
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CEZAR RODOLFO WEDIG REINBRECHT

Architectural Channel Attacks in
NoC-based MPSoCs and its

Countermeasures

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Altamiro Amadeu Susin

Porto Alegre
July 2017

CIP — CATALOGING-IN-PUBLICATION

Reinbrecht, Cezar Rodolfo Wedig

Architectural Channel Attacks in NoC-based MPSoCs and its
Countermeasures / Cezar Rodolfo Wedig Reinbrecht. – Porto Ale-
gre: PPGC da UFRGS, 2017.

146 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2017. Advisor: Altamiro Amadeu Susin.

1. MPSoC. 2. Hardware security. 3. Network-on-chip.
4. Side-channel attack. 5. NoC timing attack. I. Amadeu Susin,
Altamiro. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“The only truly secure system is one that is powered off, cast in a block of

concrete and sealed in a lead-lined room with armed guards.”

— GENE SPAFFORD

GREETINGS

I would like to thank everyone who, in one way or another, contributed to the re-

search and writing of this thesis for my doctorate graduation in the Post-graduation Pro-

gram in Computation (PPGC) of the Federal University of Rio Grande do Sul (UFRGS).

To my advisor, Prof. Dr. Altamiro Amadeu Susin, for his dedication, friendship,

guidance and for his vision of the future that inspires many of his students. In spite of

my partial dedication, Prof. Susin put a great effort to provide me everything I needed to

succeed in the doctorate. Also, Prof. Susin looked for research opportunities during my

doctorate, which culminated in the partnership with Dr. Johanna Sepulveda.

To my co-advisor, Profa. Dr. Johanna Sepúlveda, who played a vital role in the

development of this research. During the development of the thesis, Dr. Sepulveda has

contributed in many ways: i) by defining the directions of the research of the thesis,

which was derived by its original publication "NoC-based Protection for SoC time-driven

Attacks "at IEEE Embedded Systems Letters; ii) by proposing and discussing the threat

model, attacks and security countermeasures; and iii) by engaging my intership at the

Embedded System Security and Hardware Architecture group from Hubert Curien Labo-

ratory at University of Lyon (France), headed by her partner Prof. Dr. Lilian Bossuet. In

order to support this collaboration she contributed by co-writing the granted project: "De-

velopment and evaluation of traffic management techniques to avoid side-channel attacks

on network-on-chip based multi-processors-system-on-chip" supported by The CNPQ

Brazilian scholarship (1.12.2015 - 31.07.2016). Besides, I thank Dr. Sepúlveda for all

patience and support during the hard deadlines and experiments.

To the other teachers who guided me and taught me during the postgraduate

course: Tiago Balen, Marinho Barcellos, Sérgio Bampi, Ricardo Reis, Luigi Carro, Alexan-

dre Bonatto, Gabriel Nazar, Rafael Iankowski, and Everton Carara.

I would like to thank the fellows of scientific initiation who contributed greatly

to the development of the work, and I quote here Bruna Carvalho, Bruno Forlin, Paulo

Kipper, Pedro Portugal, Ana L. Brodt, and Jefferson Johner. I thank also the friends of

Lapsi in the post-gratuation, Fabio Irigon, Igor Hoelscher, Tiago Waszak, and Luft.

To my friends, who felt my absence, but nevertheless they continued always sup-

porting me.

To my mother and sister, Lisete Beatriz Wedig Reinbrecht and Stéfani Karine

Wedig Reinbrecht, who are responsible for the person I am and for the values and princi-

ples that I bring with me. They always supported me and helped me in what I needed to

move on and pursue my dreams. To my relatives,

To my beautiful wife, Paula Cardoso Rodrigues Reinbrecht, who was always by

my side, acting as my inspiration, and given me courage to face all adversities. Thank

you for supporting even in the moments of absence, of anguish and of stress. Together we

achieved another important step, and from now on we will face many others. Thank you

for being my half.

To all, my sincere gratitude!

ABSTRACT

Multi-Processors Systems-on-Chips (MPSoC) became the established hardware platform

for a wide variety of applications and devices. Even more devices and systems will be

interconnected by the Internet. The Internet link already brings several security concerns

because all sensitive information stored on these devices can be reachable by external

agents, and this prognostics will only increase the security issues. One of the most dan-

gerous attacks is the Side Channel Attack (SCA). This type of attack explores features of

the target system that reveals some secret or valuable data. This threat can be implemented

physically through specialized instrumentation coupled directly to the device, or logical

from architectural behavior accessed remotely through the network. The present thesis

defines this particular logical SCA as a sub category called Architectural Channel Attack

(ACA). This research project revised the bibliography to identify, analyze and explore

the potential vulnerabilities of MPSoCs. The most vulnerable parts recognized were the

shared cache and the Network-on-Chip (NoC). Within this knowledge, this thesis devel-

oped four new attacks aiming MPSoCs - Hourglass, Firecracker, Arrow, and Earthquake.

Besides, the proposition that the hardware can provide security being transparent to ap-

plications resulted in a proposal of a hardware countermeasure, the Gossip NoC. The pro-

posed attacks executed in a real MPSoC environment in an FPGA, breaking the Advanced

Encryption Standard (AES). These evaluations were the first practical demonstration of

an ACA performed in a NoC-based MPSoC entirely. The efficiency of different counter-

measures, the Gossip NoC and three other ones from the literature, was evaluated under

these attacks. Results showed that i) the shared cache and the NoC are critical vulnerabil-

ities of complex MPSoCs; ii) the proposed attacks optimize the traditional cache ACAs

found in literature making possible to attack even in limited environments; iii) the Earth-

quake makes the differential collision strategy feasible; iv) the NoC is a suitable candidate

to implement security mechanisms, since it can access all elements in the system; v) the

Gossip NoC avoids only one type of attack, but a protection mechanism for such complex

systems demands multiple countermeasure strategies integrated to be a complete solution.

Keywords: MPSoC. hardware security. network-on-chip. side-channel attack. NoC

timing attack.

Ataques de Canal Arquitetural em MPSoCs baseados em NoCs e suas

Contramedidas

RESUMO

Sistemas em Chip Multi-Processados (do inglês, MPSoCs) tornaram-se a plataforma de

hardware estabelecida para uma ampla variedade de aplicações e dispositivos. Cada vez

mais dispositivos e sistemas serão interligados pela Internet. A conexão com a Internet já

traz várias preocupações de segurança, porque todas as informações confidenciais arma-

zenadas nesses dispositivos podem ser acessadas por agentes externos, e esse prognóstico

só aumentará as questões relacionadas à segurança. Um dos ataques mais perigosos é

o Ataque de Canal Lateral (do inglês, SCA). Este tipo de ataque explora características

do sistema de destino (informação indireta) que revela alguns dados secretos ou valiosos.

Esta ameaça pode ser implementada fisicamente através de instrumentação especializada

acoplada diretamente ao dispositivo, ou lógica pelo comportamento arquitetural que é

acessado remotamente através da rede. Esta tese define este SCA lógico em particular

como uma subcategoria chamada Ataque de Canal Arquitetural (do inglês, ACA). Este

projeto de pesquisa revisou a bibliografia para identificar, analisar e explorar as poten-

ciais vulnerabilidades dos MPSoCs. As partes mais vulneráveis reconhecidas foram as

Caches compartilhadas e a Rede-em-Chip (do inglês, NoC). Uma vez adquirido este co-

nhecimento, esta tese desenvolveu quatro novos ataques para MPSoCs - Hourglass, Fire-

cracker, Arrow, e Earthquake. Além disso, a proposição de que o hardware pode fornecer

segurança sendo transparente para aplicações culminou em uma proposta de uma contra-

medida de hardware, o Gossip NoC. Os ataques propostos foram executados em um am-

biente real de MPSoC em um FPGA, quebrando a criptografia AES. Estes experimentos

práticos foram a primeira demonstração de um ACA realizado em um MPSoC baseado

em NoC. A eficiência de diferentes contra-medidas foi avaliada sob estes ataques. Os

resultados mostraram que i) a Cache compartilhada e a NoC são vulnerabilidades críticas

em MPSoCs; ii) os ataques propostos otimizam os ACAs tradicionais de Cache encontra-

dos na literatura; iii) o Earthquake torna viável a estratégia de colisão diferencial; iv) a

NoC é uma candidata adequada para implementar mecanismos de segurança; v) a Gossip

NoC evita apenas um tipo de ataque.

Palavras-chave: MPSoC, Segurança, Ataque de Canal Lateral, Rede-em-Chip, Sistema-

em-Chip, Timing Attack, NoC Timing Attack, NoC Segura..

LIST OF ABBREVIATIONS AND ACRONYMS

3DIC Three Dimension Integrated Circuit

ACA Architectural Channel Attack

AES Advanced Encryption Standard

API Application Programming Interface

ASIC Application Specific Integrated Circuit

ASLR Address Space Layout Randomization

BP Bad Positive

CAESAR Competition for Authenticated Encryption: Security, Applicability, and Ro-

bustness

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

DES Data Encryption Standard

DPA Differential Power Analysis

DSP Digital Signal Processing

DTA Distributed Timing Attack

EM Electromagnetic

EtM Encrypt-then-MAC

FP False Positive

FPGA Field Programmable Gate Array

GCM Galois Counter Mode

GPU Graphical Processor Unit

HAL Hardware Abstraction Layer

IC Integrated Circuit

ICC International Chamber of Commerce

IDE Integrated Development Environment

IoE Internet-of-Everything

IoT Internet-of-Things

IP Intelectual Property

IT Information Technology

ITRS International Technology Roadmap for Semiconductor

KSM Kernel Samepage Merging

L1 Level one

L2 Level two

LLC Last Level Cache

Malware Malicious Software

MLS Multi-Level Security

MPSoC Multi-Processor System-on-Chip

NI Network Interface

NIST National Institute of Standards and Technology

NoC Network-on-Chip

OS Operating System

P+P Prime+Probe

PA Power Analysis

PUF Physically Unclonable Functions

QoS Quality of Service

RR Round-Robin

SCA Side Channel Attack

SER Secure-enganced-router

SLAT Second Level Address Translation

SNP Spatial Network Partitioning

SoC System-on-Chip

SPI Serial Peripheral Interface

SSL Secure Sockets Layer

TA Timing Attack

TDM Time-Division Multiplexing

TNP Temporal Network Partitioning

TP True Positive

TPS Transparent Page Sharing

TSV Through Silicon Via

UART Universal Asynchronous Receiver Transmitter

VLIW Very Large Instruction Word

VM Virtual Machine

WFRL West First Routing Logic

XOR Exclusive-Or

LIST OF FIGURES

Figure 2.1 AES-128 encryption diagram, representing the main operations exe-
cuted over the iterative process of ten rounds. ..31

Figure 2.2 Memory organization strategies in MPSoCs: Shared, Distributed, and
Shared Distributed. ...36

Figure 2.3 NoC topologies examples. a) Mesh; b) Torus; c) Ring; and d) Tree.............37
Figure 2.4 Software Architectures. a) Full; b) Partial; c) Bare-metal.............................40
Figure 2.5 Reference Architecture - MPSoC Glass. Four fast NIOS II core, ten

economy NIOS II core, one UART interface, and one shared cache memory........42

Figure 3.1 Profiling Phase - Signature of the position 0. ..46
Figure 3.2 Rich operating system making an system call to the trusted operating

system. Source: (WEISS; HEINZ; STUMPF, 2012). ..48
Figure 3.3 Communication between partitions inside PikeOS. Source: (WEISS et

al., 2014). ..49
Figure 3.4 Malicious software M performing the NoC timing attack. The sensitive

traffic S is the victim. Source:(SEPULVEDA et al., 2016)59
Figure 3.5 Latency overhead of software-based countermeasures against cache tim-

ing attacks. Source:(ALAWATUGODA; JAYASINGHE; RAGEL, 2011).............61

Figure 4.1 Example scenario of a NoC timing attack running in an MPSoC.68
Figure 4.2 Samples captured by a malicious software running on an MPSoC.69
Figure 4.3 Flowchart of the five steps to perform the NoC Timing Attack.71
Figure 4.4 Throughput Trace sensed by attacker of four calibration scenarios: a)

Injection rate of 70%; b) Injection rate of 50%; c) Injection rate of 40%; d)
Injection rate of 30%...72

Figure 4.5 MPSoC system running a sensitive application, after infection stage.74
Figure 4.6 Placement experiment scenarios. The dashed routers are the experiment

targets. S is the source and D the destination of the sensitive traffic. High-
lighted arrows shows the allowed route at each scenario.77

Figure 5.1 Hourglass methodology flowchart. ..83
Figure 5.2 Firecracker methodology flowchart. ..86
Figure 5.3 Arrow methodology flowchart...89
Figure 5.4 Earthquake methodology flowchart. ..91

Figure 6.1 Gossip router microarchitecture: (1) Gossip In Block; (2) Gossip Logic;
(3) Gossip Generator. ..96

Figure 6.2 Gossip NoC functionality: (a) Gossip Messages; (b) Routing changing;
(c) Back to normal behavior..97

Figure 6.3 Trace throughput of the distributed timing attack under Gossip NoC.
Gossip confidence of 1. ...98

Figure 6.4 Trace throughput of the DTA under Gossip NoC. Gossip confidence of 10..99
Figure 6.5 Effectiveness of DTA for 50000 traces according different gossip confi-

dence configurations. ..100

Figure 7.1 Reference Architecture - MPSoC Glass. Four fast NIOS II core, ten
economy NIOS II core, one UART interface, and one shared cache memory......103

Figure 7.2 Learning phase - Byte 0 signature. ..106
Figure 7.3 Bernstein’s vs Hourglass attacks. ..106

Figure 7.4 Countermeasures Evaluation under timing-based attacks. Two cache-
and two NoC- protections techniques were evaluated. ...107

Figure 7.5 Osvik (Prime+Probe), Firecracker, and Arrow attack results. Arrow was
performed in a fast and a slow scenario. ...111

Figure 7.6 Countermeasures Evaluation under access-based attacks. Two cache-
and two NoC- protections techniques were evaluated. ...112

Figure 7.7 Histogram of the encryption times of pairs of plaintexts generated by a
random and Bogdanov’s rule strategy. ..115

Figure 7.8 Detection candidates of the online stage output of Bogdanov attack.116
Figure 7.9 Detection candidates of the online stage output of Earthquake attack.118
Figure 7.10 Countermeasures Evaluation under collision-based attacks. Two cache-

and two NoC- protections techniques were evaluated. ...119

Figure 11.1 Nios II Embedded System Design and MPSoC Glass Flowcharts............139
Figure 11.2 MPSoC Glass IDE Graphical User Interface...140

LIST OF TABLES

Table 2.1 Proposed Side Channel Attacks Classification..29
Table 2.2 Summary of MPSoC architectures. ...41
Table 2.3 FPGA Cyclone IV GX synthesis results of the MPSoC Glass components. ..43

Table 3.1 Number of measurements to implement the attack on different mobile
phone devices..49

Table 4.1 Detection efficiency and false-positives of the NoC timing attack under
six different scenarios. Each scenario used a different interference period. Sys-
tem running at 100MHz. ...76

Table 4.2 Placement experiments results under three routing algorithms.......................77
Table 4.3 Distributed Timing Attack under west-first routing algorithm........................78
Table 4.4 Relation between packet size and detection rate. ..79

Table 6.1 Effectiveness (% of matches) of DTA using a threshold of 2.23 bps under
Gossip NoC. ..98

Table 6.2 Effectiveness (% of matches) of DTA using a threshold of 2.23 bps under
Gossip NoC. Gossip confidence of 10...99

Table 6.3 Synthesis results for the Unprotected and Gossip routers for 65 nm ASIC
technology. ..100

Table 7.1 Setup of the experiments on the following attacks: Bernstein, Hourglass,
Prime+Probe, Firecracker, Bogdanov and Earthquake. ..103

Table 7.2 Setup of the experiments on Arrow attack. ...104
Table 7.3 Approximate execution time of the attacks, during the execution of the

attack (online time), and after in the post-processing step (offline time).121

LIST OF CODES

7.1 Adapted C code of the Timing Attack. ...104

7.2 Data reception and first key byte analysis of Prime+Probe/Firecracker code in

Python. ..109

7.3 Key search stage code in C. ..116

11.1 Code to call external compiler to the Cross-compilation task.141

12.1 Functions provided by NoC API...143

12.2 Source code of NoC services. ...143

12.3 Functions provided by Crypto API.. ...145

12.4 Source code of Crypto services...145

CONTENTS

1 INTRODUCTION...18
1.1 Motivation..22
1.2 The Thesis ..22
1.3 Objectives...22
1.4 Methodology ..23
1.5 Structure of the Thesis..24
2 BASIC CONCEPTS..25
2.1 Hardware Security..25
2.1.1 Side Channel Attacks...27
2.1.2 Proposed SCA Classification ...28
2.2 Cryptographic Engineering ...29
2.2.1 Advanced Encryption Standard - AES...30
2.2.1.1 Encryption Process..30
2.2.1.2 Decryption Process ...32
2.2.2 Performance-oriented AES ..32
2.2.3 Crypto-libraries ..33
2.3 Multi-processors Systems-on-Chip..34
2.3.1 Architecture Model ..35
2.3.2 Memory Model ..35
2.3.3 Communication Model - Network-on-Chip...36
2.3.4 Software Architecture ..39
2.3.5 MPSoC Examples ..40
2.3.6 Reference Architecture - MPSoC Glass ..40
2.3.6.1 Hardware Costs ...43
2.4 Considerations...43
3 STATE-OF-THE-ART..44
3.1 Cache Attacks..44
3.1.1 Timing-based Cache Attacks ...44
3.1.1.1 Bernstein’s Attack...45
3.1.1.2 Neve’s Optimization ...47
3.1.1.3 Application: Virtualized Embedded Environments ..47
3.1.1.4 Application: Mobile phone devices ..48
3.1.1.5 Application: Virtualized Cloud Environments ...50
3.1.2 Access-based Cache Attacks..51
3.1.2.1 Prime+Probe Attack..51
3.1.2.2 Xinjie et al. Optimization ...52
3.1.2.3 Application: Last Level Caches..53
3.1.3 Collision-based Cache Attacks ..53
3.1.3.1 Bonneau and Mironov Attack...54
3.1.3.2 Bogdanov’s Attack..55
3.1.3.3 Application: Mobile phone devices ..57
3.2 Networks-on-Chip Attacks...58
3.2.1 Timing-based NoC Attacks..58
3.3 Security for Caches ...59
3.3.1 Countermeasures Comparison ...60
3.4 Security for NoCs..61
3.4.1 Wang and Suh - Priority Arbitration NoC ...62
3.4.2 Wassel et al. - Surf NoC ..63

3.4.3 Sepúlveda et al. - Random Arbitration and Adaptive Routing NoC63
3.4.4 Sepúlveda et al. - SER ...64
3.4.5 Stefan and Goossens NoC..64
3.5 Considerations...65
4 EXPLORING THE NOC TIMING ATTACK ...67
4.1 Understanding the NoC Leakage ..67
4.2 Threat Model ...69
4.3 Attack Methodology..70
4.3.1 Calibration..72
4.4 Expanding the Attack to a Distributed Attack...73
4.5 Evaluation..74
4.5.1 Traffic Interference...75
4.5.2 Placement in the Network..76
4.5.3 Size of the Packet...78
4.6 Considerations...79
5 DEVELOPED ATTACKS ..81
5.1 Hourglass Attack...81
5.1.1 Threat Model..82
5.1.2 Attack Methodology ..82
5.2 Firecracker Attack..84
5.2.1 Threat Model..84
5.2.2 Attack Methodology ..85
5.3 Arrow Attack...87
5.3.1 Threat Model..87
5.3.2 Attack Methodology ..88
5.4 Earthquake Attack..90
5.4.1 Threat Model..90
5.4.2 Attack Methodology ..90
5.5 Considerations...93
6 PROPOSED PROTECTION ...94
6.1 Gossip Network-on-Chip..94
6.1.1 Architecture..95
6.1.2 Functionality ..95
6.2 Gossip NoC Evaluation...97
6.3 Considerations...101
7 EXPERIMENTAL STUDY..102
7.1 Experimental Setup ..102
7.2 Timing-based Attack Experiments..103
7.2.1 Bernstein Adaptation ...104
7.2.2 Attacks Evaluation ...105
7.2.3 Countermeasures Evaluation ...107
7.3 Access-based Attack Experiments...108
7.3.1 Attacks Evaluation ...109
7.3.2 Countermeasures Evaluation ...112
7.4 Collision-based Attack Experiments ...113
7.4.1 Analysis on the Differential Collision Cache Attack...113
7.4.2 Attacks Evaluation ...114
7.4.3 Bogdanov Evaluation...115
7.4.4 Earthquake Evaluation ...117
7.4.5 Countermeasures Evaluation ...119
7.5 Considerations...120

8 CONCLUSION ...122
9 CONTRIBUTIONS OF THE THESIS ...127
10 FUTURE WORKS AND RESEARCH OPPORTUNITIES...............................129
REFERENCES...130
11 MPSOC GLASS IDE..137
11.1 Altera Design Flow..137
11.2 Glass Flow..138
11.3 MPSoC Glass IDE...139
11.3.1 Cross-compilation Feature ...140
11.3.2 Binaries Upload Feature ..142
12 MPSOC GLASS API ..143
12.1 NoC Communication Services ...143
12.2 Cryptography Services ...145

18

1 INTRODUCTION

Systems-on-Chip (SoC) is a computational system assembled in a single chip.

SoCs are composed of software and hardware components, such as operating systems,

processors, memories, accelerators (co-processors), among several elements (MEYR,

1997). SoC is the hardware platform of several types of applications, from conventional

electronic devices (appliances) to high-performance servers. This complete solution in-

side the same silicon has fewer costs to the final product because it does not need extra

components. Furthermore, few components result in fewer energy requirements, a key

feature for the current technology trends, such as the mobile segment.

Although SoCs became a standard on electronic devices, the market has been in-

creasing the demand for more performance, power efficiency and flexibility to run differ-

ent applications. As a result, a new architectural concept was proposed as a promising

platform, the Multi-Processor System-on-Chip (MPSoC) (CHEN et al., 2009). This sys-

tem brings the potential of high parallelism as the novelty. MPSoCs are SoCs composed

of several processing elements. These processors can be assembled with identical or

different architectures, being homogeneous or heterogeneous respectively. According to

ITRS 2015 (International Technology Roadmap for Semiconductor of 2015), by 2029 just

the mobile segment will integrate over 300 elements, between application processors and

graphical processor units (GPUs) (ITRS, 2016). Therefore, the MPSoC will improve the

performance through the parallelism, software flexibility through the heterogeneity and

power reduction through less external hardware requirements.

In the recent past, the Internet was mostly used as a means of collecting informa-

tion and communications. Progressively it evolved into a commercial instrument, where

the users could book services, acquire goods, pay bills and so on. Then, different types

of cameras and sensors began to be connected to the Internet resulting in novel uses and

applications. At present the Internet of Things allows objects to be sensed and controlled

remotely across existing network infrastructure, creating opportunities for more direct

integration between the physical world and computer-based systems and resulting in im-

proved efficiency, accuracy, and economic benefit.

As the list of elements that can be connected to the Internet keeps on increasing

a new term has been proposed: The Internet of Everything (IoE). The term IoE expands

on the concept of the “Internet of Things” in that it connects not just physical devices

but quite literally everything by getting them all on the network (CHANDHOK, 2014).

19

IoE works to connect more devices to the network, stretching out the edges of the net-

work and expanding the roster of what can be connected. IoE has a major play in all

industries, from retail to telecommunications to banking and financial services. How-

ever, placing all this personal information on the web or accessible via the web poses

a severe challenge for security (KOMAR; EDELEV; KOUCHERYAVY, 2016). Almost

every day we can hear news of hackers stealing valuable information, and it is impera-

tive that appropriate measures are taken to prevent these problems, but despite this more

and more people are willing to “venture” in the IoE since the benefits offered by the

many capabilities provided by the IoE are overwhelming. Power consumption , electro-

magnetic radiation (EM) or hot spots Nowadays, Systems-on-Chip already is an object

of attacks, and Side Channel Attack (SCA) is one of the most used techniques (KARRI

et al., 2001). This type of attack employs features of the target system that reveals in-

direct information (leakage) about some secret or important data. This attack can be

made physically through specialized instrumentation coupled directly to the device, ex-

tracting thermal (HUTTER; SCHMIDT, 2014), power (KOCHER; JAFFE; JUN, 1999;

GEBOTYS; GEBOTYS, 2003; MASOOMI; MASOUMI; AHMADIAN, 2010; ORS et

al., 2004) or electromagnetic (GANDOLFI; MOURTEL; OLIVIER, 2001) information.

The collected information can be used to infer cryptographic keys, source code of propri-

etary software, digital certificates and other sensitive information (BAYON et al., 2012)

(MORADI; MISCHKE; PAAR, 2013). New attacks have explored increasingly timing,

access patterns, scheduling and faults to implement SCAs. These characteristics are not

physical but logical from architectural behavior. This thesis defines this particular type

of SCA as a subcategory called Architectural Channel Attack (ACA). Attacks that targets

the behavior features are more suitable and effective for complex hardware systems, like

SoCs and MPSoCs. The main reasons are:

• ACAs do not demand high specialized instrumentation;

• ACAs has no need to access the target device directly;

• High parallelism running on MPSoCs adds a significant noise for the physical mea-

surements, such as power, EM, etc.;

• More structural complexity represent more potential leakage sources.

Cache memory is the most explored resource of SoCs for attacks, where tim-

ing, access pattern or trace are examples of leakage sources (BOGDANOV et al., 2010).

Most cache attacks take advantage of the fact that the cache miss and cache hit are key-

20

dependent events with some cryptographic systems (SEPULVEDA et al., 2015). First

cache attack proposals retrieved the key of different ciphers implementations, such as Data

Encryption Standard (DES), RSA or Advanced Encryption Standard (AES) (KOCHER,

1996) (KELSEY et al., 1998) (TSUNOO et al., 2003) (BERNSTEIN, 2005) (OSVIK;

SHAMIR; TROMER, 2006). Trace-based attacks are not considered in the scope of this

research because they require a great level of information of the system, considered not

possible (BOGDANOV et al., 2010). Therefore, we aimed access-based and timing-based

cache attacks.

Regarding access-based attack, it infers the memory positions accessed during a

cryptographic cipher operation by the time to access the data. One of the most efficient

techniques is the Prime+Probe, proposed by Osvik et al. (OSVIK; SHAMIR; TROMER,

2006). In the same work, Osvik introduced the Evict+Flush and an asynchronous ap-

proach. The works of (XINJIE et al., 2008) (YOUNIS et al., 2015) (LIU et al., 2015)

(OREN et al., 2015) optimized the access-based technique by Osvik or applied in differ-

ent computational environments.

A timing-based attack observes the total execution time of a cryptographic cipher

operation. The number of misses and hits of the cache result in a difference between

latency responses. The timing attack proposed by Bernstein (BERNSTEIN, 2005) is a

generic timing-based attack. The works of (NEVE; SEIFERT; WANG, 2006) (WEISS;

HEINZ; STUMPF, 2012; WEISS et al., 2014) (SPREITZER; PLOS, 2013) (SPREITZER;

GéRARD, 2014) (IRAZOQUI et al., 2014) optimized the timing-based technique of Bern-

stein. Then, some authors, like (BONNEAU; MIRONOV, 2006) and (BOGDANOV et

al., 2010), proposed an optimization of the timing attack by manipulating the input data

to provoke cache hits. This method is called collision timing attack. Bogdanov (BOG-

DANOV et al., 2010) presented a differential collision attack that explores the collisions

generated by pairs of encryptions in sequence.

All the methods mentioned above was performed remotely to attack servers or

remote computers. These attacks had to consider the target computer system and com-

munication behavior besides the SoC architecture. Hence, the accuracy of the attack is

compromised, due to communication and system interferences. Moreover, these attacks

on MPSoC based devices face much more challenges, due to novel architectures features.

One feature is the secure zone (SEPULVEDA; FLOREZ; GOGNIAT, 2015) (SEPUL-

VEDA et al., 2014), where it is not possible to run a spy application in the victim CPU.

The attack of Osvik uses the spy process strategy. Another architecture feature is the

21

usage of specific application IPs in the system. These specialized hardware functions

are shared among several processors. Then, its behavior becomes not exclusive from the

target process. For instance, a shared IP responsible for the network interface could in-

crease the timing noise of remote protocols, like the Secure Sockets Layer (SSL) used by

Bernstein’s and Bogdanov’s attacks. This work presents for the first time Architectural

Channel Attacks implemented entirely inside the chip improving the attacks efficiency

and decreasing data storage requirements.

Regarding attacks running inside the system, previous works considered that traf-

fic patterns from Network-on-Chips (NoCs) could be exploited inside the MPSoC (YAO;

SUH, 2012) (WASSEL et al., 2014) (SEPULVEDA et al., 2015). They mention that the

NoC could leak information through the latency or throughput of the transfers. This ACA

was called NoC timing attack. Each work also proposed a protection mechanism de-

signed in the NoC architecture. Therefore, these authors did a remarkable contribution to

the field of hardware security, pointing out the vulnerabilities and protection potentials of

the NoC.

However, the state-of-the-art of ACAs did not comprehended attacks performed

entirely inside the SoC or MPSoC, only describing the possibility of internal vulnerabil-

ities. This research project has investigated the main ACAs related to cache and NoC

inside MPSoCs to understand its feasibility and propose new threats. As a consequence,

chapter six presents four developed attacks that breaks the AES cryptography. The first is

the Hourglass, an adaptation of the timing-based attack from Bernstein, combined with a

NoC timing attack. Then, the second and third are Firecracker and Arrow attacks, inspired

in the Prime+Probe attack from Osvik integrated to a NoC timing attack. The fourth is

Earthquake attack; that implements a differential collision attack with NoC timing attack.

The knowledge of MPSoCs vulnerabilities became possible to propose a security

mechanisms. Chapter seven presents a secure enhanced NoC architecture, the Gossip

NoC. This NoC targets sufficient protection with minimum area and performance penal-

ties.

In summary, the present thesis sustains that MPSoCs, as the promising platform

for future systems, have critical vulnerabilities in the shared cache and NoC, which can

be worst if both are combined. Moreover, this thesis enforces that structures inside the

NoC can implement some MPSoC security, and more research around this area should be

addressed. Therefore, this research aims to deeply study ACAs in NoC-based MPSoCs,

to develop and present with practical experiments MPSoCs vulnerabilities; and to show

22

that the NoC can perform protection mechanisms.

1.1 Motivation

Our project has technical, scientific and socio-economic relevance. Security in

computer systems is a growing concern of society and the widespread use of SoCs in

several electronic applications, such as smartphones and tablets, makes this issue even

more critical.

The technical and scientific relevance rely on the fact that security is a key topic

on enabling the electronics evolution. This subject is a target of recent studies of several

research groups. Moreover, ACA has recently been proposed as a feasible attack, which

leads to the fact that most devices are vulnerable. Our work in this topic will contribute to

the scientific community with the first deep study of ACA implemented in MPSoCs and

NoC-based protections. It is expected that the results of this project could be adopted by

the national and international industry.

The socio-economic relevance stems from the importance of information security

issue for national sovereignty, for businesses and citizens. A Recent article published

in the portal Computer World, entitled "the Brazilian information security market has

reached the significant milestone of US $ 1 billion investment", evidence such relevance.

1.2 The Thesis

The architecture behavior of shared cache and network-on-chip, isolated or com-

bined, can reveal secrets of MPSoCs through Architectural Channel Attacks (ACAs);

though protection mechanisms implemented in the NoC has the potential to avoid it

through traffic management.

1.3 Objectives

The general thesis objective is to study ACAs in NoC-based MPSoCs, to develop

and present with practical experiments MPSoCs vulnerabilities; and to show that the NoC

can perform protections mechanisms. The following items are specific goals to achieve

the general objective:

23

• To review the literature and identify potential threads for NoC-based MPSoCs;

• to develop an environment to run experiments and collect results;

• To adapt and perform state-of-the-art attacks on an MPSoC;

• To develop new attacks in NoC-based MPSoCs;

• To propose security mechanisms inside NoC architecture;

• To implement, characterize and validate the proposals under the attacks;

• To analyze results and present the final considerations.

1.4 Methodology

Four parts comprehend the methodology of the present thesis work. The first one

referred to the research on Architecture Channel Attacks. The second part investigated

protection strategies implemented in the NoC architecture. The third one was the devel-

opment of an experimental environment to evaluate attacks and countermeasures. The

final part evaluated the attacks and the protection mechanisms, resulting in a comparative

analysis of the vulnerabilities and hardware security.

The ACA exploration started with a review of the literature where commonly

cache memories were the primary target of logical attacks in complex computational sys-

tems. Another valuable information found in published works was that the NoC had be-

come a potential source of leakage to attack MPSoC architectures (NoC timing attacks).

Then, the NoC timing attack was analyzed to develop a complete workflow on how to

perform such attack. At the same time, the understanding of the techniques from the

state-of-the-art did culminate in four new attacks proposals.

The knowledge of the MPSoC vulnerabilities made possible to develop and eval-

uate countermeasures against most dangerous MPSoCs attacks. To be aligned with the

thesis, the protection mechanism proposed was a NoC architecture, aiming a low area and

power solution. It resulted in the Gossip NoC.

An MPSoC platform was developed to evaluate with a significant level of confi-

dence the attacks and some countermeasures (the Gossip and others from literature). The

environment runs entirely in hardware in an FPGA. It was developed an external software

also to support compilation, boot sequence and execution interface.

Finally, the last step comprised all experiments to validate and extract metrics of

the proposals. Besides, it was performed a comparison of state-of-the-art and the propos-

als. The analysis of the security mechanisms had shown the potential of the NoC as the

leading actor in MPSoC security.

1.5 Structure of the Thesis

The present thesis is divided into eight chapters plus the conclusion and appendix.

The chapter two describes the basic concepts required to understand the main topics of

the thesis. It organizes the concepts in three fields: i) hardware security; ii) cryptographic

engineering; and iii) Multi-processors Systems-on-Chips. Then, chapter three and four

presents the state-of-the-art, where the first chapter focus on the architectural attacks, and

the second on the countermeasures. Both chapters show works that explored vulnerabili-

ties and protections in the cache and in the NoC of complex hardware systems. Chapter

five introduces a study on the theme of the NoC timing attack. This type of attack was

already cited by different authors ((YAO; SUH, 2012) (WASSEL et al., 2014) (SEPUL-

VEDA et al., 2016) (SEPULVEDA et al., 2015) and (STEFAN; GOOSSENS, 2011)), but

no detailed analysis and study has been performed yet. This chapter provides an overview

of the technique and defines a threat model and methodology, to enable the replication of

such technique. Some concerns about the attack are also presented and evaluated. After

understanding the NoC timing attack, it is presented in chapter six the developed attacks

of this thesis. The attacks focus on three side channel approaches: i) timing-based leak-

age; ii) access-based leakage; and iii) collision-based leakage. Chapter seven presents the

secure enhanced NoC proposed. The architecture and functionality of Gossip NoC are

explained in details. Different attacks and countermeasures are evaluated in chapter eight.

The experiments were developed in a real MPSoC architecture running on an FPGA. The

thesis ends with the conclusion chapter. The appendix presents the software development

environment developed for the experiments with the real MPSoC, called MPSoC Glass.

25

2 BASIC CONCEPTS

This chapter presents the basic concepts regarding the field of the thesis. It com-

prises: i) security in hardware systems; ii) cryptographic engineering and iii) Multi-

Processors Systems-on-Chips (MPSoCs). Security implemented in hardware is a recent

approach. The principal motivations to embedded such mechanisms are presented. Re-

garding cryptographic engineering, several encryption technologies have allowed applica-

tions and devices to provide the suitable level of security. Considerations on performance

and protection have driven such area. We present in details one of the most used encryp-

tion, the Advanced Encryption System (AES). The last part of this chapter introduces the

Multi-Processors Systems-on-Chips. They are the architecture evolution of the System-

on-Chip (SoC) concept. MPSoCs assemble several processing elements besides periph-

erals, specific purpose IPs, memories, and interconnection. Hence, his parallel nature

achieves high performance, energy efficiency, and software flexibility.

2.1 Hardware Security

To implement security mechanisms directly in hardware is a recent trend. The pri-

mary motivations regard integrated circuit counterfeiting, secure cryptography (authen-

tication, key storage, and generation, etc.), hardware Trojans, and Side Channel Attacks

(SCA).

IC Counterfeiting: Fake or pirate chips have become a relevant issue for the integrated

circuit industry. The counterfeiting and piracy for G20 nations were $923 billion to $1.13

trillion in 2013, and it was estimated $1.9 to $2.81 trillion in 2022 according to the In-

ternational Chamber of Commerce (ICC) (ICC,). Current methods to detect counterfeit

are performed during the test of the IC. However, it may not be effective against non-

conventional types (e.g. cloned, overproduced, and tampered devices) (GUIN; DIMASE;

TEHRANIPOOR, 2014). Recently, a different approach has been proposed, the applica-

tion of Physically Unclonable Functions (PUF). The PUF uses manufacture variability to

build a structure that responds with uniqueness for each chip. Each PUF receives a chal-

lenge as input, and outputs a unique response (BOSSUET; TORRES, 2017), providing a

fingerprint for each chip. Then, the authenticity of the piece can be checked.

26

Secure Cryptography Besides the counterfeit problem, PUFs can solve the major con-

cerns regarding authentication and secret key generation (SUH; DEVADAS, 2007). How-

ever, PUF is not the most recommended solution for this case. Given a challenge to a PUF,

the response is always the same, but some errors may happen. The algorithm used to cor-

rect and check such response is computation intense, and it can be prohibitive for designs,

whose application requires at run-time such correctness. Another approach has been es-

tablished as the suitable solution, the authenticated encryption. This method performs

the cryptography of huge blocks of data, generating the ciphertext and its respective tag.

The tag has a correspondence with the encrypted data, being possible to authenticate the

encryption. Six different authenticated encryption modes (namely OCB 2.0, Key Wrap,

CCM, EAX, Encrypt-then-MAC (EtM), and GCM) have been standardized in ISO/IEC

19772:2009 (ISO/IEC,). So far, the most used authenticated encryption is the GCM (Ga-

lois Counter Mode). At the moment, a competition called CAESAR (Competition for

Authenticated Encryption: Security, Applicability, and Robustness) aims to define a new

standard, which will be implementable by software or hardware (MAIMUT; REYHAN-

ITABAR, 2014).

Hardware Trojans Hardware Trojans are malicious hardware elements inserted during

IC manufacturing. Since the majority of ICs today have its manufacturing outsourced,

this threat has appeared, and it has increased at a fast rate. There are already reports of

trojans inserted in military equipment (ADEE, 2008). Trojans can change the functional-

ity of an IC and affect the primary objective of the device, or even disable some function

(TEHRANIPOOR; WANG, 2012). Another source of Trojan is the Intellectual Property

component, which is a third-party hardware used to add some functionality to the project.

Conventional test methods for ICs are unable to detect such undesirable elements because

it can only check the expected functionality of the developed design (unless it is a soft-IP).

A possible solution is to analyze the traces of current (or other physical features) to verify

differences caused by the trojan. This technique is similar to the attack known as Side

Channel Attack, that collects information through behavior tips.

Side Channel Attacks Attacks that uses leakage information from an implemented target

hardware are known as Side-channel Attacks. It was first proposed in 1996 by (KOCHER,

1996), and since then, this technique has been used to extract cryptographic key material

of encryption algorithms running on microprocessors, DSPs, FPGAs, ASICs and high-

27

performance CPUs (KOCHER; JAFFE; JUN, 1999; GEBOTYS; GEBOTYS, 2003; MA-

SOOMI; MASOUMI; AHMADIAN, 2010; ORS et al., 2004; TSUNOO et al., 2003).

Countermeasures in hardware include noise insertion, out-of-order memory access, data

scrambling. However, most recent attacks have been exploring logical leakages, such as

the timing behavior. Solutions by software have been proposed to avoid logical threats,

like random allocation of processes in memory, out-of-order execution, dummy logic in-

sertion, etc. The Side Channel Attacks is the main topic of this thesis. Thus next section

details this subject, and proposes a new classification for the logical SCAs.

2.1.1 Side Channel Attacks

A public threat in cryptographic engineering is side channel analysis, or Side-

Channel Attacks (SCAs) (BOSSUET; TORRES, 2017). SCAs are widely used as passive

attacks because they make it possible to retrieve secret information (such as secret keys)

with relatively few measurements and sometimes to use the inexpensive equipment. SCAs

are non-invasive attacks, which means that the external agent only observes the device

in normal operation without causing any physical harm. It can use information from

sensors of power consumption, time delay or electromagnetic radiation. Typical targets

of side-channel attacks are security ICs used in embedded devices or smart cards. Since

these designs are specific purpose ICs, they are easier to analyze. In general, it is a

simple device running a single process at a low to moderate clock frequency with direct

access to the side-channel of interest and with (precise) control over synchronization and

measurements. Examples of SCA techniques are:

• Power Analysis (PA) (GEBOTYS; GEBOTYS, 2003)(ORS et al., 2004);

• Differential Power Analysis (DPA) (KOCHER; JAFFE; JUN, 1999)(MASOOMI;

MASOUMI; AHMADIAN, 2010);

• Electromagnetic Analysis (GANDOLFI; MOURTEL; OLIVIER, 2001);

• Temperature and Heat-fault Attacks (HUTTER; SCHMIDT, 2014); and

• Fault-based Attacks (KARRI et al., 2001).

Recently, some authors proposed the observation of the logical behavior from the

ICs instead of the physical, since system actions lead to similar vulnerabilities. Firstly,

the victims of these logical attacks were the System-on-Chips (SoCs), whose complex

architecture created several sources of leakages. Commonly, most vulnerabilities remain

28

in the shared resources, optimized features, and increased functionality (TIRI, 2007).

Examples of logical SCAs are:

• CPU Timing Attacks (TSUNOO et al., 2003)(ANDRYSCO et al., 2015);

• Cache Timing Attacks (KOCHER, 1996)(BERNSTEIN, 2005)(NEVE; SEIFERT;

WANG, 2006)(PERCIVAL, 2005).

• Collision Cache Attacks (BONNEAU; MIRONOV, 2006)(BOGDANOV et al., 2010);

and

• Access-based Attacks (OSVIK; SHAMIR; TROMER, 2006) (BENGER et al., 2014)

(ZHANG et al., 2014) (IRAZOQUI et al.,) (GULLASCH; BANGERTER; KRENN,

2011) (YAROM; FALKNER, 2014).

The strategy of sharing resources aims to reduce the amount of hardware needed

to implement a particular functionality, but it also creates opportunities to attackers. The

main elements shared inside any SoC are the memories and the communication infrastruc-

ture. MPSoCs architectures follow the same concept, but on a more complex scale. Thus,

it is expected that more source of leakages will be available for the attackers. MPSoCs

have two primary shared resources, the memories, and the Network-on-Chip. Memory

attacks already are a well-known SCAs. Recently, Networks-on-Chip attacks have been

cited by (SEPULVEDA et al., 2012; SEPULVEDA et al., 2015), which considered drain-

ing, extraction of data and denial-of-service. It was proven that communication behavior

could reveal patterns during application execution, which can be used to figure out sensi-

tive information. NoCs are entering in the list of vulnerable components inside complex

hardware systems. Therefore, attacks and countermeasures have to be investigated.

2.1.2 Proposed SCA Classification

Side Channel Attacks comprise a great variety of techniques. As described be-

fore, the main difference between each SCA is the leakage source. The leakage source

defines the type of victim, the methodology employed, and the equipment required. The

majority of SCAs explores physical features of devices. Application specific integrated

circuits (ASICs) are the typical target of such attacks. However, the demand for more

flexibility, performance, and less power has been increasing. As a consequence, com-

plex hardware architectures have been proposed. This increase in complexity has brought

challenges regarding the physical-based attacks, but opportunities to logical-based ones.

29

Therefore, since there are already several physical-based SCAs, and there is a potential

emerging of several new logical-based SCAs, this thesis proposes an SCA classification.

The proposed classification divide the attacks into two sub-categories by the leakage na-

ture, physical and architecture. Table 2.1 organizes the current known SCAs according to

the new subcategories.

Table 2.1: Proposed Side Channel Attacks Classification
Side Channel Attacks Target

Sub-Category Leakage Source Processor Cache NoC ASIC

Physical Channel Attacks

Power X X
Diferential Power X X
Electromagnetic X X
Temperature X X
Fault X X X

Architectural Channel Attacks
Timing X X O X
Collision X O
Access X O

The Xs presented in table 2.1 refers to the attacks described in the state-of-the-art.

The Os are the contribution of this thesis in the state-of-the-art.

2.2 Cryptographic Engineering

The cryptographic engineering becomes a valuable tool for current technology.

The increase of device integration brought all personal information to the digital world.

As a result, these sensitive data has become a target of attacks. Therefore, different cryp-

tographic algorithms have been used to protect and maintain users privacy. Different

algorithms can be employed, depending on the characteristics of the target application,

hardware support, and relevance of the information. The most popular solution is the

Advanced Encryption Standard (DAEMEN; RIJMEN, 2002), introduced in 2001 by Vin-

cent Rijmen e Joan Daemen in a competition of NIST (National Institute of Standards

and Technology). Another great cipher is the RSA (RIVEST; SHAMIR; ADLEMAN,

1978). Due to hardware cost, RSA is used more frequently where it requires higher secu-

rity, like bank terminals. Other cryptographic algorithms have been used in commercial

applications, but considering the popularity, AES is the target study case of this thesis.

30

2.2.1 Advanced Encryption Standard - AES

Advanced Encryption Standard is the preferred cryptography in many (mainly

commercial) applications. This symmetric encryption operates inputs of 128 bits and

keys of 128, 192 or 256 bits. This cipher algorithm uses iterations, called rounds, to per-

form a series of linked operations. In the case of a key of 128 bits, it is completed in 10

rounds. These activities refer to a substitution-permutation network because it replaces

inputs by specific outputs and then shuffles the bits.

2.2.1.1 Encryption Process

The input is a plaintext of 128 bits organized as a block of 16 bytes, represented

as Plaintext → Pi, where 0 <= i <= 15. AES arranges this block as a matrix of four

columns and four rows:

Plaintext =


x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15


The same structure is applied to the key, for example, a 16 byte key is represented

as Key → Ki, where 0 <= i <= 15:

Key =


k0 x1 k2 k3

k4 x5 k6 k7

k8 x9 k10 k11

k12 k13 k14 k15


Before starting the encryption, it is performed the key expansion, which transforms

the key in several keys to be used for each round, called subkeys. This process can be

represented as expanded(Ki)→ kroundi , where 0 <= i <= 15 and 0 <= round <= 10.

Figure 2.1 shows this process. Then, four operations are executed at each round, with an

exception on the last one (figure 2.1):

• AddRoundKey: The 16 bytes of the plaintext or intermediate state (x) are consid-

ered as 128 bits and are XORed to the 128 bits of the subkey (kround). If this is the

last round, then the output is the ciphertext. Otherwise, the resulting 128 bits are

31

interpreted as 16-bytes and continue with the following operations.

• SubBytes: The 16 input bytes are substituted according to a fixed table (S-box)

given in design. The result is a new matrix of four rows and four columns.

• ShiftRows: Each of the four rows of the matrix is shifted to the left, in a circular

manner (no data lost).

• MixColumns: Each column of four bytes is now transformed using a unique math-

ematical function. This function takes as input the four bytes of one column and

outputs four entirely new bytes, which replace the original column. The result is

another new matrix consisting of 16 new bytes. It should be noted that this step is

not performed in the last round.

All these four operations can be represented as an iterative set of equations. Each

equation presented at 2.1 represents the computation of each byte (of all 16 bytes) in the

intermediate value. These intermediate bytes are iterated through these equations for ten

rounds to accomplish the 128 AES algorithm. To calculate each part, the intermediate

value from the current round is used as an index of the S-Box table, represented as the

S. After changing its value, a circular shift operation is performed, where the number

besides the S represents the amount of shift (01 is one shift left, 02 is two shift left, and so

on). When everything is ready, one can compute the AddRoundKey operation from the

next round to be ready for the next iteration. Considering this algorithm, before start with

these equations the inputs must perform an AddRoundKey in advance.

Figure 2.1: AES-128 encryption diagram, representing the main operations executed over
the iterative process of ten rounds.

32

(xr+1
0)← 01.S[xr0]⊕ 01.S[xr5]⊕ 02.S[xr10]⊕ 03.S[xr15]⊕ kr+1

0

(xr+1
1)← 01.S[xr0]⊕ 02.S[xr5]⊕ 03.S[xr10]⊕ 01.S[xr15]⊕ kr+1

1

(xr+1
2)← 02.S[xr0]⊕ 03.S[xr5]⊕ 01.S[xr10]⊕ 01.S[xr15]⊕ kr+1

2

(xr+1
3)← 03.S[xr0]⊕ 01.S[xr5]⊕ 01.S[xr10]⊕ 02.S[xr15]⊕ kr+1

3

(xr+1
4)← 01.S[xr1]⊕ 01.S[xr6]⊕ 02.S[xr11]⊕ 03.S[xr12]⊕ kr+1

4

(xr+1
5)← 01.S[xr1]⊕ 02.S[xr6]⊕ 03.S[xr11]⊕ 01.S[xr12]⊕ kr+1

5

(xr+1
6)← 02.S[xr1]⊕ 03.S[xr6]⊕ 01.S[xr11]⊕ 01.S[xr12]⊕ kr+1

6

(xr+1
7)← 03.S[xr1]⊕ 01.S[xr6]⊕ 01.S[xr11]⊕ 02.S[xr12]⊕ kr+1

7

(xr+1
8)← 01.S[xr2]⊕ 01.S[xr7]⊕ 02.S[xr8]⊕ 03.S[xr13]⊕ kr+1

8

(xr+1
9)← 01.S[xr2]⊕ 02.S[xr7]⊕ 03.S[xr8]⊕ 01.S[xr13]⊕ kr+1

9

(xr+1
10)← 02.S[xr2]⊕ 03.S[xr7]⊕ 01.S[xr8]⊕ 01.S[xr13]⊕ kr+1

10

(xr+1
11)← 03.S[xr2]⊕ 01.S[xr7]⊕ 01.S[xr8]⊕ 02.S[xr13]⊕ kr+1

11

(xr+1
12)← 01.S[xr3]⊕ 01.S[xr4]⊕ 02.S[xr9]⊕ 03.S[xr14]⊕ kr+1

12

(xr+1
13)← 01.S[xr3]⊕ 02.S[xr4]⊕ 03.S[xr9]⊕ 01.S[xr14]⊕ kr+1

13

(xr+1
11)← 02.S[xr3]⊕ 03.S[xr4]⊕ 01.S[xr9]⊕ 01.S[xr14]⊕ kr+1

14

(xr+1
15)← 03.S[xr3]⊕ 01.S[xr1]⊕ 01.S[xr6]⊕ 02.S[xr11]⊕ kr+1

15

(2.1)

2.2.1.2 Decryption Process

The decryption process follows the same algorithm. However, each step has to be

made on the contrary. The expansion of the key remains the same. Then, the ciphertext

(the input of this process) goes through the AddRoundKey step, but the first sum with the

last part of the key (opposite way). The MixColumn and the ShiftRow also perform its

operations in opposite way. In the end, the process outputs the plaintext recovered.

2.2.2 Performance-oriented AES

All operations performed by AES can be implemented using just logical and arith-

metic operations. However, to obtain better performance, the cipher can be optimized for

software implementations using a table with the operations pre-computed, as presented

33

in (DAEMEN; RIJMEN, 2002). The pre-computed operations comprise the execution of

SubBytes, ShiftRows and MixColumns for all possibilities (entries of 0 to 255), resulting

in four tables of 1 kB, called the T-tables (T0, T1, T2 and T3). There is one more table (T4)

for the last round that does not use the MixColumns operation.

The performance-oriented AES has two main phases. The first phase generates

the subkeys by key expansion (expansion(K) → kround). Each subkey is used in the

AddRoundKey step to provide the next round input matrix. Each byte of this input matrix

is related to an index of the T-tables, where its content represents all operations performed

for such byte. As a consequence, the output of the T-tables consulting are XORed result-

ing in a new output matrix, that can be represented as an intermediate state as follows

xroundi , where 0 <= i <= 15 and 0 <= round <= 9. In summary, each intermediate

state is used for the next round computation, which executes a XOR with the next round

subkey (AddRoundKey operation) and the accessed T-tables values (SubBytes, ShiftRows

and MixColumns operations) generating the next intermediate state. This mathematical

iterated operation can be observed in 2.2.

(xr+1
0 , xr+1

1 , xr+1
2 , xr+1

3)← T0[x
r
0]⊕ T1[xr5]⊕ T2[xr10]⊕ T3[xr15]⊕ kr+1

0

(xr+1
4 , xr+1

5 , xr+1
6 , xr+1

7)← T0[x
r
4]⊕ T1[xr9]⊕ T2[xr14]⊕ T3[xr3]⊕ kr+1

1

(xr+1
8 , xr+1

9 , xr+1
10 , xr+1

11)← T0[x
r
8]⊕ T1[xr13]⊕ T2[xr2]⊕ T3[xr7]⊕ kr+1

2

(xr+1
12 , xr+1

13 , xr+1
14 , xr+1

15)← T0[x
r
12]⊕ T1[xr1]⊕ T2[xr6]⊕ T3[xr11]⊕ kr+1

3

(2.2)

The last round is computed by repeating the equation 2.2 with r = 9, except that

T0, ..., T3 is replaced by T4. The resulting x10i is the ciphertext.

2.2.3 Crypto-libraries

In this section, we also analyze the commercial implementations of AES in soft-

ware. Three widely used crypto libraries are described, namely OpenSSL (PROJECT,),

PolarSSL (POLARSSL,), and Libgcrypt (LIBGCRYPT,). All these AES solutions use

the performance oriented approach. However, each one differs in the last round. Also,

some of them do already contain methods to reduce or nullify cache-based side channel

leakage.

34

OpenSSL: It performs the last round using a table T4, where the S-box and the ShiftRow

are previously computed.

PolarSSL: PolarSSL executes the last round using an S-Box table. It provides more

security than OpenSSL since the granularity of such table is in bytes not words. The

computation effort increases a little, mainly to perform the ShiftRow operation.

Libgcrypt: This library calculates the S-Box values used in the last round during the

encryption. The timing leakage generated by cache access can be mitigated since there

is no table, but a high computation effort is inserted. Depending on the sensitivity of the

attacker, this methodology could not be secure.

2.3 Multi-processors Systems-on-Chip

New market demands, like high performance and low energy consumption, re-

sulted in flexible platforms known as Multi-processors Systems-on-Chip (MPSoCs). MP-

SoCs are a complete system containing multiple processing elements on the same in-

tegrated circuit (WOLF; JERRAYA; MARTIN, 2008). Besides the processors, the sys-

tem comprises co-processors, hardware accelerators, memories and a Network-on-Chip

(NoC). NoCs are the usual interconnection solution to integrate several components,

whose features could vary in router architecture, topology, etc. MPSoCs are the key

enabler technology for new computation paradigms that demands high performance or

energy efficiency. Fields that already apply MPSoCs are machine learning, IoT/IoE,

high-bandwidth communication, augmented reality, and video encoding/decoding. The

characteristics that define each MPSoC architecture are:

• the architecture model;

• the memory model;

• the communication model - Network-on-Chip; and

• the software architecture.

35

2.3.1 Architecture Model

The architecture model of an MPSoC is defined by the processing elements in-

volved. If only the same type of architecture is used, the MPSoC is homogeneous. In

this case, it is easy to program parallel applications and manage system resources. Be-

sides, a homogeneous system can provide dynamic allocation and migration of tasks at

run-time. However, some applications require specific hardware elements to obtain the

proper performance or avoid extra computational effort.

Another approach integrates different architectures to perform a particular com-

putation. The objective is to employ the suitable hardware for each application improving

energy consumption. These elements can be processors (DSP, VLIW, general purpose,

...), hardware accelerators, co-processors, or application specific IPs. The heterogeneity

affects the programmability directly, causing different constraints due to distinct instruc-

tion sets. Application Programming Interfaces (APIs) have been proposed to facilitate

programmable issues overcoming such drawback.

Recently, a new concept of architecture model has emerged. Processors with

the same instruction set and different micro-architectures have been integrated. High-

performance implementations are mixed with low power (low performance) ones. The

applications run in the low power cores as default, and when necessaire the high per-

formance works. This strategy stays in the middle of the homogeneous and heteroge-

neous concept. It enables easy programmability and energy efficiency since the high-

performance core shut down when idle. An industrial example is big.little technology

from ARM (ARM,).

2.3.2 Memory Model

MPSoC architectures are based on memory hierarchies. Several levels of cache

can be integrated. Some of the cores may incorporate a processor and an L1 cache. When

a cache miss occurs on L1, the cache coherency mechanism initiates an access to the

shared L2 cache, located, usually, on another distant core. According to Girao et al.

(GIRAO; BARCELOS; WAGNER, 2009), the memory hierarchy can be categorized as i)

shared memory; ii) distributed memory; iii) distributed shared memory. Figure 2.2 shows

these three strategies.

The shared memory is also defined as centralized. It has one memory element

36

Figure 2.2: Memory organization strategies in MPSoCs: Shared, Distributed, and Shared
Distributed.

shared among all elements, typically the cache L2 or L3. This approach allows all pro-

cessors to access the same address space, requiring an operating system to manage the

accesses. The problem is the bottleneck created since the memory is a frequent use re-

source.

The distributed memory implements several memories in different nodes of the

NoC. Each memory is exclusive for each processing element. Hence, the address space

is not shared, and the data can be isolated between processes. However, the interaction

between processes requires intense communication.

The third approach implements several memories spread in the NoC, but with the

address space shared. Thus, the processors can access different memories, and use them

to synchronize the tasks. The drawback consists on memory synchronization since all

processors must be informed when data has been updated.

2.3.3 Communication Model - Network-on-Chip

The Network-on-Chip is the proper interconnection for MPSoCs architectures.

The main benefits are the scalability, high bandwidth, and design reusability. By em-

ploying a set of routers and links, the NoC transmits packets between a pair of source IP

37

(which injects the packet) and destination IP (which receives the packet). The network

interface (NI) is the part that links a core to a router. The NI implements the communi-

cation protocol by packing and unpacking the data and controlling the data injection and

ejection to/from the NoC. Intra-chip communication structure has a large impact on over-

all system performance, and area and power costs. It has a central role in the system, with

high influence among all elements, which makes the NoC also attractive to implement se-

curity mechanisms. There are several proposed NoC architectures in the literature. Each

proposal exploits different characteristics, described as follows.

Topology: The way the routers are arranged is defined as the network topology. Tradi-

tional topologies are the mesh, torus, ring, and tree (figure 2.3). The mesh is the most used

organization, being a homogeneous structure. Each router is connected to four adjacent

routers (with exception to the corners). Each port connection is identified as north, south,

east and west plus the local connected to the node.

Figure 2.3: NoC topologies examples. a) Mesh; b) Torus; c) Ring; and d) Tree

Nowadays, MPSoC architectures have also been employing hierarchical topolo-

gies. Different levels of communication are defined in design time, organizing the cores

in groups, also known as clusters. Hence, the inter-cluster communication can differ from

the intra-cluster communication. The most common strategy uses bus-based connection

inside the cluster, and a mesh NoC to connect them. The reason to exploit the hierarchical

strategy is the communication locality from the applications. As a consequence, the costs

of the interconnection architecture can be reduced without compromise performance.

Routing: Any communication in the NoC has the node that sends a message (source) and

the node that receives it (destination). Both have a unique network address that it is used

to define the path of the packets. The process that determines which path the message will

take is known as routing. The routing algorithm can follow four strategies: i) arithmetic,

38

ii) source-based, iii) table-based, and iv) adaptive.

The arithmetic routing algorithm follows a fixed rule, computed at each router. For

example, the XY algorithm always routes the message to the X axis first (horizontal), and

then routes in the Y-axis (vertical). Hence, each router computes the difference from the

source to the destination to define the route. As a result, the routers requires an arithmetic

logic inside to calculate the routes. The source-route defines all message route at the

source, typically by the network interface. However, a centralized manager or centralized

rule is required to avoid routing issues, like deadlock or starvation. The table-based uses

tables at each router, where depending on the target, the table defines the output port. It is

a very flexible approach but consumes much more area. The adaptive can route through

more than one path possibility. The normal condition to choose a different path is the

network congestion. When an output port from a router is blocked, the router can change

it to another route. Any routing strategy can also define its algorithm based on a non-

deterministic technique (e.g. random number generator). This approach tries to avoid

channel leakages in the communication, creating an unpredictable scenario.

Switching Mode: Two switching modes can be implemented in a NoC, the circuit switch-

ing, and the packet switching. The circuit uses the analogy of a closed circuit to transfer

the data. This concept means all routers must be configured previously from the source

node to the destination node. The circuit switching requires a distinct packet or protocol

to close the circuit before any transmission. The benefit is that the maximum throughput

can be achieved since no congestion will take place after the configuration. The drawback

regards the latency inserted, due to the circuits blocks a whole path.

On the other hand, there is the packet switching. In packet switching, the message

is split in small parts, defined as flits, and each flit travels separately in the NoC, following

the header. The switch of the routers is configured only when the header pass. In this

strategy, the paths are set during the transmission, which results in less latency. However,

if congestion is met, the throughput is penalized.

Time-division-multiplexing: An important feature regarding traffic congestion manag-

ing is the time-division multiplexing (TDM). Using TDM is possible to create the concept

of virtual channels. In this technique, the physical link is shared by different messages,

organized in time slots. Each time slot corresponds to a virtual port on the router. The

router requires this TDM manager, and one input buffer separate for each virtual channel

39

to support this strategy. The benefit regards the avoidance of congestion and deadlocks.

The drawback concerns the area overhead because buffers are the most expensive resource

inside a router.

Flow Control: A flow control has to be implemented to synchronize the transmissions

between routers. A well-defined protocol is used to inform when a transmitter wants to

send, and when a receiver can receive. The primary objective is to avoid loss of data in

the network caused by congestion (buffers full), or duplication of data (second capture).

The typical protocols used are the handshake (valid/ack protocol), and the credit-based.

Technology: Recently, different semiconductor technologies have been proposed to mod-

ify the way we know to integrate the hardware components. One technology is the 3D

Integrated Circuits (3DIC). Various integrated circuits are stacked during manufacture.

The 3DIC provides a vertical link, known as Through-Silicon Via (TSV) that commu-

nicates with the different dies. Consequently, more hardware can be integrated into the

same area, and the TSVs enable their communication. As a result, 3D NoCs have been

proposed in literature obtaining good results.

Another concern in the semiconductor industry is the scaling of the wire in high-

end technologies. The scaling factor of the transistor and the wire became different, and

now the IC limitation is defined by the interconnections (wires). A new process has been

proposed to attenuate the electrical wire concerns in current designs, the silicon photonic.

Silicon photonic presents an alternative to building logical links without electrical con-

cerns, increasing the performance, and reducing the power. The work in (ORCUTT et al.,

2011) presents a methodology to manufacture photonic elements together with conven-

tional CMOS technology monolithically. This feature allowed one to design architectures

with these two technologies in the same die. As a result, this technology becomes trans-

parent to the design step and manufacture.

2.3.4 Software Architecture

The software architecture is the structure required to run applications on the target

hardware platform. According to (JERRAYA; WOLF, 2004), it comprises three parts:

i) the Hardware Abstraction Layer (HAL); ii) the Operating System (OS); and iii) the

Application Programming Interfaces (APIs). These possibilities are represented at Figure

40

2.4.

Figure 2.4: Software Architectures. a) Full; b) Partial; c) Bare-metal.

The HAL performs the configuration of all hardware components, being responsi-

ble for initializing the hardware components, and boot the system to a bare-metal applica-

tion (without OS) or an OS. If the system uses an OS, specific functions of the hardware

may be provided by APIs. The API translates complicated system tasks to simple func-

tions. Hence, applications can use better the hardware features. Examples of APIs already

implemented for MPSoCs are the OpenMP, MPI, OpenCL, OpenCV and MCAPI (ROSA,

2016).

2.3.5 MPSoC Examples

A summary of the MPSoCs found in industry and academy is shown in table 2.2.

This overview was presented in (ROSA, 2016), and shows the main characteristics of each

one. The last architecture regards to our reference architecture, MPSoC Glass.

2.3.6 Reference Architecture - MPSoC Glass

The reference architecture is the MPSoC Glass, a heterogeneous MPSoC inter-

connected by a mesh NoC using a shared memory organization. The structure and com-

ponents can be observed in figure 2.5. MPSoC Glass uses the NIOS II processor from

Altera. In the same manner as presented by ARM with big.Little technology (ARM,),

our architecture uses different NIOS II implementations, the economy core (NIOS II/e

41

Table 2.2: Summary of MPSoC architectures.
Target

Application
Memory

Organization
Communication

Organization
Application

Programming
Cell Gaming Shared NoC (Ring) -

Tomahawk
Communication

Multimedia Shared NoC
C-based

#pragmas

Faust
Software
Defined
Radio

Distributed NoC Data Flow

Magali
Software
Defined
Radio

Distributed NoC Data Flow

X-GOLD
SDR20

Software
Defined
Radio

Shared Bus -

COBRA
Software
Defined
Radio

Shared
Crossbar

Bus MPA tool

Flextiles General Purpose Distributed Shared NoC Thread-based
P2012 General Purpose Shared NoC -

Glass General Purpose Shared NoC
IDE

C language

from (ALTERA,)), and the fast core (NIOS II/f from (ALTERA,)). The NIOS II fast

core aims high-performance applications, system management and primary tasks of the

system. Minor tasks and parallel applications are intended to be executed by a group of

NIOS II economy cores. The NIOS II economy core has a low area and power, being

suitable to be replicated many times in an MPSoC. Consequently, the concentration of

the economy core in the MPSoC is much higher than the fast cores, being four fast NIOS

II and ten economy NIOS II. Other components integrated into the MPSoC Glass are a

shared cache, and an UART interface resulting in a total of sixteen parts.

The memory organization has two cache levels in the hierarchy. The level 1 (L1)

is a local instruction and data direct mapped cache. The level 2 (L2) is a shared cache, 16-

way set associative. The shared cache L2 has a direct link to the external main memory.

The sizes of the caches and cache lines are parametrized for each design. Depending on

the target usage, a different setup can be set.

The NoC is composed by a 5-port router, with input buffers of eight flits, each

flit of 32 bits. The topology is mesh, 4x4, and it uses the XY as the routing algorithm.

Also, MPSoC Glass has a built-in security zone, defined at design-time. Elements in-

side secure zones are considered trustful among them because their communication are

exclusive (SEPULVEDA; FLOREZ; GOGNIAT, 2015) (SEPULVEDA et al., 2014). The

42

Figure 2.5: Reference Architecture - MPSoC Glass. Four fast NIOS II core, ten economy
NIOS II core, one UART interface, and one shared cache memory.

processors inside the secure zone are not allowed to download or run untrusted software.

Others (processors outside secure zone) can execute any application, even external ones

downloaded by the system. However, some features of the NoC architecture can change

based on design constraints.

The software architecture is simplified for the first version of MPSoC Glass. Each

processor has an HAL (Hardware Abstraction Layer) to initialize the necessary compo-

nents, and a bare-metal code that runs the tasks directly in the HAL. A developed library

set provides all communication features through the NoC and crypto-functions as ser-

vices, being similar to an API solution. An IDE (Integrated Development Environment)

was developed to automate parts of the development flow, such as compilation and upload

of the binaries in the several processors of the system. Information regarding the library

and the MPSoC Glass IDE are described in the Appendices of the thesis. Future works

aim the improving of MPSoC Glass IDE and the integration of Operating System and

commercial APIs.

2.3.6.1 Hardware Costs

The Glass MPSoC was implemented in a Cyclone IV GX from Intel FPGA (Al-

tera). According to synthesis, the system can reach 120MHz as the maximum operation

frequency. Results of area and power can be observed by table 2.3.

Table 2.3: FPGA Cyclone IV GX synthesis results of the MPSoC Glass components.
Logic Registers Power (miliwatts)

NIOS II/e - Economy Core 590 299 35,62
NIOS II/f - Fast Core 3002 2292 101.9
Processor NI 660 646 14.99
Timer 213 216 4.48
Cache 5412 677 405.38
Cache NI 113 184 20.33
UART 49 33 0.8
UART NI 190 228 4.55
One Single Router 1506 685 38.49
4x4 NoC (Routers and Links) 22423 7418 643.44

2.4 Considerations

This chapter has presented the essential knowledge to understand the area of hard-

ware security. The Advanced Encryption Standard (AES) was explained in details to elu-

cidate the concepts used by the following chapters. Besides, considerations about AES

libraries. The last part gave an overview about MPSoC architecture, describing the main

elements that compose these systems.

About the MPSoC overview, it is important to reinforce that the examples found in

industry and academy already has established that this kind of platform will be heteroge-

neous with a NoC as the communication structure. However, solutions in the application

layer, like APIs and operating systems are still an open issue, where no standard has been

widely accepted. Therefore, the research object of this thesis, about MPSoC vulnerabili-

ties and protections, must keep tracking the progress on the application layer of MPSoCs,

adapting the context when necessary.

44

3 STATE-OF-THE-ART

This chapter introduces the state-of-the-art in the field of architecture channel at-

tacks. This survey aims to put in evidence only the works that can apply to MPSoCs.

Regarding MPSoC vulnerabilities, the shared resources are the primary targets of the

architectural-channel attacks. Thus, only cache and NoC attacks are presented.

This chapter shows the state-of-the-art regarding the countermeasures against ACAs

in MPSoCs. The main victim’s of ACAs in MPSoCs are the shared cache and the

NoC. Consequently, this chapter presents only the countermeasures for these components.

To avoid cache attacks, the main practical techniques found in literature are software-

based. The software solutions explores modifications in the crypto-library, the compiler

or the operating system. Regarding NoC protection mechanisms, only hardware-based

approaches have been proposed.

3.1 Cache Attacks

Regarding cache attacks, it is possible to explore three strategies. One regards

the memory accesses during the encryption, called access-based cache attack. Another

approach is to study the time that cache inserts on the computation of a task, called timing-

based cache attacks. The last one analyses the cache transactions, defined as trace-based

attacks. Trace-based attacks are not considered in this overview since they require a

significant level of information of the victim.

3.1.1 Timing-based Cache Attacks

Kocher (KOCHER, 1996) and Kelsey et al. (KELSEY et al., 1998) first mentioned

Timing-based cache attacks. According to Kocher, cryptographic algorithms running on

a platform always present timing leakages that can be used for performing ACAs. Tsunoo

et al. (TSUNOO et al., 2003) present for the first time a practical timing attack on caches,

breaking the DES algorithm. This work opened a new front on ACAs.

Bernstein (BERNSTEIN, 2005) adapts Tsunoo’s attack to break AES cryptog-

raphy. Neve et al. (NEVE; SEIFERT; WANG, 2006) provides implementation details

regarding the attack of (BERNSTEIN, 2005) and proposes an extension to it. Weißet

45

al. (WEISS; HEINZ; STUMPF, 2012; WEISS et al., 2014) implements the attack in vir-

tualized embedded environments. Spreitzer and Plos (SPREITZER; PLOS, 2013) and

Spreitzer and Gérard (SPREITZER; GéRARD, 2014) perform the attack on mobile phone

devices. Apecechea et al. (APECECHEA et al.,) and Irazoqui et al. (IRAZOQUI et al.,

2014) demonstrate the attack in virtualized environments used in commercial cloud com-

puting systems.

3.1.1.1 Bernstein’s Attack

This attack exploits timing variations of the AES-128 performance-oriented im-

plementation (T table implementation described in subchapter 2.3). The first round of

AES follows the equation described in 2.2, The index of the Table is calculated from the

exclusive-or (xor) between a byte from the plaintext and a byte from the key. For instance,

T0[k[0]⊕ n[0]], where k[0] is the first byte from the key and n[0] is the first one from the

plaintext. Since these look-up tables are stored in the main memory, each different index

accessed provoke a cache miss. If some index value is repeated, it occurs a cache hit. The

occurrence of cache misses increases considerably the delay of AES operation. Therefore,

all AES computation is well correlated with the time of the accesses to the cache.

Each cache access has a strong relation between the plaintexts and key bytes.

Then, knowing the plaintext used, and analyzing the time behavior for each byte posi-

tion, it is possible to identify patterns between encryptions with a known and unknown

keys. Bernstein uses four phases to accomplish that objective: i) Profile; ii) Attack; iii)

Correlation; iv) Exhaustive key search.

Profile Phase The first phase aims to extract the statistical behavior of the encryption

time. This step can be made in an online or an offline manner. The profile is considered

online when the extraction can be done on the same platform of the victim. The profile is

offline, when it is made in different platform, but with similar behavior.

The attacker has to generate statistical signatures for each byte position of the

plaintext (16-byte positions in total). Each target position is encrypted with a known key

several times. The process takes into account all possibilities for that position (from 0 to

255). The timing to perform the encryption of each value is accumulated. Then, dividing

by the number of occurrences, one calculates the average time for each possibility. For

instance, ten thousand encryptions were performed to evaluate the first position of the

plaintext. For each value, the execution time was accumulated to calculate its average and

46

stored in a table. At equation 3.1, the accumulation of encryption times are represented

by the sums of t, while the occurrences are given by letter n. After collecting all, the

results are normalized by the mean time of all encryptions (independently of the byte),

resulting in the vector v at equation 3.1 presented below. The table represented by the

letter v stores these final results, where b accounts for each byte possibility (0 to 255), and

i the byte position of the plaintext (0 to 15).

v[i][b] =
t[i][b]

n[i][b]
−
∑

i

∑
b t[i][b]∑

i

∑
b n[i][b]

(3.1)

Then, the values in table v are plotted in a graph, which is defined as the signa-

ture for the respective position of the plaintext, in this example position zero. The same

process is done for all byte positions of the plaintext. The signature of position zero is

showed in figure 7.2.

Figure 3.1: Profiling Phase - Signature of the position 0.

Attack Phase The attack phase is performed on the victim, where random plaintexts are

sent for encryption. In the same manner, as in profile phase, all times are computed to

obtain the normalized average time for each possibility of each byte position. As a result,

a new signature table is generated, known as the table v′ , since the key now is unknown.

Correlation Phase In this phase, both signature tables (v and v
′) are correlated. The

objective of the correlation is to reveal some patterns between the plaintext and the key.

47

The correlation follows the equation 3.2 below:

c[i][j] =
255∑
j=0

v[i][j].v
′
[i][j ⊕ b] (3.2)

The character b is the guessed key byte, which has to be tested along the compu-

tation of several correlations. The result of the correlation phase, c[i][j], is sorted, and the

higher values are used to send the key candidates to the last phase of the attack.

Exhaustive key search: Since the correlation phase usually results in multiple key can-

didates per key byte, an exhaustive key search on the remaining keyspace has to be per-

formed.

3.1.1.2 Neve’s Optimization

This optimization enabled full key recovery on Bernstein technique, something

the original attack could not guarantee. The work achieved this result by investigating the

timing attack, concluding that performing the attack locally (inside the hardware platform)

the patterns in cache eviction could reveal all bytes of the key. To do so, Neve et al.

proposed two strategies:

1. To select the plaintext to be encrypted in attacking phase: By choosing the plaintext,

it is possible to force test conditions, where the correlation with the signatures can

be amplified;

2. To extend the analysis to the second round of AES: It is possible to use the behavior

of the second round to improve correlation results. It is possible to guess knowing

the plaintext.

3.1.1.3 Application: Virtualized Embedded Environments

Weiß et al. (WEISS; HEINZ; STUMPF, 2012) implemented the attack of Bern-

stein in virtualized embedded environments targeting applications of stock market and

financial transactions. The work showed that the timing attack is possible even when the

victim runs in a trusted environment (figure 3.2).

Weiß et al. added to the profiling phase one more step. The first one executes

the encryption outside the target system, defined as offline profiling. Then, the second

step runs on the target system but without knowing the key. The objective is to discover

48

the time to encrypt in the trusted environment. The proposed architecture, observed in

figure 3.2, executes the malicious software in the rich operating system (OS), while the

encryption runs in the trusted OS. The application has to make a system call for the rich

OS (client) request the encryption for the trusted OS (server). Then, with the signatures

generated offline, and the time behavior extracted in the target system, the authors were

able to perform the attacking phase.

Figure 3.2: Rich operating system making an system call to the trusted operating system.
Source: (WEISS; HEINZ; STUMPF, 2012).

Later, in (WEISS et al., 2014) Weiß et al. implemented the same strategy in vir-

tualized environments that used multi-cores as the hardware platform. Besides, the work

focused on a real-time kernel, called PikeOS, typically used in avionics and automotive

equipment. This environment is challenging, because the operating system isolates the

trusted services altogether, what is called partitions (figure 3.3). Moreover, the sophis-

ticated scheduler of PikeOS to guarantee real-time conditions inserts timing noises in

the process. So, experiments tested the efficiency of the attack under different scheduler

configurations.

By comparing the results of the attack against single- and multi-core systems, the

paper concludes that to dedicate a core to perform the crypto task has a huge impact

on the vulnerability of such systems. The exclusive core reduces computational noises,

improving the correlation of the attacking phase.

3.1.1.4 Application: Mobile phone devices

Spreitzer and Plos (SPREITZER; PLOS, 2013) investigated the Bernstein’s attack

in a real environment on three mobile devices: Acer Iconia, Galaxy SIII, and Google

Nexus S. Table 3.1 shows the number of measurements to implement the attack, for both

phases, profile, and attack.

Results revealed that a high number of measurements are required for the attack.

49

Figure 3.3: Communication between partitions inside PikeOS. Source: (WEISS et al.,
2014).

Table 3.1: Number of measurements to implement the attack on different mobile phone
devices.

Device
Samples

Remaining Key Space
Profile Phase Attack Phase

Acer Iconia A510
230 227 73 bits
230 229 78 bits

Google Nexus S
230 229 65 bits
229 228 69 bits

Samsung Galaxy SIII
230 229 58 bits
230 230 61 bits

To compute the 230 encryptions, the Google Nexus S takes about 6 hours. It could drain

the battery drastically, creating difficulties to perform the attack to recover all bytes of the

key. However, it is very feasible to reveal part of the key, and the Bernstein timing attack

can be considered a relevant thread for real mobile devices.

Another work that exploited mobile environments was presented by Spreitzer and

Gérard (SPREITZER; GéRARD, 2014). Their work investigated the recovery of different

parts of the key, exploring the granularity. Besides, it enhanced Bernstein’s attack through

a technique proposed by Aly and ElGayyar (ALY; ELGAYYAR, 2013). The method adds

new timing information in the correlation phase. This novel information consists of the

overall minimum encryption time (global minimum) and the minimum encryption time

for a particular plaintext byte at a specific position (local minimum). Then, the time to

perform the exhaustive key search can be drastically reduced.

50

3.1.1.5 Application: Virtualized Cloud Environments

Apecechea et al. (APECECHEA et al.,) and Irazoqui et al. (IRAZOQUI et al.,

2014) applied Bernstein attack in commercial cloud computing systems, evaluating the

security of virtualization tools and crypto-libraries implementations.

Firstly, Apecechea et al. and Irazoqui et al. presented some challenges and oppor-

tunities in virtual machine architectures. They cite five commercial features for memory

management important for the attack:

• Address Space Layout Randomization (ASLR): At each execution of a process, the

memory location is changed to avoid byte overflow attacks. This can affect the

behavior of the execution time of the processes.

• Second Level Address Translation (SLAT): The translation of virtual machine ad-

dresses to physical ones can be done directly in hardware through a particular TLB

(translation look-aside buffer). This improves performance, but creates a vulnera-

bility, since VM addresses will be linked directly to physical ones.

• Kernel Samepage Merging (KSM): The related information can be merged in mem-

ory, so different VMs access the same addresses. Hence, it opens a leakage, where

a VM can observe the behavior of other VM.

• Transparent Page Sharing (TPS): The same page can be shared for different VMs.

This page sharing can reveal the link of logical addresses of one VM to another.

Then, the work mentioned that most common crypto libraries have different im-

plementations of the T table AES algorithm, and its security should be studied. The ex-

periments targeted the Amazon EC2 and the Rackspace cloud services. Both use the XEN

VMM to provide virtualization. And, since companies are typically deploying VMware

as another virtualization technology to reduce IT costs, it was included in the evaluations

as well. Results showed that:

• The latest versions of the libraries were secure against last round attacks of AES.

• The first round of all libraries were vulnerable to cache timing attack.

• There is a considerable increase of noise when moving from native machine to

virtual machine execution.

• There is no difference in the attack results from a single VM to a cross-VM scenario.

• Processes running together inserts noise to the attack.

• It was possible to recover a minimum of 30 bits for the cross-VM scenarios.

51

3.1.2 Access-based Cache Attacks

Access-based cache attacks were first introduced by Osvik et al. in a paper that

propose three new attack strategies (OSVIK; SHAMIR; TROMER, 2006). Osvik et

al. proposed that it is possible to observe the used sets of the cache by accessing the

same positions after the encryption. The technique was called Prime+Probe, and it has

been widely studied by the security community (XINJIE et al., 2008) (LIU et al., 2015)

(CRANE et al., 2015). Prime+Probe preconditions are practical if the attack can be im-

plemented in the victim platform.

3.1.2.1 Prime+Probe Attack

The Prime+Probe is an access-based cache attack proposed by Osvik (OSVIK;

SHAMIR; TROMER, 2006). The attacker analyses the access of the cache after each

encryption, to detect which sets of the access were used. The positions accessed are

directly related to the T table indexes. Hence, knowing the plaintext used, the attacker

can evaluate what the possibilities of the key are.

Osvik et al. implemented Prime+Probe at systems composed of only a single

processor. The attacker employed a spy process to run on the same core as the target

cipher algorithm (victim process). Therefore, the attacker could have access to the same

resources of the victim process, such the cache L1. Therefore, some preconditions need

to be met to accomplish the Prime+Probe attack successfully:

• Attacker knows the cache configuration;

• Attacker knows the location of the AES lookup tables in memory, to know the cache

positions;

• Attacker generates the encryption plaintext; and

• Attacker can access the cache.

Prime+Probe is performed in five stages. At the first stage, the attacker prepares

the cache (Prime). The second stage is the encryption of a random known plaintext. The

third stage is used by the attacker to read the cache and to extract information of accesses

(Probe). The fourth step is the analysis of the collected information. As a result, the

attacker reduces the key search space drastically. Finally, the fifth stage is an exhaustive

search key step, where all the remaining possibilities are tested. Each one of the five

stages is described below:

52

Prime The attacker must write in the cache a malicious vector, whose size have to be at

least the size of the target T table of AES. Besides, the attacker needs to know the address

that the destination T table will be located in the cache.

Encryption At this step, the attacker requests an encryption with a random known plain-

text. The encryption process will execute and access the cache accordingly to T ta-

ble index. According to AES performance oriented algorithm, the indexes are given

by the exclusive-or between the bytes of the plaintext and the key, such as index ←

plaintext[0]⊕ key[0] for the first access in T0.

Probe After AES encryption occurs the Probe stage, where the attacker retrieves the ma-

licious vector. Since the AES will use some memory positions during execution, when the

attacker retrieves the malicious vector, cache misses taking place. The misses can be iden-

tified by the higher response time during the attackers’ vector reading. So, when a cache

miss is detected, the attacker translates the vector index (address) to the respective cache

set. The information of the used sets for each encryption and the plaintext, generated as

well by the attacker, are stored for the analysis process.

Analysis The values generated after the first round follow the expression x0i = pi ⊕

ki(i = 0, ..., 15). Therefore, by testing the data acquired in the Probe stage, it is possible to

identify the sets that the crypto-processor has not used. That is the non-accessed indexes.

By assuming that x0i 6= pi⊕ki(i = 0, ..., 15) and knowing the plaintext byte pi, is possible

to prove that ki 6= pi⊕ x0i (i = 0, ..., 15). Hence, possible key candidates can be removed.

This strategy reduces the key search space within the brute force process.

Exhaustive key search In the final stage, remaining key bits have to be verified through

any brute-force search space algorithm.

3.1.2.2 Xinjie et al. Optimization

Xinjie et al. (XINJIE et al., 2008) offer a novel analysis strategy to implement

Prime+Probe. Instead of using the accessed lines of the cache, it targets the non-accessed

lines. The objective is to reduce the number of traces required to reveal the key.

The analysis stage employed in this work is based on the algorithm presented in

(XINJIE et al., 2008). We perform the first round analysis, where only the accesses during

53

the first AES round are used for the analytical test. The values generated after the first

round follow the expression x0i = pi ⊕ ki(i = 0, ..., 15). Therefore, by testing the data

acquired in the Probe stage, it is possible to identify the sets that the crypto-processor has

not used. That is the non-accessed indexes. By assuming that x0i 6= pi ⊕ ki(i = 0, ..., 15)

and knowing the plaintext byte pi, is possible to prove that ki 6= pi ⊕ x0i (i = 0, ..., 15).

Hence, possible key candidates can be removed. This strategy reduces the key search

space within the brute force process.

3.1.2.3 Application: Last Level Caches

Liu et al. (LIU et al., 2015) showed that the Prime+Probe technique could attack

even the last level cache (LLC). This work presented a way to get the accesses of the

cache properly, even when the attacker only shares the higher hierarchy of the cache, the

LLC. It developed two techniques to break an ElGamal cipher decryption: i) Probe cache

sets without knowledge of the virtual address mapping, and ii) identify victims security-

critical accesses using temporal access patterns.

3.1.3 Collision-based Cache Attacks

Collision-based cache attacks are a variation of the Bernstein timing attack. The

objective of this attack is to explore the same accesses to the same T table. For example,

in the first round of AES, the elements x0, x4, x8, x12 access the same table T0. If more

than one is equal, it represents that the second one will force a cache hit, and the overall

time to perform the AES will decrease. Since, each xi is given by the calculation of one

byte of the plaintext and one of the key, such as pi⊕ki, knowing the plaintext it is possible

to identify key candidates.

The first approach of this technique was proposed by Bonneau and Mironov (BON-

NEAU; MIRONOV, 2006), where they presented how to perform this attack in the first

and last round of AES. Later, Bogdanov et al. (BOGDANOV et al., 2010) modified

the Bonneau and Mironov attack to a differential one. Bogdanov explored the collision

between pairs of plaintext, generated to provoke at least five collisions. Spreitzer and

Plos (SPREITZER; PLOS, 2013) did experiments with Bogdanov technique and evalu-

ated the applicability of the attack on mobile devices.

54

3.1.3.1 Bonneau and Mironov Attack

Bonneau and Mironov presented for the first time the cache collision attack, and

they describe three approaches: i) first round, ii) last round, and iii) expanded last round.

The first round collision attack explores the same access that may happen to the

same T table. So, the attack aims to find all combination of plaintext and key that result in

the same index of the target T table. This condition can be represented as pi⊕ki = pj⊕kj ,

where i and j represent the byte positions that access the same table. Since the attacker

knows the plaintext used, he only needs the information of the impact on AES encryption

time caused by each possible collision. To do so, Bonneau and Mironov worked on the

relation that if there is a collision then pi ⊕ pj = ki ⊕ kj . Several encryptions for each

possible pair pi and pj were performed, where the low average time was defined as a

delta time related to the key expression ∆ = ki ⊕ kj . Through these calculated times,

it is possible to identify the access to the same set of the memory, due to the collision

identification. The drawback is that it was not possible to guess exactly which address

was accessed, only the set. As a consequence, the attacker was capable of retrieving only

68 bits from the key. Therefore, this first round approach was considered impractical by

the authors.

To overcome such drawback, Bonneau and Mironov proposed an attack to the last

round of AES. Typically, the last round requires the usage of an extra T table, known as

table T4, because last round does not compute the MixColumn operation. Hence, the T4

accesses are exclusive for the last round and occurs as follows:

(c0, c1, c2, c3)← (T4[x
10
0]⊕ k100 , T4[x105]⊕ k101 , T4[x1010]⊕ k102 , T4[x1015]⊕ k103

(c4, c5, c6, c7)← (T4[x
10
4]⊕ k104 , T4[x109]⊕ k105 , T2[x1014]⊕ k106 , T3[x103]⊕ k107

(c8, c9, c10, c11)← (T4[x
10
8]⊕ k108 , T4[x1013]⊕ k109 , T2[x102]⊕ k1010, T3[x107]⊕ k1011

(c12, c13, c14, c15)← (T4[x
10
12]⊕ k1210, T4[x

10
1]⊕ k1013, T2[x106]⊕ k1014, T3[x1011]⊕ k1015

(3.3)

As observed in equation 3.3, the result of the operations are stored in ci, which

is the ciphertext. For any two ciphertext bytes ci and cj , it holds that c = k10i ⊕ T4[x10u]

for some u and c = k10j ⊕ T4[x
10
w] for some w. Regardless of the actual values of u

and w, whenever x10u = x10w , a cache collision occurs on T4. Suppose x10u = x10w and

T4[x
10
u] = T4[x

10
w] = α. Then it will hold that ci = k10i ⊕α and cj = k10j ⊕α. Hence, if there

is a collision in the last round, one can assume that ci ⊕ cj = k10i ⊕ k10j . So, the attacker

55

performs several encryptions, annotating the low average time of the encryption for each

combination of ciphertext bytes that could generate a collision. This timing information

is represented as ∆ = ci ⊕ cj and each possible combination is stored in a table, such as

T [i, j,∆]. The goal to find one value ∆
′
i,j for each i,j such that T [i, j,∆

′
i,j] < t

′ , where

t is the average encryption time over all ciphertexts. Eventually, the values of ∆i,j will

become accurate guesses for the true values ∆ = k10i ⊕ k10j , which should be the only

values which cause significantly low encryption times.

The enhanced last round attack uses not only the access of the same indexes but

all index that provoke a cache hit (collision). This feature depends on the cache line size.

With this information, the attack can work with more possibilities of ∆.

3.1.3.2 Bogdanov’s Attack

This attack is known as differential collision cache attack. This name refers to the

exploration of collisions between pairs of plaintexts. These collisions affect the encryp-

tion time of the second plaintext, which becomes lower. It is challenging to detect the

variations in time caused by the collisions, so Bogdanov explored a particular condition.

He called it as the wide-collision. This situation has the potential to provoke five S-Boxes

collisions in the first three rounds of AES algorithm.

To create the wide-collision situation, the pair of plaintexts (P1, P2) have to follow

a specific formation rule. Firstly, the attacker has to define a target diagonal. Then,

he creates randomly both plaintexts, chosen pairwisely equal the elements out the target

diagonal, and pairwisely different the ones inside the target diagonal. The example below

shows the main diagonal as the target, where the elements from P1 are represented as ai

and from P2 as ei, where 0 < i < 4:

P1 =


a0 x1 x2 x3

x4 a5 x6 x7

x8 x9 a10 x11

x12 x13 x14 a15

 P2 =


e0 x1 x2 x3

x4 e5 x6 x7

x8 x9 e10 x11

x12 x13 x14 e15


The encryption process of this pair (P1, P2) can provoke a wide-collision if at least

one position of the S-Box collide for both plaintexts in the second round of AES. The

position of the second round S-Box is a result of the first round computation (Addround,

SubBytes, ShiftRow and MixColumn). For example, to compute the element a0 that

56

results in S0, it is used the following equation 3.4:

S0 ← 02.Sbox(a0⊕ k0)⊕ 03.Sbox(a5⊕ k5)⊕ 01.Sbox(a10⊕ k10)⊕ 01.Sbox(a15⊕ k15)

(3.4)

After computing the first round for all elements (Si), one obtain the new pair of

plaintext (P 2
1 , P

2
2) used to perform the second round, as follows:

P 2
1 =


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

 P 2
2 =


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15


Note that the elements in grey represents the pairwisely different values. The non-

marked elements are pairwisely equal, but this is inherent to the wide-collision situation.

This example considers a collision in S0, identified by the elements in green (also pair-

wisely equal). Since all elements in the main diagonal are pairwisely equal, applying

again the equation 3.4 in the second round pairs (P 2
1 , P

2
2), one obtains four more colli-

sions in the third round. The new pair of plaintexts (P 3
1 , P

3
2) will collide for all elements

in the first column. The plaintexts pair of the third round is represented as follows:

P 3
1 =


t0 t4 t8 t12

t1 t5 t9 t13

t2 t6 t10 t14

t3 t7 t11 t15

 P 3
2 =


t0 t4 t8 t12

t1 t5 t9 t13

t2 t6 t10 t14

t3 t7 t11 t15


Three main stages comprise the attack:

Online Stage: For a pair of chosen 16-byte plaintexts (P1, P2), the main goal of the on-

line stage is to measure the encryption time of P2. To produce a wide-collision situation,

the pair of plaintext has to follow the rule described above. Since this rule only applies

for one diagonal per time, this process repeats four times, one for each target diagonal.

The total amount of encryptions required for each diagonal is N ∗ I ∗ r. The variable

N represents the number of random values the same diagonal will explore. The variable

I accounts for each iteration that the pairwisely equal values are changed to perform an

57

in-depth exploration of all possibilities inside the same diagonal. The variable r repre-

sents how many times one performs the same encryption. The objective is to reduce noise

interferences. The time of all encryptions is stored and sent to the detection stage.

Detection Stage: The detection is made by analyzing all encryption times t. It is ex-

pected that t will be lower than average (the result of five look-up tables already in the

cache memory) if a collision occurs. The result of this stage is a list of the pairs of plain-

texts (P1, P2) that possibly caused a wide collision. They are also classified as candidates.

Key Recovery Stage: This stage is divided into two steps. The first step supposes we

found 4+m candidates on the detection stage, m ∈ {0, 1, 2, ..}. We consider all (4+m
4)

possibilities with all 232 subkey candidates. For each choice of four pairs of (Ai, Ei) we

execute AddRoundKey, SubBytes, ShiftRows and MixColumns. If a collision occurs for

at least one position in the second round; for each of the four pairs in the group, the subkey

candidate joins the final candidates’ list. The total complexity of this step is in the order

of 232 ∗ (4+m
4).

The second phase of this stage completes the full key recovery. It concatenates the

subkey final candidates and performs an exhaustive key search. The total complexity of

this searching algorithm is (232 ∗ (4+m
4))4.

3.1.3.3 Application: Mobile phone devices

Spritzer and Plos investigated the applicability of Bogdanov’s attack in mobile

phone devices. The evaluation used the same strategy of the original technique, exploiting

the wide-collision behavior. However, the work showed that the wide-collision detection

in mobile hardware platform was a big challenge. The main reason was the size of the

cache line, which was 64 bytes for the tested devices. This line size made the attack

unpractical because few cache misses occurred. As a consequence, the chance of success

in the detection stage of wide collisions was about 10%. Besides, Spreitzer and Plos

analyzed the key recovery phase and concluded that this lack of precision in the detection

would increase the false-positives significantly. Therefore, to check all the possibilities

would be in the order of 252, which is not feasible.

58

3.2 Networks-on-Chip Attacks

An ACA on NoC requires the control of at least one component in the MPSoC.

There are techniques that an attacker can use to tamper the software and infect an IP

(FIORIN; PALERMO; SILVANO, 2008). By using malicious software (malware) that

performs read and write transactions in forbidden memory areas, an attacker may change

the behavior of an IP (victim IP) and turn it into an infected IP. Moreover, buffer overflows,

and other similar techniques that address software weaknesses can be exploited for such a

purpose (FIORIN; PALERMO; SILVANO, 2008). An infected IP may try to extract/infer

data, modify the system behavior (by infecting other IPs) or deny the MPSoC service

employing malicious transactions.

The work of (MANCILLAS et al., 2014) shows that long packets characterize

the sensitive information. Hence, during a burst communication of a sensitive packet in

the NoC, a significant part of the bandwidth is consumed. Several authors (YAO; SUH,

2012) (WASSEL et al., 2014) (SEPULVEDA et al., 2016) have cited the possibility to use

the throughput degradation caused by sensitive packets as a leakage source. In this case,

an attacker observes the time to inject packets in the NoC and verifies when there is an

increase in that time. The delay is a result of a long packet consuming the bandwidth of

the NoC, a possible sensitive packet. This attack is known as NoC timing attack.

3.2.1 Timing-based NoC Attacks

NoC timing attacks elicit channel leakage by the evaluation of the attacker through-

put. As routers are shared, the communication collisions between malicious and sensitive

traffic may reveal the sensitive behavior (e.g. mapping, topology, routing, transmission

pattern and volume of communication). The collisions are detected by the reduction of

throughput of the attacker. Several authors explained the concept behind NoC timing

attack (YAO; SUH, 2012) (WASSEL et al., 2014) (SEPULVEDA et al., 2016) (SEPUL-

VEDA et al., 2015) and (STEFAN; GOOSSENS, 2011). However, no work has presented

a detailed attack with its threat model, such as preconditions and configurations of the

attacker.

According to the authors of (YAO; SUH, 2012) (SEPULVEDA et al., 2016), by

injecting frequent transactions, the infected IP saturates a router output port. Due to that

output port is shared by the malicious and the sensitive data, the throughput degradation of

59

the attacker can be used to infer the access pattern of the victim flow (e.g., communication

flow generated by a crypto processor to memory). This behavior can be observed in figure

3.4, where the victim traffic is represented by the S letter and the attacker by letter A.

Figure 3.4: Malicious software M performing the NoC timing attack. The sensitive traffic
S is the victim. Source:(SEPULVEDA et al., 2016)

Wang and Suh (YAO; SUH, 2012) studied this network interference showing the

throughput observed by an attacker. Besides, they proposed a case, where an attacker

could explore such leakage source. Their example used as the victim an RSA cipher IP.

To perform the encryption, this cipher required to access a multiplication module. The

RSA algorithm multiplies two large numbers (often 1024 or 2048 bits) that depend on

each bit in a secret key (RIVEST; SHAMIR; ADLEMAN, 1978). When the bit of the

key is one, then the multiplication occurs. Therefore, Wang and Suh explored the timing

leakage of the NoC to understand the access of the IP and guess the secret key.

3.3 Security for Caches

Below it is presented the software-based countermeasures found in literature. Then,

a summary comparing the main strategies is showed later through the work of Alawatu-

goda et al. (ALAWATUGODA; JAYASINGHE; RAGEL, 2011).

Regarding solutions implemented directly in the crypto-library, different strategies

have been proposed. In (REBEIRO; MONDAL; MUKHOPADHYAY, 2010), the author

60

changed the typical T table from performance oriented AES to the S-box generation. It

increases significantly the encryption time, since the values have to be calculated at run-

time.

Other works proposed random permutations during AES encryptions to mask the

actual cache access patterns (BRICKELL et al., 2006) (BLOMER; KRUMMEL, 2007).

Hence, the performance of the encryption was highly degraded as well.

Stefan et al. (STEFAN et al., 2013) presented an instruction scheduler to be im-

plemented in compilers. The objective was to rearrange the instructions in the threads to

avoid timing leakages.

Crane et al. (CRANE et al., 2015) proposes a dynamic software diversification.

The application diversification (modification of the code and data) can be applied in the

compiler or in the software to modifies the behavior of an algorithm. However, Crane

explains that an ACA can adjust itself at run-time and understand the new pattern. There-

fore, they propose a dynamic diversification, where the software changes its flow during

execution. Several control flows are inserted in the code, and random conditions set the

behavior during run-time.

3.3.1 Countermeasures Comparison

Alawatugoda et al. presented a comparison between four countermeasures. They

were implemented in software by the modification of the crypto library (ALAWATU-

GODA; JAYASINGHE; RAGEL, 2011). The techniques presented and analysed were: i)

random loops; ii) specified loops; iii) pre-fetch of T tables; and iv) cache partitioning.

The random loop insert for statements inside AES code, using random numbers as

the iteration limit. Hence, a random delay is inserted between T table accesses, creating a

timing noise.

Another technique is the specified loops, which changes the random limit by a

specific sequence. Using a known limit it is possible to avoid big numbers. High latencies

degrade the encryption performance, then it is important to avoid unnecessary delays.

The third approach is the pre-fetch of T tables. Only a part of the T tables is read

before each encryption. Hence, this will affect the behavior of cache misses and hits.

The final countermeasure is the cache partitioning. In this case, one isolates a

memory space to execute only the AES. Hence, this may change the original pattern of

the encryption.

61

These techniques use software implementation to protect the cache against timing

attacks. The loop strategy from the first two degrade more the encryptiong performance.

The last one, can avoid any performance penalty, since the memory isolation only benefit

the execution of AES. However, a reserved memory space for cryptography can limit

other features from the system. Results on figure 3.5 shows the latency overhead of each

technique.

Figure 3.5: Latency overhead of software-based countermeasures against cache timing
attacks. Source:(ALAWATUGODA; JAYASINGHE; RAGEL, 2011)

3.4 Security for NoCs

NoC design challenges regards to provide defence services and the required per-

formance. Recent works presented protection mechanisms for NoCs, like authentication

(SEPULVEDA et al., 2009), access control and integrity (SEPULVEDA et al., 2012).

They used firewalls and error correction algorithms as a solution.

The works in (YAO; SUH, 2012) (WASSEL et al., 2014) (SEPULVEDA et al.,

2016) (SEPULVEDA et al., 2015) and (STEFAN; GOOSSENS, 2011) address the pro-

tection against NoC timing attack. The works of Wang and Suh (YAO; SUH, 2012) and

Wassel et al. (WASSEL et al., 2014) propose the integration of hard QoS (Quality-of-

Service) mechanism to isolate the sensitive information. They include temporal network

partitioning, based on high (YAO; SUH, 2012) and bounded (WASSEL et al., 2014) prior-

ities arbitration schemes. Sepulveda et al. (SEPULVEDA et al., 2015) proposes random

arbitration and adaptive routing as protection techniques. In another work, Sepulveda et

al. (SEPULVEDA et al., 2016) present the secure enhanced router (SER) architecture that

62

dynamically configures the router memory space according to the communication and se-

curity properties of the traffic. Furthermore, the work of Stefan and Goossens (STEFAN;

GOOSSENS, 2011) present the usage of multiple path communication for sensitive flows.

3.4.1 Wang and Suh - Priority Arbitration NoC

Wang and Suh proposed a NoC to deal with the multi-level security model (MLS)

(YAO; SUH, 2012). The MLS can divide the traffic in several security domains. However,

this work study only the application of two levels - high and low. Their MLS only has

the restriction that the communication from high to low can not happen. To avoid a NoC

timing attack in the high security flow, the work mentions that the typical approach is to

employ static partitions in the network:

• Spatial Network Partitioning (SNP): Some routers are reserved only for high secu-

rity flows.

• Temporal Network Partitioning (TNP): Routers with virtual channels are used, where

the time-division multiplexing (TDM) is used. Then, a portion of the time slices is

reserved only for high security flows.

Although both spatial and temporal partitioning schemes eliminate network in-

terference between the security domains, they bring critical performance overhead. The

main reason is that the resource allocation cannot be dynamically adjusted to match the

actual demands from each security domain.

Therefore, Wang and Suh presented a novel NoC that uses priority arbitration for

the crossbar that implements the TDM. The objective is to assign a high priority for the

low security packets. Hence, the high security ones will not affect the traffic of the low

security ones. But, such strategy creates a significant vulnerability for denial-of-service

attacks. Low security traffic always are prioritized, and could inject data uninterruptedly.

To avoid this issue, the authors implemented a traffic limitation. When the low security

traffic creates long bursts and achieves a threshold of the bandwidth, the router stops

that traffic for an awaiting time. This mechanism is also static, defined in design time.

Results shows that these strategies allow to remove timing leakages from the sensitive

traffic behavior being an effective secure-enhanced NoC.

63

3.4.2 Wassel et al. - Surf NoC

Wassel et al. brings the security concerns for critical applications, such as medical

and aerospace (WASSEL et al., 2014). Considering MPSoC scenario, the isolation of the

cores is the primary approach to enable security. Typically, this can be achieved through

time or spatial partitioning, creating several domains. However, this strategy always pe-

nalize the performance. To overcome such drawback, they propose the Surf NoC. This

NoC uses temporal partitioning. Each time slot of the temporal multiplexing is considered

as a wave, due to the periodic behavior. Then, each domain’s packets awaits for its wave

to proceed. To improve performance, the Surf router uses a specific scheduler that allows

that different domain’s packets forward in the same cycle. Since the timing slots are syn-

chronized between routers, the packets after beginning the surfing do not wait again. It is

important to mention that this approach is still a static partitioning. According to Wassel,

this is important, because dynamic partitioning could provide new side channels.

Results showed that Surf NoC has good results when the MPSoC employs a great

number of domains. The number of domains is related to how many levels of security the

system will provide. The authors expect that in the same manner that occur in business

networks, hundreds of levels will be implemented in such embedded systems.

3.4.3 Sepúlveda et al. - Random Arbitration and Adaptive Routing NoC

Two strategies are implemented in the NoC proposed by Sepúlveda et al. - random

arbitration and adaptive routing (SEPULVEDA et al., 2015).

The random arbitration regards the router crossbar decision of which input port

will be attended. If a typical round-robin is implemented, the deterministic characteristic

can reveal patterns in the scheduling becoming a source of leakage. By implementing a

random number generator inside the arbiter logic, the behavior of the scheduling becomes

non deterministic.

However, another possible timing leakage in the NoC is the packet collisions that

can be provoked by an attacker. It is possible to force interference in a sensitive traffic,

because the deterministic routing algoritm allows the malicious element to infer the path

of the packets. Then, it is possible to create a traffic that intersects the victim. To avoid

this timing leakage, this work uses an adaptive routing algorithm. The used algorithm

is the West First Routing Logic (WFRL). In this algorithm, each packet can take three

64

possible output ports (East, North and South). Then, the sensitive traffic pattern is splited

in different paths, which poses a significant challenge regarding the NoC timing attack.

3.4.4 Sepúlveda et al. - SER

Sepúlveda et al. present the Secure Enhanced Router (SER) for NoC architectures

(SEPULVEDA et al., 2016). SER protect the MPSoC against NoC timing attacks using

dynamic virtual channel allocation. By reconfiguring the buffers allocated for each input

port, the traffic throughput can be adjusted in run-time according the applications require-

ments and security concerns. As a result, it is possible to avoid the timing leakage from

the collision of the packets, and avoid any performance penalty.

The SER was evaluated under different traffic scenarios. Besides, this work com-

pared SER with the NoCs proposed by Wang and Suh (YAO; SUH, 2012) and Sepúlveda

et al. (SEPULVEDA et al., 2015). The three NoC architectures were able to protect the

NoC against timing attack, but SER obtained the better performance.

3.4.5 Stefan and Goossens NoC

Stefan and Goossens improves the time-divison-multiplexing strategies of the NoC

employing the multipath routing (STEFAN; GOOSSENS, 2011). Their objective is to

force the messages to be routed on multiple disjoint paths, which brings a non-deterministic

communication behavior. The choice of the path can be made according to a pre-defined

schedule, or randomly at run-time. This work uses the Æthereal NoC (GOOSSENS;

DIELISSEN; RADULESCU, 2005) as a study case, analyzing the additional hardware

cost and performance results of the proposed mechanism.

Æthereal employs source routing of packets, which means that the route of each

packet is completely described by the sending Network Interface. The route, stored in the

packet header, is read from a table of routes inside the NI and contains the list of turns the

packet must take at each hop in order to reach its proper destination. To ensure freedom of

collisions, each connection is allowed to transmit only at specific moments in time given

by a schedule also stored into the Network Interface. The modifications consist of an

extension to the table of paths to accommodate the new extra paths for connections and a

selection mechanism for those paths.

65

Results showed that with a static path selection the allocation overhead is very low

(about 3%), while the dynamic mode the overhead can be as high as 584%. They conclude

that dynamic allocation should be applied to the NoC only for some of the communication

channels.

3.5 Considerations

Several techniques to attack complex hardware systems were presented in this

chapter. The first part targeted on cache attacks, where some powerful attacks and op-

timizations were described in details. This information aimed to explain how the attack

could run in any hardware system, and it is important to have a clear understanding on the

developed attacks of chapter six.

The timing-based attack are a statistical approach, where a high number of en-

cryptions are required. Besides, the technique demands complex calculations, such as

big averages values and variances. In a low performance processor with limited mem-

ory, typical scenario from MPSoCs, this attack could be unpractical. Then, to apply such

technique, some adaptations are required.

The access-based attack from Osvik is a very powerful attack, where few samples

can easily reveal the whole key. The main condition to implement such attack is the

close hardware access, which is a normal feature from MPSoCs. Current MPSoCs have

simplified software layers, which allow applications to access the hardware in a very close

way.

The collision-based attacks take advantages of a particular timing behavior forced

by the attacker. The theory behind the technique is very effective, but in practice several

execution issues complicates the attack. One important issue reported by Spreitzer and

Plos (SPREITZER; PLOS, 2013) was the cache line size. If the cache line size is bigger

than sixteen, the probability of success of the attack is below 10%. The main reason

regards the fact that almost all T table values are already in the cache, then few cache

misses occurs. Therefore, this type of attack must be carefully analysed considering the

target hardware platform before any implementation.

The NoC timing attacks have been cited by some authors, but only the possibil-

ity of such leakage exploration was demonstrated. No attack details, like threat model

or implementation methodology, has been presented. Consequently, there are questions

around the feasibility of this kind of attack, and how it can break a cryptography execut-

ing in some system. The chapter five explores this open issue and presents a structured

information of this attack, based on observation and experimentation.

The state-of-the-art of countermeasures against architectural channel attacks has

been exploring secure-enhanced mechanisms implemented directly in hardware. The

main victims of current MPSoCs, the cache and the NoC, are the typical targets to pro-

vide the system security. Although many authors presented efficient security solutions,

no work has studied and explored such efficacy in a real attack inside an MPSoC environ-

ment. The present thesis investigates new forms of attacks and evaluate how efficient can

be the security mechanisms in the system.

67

4 EXPLORING THE NOC TIMING ATTACK

As presented in chapter 3, there is no publication explaining in details the NoC

timing attack. The state-of-the-art only showed that an attacker could infer sensitive traffic

information through communication interference. Hence, the NoC timing attack lacks

essential information, such as i) the threat model; ii) the attack methodology; iii) the

evaluations regarding the aspects of its implementation; iv) a practical execution.

The next section presents a study around NoC timing leakage, to understand its

behavior and what are the conditions to compose the threat model. Then, the following

sections show the threat model and the workflow (methodology) of the attack. The last

section explores the influence of some NoC parameters in the attack.

4.1 Understanding the NoC Leakage

The work of (MANCILLAS et al., 2014) showed that large packets could charac-

terize the sensitive information. During a burst communication of a sensitive packet in the

NoC, a significant part of the bandwidth is consumed. This value depends on the cipher

block sizes and NoC link size. As a result, the sensitive packets degrade the throughput

more abruptly than regular packets. Therefore, the throughput observation is a source of

leakage in the system, which is the central concept of the NoC timing attack.

A scenario is demonstrated on figure 4.1. This scenario considers sensitive (S)

and malicious (M) processes which are executed simultaneously at the MPSoC. S rep-

resents a performance-oriented AES cryptographic function, whose processor is placed

at IP13. When the data requested by the processor at IP13 is inside the local cache

L113, a hit takes place, and the data is transmitted to the processor. Otherwise, a miss

occurs, and an access to memory L2 located at IP0 must be performed. As a result,

a sensitive communication must be carried out through the NoC from IP13 to IP0. The

sensitive traffic must follow the deterministic path (sensitive path) determined by the well-

known XY routing, which includes five routers (Router31, Router30, Router20, Router10

and Router00). The response message, from IP0 (cache L2) to IP13, uses five routers

(Router00, Router01, Router11, Router21 and Router31).

Simultaneously,M is being executed in the infected IP1, which has been carefully

selected by the attacker for being located in the sensitive path (Router01). The infected

IP1 may try to extract/infer data, modify the system behavior (by infecting other IPs) or

68

Figure 4.1: Example scenario of a NoC timing attack running in an MPSoC.

deny the MPSoC service employing malicious transactions. However, in our scenario,

M injects frequent and useless transactions to saturate a particular output port of the

Router01, as observed in figure 4.1. Due to a collision in the North output port of this

router by the malicious and the sensitive data, the throughput degradation of M (IP1) can

be used to infer the access pattern of the sensitive flow.

The malicious software M creates random packets and injects data continuously.

The malicious packets are addressed to IP5, because it creates an intersection traffic and

the destination is outside any secure zone. Then, this useless traffic is not mitigated by

some security mechanism in the system. Before and after sending any message, M sam-

ples the time of a cycle accurate timer. Then, it calculates the difference and stores the

data for further analysis. Figure 4.2 shows the acquired times. One can observe that the

69

typical latency of the network interface is five cycles. The transmission latency above

five cycles reveals the influence of the traffic passing through the target router. Different

packet sizes, source and destinations can be present, where the sensitive messages also

are in it. In order to maximize the correct guess of the sensitive traffic in such trace,

the calibration step become strategic. Next subsections discuss the conditions and the

methodology to implement this attack under different circumstances.

Figure 4.2: Samples captured by a malicious software running on an MPSoC.

4.2 Threat Model

Any attacker requires in advance environment information to execute the NoC

timing attack. Besides, the victim system must allow some actions to enable the malicious

software to perform this attack. These two issues are what defines the threat model of the

NoC timing attack. The conditions to attack are:

1. System Susceptibility: An attacker can infect the system through a malicious soft-

ware inside the MPSoC.

2. Attacker Reach: The attacker can communicate with the targets, even indirectly.

3. Sensitive Path Shared: The attacker observation path intersects the sensitive path.

System Susceptibility: This condition refers to the susceptibility of the MPSoC to be

infected. There are techniques that an attacker can use to tamper the software and affect

an IP (FIORIN; PALERMO; SILVANO, 2008). By using malicious software (malware)

70

that performs read and write transactions in forbidden memory areas, an attacker may

change the behavior of an IP (victim IP) and turn it into an infected IP. Moreover, buffer

overflows and other similar techniques address software weaknesses can be exploited for

such a purpose (FIORIN; PALERMO; SILVANO, 2008).

Attacker Reach: This condition refers to the ability to communicate with the primary

targets of the attack, for example, the victim processor and the shared cache. The first task

after infection is to know the logical addresses of the elements. Typically, any MPSoC

will provide at least system functions to ask jobs from other IPs. Therefore, three options

are possible that makes this condition possible: i) the logical addresses are provided in

MPSoC datasheet; ii) functions from an API performs the communication with the target

IPs, or iii) functions from an API ask the service to a centralized manager, and it passes to

the destination IP. The third option considers a high secure system, where the trusted IPs

are entirely isolated. The objective here is to trigger the victim to perform the sensitive

operation, like encryption.

Sensitive Path Shared: To observe traffic interference caused by the victim, it is implicit

that the malicious software shares some part of the sensitive path. The malware can ask

encryptions to the crypto-processor and at the same time ask another task to other IP. The

objective is to test which communication traffic intersects the sensitive one systematically.

If the attacker does not find any interference, a different IP must be infected, and the

search remains. Since AES provide a particular cache access pattern, it is practical to

search the sensitive traffic. If the MPSoC provides more detailed information regarding

its implementation, such as topology and routing algorithm, this process can be optimized.

4.3 Attack Methodology

A methodology is proposed to guarantee an attack with quality, having a high

probability of success. The flowchart in figure 4.3 summarizes the five steps of the attack.

The first step is the infection, where the attacker downloads a malicious software

into the MPSoC. The number of processors that can be infected depends on the target

system. A high number of processors contaminated allows the attacker to find the best

place to observe the sensitive traffic. It is expected that a portion of the MPSoC will be

available to external applications since the interoperability between devices and external

71

Figure 4.3: Flowchart of the five steps to perform the NoC Timing Attack.

network are the major demand in the trends.

The second step is the sensitive path search. After the infection, the malware

has to verify which place provide the best observational point, which means, are in the

intersection of a sensitive traffic. This step can be made by trials systematically.

The third step is called calibration. This task tries to maximize the observation of

the attacker. Since this technique uses throughput degradation to collect information, it

is important to obtain a clear view of the target traffic. The calibration aims to find an

injection rate that creates the minimum congestion to identify a sensitive message. If the

attacker injects too fast, the leakage channel could be saturated, and any packet (small

and big) would be identified. As a consequence, the false-positives would increase. Next

subsection describes in details the process of calibration.

The fourth step performs the attack. After infects the correct processor, and identi-

fies the proper injection rate, the malware does the execution. It injects data, and annotate

the times to send each message. All samples are stored in the local memory and further

sent to outside.

The last part of the NoC timing attack execution regards to the analysis. If im-

plemented as a conventional timing attack, it will perform a mathematical algorithm to

correlate the timing results collected by the monitor to infer an unknown key. Some tech-

niques to correlate timing information are demonstrated at (JAYASINGHE et al., 2010),

(KOCHER, 1996) and (TSUNOO et al., 2003).

72

4.3.1 Calibration

A calibration stage is required to increase the effectiveness of the NoC timing

attack. The calibration aims to find the correct injection rate of the attacker for a target

system. A good injection rate is when the attacker has the maximum detection of the

sensitive packets without false-positives. Each MPSoC has different implementations

and communication behaviors given by the environment. So, the calibration adjusts the

attacker for each possible scenario before the attack to maximize its sensitivity. The

calibration is performed by the infected IP (IP1). First, it starts at a high injection rate

(above 90%) and annotates the throughput in the usual behavior of the system. Then, it

calculates the mean throughput. This process is repeated several times, each time reducing

the injection rate. The calibration stops when the observed throughput is not affected by

the attacker, due to internal buffers. Figure 4.4 presents a calibration process with four

scenarios as examples. Each one was stimulated with a specific injection rate, performing

a high number of experiments, in order to retrieve a mean value of the throughput sensed

by the attacker. After these calibrations, Fig. 4.4, the (d) is the best configuration for

the attack, because its mean value for the throughput result in a traffic congested but not

saturated. This scenario allows the infected IP to have a clear detection, demonstrated by

the spikes in the throughput. In the other scenarios, the traffic seems to be too saturated,

so the peaks that represent noise and sensitive packets can not be easily distiguished,

since they are at the same level. This mean value of the chosen scenario works also as the

threshold to detection algorithm.

Figure 4.4: Throughput Trace sensed by attacker of four calibration scenarios: a) Injection
rate of 70%; b) Injection rate of 50%; c) Injection rate of 40%; d) Injection rate of 30%.

73

4.4 Expanding the Attack to a Distributed Attack

One can infect multiple cores at the same time to improve the effectiveness of

the attack. Compared to the single timing attack, the distributed timing attack (DTA)

decreases the computation and storage requirements of the infected IPs. Besides, a dis-

tributed strategy can overcome countermeasures that exploit the routing of the packets,

because different routes can be tracked. In DTA, malware is divided into two groups:

• Injectors, responsible for injecting data in the NoC with the objective to increase

the congestion of the target path;

• Observers, responsible for injecting data at lower data rates and to collect the

throughput traces of the target path.

Figure 4.5 presents a different attack scenario. This MPSoC comprises proces-

sors and IPs also interconnected by a mesh NoC. The memory organization used is the

distributed one. In this case, the caches of the system (IP11 and IP3) can be managed

separately according to the application. Thus, sensitive tasks can run on an isolated cache

memory (in this example IP11), being a very secure strategy. However, the distributed

caches require communicating with the main memory, located at IP0. Then, this DTA

example targets the communication between the sensitive cache and the main memory. In

such scenario, the sensitive traffic is more difficult to be detected by a single NoC timing

attack, since this kind of communication does not use a big bandwidth.

DTA follows the same methodology of the single approach. Firstly, the system is

infected, and the attacker searches for the intersection paths. This attack requires more

than one contaminated IP at the same time, so the condition of susceptibility has to be

higher (more than one processor can be infected). The attacker has to explore the number

of injectors and the injection data rate of each one. This attack space exploration can be

an exhaustive task. Once calibrated, the injectors will send packets while the observer

will sample and store the throughput results.

The example in figure 4.5 shows a sensitive application S starting an encryption

running on the IP12. This crypto-processor accesses the secure cache memory (IP11), to

retrieve the look-up tables used in the cipher algorithm. When there is a cache miss at this

memory, it creates another communication flow requesting data for the main memory.

Three processors infected works on the attack. One observer at IP8 (labeled as OBS)

and two injectors at IP9 and IP14 (labeled INJ). These malicious IPs send messages

74

Figure 4.5: MPSoC system running a sensitive application, after infection stage.

to IP4, to create the desired congestion in the path used for cache misses requests. As

observed in figure 4.5, the infected IPs work collaboratively to capture the sensitive traffic.

Information regarding cache misses can be used for different attack approaches, such as

access-based ones.

4.5 Evaluation

Regarding the NoC timing attack, some issues remain unclear when implementing

in practice. How much other shared memory messages disturb the attack; which place is

better in the NoC to observe the sensitive traffic and; what is the sensibility of the attack

under different message sizes. These three issues were evaluated, and the results are

presented in the following subsections.

75

4.5.1 Traffic Interference

The objective of this experiment was to understand how accurate is the detection

of sensitive packets under traffic interference. Typically, the NoC timing attack aims to

uncover the traffic between a victim IP and a memory element. The non-desired traffic

beholds to the other IPs running applications that access the same memory.

To develop this experiment, the attacker aimed to reveal the traffic between a

crypto-processor running an AES encryption accessing a shared cache. Then, six sce-

narios were designed, each one with a different accessing rate. This rate is the period

of the non-desired traffic accessing the same shared cache. These interference packets

can be interpreted as an IP that accesses periodically, or mutual IPs accessing the shared

cache, creating a periodic interference. The scenarios used the following parameters:

• Scenario 1: Period of non-desired traffic at 500 microseconds.

• Scenario 2: Period of non-desired traffic at 250 microseconds.

• Scenario 3: Period of non-desired traffic at 100 microseconds.

• Scenario 4: Period of non-desired traffic at 50 microsecond.

• Scenario 5: Period of non-desired traffic at five microseconds.

• Scenario 6: Period of non-desired traffic at one microseconds.

For this analysis, two metrics were defined, the detection efficiency and the false-

positives. The detection efficiency was given by the amount of the sensitive traffic de-

tected. The false-positives referred to the wrong samples recognized.

Each scenario was experimented by the time to encrypt one plaintext, which varies

from 300 microseconds to 450 microseconds. The attacker asked to the crypto-processor

a random plaintext to be encrypted and performed the attack. During the experiment, an-

other IP generated random requests to the shared cache according to the period defined

for such scenario. This interference IP was placed in a location that the message inter-

sects with the observation point of the attacker. Since it was a controlled environment to

evaluate the NoC timing attack, our sensitive packets were monitored, to compare with

the attacker’s results. The detection efficiency and false-positives results are presented in

table 4.1.

The attack detected about 60% of all sensitive accesses in the worst scenario. This

60% represents that the noise in the communication behavior of the target MPSoC af-

fected the decision of the attacker to distinguish between noise and access to the cache

76

Table 4.1: Detection efficiency and false-positives of the NoC timing attack under six
different scenarios. Each scenario used a different interference period. System running at
100MHz.

Scenario Interference Period (us) Detection Efficiency (%) False-positives (%)
1 500 100 0
2 250 100 1.1
3 100 99.4 2.8
4 50 95.9 5.7
5 5 77.4 42.7
6 1 60.7 74.1

memory. Besides, 74% of the detected packets were false-positives, which creates a pro-

hibitive situation for such attack. On the other hand, scenario 1 to 3 detected essentially

all the sensitive packets correctly. The influence of the interference happened when the

period of access was lower than the AES encryption time. Then, the access occurred

during the encryption inserting noise in the detection. There is a direct relation between

detection efficiency and false-positives because the noise traffic has the same behavior of

the sensitive one. The same behavior of the messages is justified by the standard response

of the shared cache. Therefore, the experiment concluded that the NoC timing attack

could be compromised in the presence of non-desired traffic. Two conditions have to be

met to interferes the attack:

• The communications that access one of the victim IPs intersects the attack observa-

tion path. This is defined as non-desired traffic.

• The period of the non-desired traffic lower that the attacker observation time.

4.5.2 Placement in the Network

The second issue evaluated was the placement of the attacker in the NoC. For

this experiment, it was considered that malware could infect any processor in the system.

Besides, different routing strategies were used to enable a better understanding around

the placement. Three scenarios were tested at the same MPSoC platform, each one with

a different routing algorithm (figure 4.6):

• Scenario 1: Deterministic XY

• Scenario 2: Alternated XY and YX (random)

• Scenario 3: Adaptive West-first

Four routers were chosen to perform the tests, router at IP1,IP4,IP6 and IP9.

77

Figure 4.6: Placement experiment scenarios. The dashed routers are the experiment tar-
gets. S is the source and D the destination of the sensitive traffic. Highlighted arrows
shows the allowed route at each scenario.

Two close to the source, and two close to the destination. The observation points were the

output ports shared with the sensitive traffic. The source and destination of the sensitive

traffic are identified by S and D respectively (figure 4.6). Experiment results are detailed

in table 4.2.

Table 4.2: Placement experiments results under three routing algorithms.
Scenario Attacker Observability Victim Port

XY

Router 1 100% East
Router 4 0% East
Router 6 100% North
Router 9 0% East

XYYX

Router 1 24.55% East
Router 4 75.45% North
Router 6 24.55% North
Router 9 75.45% East

WEST
FIRST

Router 1 57.73% East
Router 1 17.24% North
Router 4 16.68% East
Router 4 10.08% North
Router 6 74.39% North
Router 9 25.61% East

For the deterministic XY, the output ports attacked that intersected the sensitive

path were able detect all the packets. However, when XY and YX were used, the pro-

portion of the observation at each port was related to the amount of traffic for each route.

Since only two paths were possible, one observer was not enough to retrieve all sensitive

traffic. The best results were the attacks on the east port of the router 9 and the north port

of the router 4. However, such results are highly dependent on the routing arbitration. In

78

the last scenario, the West first algorithm has six route possibilities. Hence, the results of

observability are very low, since the messages became spread in the NoC through differ-

ent routes. However, the routers close to the destination were able to collect almost all the

data, because all routes converge in the end. Considering all the proposed scenarios, one

can conclude that there are more advantages in place the attackers near the destination.

The experiment can be extended to an analysis of the Distributed Timing Attack.

The detection rates of the analyses resulted in the following table for the West-first routing

algorithm 4.3. The west-first was chosen to this analysis because the single timing attack

was less efficient in a scenario with several possible routes.

Table 4.3: Distributed Timing Attack under west-first routing algorithm.
Attackers Detection
R1 N + R4 N 27,33%
R1 N + R4 E 33,93%
R1 E + R4 N 67,81%
R1 E + R4 E 74,41%
R1 E + R9 E 83,34%
R4 N + R6 N 84,47%
R6 N + R9 E 100,00%

Using two observers, only using the closest routers was possible to retrieve all the

sensitive traffic. Other possibilities could detect only 84%. In the case of three observers,

the attack would succeed without the requirement of the closest routers. However, the

execution of an attack with more than two observers becomes very challenging, due to

synchronization issues.

4.5.3 Size of the Packet

The detection of traffic collisions is a result of the sensitive and attacker traffics.

The attacker traffic, given by the packet size and injection rate, is under control. But the

sensitive traffic is not. Typically, the sensitive traffic uses big messages, because they are,

usually, memory requests. However, if the sensitive traffic varies its size, the detection

will be affected. This experiment evaluated the influence of different packet sizes in the

attacker observation. In this scenario, one flit is a 32-bit word. Table 4.4 presents the

results.

Big packets take more time to send a complete message, causing more traffic in-

terference. Hence, 64 and 128 flits allow an attacker to observes all the sensitive traffic.

79

Table 4.4: Relation between packet size and detection rate.
Pkt Size Packets Detected
128 flits 100,00%
64 flits 100,00%
32 flits 97,99%
16 flits 58,87%
8 flits 2,47%
4 flits 0,00%

Cache memories exchange information regarding the cache line size, which varies from 4

to 32 words usually (one word equals one flit). The communication with the main mem-

ory is performed in blocks of data, which ranges from 64 to 512 words often. Therefore,

the trend to increase the size of the memories inside MPSoCs will provide more and more

information to attacks. The size of the packets will not decrease because the performance

penalty is too high to justify.

4.6 Considerations

The present chapter is very relevant because it elucidates the NoC timing attack.

The experiments and analysis allowed one to define the threat model and attack method-

ology. Besides, the study proposes a significant step in the attack, the calibration. It is

a kind of characterization of the attackers, to understand the target traffic and maximizes

the attack. Using the calibration step make possible to perform an attack with multiple

infected IPs, defined as Distributed Timing Attack (DTA). Another valuable contribution

in this chapter are the evaluations of the influence of traffic interference, placement in the

network and size of the packet in the attack.

Since the behavior of the message from one shared IP tends to be the same for

any request, if different IPs access the victim IP, it could affect the efficiency of the at-

tack. However, to compromise the attack, the interference packets have to intersect the

observed path and communicate at a rate higher than the observation window. Even being

difficult, it is possible that all these conditions could be satisfied in current MPSoCs since

it depends on the application behavior. If the attack presents low efficiency, one can try a

different placement in the network to overcome this issue.

The placement study revealed that if the routing algorithm is deterministic, any

place that intersects the victim path works. But, if an adaptive routing or another different

strategy is performed (a non-deterministic behavior), more than one observer would be

necessary. In this case, the best placement is near the target destination, because all the

packets join in the end node.

The third analysis presented the relation between the observation capacity and

message size. The NoC timing attack identifies the sensitive packets when a collision is

sensed in the router. The sensitive message has to occupy the router at least the time to the

next malware transmission to sense such collision. If the sensitive packet is too little the

time in software to ask a new transmission became higher, and then, no contention hap-

pens. This metric has a relation between the data rate that the malware can inject packets

and the buffer size. If future software layers from MPSoCs handle the communication,

the increase of the delay between each transmission could make this attack unpractical.

This upcoming feature is possible but not expected, because it would decrease the benefits

of bandwidth and throughput provided by the NoC.

81

5 DEVELOPED ATTACKS

One of the objectives of this thesis is to investigate new forms to compromise

MPSoCs. ACAs described in the state-of-the-art show different approaches to attack

caches, one important shared resource. The NoC is also a shared component mentioned

as a potential source of leakage. However, there is no publication giving details on how

to attack the system through the NoC.

The leakage explored by the NoC timing attack can reveal relevant information of

the system. For example, the attacker can annotate the moments that occurs the victim

operations, being a timing channel. Another tactic is to observe the quantity or order of

the transactions and use it as an access channel. These two strategies were combined

with ideas from the literature to develop four attacks. They can be organized into three

categories:

• Timing-based:

• Hourglass Attack

• Access-based:

• Firecracker Attack

• Arrow Attack

• Collision-based:

• Earthquake Attack

5.1 Hourglass Attack

This attack was based on the attack of Bernstein, which uses two main steps:

statistical signature acquisition and correlation. The only difference is the leakage source.

Bernstein used the total encryption time of the application, while Hourglass uses the time

obtained through the NoC timing analysis. Using the NoC timing attack, it is possible

to track the access of the encryption to the shared cache, and then calculate the time to

perform the first round (the time of sixteen accesses). Hourglass can isolate the latency

related to the first round, being more dangerous than Bernstein. Even mismatches in the

NoC observation do not avoid the statistical strategy of Hourglass.

Hourglass threat model and methodology are extended versions of the NoC timing

82

attack (Chapter 5). The following subsections present them.

5.1.1 Threat Model

The following conditions are required to execute the Hourglass attack:

1. System Susceptibility

2. Attacker Reach

3. Sensitive Path Shared

4. Shared Cache Access

5. Plaintext Knowledge

The first three conditions are presented in Chapter 5 belonging to the NoC timing

attack threat model. The fourth item is the shared cache access, which is necessary to

develop the learning phase. The statistical models generated in the learning step must

be executed in the same environment as the victim to obtain an excellent efficiency in

the attack. Therefore, to reproduce the behavior of the victim, the attacker needs access

to the same shared cache. A different cache can be used if the configuration of both is

similar, like the cache line and the mapping strategy (direct or set-associative). The last

requirement from the threat model, plaintext knowledge, requires that the attack knows

the plaintext used in the encryptions. This information is important to perform the reverse

engineering to retrieve parts of the key. Usually, the attacker can generate the information

that will be encrypted.

5.1.2 Attack Methodology

The flowchart explaining the execution of the Hourglass is presented in figure 5.1.

The attack includes eight steps.

Infection: The purpose of the infection is to install the malicious application inside the

MPSoC. In this stage, one or multiple IP cores of the MPSoC are infected. Then, the

attacker gains access to the shared resources, such as the NoC and the shared cache.

83

Figure 5.1: Hourglass methodology flowchart.

Learning: The objective is to create a statistical model of the timing required to encrypt

any possible byte with a particularly known key for the first round. This model is called

signature. Hourglass performs the learning phase only for the first round of AES. Besides,

it is made inside the victim environment, configuring the online learning. The main issue

here is to perform the learning phase inside the target MPSoC, to achieve the correct

statistical models of the target system. It does not require to run inside the victim IP to

obtain a good model because the cache behavior will be the same independently of the IP.

Generate Plaintext: The objective of this step is to generate a random plaintext that the

attacker knows it. The infected IP is now able to request encryptions to the AES core.

Request Encryption: The attacker sends the generated plaintext to the AES core, re-

questing a new encryption. Depending on the system, this task is made directly or using

an API of the system.

84

NoC timing attack: The attacker performs the NoC timing attack to identify the accesses

in the cache by the AES algorithm. At this step, Hourglass only requires triggering when

the first round has finished, which happens after the 16th access.

Time Sampling: The sampling step for the Hourglass is only to annotate the time spend

for the first round, according to NoC timing attack trigger. A precise timer is required

for the best performance of this attack. Then, the attack backs to the generate plaintext

step, entering in a loop. The process repeats for a significant number of samples, required

to improve correlation results. The N iterator controls the repetition. The limit of the

iteration (limitN) is defined during the attack, observing the correlation results.

Correlation: All collected information, the encryption times and plaintext values, are

sent to an external computer that performs the correlation. In the same manner, like

Bernstein, equation 3.2 is used to calculate the correlation results. The high peaks results

are selected for the final step.

Exhaustive Key Search Finally, the best candidates are used for a final brute-force task

to verifies all possibilities and recover the secret key.

5.2 Firecracker Attack

Firecracker follows the concept presented by (OSVIK; SHAMIR; TROMER, 2006)

with the Prime+Probe attack. The objective is to use the NoC timing attack to trigger the

end of the first round and then probe the shared cache. This attack can be much more

efficient than the Prime+Probe since the early probe action avoids several accesses to the

cache to interferes in the attack. Since the NoC timing attack may lose some sensitive

traffic in the process, the attack analyzes the non-accessed sets of the cache. This feature

also guarantees the probe works even if the AES continue accessing the shared cache.

The threat model and methodology are presented in the following subsections.

5.2.1 Threat Model

The conditions to perform the Firecracker attack are:

85

1. System Susceptibility

2. Attacker Reach

3. Sensitive Path Shared

4. Shared Cache Access

5. Plaintext Knowledge

6. Shared Cache Knowledge

7. AES Tables Location Knowledge

The first three conditions are the same presented in the NoC timing attack chapter.

Then, the items four and five follows the same objective of the Hourglass attack. The

novel conditions, six and seven, are required to know the positions in the shared cache

that will be filled with the AES T tables. The relevant information regarding the cache is

the total size, the type of mapping (direct, associative or set-associative), and the size of

the cache line. Usually, this information is provided in the datasheet of the device.

Usually, the system will not provide the location of AES tables in the main mem-

ory. However, in literature, some works propose techniques to find such sites (IRAZO-

QUI; EISENBARTH; SUNAR, 2015) (GULLASCH; BANGERTER; KRENN, 2011).

5.2.2 Attack Methodology

The Firecracker attack comprises eight steps. The flowchart of figure 5.2 presents

the sequence of actions.

Infection: The Infection starts when the attacker stores a malware into the MPSoC.

Generate Plaintext: The attacker generates a known random plaintext to be encrypted by

the crypto-processor. This plaintext will be used in the analysis step to calculate the key

guesses.

Prime: The Prime consists in the preparation of the cache by the infected IP. The goal

is to guarantee that there are no AES lookup tables in the cache before the attack. By

spreading a random vector created by the attacker in the cache, the attacker overwrites all

cache locations aligned with the T tables.

86

Figure 5.2: Firecracker methodology flowchart.

Request Encryption: With the cache prepared, the attacker asks an encryption with the

known plaintext to the target cipher IP.

NoC Timing Attack: The infected processor start sending packets to the NoC and it

monitors its throughput to detect the AES accesses to the shared cache. After the sixteenth

access, the attacker starts the probe step.

Probe: The Probe aims to verify the accessed cache locations during the AES execution.

After the trigger from the NoC Timing Attack fewer, the infected IP core fetches some

parts of its random vector. It reads one data of each set, annotating if it was used or

not. Longer fetching times reveal cache misses, thus used memory locations. Then, the

plaintext and the information of the probing are sent to an external agent to compute the

analysis. Then, the attack returns to the prime step, repeating the process until all possible

bytes are excluded using the analysis step. The iteration uses N as iterator variable. The

limit LIMITN is given by the amount required to discover all the key. Initially, this limit

is guessed and then adjusted after the analysis process.

87

Analysis: The analysis in this attack can be a post-processing or run-time step. In the

flowchart, the post-processing flow is depicted. For each plaintext and cache usage in-

formation, the external host calculates the key possibilities. Firecracker is an attack that

aims to check the non-used sets of the shared cache. This strategy is the same presented

by Xinjie Zhao (XINJIE et al., 2008). The values generated after the first round follow

the expression x0i = pi ⊕ ki(i = 0, ..., 15). Therefore, by testing the data acquired in

the Probe step, it is possible to identify which sets have not been used by the crypto-

processor. Consequently, the indexes have not been used as well. By assuming that

x0i 6= pi ⊕ ki(i = 0, ..., 15) and knowing the plaintext byte pi, is possible to prove that

ki 6= pi ⊕ x0i (i = 0, ..., 15). Hence, possible key candidates can be removed. As much

samples the attack provides, more candidates can be unconsidered, being possible to re-

veal all the key.

5.3 Arrow Attack

This attack uses the same principle of the Firecracker. However, as its name sug-

gests, this attack aims to break AES very quickly with few encryptions. Arrow focuses on

the identification of the used indexes of the T tables with high precision. A high accuracy

environment is required to obtain success in this attack.

Arrow attack uses the NoC timing attack to identify all the accesses of a target T

table during the first round. At each four access, the same T table is reached. So, the

objective of this attack is to identify the access with precision and probe fast the cache.

The probe has to finish before the next access of the same T table, meaning a time of three

access.

5.3.1 Threat Model

The conditions to perform the Firecracker attack are:

1. System Susceptibility

2. Attacker Reach

3. Sensitive Path Shared

4. Shared Cache Access

88

5. Plaintext Knowledge

6. Shared Cache Knowledge

7. AES Tables Location Knowledge

As observed in the list above, the same conditions of Firecracker are applied for

Arrow.

5.3.2 Attack Methodology

Although the methodology of Firecracker can be employed for Arrow, few changes

inside the steps are necessary, besides an exhaustive search key step in the end. Figure 5.3

presents the sequence of actions for the Arrow Attack.

Only the modified and included steps are described below.

NoC Timing Attack: Arrow is an attack that aims to identify the used set of the shared

cache at each access by the cryptographic algorithm. The NoC timing attack needs to

identify all sensitive information transmitted without missing any traffic to work properly.

At each four access detected, the attack triggers the probe step.

Probe: In AES algorithm, the pre-computed tables are accessed sequentially (T0, T1, T2

and then T3), which gives the possibility to probe the cache sequentially by the attacker.

Then, to observes the next access, it awaits three accesses. As a consequence, this process

must repeat four times (four access of the same T table in the first round). The objective

of the probe step is to verify all possible sets for a given table (for example T0) and find

the set it was used. Depending on the number of sets, it may not be able to finish the probe

step before the next access to the same T table. In that case, the process of the attack has

to repeat, returning to the request encryption step. In this case, each new iteration will

manage a different part of the cache. Since the plaintext does not change, the accessed

index will remain the same. All the process is repeated N times. This iteration is defined

by the analysis step, which identifies some samples required to reveal the key.

Analysis: The analysis step follows the original concept of Osvik (OSVIK; SHAMIR;

TROMER, 2006), which relates the accessed set with the candidate byte of the key. We

perform the first round analysis, where only the accesses during the first AES round are

89

Figure 5.3: Arrow methodology flowchart.

used for the reverse calculation. Using the expression of x0i = pi ⊕ ki(i = 0, ..., 15),

knowing the plaintext and the index, it is possible to calculate the key. However, each set

accessed represents the group of addresses of the cache line. So, some elements in the

cache line will generate the number of possible subkey candidates. Then, the attack needs

to be performed with different plaintexts to eliminate these possibilities.

90

5.4 Earthquake Attack

This attack uses the differential collision strategy of Bogdanov (BOGDANOV et

al., 2010) to break AES cryptography. The difference of Earthquake attack is that the NoC

timing attack is used to trigger the gathering of the encryption time until the third round.

The third round is the main part of the technique because it is when the five expected

collisions happen in the presence of a wide-collision. The possibility to get the time of

the third round execution create new potentials for this collision-based attack, which are

discussed further in the experimental study chapter (Chapter 7). The threat model and

attack methodology are presented in the following subsections.

5.4.1 Threat Model

The following conditions have to be met to perform this attack successfully:

1. System Susceptibility

2. Attacker Reach

3. Sensitive Path Shared

4. Shared Cache Access

5. Plaintext Control

In this attack, the knowledge of the plaintext is not sufficient. The attacker has

to generate pairs of plaintext according to the rule described in Bogdanov’s work (BOG-

DANOV et al., 2010) (also presented in Chapter IV).

5.4.2 Attack Methodology

The methodology of Earthquake is composed of nine steps. Two loops in the flow

iterates according to adjustable parameters. These parameters control how far will be the

search for wide-collisions candidates. The flowchart in figure 5.4 shows the flowchart of

the attack.

Infection: The first part of the attack is to infect an IP in the system that meets the

conditions of the threat model.

91

Figure 5.4: Earthquake methodology flowchart.

Plaintext Pairs Generation: The malicious software generates pairs of plaintext accord-

ing to the rule described in section IV. These plaintexts encrypted in sequence can provoke

the wide-collision situation.

92

Pairwise Shuffle: This step changes the pairwisely equal elements of the plaintexts, to

create different possibilities during the encryptions. This step is important to perform a

deep search for a real wide-collision.

Prime: Before asking any encryption, the shared cache is filled with an attacker’s data.

The objective of that is to maximize the observation of cache hits and misses since all

data in the cache will be initialized in the same state, without any T table’s data.

Encryption of Plaintexts: The attacker sends the generated plaintexts to the AES core,

requesting one encryption after another. The following step affects only the second en-

cryption.

NoC timing attack: The attacker performs the NoC timing attack to identify the accesses

in the cache by the AES algorithm. At this step, Earthquake only requires triggering when

the third round has finished, which happens after the 48th access.

Time Sampling: Only the time of the second encryption is collected after the trigger of

the NoC timing attack. Only the results below a given threshold are saved to optimize this

step. Then, fewer data storage is required for this step. The collected data is organized as

the following array Collected[t, Ai, Ei]. The t is the encryption time, the Ai is the array

of the elements in the target diagonal from the first plaintext, and the Ei is the elements

from the second plaintext. After this step, the process is repeated I times, modifying

only the pairwisely equal values. Hence, it backs to Pairwise Shuffle step. Then, when

I reaches its limit, the flow backs to the Plaintext Pairs Generating step, iterated by the

variable N . This loop explores different diagonal combinations, to provide candidates

for the detection stage. When the loop of N is make, the process must repeat for all

diagonals, in the same manner as Bogdanov’s attack. Then, with all data ready, the attack

can advance to the next step.

Detection Stage: All the recorded data are then filtered with an even lower threshold.

The key factor here is to select the minimum amount of candidates because the key recov-

ery stage will explore all combinations in arranges of four against all subkey possibilities,

which brings a complexity of (4+m
4)

4∗232. However, few samples imply in fewer chances

to find the correct key. This trade-off is the most challenging issue regarding this attack.

Key Recovery Stage: The input of this stage is given by (4+m
4), which is the combination

in arranges of four of the detected candidates. Each combination is checked against all

232 subkeys. Using the equation 3.4, one searches over each subkey possibility which one

generates a collision after the first round of all the four candidates in a group. As a result,

each combination checked will output a subkey proposal. Then, all combinations of the

proposals have to in an exhaustive search key step. This stage was performed offline in a

program written in C.

5.5 Considerations

This chapter proposed four novel ACAs to break AES cryptography running on

MPSoCs. All techniques explore the performance-oriented AES communication with

a shared cache memory. Three approaches were explored, integrating the NoC timing

attack: i) timing-based; ii) access-based; and iii) collisions-based.

The timing-based attack, called Hourglass, performs almost the same methodol-

ogy from Bernstein, but it targets only the time to execute the first round. Hourglass is

not only an optimization because if we analyze the computational requirements of the

Bernstein, but the proposed attack is also more realistic to the target hardware platform.

MPSoCs will provide limited processing elements, and limited memory storage, then,

reduced operations will be crucial when implementing such attacks on mobile or IoT

devices.

Firecracker and Arrow attacks are optimizations from the Prime+Probe attack by

Osvik. They differ in the probe strategy, where Firecracker looks for remaining sets after

the first round, and Arrow looks for the used set for each T table access. Therefore,

Firecracker is more suitable for small shared caches. Small caches concentrate the tables

T0, T1, T2 or T3 in the same sets. So, it is not possible to differentiate by the set which

table was accessed. The Arrow attack focuses on bigger caches, where the T tables will

be placed in different sets, allowing the attacker to analyze each table separately.

The last attack, called Earthquake, aims to optimize Bogdanov attack by profiling

the wide collisions based on the first three rounds of AES. It is expected that Earthquake

collects better samples, reducing the computational cost of the key search stage severely.

94

6 PROPOSED PROTECTION

This chapter presents a protection mechanism against NoC timing attacks, the

Gossip NoC. The primary objective of the proposed countermeasure was to provide secu-

rity with a small area and power overheads.

6.1 Gossip Network-on-Chip

Gossip NoC is a security enhanced architecture to deal with single and distributed

timing attacks. It is composed by a traffic monitor and a counter-measure technique at

each router, being a distributed security mechanism. The name gossip is used because the

router monitors the traffic and generates alert messages to other routers when anomalies in

traffic are detected, creating a gossip message. The gossip message is a dedicated signal

included in the router port interface, where each cycle active represents a gossip message.

Besides, to avoid false-positives the router uses a reinforcement parameter, called gossip

confidence, to decide when to accept the gossip message. If an attack is detected, the

router changes the routing algorithm to the packets that wants to go through the path un-

der attack. Therefore, Gossip NoC combines two strategies to protect the MPSoC against

SCA: i) Detection, which includes the bandwidth monitoring and the gossip message

generation in the presence of abnormal behavior; and ii) protection, triggered when any

gossip message is received. As a security mechanism, the router can change the route of

the sensitive path, avoiding infected hops inside the NoC. Prior implementations explored

the algorithms XY and YX as the possibilities. However, to avoid deadlock, such solu-

tion required virtual channels as presented by (BORHANI; MOVAGHAR; COLE, 2010)

(TATAS; SAWA; KYRIACOU, 2014). Thus, such approach increased the area signifi-

cantly. Then, an optimized version used the adaptive routing algorithm west first, also

known as West First Routing Logic (WFRL). However, instead of changing the different

route choice according to traffic congestion, the WFRL from Gossip understand a de-

tected attack as a router blockage. Therefore, differently from the work of Sepúlveda,

where WFRL uses a router contention to manage the routing possibilities, Gossip NoC

monitors the traffic, and if the gossip messages detect an anomaly in some router, this

router is treated as a blocked path. This blockage remains until the traffic intensity de-

creases over the observation time of the monitors.

95

6.1.1 Architecture

The gossip router microarchitecture is shown in Fig. 6.1. It is based on a conven-

tional NoC router, which performs the switching of packets from an input to any output,

according to the routing algorithm. Traditional routers integrate four main components:

i) input buffers, which store the data at the input ports of the router; ii) routing algorithm,

which selects the output port to redirect the incoming data. The route field of the packet

header, used to define the output port based on West first routing algorithm; iii) arbitra-

tion logic, that grants the utilization of the crossbar switch to one of the input buffers; and

iv) crossbar switch, which links the inputs to outputs of the router. Additional to these

components, three main blocks are integrated to the gossip router:

• Gossip In Block (1): It controls the internal state of the gossip router according to

the values of the input signals (outputGossip). When the number of gossip mes-

sages received from neighbor routers overcomes the gossip confidence, an attack is

confirmed. As a result, the routing of the packets is modified.

• Gossip Logic (2): It commutes the state of the output port, defining as blocked.

• Gossip Generator (3): It monitors the traffic bandwidth. When it exceeds a pro-

tection bandwidth threshold, a signal indicating a possible attack is activated and

transmitted (inputGossip) to the Gossip In Block of all the neighbor routers. This

configures a gossip message.

6.1.2 Functionality

Five stages compose the traditional router communication: i) Buffer write and

route selection, to store incoming data and quantify the output port; ii) data allocation, to

reserve the input buffer at the neighboring router linked to the output port; iii) arbitration,

to schedule the transmission of the data; iv) crossbar switch, to commute the data by the

crossbar; and v) link traversal, which includes the time required to reach the next input

port.

Additionally, to this basic functionality, the Gossip router consists of two stages:

i) alert messages generation and; ii) security activation.

In the first stage, all routers monitor the usage of the input channels. This event is

concurrent to the buffer write and route selection stage of the router functionality. It looks

96

Figure 6.1: Gossip router microarchitecture: (1) Gossip In Block; (2) Gossip Logic; (3)
Gossip Generator.

for periods of intense traffic. All routers have the assumption that excessive traffic means

anomalies, and thus, possible attack. In that case, the router sends alert messages, called

in this architecture as gossip messages, to the neighbor routers. Fig. 6.2(a) presents this

behavior in the presence of a NoC timing attack (described in Section IV-C), where three

actors can be observed: S (source), D (destiny) and A (attacker).

In the second stage, the routers that receive the gossip messages evaluate the possi-

bility of activation of the security mechanism. A threshold, called gossip confidence, de-

fines how many messages are required to activate the security scheme, that is, the change

the routing algorithm. This behavior can be observed in Fig. 6.2(b), where the packets

from S deviate from the original path. As a result, the infected IP that was collecting

information in such a path is now unable to complete the attack. After the change in

the routing algorithm, the sensitive information uses another route. Finally, in the next

router, the security mechanism is not activated, which means that the packets return to

pass through the router. Fig. 6.2(c) presents this final behavior.

However, attackers may notice the change of routing algorithm. To overcome this

drawback, the MPSoC have to limit the number of processing elements that can execute

external tasks, and thus the possible attackers. As Gossip NoC changes the route during

run-time, the attacker needs to create, simultaneously, two zones of congestion (one for

each possible path). Thus, requiring several infected IPs to accomplish this goal.

97

Figure 6.2: Gossip NoC functionality: (a) Gossip Messages; (b) Routing changing; (c)
Back to normal behavior.

During the design phase, two parameters have to be adjusted, the throughput

threshold and the gossip confidence. The throughput value triggers a gossip message

to the neighbor routers. The gossip confidence defines the minimum number of gossip

messages required to activate the countermeasure mechanism (routing algorithm modifi-

cation).

6.2 Gossip NoC Evaluation

The Gossip NoC evaluation was accomplished through a simulation environment.

The experimentation scenario was a distributed timing attack, which had two injectors at

an injection rate of 30%, the observer at an injection rate of 15%, the crypto-processor at

10% and the other IPs in the system with random targets at 10% (communication noise).

The simulation performed 50,000 traces, whose efficiency in the non-protected NoC was

100% (all sensitive packets were observed). Then, it was simulated such scenario with

the Gossip NoC. The results are presented in Figure 6.3. There is a warm-up phase in the

firsts 3000 cycles, during the filling of the buffers. After the warm-up, the throughput falls

to 2.5 bps, being a similar behavior from DTA attack without protection. However, after

cycle 4000 the response of the throughput changes again, bringing the mean throughput

lower than the threshold, marked in Figure 6.3 as the first anomaly detection. Then, after

the cycle 15,000, a new behavior occurs, where the mean throughput increases above the

threshold, marked as the second anomaly detection. This anomaly indicates that Gossip

NoC identified high bandwidth usage in the traffic and changed two times the route of

98

neighbor packets (at cycle 4,000 and cycle 15,000), altering all communications behavior.

Figure 6.3: Trace throughput of the distributed timing attack under Gossip NoC. Gossip
confidence of 1.

The first changing in behavior (at cycle 4,000) created an increase of communi-

cation above expected from observers router. This difference happened because of the

gossip routers detected not only the attacker’s traffic as anomalies but the regular ones

too. So, routers near the observer were triggered with gossip messages and changed the

route. Then, because of this increase, at time 15,000, the observer route identified this

excessive traffic as another threat, creating new gossip messages, and reducing the con-

gestion (increasing the throughput) as a consequence.

In this experiment, what happened with the sensitive packets was that they were

rerouted at cycle 6000. This information can be confirmed with the results presented

in Table 6.1. It reinforces the fact that these packets changed their routes, not passing

in observer router because 91% of the sensitive data was not identified, achieving an

effectiveness of only 6.62%. The success rate of the attack decreased to 7% due to the

traffic noise inserted by the gossip router mistakes, that change the route of conventional

packets around, adding false data in observer measurements. So, except this 7

Table 6.1: Effectiveness (% of matches) of DTA using a threshold of 2.23 bps under
Gossip NoC.

Effectiveness Success Rate False Positives False Negatives
DTA 6.62% 6.56% 93.43% 93.37%

The reason that ordinary packets were considered a threat by the Gossip NoC is

that the gossip confidence parameter used was too low. It used the value one as the pa-

rameter. This value refers the quantity of gossip messages required to consider a threat.

99

So, even high used paths by regular packets could be considered anomalies by the system.

To avoid these false alarms, the gossip confidence has to be adjusted, increased. There-

fore, another experiment with Gossip NoC was developed, increasing this parameter, to

understand this reinforcement strategy potential.

The result of the experiment with the gossip confidence set to ten (ten gossip mes-

sages to believe that is a threat) is presented in the Figure 6.4. The throughput trace

depicted seems to be the same from a common DTA attack, but the results of effective-

ness in Table 6.2 demonstrates that the protection mechanism was useful. The throughput

trace did not show changing in behavior because the Gossip identified only the attacked

path, and rerouted the sensitive path successfully. However, increase the gossip confi-

dence from one to ten allows the attacker to double its effectiveness, from 6% to 13%.

This behavior happened because the Gossip NoC needed more time to reinforce the fact

that there was an attack, given more time to the attacker. Therefore, gossip confidence

presents a trade-off between the impact on the common behavior of the system and the

protection effectiveness.

Figure 6.4: Trace throughput of the DTA under Gossip NoC. Gossip confidence of 10.

Table 6.2: Effectiveness (% of matches) of DTA using a threshold of 2.23 bps under
Gossip NoC. Gossip confidence of 10.

Effectiveness Success Rate FP FN
DTA 13.55% 19.06% 80.93% 86.44%

In order to understand this trade-off, Figure 6.5 presents the results of DTA ef-

fectiveness when changing the gossip confidence parameter from 1 to 100. Simulations

executed changing this setting with a step of 1 from 1 until 20, and after that, the step

was 10. The last point represents the value where there is no protection because the DTA

100

achieves its general effectiveness of 59%. It can be observed that the increase of gossip

confidence decreases the protection linearly. However, as presented in the Figure 6.4, a

gossip confidence of 10 already has no much impact on communications behavior. There-

fore, it should never be a value near 1, because it creates many false-positive detections,

but neither a high one, because it decreases the protection level. The proper value has to

be a lower value, from 10 to 40, to maintain the attack effectiveness below 30%, which

means, to avoid that the attack acquires much data. It is important to emphasize that this

result is valid for the experimented congestion threshold (the amount of traffic consid-

ered anomaly). A different environment and scenario can affect the decision of the gossip

confidence.

Figure 6.5: Effectiveness of DTA for 50000 traces according different gossip confidence
configurations.

Table 6.3 presents synthesis results of a unprotected router and Gossip router un-

der 65 nanometer technology and 1 gigahertz as reference clock frequency. Results show

that each gossip router has 21% area and 16% power overhead when compared to the typ-

ical router. In spite of the high percentage, the interconnection network represents about

35% of the whole MPSoC system, being the Gossip NoC an increase of 7.3% in area and

5.6% in power regarding the whole chip design.

Table 6.3: Synthesis results for the Unprotected and Gossip routers for 65 nm ASIC
technology.

Unprotected NoC Gossip NoC % Overhead
Area (um2) 2632 3189 21.16%
Power (mW) 2.073 2.409 16.2%

6.3 Considerations

The present chapter has shown the Gossip NoC, an enhanced secure NoC. The pri-

mary objective of this proposal was to provide protection against NoC timing attacks with

a small area overhead. The strategy of generating alert messages can disturb the system

communication if any false-positive is identified as potential attacks. Then, the Gossip

Confidence policy complemented the architecture. It has allowed the avoidance of such

undesired situation. Experimented results on this metric had shown that this approach

was capable of avoiding false-positives. However, a high Gossip Confidence could let the

system vulnerable. Therefore, experiments concluded that setting this parameter to ten

(ten messages to accept as a potential attack) are a good default value, balancing costs

and effectiveness.

102

7 EXPERIMENTAL STUDY

This chapter presents the experiments to evaluate Architectural Channel Attacks

and the protection mechanisms in an MPSoC environment. As a result, two main objec-

tives of the thesis are obtained: i) the practical demonstration that MPSoCs are vulnerable

through the shared resources, such as cache and NoC; and ii) the analysis of the NoC as a

candidate to provide system security.

Experiments took into account attacks and countermeasures found in the state-of-

the-art and the ones proposed in this thesis. The evaluation of the attacks was performed

separately according to the attacking nature: i) timing-based; ii) access-based, and iii)

collision-based. Then, for each one, four protection techniques were analyzed: i) random

loops; ii) cache partition; iii) Gossip NoC; and iv) adaptive routing. Two countermeasures

for caches and two for NoCs comprises the tests on protection.

All experiments considered a moderate noise scenario, which means a weak activ-

ity in communication and cache access from not associated IPs. The objective to execute

the tests in such scenario was to observe the best results from each attack. In a high noise

situation, the NoC timing attack would decrease the quality of results. It could work on

the issues discussed in Chapter 5 do not compromise the technique.

A real MPSoC environment running in an FPGA were employed. The technology

was from Altera (Intel FPGA), the Cyclone IV FPGA. The reference hardware platform

was the MPSoC Glass (described in Chapter 2). MPSoC Glass organization is presented

again in this chapter in Fig. 7.1. During the tests, the system was connected to a host

computer through UART protocol (using USB adapter). The external interface did not

affect any experiment because only the data after processing was sent to the host. The

final section of this chapter presents synthesis results of the MPSoC Glass in the FPGA.

7.1 Experimental Setup

The setup of all experiments on the target hardware platform MPSoC Glass (Fig.

7.1) is detailed in the table 7.1. However, Arrow attack was an exception, and it required

a different setup, which is presented in table 7.2. The main difference from Arrow setup

was the cache configuration. The threat model from Arrow requires that no T table shares

the same set in the cache. As a result, the shared cache in Arrow experiment was bigger

than in other experiments.

103

Figure 7.1: Reference Architecture - MPSoC Glass. Four fast NIOS II core, ten economy
NIOS II core, one UART interface, and one shared cache memory.

Table 7.1: Setup of the experiments on the following attacks: Bernstein, Hourglass,
Prime+Probe, Firecracker, Bogdanov and Earthquake.

Description
Source of Sensitive Traffic Shared Cache - IP 0
Destination of Sensitive Traffic Crypto-Processor - IP 13
Infected IP Common Processor - IP 1

L1 Configuration
32kB Direct Mapped
Line Size of 4 Bytes

L2 Configuartion
64kB 16-way Set Associative
Line Size of 16 Bytes

NoC Configuration
4x4 Mesh 5-port router
XY Routing Algorithm
Flit Size of 4 Bytes

A direct-mapped cache was used as L1, to reduce the noise during tests. Different

cache configurations affect the noise of the experiments, but in the same manner for all

observed attacks.

7.2 Timing-based Attack Experiments

This section presents the measures of two timing-based attacks, the state-of-the-art

Bernstein attack, and the proposed Hourglass. Firstly, these attacks were evaluated in a

104

Table 7.2: Setup of the experiments on Arrow attack.
Description

Source of Sensitive Traffic Shared Cache - IP 0
Destination of Sensitive Traffic Crypto-Processor - IP 13
Infected IP Common Processor - IP 1

L1 Configuration
32kB Direct Mapped
Line Size of 4 Bytes

L2 Configuartion
256kB 16-way Set Associative
Line Size of 16 Bytes

NoC Configuration
4x4 Mesh 5-port router
XY Routing Algorithm
Flit Size of 4 Bytes

non-protected environment. Then, four scenarios with different countermeasure strategies

were analyzed under the attacks.

7.2.1 Bernstein Adaptation

Adaptations were necessary for Bernstein technique to attack an MPSoC. Origi-

nally, the Bernstein attack was developed to be operated remotely. However, in our pro-

posed MPSoC scenario, the attacker runs inside the target chip. Then, the attacker may

access the crypto-functions more directly. Another difference regards the communication

delay, which inside the MPSoC became irrelevant when compared to a cache miss latency.

Another issue refers to the learning step. This stage in Bernstein is made in another

machine, similar to the target one. However, in our scenario, the attacker can develop the

learning phase inside the target system, and sometimes use the same shared cache.

The third issue regards to the computational effort required for the attack. Ac-

cording to Bernstein, after sampling the time of encryption, some calculations must be

performed. One refers to the average, and another to the variance of the samples. All

collected data was pre-processed and stored in arrays to avoid an excessive computational

effort inside the infected IP. During an attack, from time to time, the malware transfers to

an external agent the data to be computed in a further process. The adapted C code of the

attack, showing the pre-processing and the array storage, is presented in the code 7.1.

1 generate_plaintext(plaintext);

2 time1=alt_timestamp();

3 send_plaintext(plaintext);

4 wait_ciphertext();

105

5 time2 = alt_timestamp();

6 delta = (time2 - time1);

7 time_enc[plaintext[i]] += delta;

8 var_enc[plaintext[i]] += (delta * delta);

9 time_enc_total += delta;

10 qty_enc[plaintext[i]]++;

11 qty_enc_total++;

Code 7.1 – Adapted C code of the Timing Attack.

Four arrays stores all needed information to build in the post-process the inputs for

the correlation step. The time_enc accumulates the encryption times that together with

qty_enc (counter) can calculate the averages for each byte case of the plaintext. Each byte

case of the plaintext is given by the variable i. The var_enc accumulates the square of the

encryption time aiming to calculate the variance in a further process. These calculations

occur in the learning step, and in during the attack execution. The only difference of this

code 7.1 from the Hourglass attack, is that instead await the end of the encryption (line

4), the NoC timing attack is performed.

Therefore, applying the attack inside the MPSoC required modifications of the

original approach of Bernstein. Some parts became simpler, such as the communication

between processors, but the generation of the statistical information had to be outsourced.

7.2.2 Attacks Evaluation

The learning phase used 10000 encryptions to create the signatures of each plain-

text byte. Fig. 7.2 presents the signature obtained for the first byte with a known key. The

signature is obtained calculating the variance of the mean time to encrypt the bytes with a

fixed known key. The average of the variance from all possibilities is used as a reference

to normalize the results, explaining why some results are negative.

After generating the signature for each possible byte, the attack was performed.

Several different experiments were executed, from 10,000 samples until 10,000,000 sam-

ples. Experimental work shows that less than 10,000 samples do not provide the statistic

properties required for the correlation.

The Hourglass was executed in the same manner as the Bernstein’s attack. The

main difference was that the timing collected in Hourglass referred only to the first round.

Since the timing behavior of the whole encryption and the first round is completely dif-

106

Figure 7.2: Learning phase - Byte 0 signature.

ferent, a new training phase for Hourglass was required. It was used 10,000 samples with

a known key to obtain the signature of all possible bytes of the plaintext. Then, the attack

was performed in the same range of samples used in Bernstein’s experiments. Results of

Bernstein and Hourglass are presented in Fig. 7.3, showing the number of bytes revealed

per encryptions.

Figure 7.3: Bernstein’s vs Hourglass attacks.

The Hourglass was able to discover more bytes faster than Bernstein. This better

efficiency is explained by the fact that annotating the time earlier fewer cache misses

(generated by the other AES rounds) disturb the analysis.

107

7.2.3 Countermeasures Evaluation

Four techniques were tested under Bernstein and Hourglass attack: i) random

loops; ii) cache partitioning; iii) Gossip NoC; and iv) Adaptive Routing. To compare

the results, a metric was proposed, defined as countermeasure efficiency. This efficiency

metric is given by the following equation 7.1:

1− reveiled_key_bytesprotected−system

reveiled_key_bytesunprotected−system

(7.1)

The experiments, each one with a different countermeasure, tested both attacks,

totalizing eight scenarios. The methodology followed the same one applied in the attacks

evaluations. Then, the results of the eight experiments were converted to the efficiency

value. Figure 7.4 shows the countermeasure efficiency of each case.

Figure 7.4: Countermeasures Evaluation under timing-based attacks. Two cache- and two
NoC- protections techniques were evaluated.

Results show that the random loops are very useful against Bernstein because it

alters the total timing behavior. The effect of the cache partitioning was not so efficient

as expected because inside the MPSoC environment; the shared cache interferences were

not so intense. A dedicated memory space for AES allowed executing the encryption

with an explicit timing behavior. Inside the MPSoC environment, the learning step was

performed with small communication noise, so the behavior of a cache partitioning does

not affect the attack.

The NoC protection mechanisms were not sufficient against Bernstein. The main

108

reason was that any possible delay inserted by them would not be in the same magnitude

of a cache miss latency. Then, they did not affect the total attack time. However, if a

NoC countermeasure explores the application time behavior instead communication time

behavior, it could avoid such kind of attack. For example, a NoC that tries to normalize

the time of response of some IPs, like inserting random delays for caches that respond to

hit behavior soon). Consequently, this strategy could avoid timing attacks like Bernstein,

but decreasing overall performance, like random loops.

On the other hand, the NoC countermeasures had high-efficiency results against

Hourglass. Since the NoC countermeasures deviate several packets from the path at-

tacked, the sampling information became very erroneous. It was presented in the last

section, that it was required 10,000 clean samples to achieve some result. Therefore,

to achieve the same result of the non-protected, about 1,000,000 samples were needed.

The difference of efficiency between Gossip NoC and adaptive routing is in the fact that

Gossip NoC re-routed all the packets after the anomaly identification, while the adaptive

routing only changed the route when congested.

The technique of random loops also created some difficulties for Hourglass. In this

case, the software included timing noise in the first round behavior. However, the amount

of delay inserted during the first round was not enough to avoid correlation efficiency.

The cache partitioning strategy did not work well with Hourglass for the same reason that

it did not work with Bernstein.

7.3 Access-based Attack Experiments

The attacks that explore the access in the cache by a cryptographic algorithm are

known as access-based attacks. Three attacks were evaluated, the Prime+Probe by Osvik

using the Xinjie’s optimization (XINJIE et al., 2008), and the two proposed in this thesis,

Firecracker, and Arrow. After the analysis of these attacks in the MPSoC, four protection

techniques were tested for each attack. Next subsections present the experimental setup

and the experiment details.

109

7.3.1 Attacks Evaluation

During tests, the three access-based attacks (Prime+Probe, Firecracker, and Ar-

row) generated 1000 random plaintexts. While Prime+Probe attack probed the cache after

each encryption, Firecracker and Arrow probed the cache according to a trigger generated

by the NoC timing attack.

The collected access behavior from probe step was stored in a variable of the

malware. The size of this variable was the number of sets in the cache used to store the T

tables. Based on the setup of these experiments, the size was 64, because each cache line

could save four words. So, a 64-bit variable was used (longint). After each execution and

probe had performed, the attacker sent the plaintext used and this variable to the external

attacker, a host computer. Another possibility would be to send all the data after the 1000

encryptions. However, it would require storing the data in an array of size 1000 instead.

The host of Prime+Probe and Firecracker computed the same algorithm to receive and

recover all possible bits of the key. It was implemented in Python, and the reception and

analysis of the first byte are presented in the code 7.2.

1 import math

2 import serial

3 print ("COLLECTING RESULTS")

4 ser = serial.Serial(’COM5’,115200)

5 ser.flushInput()

6 ser.flushOutput()

7 while (j < ATTACK_SAMPLES):

8 while ser.inWaiting() > 0:

9 data_raw = ser.read(1)

10 if (i < 16):

11 plaintext += (ord(data_raw) << (i*8))

12 else:

13 channel += (ord(data_raw) << ((i-16)*8))

14 print ("STARTING ANALYSIS")

15 # SEPARATING plaintext VALUES IN BYTES OF P

16 for x in range(0, 16):

17 P.append((plaintext >> (x*8)) & 0xFF)

18 # ANALYSIS OF THE FIRST BYTE OF THE KEY

19 for x in range(0, 64):

110

20 if (((channel >> x) & 1) == 0):

21 not_K = (x*4) ^ P[3]

22 if not_K in V_0:

23 V_0.remove(not_K)

24 not_K = ((x*4)+1) ^ P[3]

25 if not_K in V_0:

26 V_0.remove(not_K)

27 not_K = ((x*4)+2) ^ P[3]

28 if not_K in V_0:

29 V_0.remove(not_K)

30 not_K = ((x*4)+3) ^ P[3]

31 if not_K in V_0:

32 V_0.remove(not_K)

Code 7.2 – Data reception and first key byte analysis of Prime+Probe/Firecracker code in Python.

The first part of the code presents the acquisitions of the data, where the first bytes

refers to the plaintext used, and the last ones the information about the sets (64 bit variable

channel). Then, the analysis tested each access information, where the non-used sets

were converted in the key byte candidates (using the Xor operation). Then, the attacker

removed the result from the key possibilities vector (V _0).

Arrow attack presents a different methodology during probe and analysis step. For

each encryption, the probe of Arrow attack generated four variables instead one, each one

depicting the used sets for each access of a target T table. Then, these four variables were

sent to the host. The host analyzed the accessed sets for each operation in the first round,

revealing key byte candidates. After this, the attack was performed again with other target

T table. In total, this attack executed four times before doing the exhaustive key search.

Firecracker improved up to 60% the attack efficiency compared to Prime+Probe,

as shown in fig. 7.5. The NoC timing attack identified the 16th access, representing the

end of the first round of AES algorithm. Probing the cache earlier allowed the attacker to

analyze only the accesses from the first round instead all rounds as Prime+Probe. There-

fore, it was possible to recover the bytes of the key with fewer encryptions. Fig. 7.5

presents the discovering of the bytes among the encryptions requested for the attacks,

Osvik, Firecracker, and Arrow fast and slow.

The Arrow achieved the best result from all tested access-based attacks. In a sce-

nario where high precision NoC timing attack was possible, the attack could perform

accurate probes. For Arrow attack, it was evaluated two different scenarios. One sce-

111

Figure 7.5: Osvik (Prime+Probe), Firecracker, and Arrow attack results. Arrow was per-
formed in a fast and a slow scenario.

nario, defined as fast Arrow in fig. 7.5, the attack could probe all the 64 sets before the

next T table access. The second scenario, defined as slow Arrow, used sixteen cache hits

as the time to happen the next access from AES to the target T table. Hence, in the slow

scenario, the attack required to remake the encryption with the same plaintext four times

in the worst case (4 ∗ 16 = 64 sets). In fact, the worst case rarely happened, because

when any cache miss was identified, the attack finished the probe step. The average of

encryptions repeated was about three times. If the probe step takes more time, like four

times more, the technique becomes similar to Firecracker. There is a possibility to get

even worst if AES cryptography has some optimization and performs faster operations.

The Firecracker obtained good results as well, but required more encryptions than Arrow,

since it analyses all access of the first round. Besides, it is possible that some access of

the second round inserted some noise in the detection since high accurate NoC was not

a condition in this case. The traditional Prime+Probe attack could obtain success in the

attack, but with twice encryptions of Firecracker and four times of fast Arrow.

The final step did the exhaustive key search with the candidates. Since each cache

line could store four words (22 possibilities), the exhaustive key search step required

2(16∗2) operations for all access-based attacks.

112

7.3.2 Countermeasures Evaluation

The access-based attacks were tested under the same four protection mechanisms:

i) random loops; ii) cache partitioning; iii) Gossip NoC; iv) adaptive routing. The same

efficiency metric from timing-based countermeasure experiments was used. This param-

eter, called protection efficiency, uses the portion of revealed key bytes in the protected

system over the part in the unprotected system. Results of these experiments are presented

in figure 7.6.

Figure 7.6: Countermeasures Evaluation under access-based attacks. Two cache- and two
NoC- protections techniques were evaluated.

The first observation of the countermeasures is that random loops did not take any

effect in the access-based attacks. The reason is that a different timing behavior does not

affect the attack, that looks only for the access to the cache. On the other hand, the cache

partitioning was able to avoid all the attacks. Since cache partitioning prevents any other

process to access the same cache location, it was not possible to observe the accessed sets

by the malware process.

The NoC countermeasures did not take any effect against Prime+Probe since the

attack awaits the end of the encryptions to probe the shared cache. Hence, only the attacks

that use the NoC timing attack obtained difficulties with these countermeasures. Arrow

attack was not able to accomplish the attack since the high accuracy required for the attack

was lost. Any error in the NoC timing attack makes Arrow unpractical. Firecracker was

penalized by Gossip NoC and adaptive routing behaviors, with an efficiency of 40% and

30% respectively. Firecracker uses the NoC timing attack to probe the cache without other

113

rounds accesses. These countermeasures forced the NoC timing attack of Firecracker to

trigger the probe after several rounds. As a result, the analysis obtained more non-desired

accesses, but it did not make the attack unpractical.

7.4 Collision-based Attack Experiments

The last ACA type evaluated in this chapter is the collision-based. The attack from

Bogdanov (BOGDANOV et al., 2010) and the proposed Earthquake were analyzed, and

then, tested under four protection mechanisms. Before the evaluations, an analysis on an

important aspect of the differential collision cache attack is presented.

7.4.1 Analysis on the Differential Collision Cache Attack

The differential collision timing attack aims to explore a particular condition called

wide collision. This condition allows the attacker to exploit a difference of five cache hits

when at least one collision occurs in the second round for the target pair of plaintexts.

However, one issue can affect the practicability of the attack: the size of the cache line.

The size of the cache line affects the detection stage of the attack. A bigger line

can store more than one word increasing the probability of cache hits during the encryp-

tion. As a result, the objective of the attack is compromised, since more cache hits allow

false-positives candidates to present a lower latency, which is called in the experiments

as bad positive. Spreitzer and Plos show an equation that calculates the probability of the

presence of the following data in the cache (SPREITZER; PLOS, 2013). The same equa-

tion is presented in equation 7.2. It focuses on the accesses in the same T table, during all

nine rounds of AES (the tenth round uses a different T-table), each round accessing four

times. Then, if we consider the encryption of the first plaintext, it is possible to analyze

the probability to face cache misses at the beginning of the second plaintext encryption.

P (misses)←
(

1− words_per_line
256

)(accesses∗rounds)

(7.2)

Cache line sizes of four, eight, and sixteen words have the chance of new cache

misses of 56.7%, 31.88%, and 9.79% respectively. Therefore, depending on the target

hardware platform, this condition could avoid the feasibility of the attack. For example,

sixteen words line has only 10% of chance that data is not already in the cache. As a con-

114

sequence, the cache hits are higher in the second plaintext encryption, making unpractical

to distinguish the cache hits provoked by the wide collision. Even if the attacker accepts a

wide range of samples as candidates, the key search exploration would be unfeasible also,

because the attack searches over all possible candidate combinations. For the following

experiments, the four-word size was chosen to enable a precise analysis of the attacks.

However, this issue is important when applying these techniques.

7.4.2 Attacks Evaluation

The differential collision cache attack of Bogdanov and the proposed Earthquake

attack were evaluated in the target MPSoC Glass platform. Before performing any attack,

it was developed the algorithm to generate the plaintext pairs. The generation has to fol-

low the rule described by Bogdanov, also presented in chapter 3, that is the key to provok-

ing the wide-collision situation. This rule defines that both plaintexts must have different

values in the same position of the target diagonal, and equal values in the same posi-

tion outside the target diagonal. Below, it is presented a representation of both plaintexts

generated according to this rule, where the elements in gray represent different values.

P1 =


a0 x1 x2 x3

x4 a5 x6 x7

x8 x9 a10 x11

x12 x13 x14 a15

 P2 =


e0 x1 x2 x3

x4 e5 x6 x7

x8 x9 e10 x11

x12 x13 x14 e15


Then, a particular experiment tested the algorithm producing the pairs of plaintext.

The first case encrypted 10,000 random pairs of plaintext. The process asked two encryp-

tions in a row and annotated only the time to encrypt the second one. All timing responses

were saved, creating a histogram of the frequency of each execution time. Then, the same

was performed but using the plaintext pair generator algorithm. In the same manner, the

second case saved all timing information of the second one. A further process elaborated

its histogram. If the generator algorithm was correct, the average encryption time should

be lower, since this generation rule forces more cache collision than usual. The result of

this experiment is presented in the figure 7.7, where the expected behavior is confirmed.

Therefore, after confirming the correctness of the generator algorithm, both attacks

could be evaluated.

115

Figure 7.7: Histogram of the encryption times of pairs of plaintexts generated by a random
and Bogdanov’s rule strategy.

7.4.3 Bogdanov Evaluation

Before starting the attack, it was defined two parameters responsible for improving

the searching of wide-collisions. It was used n = 1000, which is the number of different

values in the target diagonal; and I = 800, which is the number of changes in the pair-

wise equal elements. It was chosen these values because, in Bogdanov’s work, these two

presented the best results (BOGDANOV et al., 2010).

The time to process the online stage in the MPSoC running on an FPGA was about

four hours. During the storage of the first samples, a relaxed threshold was applied. It

resulted in eighty-six samples (from 1000) to be analyzed by the detection stage. Figure

7.8 shows the online stage output. For analyses purposes, marks in the figure present

the status of each sample. The possibilities were true positive (TP), bad positive (BP),

and false positive (FP). The true positives were the wide collisions that led to the correct

subkey. The bad positives were the candidates that obtained cache hits due to the access

of the same cache line. The false positives are the candidates without wide collision, but

in some way got a low encryption time to be captured. The Bogdanov attack requires that

at least four true positives (TP) samples are obtained in the online phase. To accomplish

this condition, the minimum threshold accepted at detection stage was 510000.

After the detection stage, the attack resulted in thirty-four candidates to be ana-

lyzed, where five were true positives. Thirty-four candidates represents (4+34
4) → 46376

groups to be checked. The key recovery stage looks for each group a subkey candidate

that leads to a collision in some position, meaning a search of 46376 ∗ 232. The final

complexity of this experiment to find the key was 247.5. The code 7.3 presents the code

116

Figure 7.8: Detection candidates of the online stage output of Bogdanov attack.

with a summary of the key search stage.

1 final_num_pos = combinations(possiblex, possibley, possiblez

, possiblew, limit);

2 printf("%u CANDIDATES TO BE ANALYSED\n",final_num_pos)

3 i=0;

4 while (i <= 4294967295) //0x00000000 -> 0xFFFFFFFF

5 {

6 k0 = (i >> 24);

7 k5 = (i >> 16) & 255;

8 k10 = (i >> 8) & 255;

9 k15 = i & 255;

10

11 permut = final_num_pos;

12 while (permut > 0) {

13 a = Te0[(diag_pl1_a0[possiblex[permut]] ^ k0)] ^ Te1

[(diag_pl1_a1[possiblex[permut]] ^ k5)] ^ Te2[(

diag_pl1_a2[possiblex[permut]] ^ k10)] ^ Te3[(

diag_pl1_a3[possiblex[permut]] ^ k15)];

14 e = Te0[(diag_pl2_e0[possiblex[permut]] ^ k0)] ^ Te1

[(diag_pl2_e1[possiblex[permut]] ^ k5)] ^ Te2[(

diag_pl2_e2[possiblex[permut]] ^ k10)] ^ Te3[(

diag_pl2_e3[possiblex[permut]] ^ k15)];

15

16 a0 = (a >> 24);

117

17 a1 = (a >> 16) & 255;

18 a2 = (a >> 8) & 255;

19 a3 = a & 255;

20 e0 = (e >> 24);

21 e1 = (e >> 16) & 255;

22 e2 = (e >> 8) & 255;

23 e3 = e & 255;

24

25 if ((a0 == e0) || (a1 == e1) || (a2 == e2) || (a3

== e3))

26 {

27 #IDENTIFIED A COLLISION

28 #TEST OTHER SAMPLES -> Y,Z,W

29 }

30 }

Code 7.3 – Key search stage code in C.

At the beginning of the code, there is a call to the function combinations, respon-

sible for generating all possible combinations (46376 in this case). It organizes the indexes

of four arrays, representing the combinations in groups of four. Then, the code starts a

loop to check all possible subkey candidate, which represents 232 tests, for each possible

combination. At each iteration, the key candidates of the target diagonal are derived from

the iterator variable, in this example generating the k0, k5, k10 and k15 subkey candidates.

Then, the part of the first round related to the target diagonal is executed, also using the

T tables algorithm. If any collision is identified between both plaintext, it is tested the

other samples of the current combination. When four collisions are found (at least one

per sample in the group), the subkey is included in a list. After this step, all the process

repeats for the others three diagonals. The final step test all combinations between the

candidates in the final list, retrieving the whole key.

7.4.4 Earthquake Evaluation

In the same manner as Bogdanov experiments, Earthquake used n = 1000, and

I = 800. In the same manner as applied in Bogdanov experiment, a relaxed threshold

allowed to collect fewer samples. The execution of the attack resulted in eighty-six sam-

118

ples to be analyzed by the detection stage. Figure 7.9 shows the execution output, which

comprehends the steps:

• Plaintext Pair Generation

• Pairwise Elements Shuffle

• Prime the cache

• Ask encryptions

• NoC timing attack

• Timing sampling (filtered by threshold)

The resulted samples in figure 7.9 include the marks of true positive (TP), bad positive

(BP) and false positives(FP).

Figure 7.9: Detection candidates of the online stage output of Earthquake attack.

Earthquake used a threshold of 410,000 to accomplish the condition to collect at

least four true positives (TP). This metric resulted in twenty-six candidates to be analyzed,

where four were true positives. Twenty-six candidates represents (4+26
4)→ 14950 groups

to be checked. Hence, the attacker had to search 14950 ∗ 232 possibilities. The final

complexity of Earthquake was 2(45.86). The same algorithm for the key search stage,

presented in code 7.3, was used for the earthquake. Comparing to Bogdanov attack,

Earthquake was able to perform the attack four times faster, due to fewer samples after

detection stage.

119

7.4.5 Countermeasures Evaluation

Four countermeasures implemented in the target MPSoC were evaluated against

Bogdanov and Earthquake attack. The same metric from the previous countermeasures

experiments was used. Results showing the protection efficiency are presented in figure

7.10.

Figure 7.10: Countermeasures Evaluation under collision-based attacks. Two cache- and
two NoC- protections techniques were evaluated.

The random loops countermeasure increased the challenge to attack the MPSoC

for both attacks significantly. The main reason was that this attack expect few cache miss

latencies in the process, and the behavior of the loops inserted a high amount of it. Then,

the wide collision situations were masked most of the time. As a result, it was necessary

to relax all the thresholds and work with more samples. The other countermeasures did

not take any effect against Bogdanov attack.

The Earthquake was also immune against cache partitioning, but the NoC coun-

termeasures impaired it severely. This attack is very sensitive to changes in the latency

collected, then, any error in the NoC timing attack makes the attack to get the behavior of

different rounds.

Considering the detection stage, both Bogdanov and Earthquake only lost effi-

ciency in the attack, meaning more samples to be analyzed. However, the key search

stage from both attacks can regularly become unpractical in such condition.

120

7.5 Considerations

Three different attack strategies were evaluated and analyzed under a real MPSoC

scenario. Attacks from the state-of-the-art and the proposed in this thesis were compared

and also tested against four countermeasures.

One important consideration about the timing-based attacks experiments was that

the time to perform the attacks was considerable, taking several hours. In some cases

of Bernstein, it took days. Thus, the hardware required for the processing elements in

an MPSoC to execute such attack is much more complicated than the hardware required

for access-based attacks for example. Since a great portion of the timing measurements

and calculations have to be stored and manipulated inside the attacker IP, the processing

element needs to support at least 64 bits variables organized in several arrays. As a conse-

quence, it results in more constraints of the computational power and local memory sizes

to runs this type of ACA, even executing part of the computation externally (outside the

MPSoC platform). Therefore, if the target application demands a hardware with low area

and power, it results in limited performance and storage, and the feasibility of the attack

becomes questionable. However, evaluations had shown that Hourglass requires much

less computational effort and storage capacity, being more suitable for a wide range of

applications and devices, such as IoT.

The experiments on access-based attacks showed that the proposed techniques

were able to improve the Prime+Probe technique. Arrow was capable of discovering the

key with only ten encryptions. However, results show that the Arrow can be very fast only

if a series of conditions are met. For instance, high accuracy in the NoC timing attack,

and quick probing to the cache. This scenario is not unrealistic since the accuracy can be

achieved in some conditions as observed in chapter five. Besides, if the crypto-processor

manages different tasks, or implements a software protection that inserts timing noise, the

time between each access would be much higher. Firecracker used about fifty encryptions

but was still half the time executed by Prime+Probe. Analyzing the countermeasures, the

strategy to segment the cache in isolated partitions was able to kill all these attacks, since

the principal part of the attack, the probe step was not possible. The NoC countermeasures

only disturbed the Arrow attack, since it needed accurate measurements. The insertion of

random loops did not take any effect on the attacks.

The last part of the experiments evaluated the collision-based attacks. The attack

from Bogdanov and the proposed Earthquake were implemented in the target MPSoC.

Results show that they were able to discover the key, but also revealed a complicated issue

in the practicability of the attack. These attack tries to identify a variation of five cache hits

in the average execution time from pairs of plaintexts. During an AES encryption, several

cache hits between the elements can occur making difficult to detect the time from the five

cache hits situation (wide collision). Hence, a vast number of samples were elected to the

key search space. For Bogdanov attack, it was executed a search of a complexity of 247.5,

meaning a few days of attack execution. Earthquake was able to reduce such complexity

to 245.8, decreasing four times the complexity. Considering the computational effort and

the time to perform Bogdanov attack, Earthquake presented a more practical attack, also

being more suitable for a broad range of applications.

About the execution time of the attacks, table 7.3 presents the average computa-

tional time at FPGA (online computation) and at the host computer (offline computation).

Table 7.3: Approximate execution time of the attacks, during the execution of the attack
(online time), and after in the post-processing step (offline time).

Online Computation Time (FPGA) Offline Compuation Time (Host PC)
Bernstein 2 days 4 hours
Hourglass 1 day 4 hours
Osvik 10 minutes
Firecracker 5 minutes
Arrow 2 minutes
Bogdanov 3 hours 2 days
Earthquake 2 hours 1 day

Evaluating the proposed attacks, the integration of the works on caches and the

NoC timing attack provided more than an optimization for the classical cache ACAs; it

made possible the execution of such attacks in MPSoCs targeted for applications with

limited hardware.

122

8 CONCLUSION

Multi-Processors Systems-on-Chips became the established hardware platform for

a wide variety of applications and devices. High parallelism allied with energy efficiency

allowed MPSoCs to accomplish the requirements of the new era on computation, in the

first moment defined as Internet-of-Things, and further Internet-of-Everything. Conse-

quently, these solutions will integrate any devices that will be interconnected by the In-

ternet. This high integration through Internet brings several security concerns because

all sensitive information stored on these devices will be reachable by external agents.

Therefore, the present thesis investigated the presence of vulnerabilities in MPSoCs archi-

tectures and evaluated the Network-on-Chip as an essential element to providing system

protection.

Works on the state-of-the-art have shown different threats for the System-on-Chips

(SoCs), as well as countermeasures against them. However, few works were directed to

multi-processor systems. This lack of information motivated this author to review in

the bibliography the main attack and defense proposals for SoCs. The objective was to

identify the main vulnerabilities that would be present also inside the hardware concept

adopted for future devices - the MPSoCs. During this study, the present thesis proposed

a new sub-category for the Side-Channel Attacks (SCA). Any SCA attack that explores

architecture behavior should be classified as Architectural Channel Attack (ACA).

The first analysis concluded that the Architectural Channel Attacks have a high po-

tential to harm MPSoCs. The increase of complexity in such architectures opens behavior

leakages to be explored by attackers. The better efficiency of such attacks compared to

conventional SCAs for MPSoCs were justified by:

• ACAs do not demand high specialized instrumentation;

• ACAs has no need to access the target device directly;

• High parallelism running on MPSoCs adds a significant noise for the physical mea-

surements, such as power, EM, etc.;

• More structural complexity represent more potential leakage sources.

A deep study on the Architectural Channel Attacks revealed two components of

the MPSoC as the most vulnerable points - the shared cache and the interconnection (a

Network-on-Chip when a high number of elements are integrated). The reason regards

in the fact that these units are shared among all parts of the system, which enables an

123

attacker to access direct or indirect information of any part of the MPSoC. Besides, both

shared memory and NoC are critical, being part of any typical MPSoC architecture. Con-

sequently, the research took two directions: i) attacks and defenses for caches; ii) attacks

and defenses for NoC.

Cache attacks always were the primary threat, since it enabled remote attacks.

Kocher (KOCHER, 1996) and Kelsey et al. (KELSEY et al., 1998) introduced such cache

timing attack strategy opening a whole new approach to attack electronic devices. Then,

Bernstein (BERNSTEIN, 2005) developed the timing attack to break AES, whose tech-

nique was further optimized by Neve et al. (NEVE; SEIFERT; WANG, 2006). Dif-

ferent variations of cache timing attacks were proposed by Osvik (OSVIK; SHAMIR;

TROMER, 2006) with the access-based attacks; and Bonneau and Mironov (BONNEAU;

MIRONOV, 2006) with the collision attacks. These attacks were adapted and imple-

mented in different environments since embedded and mobile devices to cloud servers

and virtual machines. The present thesis also changed three techniques to realize in an

MPSoC environment: i) a timing attack; ii) an access attack, and iii) a collision attack.

About the countermeasures against cache attacks, the state-of-the-art presents sev-

eral strategies by software and hardware. In software, there are works that change the

cryptography algorithm (REBEIRO; MONDAL; MUKHOPADHYAY, 2010) (ALAWATU-

GODA; JAYASINGHE; RAGEL, 2011) (BLOMER; KRUMMEL, 2007) and works that

modifies the compiler (STEFAN et al., 2013). A high-level software solution also is pre-

sented by Crane et al. (CRANE et al., 2015) through dynamic software diversification.

About hardware approaches, Alawatugoda et al. (ALAWATUGODA; JAYASINGHE;

RAGEL, 2011) show the efficiency of cache partitioning. All these techniques could

be applied to the MPSoC environment, but the research focused on the hardware solution

only.

The bibliography in ACAs comprises several cache attacks in many scenarios and

applications, but only few information without details about the NoC attacks. The au-

thors that refers to the NoC timing attack are (YAO; SUH, 2012) (WASSEL et al., 2014)

(SEPULVEDA et al., 2016) (SEPULVEDA et al., 2015) and (STEFAN; GOOSSENS,

2011). No information regarding the threat model, practicability or demonstrations had

been presented by these authors. This work did a detailed study around this theme includ-

ing some experiments, which are described in chapter four - Exploring the NoC Timing

Attack. As a consequence, for the first time, the NoC timing attack had its threat model,

and practicability analyzed and evaluated. Therefore, the present thesis contributed to

124

enabling the replication and development of this technique through the publication in

(REINBRECHT et al., 2016a).

Moreover, the NoC already has been demonstrated as a promising alternative to

enhance system security. The same authors that mentioned the NoC timing attack used

the NoC to provide some protection against NoC timing attacks. One of the primary

objectives of this thesis was to evaluate the NoC as a potential component to ensure the

security of MPSoCs. Hence, it was developed a secure NoC, the Gossip NoC. Gossip NoC

aimed to provide protection with minimal area overhead. The proposed countermeasure

was capable of avoiding several attacks, but only the ones based on NoC timing attack.

A complete security solution in NoC requires more research to design a mechanism that

mitigates different types of attacks with minimal area and power overhead or performance

degradation.

From attacks for caches - Bernstein timing-based attack, Osvik access-based at-

tack, and Bogdanov collision-based attack - this research developed four new techniques

focusing on MPSoCs. All the techniques were a combination of cache attacks with the

NoC timing attack. They are the timing-based Hourglass, the access-based Firecracker,

the access-based Arrow, and the collision-based Earthquake. All the attacks were de-

signed as an optimization of the reference cache attacks. During the experimental analy-

sis, it was observed that the inclusion of the NoC timing attack was crucial to enable these

attacks in an MPSoC implemented for IoT or IoE applications.

During experiments, described in chapter seven, the thesis was able to demonstrate

that MPSoCs can be attacked in different ways through the NoC or the shared cache. Se-

cret keys were discovered during experiments using AES cryptography on a real MPSoC

environment running in an FPGA. Three standard attacks (Bernstein, Osvik, and Bog-

danov) and the four proposed ones (Hourglass, Firecracker, Arrow, and Earthquake) were

evaluated under the protection of four different security mechanisms: i) random loops;

ii) cache partition; iii) Gossip NoC; and iv) adaptive routing. Two countermeasures for

caches and two for NoCs comprises the tests on protection. Analyzing all results, it was

possible to conclude the following points:

• Bernstein timing-based attack requires a considerable time and computational ef-

fort, taking hours or even days to execute. The attack demands a hardware capable

of handling 64 bits variables, multiplications, and an enormous amount of storage.

Therefore, if the target application requires a hardware with limited area and power,

the feasibility of the attack became questionable. On the other hand, Hourglass

125

timing-based attack requires much less computational effort and storage capacity,

being a practical technique for an extensive range of applications and devices, even

IoT and IoE that present resource limitations. Therefore, Hourglass is not only an

optimization but a method that make possible to attack future hardware systems.

• Arrow access-based attack was capable of discovering the key with only ten en-

cryptions. However, results show that the Arrow can be very fast only if there is

a high accuracy in the NoC timing attack and a high-speed probing to the cache.

Such scenario can be realistic if the moments of external interferences in the NoC

are higher than the attack accesses. If the IP responsible for the cryptography im-

plements a software countermeasure that inserts random delays in the computation,

this ideal scenario for Arrow attack can be easily met.

• Firecracker access-based attack used about fifty encryptions to break AES. The

result was five times higher than Arrow, but it was still half the time required by

the Osvik attack (Prime+Probe). The benefits of Firecracker regards the flexibility

in the attacked scenario. This attack works even if the NoC timing attack is not

accurate, and also if the probe of the cache can not be performed in a fast manner.

• All access-based attacks faced difficulties with the cache partitioning countermea-

sure. This protection uses the strategy to segment the cache in isolated partitions,

which avoids the probe step of these attacks.

• The differential collision attacks (Bogdanov and Earthquake) are capable of reveal-

ing the secret key of AES. However, both had demonstrated a significant issue that

must be addressed before any execution. These attacks try to identify a variation

in the timing, caused by five cache hits during AES execution. During an AES en-

cryption, several cache hits between the elements can occur, which makes hard to

detect the time from this five cache hits situation (also known as wide collision).

Hence, a high number of samples must be selected for the key search space. During

experiments, the Bogdanov attack executed a search complexity of 247.5, meaning a

few days of attack execution. The Earthquake was able to reduce such complexity

to 245.8, decreasing four times the performance effort. Given the restrictions in the

hardware platforms for IoT or IoE, the Earthquake became more suitable as a more

realistic threat.

Finally, the work described in the thesis showed the presence of vulnerabilities in a

typical MPSoC architecture and the importance of the NoC as an agent to protect the sys-

126

tem. Consequently, the investigation of new leakage sources, as well as the development

of the NoC as the absolute protection element, must be addressed by future research.

127

9 CONTRIBUTIONS OF THE THESIS

As a result of this research project, several actions and developments were achieved

becoming the main contributions of the thesis. Moreover, each accomplishment of the re-

search was published as papers for conferences or journals.

The first contribution regards to the classification of the Side-Channel Attacks that

explores architectural leakage as a new sub-category, the Architectural Channel Attacks.

This new definition is necessary for the field because the review of the bibliography has

revealed that this kind of attack will increase for the next hardware generation. The hard-

ware platforms became more complicated, contributing to the creation of more vulner-

abilities in architectures. Moreover, attacks based on physical features became difficult

to analyze. Then, the developed attacks for MPSoCs, which merge NoC timing attack

with cache attacks, are another contribution. During the experiments, it was possible

to conclude that these attack proposals allows attacking an extensive range of devices,

including limited platforms found in IoT or IoE segment. Another contribution is the

countermeasure against NoC timing attack implemented in the NoC, called Gossip NoC.

The practical experimentation of attacks running in a real MPSoC was for the first time

executed being another valuable contribution. As a summary, the main contributions are

listed below:

1. Definition of the Architectural Channel Attacks, as a sub-category of Side-Channel

Attacks;

2. Development of a timing-based attack for NoC-based MPSoCs, the Hourglass;

3. Development of an access-based attack for NoC-based MPSoCs, the Arrow;

4. Development of an access-based attack for NoC-based MPSoCs, the Firecracker;

5. Development of a collision-based attack for NoC-based MPSoCs, the Earthquake;

6. Development of a secure-enhanced NoC Gossip NoC, that protects the system

against NoC timing attacks;

7. The first execution of a practical attack inside an MPSoC running in an FPGA

breaking an AES cryptography.

Besides, the thesis has published one journal and three conference papers related

to the thesis:

• MICPRO Journal: Timing Attack on NoC-based Systems: Prime+Probe Attack and

NoC-based Protection (REINBRECHT et al., 2017).

128

• SBCCI 2016 Conference: Side Channel Attack on NoC-based MPSoCs are practi-

cal: NoC Prime+Probe Attack (REINBRECHT et al., 2016b).

• ISVLSI 2016 Conference: Gossip NoC - Avoiding Timing Side-Channel Attacks

through Traffic Management (REINBRECHT et al., 2016a).

• Cryptarchi 2016 Workshop: Side Channel Attacks on Networks on Chip (REIN-

BRECHT; BOSSUET; SEPULVEDA, 2016).

There is another publications result of research co-operations:

• ICECS 2016 Conference: DHyANA: A NoC-based neural network hardware archi-

tecture (HOLANDA et al., 2016).

• SBCCI 2015 Conference: PHiCIT-Improving hierarchical Networks-on-Chip through

3D silicon photonics integration (REINBRECHT; SEPúLVEDA; SUSIN, 2015).

• ISCAS 2014 Conference: Adaptive multiple switching strategy toward an ideal

NoC (MATOS et al., 2014).

10 FUTURE WORKS AND RESEARCH OPPORTUNITIES

During the experimental phase of the thesis, the workflow was very inefficient.

The software of each core of the MPSoC had to be developed in a different project of

the development tool. Besides, the boot of each binary in the cores running on the FPGA

could not be performed by the FPGA tools, since they supported only the boot of one

processor. Then, the solution was to convert each binary in a memory initialization file

and synthesize hardware project with initialized memories. However, any changes in the

software required a new synthesis process. Consequently, the debug process was very

costly in time. The development of a framework started at the end of the thesis, where the

hardware system was integrated with an IDE (integrated development environment). The

IDE and hardware modifications were already developed but still needs final adjustments

to be stable and useful for any applications. This IDE allows one to develop the programs

in the same project, and compile and download the software of each core during run-

time. Therefore, this framework will enable different research projects to take benefit of

a flexible MPSoC platform running in an FPGA. Examples of fields that can use such

platform are video/image processing, security, machine learning, parallel applications,

etc. The Figure 11.2 shows the developed IDE, called MPSoC Glass. Further information

can be found in Appendix A.

Regarding the field of security in MPSoCs, there is a need for continuously re-

search novel vulnerabilities and countermeasures. The shared cache memory and the NoC

still have potential leakage sources that depend on the hardware platform and application

segment of the device. A combination of physical and logical attacks can be explored to

enable traditional Side Channel Attacks in a high complex scenario of an MPSoC. Such

strategy could compromise even very secure systems. In the aspects of countermeasures,

the Gossip NoC has shown that a component of security has to provide multiple protection

strategies at the same time to guarantee a minimum level of reliability. Future works must

propose new NoC architectures capable of integrating different structures to enhance se-

curity being transparent to the applications running o the platform, and without degrading

the system performance.

REFERENCES

ADEE, S. The hunt for the kill switch. IEEE Spectrum, Piscataway, NJ, USA, v. 45,
n. 5, p. 34–39, May 2008.

ALAWATUGODA, J.; JAYASINGHE, D.; RAGEL, R. Countermeasures against
bernstein’s remote cache timing attack. In: 2011 6th International Conference on
Industrial and Information Systems. Kandy, Sri Lanka: IEEE, 2011. p. 43–48.

ALTERA, I. F. Nios II Classic Processor Reference Guide. Available at:
<https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf>. Accessed
at 2017-10-07.

ALY, H.; ELGAYYAR, M. Attacking aes using bernstein’s attack on modern processors.
In: Progress in Cryptology – AFRICACRYPT 2013. Cairo, Egypt: Springer Berlin
Heidelberg, 2013. p. 127–139.

ANDRYSCO, M. et al. On subnormal floating point and abnormal timing. In:
Proceedings of the 2015 IEEE Symposium on Security and Privacy. Washington,
DC, USA: IEEE Computer Society, 2015. (SP ’15), p. 623–639.

APECECHEA, G. I. et al. Fine grain Cross-VM Attacks on Xen and VMware are
possible! Available at: <http://eprint.iacr.org/>. Accessed at 2017-10-07.

ARM. White Paper - big.LITTLE Technology: The future of mobile. Available at:
<https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf>.
Accessed at 2017-10-07.

BAYON, P. et al. Contactless electromagnetic active attack on ring oscillator based
true random number generator. In: Constructive Side-Channel Analysis and Secure
Design: Third International Workshop, COSADE 2012, Proceedings. Darmstadt,
Germany: Springer, 2012. (Lecture Notes in Computer Science, v. 7275), p. 151–166.

BENGER, N. et al. Ooh aah... just a little bit: A small amount of side channel
can go a long way. In: Proceedings of the 16th International Workshop on
Cryptographic Hardware and Embedded Systems - CHES 2014. New York, NY,
USA: Springer-Verlag New York, Inc., 2014. p. 75–92.

BERNSTEIN, D. J. Cache Timing Attacks on AES. 2005. Available at: <https:
//cr.yp.to/antiforgery/cachetiming-20050414.pdf>. Accessed at 2016-12-31.

BLOMER, J.; KRUMMEL, V. Analysis of countermeasures against access driven cache
attacks on aes. In: Selected Areas in Cryptography: 14th International Workshop,
SAC 2007, Revised Selected Papers. Ottawa, Canada: Springer Berlin Heidelberg,
2007. p. 96–109.

BOGDANOV, A. et al. Differential cache-collision timing attacks on aes with
applications to embedded cpus. In: Topics in Cryptology - CT-RSA 2010: The
Cryptographers’ Track at the RSA Conference 2010. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010. p. 235–251.

https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
http://eprint.iacr.org/
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

BONNEAU, J.; MIRONOV, I. Cache-collision timing attacks against aes. In:
Cryptographic Hardware and Embedded Systems - CHES 2006. Yokohama, Japan:
Springer Berlin Heidelberg, 2006. p. 201–215.

BORHANI, A.; MOVAGHAR, A.; COLE, R. A new deterministic fault tolerant
wormhole routing strategy for k-ary 2-cubes. In: Computational Intelligence and
Computing Research (ICCIC), 2010 IEEE International Conference on. Coimbatore,
India: IEEE, 2010. p. 1–7.

BOSSUET, L.; TORRES, L. Foundations of Hardware IP Protection. [S.l.]: Springer
International Publishing, 2017. VII, 240 p.

BRICKELL, E. et al. Software mitigations to hedge AES against cache-based software
side channel vulnerabilities. 2006. Available at: <https://eprint.iacr.org/2006/052.pdf>.
Accessed at 2016-12-31.

CHANDHOK, R. The internet of everything. In: 2014 IEEE Hot Chips 26 Symposium
(HCS). Cupertino, CA, USA: [s.n.], 2014. p. 1–29.

CHEN, P. et al. Multiprocessor system-on-chip profiling architecture: Design and
implementation. In: 15th International Conference on Parallel and Distributed
Systems (ICPADS). Shenzhen, China: [s.n.], 2009. p. 519–526.

CRANE, S. et al. Thwarting cache side-channel attacks through dynamic software
diversity. In: Annual Network and Distributed System Security Symposium, NDSS.
San Diego, California, USA: [s.n.], 2015. v. 15, p. 8–11.

DAEMEN, J.; RIJMEN, V. The Design of Rijndael. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2002.

FIORIN, L.; PALERMO, G.; SILVANO, C. A security monitoring service for
nocs. In: Proceedings of the 6th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. New York, NY, USA: ACM,
2008. (CODES+ISSS 08), p. 197–202.

GANDOLFI, K.; MOURTEL, C.; OLIVIER, F. Electromagnetic analysis: Concrete
results. In: Cryptographic Hardware and Embedded Systems - CHES 2001. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001. p. 251–261.

GEBOTYS, C. H.; GEBOTYS, R. J. Secure elliptic curve implementations: An analysis
of resistance to power-attacks in a dsp processor. In: Revised Papers from the 4th
International Workshop on Cryptographic Hardware and Embedded Systems.
London, UK, UK: Springer-Verlag, 2003. (CHES 02), p. 114–128.

GIRAO, G.; BARCELOS, D.; WAGNER, F. Performance and energy evaluation
of memory hierarchies in noc-based mpsocs under latency. In: 2009 17th IFIP
International Conference on Very Large Scale Integration (VLSI-SoC).
Florianopolis, Brazil, Brazil: [s.n.], 2009. p. 127–132.

GOOSSENS, K.; DIELISSEN, J.; RADULESCU, A. Aethereal network on chip:
concepts, architectures, and implementations. IEEE Design Test of Computers, v. 22,
n. 5, p. 414–421, Sept 2005.

https://eprint.iacr.org/2006/052.pdf

GUIN, U.; DIMASE, D.; TEHRANIPOOR, M. Counterfeit integrated circuits:
Detection, avoidance, and the challenges ahead. J. Electron. Test., Kluwer Academic
Publishers, Norwell, MA, USA, v. 30, n. 1, p. 9–23, feb 2014.

GULLASCH, D.; BANGERTER, E.; KRENN, S. Cache games - bringing access-based
cache attacks on aes to practice. In: 2011 IEEE Symposium on Security and Privacy
(SP). Washington, DC, USA: IEEE Computer Society, 2011. p. 490–505.

HOLANDA, P. et al. Dhyana: A noc-based neural network hardware architecture. In:
2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS).
Cairo, Egypt: [s.n.], 2016. p. 177–180.

HUTTER, M.; SCHMIDT, J.-M. The temperature side channel and heating fault
attacks. In: Smart Card Research and Advanced Applications: 12th International
Conference, CARDIS 2013. Revised Selected Papers. Berlin, Germany: Springer
International Publishing, 2014. p. 219–235.

ICC, I. C. of C. The Economic Impacts of Counterfeiting and Piracy - 2017
Frotier Report. Available at: <http://www.inta.org/Communications/Documents/2017_
Frontier_Report.pdf>. Accessed at 2017-10-07.

IRAZOQUI, G.; EISENBARTH, T.; SUNAR, B. S$a: A shared cache attack that
works across cores and defies vm sandboxing – and its application to aes. In: 2015
IEEE Symposium on Security and Privacy (SP). San Jose, CA, USA: [s.n.], 2015. p.
591–604.

IRAZOQUI, G. et al. Wait a minute! a fast, cross-vm attack on aes. In: Research in
Attacks, Intrusions and Defenses: 17th International Symposium, RAID 2014. [S.l.:
s.n.].

IRAZOQUI, G. et al. Fine grain cross-vm attacks on xen and vmware are possible!
IACR Cryptology ePrint Archive, p. 248, 2014. Accessed at 2017-10-07.

ISO/IEC. Information technology – Security techniques – Authenticated encryption.
29 p. Available at: <http://www.iso.org/iso/catalogue_detail.htm?csnumber=46345>.
Accessed at 2017-10-07.

ITRS, I. T. R. for S. 2015 ITRS 2.0 OFFICIAL PUBLICATION. 2016. Available at:
<https://www.dropbox.com/sh/3jfh5fq634b5yqu/AADYT8V2Nj5bX6C5q764kUg4a?
dl=0>. Accessed at 2017-10-07.

JAYASINGHE, D. et al. Remote cache timing attack on advanced encryption standard
and countermeasures. In: Information and Automation for Sustainability (ICIAFs),
2010 5th International Conference on. [S.l.: s.n.], 2010. p. 177–182.

JERRAYA, A.; WOLF, W. Multiprocessor Systems-on-Chips. [S.l.]: Morgan
Kaufmann, 2004. 608 p.

KARRI, R. et al. Concurrent error detection of fault-based side-channel cryptanalysis
of 128-bit symmetric block ciphers. In: Design Automation Conference, 2001.
Proceedings. Las Vegas, NV, USA, USA: IEEE, 2001. p. 579–584.

http://www.inta.org/Communications/Documents/2017_Frontier_Report.pdf
http://www.inta.org/Communications/Documents/2017_Frontier_Report.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=46345
https://www.dropbox.com/sh/3jfh5fq634b5yqu/AADYT8V2Nj5bX6C5q764kUg4a?dl=0
https://www.dropbox.com/sh/3jfh5fq634b5yqu/AADYT8V2Nj5bX6C5q764kUg4a?dl=0

KELSEY, J. et al. Side channel cryptanalysis of product ciphers. In: Computer Security
— ESORICS 98: 5th European Symposium on Research in Computer Security.
Louvain-la-Neuve, Belgium: Springer Berlin Heidelberg, 1998. p. 97–110.

KOCHER, P. C. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In: Proceedings of the 16th Annual International Cryptology Conference
on Advances in Cryptology. London, UK, UK: Springer-Verlag, 1996. (CRYPTO 96),
p. 104–113.

KOCHER, P. C.; JAFFE, J.; JUN, B. Differential power analysis. In: Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology.
London, UK, UK: Springer-Verlag, 1999. (CRYPTO ’99), p. 388–397.

KOMAR, M.; EDELEV, S.; KOUCHERYAVY, Y. Handheld wireless authentication key
and secure documents storage for the internet of everything. In: 2016 18th Conference of
Open Innovations Association and Seminar on Information Security and Protection
of Information Technology (FRUCT-ISPIT). St. Petersburg, Russia: IEEE, 2016. p.
120–130.

LIBGCRYPT, G. The libgcrypt reference manual. Available at: <http://www.gnupg.
org/documentation/manuals/gcrypt/>. Accessed at 2017-10-07.

LIU, F. et al. Last-level cache side-channel attacks are practical. In: Security and
Privacy (SP), 2015 IEEE Symposium on. San Jose, CA, USA: IEEE, 2015. p. 605–622.

MAIMUT, D.; REYHANITABAR, R. Authenticated encryption: Toward next-generation
algorithms. IEEE Security Privacy, v. 12, n. 2, p. 70–72, Mar 2014.

MANCILLAS, C. et al. Extending multicore architectures with cryptoptocessors and
parallel cryptography. In: Colloque national du GDR SOC-SIP. Paris, France: [s.n.],
2014.

MASOOMI, M.; MASOUMI, M.; AHMADIAN, M. A practical differential power
analysis attack against an fpga implementation of aes cryptosystem. In: Information
Society (i-Society), 2010 International Conference on. London, UK, UK: IEEE, 2010.
p. 308–312.

MATOS, D. et al. Adaptive multiple switching strategy toward an ideal noc. In: 2014
IEEE International Symposium on Circuits and Systems (ISCAS). Melbourne VIC,
Australia: IEEE, 2014. p. 1014–1017.

MEYR, H. On core and more: a design perspective for system-on-chip. In: IEEE
Workshop on Signal Processing Systems. SIPS 97 - Design and Implementation.
Leicester, UK, UK: IEEE, 1997. p. 60–63.

MORADI, A.; MISCHKE, O.; PAAR, C. One attack to rule them all: Collision timing
attack versus 42 aes asic cores. IEEE Transactions on Computers, v. 62, n. 9, p.
1786–1798, Sept 2013.

NEVE, M.; SEIFERT, J.-P.; WANG, Z. A refined look at bernsteinś aes side-channel
analysis. In: Proceedings of the 2006 ACM Symposium on Information, Computer
and Communications Security. New York, NY, USA: ACM, 2006. p. 369–369.

http://www.gnupg.org/documentation/manuals/gcrypt/
http://www.gnupg.org/documentation/manuals/gcrypt/

ORCUTT, J. S. et al. Nanophotonic integration in state-of-the-art cmos foundries. Opt.
Express, OSA, v. 19, n. 3, p. 2335–2346, Jan 2011.

OREN, Y. et al. The spy in the sandbox: Practical cache attacks in javascript and their
implications. In: Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security. Denver, Colorado, USA: ACM, 2015. (CCS 15), p.
1406–1418.

ORS, S. et al. Power-analysis attack on an asic aes implementation. In: International
Conference on Information Technology: Coding and Computing, 2004. Proceedings.
ITCC 2004. Las Vegas, NV, USA, USA: IEEE, 2004. v. 2, p. 546–552.

OSVIK, D. A.; SHAMIR, A.; TROMER, E. Cache attacks and countermeasures: The
case of aes. In: . Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p. 1–20.

PERCIVAL, C. Cache missing for fun and profit. In: Proceedings of BSDCan. [S.l.:
s.n.], 2005.

POLARSSL. PolarSSL: Straightforward,secure communication. Available at:
<www.polarssl.org>. Accessed at 2017-10-07.

PROJECT, T. O. S. OpenSSL: The open source toolkit for SSL/TLS. Available at:
<www.openssl.org>. Accessed at 2017-10-07.

REBEIRO, C.; MONDAL, M.; MUKHOPADHYAY, D. Pinpointing cache timing attacks
on aes. In: 2010 23rd International Conference on VLSI Design. Bangalore, India:
IEEE, 2010. p. 306–311.

REINBRECHT, C.; BOSSUET, L.; SEPULVEDA, J. Side-channel attacks on networks-
on-chips. In: 14th Cryptarchi 2016 – Cryptographic Architectures Embedded in
Reconfigurable Devices. La Grande Motte, France: [s.n.], 2016.

REINBRECHT, C.; SEPúLVEDA, J.; SUSIN, A. Phicit - improving hierarchical
networks-on-chip through 3d silicon photonics integration. In: 2015 28th Symposium
on Integrated Circuits and Systems Design (SBCCI). Salvador, Brazil: ACM, 2015.
p. 1–7.

REINBRECHT, C. et al. Gossip noc - avoiding timing side-channel attacks through
traffic management. In: IEEE Computer Society Annual Symposium on VLSI
(ISVLSI 16). Pittsburgh, USA: IEEE, 2016. p. 601–606.

REINBRECHT, C. et al. Side channel attack on noc-based mpsocs are practical: Noc
prime+probe attack. In: 29th Symposium on Integrated Circuits and Systems Design
(SBCCI). Belo Horizonte, Brazil: IEEE, 2016. p. 1–6.

REINBRECHT, C. et al. Timing attack on noc-based systems: Prime+probe attack and
noc-based protection. Microprocessors and Microsystems, v. 51, Jan 2017.

RIVEST, R. L.; SHAMIR, A.; ADLEMAN, L. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, ACM, New York, NY, USA, v. 21, n. 2,
p. 120–126, feb 1978.

www.polarssl.org
www.openssl.org

ROSA, T. Communication support in multi-core architectures through hardware
mechanisms and standardized programming interfaces. Thesis (Theses) —
Universite Grenoble Alpes, Apr 2016.

SEPULVEDA, J. et al. Noc-based protection for soc time-driven attacks. Embedded
Systems Letters, IEEE, v. 7, n. 1, p. 7–10, March 2015.

SEPULVEDA, J.; FLOREZ, D.; GOGNIAT, G. Efficient and flexible noc-based
group communication for secure mpsocs. In: 2015 International Conference on
ReConFigurable Computing and FPGAs (ReConFig). Mexico City, Mexico: IEEE,
2015. p. 1–6.

SEPULVEDA, J. et al. ddynamic noc buffer allocation for mpsoc timing side channel
attack protection. In: Network-on-Chip, timing, side channel attack (LASCAS).
Florianópolis, Brazil: IEEE, 2016. p. 91–94.

SEPULVEDA, J. et al. Elastic security zones for noc-based 3d-mpsocs. In: 21st IEEE
International Conference on Electronics, Circuits and Systems (ICECS). Marseille,
France: IEEE, 2014. p. 506–509.

SEPULVEDA, J. et al. Hierarchical noc-based security for mp-soc dynamic protection.
In: Circuits and Systems (LASCAS), 2012 IEEE Third Latin American Symposium
on. Playa del Carmen, Mexico: IEEE, 2012. p. 1–4.

SEPULVEDA, J. et al. Authentication and access control qoss (quality of security
service) for noc-based systems. In: 21st IASTED – International Conference on
Parallel and Distributed Computing and Systems. Boston, USA: ACTA Press, 2009.

SPREITZER, R.; GéRARD, B. Towards more practical time-driven cache attacks. In:
NACCACHE, D.; SAUVERON, D. (Ed.). Information Security Theory and Practice.
Securing the Internet of Things. [S.l.]: Springer Berlin Heidelberg, 2014, (Lecture
Notes in Computer Science, v. 8501). p. 24–39.

SPREITZER, R.; PLOS, T. On the applicability of time-driven cache attacks on mobile
devices (extended version). In: Network and System Security. [S.l.]: Springer Berlin
Heidelberg, 2013, (Lecture Notes in Computer Science). p. 656–662.

STEFAN, D. et al. Eliminating cache-based timing attacks with instruction-based
scheduling. In: Computer Security - ESORICS 2013: 18th European Symposium
on Research in Computer Security. Egham, UK: Springer Berlin Heidelberg, 2013. p.
718–735.

STEFAN, R.; GOOSSENS, K. Enhancing the security of time-division-multiplexing
networks-on-chip through the use of multipath routing. In: Proceedings of the 4th
International Workshop on Network on Chip Architectures. Porto Alegre, Brazil:
ACM, 2011. (NoCArc 11), p. 57–62.

SUH, G. E.; DEVADAS, S. Physical unclonable functions for device authentication and
secret key generation. In: 2007 44th ACM/IEEE Design Automation Conference. San
Diego, CA, USA: IEEE, 2007. p. 9–14.

TATAS, K.; SAWA, S.; KYRIACOU, C. Low-cost fault-tolerant routing for regular
topology nocs. In: 21st IEEE International Conference on Electronics, Circuits and
Systems (ICECS). Marseille, France: IEEE, 2014. p. 566–569.

TEHRANIPOOR, M.; WANG, C. (Ed.). [S.l.]: Springer New York, 2012.

TIRI, K. Side-channel attack pitfalls. In: Proceedings of the 44th Annual Design
Automation Conference. San Diego, California, USA: ACM, 2007. (DAC ’07), p.
15–20.

TSUNOO, Y. et al. Cryptanalysis of des implemented on computers with cache.
In: CHES 2003: 5th International Workshop on Cryptographic Hardware and
Embedded Systems. Cologne, Germany: Springer Berlin Heidelberg, 2003. v. 2779, p.
62–76.

WASSEL, H. et al. Networks on chip with provable security properties. Micro, IEEE,
v. 34, n. 3, p. 57–68, May 2014.

WEISS, M.; HEINZ, B.; STUMPF, F. A cache timing attack on aes in virtualization
environments. In: Financial Cryptography and Data Security. [S.l.]: Springer Berlin
Heidelberg, 2012, (Lecture Notes in Computer Science, v. 7397). p. 314–328.

WEISS, M. et al. On cache timing attacks considering multi-core aspects in virtualized
embedded systems. In: The 6th International Conference on Trustworthy Systems
(InTrust 2014). Beijing, China: Springer International Publishing, 2014. p. 151–167.

WOLF, W.; JERRAYA, A. A.; MARTIN, G. Multiprocessor system-on-chip (mpsoc)
technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, v. 27, n. 10, p. 1701–1713, Oct 2008.

XINJIE, Z. et al. Robust first two rounds access driven cache timing attack on aes. In:
2008 International Conference on Computer Science and Software Engineering.
Hubei, China: IEEE, 2008. v. 3, p. 785–788.

YAO, W.; SUH, E. Efficient timing channel protection for on-chip networks. In:
NOCS ’12 Proceedings of the 2012 IEEE/ACM Sixth International Symposium on
Networks-on-Chip. Lyngby, Denmark: IEEE, 2012. p. 142–151.

YAROM, Y.; FALKNER, K. Flush+reload: A high resolution, low noise, l3 cache
side-channel attack. In: Proceedings of the 23rd USENIX Conference on Security
Symposium. San Diego, CA: USENIX Association, 2014. (SEC 14), p. 719–732.

YOUNIS, Y. A. et al. A new prime and probe cache side-channel attack for cloud
computing. In: 2015 IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable,
Autonomic and Secure Computing; Pervasive Intelligence and Computing
(CIT/IUCC/DASC/PICOM). Liverpool, UK: IEEE, 2015. p. 1718–1724.

ZHANG, Y. et al. Cross-tenant side-channel attacks in paas clouds. In: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
Scottsdale, Arizona, USA: ACM, 2014. p. 990–1003.

137

11 MPSOC GLASS IDE

In order to understand the MPSoC Glass IDE Design Flow, first it is presented the

Altera Design Flow.

11.1 Altera Design Flow

Altera provides a software design environment for developing several applications

in a MPSoC running on a FPGA. Therefore, it is necessary to be familiar with the Nios

II Embedded System Design Flow, which consists of three stages of development: i)

hardware design, ii) software design, and iii) system design.

First any project establishes the hardware platform, which consist typically of a

processor, memories, peripherals, and an interconnection mechanism. Regarding MP-

SoCs, our system implements twelve processors with local memories, a shared cache

memory L2 and an UART serial, all integrated through a NoC. The software design stage

refers to the applications that are mapped to the target platform. The composition of

both stages comprises the system stage. This design flow is better described below, and

depicted in figure 11.1:

1. Create a new Quartus II project for your system. The Altera Quartus Design Soft-

ware do the system hardware requirements analysis and implements it in an Altera

FPGA chip. However at this point you can only focus in storing your project in a

directory, assigning a name and choosing the FPGA device used on your board.

2. Inside Quartus II, open Qsys system integration tool, which is used to add com-

ponents to the system and configure the selected components to meet the design

requirements. Therefore, we have to specify Nios II as the embedded processor, the

local memories, the peripherals, the network interface and the shared cache. Af-

ter connecting the hardware components, the address map of each processor needs

to be assigned. The physical addresses organizes the address reserved for the lo-

cal memories, as well as the peripherals, which includes the system-on-chip shared

memory and the network interface. Generate the hardware description through the

corresponding button in the Qsys tool. Then, automatically it generates the in-

terconnect logic to integrate the components in the hardware system and the files

required for the synthesis.

138

3. Instantiate the module generated by the Qsys tool into the Quartus II project and

then start the analysis and synthesis stage, followed by the placing and routing of

the design.

4. Now a bitstream generated by Quartus II will be ready to program the FPGA in the

board.

5. Open the software build tools for Nios II and create a project for your developed

hardware system. Choose the target processor in order to develop the software and

create a baremetal project. The processor’s boot code is automatically generated

and you can write your own C application project.

6. Write the code of the application for the target processor.

7. Build the software system, which means compile the application together with the

boot code. After compiling your application source code, the result is an Executable

and Linking Format File (.elf).

8. Converts the ELF file to an hexadecimal file. Open a file format conversion tool

called elf2hex which converts a .elf file to a hexadecimal one.

9. At this step you convert your .elf file to Quartus II Memory Initialization File (.mif)

using the elf2mif file format conversion tool. The MIF will be used to initialize the

local memories of the processors.

10. After all these procedures, you go back to the Qsys tool in order to locate the .mif

file in the initialization setting of each processor local memory. Updates all hard-

ware files, regenerating the hardware system.

11. Again you go to the analysis and synthesis stage, followed by the placing and rout-

ing of the design.

12. Now you are able to send a bitstream in an FPGA board and the process is com-

pleted.

11.2 Glass Flow

The proposed IDE allows a reduced design flow to develop, compile and upload

applications to the target MPSoC architecture running in FPGA. The stages related to

Glass Flow are described below (Figure 11.1):

1. Open the MPSoc Glass IDE.

139

Figure 11.1: Nios II Embedded System Design and MPSoC Glass Flowcharts.

2. The setup stage consists in configuring the compiler while the serial ports available

are recognized.

3. Start developing your application by selecting an IP and writing the C code corre-

sponding to it.

4. Select at least one IP to be compiled. Besides compiling the code relative to the

selected IP, the compile button execute the software boatloader that generates the

.elf file and also call an Altera tool which converts it file into hexadecimal ones.

5. The system boot is the last one to be called since it sends the compiled files thru the

serial port to the FPGA.

6. Any results are shown at the Console.

11.3 MPSoC Glass IDE

Idealized not only for evaluating but also software simulating of the multiple pro-

cesses that simultaneously occurs in a system-on-a-chip, the MPSoC Glass IDE supports

140

C programming and compilation. Besides data access and I/O performance. According

to these needs, the Visual C was the perfect development environment of this IDE, once

it introduces the Microsoft C and its .NET Framework programming library allied to dy-

namic design possibilities such as project templates, property pages, code wizards, an

object model and more.

The interface is shown in Figure 11.2. There are many applications for MPSoCs

that the interface can support. However the focus is the development, compilation and ex-

ecution of applications in a MPSoC running in a FPGA. It basically consists in a sequence

of steps which leads to a software simulation of data flow between fifteen IPs. IP0 and

IP3 are unavailable to any application of the interface because they are respectively the

shared cache and the external interface. Each IP button contains a programming environ-

ment where you can write your own code and save it as a text file. These files will become

executable ones when the compiler is configured and the process of cross-compilation is

called.

Figure 11.2: MPSoC Glass IDE Graphical User Interface.

11.3.1 Cross-compilation Feature

When talking about embedded systems, the cross-compilation is mandatory. De-

bugging and testing requires more resources than are usually available so a compiler from

a host platform can be less involved and less prone to errors than using the native compi-

lation.

The configuration button at the main menu contains the compiler setup. By click-

141

ing on it, a window is open and it is possible to define the compiler address. Then, an IP

must be selected and the compiler button is ready to perform the cross-compilation. The

code to perform the cross-compilation activity is described down below.

1 using System;

2 using System.Diagnostics;

3

4 Process cmd = new Process();

5

6 cmd.StartInfo.FileName = compiler_address;

7 cmd.StartInfo.Arguments = toCompile;

8

9 cmd.StartInfo.RedirectStandardInput = true;

10 cmd.StartInfo.RedirectStandardOutput = true;

11 cmd.StartInfo.RedirectStandardError = true;

12 cmd.StartInfo.UseShellExecute = false;

13 cmd.Start();

14 cmd.WaitForExit();

15

16 String msg = cmd.StandardOutput.ReadToEnd();

Code 11.1 – Code to call external compiler to the Cross-compilation task.

A System.Diagnostics.Process component is a useful tool for starting, stopping,

controlling, and monitoring external applications, in this case a compiler. You can use it

to start a new process and once initialized, it can be used to obtain information about the

running process.

The method Process.Start initializes a process resource by specifying its file name

and command-line arguments. The file name compiler_address at line 6 does not need to

represent an executable file. It can be of any file type for which the extension has been

associated with an application installed on the system. The argument toCompile at line 7

refers to a string which contains the selected IP. The class ProcessStartInfo is used for a

better controlling over the process started.

The properties RedirectStandardInput (line 9), RedirectStandardOutput (line 10)

and RedirectStandardError (line 11) are a console application that reads and sorts text

input, while the property UseShellExecute as false (line 12) enables the redirection of the

input, output, and error streams.

The process itself starts at line 13 and the method WaitForExit (line 14) makes the

142

current thread wait until the associated process terminates. At last the string msg (line 16)

reads the executable file on the correct output.

11.3.2 Binaries Upload Feature

Hardware designers goal is to make sure that the volatile memory will be mapped

into the address space, so that the processor’s boot code and the address to the boot code

will be there for the processor to read when the power is turned on and reset is released. So

the first code a processor runs is the boot loader, whose main task is to load the operating

system and pass over the execution to it after setting up necessary environment for its

setup. The boot loader is previously generated with the Altera workflow, and it is used

the same for any application. Since this version of MPSoC Glass, the hardware elements

can not be modified or parametrized, the boot remains the same. Altera boot program

performs the essential initialization including programming the clocks, stacks, interrupt

set up etc. Then, the boot points to the initial address that the applications are compiled.

However, to execute the boot and application, all these data must be uploaded to the

system.

What concerns to the MPSoC Glass IDE, there’s a button called "System Boot -

Upload" which perform the binaries (boot and application compiled) upload feature. By

clicking on it, the serial port available is opened. The binaries, saved as an hexadecimal

file, are read byte a byte, composing packages. These are boot packages that contain a

header and the bytes of the binaries. The header is generated according to the protocol

used by the NoC. The status of the conversion and upload is showed at the console while

its evolution is informed at a progress bar. When all processors are ready the last boot

release packet is sent.

143

12 MPSOC GLASS API

Another contribution of the thesis was a simple API responsible to provide the

basic functions to communicate through the NoC and to ask cryptography services from

the trusted IP.

12.1 NoC Communication Services

The code 12.1 shows the main functions from the NoC communication services.

1 void noc_send(unsigned int *data, unsigned char size, unsigned

char dest);

2 void noc_recv(unsigned int *data, unsigned char size, unsigned

char *source);

Code 12.1 – Functions provided by NoC API.

Below, the code 12.2 present the source code from each function.

1

2 #define HPS_NI_NOC_STATUS 0x00088000

3 #define HPS_NI_NOC_CONF 0x00088004

4 #define HPS_NI_NOC_DATA_RX 0x00088008

5 #define HPS_NI_NOC_DATA_TX 0x0008800C

6

7 unsigned int volatile * const noc_ni_status = (unsigned int

*) HPS_NI_NOC_STATUS;

8 unsigned int volatile * const noc_ni_config = (unsigned int

*) HPS_NI_NOC_CONF;

9 unsigned int volatile * const noc_ni_data_rx = (unsigned int

*) HPS_NI_NOC_DATA_RX;

10 unsigned int volatile * const noc_ni_data_tx = (unsigned int

*) HPS_NI_NOC_DATA_TX;

11

12 void noc_send(unsigned int *data, unsigned char size, unsigned

char dest)

13 {

14 unsigned char i = 0;

144

15

16 while (i < size)

17 {

18 *noc_ni_data_tx = data[i];

19 i = i + 1;

20 }

21

22 //PKT MOUNT

23 data = ((size << (1+2+10+1+1)) | (dest << 2) | 3);

24

25 *noc_ni_config = data;

26

27 status = *noc_ni_status;

28

29 //WAIT END OF MSG

30 while ((status & 3) == 0)

31 {

32 status = *noc_ni_status;

33 }

34

35 }

36

37 void noc_recv(unsigned int *data, unsigned char *size, unsigned

char *source)

38 {

39 unsigned char cont = 0;

40 unsigned int status;

41 //WAIT RECEPTION OF REQUEST

42 do

43 {

44 status = *noc_ni_status;

45 } while ((status & 8) == 0);

46

47 *source = ((status >> (10+1+1+2)) & 255);

48 *size = ((status >> (1+1+2)) & 255);

49

145

50 while (cont < *size)

51 {

52 data[cont] = *noc_ni_data_rx;

53 cont = cont + 1;

54 }

55 }

Code 12.2 – Source code of NoC services.

12.2 Cryptography Services

The code 12.3 shows the main functions from the cryptography services.

1 void send_plaintext(unsigned char *plaintext);

2 void wait_ciphertext(unsigned char *ciphertext);

Code 12.3 – Functions provided by Crypto API..

Below, the code 12.4 present the source code from each function.

1 void send_plaintext(unsigned char *plaintext)

2 {

3 unsigned int pl[4];

4

5 pl[0] = (plaintext[12]<<(8*3)) | (plaintext[13]<<(8*2)) |

(plaintext[14]<<(8*1)) | (plaintext[15]<<(8*0));

6 pl[1] = (plaintext[8]<<(8*3)) | (plaintext[9]<<(8*2)) |

(plaintext[10]<<(8*1)) | (plaintext[11]<<(8*0));

7 pl[2] = (plaintext[4]<<(8*3)) | (plaintext[5]<<(8*2)) |

(plaintext[6]<<(8*1)) | (plaintext[7]<<(8*0));

8 pl[3] = (plaintext[0]<<(8*3)) | (plaintext[1]<<(8*2)) |

(plaintext[2]<<(8*1)) | (plaintext[3]<<(8*0));

9

10 noc_send(pl,4,13);

11

12 }

13

14 void wait_ciphertext(unsigned char *ciphertext)

15 {

16 unsigned int ci[4];

17 unsigned char size; //not used in this context

18 unsigned char source;//not used in this context

19

20 noc_recv(ci,&size,&source);

21

22 ciphertext[15] = (unsigned char) (ci[0] >> (8*0)) & 255;

23 ciphertext[14] = (unsigned char) (ci[0] >> (8*1)) & 255;

24 ciphertext[13] = (unsigned char) (ci[0] >> (8*2)) & 255;

25 ciphertext[12] = (unsigned char) (ci[0] >> (8*3)) & 255;

26 ciphertext[11] = (unsigned char) (ci[1] >> (8*0)) & 255;

27 ciphertext[10] = (unsigned char) (ci[1] >> (8*1)) & 255;

28 ciphertext[9] = (unsigned char) (ci[1] >> (8*2)) & 255;

29 ciphertext[8] = (unsigned char) (ci[1] >> (8*3)) & 255;

30 ciphertext[7] = (unsigned char) (ci[2] >> (8*0)) & 255;

31 ciphertext[6] = (unsigned char) (ci[2] >> (8*1)) & 255;

32 ciphertext[5] = (unsigned char) (ci[2] >> (8*2)) & 255;

33 ciphertext[4] = (unsigned char) (ci[2] >> (8*3)) & 255;

34 ciphertext[3] = (unsigned char) (ci[3] >> (8*0)) & 255;

35 ciphertext[2] = (unsigned char) (ci[3] >> (8*1)) & 255;

36 ciphertext[1] = (unsigned char) (ci[3] >> (8*2)) & 255;

37 ciphertext[0] = (unsigned char) (ci[3] >> (8*3)) & 255;

38 }

Code 12.4 – Source code of Crypto services.

	Greetings
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	List of Codes
	Contents
	1 Introduction
	1.1 Motivation
	1.2 The Thesis
	1.3 Objectives
	1.4 Methodology
	1.5 Structure of the Thesis

	2 Basic Concepts
	2.1 Hardware Security
	2.1.1 Side Channel Attacks
	2.1.2 Proposed SCA Classification

	2.2 Cryptographic Engineering
	2.2.1 Advanced Encryption Standard - AES
	2.2.1.1 Encryption Process
	2.2.1.2 Decryption Process

	2.2.2 Performance-oriented AES
	2.2.3 Crypto-libraries

	2.3 Multi-processors Systems-on-Chip
	2.3.1 Architecture Model
	2.3.2 Memory Model
	2.3.3 Communication Model - Network-on-Chip
	2.3.4 Software Architecture
	2.3.5 MPSoC Examples
	2.3.6 Reference Architecture - MPSoC Glass
	2.3.6.1 Hardware Costs

	2.4 Considerations

	3 State-of-the-art
	3.1 Cache Attacks
	3.1.1 Timing-based Cache Attacks
	3.1.1.1 Bernstein's Attack
	3.1.1.2 Neve's Optimization
	3.1.1.3 Application: Virtualized Embedded Environments
	3.1.1.4 Application: Mobile phone devices
	3.1.1.5 Application: Virtualized Cloud Environments

	3.1.2 Access-based Cache Attacks
	3.1.2.1 Prime+Probe Attack
	3.1.2.2 Xinjie et al. Optimization
	3.1.2.3 Application: Last Level Caches

	3.1.3 Collision-based Cache Attacks
	3.1.3.1 Bonneau and Mironov Attack
	3.1.3.2 Bogdanov's Attack
	3.1.3.3 Application: Mobile phone devices

	3.2 Networks-on-Chip Attacks
	3.2.1 Timing-based NoC Attacks

	3.3 Security for Caches
	3.3.1 Countermeasures Comparison

	3.4 Security for NoCs
	3.4.1 Wang and Suh - Priority Arbitration NoC
	3.4.2 Wassel et al. - Surf NoC
	3.4.3 Sepúlveda et al. - Random Arbitration and Adaptive Routing NoC
	3.4.4 Sepúlveda et al. - SER
	3.4.5 Stefan and Goossens NoC

	3.5 Considerations

	4 Exploring the NoC Timing Attack
	4.1 Understanding the NoC Leakage
	4.2 Threat Model
	4.3 Attack Methodology
	4.3.1 Calibration

	4.4 Expanding the Attack to a Distributed Attack
	4.5 Evaluation
	4.5.1 Traffic Interference
	4.5.2 Placement in the Network
	4.5.3 Size of the Packet

	4.6 Considerations

	5 Developed Attacks
	5.1 Hourglass Attack
	5.1.1 Threat Model
	5.1.2 Attack Methodology

	5.2 Firecracker Attack
	5.2.1 Threat Model
	5.2.2 Attack Methodology

	5.3 Arrow Attack
	5.3.1 Threat Model
	5.3.2 Attack Methodology

	5.4 Earthquake Attack
	5.4.1 Threat Model
	5.4.2 Attack Methodology

	5.5 Considerations

	6 Proposed Protection
	6.1 Gossip Network-on-Chip
	6.1.1 Architecture
	6.1.2 Functionality

	6.2 Gossip NoC Evaluation
	6.3 Considerations

	7 Experimental Study
	7.1 Experimental Setup
	7.2 Timing-based Attack Experiments
	7.2.1 Bernstein Adaptation
	7.2.2 Attacks Evaluation
	7.2.3 Countermeasures Evaluation

	7.3 Access-based Attack Experiments
	7.3.1 Attacks Evaluation
	7.3.2 Countermeasures Evaluation

	7.4 Collision-based Attack Experiments
	7.4.1 Analysis on the Differential Collision Cache Attack
	7.4.2 Attacks Evaluation
	7.4.3 Bogdanov Evaluation
	7.4.4 Earthquake Evaluation
	7.4.5 Countermeasures Evaluation

	7.5 Considerations

	8 Conclusion
	9 Contributions of the Thesis
	10 Future Works and Research Opportunities
	References
	11 MPSoC Glass IDE
	11.1 Altera Design Flow
	11.2 Glass Flow
	11.3 MPSoC Glass IDE
	11.3.1 Cross-compilation Feature
	11.3.2 Binaries Upload Feature

	12 MPSoC Glass API
	12.1 NoC Communication Services
	12.2 Cryptography Services

