Evaluation of Lipases in the Desymmetrization of meso-exo-3,5Dihydroxymethylenetricyclo[5.2.1.0 ${ }^{2,6}$]decane and the Synthesis of Chiral Derivatives

Valentim E. U. Costa*, Adriana R. Pohlmann and Marli L. T. de Sordi
Instituto de Química, Universidade Federal do Rio Grande do Sul, Av.Bento Gonçalves, 9500, 91501-970 Porto Alegre-RS, Brazil

Abstract

A dessimetrização mais eficiente do composto meso-exo-3,5-dihidroximetilenotriciclo[5.2.1. $0^{2,6}$]decano foi com a lipase da Pseudomonas cepacia (PS-C 'Amano' II) em acetato de vinila, quando obteve-se alto rendimento químico (93\%) e excelente excesso enantiomérico ($e e \geq 99 \%$), determinado por cromatografia gasosa em coluna quiral. Desse sistema quiral, foram preparados derivados enantiopuros com potenciais aplicações como intermediários sintéticos.

meso-exo-3,5-dihydroxymethylenetricyclo[5.2.1.0 $0^{2,6}$]decane was efficiently desymmetrized by the lipase from Pseudomonas cepacia (PS-C 'Amano' II) in vinyl acetate in high yields (93%) and with excellent enantiomeric excesses ($e e \geq 99 \%$ by chiral GC). Chiral synthons for asymmetric synthesis were synthesized from this enantiopure compound.

Keywords: lipases, enzymatic catalysis, desymmetrization, chiral compounds

Introduction

Bicyclic amino alcohol derivatives are stereochemically constrained compounds and are interesting systems used as chiral auxiliaries, ${ }^{1-5}$ as well as synthetic intermediates and chiral ligands for asymmetric synthesis. ${ }^{1,6-8}$ Optically active amino alcohols are constituents of many biologically and pharmacologically important compounds such as adrenaline, β-adrenergic receptor blockers and local anaesthetics. ${ }^{9}$ The abundance and crystallinity of (+)-camphor have attracted considerable interest to the synthesis of enantiomerically pure derivatives including 3-endo-amino-2-endobornanol, ${ }^{10}$ exo,exo-amino alcohol, ${ }^{11}$ anti-(+)-camphorquinone-3-oxime ${ }^{12}$ and bridgehead-substituted 2norbornanones and 2-norbonanoximes. ${ }^{13}$

The desymmetrization of an meso compound by reaction with a suitable enantiomerically pure reagent provides a versatile approach to the preparation chiral synthons for asymmetric synthesis. ${ }^{14}$ Desymmetrization of meso-compounds or prochiral diols and diacetates in the presence of lipase has become a practical approach for the preparation of chiral compounds due to its high specificity and reproducibility. ${ }^{9}$

Optically active aminooxy alcohols would appear to be very interesting building blocks in the search for novel biologically active compounds and the synthesis of such optically active derivatives by using a lipase-catalyzed acetylation has been described. ${ }^{9}$

The goal of our research group over the last few years has been the study and application of constrained polycyclic compounds, from both a conformational and stereochemical viewpoint, ${ }^{15}$ as well as in terms of their reactivity and enantiomeric resolution. ${ }^{16}$

In this work we report the evaluation of various lipases for the desymmetrization of meso-exo-3,5-dihydroxymethylenetricyclo[5.2.1.0 $0^{2,6}$]decane in vinyl acetate and the preparation of derivatives as chiral building blocks, carrying functional groups in flexible chains on appropriate positions of the tricyclic framework.

3

[^0]

Scheme 1. Synthesis of meso-3,5-dihydroxymethylene-exo-tricyclo[5.2.1.0 $\left.0^{2,6}\right]$ decane, (3).

Results and Discussion

The symmetric starting material endo,exotetracyclo[6.2.1.1 $\left.{ }^{3,6} \cdot 0^{2,7}\right]$ dodec-4-ene, (1), was prepared easily by the Diels-Alder reaction between norbornene and dicyclopentadiene according to known procedure. ${ }^{17}$

The treatment of the resulting adduct 1 with KMnO_{4} and NaIO_{4} at room temperature over 5 h gave the respective dicarboxylic acid 2 in 83% yield, ${ }^{18}$ while the use of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (cat.), $\mathrm{NaIO}_{4}, \mathrm{CCl}_{4}-\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ provided yields around $85 \% .{ }^{19}$ This meso diacid was then reduced with lithium aluminium hydride in tetrahydrofuran to give the meso-diol 3 in 78% yield (Scheme 1).

The lipase-catalysed transesterification reaction with vinyl acetate at $23-26^{\circ} \mathrm{C}$ was used to afford the kinetic desymmetrization of meso-diol 3 (Scheme 2).

Scheme 2. Lipase-catalysed acetylation of meso-exo-3,5dihydroxymethylenetricyclo[5.2.1. $\left.0^{2,6}\right]$ decane, (3).

Catalytic desymmetrization reaction of meso-diol 3 mediated by lipase from Pseudomonas cepacia supplied in three different preparations were evaluated: powder (Lipase PS "Amano"), immobilized on ceramic particles chemically modified with methacrylic groups (Lipase PSC "Amano" II) and immobilized on diatomaceous earth (Lipase PS-D "Amano" I). The same reaction mediated by
lipase from Candida rugosa (AY Amano 30) and lipase from Porcine pancreatic (PPL) supplied as a powder were also evaluated.

The AY Amano 30 lipase (from Candida rugosa supplied as a powder) gave only the racemic monoacetate $(\pm)-\mathbf{4}$ while all the other lipases produced exclusively monoacetate (+)-4 with high enantiomeric excesses (ee $\geq 99 \%$). However, the Amano PS - C II lipase was found to be the best catalyst, giving the highest yields (93%) and the most favorable reaction time (Table 1).

After reaction, the acetoxy alcohol (+)-4 was purified by filtration over Celite with ethyl acetate. The enantiomeric excess (ee\%) of the separated acetate was determined by gas chromatography on a Beta-Dex ${ }^{\mathrm{TM}} 120$ chiral column.

The oxidation of the acetoxy alcohol (+)-4 with pyridinium chlorotrioxochromate (PCC) gave the respective enantiomerically pure acetoxy aldehyde (-)-5 in 88% yield with an $[\alpha]_{D}{ }^{20}=-16\left(c=2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; as this aldehyde is unstable we prepared directly its oxime derivative and, consequently, the elemental analysis was made of its oxime. The acetoxy oxime derivative (+)-6 was obtained from the reaction of the aldehyde (-)-5 with hydroxylamine chloride/sodium acetate in a $65-85 \%$ yield. The acetoxy oxime (+)-6 is a conformer mixture determined by ${ }^{1} \mathrm{H}$ NMR $(60: 40)$ and it had a specific rotation of $[\alpha]_{\mathrm{D}}^{20}=+24\left(2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

In order to obtain the protected amino alcohol 7 the oxime (+)-6 was reduced with nickel chloride hexahydrate and sodium borohydride in methanol. However, direct extraction and purification of the chiral amino-alcohol afforded poor yields, and to overcome this, in situ acetylation of the reaction product was carried out, producing the protected amino alcohol (-)-7 in a 77% yield

Table 1. Results of the lipase-catalysed transesterification reactions of meso-exo-3,5-dihydroxymethylenetricyclo[5.2.1.0 ${ }^{2,6}$]decane, (3)

Lipase	Reaction time (h)	Chemical conversion (\%)	Enantiomeric excess: ee $(\%)$	$[\alpha]_{\mathrm{D}}{ }^{20}\left(c=2 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
AY "Amano" 30	20	48	0	0
Porcine pancreatic (PPL)	96	78	≥ 99	+1
PS-C "Amano" II	1.5	93	≥ 99	+1
PS-D"Amano" I	7	80	≥ 99	+1
PS"Amano"	48	80	≥ 99	+1

Scheme 3. Synthesis of chiral derivatives from 3-hydroxymethylene-5-aceto-methylenetricyclo[5.2.1.0 $\left.{ }^{2,6}\right]$ decane, $[(+)-4]$.
$\left([\alpha]_{D}{ }^{20}=-10\left(1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$. The acetyl group of the amide function has two preferential conformers because it is possible to observe in ${ }^{13} \mathrm{C}$-NMR double signals for the methyl and carbonyl groups.

Conclusion

The Amano PS - C II lipase was found to be the best catalyst, giving highest yields and the best reaction rate in the desymmetrization reaction of meso-exo-3,5dihydroxymethylenetricyclo[5.2.1.0 $0^{2,6}$]decane, (3) in vinyl acetate. Chiral derivatives, in non-racemic form, have been prepared, carrying functional groups on flexible chains in appropriate positions of this tricyclic framework. This constitutes an effective and convenient synthetic approach for the preparation of new chiral auxiliaries, synthons and building blocks.

Experimental

General

Melting points were determined on an Electrothermal IA9000 apparatus and are presented without correction. Infrared spectra were recorded using a Mattson 3020 FTIR spectrometer. Mass spectra were acquired on an HP 5988A spectrometer. NMR spectra were recorded on a Varian VXR200 spectrometer at a magnetic field of 4.7 T at $22^{\circ} \mathrm{C}$. Chemical shifts are expressed as $\delta(\mathrm{ppm})$ relative to TMS as internal standard and the J values are given in Hz. Elemental analyses were recorded on a Perkin - Elmer 2400 CHN elemental analyzer. The products were analyzed by GC on a Shimadzu GC - 17A Gas Chromatograph equipped with an FID detector. Optical rotations were recorded on a Perkin Elmer 341 polarimeter using the sodium D line or mercury 365 nm line with a 0.1 dm cell at a temperature of $20^{\circ} \mathrm{C}$. Lipase PS "Amano"(Lot. LPSAX10508), PS - C"Amano"I (Lot. IPSAX08531K), PS - C "Amano" II (Lot. ILPSAX01520K), PS - D "Amano" I(Lot. ILPSAX02520K), AK "Amano" 20 (Lot. LAKX09510) from Pseudomonas and
lipase AY Amano 30 (Lot. LAYY0450102S), were kindly provided by Amano Enzyme U.S.A. Co. Vinyl acetate was distilled from hydroquinone just before use. All enzymatic resolutions were carried out at $20^{\circ} \mathrm{C}$ under anhydrous conditions on a Mistral Multi-Mixer apparatus. $G C$ parameters for achiral analysis. injector $250^{\circ} \mathrm{C}$; detector $300^{\circ} \mathrm{C}$; oven $100^{\circ} \mathrm{C}$ for 5 min then $10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ until $300^{\circ} \mathrm{C}$; column pressure 15 kPa ; column flow $9.5 \mathrm{~mL} \mathrm{~min}^{-1}$; linear velocity $84.7 \mathrm{~cm} \mathrm{~s}^{-1}$; total flow 200 mL ; split ratio $1: 20$; column DB1 15 mx 0.53 mm (internal diameter).

GC parameters for chiral analysis. injector $250^{\circ} \mathrm{C}$; detector $300^{\circ} \mathrm{C}$; oven $150{ }^{\circ} \mathrm{C}$ for 10 min then $5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ until $200^{\circ} \mathrm{C}$; column pressure 138 kPa ; column flow 2.7 $\mathrm{mL} \mathrm{min}{ }^{-1}$; linear velocity $75.5 \mathrm{~cm} \mathrm{~s}^{-1}$; total flow 35 mL ; split ratio 1:10; column b- cyclodextrin 30 mx 0.25 mm (internal diameter).

exo-Tricyclo[5.2.1.0 ${ }^{2,6}$]decan-3,5-dioic acid, (2)

To a solution of $\mathbf{1}(2.0 \mathrm{~g}, 4.5 \mathrm{mmol})$ in t-butanol (50 $\mathrm{mL})$ was added an aqueous solution $(150 \mathrm{~mL})$ of NaIO_{4} $(10.0 \mathrm{~g}, 46.7 \mathrm{mmol}), \mathrm{KMnO}_{4}(5.2 \mathrm{~g}, 32.9 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(10.0 \mathrm{~g}, 72.4 \mathrm{mmol})$. The medium was adjusted to pH 8 by the addition of a $3 \mathrm{~mol} \mathrm{~L}{ }^{-1} \mathrm{NaOH}$ aqueous solution and the reaction underwent magnetic stirring at room temperature. After 5 h , the medium was acidified with concentrated HCl to pH 1 and sodium bisulfite was added. The mixture was extracted with ethyl acetate (3 x 40 mL), and the combined organic layers were extracted with $3 \mathrm{~mol} \mathrm{~L}^{-1}$ NaOH aqueous solution (3 x 40 mL). Then, the dicarboxylate aqueous solution was acidified (concentrated $\mathrm{HCl})$ to $\mathrm{pH} 3-4$ and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, filtered and evaporated under reduced pressure, giving 2.3 g of diacid 2 (82% yield). Elemental analysis: Found: C, $64.17 ; \mathrm{H}, 7.18 \%$; Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}, 64.28 ; \mathrm{H}, 7.14 \%$; $\operatorname{mp} 224^{\circ} \mathrm{C}$; IR (KBr) $v_{\max } / \mathrm{cm}^{-1}: 3000,1711 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right): \delta 1.0-1.5(\mathrm{~m}, 6 \mathrm{H}$, tricyclic moiety), $1.8(\mathrm{~m}, 1 \mathrm{H}$, tricyclic moiety), 2.2-2.6 (m,5H, tricyclic moiety), 3.1 (m, 2H, CH-3 and CH-5), 9.9 (s, 2H, COOH);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right): \delta 30.0\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right)$, $36.5\left(\mathrm{CH}_{2}\right), 41.0(\mathrm{CH}), 49.0(\mathrm{CH}), 51.8(\mathrm{CH}), 177.0(\mathrm{COOH})$.
meso-endo, exo-3,5-dihydroxymethylenetricyclo[5.2.1.0 ${ }^{2,6}$]decane, (3)

To a suspension of $\mathrm{LiAlH}_{4}(1.0 \mathrm{~g}, 27.2 \mathrm{mmol})$ in dry THF (50 mL) under argon was added a solution of diacid 2 $(1.0 \mathrm{~g}, 4.46 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$. The reaction was carried out during 6 h with magnetic stirring at room temperature. Then, the mixture was added of distilled water (3 mL) and $30 \% ~(\mathrm{~m} / \mathrm{V}) \mathrm{NaOH}$ aqueous solution (10 mL). The precipitate was removed by filtration, and the filtrate was dried over anhydrous NaSO_{4}, filtered and evaporated under reduce pressure. The pure diol $\mathbf{3}(0.680 \mathrm{~g}, 3.5 \mathrm{mmol})$ was obtained in 78% of yield. Elemental analysis: Found: C, $72.02 ; \mathrm{H}, 10.82 \%$; Calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 72.36 ; \mathrm{H}$, 10.20%; IR (KBr) $v_{\text {max }} / \mathrm{cm}^{-1}: 3280,1021 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 200 MHz): $\delta 1.8-2.5$ and $0.9-1.4(\mathrm{~m}, 14 \mathrm{H}$, tricyclic moiety and $2 \mathrm{H}, \mathrm{OH}), 3.7\left(\mathrm{dd}, J 13.0 \mathrm{~Hz}\right.$ and $J 7.6 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}^{-}$ $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 75 \mathrm{MHz}\right): \delta 30.0(\mathrm{CH} 2), 36.8$ (CH2), $37.8(\mathrm{CH} 2), 38.2(\mathrm{CH}), 47.0(\mathrm{CH}), 51.4(\mathrm{CH}), 64.0$ (CH2O).

3-Hydroxymethylene-5-acetomethylenetricyclo[5.2.1.0 ${ }^{2,6}$ decane, [(\pm)-4]

The racemic standard (\pm)-4 was prepared to carry out the chiral chromatographic analyses. The meso-diol 3 ($0.140 \mathrm{~g}, 0.71 \mathrm{mmol}$) and 0.550 g of silica gel ($60,70-230$ mesh) were shaken. To this mixture sufficient acetic anhydride was added to cover the solid. After 2 h , the reaction was quenched by the addition of distilled water $(20 \mathrm{~mL})$. The mixture was neutralised with an aqueous solution of NaHCO_{3} and extracted with ethyl acetate (3 x 40 mL). The combined organic phases were dried over MgSO_{4}, filtered and evaporated under reduce pressure. The GC analysis of crude product showed 3 peaks: A, 27\%; B, 56% and C, 17\%. The peaks A and B were the meso-diol 3 and the monoacetate $(\pm)-4$ respectively. Column chromatography (silica gel 60, 70-230 mesh; cyclohexane/ ethyl acetate $3: 1$) of crude product gave the monoacetate $(\pm)-4$ in 47% yield. Elemental analysis: Found: C,70.07; $\mathrm{H}, 9.31 \%$; Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 70.58 ; \mathrm{H}, 9.24 \%$; IR (neat) $\nu_{\max } / \mathrm{cm}^{-1}: 3460,1740,1243,1033 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}): \delta 4.1\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OAc}\right), 3.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OH}\right), 3.3$ (bs, 2H, CH-3 and CH-5), 2.2 (m, 2H, tricyclic moiety), 2.1 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.7-1.9(\mathrm{~m}, 2 \mathrm{H}$, tricyclic moiety), $1.4(\mathrm{~m}, 3 \mathrm{H}$, tricyclic moiety), 0.9-1.3 (m, 5H, tricyclic moiety, and 1 H , $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 20.9\left(\mathrm{CH}_{3}\right), 29.5(2$ $\left.\mathrm{CH}_{2}\right), 35.2\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 36.7(\mathrm{CH}), 36.8(\mathrm{CH}), 41.4$
$(\mathrm{CH}), 45.2(\mathrm{CH}), 49.6(\mathrm{CH}), 49.8(\mathrm{CH}), 65.2\left(\mathrm{CH}_{2}-\mathrm{OH}\right)$, $66.2\left(\mathrm{CH}_{2}-\mathrm{OAc}\right), 171.3(\mathrm{CO})$.

3-Hydroxymethylene-5-acetomethylenetricyclo[5.2.1.0 ${ }^{2,6}$]decane, [(+)-4]

The general procedure for enzyme catalytic reactions (Table 1) was carried out as described for PS-C "Amano" II: to a solution of diol $3(0.250 \mathrm{~g}, 1.27 \mathrm{mmol})$ in vinyl acetate (20 mL) was added the lipase (0.050 g). The reaction was stirred during 1.5 h at room temperature. The mixture was filtered over Celite, using ethyl acetate (30 $\mathrm{mL})$. Then, the filtrate was evaporated under reduce pressure to give the product (+)-4 ($0.265 \mathrm{~g} ; 1.11 \mathrm{mmol}, 88 \%)$. $[\alpha]_{\mathrm{D}}{ }^{20}+1\left(c=2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; the physical data are described above to racemic compound.

5-Acetomethylenetricyclo[5.2.1.0 $0^{2,7}$]decane-3carbaldehyde, [(-)-5]

To a solution of product (+)-4 $(0.100 \mathrm{~g}, 0.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added pyridinium chlorotrioxochromate (PCC, $0.250 \mathrm{~g}, 1.16 \mathrm{mmol}$). After 4 h under magnetic stirring at room temperature, ethyl ether (10 mL) was added and a black precipitate was formed, which was filtered off with a small column fitted with silica gel 60 (70-230 mesh), and eluted with ethyl ether. The filtrate was evaporated under reduce pressure to give a colourless oil corresponding to aldehyde (-)-5 ($0.087 \mathrm{~g} ; 0.36 \mathrm{mmol}$, 88%), which was used immediately to avoided oxidation. $[\alpha]_{\mathrm{D}}{ }^{20}-16\left(c=2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; Elemental analysis: data were obtained from its stable oxime derivative; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}): \delta 1.0-2.8(\mathrm{~m}, 13 \mathrm{H}$, tricyclic moiety), 2.1 (s , $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.0 (ddd, J $9.77 \mathrm{~Hz}, J 9.44 \mathrm{~Hz}, J 1.52 \mathrm{~Hz}, 1 \mathrm{H}$, CH-CHO), 4.2 (dd, J 7.47 Hz and $J 4.80 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} 2-$ $\mathrm{OAc}), 9.8(\mathrm{~d}, J 1.53 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 20.9\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{2}\right)$,), $29.5\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 31.1$ $\left(\mathrm{CH}_{2}\right), 36.6(\mathrm{CH}), 38.4(\mathrm{CH}), 41.4(\mathrm{CH}), 49.8(\mathrm{CH}), 49.8$ $(\mathrm{CH}), 55.3(\mathrm{CH}), 65.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 171.2(\mathrm{AcCO}), 202.9(\mathrm{CHO})$.

3-acetomethylene-5-oximemethylenetricyclo[5.2.1.0 ${ }^{2,6}$]decane, [(+)-6]

To a solution of acetoaldehyde (-)-5 ($0.450 \mathrm{~g}, 1.89 \mathrm{mmol}$) in methanol was added sodium acetate ($0.200 \mathrm{~g} ; 2.0 \mathrm{mmol}$) and $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}(0.138 \mathrm{~g} ; 2.0 \mathrm{mmol})$. The mixture was stirred at room temperature for 18 h , water was added (20 cm^{3}) and then extracted with ethyl acetate ($3 \times 20 \mathrm{~cm}^{3}$). The organic layer was washed with NaHCO_{3} solution (10%; m/ v), dried over MgSO_{4}, filtered and evaporated in vacuo, affording the oxime (+)-6 ($0.405 \mathrm{~g} ; 0.123 \mathrm{mmol})$ with 85%
of yield. $[\alpha]_{\mathrm{D}}{ }^{20}+24\left(c=2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; Elemental analysis: Found: C, $68.20 ; \mathrm{H}, 8.64 ; \mathrm{N}, 5.26 \%$; Calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}$: $\mathrm{C}, 68.18 ; \mathrm{H}, 8.33$; N, 5.30%; IR (CHCl_{3} film) $v_{\text {max }} / \mathrm{cm}^{-1}$: 3388 (N-OH), 1739 (C=O); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.9-3.0(\mathrm{~m}, 14 \mathrm{H}), 2.1(\mathrm{~s})$ and $2.2(\mathrm{~s})(3 \mathrm{H}), 4.2(\mathrm{~m}, 2 \mathrm{H}), 6.8(\mathrm{~d}$, $J 6.4 \mathrm{~Hz}, 1 \mathrm{H})$ and $7.52(\mathrm{~d}, J 7.0 \mathrm{~Hz})(1 \mathrm{H}), 8.7(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.9\left(\mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right)$, $35.2\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 38.0(\mathrm{CH}), 41.9(\mathrm{CH})$, $42.8(\mathrm{CH}), 49.5$ and $50.0(\mathrm{CH}), 51.2$ and $51.8(\mathrm{CH}), 65.2$ and $65.3\left(\mathrm{CH}_{2}\right), 153(\mathrm{C}=\mathrm{N}), 171.2$ and $171.3(\mathrm{C}=\mathrm{O})$.

3-acetomethylene-5-acetoamidomethylenetricyclo[5.2.1.0 ${ }^{2,6}$]decane, [(-)-7]

To a solution of hydroxy oxime (+)-6 ($0.310 \mathrm{~g} ; 1.11 \mathrm{mmol})$ in methanol (10 mL), nickel (II) chloride hexahydrate (0.47 $\mathrm{g} ; 1.96 \mathrm{mmol})$ was added under magnetic stirring. After nickel dissolution, the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Powdered sodium borohydride ($0.390 \mathrm{~g} ; 10.2 \mathrm{mmol}$) was added in small portions under efficient stirring. The solution turned blue, and was stirred for an additional 12 h when the colour changed to black. The methanol was removed and acetic anhydride (10 mL) was added and the solution refluxed for 90 min . The excess anhydride was removed by distillation. The residue was neutralized with a solution of saturated potassium carbonate until $\mathrm{pH} 9-10$ and extracted three times with chloroform, yielding, after solvent evaporation, a yellow oil corresponding to the compound $(-)-7(238 \mathrm{mg} ; 0.85 \mathrm{mmol}, 77 \%) .[\alpha]_{\mathrm{D}}{ }^{20}-10\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; Elemental analysis: Found: C, 66.85; H, 8.85; N, 4.65\%; Calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{4} .1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.67 ; \mathrm{H}, 9.02 ; \mathrm{N}, 4.86 \%$; IR (CHCl_{3} film) $v_{\text {max. }} / \mathrm{cm}^{-1} 3297(\mathrm{~N}-\mathrm{H}), 1739(\mathrm{C}=\mathrm{O} ;$ ester) , 1650 ($\mathrm{C}=\mathrm{O}$; amide); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.02$ (m, tricyclic moiety, 4 H), $1.22(\mathrm{~m}$, tricyclic moiety, 1 H), 1.42 $(\mathrm{m}$, tricyclic moiety, 2 H$), 1.78$ (m, tricyclic moiety, 1 H), $1.90-2.40(\mathrm{~m}$, tricyclic moiety, 6 H$), 1.98$ and $2.03(2 \mathrm{~s}, 3 \mathrm{H}$, CH_{3} amide), $2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ester), $3.26-3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\mathrm{NH}), 4.06-4.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 5.8(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{CNMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.70$ and 20.85 (CH 3 amide), 22.93 (CH 3 ester), $29.30(\mathrm{CH} 2), 29.39(\mathrm{CH} 2), 36.11$ (CH2), 36.42 (CH2), $36.68(\mathrm{CH}), 36.76(\mathrm{CH}), 40.85(\mathrm{CH} 2), 41.25(\mathrm{CH})$, $42.21(\mathrm{CH}), 49.78(\mathrm{CH}), 49.81(\mathrm{CH}), 65.20(\mathrm{CH} 2), 170.66$ (CO, ester), 171.24 and 175.60 (CO, amide).

Acknowlegments

We thank CNPq and FAPERGS for financial support. CNPq for fellowship to V.E.U.C. and A.R.P. and CAPES for scholarship to M.L.T.S. Special thanks to Dr. John Spencer for reviewing this text. The authors are indebted to Amano Enzyme USA Co. Ltd. for kindly providing the 'Amano' lipases used in this work.

References

1. Oppolzer, W.; Tetrahedron 1987, 43, 1969.
2. Kouklovsky, C.; Pouilhe, A.; Langlois, Y.; J. Am. Chem. Soc. 1991, 112, 6672.
3. Colombo, L.; Giacomo, M.; Brusotti, G.; Milano, E.; Tetrahedron Lett. 1995, 36, 2863.
4. Bronner, M. P.; Thornton, E. R.; J. Am. Chem. Soc. 1991, 113, 1299.
5. Nakamura, T.; Hashimoto, N.; Ishizuka, T.; Kunieda, T.; Tetrahedron Lett. 1997, 38, 559.
6. Muzart, J.; Hénin, F.; Aboulhoda, S. J.; Tetrahedron:Asymmetry 1997, 8, 381.
7. Davis, S. R.; Michell, M. C.; Cain, C. P.; Devitt, P. G.; Taylor, R. J.; Kee, T. P.; J. Organomet. Chem. 1998, 550, 29.
8. Tanaka, K.; Ushio, H.; Kawabata, Y; Suzuki, H.; J. Chem. Soc., Perkin Trans. 1 1991, 1445.
9. Buchalska, E., Plenkiewicz, J.; J. Mol. Catal. B: Enzymatic 2001, 11, 255.
10. Pauling, H.; Helv. Chim. Acta 1975, 58, 1781
11. Przeslawski, R. M.; Newman, S.; Thornton, E. R.; Toullié, M. M.; Synth. Commun. 1995, 25, 2975
12. Roy, S.; Chakraborti, A.K.; Tetrahedron Lett. 1998, 39, 355
13. Martinez, A. G.; Vilar, E. T.; Fraile, A.G.; Cerero, S. M.; Ruiz, P. M.; Tetrahedron:Asymmetry 1998, 9, 1737.
14. Hibbs, D. E.; Hursthouse, M. B.; Jones, I. G.; Jones, W.; Abdul Malik, K. M.; North, M.; J. Org. Chem. 1999, 64, 5413 and references cited therein.
15. Seidl, P. R.; Leal, K. Z.; Costa, V. E. U.; Mollmann, M. E. S.; Magn. Reson. Chem. 1993, 31, 241; Seidl, P. R.; Leal, K. Z.; Costa, V. E. U.; Poli, N. D.; Magn. Reson. Chem. 1990, 28, 869; Seidl, P. R.; Leal, K. Z.; Costa, V. E. U.; Mollmann, M. E. S.; Magn. Reson. Chem. 1998, 36, 261; Costa, V. E. U.; Alifantes, J; Axt, M.; Mollmann, M. E. S.; Seidl, P. R.; J. Braz. Chem. Soc. 1999, 10, 341; Costa, V. E. U.; Axt, M.; Magn. Reson. Chem. 1996, 34, 929; Axt, M.; Alifantes, J; Costa, V. E. U.; J. Chem. Soc., Perkin Trans 2 1999, 12, 2783; Gonçalves, P. F. B.; Axt, M.; Costa, V. E. U.; Livotto, P. R.; Comput. Chem. 1998, 22, 399; Costa V.E. U.; Alifantes, J.; Mascaranhas, Y. P.; Silva, C. H. T. de P.; Seidl, P. R.; J. Mol. Struct. 2000, 519, 37; Carneiro, J. W. M.; Costa, V. E. U.; Alifantes, J.; Taft, C. A.; de Paula e Silva C. H. T.; Tostes, J. G. R.; Seild P. S.; Pinto, P. S. da S.; Chem. Phys. Lett. 2001, 345, 189; Alifantes, J.; Costa, V. E. U.; Hörner, M.; Bortoluzzi, A. J.; Spectroscopy Lett. 2001, 34, 345; Seild, P. S.; Carneiro, J. W. M.; Tostes, J. G. R.; Dias, J. F.; Pinto, P. S. S.; Costa, V. E. U.; Taft, C. A.; J. Mol. Struct. (Theochem) 2002, 579, 101; Axt, M.; Pacheco, C. R. N.; Costa, V. E. U.; Ann. Magn. Reson. 2002, 1, 93; Seidl, P. R.; Sabino, J. R.; Castellano, E. E.; Mascaranhas, Y. P.; Costa, V. E. U.; Alifantes, J.; de Paula e Silva C. H. T.; Dias, J. F.; J. Mol. Struct. 2003, 654, 139.
16. Axt, M.; Alifantes, J; Costa, V. E. U.; J. Chem. Soc., Perkin Trans 2 1999, 12, 2783; Morisso, F. D. P.; Wagner K.; Hörner, M.; Burrow, R. A.; Bortoluzzi, A. J.; Costa, V. E. U.; Synthesis 2000, 9, 1247; Lapis, A. A. M.; Kreutz, O. C.; Pohlmann, A. R.; Costa, V. E. U.; Tetrahedron: Asymmetry 2001, 12, 557; Alifantes, J; Lapis, A. A. M.; Martins, J. E. D.; Costa, V. E. U.; J. Chem. Soc., Perkin Trans. 2, 2001, 1, 7; Morisso, F. D. P.; Costa, V. E. U.; Tetrahedron: Asymmetry 2001, 12, 2641; Alifantes, J; Nichele, A. G.; Costa, V. E. U.; Tetrahedron: Asymmetry 2002, 13, 2019; Martins, J. E. D.; Alifantes, J; Pohlmann, A. R.; Costa, V. E. U.; Tetrahedron: Asymmetry 2003, 14, 683.
17. Alder, K.; Rickert, F. H.; Ann. 1939, 1, 543.
18. Hayashi, T.; Iwamura, H.; Uozomi, Y.; Matsumoto, Y.; Ozawa, F.; Synthesis 1994, 5, 530.
19. Chakraborty, T. K.; Ghosh, A.; Nagaraj, R.; Sankar, A. R., Kunwar, A. C.; Tetrahedron 2001, 57, 9169.

Received: July 24, 2002
Published on the web: October 28, 2003

[^0]: * e-mail: valentim@iq.ufrgs.br

