f (k) = 0.3− 0.3ε. (B.7)

• When we include the nesting term the dispersion relations are

Eα
f (k + Q) = 0, 3 + 0, 3ε (B.8)

and
Eβ
f (k + Q) = 0, 3 + 0, 3ε. (B.9)

Finality, the bands are represented by terms that do not have k-momentum
dependence, lowering the complexity of system.



Appendix C

Mean Field Approximation

A study of particle interactions can often be very complicated, because the in-
dividual motion of a particle depends on the spatial positions of the surrounding
particles, which form a system, for example, in charged particle systems that have
interaction between them through the Coulombian forces. However, being a very
complicated problem, today we have solutions to problems that do not include corre-
lation between electrons, which allows us to develop good approximations to various
physical systems of interest. In certain case studies, we can consider average cor-
relations between electrons, thus allowing the effects of one particle on another to
be described by an average density or medium field, thus creating a problem of a
particle embedded in a effective mean field. The Fig. (C.1) shows the general idea of
a particle immersed in an effective mean field. However, there are a wide variety of
examples using this mean field method and its applications allow us to show various
physical phenomena.

Motivated by the nesting effects found on the Fermi surface (FS) in the HO state
in the composite URu2Si2 and by the type of symmetry that can be broken in the
proposed model to describe this system, the suggested OP to characterize the HO
state is given by the correlation function as,

zχχ
′

q,σ =
1

N

∑
k

〈f †χk+q,σf
χ′

k,σ〉 . (C.1)

In order to describe the exotic SDW state in 5f electron systems, we can consider
explicitly the nesting effect of the FS found experimentally, so

zχχ
′

q,σ = zχχ
′

q,σ δQ,q. (C.2)
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Figure C.1: Representation of the mean field idea. On the left we show
a real physical system in which it has correlation between all particles.
In the right figure we show a particle (black color) which is in interaction
with the rest of the particles (gray color) through an effective field.

If it were nonzero, it would represent a special kind of inter-orbital spin wave
density (IOSDW) or exotic SDW. An mean field approximation consists in consid-
ering that the deviations of the values assumed by a variable in relation to its mean
value are small. This consideration serves to "uncouple" product from operators.
Generally given two operators Ai, we can write Ai = 〈Ai〉 + δAi, this allows we to
make a problem self-consistent when we have two operators

A1A2 = 〈A1〉A2 + 〈A2〉A1 − 〈A1〉 〈A2〉 . (C.3)

Then, the mean values of the operators appear in the Hamiltonian itself, which
must be calculated. The general representation of Green’s functions for two bands
χ, χ′ of itinerant f -electrons with spin σ are given as,

ωGχχ′

ff,σ(k,k′, ω) = δkk′δσ,σ′δ
χχ 〈〈[fχkσ, Ĥ]; fχ

′

k′σ〉ω〉 , (C.4)

or also

ωGχχ′

ff,σσ′(k,k
′, ω) = δk,k′δσσ′δ

χχ′ + 〈〈
[
fχk,σ, Ĥ1

]
〉〉
ω

+ 〈〈
[
fχk,σ, Ĥ2

]
〉〉
ω

+ ... (C.5)

With mean field theory we can find the various OP of both the conventional
SDW states and the exotic SDW.



Appendix D

General formulation of two
conventional SDWs

We include an applied magnetic field oriented to the z-axis, which introduce an
additional term into the Hamiltonian Ĥext = Ĥf

ext + Ĥd
ext, where

Ĥf
ext = −Γf

∑
k

(f †k,↑fk,↓ + f †k,↓fk,↑) (D.1)

with
Γf = gfµBhx. (D.2)

The term Ĥd
ext is the same as Eq. (D.1), except that the f operators and the

gyromagnetic factor gf are replaced by doperators and gd, respectively. The temporal
and spatial Fourier transform of the single-electron f -f Green’s function, within the
Hartree-Fock approximation, satisfy the equations of motion given by:

[ ω − Ẽα
f (k) ] Gα,χ′

ff,σ(k, k′, ω) = δα,χ
′
δk,k′ δσ,σ′

+ Vα(k) Gχ′

df,σσ′(k,k
′, ω)− Γf G

β,χ′

ff,−σ,σ(k,k′, ω)

+φασ G
α,χ′

ff,σ,σ′(k + Q,k′, ω)

(D.3)

and

[ ω − Ẽβ
f (k) ] Gβ,χ′

ff,σ,σ′(k,k
′, ω) = δβ,χ

′
δk,k′ δσ,σ′

+ Vβ(k) Gχ′

df,σ,σ′(k,k
′, ω)− Γf G

α,χ′

ff,−σσ′(k,k
′, ω)

+φβσ G
β,χ′

ff,σ,σ′(k + Q,k′, ω).

(D.4)
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The spin-independent Hartree-Fock dispersion relation Ẽχ
f (k) is given by

Ẽχ
f (k) = Eχ

f (k) +
∑
χ′

(
(U − J)

nχ
′

f

2
(1− δχ,χ′) + U

nχ
′

f

2

)
(D.5)

where the real function φχσ is given by

φχσ =
∑
χ′

(
Umχ′η(−σ) + (U − J)mχ(1− δχ,χ′)η(σ)

)
. (D.6)

The mixed f -d Green’s function satisfies the equation below

[ ω − ε(k) ] Gχ′

df,σ,σ′(k,k
′, ω) = Vα(k)∗ Gα,χ′

ff,σ,σ′(k,k
′, ω)

+ Vβ(k)∗ Gβ,χ′

ff,σ,σ′(k,k
′, ω)− Γd G

χ′

df,−σ,σ′(k,k
′, ω). (D.7)

We will choose a basis set for the f orbitals, such that Vβ(k) = 0 and Vα(k) =

Vα simply to avoid the transformation to a new basis set. The choice of basis
states should not change the main physical results, as discussed in ref. [7]. The
Green’s function equation of motions given in Eqs. (F.44)-(F.46) form a closed set
of equations, which can be solved exactly. The equations can be expressed in the
matrix form

Πχ(k, ω) Gχχ′(k,k’, ω) = δχ
′
(k,k’) (D.8)

where

Gχχ′(k,k’, ω) =


Gχχ′

ff,σσ′(k,k’, ω)

Gχχ′

ff,σσ′(k + Q,k’, ω)

Gχχ′

ff,−σσ′(k,k’, ω)

Gχχ′

ff,−σσ′(k + Q,k’, ω)


Πχ(k, ω) =

ω − Ẽχf (k)− ξ
′χ
Γ (k) −φχσ γ

′χ
Γ (k) 0

−φχσ ω − Ẽχf (k + Q)− ξ
′χ
Γ (k + Q) 0 γ

′χ
Γ (k + Q)

γ
′χ
Γ (k) 0 ω − Ẽχf (k)− ξ

′χ
Γ (k) −φχ−σ

0 γ
′χ
Γ (k + Q) −φχ−σ ω − Ẽχf (k + Q)− ξ

′χ
Γ (k + Q)


and

δχ
′
(k,k’) =


δχχ

′
δk,k’δσσ′

δχχ
′
δk+Q,k’δσσ′

δχχ
′
δk,k’δ−σσ′

δχχ
′
δk+Q,k’δ−σσ′


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with ξ
′χ
Γ (k) = ξχΓ(k)(δχα + (1− δχβ)), γ

′χ
Γ (k) = γχΓ(k)(δχα + (1− δχβ)) where

ξχΓ(k) =
(ω − εd(k)) |Vχ|2

(ω − εd(k))2 − Γ2
d

(D.9)

and
γχΓ(k) = Γf −

Γd |Vχ|2

(ω − εd(k))2 − Γ2
d

. (D.10)

Now, when Vβ = 0, by using Eq. (D.8), the Green’s function can be explicitly
written as

Gβχ′

ff,σσ′(k,k’, ω) = δβχ
′
δk,k’δσσ′×

[Dβ
0−σ(ω,k)(ω − Ẽβ

f (k + Q))− Γ2
f (ω − Ẽ

β
f (k))]

|Aβ|
, (D.11)

Gβχ′

ff,σσ′(k + Q,k’, ω) = δβχ
′
δk+Q,k’δσσ′ ×

[Γ2
fφ

β
−σ + φβσD

β
0−σ(ω,k)]

|Aβ|
(D.12)

where

Dβ
0σ(ω,k) = (ω − Ẽβ

f (k + Q))(ω − Ẽβ
f (k))− (φβσ)2 (D.13)

and

|Aβ| = Dβ
0σ(ω,k)Dβ

0−σ(ω,k) + Γ2
f [Γ

2
f − 2φβσφ

β
−σ]

−Γ2
f [(ω − Ẽ

β
f (k))2 + (ω − Ẽβ

f (k + Q))2]. (D.14)

Moreover
Gαχ′

ff,σσ′(k,k’, ω) = δαχ
′
δk,k’δσσ′

(ω − ε(k))

|Aα|
Aα1σ(ω,k), (D.15)

Gαχ′

ff,σσ′(k+Q,k’, ω) = δαχ
′
δk+Q,k’δσσ′A

α
2σ(ω,k)× (ω − ε(k))(ω − ε(k + Q))

|Aα|
(D.16)

where

Aα1σ(ω,k) = Dα
0 (ω,k)(Dα

0 (ω,k + Q))2 − (γααΓ (k + Q))2

×Dα
0 (ω,k)(ω − ε(k + Q))2 − (φα−σ)2Dα

0 (ω,k + Q)

× (ω − ε(k + Q))(ω − ε(k)) (D.17)
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and

Aα2σ(ω,k) = φασ [Dα
0 (ω,k)Dα

0 (ω,k + Q)− (φα−σ)2(ω − ε(k))

× (ω − ε(k + Q))] + φα−σγ
αα
Γ (k)γααΓ (k + Q)(ω − ε(k))

× (ω − ε(k + Q)) (D.18)

with

|Aα| = [Dα
0 (ω,k)Dα

0 (ω,k + Q)− (φα−σ)2(ω − ε(k + Q))(ω − ε(k))]

[Dα
0 (ω,k)Dα

0 (ω,k + Q)− (φασ)2 × (ω − ε(k + Q))(ω − ε(k))]

+ [(γααΓ (k))2(γααΓ (k + Q))2 − 2φασφ
α
−σγ

αα
Γ (k)γααΓ (k + Q)]×

(ω − ε(k))2(ω − ε(k + Q))2 − (γααΓ (k))2(Dα
0 (ω,k + Q))2(ω − ε(k))2

− (γααΓ (k + Q))2(Dα
0 (ω,k))2(ω − ε(k + Q))2 (D.19)

where φχσ, γ
χχ
Γ (k) and Dα

0 (ω,k) are defined in Eqs. (E.10), (??) and (D.26), re-
spectively. From the equations |Aβ| = 0 and |Aα| = 0, the spin independent quasi-
particles energies Eγ where γ is the number of solutions. For γχΓ(k) ≈ Γf and
ξχΓ(k) ≈ |Vχ|2

(ω−εd(k))
, the equation |Aβ| = 0 has γ = 1...4 while |Aα| = 0 has γ =1...8.

Thus, the Green’s function Gββ
ff,σ(k,k + Q, ω) with hx = 0 acquires a simple form

given by:

Gββ
ff,σ(k,k + Q, ω) = φβσ

(
|B̃+(k)|2

ω − E+(k)
+
|B̃−(k)|2

ω − E−(k)

)
(D.20)

where the spin-independent quasi-particle bands E±(k) are

E±(k) =

(
Ẽβ
f (k) + Ẽβ

f (k + Q)

2

)
±Xk (D.21)

with

Xk =

√
Ẽβ
f (k)− Ẽβ

f (k + Q)

2
+ (Umβ

f + Jmα
f )2 (D.22)

and the spectral weights |B̃±(k)|2 in Eq. (D.20) found as

|B̃±(k)|2 = ±1

2

1√
Ẽβf (k)−Ẽβf (k+Q)

2
+ (Umβ

f + Jmα
f )2

. (D.23)

Meanwhile, the α-band has no simple form for the Green’s function Gαα
ff,σ(k,k+
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Q, ω),

Gαα
ff,σ(k,k + Q, ω) = φασ

(ω − εd(k))(ω − εd(k + Q))

Dα(ω,k)
(D.24)

with

Dα(k, ω) = Dα
0 (ω,k) Dα

0 (ω,k + Q) (D.25)

−(Umα
f + Jmβ

f )2(ω − εd(k))(ω − εd(k + Q))

and
Dα

0 (k, ω) = (ω − Ẽα
f (k)) (ω − εd(k))− |Vα|2. (D.26)

The equation of motion for Green’s function are in Appendix (F).



Appendix E

Formulation of two conventional
SDWs and one Exotic SDW

We assume the intra-orbital spin density wave (for both χ-orbitals) and the spin-
dependent inter-orbital density wave instabilities occur at the same nesting vector
Q of the cubic lattice. Therefore, for the correlations functions give in Eqs. (2.22)
and (2.23), we make the ansatz:

zχ
′χ

q,σ = zχ
′χ

Q,σδq,Q (E.1)

and
nχχq,σ = nχχσ δq,0 + nχχQσδq,Q. (E.2)

In order to describe the system we must use Green’s function theory (see Ap-
pendix (F) and Appendix (F.2)). Thus, the complete set is given by the spatial
and temporal Fourier transform of the single electron Green function to χ = α and
χ = β by the equation of motion of the form

[ω − Ẽαfσ(k)]Gα,χ
′

ff,σ(k,k′, ω) = δα,χ
′
δk,k′

+Vα(k)Gχ
′

df,σ(k,k′, ω) + κβα−Q,σG
β,χ′

ff,σ(k + Q,k′, ω)

+φαα−Q,σG
α,χ′

ff,σ(k + Q,k′, ω)

(E.3)

and

[ω − Ẽβfσ(k)]Gβ,χ
′

ff,σ(k,k′, ω) = δβ,χ
′
δk,k′

+Vβ(k)Gχ
′

df,σ(k,k′, ω) + κβαQ,σG
α,χ′

ff,σ(k−Q,k′, ω)

+φββQ,σG
β,χ′

ff,σ(k−Q,k′, ω),

(E.4)
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[ ω − ε̃(k)] Gχ′

df,σ(k,k′, ω) =

Vα(k)∗Gα,χ′

ff,σ(k,k′, ω) + Vβ(k)∗Gβ,χ′

ff,σ(k,k′, ω),
(E.5)

The temporal and spatial Fourier transform of the single-electron f -f Green’s
functions is completed with the mixed f -d Green’s function equation of motion (see
Eq. (??)) given a closed set which can be solved within a matricial formalism. Thus,
one has

G(k,k′, ω) = (Π(k, ω))−1δ(k,k′) (E.6)

where G(k,k′, ω) is describe by

G(k,k′, ω) =


Gαχ′

ff,σ(k,k′, ω)

Gβχ′

ff,σ(k,k′, ω)

Gαχ′

ff,σ(k + Q,k′, ω)

Gβχ′

ff,σ(k + Q,k′, ω)


and δ(k,k′) as

δ(k,k′) =


δαχ

′
δk,k′

δβχ
′
δk,k′

δαχ
′
δk+Q,k′

δβχ
′
δk+Q,k′

 .

The term Π(k, ω) is a matrix given by


ω − Ẽαfσ(k)− ξ̃α(k) 0 −φαα−Q,σ −κβαQ,σ

0 ω − Ẽβfσ(k)− ξ̃β(k) −καβ−Q,σ −φββ−Q,σ
−φαα−Q,σ −(καβ−Q,σ)∗ ω − Ẽαfσ,(k + Q)− ξ̃α(k + Q) 0

−(κβαQ,σ)∗ −φββ−Q,σ 0 ω − Ẽβfσ(k + Q)− ξ̃β(k + Q)

 .

In the matrix Π(k, ω) the mean field dispersion relation Ẽχ
f (k) is given by

Eχ
fσ(k) = Eχ

f (k)− σHf
z +∑

χ′

(
Unχ

′χ′

−σ + (U − J)nχ
′χ′

σ (1− δχ,χ′)
)
. (E.7)

One also has

ξχ(k, ω) =
|Vχ|2

ω − εdσ(k)
[δχα + (1− δχβ)] (E.8)
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with εdσ(k) = ε(k) − σHd
z . The gaps κχ

′χ
−Q,σ and φχχ−Q,σ in the matrix Π(k, ω) are

given as

κχ
′χ
−Q,σ = J zχ

′χ
Q,−σ − (U − J) zχ

′χ
Q,σ (E.9)

and

φχχ−Qσ =
∑
χ′

(U nχ
′χ′

Q,−σ + (U − J) nχ
′χ′

Q,σ (1− δχ,χ′)). (E.10)

The Green functions necessary to obtain the IOSDW and AF order parameters can
be obtained directly from the Eq. (E.6). Therefore, Gβα

f,σ(k,k + Q, ω) is given as

Gβα
f,σ(k,k + Q, ω) = D−1

σ (k,Q, ω)× [|κβα−Q,σ|
3−

(ω − Eβ
f,σ(k + Q))|κβα−Q,σ|(ω − E

α
f,σ(k + Q)− ξα(k + Q))

+ |φαα−Q,σ||κ
βα
−Q,σ||φ

ββ
−Q,σ|]. (E.11)

While Gαα
f,σ(k,k + Q, ω) and Gββ

f,σ(k,k + Q, ω) are:

Gαα
f,σ(k,k + Qω) = D−1

σ (k,Q, ω)× [|φββ−Q,σ|
2|φαα−Q,σ|

− (ω − Eβ
f,σ(k + Q))|φαα−Q,σ|(ω − E

β
f,σ(k))

− |κβα−Q,σ|
2|φββ−Q,σ|] (E.12)

and

Gββ
f,σ(k,k + Q, ω) = D−1

σ (k,Q, ω)× [|φαα−Q,σ|2|φ
ββ
−Q,σ|

− (ω − Eα
f,σ(k)− ξα(k))|φββ−Q,σ|(ω − E

α
f,σ(k + Q)− ξα(k + Q))

− |κβα−Q,σ|
2|φαα−Q,σ|]. (E.13)
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The term Dσ(k,Q, ω) in Eqs. (E.11)-(E.12) and (E.13) is explicitly given as:

Dσ(k,Q, ω) = [(ω − Eα
fσ(k)− ξα(k))(ω − Eβ

fσ(k))×

(ω − Eα
fσ(k + Q)− ξα(k + Q))(ω − Eβ

fσ(k + Q)]

− |καβ−Q,σ|
2(ω − Eα

fσ(k)− ξα(k))(ω − Eβ
fσ(k + Q))

− |κβαQ,σ|
2(ω − Eβ

fσ(k))(ω − Eα
fσ(k + Q)− ξα(k + Q))−

(φββ−Q,σ)2(ω − Eα
fσ(k)− ξα(k))(ω − Eα

fσ(k + Q)− ξα(k + Q))

− (φαα−Q,σ)2(ω − Eβ
fσ(k))(ω − Eβ

fσ(k + Q))+

(φαα−Q,σ)2(φββ−Q,σ)2 − (φαα−Q,σ)(φββ−Q,σ)(|κβαQ,σ|
2 + |καβ−Q,σ|

2)

+ |κβαQ,σ|
2|καβ−Q,σ|

2. (E.14)

The equation of motion for Green’s function are in Appendix (F).



Appendix F

Equations of motion of Green’s
function

F.1 Coulombian (U) and Exchange (J) interactions

We can describe by the theory of Zubarev’s Green equations of motion that the
Hamiltonian of Coulombian and Exchange interactions in Hartree-Fock approxima-
tion theory can be expressed as

Ĥ1,int− =

(
U

2

)∑
kk′

∑
q,σ

∑
χ=χ′

[nχq,σf
†χ′
k′−q,−σf

χ′

k′,−σ+f †χk+q,σf
χ
k,σn

χ′

q,−σ−nχq,σn
χ′

q,−σ]. (F.1)

Introducing the property
nχq,σ = nχσδ0,q (F.2)

in the previous Hamiltonian we have after that

Ĥ1,int =

(
U

2

)∑
k,σ

∑
χ=χ′

nχσf
†χ′
k,−σf

χ′

k,−σ+(
U

2

)∑
k,σ

∑
χ=χ′

f †χk,σf
χ
k,σn

χ′

−σ −
(
U

2

)∑
σ

nχσn
χ′

−σ, (F.3)

now, by assembling the equations with the fk operator,[
fχk,σ, Ĥ1,int

]
=
U

2

∑
k′,σ′

∑
χ′χ′′

nχ
′

σ′

[
fχk,σ, f

†χ′′
k′,−σ′f

χ′′

k′,−σ′

]
+
U

2

∑
k′,σ′

∑
χ′χ′′

nχ
′′

−σ′

[
fχk,σ, f

†χ′
k′,−σ′f

χ′

k′,−σ′

]
.
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depreciating the last additive term because it does not affect the system. Like this[
fχk,σ, Ĥ1,int

]
=
U

2

∑
k′,σ′

∑
χ′χ′′

nχ
′

σ′δk,k′δσ,−σ′δ
χχ′′fχ

′′

k′,−σ′ +
U

2

∑
k′,σ′

∑
χ′χ′′

nχ
′′

−σ′δk,k′δσ,σ′δ
χχ′fχ

′

k′,σ′ .

therefore [
fχk,σ, Ĥ

M.F
1,int

]
=
U

2

∑
χ′=χ

nχ
′

−σf
χ
k,σ +

U

2

∑
χ=χ′′

nχ
′′

−σf
χ
k,σ

[
fχk,σ, Ĥ

M.F
1,int

]
= U

∑
χ′=χ

nχ
′

−σf
χ
k,σ. (F.4)

The second term of the interacting Hamiltonian is given by

Ĥ2,int =

(
U − J

2

)∑
kk′

∑
q,σ

∑
χ 6=χ′

[nχq,σf
†χ′
k′−q,σf

χ′

k′,σ +f †χk+q,σf
χ
k,σn

χ′

−q,σ−nχq,σn
χ′

−q,σ], (F.5)

and using the property (F.2) again we can write that

Ĥ2,int =

(
U − J

2

)∑
k,σ

∑
χ 6=χ′

nχσf
†χ′
k′,σf

χ′

k′,σ +

(
U − J

2

)∑
k,σ

∑
χ 6=χ′

f †χk,σf
χ
k,σn

χ′

σ

−
(
U − J

2

)
nχσn

χ′

σ . (F.6)

Like this,

[
fχk,σ, Ĥ1,int

]
=

(
U − J

2

)∑
k′,σ′

∑
χ′ 6=χ′′

nχ
′

σ′

[
fχk,σ, f

†χ′′
k′,σ′f

χ′′

k′,σ′

]
+(

U − J
2

)∑
k′,σ′

∑
χ′ 6=χ′′

nχ
′′

σ′

[
fχk,σ, f

†χ′
k′,σ′f

χ′

k′,σ′

]
, (F.7)

what is equal to

[
fχk,σ, Ĥ1,int

]
=

(
U − J

2

)∑
k′,σ′

∑
χ′ 6=χ′′

nχ
′

σ′δk,k′δσσ′δ
χχ′′fχ

′′

k′,σ′+(
U − J

2

)∑
k′,σ′

∑
χ′ 6=χ′′

nχ
′′

σ′ δk,µ′δσσ′δ
χχ′fχ

′

k′,σ′ (F.8)

then, the bracket is describe as[
fχk,σ, Ĥ1,int

]
=

(
U − J

2

)∑
χ 6=χ′

nχ
′

σ′f
χ′

k,σ +

(
U − J

2

) ∑
χ′ 6=χ′′

nχ
′′

σ f
χ
k,σ.
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Finally, we have that [
fχk,σ, Ĥ1,int

]
= (U − J)

∑
χ 6=χ′

nχ
′

σ f
χ
k,σ.

The third term of the Hamiltonian is written as

Ĥ3,int =

(
J

2

)∑
kk′

∑
qσ

∑
χ

[nχq,σf
†χ
k′−q,−σf

χ
k′,−σ +f †χk+q,σf

χ
k,σn

χ
−q,−σ−nχq,σn

χ
−q,−σ], (F.9)

and again using the property (F.2) we have to

Ĥ3,int =

(
J

2

)∑
kσ

∑
χ

nχσf
†χ
k,−σf

χ
k,−σ +

(
J

2

)∑
kσ

∑
χ

f †χk,σf
χ
k,σn

χ
−σ − nχσn

χ
−σ, (F.10)

so,

[
fχk,σ, Ĥ3,int

]
=

(
J

2

)∑
k′,σ′

∑
χ′

nχ
′

σ′

[
fχk,σ, f

†χ′
k′,−σ′f

χ′

k′,−σ′

]
+(

J

2

)∑
k′,σ′

∑
χ′

nχ
′

−σ′

[
fχk,σ, f

†χ′
k′,σ′f

χ′

k′,σ′

]
, (F.11)

what is equal to

[
fχk,σ, Ĥ3,int

]
=

(
J

2

)∑
k′,σ′

∑
χ′

nχ
′

σ′δk,k′δσ,−σ′δ
χχ′fχk,σ+(

J

2

)∑
k′,σ′

∑
χ′

nχ
′

−σ′δk,k′δσ,σ′δ
χχ′fχk,σ, (F.12)

hence [
fχk,σ, Ĥ3,int

]
= Jnχσf

χ
k,σ. (F.13)

For our fourth term we need the following property

zχχ
′

q,σ =
1

N

∑
k

〈f †χk+q,σf
χ′

k,σ〉 , (F.14)

in which it is realized that
zχχ

′∗
Q,σ = zχ

′χ
−Q,σ. (F.15)
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The previous property allow the Ĥ4,int Hamiltonian to be written as

Ĥ4,int =

(
U − J

2

)∑
kk′

∑
Q,σ

∑
χ 6=χ′

[Zχχ′

Q,σf
†χ′
k′−Q,σf

χ
k′,σ + f †χk+Q,σf

χ′

k,σz
χ′χ
−Q,σ − z

χχ′

Q,σz
χ′χ
−Q,σ]

(F.16)
equal to

Ĥ4,int =

(
U − J

2

)∑
k

∑
Q,σ

∑
χ 6=χ′

zχχ
′

Q,σf
†χ′
k′−Q,σf

χ
k′,σ+

(
U − J

2

)∑
k

∑
Q,σ

∑
χ 6=χ′

f †χk+Q,σf
χ′

k,σz
χ′χ
−Q,σ

−
(
U − J

2

)∑
Q,σ

∑
χ 6=χ′

zχχ
′

Q,σz
χ′χ
−Q,σ. (F.17)

like this,[
fχk,σ, Ĥ4,int

]
=

(
U − J

2

)∑
k′

∑
Q,σ′

∑
χ′ 6=χ′′

zχ
′χ′′

Q,σ′

[
fχk,σ, f

†χ′′
k′−Q,σ′f

χ′

k′,σ′

]
(F.18)

(
U − J

2

)∑
k′

∑
Q,σ′

∑
χ′ 6=χ′′

[
f †χ

′

k′+Q,σ′f
χ′′

ku′,σ′
zχ
′′χ′

−Q,σ′

]
,

so, we have[
fχk,σ, Ĥ

M.F
4,int

]
=

(
U − J

2

)∑
k′

∑
Q,σ′

∑
χ′ 6=χ′′

Zχ′χ′′

Q,σ′ δk,k′−Qδσσ′δ
χχ′′fχ

′

k′,σ′ (F.19)

+

(
U − J

2

)∑
k′

∑
Q,σ′

∑
χ′ 6=χ′′

Zχ′′χ′

−Q,σ′δk,k′+Qδσσ′δ
χχ′fχ

′′

k′,σ′ . (F.20)

hence [
fχk,σ, Ĥ4,int

]
=

(
U − J

2

)
Zχ′χ

Q,σf
χ′

k+Q,σ +

(
U − J

2

)
Zχ′χ
−Q,σf

χ′

k−Q,σ. (F.21)

Finally [
fχk,σ, Ĥ4,int

]
= (U − J)Zχ′χ

Q,σf
χ′

k+Q,σ. (F.22)

the end term is given by

Ĥ5,int =

(
J

2

)∑
kk′

∑
qσ

∑
χ 6=χ′

[zχχ
′

q,σ f
†χ′
k′−q,−σf

χ
k′,−σ + f †χk+q,σf

χ′

k,σz
χχ′

−q,−σ − zχ
′χ

q,σ z
χ′χ
−q,σ], (F.23)
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and using the property (F.2)

Ĥ5,int =

(
J

2

)∑
k

∑
Qσ

∑
χ 6=χ′

Zχχ′

Q,σf
†χ′
k−Q,−σf

χ
k,−σ +

∑
k

∑
Qσ

∑
χ 6=χ′

f †χk+Q,σf
χ′

k,σZ
χ′χ
−Q,−σ

− zχ
′χ

Q,σz
χ′χ
−Q,σ, (F.24)

which can be written as[
fχk,σ, Ĥ4,int

]
=

(
J

2

)∑
k′

∑
Q,σ′

∑
χ′ 6=χ′′

zχ
′χ′′

Q,σ′

[
fχku,σf

†χ′′
k′−Q,−σ′f

χ′

k′,−σ′

]
+

∑
k′

∑
Q,σ′

∑
χ′ 6=χ′′

zχ
′′χ′

−Q,−σ′

[
fχk,σ, f

†χ′
k′+Q,σ′f

χ′′

k′,σ′

]
, (F.25)

this is equal to[
fχk,σ, Ĥ4,int

]
=

(
J

2

)∑
k′

∑
Q,σ′

∑
χ′ 6=χ′′

zχ
′χ′′

Q,σ′ δk,k′−Qδσ,−σδ
χχ′′fχ

′

k′,−σ′

∑
k′

∑
Q,σ′

∑
χ′ 6=χ′′

Zχ′′χ′

−Q,−σ′δk,k′+Qδσ,σδ
χχ′fχ

′′

k′,σ′ . (F.26)

Once we have done each of the bracket calculations joining only one interaction
Hamiltonian we finally have to[

fχk,σ, Ĥ4,int

]
=
J

2
zχ
′χ

Q,−σf
χ′

k+Q,σ +
J

2
zχ
′χ
−Q,−σf

χ′

k−Q,σ. (F.27)

With the previous bracket we can write our Green functions for the χ = α bands,

ω 〈〈fχk,σ; fχ
′

k′,σ′〉〉 = δk,k′δσσ′δ
αχ′ + (U − J)

∑
χ′

nχ
′

σ 〈〈fαk,σ; fχ
′

k′,σ′〉〉ω +

U
∑
χ′

nχ
′

−σ 〈〈fαk,σ; fχ
′

k′,σ′〉〉ω + Jnα−σ 〈〈fαk,σ; fχ
′

k′,σ′〉〉ω +

(U − J)
∑
χ′

zβαQ,σ 〈〈f
β
k+Q,σ; fχ

′

k′,σ′〉〉ω + JzβαQ,−σ 〈〈f
β
k+Q,σ; fχ

′

k′,σ′〉〉ω ,

so
ωGαχ′

ff,σσ′(k,k
′, ω) = δk,k′δσσ′δ

αχ′ + (U − J)
∑
β

nβσG
αχ′

ff,σσ′(k,k
′, ω)+

U
∑
β′

nχ
′

−σG
αχ′

ff,σσ′(k,k
′, ω) + Jnα−σG

αχ′

ff,σσ′(k,k
′, ω)−
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(U − J)zβαQ,σG
βχ′

ff,σσ′(k + Q,k′, ω) + JzβαQ,−σG
βχ′

ff,σσ′(k,k
′, ω),

joining terms[
ω − (U − J)

∑
β

nβσ − U
∑
β

nβ−σ + Jnα−β

]
Gαχ′

ff,σσ′(k,k
′, ω)+

[
(U − J)Zβα

Q,σ − JZ
αβ
Q,−σ

]
Gβχ′

ff,σσ′(k + Q,k′, ω) = δk,k′δσσ′δ
αχ′ .

Now, introducing
Ĥf,0 =

∑
k,σ

∑
χ

Eχ
f (µ)f †χµ,σf

χ
k,σ,

therefore, the Green function is[
ω − [Eα

f (k) + (U − J)
∑
β

nβσ − U
∑
β

nβ−σ]− Jnα−β

]
Gαχ′

ff,σσ′(k,k
′, ω)+

[
(U − J)Zβα

Q,σ − Jz
αβ
Q,−σ

]
Gβχ′

ff,σσ′(k + Q,k′, ω) = δk,k′δσσ′δ
αχ′ .

In the last equation for any χ band, we can define that

Eχ
f,σ(k) =

[
ω − [Eα

f (k) + (U − J)
∑
β

nβσ − U
∑
β

nβ−σ]− 2Jnα−β

]
(F.28)

and
κχ
′χ

Q,σ =
[
(U − J)zβαQ,σ − Jz

αβ
Q,−σ

]
. (F.29)

The previous equations allow to write a set of matrix-coupled Green’s function,
as in Cap. 2.

F.2 External magnetic field Hz

The magnetic field Hamiltonian, Ĥz
ext, for f -electrons is in Eq. (2.8) and this is

the given by
Ĥz
ext = Γz

∑
k

∑
χ

f †χk,σf
χ
k,σ, (F.30)

where Γz = −gzµBσzhz. We considerate χ = α and χ′ = β and after we have that

[fαk,σ, Ĥ
z
ext] = Γz

∑
k′

∑
χ′

[fαk,σ, f
†χ′
k′,σ′f

χ′

k′,σ′ ] (F.31)
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[fαk,σ, Ĥz] = Γz
∑
k′

∑
χ′

δαχδσ,σ′δk,k′f
χ′

k′,σ′ (F.32)

[fαk,σ, Ĥ
z
ext] = Γzf

α
k,σ (F.33)

after we can to write that

〈〈[fαk,σ, Ĥz
ext], f

χ′

k′,σ′〉〉ω = ΓzG
αχ′

ff,σσ′(k,k
′, ω) (F.34)

thus
〈〈[fαk,σ, Ĥz

ext], f
χ′

k′,σ′〉〉ω = ΓzG
αχ′

ff,σσ′(k,k
′, ω). (F.35)

Therefore, we can describe the dispersion relation for χ = α, β us,

Ẽχ
f,σ(k) = Eχ

f,σ(k)− Γz − µ. (F.36)

F.3 External magnetic field Hx

The magnetic field Hamiltonian, Ĥf
ext, for f -electrons is in Eq. (2.6) and this is

given by

Ĥx = Γx
∑
k

∑
χ

f †χk,↑f
χ
k,↓ + Γx

∑
k

∑
χ

f †χk,↓f
χ
k,↑ (F.37)

where Γx = −gxµBhx, thus

[fαk,σ, Ĥ
f
ext] = Γx

∑
k′

∑
χ′

[fαk,σ, f
†χ′
k′,↑f

χ′

k′,↓]

+Γx
∑
k′

∑
χ′

[fαk,σ, f
†χ′
k′,↓f

χ′

k′,↑],
(F.38)

[fαk,σ, Ĥ
f
ext] = Γx

∑
k′

∑
χ′

δαχ
′
δσ,↑δk,k′f

χ′

k′,↓

+Γx
∑
k′

∑
χ′

δαχ
′
δσ,↓δk,k′f

χ′

k′,↑,
(F.39)

[fαk,σ, Ĥ
f
ext] = Γxδσ,↑f

α
k,↓ + Γxδσ,↓f

α
k,↑ (F.40)

〈〈[fαk,σ, Ĥ
f
ext], f

χ′

k′,σ′〉〉ω = Γzδσ,↑ 〈〈fαk,↓, f
χ′

k′,σ′〉〉

+Γzδσ,↓ 〈〈fαk,↑; f
χ′

k′,σ′〉〉 .
(F.41)
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Finally we have that

〈〈[fαk,σ, Ĥ
f
ext], f

χ′

k′,σ′〉〉ω = Γzδσ,↑G
αχ′

ff,↓σ′(k,k
′, ω)

+Γzδσ,↓G
αχ′

ff,↑σ′(k,k
′, ω)

(F.42)

or
〈〈[fαk,σ, Ĥ

f
ext]; f

χ′

k′,σ′〉〉ω = ΓzG
αχ′

ff,−σσ′(k,k
′, ω). (F.43)

We assume the intra-orbital SDW instabilities (for both χ-orbitals) and the spin-
dependent inter-orbital density wave occur at the same nesting vector Q. As conse-
quence, the temporal and spatial Fourier transform of the single-electron f-f Green’s
function satisfy the equations of motion given by:

[ω − Ẽασ,f (k)]Gα,χ
′

ff,σσ′(k,k
′, ω) = δα,χ

′
δk,k′δσ,σ′

+Vα(k)Gχ
′

df,σσ′(k,k
′, ω) + κβα−Q,σG

β,χ′

ff,σσ′(k + Q,k′, ω)

+ΓxG
α,χ′

ff,−σσ′(k,k
′, ω) + φαα−Q,σG

αχ′

ff,σσ′(k + Q,k′, ω)

(F.44)

and

[ω − Ẽβσ,f (k)]Gβ,χ
′

ff,σσ′(k,k
′, ω) = δβ,χ

′
δk,k′δσ,σ′

+Vβ(k)Gχ
′

df,σσ′(k,k
′, ω) + καβ−Q,σG

α,χ′

ff,σσ′(k + Q,k′, ω)

+ΓxG
β,χ′

ff,−σσ(k,k′, ω) + φββ−Q,σG
βχ′

ff,σσ′(k + Q,k′, ω).

(F.45)

when the Γz is increasing. To complete the set of Green’s functions, the mixed
f − d Green’s function is found to satisfy the equation given below

[ ω − ε̃(k)] Gχ′

df,σ,σ′(k,k
′, ω) =

Vα(k)∗Gα,χ′

ff,σ,σ′(k,k
′, ω) + Vβ(k)∗Gβ,χ′

ff,σ,σ′(k,k
′, ω).

(F.46)

Now we can to write that,

[ω − Ẽασ,f (k)− ξ̃ααk,σ]Gα,χ
′

ff,σσ′(k,k
′, ω) = δα,χ

′
δk,k′δσ,σ′

+ξβαk,σG
βχ′

ff,σσ′(k,k
′, ω) + κβα−Q,σG

β,χ′

ff,σσ′(k + Q,k′, ω)

+ΓxG
α,χ′

ff,−σσ′(k,k
′, ω) + φαα−Q,σG

αχ′

ff,σσ′(k + Q,k′, ω)

(F.47)

with k→ k + Q in the Eq. (F.47)

[ω − Ẽασ,f (k + Q)− ξ̃ααk+Q,σ]Gα,χ
′

ff,σσ′(k + Q,k′, ω) =

δα,χ
′
δk+Q,k′δσ,σ′ + ξβαk+Q,σG

βχ′

ff,σσ′(k + Q,k′, ω)

+κβα−Q,σG
β,χ′

ff,σσ′(k,k
′, ω) + ΓxG

α,χ′

ff,−σσ′(k + Q,k′, ω)

+φαα−Q,σG
αχ′

ff,σσ′(k,k
′, ω),

(F.48)
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doing σ → −σ in Eq. (F.47),

[ω − Ẽα−σ,f (k)− ξααk,−σ]Gα,χ
′

ff,−σσ′(k,k
′, ω) =

δα,χ
′
δk,k′δ−σ,σ′ + ξβαk,−σG

βχ′

ff,−σσ′(k,k
′, ω)

+κβα−Q,−σG
β,χ′

ff,−σσ′(k + Q,k′, ω)

+ΓxG
α,χ′

ff,σσ′(k,k
′, ω) + φαα−Q,−σG

αχ′

ff,−σσ′(k + Q,k′, ω)

(F.49)

and with k→ k + Q and σ → −σ we have that

[ω − Ẽα−σ,f (k + Q)− ξ̃ααk,−σ]Gα,χ
′

ff,−σσ′(k + Q,k′, ω) =

δα,χ
′
δk+Q,k′δ−σ,σ′ + ξβαk+Q,−σG

βχ′

ff,−σσ′(k + Q,k′, ω)

+κβα−Q,−σG
β,χ′

ff,−σσ′(k,k
′, ω)

+ΓzG
α,χ′

ff,σσ′(k + Q,k′, ω) + φαα−Q,−σG
αχ′

ff,−σσ′(k,k
′, ω).

(F.50)

For β-band we have the next Green function

[ω − Ẽβσ,f (k)− ξ̃ββk,σ]Gβ,χ
′

ff,σσ′(k,k
′, ω) = δβ,χ

′
δk,k′δσ,σ′

+ξ̃αβk,σG
αχ′

ff,σσ′(k,k
′, ω) + καβ−Q,σG

α,χ′

ff,σσ′(k + Q,k′, ω)

+ΓzG
β,χ′

ff,−σσ′(k,k
′, ω) + φββ−Q,σG

βχ′

ff,σσ′(k + Q,k′, ω)

(F.51)

also with k→ k + Q in the Eq. (F.50)

[ω − Ẽβσ,f (k + Q)− ξββk+Q,σ]Gβ,χ
′

ff,σσ′(k + Q,k′, ω) =

δβ,χ
′
δk+Q,k′δσ,σ′ + ξαβk+Q,σG

αχ′

ff,σσ′(k + Q,k′, ω)

+καβ−Q,σG
α,χ′

ff,σσ′(k,k
′, ω) + ΓzG

β,χ′

ff,−σσ′(k + Q,k′, ω)

+φββ−Q,σG
βχ′

ff,σσ′(k,k
′, ω)

(F.52)

we can do that σ → −σ in Eq. (F.50),

[ω − Ẽβ−σ,f (k)− ξ̃ββk,−σ]Gβ,χ
′

ff,−σσ′(k,k
′, ω) =

δβ,χ
′
δk,k′δ−σ,σ′ + ξ̃αβk,−σG

αχ′

ff,−σσ′(k,k
′, ω)

+καβ−Q,−σG
α,χ′

ff,−σσ′(k + Q,k′, ω)

+ΓzG
β,χ′

ff,σσ′(k,k
′, ω) + φββ−Q,−σG

βχ′

ff,−σσ′(k + Q,k1, ω)

(F.53)

with k→ k + Q and σ → −σ

[ω − Ẽβσ,f (k + Q)− ξ̃ββk+Q,−σ]Gβ,χ
′

ff,−σσ′(k + Q,k′, ω) =

δβ,χ
′
δk+Q,k′δ−σ,σ′ + ξαβk+Q,σG

αχ′

ff,−σσ′(k + Q,k′, ω)

+καβ−Q,−σG
α,χ′

ff,−σσ′(k,k
′, ω) + ΓzG

β,χ′

ff,−σσ′(k + Q,k′, ω)

+φββ−Q,−σG
βχ′

ff,−σσ′(k,k
′, ω)

(F.54)

The Green’s function equation of motion given in Eqs. (F.44)-(F.46) form a closed
set which can be solved within a matricial formalism.
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