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“The future depends on ourselves, and we do not depend on any historical necessity.”
– KARL POPPER



RESUMO

Neste trabalho procuramos analisar empiricamente a desigualdade de oportunidades
na educação na América Latina. Para cumprir este objetivo, utilizamos árvores de
inferencia condicional e random forests. Através dos dados do Latinobarómetro, uma
pesquisa de opinião pública realizada em dezoito países da América Latina, ilustramos
as raízes do problema analisado estimando uma árvore de inferencia condicional e
utilizando um modelo de feature importance para cada um dos países disponíveis na
base de dados. Ademais, computamos um índice de desigualdade de oportunidades
educacionais para cada país. Nossos resultados apontam o nível educacional dos pais
como sendo o fator mais importante para o sucesso acadêmico de um indivíduo, sendo
esse fato uniforme em todo o continente. Observamos também que a América Central
é a região cujos países possuem maior desigualdade de oportunidades educacionais.

Palavras-chave: Desigualdade de oportunidades. América Latina. Educação. Desigual-
dade de oportunidades educacionais.



ABSTRACT

In this work we strive to analyze inequality of educational opportunities in Latin America.
To achieve our objective, we utilize conditional inference trees and random forests.
Through the use of Latinobarómetro data, a public opinion survey covering eighteen
Latin American countries, we examine the roots of inequality of educational opportunities
by estimating a conditional inference tree for each country in the dataset, and also
estimate an inequality of opportunity score in each analyzed country. Our results point
at the parents’ years of education as being the most important feature in determining
an individual’s own educational success in the whole continent. We also observe the
Central American region as being the one whose countries have the highest inequality
of educational opportunity score.

Keywords: Inequality of opportunities. Latin America. Inequality of educational opportu-
nities.
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1 INTRODUCTION

The role played by education in the distribution of socioeconomic status cannot
be underestimated, as it can both lead to an improvement of social mobility and to a
reproduction of social inequalities over time. As access to higher levels of education is
positively correlated to higher salaries for individuals (BAUM, 2014), the distribution of
educational opportunities among a population can show us how other relevant variables,
such as income or access to healthcare will be distributed within that same population in
the future. With this concept in mind, the study of inequality within education can make
us better understand the structural nature of inequalities within a population. However,
inequality within itself is not enough to evaluate the quality of distributive justice within a
population.

In this work, we follow the argument made by Roemer (1993), according to which
inequality is a product of at least two types of inequality: inequality of opportunities
(IOP) and inequality of returns to effort (IE). The former refers to inequality coming
from exogenous factors beyond the scope of individual responsibility, like race, sex
or birthplace, while the latter refers to inequalities stemmed by the personal choices
and effort exerted by individuals. In regards to education in specific, inequality of
opportunity can be exemplified as a child not having access to university because of his
socioeconomic status, while inequality of returns to effort can be exemplified as a child
not having access to higher education because he didn’t study as much as his peers.
While both cases yielded similar results, the cause for each final outcome is radically
different.

The concept of equality of opportunity has high support in the general public,
and it has been identified as a major goal of distributive justice public policy interven-
tion (ALESINA; STANTCHEVA; TESO, 2018) (BRUNORI; HUFE; MAHLER, 2018).
Unfortunately, providing accurate empirical estimates for equality of opportunity is quite
challenging, since we need to discern the precise factors that contribute to inequality of
opportunity and to have at our disposal a dataset containing retrospective information
about individuals.

Latin America is one of the most unequal regions of the world in practically every
account (HOFFMAN; CENTENO, 2003). And, with some exceptions, the countries
themselves are relatively poor. The consequences of those factors result in a continent
in which people live worse off then they need to. Latina America also possesses wide
gaps in educational achievements across socioeconomic groups (CRUCES; DOMENCH;
GASPARINI, 2014). Because of those problems, it is important to understand the social
roots of educational inequality in Latin America, with the objective to improve social and
political reforms in the whole region.

Our objective with this work is to carry out an empirical analysis about the
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roots inequality of educational opportunity in Latin America, seeking to understand
which variables are more important for the determination of educational opportunities
in each analyzed country. To achieve this goal, we will utilize conditional inference
trees to construct and visualize how the available circumstances affect the educational
opportunities available to the population, and random forests to estimate an equality
of opportunity score for each country, while also estimating the importance of each
available variable in determining the educational attainment achieved by each individual.
Our secondary objective will be to evaluate the usefulness of the type of modeling we
utilized to help us better understand inequality of opportunity, and, more importantly, if
those kinds of machine learning models are feasible in Latin America given the limited
availability of longitudinal data present in the continent.

We will discuss the present literature in the equality of opportunity field in chap-
ter 2. chapter 3 introduces the Latinobarómetro survey and explains in greater detail the
methodology we utilize, illustrating how we adapt conditional inference trees and forests
to the context of inequality of opportunity estimations. In chapter 4 we discuss the results
obtained by our modeling, analyzing the trees and feature importance scores obtained
in five select countries, while also analyzing the whole continent in section 4.2. chapter 5
concludes the whole paper, and in it we evaluate if our objectives were achieved, while
also proposing discussion on future work in the studied topic.
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2 LITERATURE REVIEW

The equality of opportunity (EOP) concept has always been a widely discussed
topic because, among other reasons, it relates two extremely important aspects: freedom
of choice and inequality. By its nature, freedom of choice prevents a perfect natural
equality of outcomes, since the effort realized by the individual during his lifetime
will clearly impact his own future well-being. Because of this, the topic of Equality of
Outcomes (EOE) is considered slightly controversial, on the other hand, the goal of
equality of opportunity is much more popular and is pursued and studied by policy
makers around the world. In this chapter we will explore and discuss the history and the
future of research in Equality of Opportunity, trying to understand the the various types
of analysis that can be conducted using this approach, and the advancement of new
methodologies in the field.

Authors such as Dubet (2011) question the goal of equality of opportunity, and
choose to instead prioritize equality of outcome. Dubet, in particular, criticizes the focus
given to inequality of opportunity by policymakers, arguing that the model of equality
of results ends up benefiting the most disadvantaged, thus decreasing, consequently,
inequality of opportunity as well. Hence, even though there is a much greater focus in
the literature on understanding and measure equal opportunity, there is a discussion
about what is the best way to understand inequality.

The concept of equality of opportunity has been studied by philosophers and
economists over the years, and among the most important contributors we highlight
Rawls (1971), as his theory of social justice defines that the distribution of outcomes
and social roles is limited by the necessity to take into account the individual’s personal
choices, since their responsibility and effort would influence their final outcome. Other
authors, such as Dworkin (1981), focused on the distinction between preferences
and resources, and suggesting that we should seek to correct inequalities caused by
differences in resource quantity, not in inequalities caused by personal choices and
preferences. The most influential concept, however, is that made by Roemer (1998),
whose contribution formalized the definition of inequality of opportunity (IOP), and
resulted in the birth and expansion of empirical literature concerning the topic, especially
among economists. His definition bases itself on the division between exogenous
circumstances over which an individual cannot have control over (such as his place
of birth or the educational attainment of his parents) and the individual’s personal
choices and effort. According to Roemer, inequality between people belonging to people
whose initial exogenous circumstances are similar is a morally irrelevant inequality, while
inequality between people who have different circumstances is morally unjust. This
two types of inequality are respectively defined as within type inequality and between
type inequality. Hence, the main objective of public policies that seek to address the
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inequality of opportunity problem should be, following Roemer’s idea, to level the playing
field, that is, reducing the differences caused by exogenous circumstances as much as
possible.

Following Roemer’s contribution, a considerable quantity of methods have been
proposed to measure inequality of opportunity. There are methods such as that de-
veloped by Ferreira and Gignoux (2011), that seeks to quantify how much inequality
is caused by differences in initial opportunities, while others, such as that of Checchi
and Peragine (2010), seek to estimate indices that quantify the impact of inequality
of opportunities in society, and there are also authors who conduct statistical tests to
detect the existence of inequality caused by differences in opportunities, as was done
in Kanbur and Snell (2019). There are two recurring problems faced by researchers
who wish to tackle this issue: the need to define the circumstances that are beyond
individual control and the need to assume how these circumstances interact with the
effort variable to produce different individual outcomes. The outcomes in this case may
be variables such as income distribution, years of schooling, and health status, among
others.

The study of inequality of opportunity can take a few different directions. The
field includes research on public policies, healthcare, education and income, among
others. We can explore in many different can be explored in order to better understand
our society and how the circumstances of an individual’s birth affect their own future
achievements.

The study of public policy aims to understand what is the best course of action
the government can take to reduce this problem. Generally, there are two different
approaches: ex ante and ex post. As analyzed by Fleurbaey and Peragine (2013), this
translates into a dichotomy between "compensation" and "responsibility" principles. By
the ex ante compensation view, opportunities are evaluated by circumstances and pos-
sibilities resulting from the various levels of effort that individuals can exert. In this case,
there is equality of opportunity if the set of opportunities is the same for all individuals,
regardless of their initial conditions. Thus, Inequality of opportunity decreases if the
inequality between sets of opportunities falls. This methodology reduces the degree
of personal responsibility, because in this case what really matters is that the oppor-
tunity set leaves individuals fully responsible within itself. The ex post compensation
approach, however, seeks to use each individual’s level of effort to evaluate unequal
successes, that is, it seeks to compensate people based on other individuals with
different opportunities but the same degree of effort. Clearly, this approach requires
an identification of effort variables, and implies that inequality of opportunity falls in the
case where inequality of outcomes decreases between individuals sharing the same
level of effort. The compensation principle is thus generally formulated with the goal of
reducing inequality between individuals sharing the same level of effort but with different
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circumstances, while responsibility principles seek to target subgroups with identical
circumstances with the goal of raising their opportunity set. These two approaches, as
we can see, represent two different ways of addressing inequality of opportunity through
public policy.

The educational system possesses an important role in improving opportunities
and increasing economical growth in society. therefore, educational policies are also
studied in an equality of opportunity viewpoint. Arrow, Bowles, and Durlauf (2018) argue
that even a basic concept like equality of educational opportunity can share many
meanings, and policy proposals can end up being both moderate and extremist. In
general, the most basic objective is to ensure that every young citizen possesses similar
educational resources, in order to have the chance to achieve the same goals. there is
evidence suggesting that much of the variation in income across different countries can
be attributed to variations in ability dispersion Nickell (2004), which further justifies our
need to better understand the problem.

Concerning Brazil, research has been made regarding inequality of opportunity
in access to higher education Carvalho and Waltenberg (2015) and on individual
educational outcomes Ribeiro (2011). One can also study how access to higher quality
educational institutions can impact n individual’s income in other areas, such as income.
It is also possible to study inequality of educational opportunity through intergenerational
mobility. Two such papers are Jiménez and Jiménez (2019), in which Latinobarómetro
data is used to estimate education inequality indices in Latin America, and Mahlmeister
et al. (2019), in which intergenerational education mobility in Brazil is analyzed, because,
as claimed by the authors, a parent’s education affects the education that their child
will eventually attain, and understanding the severity of this influence can aid in the
formulation of public policy.

The study of inequality of opportunity in education, unfortunately, is bounded by
structural limitations, due to the rarity of extensive and reliable databases where the
researcher can conduct his analysis.

Social and economic conditions, some of which arise from the circumstances
of birth of individuals, tend to influence their health status. Clearly, this effect is more
intense in the poorest parcel of the population. Among the studies on inequality of
opportunity in health we can highlight Sreenivasan (2007) and Donni, Peragine, and
Pignataro (2014), whose work investigates the possible definitions on inequality in
healthcare, and seeks to combine the equal opportunity approach with the methods
commonly utilized in health economics that measure social and income inequalities in
healthcare. Most of the literature, however, focuses on socioeconomic and healthcare
system inequalities seeking to explain health inequalities through differences in factors
such as living or working conditions, access to health, or growth environment.

Inequality of opportunity with a focus on income is also often analyzed in con-



18

junction with intergenerational mobility, which is a related way of studying inequality of
opportunity, as it analyzes the income of the son in relation to that of the father, thus
seeking to understand how the correlation between the two. This method is commonly
used as a basis in most works on the subject. Generally these papers seek to study
how inequality of opportunity affects income distribution in a specific country or region.
Aaberge, Mogstad, and Peragine (2011), for example, estimate a welfare index based
on the equal opportunity approach using Norwegian data.

It is also important to highlight the impact that a high inequality of opportunity
index can have on a country’s economic growth. There is some controversy in the
discourse concerning the relation between inequality and growth. A literature that
addresses the causal relationship that economic growth has on inequality of opportunity
exists, according to which economic development and growth alone would end up
reducing income inequality, such as Kuznets (2019) and Milanovic (1994), but there
are also a number of studies that analyze the inverse causal relationship, that is, how a
reduction in income inequality can cause economic growth. This debate on equality of
opportunity allows us to look at this problem more closely, thus being able to distinguish
inequality caused by differences in individuals’ initial circumstances. One of the most
common arguments about the negative effect that inequality of opportunity has on
economic growth is that when exogenous circumstances such as gender, ethnicity, or
place of birth strongly influence individual income and possible future employment there
exists a suboptimal allocation of resources, because a citizen who, for example, had
the potential and desire to become a doctor ends up being prevented from accessing
university since his place of birth and his parents’ income prevented him from following
that career. Population groups being excluded from participating in economic activities
are, as we can imagine, detrimental to economic growth.

As measuring inequality of opportunity is not a trivial task, researchers end up
using different, creative techniques depending on what data they have at their disposal
and what specific relationship they want to capture. A researcher, wanting to compute
equality of opportunity, encounters several difficulties. First, he needs to decide in
which outcomes he wants to focus on, and to understand which variables represent
circumstances and which show effort. The problem with this division is that it depends
a lot on the researcher’s own understanding, and a choice that is not entirely fair can
derail the results significantly. We also know that not all circumstances can be observed,
and often there is not enough data to conduct a good analysis. Some problems can be
solved using parametric or non-parametric techniques. According to Roemer (2002), if
you have many observable variables, parametric estimation will marry the data better.
Those methods seek to estimate the conditional expectation, while non-parametric
methods seek to estimate the conditional distribution, hence they end up being more
"ambitious", and have the advantage that they are not limited by data availability, and
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are usually solved by regression analysis.
The measurement of equal opportunity indices can be done with methods such

as measuring the Shapley index, as was done by Dill and GONÇALVES (2012) and
Carvalho and Waltenberg (2015), or using multidimensional matrices that seek to relate
the variables chosen as circumstances with the effort variables, so as to have as a result
a single value that represents how unequal a certain region is in the Roemerian view.

To overcome the problem of choosing circumstances, there have recently been
some attempts to use regression tree algorithms, or other machine learning methods, to
estimate indices of inequality of opportunity. These methods are fairly new in empirical
inequality research, so we do not yet know how successful they may be in the future,
but they have, among the advantages of these methods, the ability to choose which
circumstances are important to analyze and how to analyze them. However, the disad-
vantages include not being very explanatory, as the researcher must try to understand
the results without any specific indication of the model, and also not being very robust
yet, as these methods are still new in academic research. Works that have used these
methods include Brunori, Hufe, and Mahler (2018) and Brunori and Neidhöfer (2021).

The study of inequality of opportunity is able to give us better perspectives
on inequality, making us understand better the way mechanisms that generate those
inequalities work in a more general sense. We also know that, as pointed out in Bank
(2005), the degree of inequalities caused by circumstances can be related to economic
growth and development. There are "inequality traps", which end up excluding entire
socioeconomic groups of the population in the economic and social participation of
society, which in turn ends up harming it, are a result of a high level of inequality of
opportunities. One of the reasons for the inconclusiveness of the literature on inequality
and growth is also explained by the nature of the concept of inequality, which ends up
ignoring the difference between inequalities that are explained by conditions exogenous
to the choices of individuals and those that are the result of their conscious choices.
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3 METHODOLOGY

Our primary objective consists in understanding how the circumstances surround-
ing the birth and infancy of an individual, such as ethnicity, citizenship, or educational
attainment of their parents, end up shaping his or her own personal educational attain-
ment.

To achieve the goals stated, we will be adapting the method used in Brunori,
Hufe, and Mahler (2018) by using conditional inference trees and random forests to
estimate inequality of opportunity and, in addition to that, we will be estimating the
conditional importance of each variable utilizing the method developed by Strobl et al.
(2008). This will allow us to visualize the relations between circumstances and results
in a new light. By predicting the results of different identifiable groups, we connect to
Roemer’s idea of equality of opportunity.

In this chapter we will start by discussing why we chose the Latinobarómetro
Survey to be our data source, and what are the survey’s limitation for the type of analysis
we wish to conduct. In section 3.2 we will explain how tree-based methods work and how
we can utilize conditional inference to improve the partitioning method. In section 3.3 we
will introduce Random Forests, which will be utilized both to estimate conditional variable
importance and inequality of opportunity estimates for each country. The methodology
utilized to estimate both the conditional variable importance and the inequality of
opportunity estimates will be discussed in subsection 3.3.1 and subsection 3.3.2.

We will utilize the r package partykit to develop the conditional inference trees
and forests for each country and the package ineq to estimate the Gini index.

3.1 DATA

We utilize data from Latinobarómetro, a public opinion survey conducted quasi-
annually in Latin American countries, covering eighteen countries in total. The survey is
conducted since 1995, but only became representative of the surveyed population in
2003.

The main reason for the Latinobarómetro use is that, other than being a continent-
wide survey, covering all countries equally, it also includes the retrospective information
about the education of the parents for every individual surveyed, regardless of their place
of residence. Unfortunately, the Latinobarómetro neither includes accurate data about
income nor about other retrospective information regarding the interviewed individual,
like the occupation of his father or the presence of both parents at home, whose
presence would certainly improve our understanding of inequality of opportunity in Latin
America, as those variables are utilized in similar works concerning other continents
(BRUNORI; HUFE; MAHLER, 2018).
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We utilize data from all the available surveys for the period 2011-20201. In our
analysis, we will consider only individuals from 25 to 64 years of age, as 25 is generally
the year in which formal education is concluded.

3.1.1 Feature Selection and Data Cleaning

While Latinobarómetro is primarily a public opinion survey, we will utilize only
socioeconomic data. The circumstances included are: sex, ethnicity, an indication
whether the individual is a citizen of the country he resides in, the parents’ years of
education, the size of the city he lives in, and his religion. Our outcome of interest is the
completed years of education of the respondent.

The data formatting for city size and religion utilized in this work is available in
Table 1 and in Table 3.

Table 1 – City size coding in Latino-
barómetro

Code Inhabitants in Respondent’s city

8 Capital City

7 More than 100.000 inhabitants

6 50.001 - 100.000

5 40.001 - 50.000

4 20.001 - 40.000

3 10.001 - 20.000

2 5.001 - 10.000

1 Less than 5.000 inhabitants

Source: Latinobarómetro Codebook.

Latinobarómetro only counts numeric years of education until the twelfth year;
respondents with a higher education are labeled with a textual description of their
education, such as "Incomplete university", ’High school/academies/Complete technical
training". Because of that, we have to estimate the amount of years these labels account
for. The changes made are described in Table 3.

These changes are applied to both the years of education of the respondent
and their parents. We also change the ethnicity variable to be a binary variable to be
an indication on whether the respondent is white or not. We provide the python code
utilized for the data cleaning process in Appendix C.
1 The survey was not conducted in 2012, 2014 and 2019.
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Table 2 – Religion coding in Latinobarómetro

Code Religion

1 Catholic

2 Evangelic without specifications

3 Evangelic Baptist

4 Evangelic Methodist

5 Evangelic Pentecostal

6 Adventist

7 Jehovah Witness

8 Mormon

9 Jewish

10 Protestant

11 Afro-American Cult, Umbanda, etc

12 Believer, not belonging to any church

13 Agnostic

14 Atheist

96 Others

Source: Latinobarómetro Codebook.

Table 3 – Years of education per category

Respondent Type of education Estimated years of education

Incomplete University 14

Complete University 17

High school/academies/Incomplete technical training 14

High school/academies/Complete technical training 16

Source: Estimated by the author.

3.1.2 Sample Size

After removing missing data and respondents outside the analyzed age group,
the sample size for each country is as follows in Table 4

While some Central American countries have smaller sample sizes than the rest,
every country has a similar amount of observations.

3.2 TREE-BASED METHODS

Prediction trees are a supervised learning method that can be applied to both
regression and classification problems. The process of building a prediction tree can
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Table 4 – Sample Size for Each Country

Country Nº of Observations

Argentina 4395

Bolivia 4862

Brazil 5132

Colombia 4904

Costa Rica 3887

Chile 4861

Ecuador 4947

El Salvador 3665

Guatemala 3866

Honduras 3773

Mexico 5234

Nicaragua 3415

Panama 3595

Paraguay 4291

Peru 4969

República Dominicana 3311

Uruguay 4461

Venezuela 4898

Source: Estimated by the author using Lati-
nobarómetro Data.

roughly be divided in two steps: partitioning the data and predicting each partition’s
result. We will start by explaining the process of recursive partitioning.

Conceptually, given a set of variables X : x1, x2, ..., xi and an outcome y , we
partition the predictor space into smaller non-overlapping regions. After that, we partition
those regions again and continue doing so until we meet a predetermined stopping rule.
The result of this process is a partition of the predictor space into N regions R1, R2, ..., Rj .
This process can be represented visually, like the name implies, by an upside-down
tree. Each terminal node, or leaf, represents a partition of the data, and each branch
represents a data split. A point c is part of a terminal node if it falls in the corresponding
cell of the partition. To understand how a specific point c gets assigned to a specific leaf,
we have to start at the root node of the tree, and ask a certain sequence of questions
about its features. Each interior node is labeled by a question, and each branch between
two nodes is labeled by an answer. Using the simplified decision tree in figure 1, we can
see that the first split of the data is made regarding the Father’s education variable, after
which the tree is split into two nodes, depending on the answer to the first question.

Once we have a complete tree, we predict the result of each terminal node.
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Figure 1 – Simplified Example of a Decision Tree

Source: Brunori and Neidhöfer (2021). The graph is an example of a regression tree predicting an
individual’s income based on the education and occupation of their father.

Since we will have many relatively small data clusters in each leaf, local models are
easy to find. In simple predictive trees, the mean of the response for each observation
inside a terminal node can be enough. Note that this approach is very useful at making
out-of-samples prediction of a dependent variable.

3.2.1 Recursive Binary Splitting

Dividing the predictor space in smaller regions is arguably the most important
step in decision tree construction. The technique known as recursive binary splitting is
a widely popular tool for this type of analysis. To understand how this method works, we
have to describe more thoroughly the first step in creating a decision tree, that is, the
partitioning of the entire predictor space.

When we construct the regions R1, ..., Rj , the goal of recursive binary splitting is
to find regions that minimize the residual sum of squares (RSS), given by

RSS =
J∑

j=1

∑
i∈Rj

(
yi − ŷRj

)2 (1)

Where ŷ is the mean response for the observations within the j th region. Since it is
computationally impossible to consider every single possible split of the predictor space
into J regions, recursive binary splitting is most commonly used (HASTIE et al., 2009).
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This method begins at the top of the tree, that is to say, with the whole predictor space.
Consider a splitting variable j , and a split point s. We then define a pair of half-planes
such that

R1(j , s) = {X | Xj ≤ s} and R2(j , s) = {X | Xj > s} (2)

after which we seek both the splitting variable j and the split point s that minimizes the
following equation:

∑
i :xi ∈R1(j ,s)

(yi − ŷR1)2 +
∑

i :xi ∈R2(j ,s)
(yi − ŷR2)2 , (3)

Essentially, we are splitting the predictor space into the two regions that lead to the
greatest possible reduction in RSS. One advantage of this method is that it allows us
to determine the most optimal pair (j , s) very quickly. After having partitioned the data
once, we repeat the process on each of the new regions. The process is repeated
iteratively until a certain predetermined stopping requirement is met. The specific size
of the optimal tree depends largely on the available data.

While this is an effective and efficient method, it is not without its flaws. In partic-
ular, Hothorn, Hornik, and Zeileis (2006) cite overfitting and selection biased towards
covariates have long been recognized as two fundamental problems in exhaustive
search procedures such as recursive binary splitting. Because of this, they propose a
framework using conditional inference to partition regression trees.

3.2.2 Conditional Inference Trees

In this subsection we will explain the method proposed by Hothorn, Hornik, and
Zeileis (2006), which we will ultimately use in our tree construction process. One of the
main problems with the standard method of recursive binary partitioning is the lack of
a concept of statistical significance. To solve that, the conditional inference framework
changes the way the partitioning of the predictor space is made.

Just like in the method described in the previous section, we need to select a
certain variable j and a splitting point s from where we conduct the first split of the
predictor space. We start by checking the density function independence between each
covariate and the response variable, obtaining a p-value for each test. To do this, we
test the null hypothesis of density function independence H j

0 : D
(
Y | Xj

)
= D(Y) for each

Xj in the variable space, obtaining a p-value for each test conducted, pXj . We select the
variable j with the lowest p-value, and, if that p-value is lower than a previously chosen
significance level α, we select that as the splitting variable.

Similarly, to select the splitting point we test the null hypothesis of density function
independence between the sub samples given by each binary splitting point s, also
obtaining a p-value associated with each test. Then, we partition the data based on the
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splitting point s which yields the lowest p-value. After that, just like the recursive binary
splitting method, we repeat the process for each resulting sub-sample, stopping in case
none of the possible splits result in a p-value lower than α.

Our chosen level of α will be 0.05.

3.3 RANDOM FORESTS

Decision trees, unfortunately, still suffer from some shortcomings. One of the
most important ones is that trees alone can be very non robust, since small changes in
the data can cause very large changes in the final estimated trees. This can happen,
for example, in case two or more very important variables are highly correlated, as
splitting the data using one of the two means that the other would likely not have enough
information to cause another split (GARETH et al., 2013). Because of those problems,
methods like boosting, bagging and random forests utilize trees as building blocks to
construct powerful prediction models. The following part of this section will explain in
greater detail the inner workings of random forests, as this will be the method utilized to
achieve our stated objectives.

Forests loosely are, like the name implies, a collection of many decision trees. To
construct a forest, we first need to build a number of decision trees and then average
their resulting predictions. But the tree-building process in random forests is slightly
different. Since the tree-building process is non-random, constructing two trees on the
exact same set of data and utilizing the same variables will result in two exactly equal
trees. To create trees that differ from each other, we make two specific changes: First,
for each tree built, only a random subsample of the data is used. And second, only a
random subset of variables is allowed to be used on each splitting point. Those two
techniques increase the likelihood that every circumstance with informational content
will be eventually utilized as a splitting variable, and improve the robustness of the
model.

Thus, by forcing only a subset of the full data, the model guarantees that the
estimated trees will not look similar to each other and the correlation between different
trees will not be high. This also makes it so that that the average of the resulting trees
tends to be more reliable.

3.3.1 Conditional Feature Importance

While supervised machine learning models can have strong predictive power,
many algorithms construct complex models that are too opaque for humans to under-
stand effectively. Because of this limitation, the field of Explainable Artificial Intelligence
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(XAI) has emerged in recent years (BURKART; HUBER, 2021). In this work, we intend
to use the method developed by Strobl et al. (2008) to estimate the importance score of
each variable utilized in our random forest model.

Feature importance models attempt to estimate how much each variable in a
random forest contributes in the out of sample prediction accuracy achieved by the
model. The process developed by Strobl et al. (2008) estimates the importance of each
variable by permuting it within a grid defined by the covariates whose correlation to the
determined variable is higher than a certain predetermined threshold, and computing the
out of sample model accuracy, then comparing it to the original out of sample prediction
accuracy of the original model. after doing this operation for each tree in the forest,
the importance score for our given variable Xj will be the mean difference between the
original prediction accuracy and the post-permutation prediction accuracy over all trees.

3.3.2 Calculating Inequality of Opportunity using the Gini Index

One of our objectives consists on utilizing the models we developed to estimate a
score of educational inequality of opportunity in each analyzed country. To achieve this,
we follow the methodology utilized by Brunori, Hufe, and Mahler (2018). The process will
consist in running the models on each individual country’s data, and then applying the
resulting prediction function f̂ (), that is, the random forests developed for each country
to obtain an estimate of the conditional distribution of opportunities in the population ŷC .

Once we have our distribution estimate, we summarize it with the Gini index, thus
obtaining an inequality of opportunity estimate for each analyzed country.
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4 RESULTS

The educational attainment of a person is determined not only by his own effort,
but also by circumstances that do not depend on the individual’s deliberate choices.
Inequality of opportunity in education exists if outside circumstances, like ethnicity,
gender or citizenship, end up influencing the end result of an individual’s educational
attainment level.

Our objective is to capture how ethnicity, gender, parents’ years of education, reli-
gion, citizenship and city size influence the years of education completed by individuals
in working age over 18 countries in Latin America and the Caribbean.

In this chapter, we will discuss the results obtained by our modeling, by analyzing
the specific findings related to five select countries; the three biggest economies on
the survey (Brazil, Mexico and Argentina) and the ones with the highest IOP index
(Nicaragua and Guatemala).

In section 4.1 we will analyze the conditional inference trees obtained following
the method proposed by Hothorn, Hornik, and Zeileis (2006) for each of those 5
select countries and discuss the calculated importance for each variable utilized in the
construction of our forests. In section 4.2 we will visualize the IOP index results for each
of the 18 countries in the dataset.

4.1 VISUALIZING OPPORTUNITY TREES AND FEATURE IMPORTANCE

Utilizing the methodology described in section 3.2.2, we estimated and plotted
18 conditional inference trees, one for each Latin American country in the survey. We
will show five of those trees in this section. The rest will be available in the annex A.

While Brazil’s GDP is one of the ten highest in the world, the country still has
a large quantity of people living in absolute poverty (BARBOSA; SOUZA; SOARES,
2020) ; this is reflected both on income and education. Specifically, as of 2013, only 12
percent of people in university age were studying in higher education, and as explained
by Carvalho and Waltenberg (2015), while in the previous decade the affirmative action
policies improved the equality of educational opportunities in the country, there still is a
long way to go, as the family income and the educational attainment of the chief income
earner are the most important factors in determining the educational possibility of an
individual.

Figure 2 shows the opportunity tree for Brazil. Notice that seven out of the 23
internal nodes was a binary split made by partitioning the data based on the parents’
educational attainment. In this case, we can see how the completed years of education
of an individual in Brazil depends on his parents’ completed years of education more
than any other computed variable. While our dataset doesn’t include family income, the
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Figure 2 – Educational Opportunity Tree for Brazil.

Source: Elaborated by the author using Latinobarómetro data. Note: The reference codes for
religion and city size are available in subsection 3.1.1. Sex: 1 = female, 0 = male. Citizen : 1 = Has
the country’s citizenship, 0 = does not have the country’s citizenship.

importance on parents’ years of education was in line to the research made by Carvalho
and Waltenberg (2015). We can also see that both ethnicity and city size play a part, as
nonwhite people and people living in small cities yield a smaller expected result.

Figure 3 – Conditional Feature Importance for Brazil.

Source: Elaborated by the author using Latinobarómetro data

Looking at the feature importance in Figure 3, we can see that, as expected, the
parents’ educational level is the most important variable in determining the individual’s
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years of education. A distant second is city size, followed by ethnicity. Religion, sex and
citizenship, on the contrary, are not good predictors of educational attainment in Brazil.

Figure 4 – Educational Opportunity Tree for Mexico.

Source: Elaborated by the author using Latinobarómetro data. Note: The reference codes for
religion and city size are available in subsection 3.1.1. Sex: 1 = female, 0 = male. Citizen : 1 = Has
the country’s citizenship, 0 = does not have the country’s citizenship.

Mexico is the second biggest economy in Latin America. Despite this, just like
Brazil, the country has high levels of inequality, and the inter-generational social mobility
rates are very low at the extremes of the wealth distribution (GRAJALES; MONROY-
GÓMEZ-FRANCO; YALONETZKY, 2018).

Figure 5 – Conditional Feature Importance for Mexico.

Source: Elaborated by the author using Latinobarómetro data
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In Figure 4 we can see the opportunity tree constructed for Mexico. Unlike the
Brazil tree, we can see that, when the parents’ education is higher, males tend to spend
more years in the school system, while when the parents educational level is low, the
opposite happens, with females having an higher predicted result, as we can see in
nodes 8 and 9.

Figure 5 shows that even in Mexico the number of years of education is explain-
able in large part by the parents’ level of education. Unlike Brazil, ethnicity has very little
importance, while sex is slightly more important.

Figure 6 – Educational Opportunity Tree for Argentina.

Source: Elaborated by the author using Latinobarómetro data. Note: The reference codes for
religion and city size are available in subsection 3.1.1. Sex: 1 = female, 0 = male. Citizen : 1 = Has
the country’s citizenship, 0 = does not have the country’s citizenship.

Figure 6 shows the opportunity tree in Argentina. Parents educational attainment
is again the most important thing, as shown in Figure 7, followed by city size and sex. In
general, Argentina’s tree results and feature importance are very similar to Mexico’s.
In node 20, we can see how non-citizens with educated parents have a much smaller
expected results than Argentinian citizens.

The three countries analyzed, being the biggest economies in Latin America,
are not very different between themselves in terms of educational inequality structure.
While we will discuss their estimated IOP level score in section 4.2, we will now analyze
the two countries with the highest estimated inequality of opportunity: Guatemala and
Nicaragua.

Guatemala is the Latin American country with the highest incidence of poverty,
with 35.9 percent of the population living in extreme poverty and 52.6 percent living
in poverty as of 2010 (CABRERA; LUSTIG; MORÁN, 2015). In Figure 8 we can see
Guatemala’s opportunity tree. Unlike Mexico, Argentina and Brazil, the distribution is
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Figure 7 – Conditional Feature Importance for Argentina.

Source: Elaborated by the author using Latinobarómetro data

Figure 8 – Educational Opportunity Tree for Guatemala.

Source: Elaborated by the author using Latinobarómetro data. Note: The reference codes for
religion and city size are available in subsection 3.1.1. Sex: 1 = female, 0 = male. Citizen : 1 = Has
the country’s citizenship, 0 = does not have the country’s citizenship.

clearly very unequal between the educated and the non-educated people, as the model
gives us very low predictions in the left side of the tree, like in node 5 and 6.

While Cabrera, Lustig, and Morán (2015) cites the extreme poverty of the indige-
nous population of Guatemala as being one of the main reasons for the country’s high
inequality, ethnicity appears in Figure 9 as being the least important factor in determining
the individual’s education level. One of the possible reasons for this oversight is the
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way that ethnicity has been labeled: since it is only differentiated between whites and
nonwhites, the inequality specific to the indigenous population is not noticeable, as
the indigenous population blends with the hispanic population in the data, and only 26
percent of the population in the survey identifies as white.

The educational attainment of the parents, as usual, is by far the feature with
the highest importance for Guatemala, but city size is unusually high. This makes us
understand that the educated population is more concentrated in the larger cities in
Guatemala than in other Latin American countries.

Figure 9 – Conditional Feature Importance for Guatemala.

Source: Elaborated by the author using Latinobarómetro data

Nicaragua is the country with the highest estimated inequality of opportunity by
our model. In literature, there has been a focus explicitly on the spatial side of inequality,
as we can see in Wall (1993), the Nicaraguan economy has been viewed as excessively
concentrated in Managua. This is made clear by looking at Figure 10, as living outside
the capital always results in a lower expected education.

In Figure 11 we can see that the feature importance of city size is higher than 2,
a number much higher than Guatemala and all the other observed countries. We can
infer that, according to our modeling, other than the ever-present parents’ educational
attainment, the educational inequalities in the most inequal countries of Latin America
are mostly spatial.

One important thing to underline is that conditional inference regression trees
should be interpreted with caution, as they tend to be very sensitive to sample size.
Since we are also working with imperfect data, looking just at the trees without proper
context can cause mistaken conclusions to arise. Nevertheless, the visualization and
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Figure 10 – Educational Opportunity Tree for Nicaragua.

Source: Elaborated by the author using Latinobarómetro data. Note: The reference codes for
religion and city size are available in subsection 3.1.1. Sex: 1 = female, 0 = male. Citizen : 1 = Has
the country’s citizenship, 0 = does not have the country’s citizenship.

Figure 11 – Conditional Feature Importance for Nicaragua.

Source: Elaborated by the author using Latinobarómetro data

the general characteristics of the tree can certainly help us understand how inequality
of opportunity works in the analyzed countries.

Parents’ educational attainment, as we can see, is clearly the most important
predictor when looking at an individual’s level of education. This is expected, since
there are works focusing solely on this variable to estimate inequality of educational
opportunity (JIMÉNEZ; JIMÉNEZ, 2019).
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4.2 THE BIG PICTURE

In section 4.1 we analyzed the results in five select countries. We now focus
on the whole continent of Latin America. Figure 12 shows how parents’ educational
attainment is the most important variable not only across the countries previously
analyzed, but in the whole Latin American continent. Citizenship, on the other hand, has
almost no use in predicting years of education in our dataset.

Figure 12 – Conditional feature Importance for Latin America.

Source: Elaborated by the author using Latinobarómetro data

Figure 13 presents the IOP index calculated for every Latin American country
in the Latinobarómetro survey. These results were computed utilizing the method
specified in section 3.3.2. A score between 0 and 1 is calculated for each country, with
0 representing complete equality and 1 complete inequality. In our case, a country with
a low score is a country where the circumstances reflecting a person’s birth have little
importance in determining the educational attainment of an individual, while a country
with a high score is the opposite, that is, one in which birth circumstances play a big
part in the educational opportunities of its inhabitants.

We plot the countries in a way to rank them from highest IOP to lowest. As
stated in section 4.1, the two countries with the highest estimated educational IOP are
Nicaragua (0.235) and Guatemala (0.222). We can also see that the four highest scores
are all from Central American countries. Despite this, the other two countries from the
region, Panama (0.129) and Costa Rica (0.119) both have scores lower than the mean
value (0.143). The countries with the lowest score are Chile (0.074) and Venezuela
(0.085). The countries whose score was closest to the mean were Brazil (0.157) and
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Figure 13 – Estimated IOP scores for Latin American countries.

Source: Elaborated by the author using Latinobarómetro data and the methodology proposed in
subsection 3.3.2.

Mexico (0.139).
We also visualize the estimated inequality of opportunity scores using a map

plot in Figure 14. We can see how the countries with the highest IOP are all located in
Central America.

Figure 14 – Estimated IOP scores for Latin American countries.

Source: Elaborated by the author using Latinobarómetro data and the methodology proposed in
subsection 3.3.2.
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The results obtained show that we have great regional heterogeneity in inequality
of educational opportunity in the continent, as the scores obtained differ substantially
between countries, with some being greatly unequal, while others less so.
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5 CONCLUSION

In this work, we analyze inequality of educational opportunity in Latin America uti-
lizing data from ten years of Latinobarómetro surveys. By applying conditional inference
trees, we visualize an estimate of opportunity trees for each of the eighteen countries
analyzed, gaining insights about the roots of educational inequality. Computing feature
importance for each variable in each country allows us to determine how much these
factors end up influencing the final educational result of individuals surveyed. We also
estimate an inequality of opportunity score for each country in the dataset. This lets us
compare the educational inequality structure between the eighteen analyzed countries.

Our results show that in every analyzed Latin American country the parents’
years of education is by far the most important factor in determining an individual’s
educational level. While the biggest economies in the continent present similar tree
structures and feature importance scores, some smaller and more unequal countries
possess slight differences caused by specific factors intrinsic to their own socioeconomic
organization, such as Nicaragua’s economy being focused almost solely on the capital,
causing individuals born and living in other cities to have a worse expected educational
outcome.

The estimated inequality of opportunity scores exhibit Central America as the
region with the highest level of educational inequality, since all four countries with the
highest inequality score all come from the same aforementioned region. The countries
with the lowest estimated educational IOP score are Chile and Venezuela.

While our methodology provided us with coherent results, the scarcity of more
retrospective information about interviewed individuals limits the possible scope of future
works in the field. More data concerning the individual’s infancy is extremely important in
inequality of opportunity research, as variables such as the father’s occupational status,
the presence of both parents at home or the tenancy status in the house the respondent
was living when they were a child are widely used in IOP research (BRUNORI; HUFE;
MAHLER, 2018), (MARRERO; RODRIGUEZ, 2013). Because of those limitations, our
results may not be as accurate as we would like, as circumstances like family income can
be extremely useful when trying to understand inequality of educational opportunities.

Another limitation caused by our general methodological work is visible in sec-
tion 4.1. As the data was uniform for the whole continent, specific patterns present
in some countries can end up not being recognized by our modeling as they should,
as it is the case of Guatemala. As explained by Cabrera, Lustig, and Morán (2015),
"an indigenous individual in Guatemala is more than twice as likely to be in poverty
than a non-indigenous one", and "the large poverty gap between indigenous and non
indigenous individuals is highly correlated with the disparities in educational attainment
by ethnicity". But, as shown in Figure 9, ethnicity is not considered a relevant feature
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in our modeling. This happens because ethnicity is computed as a binary variable,
distinguishing between white and non-white individuals. This distinction, however, is not
really useful for the Guatemalan case, as only a very small portion of the population
identifies as white. We can imagine such shortcomings are present in more than one
case.

For future work, we can look at each country with more detail, utilizing data that
makes the most sense given the countries’ socioeconomic background, and not with a
generic approach used in our work. Another possibility is studying the change in the
opportunity tree within a country over the years, to study the evolution of inequality
within the country, as was done in Brunori and Neidhöfer (2021) for the case of Germany.
There is also space for improving the estimation of IOP scores, as the Gini index does
not fully captures the relation between inequality of opportunity and inequality of returns
to effort.
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ANNEX A – OPPORTUNITY TREES

Figure 15 – Educational Opportunity Tree for Argentina.

Source: Elaborated by the author using Latinobarómetro data
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Figure 16 – Educational Opportunity Tree for for Bolivia.

Source: Elaborated by the author using Latinobarómetro data

Figure 17 – Educational Opportunity Tree for Brazil.

Source: Elaborated by the author using Latinobarómetro data
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Figure 18 – Educational Opportunity Tree for Chile.

Source: Elaborated by the author using Latinobarómetro data

Figure 19 – Educational Opportunity Tree for Colombia.

Source: Elaborated by the author using Latinobarómetro data
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Figure 20 – Educational Opportunity Tree for Costa Rica.

Source: Elaborated by the author using Latinobarómetro data

Figure 21 – Educational Opportunity Tree for Ecuador.

Source: Elaborated by the author using Latinobarómetro data



47

Figure 22 – Educational Opportunity Tree for El Salvador.

Source: Elaborated by the author using Latinobarómetro data

Figure 23 – Educational Opportunity Tree for Guatemala.

Source: Elaborated by the author using Latinobarómetro data
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Figure 24 – Educational Opportunity Tree for Honduras.

Source: Elaborated by the author using Latinobarómetro data

Figure 25 – Educational Opportunity Tree for Mexico.

Source: Elaborated by the author using Latinobarómetro data
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Figure 26 – Educational Opportunity Tree for Nicaragua.

Source: Elaborated by the author using Latinobarómetro data

Figure 27 – Educational Opportunity Tree for Panama.

Source: Elaborated by the author using Latinobarómetro data
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Figure 28 – Educational Opportunity Tree for Paraguay.

Source: Elaborated by the author using Latinobarómetro data

Figure 29 – Educational Opportunity Tree for Peru.

Source: Elaborated by the author using Latinobarómetro data
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Figure 30 – Educational Opportunity Tree for Dominican Rep..

Source: Elaborated by the author using Latinobarómetro data

Figure 31 – Educational Opportunity Tree for Uruguay.

Source: Elaborated by the author using Latinobarómetro data
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Figure 32 – Educational Opportunity Tree for Venezuela.

Source: Elaborated by the author using Latinobarómetro data
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ANNEX B – FEATURE IMPORTANCE

Figure 33 – Conditional Feature Importance for Argentina.

Source: Elaborated by the author using Latinobarómetro data

Figure 34 – Conditional Feature Importance for Bolivia.

Source: Elaborated by the author using Latinobarómetro data
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Figure 35 – Conditional Feature Importance for Brazil.

Source: Elaborated by the author using Latinobarómetro data

Figure 36 – Conditional Feature Importance for Chile.

Source: Elaborated by the author using Latinobarómetro data
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Figure 37 – Conditional Feature Importance for Colombia.

Source: Elaborated by the author using Latinobarómetro data

Figure 38 – Conditional Feature Importance for Costa Rica.

Source: Elaborated by the author using Latinobarómetro data
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Figure 39 – Conditional Feature Importance for Ecuador.

Source: Elaborated by the author using Latinobarómetro data

Figure 40 – Conditional Feature Importance for El Salvador.

Source: Elaborated by the author using Latinobarómetro data
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Figure 41 – Conditional Feature Importance for Guatemala.

Source: Elaborated by the author using Latinobarómetro data

Figure 42 – Conditional Feature Importance for Honduras.

Source: Elaborated by the author using Latinobarómetro data
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Figure 43 – Conditional Feature Importance for Mexico.

Source: Elaborated by the author using Latinobarómetro data

Figure 44 – Conditional Feature Importance for Nicaragua.

Source: Elaborated by the author using Latinobarómetro data
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Figure 45 – Conditional Feature Importance for Panama.

Source: Elaborated by the author using Latinobarómetro data

Figure 46 – Conditional Feature Importance for Paraguay.

Source: Elaborated by the author using Latinobarómetro data
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Figure 47 – Conditional Feature Importance for Peru.

Source: Elaborated by the author using Latinobarómetro data

Figure 48 – Conditional Feature Importance for Dominican Rep.

Source: Elaborated by the author using Latinobarómetro data
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Figure 49 – Conditional Feature Importance for Uruguay.

Source: Elaborated by the author using Latinobarómetro data

Figure 50 – Conditional Feature Importance for Venezuela.

Source: Elaborated by the author using Latinobarómetro data
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ANNEX C – DATA CLEANING

Code 1 – Python Code

1 import numpy as np

2 import pandas as pd

3 # grabbing data

4 #Since the dictionary changes between years , we have to do this

manually

6 cols2011 = [’numinves ’, ’idenpa ’, ’reedad ’, ’ciudad ’, ’tamciud ’,

7 ’S16 ’, ’S18 ’, ’S25 ’, ’S27 ’, ’S21 ’, ’S22 ’]

8 dic2011 = {’S16 ’: ’sex ’, ’S18 ’: ’religion ’,’S25 ’: ’citizen ’, ’S27

’:’ ethnicity ’,

9 ’S21 ’: ’anos_educ ’, ’S22 ’:’ anos_educ_pai ’, ’numinves ’

: ’year ’, ’idenpa ’: ’country ’, ’reedad ’: ’age ’,

10 ’ciudad ’: ’city ’, ’tamciud ’: ’city_size ’}

12 cols2013 = [’numinves ’, ’idenpa ’, ’reedad ’, ’ciudad ’, ’tamciud ’,

13 ’S10 ’, ’S12 ’, ’S14 ’, ’S17 ’, ’S18 ’, ’S21 ’]

14 dic2013 = {’S10 ’ : ’sex ’, ’S12 ’: ’citizen ’, ’S14 ’:’ religion ’, ’

S17 ’: ’anos_educ ’, ’S18 ’: ’anos_educ_pai ’,

15 ’S21 ’: ’ethnicity ’, ’numinves ’ : ’year ’, ’idenpa ’: ’

country ’, ’reedad ’: ’age ’,

16 ’ciudad ’: ’city ’, ’tamciud ’: ’city_size ’}

18 cols2015 = [’numinves ’, ’idenpa ’, ’reedad ’, ’ciudad ’, ’tamciud ’,

19 ’S12 ’, ’S14 ’, ’S16 ’, ’S19 ’, ’S20 ’, ’S23 ’]

20 dic2015 = {’S12 ’:’sex ’, ’S14 ’: ’citizen ’, ’S16 ’: ’religion ’, ’S19

’:’ anos_educ ’,

21 ’S20 ’: ’anos_educ_pai ’, ’S23 ’:’ ethnicity ’, ’SEXO ’: ’

sex ’, ’numinves ’ : ’year ’, ’idenpa ’: ’country ’, ’

reedad ’: ’age ’,

22 ’ciudad ’: ’city ’, ’tamciud ’: ’city_size ’}

24 cols2016 = [’numinves ’, ’idenpa ’, ’reedad ’, ’ciudad ’, ’tamciud ’,

25 ’S7 ’, ’S8 ’, ’S9 ’, ’S13 ’, ’S14 ’, ’sexo ’]

26 dic2016 = {’S7 ’:’ citizen ’, ’S8 ’:’ religion ’, ’S9 ’:’ ethnicity ’, ’

S13 ’: ’anos_educ ’,

27 ’S14 ’:’ anos_educ_pai ’, ’sexo ’: ’sex ’, ’numinves ’ : ’

year ’, ’idenpa ’: ’country ’, ’reedad ’: ’age ’,
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28 ’ciudad ’: ’city ’, ’tamciud ’: ’city_size ’}

30 cols2017 = [’numinves ’, ’idenpa ’, ’reedad ’, ’ciudad ’, ’tamciud ’,

31 ’sexo ’, ’S8 ’, ’S9 ’, ’S10 ’, ’S14 ’, ’S15 ’]

32 dic2017 = {’S8 ’:’ citizen ’, ’S9 ’:’ religion ’, ’S10 ’:’ ethnicity ’, ’

S14 ’: ’anos_educ ’,

33 ’S15 ’:’ anos_educ_pai ’, ’sexo ’: ’sex ’, ’numinves ’ : ’

year ’, ’idenpa ’: ’country ’, ’reedad ’: ’age ’,

34 ’ciudad ’: ’city ’, ’tamciud ’: ’city_size ’}

36 cols2018 = [’NUMINVES ’, ’IDENPA ’, ’REEDAD ’, ’CIUDAD ’, ’TAMCIUD ’,

’SEXO ’,

37 ’S5 ’, ’S6 ’, ’S10 ’, ’S11 ’, ’S16 ’]

38 dic2018 = {’S16 ’:’ citizen ’, ’S5 ’:’ religion ’, ’S6 ’:’ ethnicity ’, ’

S10 ’: ’anos_educ ’,

39 ’S11 ’:’ anos_educ_pai ’, ’SEXO ’: ’sex ’, ’NUMINVES ’ : ’

year ’, ’IDENPA ’: ’country ’, ’REEDAD ’: ’age ’,

40 ’CIUDAD ’: ’city ’, ’TAMCIUD ’: ’city_size ’}

42 cols2020 = [’numinves ’, ’idenpa ’, ’ciudad ’, ’tamciud ’, ’sexo ’,

43 ’s10 ’,’s12 ’, ’s16 ’, ’s17 ’, ’s21 ’, ’reedad ’]

44 dic2020 = {’s21 ’:’ citizen ’, ’s10 ’:’ religion ’, ’s12 ’:’ ethnicity ’,

’s16 ’: ’anos_educ ’,

45 ’s17 ’:’ anos_educ_pai ’, ’sexo ’: ’sex ’, ’numinves ’ : ’

year ’, ’idenpa ’: ’country ’, ’reedad ’: ’age ’,

46 ’ciudad ’: ’city ’, ’tamciud ’: ’city_size ’}

48 lat_2011 = pd. read_stata (r’ python / Lat2011 .dta ’,

convert_categoricals = False , columns = cols2011 )

49 lat_2013 = pd. read_stata (r’ python / Lat2013 .dta ’,

convert_categoricals = False , columns = cols2013 )

50 lat_2015 = pd. read_stata (r’ python / Lat2015 .dta ’,

convert_categoricals = False , columns = cols2015 )

51 lat_2016 = pd. read_stata (r’ python / Lat2016 .dta ’,

convert_categoricals = False , columns = cols2016 )

52 lat_2017 = pd. read_stata (r’ python / Lat2017 .dta ’,

convert_categoricals = False , columns = cols2017 )

53 lat_2018 = pd. read_stata (r’ python / Lat2018 .dta ’,

convert_categoricals = False , columns = cols2018 )

54 lat_2020 = pd. read_stata (r’ python / Lat2020 .dta ’,

convert_categoricals = False , columns = cols2020 )
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56 lat_2011 . rename ( columns = dic2011 , inplace = True)

57 lat_2013 . rename ( columns = dic2013 , inplace = True)

58 lat_2015 . rename ( columns = dic2015 , inplace = True)

59 lat_2016 . rename ( columns = dic2016 , inplace = True)

60 lat_2017 . rename ( columns = dic2017 , inplace = True)

61 lat_2018 . rename ( columns = dic2018 , inplace = True)

62 lat_2020 . rename ( columns = dic2020 , inplace = True)

64 # making the correct year appear in the "year" field

66 lat_2011 .loc[ lat_2011 [’year ’] == 16, ’year ’] = ’2011’

67 lat_2015 .loc[ lat_2015 [’year ’] == 18, ’year ’] = ’2015’

69 #the city list changed for Argentina in 2020 and city size is not

avilable . We will only consider cities with city size in the

dataset

71 lat_2018_ar = lat_2018 [ lat_2018 [’country ’] == 32]

72 lat_2018_ar = lat_2018_ar [[’city ’,’city_size ’]]. drop_duplicates ()

74 city_dict = dict ([( city , city_size ) for city , city_size in zip(

lat_2018_ar [’city ’]. values , lat_2018_ar [’city_size ’]. values )])

76 for key , value in city_dict .items ():

77 lat_2020 .loc[ lat_2020 [’city ’] == key , ’city_size ’] = value

79 lat_2020 = lat_2020 [ lat_2020 [’city_size ’] > 0]

81 # joining dfs

83 dfs = [lat_2011 , lat_2013 , lat_2015 , lat_2016 , lat_2017 , lat_2018

, lat_2020 ]

84 lat_completo = pd. concat (dfs)

86 lat_completo .drop ([’city ’], axis = 1, inplace = True)

88 # removing people outside the analyzed age range 25 -60

90 lat_completo = lat_completo .loc[ lat_completo [’age ’] > 1]

91 lat_completo = lat_completo .loc[ lat_completo [’age ’] < 4]

93 # ethnicity : 1 white , 0 non -white
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94 etnia_dict = {6: 1, 1: 0, 2: 0, 3: 0, 4: 0, 5:0, 7:0, -1: 0, -2:

0}

95 lat_completo [’ethnicity ’] = lat_completo [’ethnicity ’]. map(

etnia_dict )

97 country_dict = {32: ’argentina ’,

98 68: ’bolivia ’,

99 76: ’brasil ’,

100 152: ’chile ’,

101 170: ’colombia ’,

102 188: ’costa_rica ’,

103 214: ’rep_dominicana ’,

104 218: ’ecuador ’,

105 222: ’el_salvador ’,

106 320: ’guatemala ’,

107 340: ’honduras ’,

108 484: ’mexico ’,

109 558: ’nicaragua ’,

110 591: ’panama ’,

111 600: ’paraguay ’,

112 604: ’peru ’,

113 724: ’espana ’,

114 858: ’uruguay ’,

115 862: ’venezuela ’}

117 lat_completo [’country ’] = lat_completo [’country ’]. map(

country_dict )

119 #drop NAs in years of education and turn into integers

120 lat_completo = lat_completo [ lat_completo [’anos_educ ’] != 0]

121 lat_completo = lat_completo [ lat_completo [’ anos_educ_pai ’] != 0]

122 lat_completo [’anos_educ ’] = lat_completo [’anos_educ ’] - 1

123 lat_completo [’ anos_educ_pai ’] = lat_completo [’ anos_educ_pai ’] - 1

124 dict_educ = {13: 14, 14:17 , 15: 14, 16:16}

125 lat_completo [’anos_educ ’] = lat_completo [’anos_educ ’]. map(

dict_educ ). fillna ( lat_completo [’anos_educ ’])

126 lat_completo [’ anos_educ_pai ’] = lat_completo [’ anos_educ_pai ’]. map

( dict_educ ). fillna ( lat_completo [’ anos_educ_pai ’])

127 lat_completo = lat_completo [ lat_completo [’anos_educ ’] > -1]

128 lat_completo = lat_completo [ lat_completo [’ anos_educ_pai ’] > -1]

130 #sex: 1 = female , 0 = male
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131 lat_completo [’sex ’] = lat_completo [’sex ’] - 1

133 lat_completo = lat_completo . rename ( columns = {’anos_educ ’: ’

educ_years ’, ’anos_educ_pai ’:’ educ_parents ’})

135 #get csv to run the model

136 lat_completo . to_csv (’ lat_completo .csv ’)
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ANNEX D – MODELING

Code 2 – R code

1 library ( tidyverse )

2 library ( partykit )

3 library (party)

4 library (ineq)

8 df <- read.csv(’ lat_completo .csv ’, header = T)

9 df <- df[,-1]

11 data <- subset (df , !is.na( educ_years ))

14 control = ctree_control ( teststat = c(" quad", "max "),

15 testtype = c(" Bonferroni ", " MonteCarlo ",

16 " Univariate ", " Teststatistic

"),

17 mincriterion = 0.95 , minsplit = 20,

minbucket = 7,

18 stump = FALSE , nresample = 9999 ,

maxsurrogate = 0,

19 mtry = 0, savesplitstats = TRUE , maxdepth

= 0, remove_weights = FALSE)

22 countries <- list (" argentina ", " bolivia " , " brasil ",

" colombia ", " costa_rica ", "chile"

23 ," ecuador ", " el_salvador " , " guatemala

", " honduras ", " mexico ", "

nicaragua "

24 ," panama " ," paraguay " ,"peru"

," rep_dominicana " ," uruguay "

, " venezuela " )

26 # computing trees

28 for (i in countries ) {



68

29 coun = data[ data$country == i,]

30 tree <- ctree( educ_years ~ city_size + sex + religion + citizen

+ ethnicity + educ_parents ,

31 data = coun ,

32 control = control )

33 plot(tree ,main = i, pop = T,

34 terminal_panel = node_terminal (tree , digits =1,id=T,fill=c(’

white ’,’white ’)))

35 print(i)

36 }

38 # Forest scores and feature importance for each country

40 score <- numeric (18)

41 for (i in countries ) {

42 coun = data[ data$country == i,]

43 forest_output <- cforest ( educ_years ~ city_size + sex +

religion + citizen + ethnicity + educ_parents ,

44 data = coun ,

45 controls = cforest_unbiased (ntree=

100, mtry = 3), set.seed (10))

46 forest . importance <- varimp ( forest_output , conditional = T)

47 round( forest .importance , 3)

48 dotchart (sort( forest . importance ),

49 sub =i)

50 print(i)

51 country_score <- ineq( predict ( forest_output ), type = ’Gini ’)

52 score <- append (score , country_score )

53 print(ineq( predict ( forest_output ), type = ’Gini ’))

54 }

56 j <- 1

58 for (i in countries ) {

59 coun = data[ data$country == i,]

60 forest_output <- cforest ( anos_educ ~ city_size + sex + religion

+ citizen + ethnicity + anos_educ_pai ,

61 data = coun ,

62 controls = cforest_unbiased (ntree=

100, mtry = 3), set.seed (10))

63 print(i)

64 country_score <- ineq( predict ( forest_output ), type = ’Gini ’)
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65 score[j] <- country_score

66 j <- j+1

67 print(ineq( predict ( forest_output ), type = ’Gini ’))

68 }

70 # forest score and feature importance for the whole continent

72 forest_output <- cforest ( anos_educ ~ city_size + sex + religion +

citizen + ethnicity + anos_educ_pai ,

73 data = df ,

74 controls = cforest_unbiased (ntree= 100,

mtry = 3), set.seed (10))

75 forest . importance <- varimp ( forest_output , conditional = T)

76 dotchart (sort( forest . importance ))

78 country <- unlist ( countries )

80 scores_df <- data.frame(country , score)

82 scores_df <- scores_df [order( scores_df$score ) ,]

84 dotchart ( scores_df$score , labels = scores_df$country , pch = 20,

cex = 1)
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