
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

GEANCARLO ABICH

Early Soft Error Reliability Assessment of
Convolutional Neural Networks Executing
on Resource-constrained IoT Edge Devices

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Microelectronics

Advisor: Prof. Dr. Ricardo Augusto da Luz Reis
Coadvisor: Prof. Dr. Luciano Ost

Porto Alegre
April 2022



CIP — CATALOGING-IN-PUBLICATION

Abich, Geancarlo

Early Soft Error Reliability Assessment of Convolutional Neu-
ral Networks Executing on Resource-constrained IoT Edge De-
vices / Geancarlo Abich. – Porto Alegre: PGMICRO da UFRGS,
2022.

159 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2022. Advisor: Ricardo Augusto da Luz Reis; Coadvisor:
Luciano Ost.

1. Reliability, Modeling, Simulation, Soft Errors, Fault In-
jection, Virtual Platform Simulator, Microprocessors, Machine
Learning, IoT, Mitigation, Neural Networks, Microelectronics.
I. Reis, Ricardo Augusto da Luz. II. Ost, Luciano. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Prof. Tiago Roberto Balen
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“You may never know what results come from your action, but if you do nothing there will

be no results.”

— Mahatma Gandhi
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ABSTRACT

Machine learning (ML) algorithms have provided straightforward solutions to a wide range

of applications. The high computational demand of such algorithms limits their adoption

in resource-constrained devices, which typically rely on reduced memory footprint and

low-power components (e.g., microcontrollers and processors). While performance im-

provement, customized, and reduced-precision implementations of ML algorithms have

been studied extensively, their susceptibility to soft errors caused by radiation particles

is still an open question. In this regard, due to their flexibility and high simulation per-

formance, researchers are using virtual platform (VP) frameworks to assess the soft error

reliability of complex systems considering several software stack components running on

top of commercial processors. While the gain in simulation speed is trivially observed

in VP simulators based on just-in-time (JIT) dynamic binary translation, the soft error

assessment consistency of underlying fault injection frameworks remains unclear. In this

regard, the main contribution of this Thesis is to provide, at early design phases, a con-

sistent and extensive soft error reliability assessment of ML algorithms developed with

specialized libraries that enable the execution of such applications in resource-constrained

Arm processors. The first goal of this Thesis is to analyze the consistency of the soft

error reliability assessment of a JIT-based fault injection framework (SOFIA) against fault

injection campaigns conducted with event-driven simulators (i.e., more realistic and ac-

curate platforms) considering single-processor architectures. Considering the consistency

of the results conducted with SOFIA, the second goal of this Thesis is to early investi-

gate and identify the correlation between fault injection results, NN optimized kernels,

and reduced precision parameters of convolutional neural networks (CNNs) executing on

resource-constrained IoT devices. Such a study aims at evaluating the balance between

relative performance and reliability to promote the use of software-based mitigation tech-

niques to improve soft error reliability. Understanding that adopted CNNs are vulnerable

to soft errors, the third goal of this Thesis is to evaluate the impact of soft errors in the

code, parameters, and data stored in the memory units of IoT edge devices considering

the optimized libraries and the reduced precision used in such ML models. Besides that,

we also developed a parallel CNN version as an attempt to increase performance while

evaluating the impact of multi-threaded parallelism in the soft error reliability w.r.t. the

original sequential version. In this sense, the results conducted in this Thesis comprise

more than 14.8 million of fault injections considering distinct case studies, architectures,



number of cores, OSs, and parallelization libraries. The consistency evaluation shows

that SOFIA is more than 1000× faster than cycle-accurate simulators while preserving the

soft error analysis accuracy (i.e., mismatch below to 10%).The early soft error reliability

assessment of CNN executing on resource-constrained IoT Edge devices shows that the

occurrence of critical faults varies depending on the instruction set architecture, the layer

where the faults are injected, and the precision bitwidth of the convolutional layers. With

that in mind, promoting the lightweight register allocation mitigation technique (RAT)

gives the best relative performance, memory utilization, and soft error reliability trade-

offs w.r.t. a more traditional replication-based mitigation approach. Furthermore, results

from fault injections in memory sections show that stored binaries and trained parameters

tend to have more critical faults than register files. Moreover, this Thesis’s contributions

enable us to advance our study to different multiprocessor platforms to gain performance

while maintaining low energy costs during execution, which implies different reliability

parameters to be considered both in execution and in data stored in memory.

Keywords: Reliability, Modeling, Simulation, Soft Errors, Fault Injection, Virtual Plat-

form Simulator, Microprocessors, Machine Learning, IoT, Mitigation, Neural Networks,

Microelectronics.



Avaliação antecipada da influência de erros transientes em redes neurais
convolucionais executando em dispositivos IoT Edge de recursos limitados

RESUMO

Os algoritmos de aprendizado de máquina (ML) têm fornecido soluções diretas para uma

ampla gama de aplicações. A alta demanda computacional de tais algoritmos limita sua

adoção em dispositivos com restrição de recursos, os quais normalmente são constituídos

por memória reduzida e componentes de baixo consumo de energia (por exemplo, mi-

crocontroladores e processadores). Embora implementações personalizadas, melhorias

de desempenho e precisão reduzida de modelos de ML tenham sido estudadas extensiva-

mente, sua suscetibilidade a erros transientes causados por partículas de radiação ainda é

uma questão em aberto. Nesse sentido, devido à sua flexibilidade e alto desempenho de

simulação, os pesquisadores estão usando frameworks baseados em plataformas virtuais

(VPs) para avaliar a confiabilidade de sistemas complexos expostos a erros temporários,

considerando vários componentes de pilha de software rodando em processadores e mi-

crocontroladores comerciais. Embora o ganho na velocidade de simulação seja observado

trivialmente em simuladores VP baseados em tradução binária dinâmica just-in-time (JIT),

a consistência da avaliação de erros temporários dos frameworks de injeção de falha sub-

jacentes permanece incerta. Nesse sentido, a principal contribuição desta Tese é permitir,

em fases iniciais de projeto, uma avaliação consistente e extensa da suscetibilidade à

erros transientes de modelos de ML desenvolvidos com bibliotecas especializadas que

permitem sua execução em processadores Arm com recursos limitados. Neste contexto,

o primeiro objetivo desta Tese é analisar a consistência da avaliação de ocorrência erros

transientes de um framework de injeção de falhas baseado em JIT (SOFIA) comparando

com campanhas de injeção de falha conduzidas com simuladores orientados a eventos

(isto é, plataformas mais realistas e precisas) considerando arquiteturas de um único pro-

cessador. Considerando a consistência dos resultados conduzidos com SOFIA, o segundo

objetivo desta Tese é investigar e identificar a correlação entre os resultados de injeção

de falha, bibliotecas NN otimizadas e parâmetros de precisão reduzida de redes neurais

convolucionais (CNNs) executando em dispositivos IoT com recursos limitados. Este

estudo visa avaliar o equilíbrio entre desempenho relativo e confiabilidade para promo-

ver o uso de técnicas de mitigação baseadas em software para melhorar a confiabilidade

destes modelos de ML. Compreendendo que as CNNs adotadas são vulneráveis à erros



transientes, o terceiro objetivo desta Tese é avaliar o impacto das falhas no código, para-

metros e dados armazenados nas unidades de memória destes dispositivos considerando

as bibliotecas otimizadas e a precisão reduzida utilizada em tais modelos de ML. Além

disso, neste trabalho também foi desenvolvido uma versão paralela da CNN como uma

tentativa de aumentar o desempenho e avaliar o impacto do paralelismo multi-thread na

susceptibilidade a erros transientes comparando com a versão sequencial original. Nesse

sentido, os resultados conduzidos nesta Tese compreendem mais de 14,8 milhões de in-

jeções de falhas considerando distintos estudos de caso, arquiteturas, número de núcleos,

OSs, e bibliotecas de paralelização. A avaliação de consistência mostrou que o SOFIA

é mais de 1000× mais rápido do que os simuladores com precisão de ciclo, preservando

a precisão da análise de susceptibilidade a erros transientes (ou seja, diferença abaixo

de 10%). A avaliação inicial da susceptibilidade a erros transientes da CNN executando

em dispositivos IoT da borda com recursos limitados mostra que a ocorrência de falhas

críticas varia dependendo da arquitetura do conjunto de instruções, da camada em que as

falhas são injetadas e da largura de bits de precisão das camadas convolucionais. Com

isso em mente, a promoção da técnica de mitigação baseada na alocação de registradores

(RAT) oferece o melhor desempenho relativo, utilização de memória e compensações de

confiabilidade em comparação com uma abordagem de mitigação mais tradicional baseada

em replicação. Além disso, os resultados de injeções de falhas em seções de memória

mostram que códigos binários e parâmetros pré-treinados armazenados nas unidades de

memória tendem a ter mais falhas críticas do que o banco de registradores. Além disso, as

contribuições desta Tese permitem avançar o estudo da susceptibilidade a erros transien-

tes para diferentes plataformas multiprocessadoras visando ganhar desempenho mantendo

baixos custos de energia durante a execução, o que implica em diferentes parâmetros de

confiabilidade a serem considerados tanto na execução quanto nos dados armazenados em

memória.

Palavras-chave: Confiabilidade, Modelage, Simulação, Falhas Temporárias, Injeção de

Falhas, Simulador de Plataforma Virtual, Processadores Comerciais, Aprendizado de

Máquina, Internet das Coisas, Mitigação.
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1 INTRODUCTION

Computing is a reality in human daily lives since computers are used from wearable

devices to complex High Performance Computers (HPC). Relevant improvements in

internet protocols and the computational efficiency of emerging technologies have made

communication between different devices more accessible than before (MAHDAVINEJAD

et al., 2018). Recent reports, from communication technology enterprises (CISCO, 2021)

estimate that there will be around 25 to 32 billion devices connected to the Internet in

the coming years (i.e., ∼ 3.6 networked devices per capita by 2023). However, the

popularity of such systems generated a high demand for data to be processed in a timely

manner (LABRINIDIS; JAGADISH, 2012; NAJAFABADI et al., 2015). In this sense,

researchers started to use Machine Learning (ML) models to identify patterns in large-scale

datasets, aiming to classify or predict the behaviour of complex systems in several fields,

such as Natural Language Processing (NLP), autonomous driving, and smart healthcare

(SAMUEL, 1959) (LI; OTA; DONG, 2018). ML is a branch of Artificial Intelligence (AI),

which comprises the study of computer algorithms that are used to improve performance

through automated recognition of patterns and regularities in data sets (SAMUEL, 1959).

Technology giants such as Google, Microsoft, Facebook, Amazon, Nvidia, and others have

invested heavily with their powerful computing resources to boost AI research, mainly

aiming at breakthroughs and improving ML techniques. Such research efforts evince that

ML models will improve both current and next generation of computing systems.

While emerging learning techniques fulfill a broad range of applications, the

accuracy of underlying ML models comes at the expense of high computational and

memory requirements for both the training and the inference phases. Training a ML

model is space and computationally expensive due to the high set of parameters, which are

iteratively refined over multiple executions. An inference model might still be complex

due to the potentially high density of the input data (e.g., a high-resolution image) and

the vast number of computations that need to be performed during its execution. Even

with such computational requirements, recent works denote an emerging trend in creating

inference versions of ML models that aim at enabling their execution in edge devices,

which rely on some security, reliability, resource, and power constraints (CHEN; RAN,

2019).

ML models are used in complex safety-critical systems (e.g., self-driving vehicles)

and have, more recently, been incorporated in resource-constrained Internet of Things (IoT)
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edge devices. IoT edge devices combine embedded technologies such as wired and wireless

communications, sensor and actuator devices, and the physical objects connected to the

internet (ATZORI; IERA; MORABITO, 2010; CECCHINEL et al., 2014). Such systems

are able to access raw data from different resources over the network and analyze a high

set of information to extract knowledge (MAHDAVINEJAD et al., 2018). Currently,

the ML models most employed in resource-constrained IoT systems are the pre-trained

Neural Networks (NN), such as Convolutional Neural Networks (CNN)s, since they do

not perform the complex training phase on the target device (JACOB et al., June 2018).

For instance, CNNs are used to detect, identify, or classify patterns at the edge of IoT

world (KHAN et al., 2019). However, apart from robust algorithms and high-performance

hardware, executing such complex algorithms under resource-constrained devices is still

a challenging task (ADI et al., 2020).

Aiming to enable the execution of such computationally intensive CNNs under

resource-constrained IoT edge devices, researchers and industrial leaders are investigating

software libraries and Application Programming Interfaces (API)s (LEE et al., 2016). Such

approaches rely on the development of lightweight and optimized NN kernels, allowing

their execution on low-power and less efficient processors typically found in edge devices.

Besides that, the inference of such kernels is based on reduced precision quantization

schemes that exploits the trade-off between accuracy and data size to reduce the memory

footprint (JACOB et al., June 2018). In this sense, the main challenges to enable the

execution of CNNs in such devices are the follows:

• (𝑖) reduce the memory footprint, considering both application object code and CNN

memory parameters;

• (𝑖𝑖) provide optimised and accurate NN inference models taking into account the

architecture particularities, such as Single Instruction Multiple Data (SIMD);

• (𝑖𝑖𝑖) validate the resultant model in real world environment considering a target IoT

edge device.

Although the broad applicability provided by such lightweight and optimized approaches,

their changes need to meet performance and reliability requirements considering different

environments.

Challenges in existing CNNs that targets the execution in IoT systems must con-

sider several threats that affect both the reliability and the efficiency of the entire sys-

tem (PUNITHAVATHI et al., 2019). The deployment of such models in market leader
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IoT edge devices requires robustness features, since soft errors and system malfunctions

might have potentially fatal implications in safety-critical application areas (KRIEBEL et

al., 2018). For example, while the slight inaccuracy in ML models like NLP does not

have any severe consequences, a small error in safety-critical applications like autonomous

driving vehicles and smart healthcare can lead to catastrophic effects. In contrast with

high-accuracy ML models, there is a significant need for robust CNN models that can

generate reliable and trustworthy results in the presence of faults while also preserving

safety and healthy. For this reason, software engineers must develop lightweight and

reliable applications aiming to guarantee a fail-safe critical IoT edge system. In this sense,

it is essential to evaluate the soft error susceptibility of such applications executing on

resource-constrained IoT edge devices. With that in mind, researchers have started to

investigate the impact of radiation-induced soft errors on the reliability of ML models.

In the reliability aspect, the soft error resilience is emerging as a key design metric

due to the increasing susceptibility of electronic computer systems to the occurrence of soft

errors caused by radiation effects (BAUMANN, 2005). In IoT edge computing, one open

problem is how to reliably mine real-world data from a noisy and complex environment

that confuses conventional CNNs (LI; OTA; DONG, 2018). The complexity of CNNs

executing on IoT edge systems impose both software and hardware exploration challenges,

including:

• (𝑖) conduct a large number of Fault Injections (FI) campaigns within a reasonable

time;

• (𝑖𝑖) provide engineers with detailed observation of a system’s behavior in the pres-

ence of soft errors occurring both system execution (i.e., registers) and memory

parameters (i.e., Flash and RAM);

• (𝑖𝑖𝑖) investigate the impact of soft errors in optimized kernel characteristics according

to platform specific parameters;

• (𝑖𝑣) investigate the impact of soft errors in reduced precision NN memory parame-

ters;

• (𝑣) investigate the impact of soft errors when considering thread parallelism opti-

mizations targeting existing NN kernels;

• (𝑣𝑖) identify relationships or associations between application characteristics and

specific platform parameters in large data sets resulting from the fault campaigns.

The resulting scenario calls for faster and more efficient means to assess the soft error
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resilience of such complex systems with minimal overhead in time-to-market (MUKHER-

JEE; EMER; REINHARDT, 2005; LI et al., 2007; CHATZIDIMITRIOU et al., 2019;

ROSA et al., 2019; BODMANN et al., 2021; ABICH et al., 2021).

With that in mind, current researches are proposing virtual platform FI frameworks

to cover such response time constraints (HARI et al., 2012; KALIORAKIS et al., 2015;

TANIKELLA et al., 2016). Virtual Platforms (VP) frameworks have gained popularity

over the years, not only in academia but also in many industrial sectors, due to their

design flexibility, debugging, and simulation performance capacities. In this sense, works

incorporated FI capability into VP frameworks (PARASYRIS et al., 2014; ROSA et al.,

2018), enabling the analysis of complex software stacks and processor architectures at

early design phases. However, to ensure the failsafe functionality of emerging resource-

constrained IoT systems, engineers should be able to not only assess and identify, but

also to promote efficient alternatives to mitigate the occurrence of soft errors (GAVA;

REIS; OST, 2020). Furthermore, while the gain in simulation speed is trivially observed

in VP simulators based on Just-In-Time (JIT) dynamic binary translation, the soft error

assessment consistency of underlying FI frameworks remains unclear. The preceding

context motivates this Thesis, which aims at investigating the consistency of JIT-based

FI techniques and use these tools to assess and mitigate the occurrence of soft errors in

resource-constrained IoT devices executing CNN models.

This work first focuses on elucidating the consistency of the results gathered with

the Soft error Fault Injection Analysis (SOFIA) framework (BANDEIRA et al., 2019),

when compared to an Register-Transfer Level (RTL) FI approach. With this consistency

assessment, this thesis thus focuses on enhancing SOFIA capability by proposing two

extensions: (i) a realistic fault classification according to CNN output predictions; and

(ii) an automated FI technique that isolates specific memory sections in order to evaluate

the impact of soft errors on different memory parameters of CNN models executing on

resource-constrained IoT edge devices. The proposed extensions move SOFIA beyond

the traditional frameworks, thereby furthering potential advantages that enable engineers

to evaluate specific aspects of emerging CNN models. Furthermore, this work extends

existing NN kernels employing parallel capabilities in order to evaluate the impact of

thread parallelism on the performance and reliability of an CNN model executing on

IoT edge device. Finally, this Thesis presents different case studies that evaluate the

relative trade-off between different soft error mitigation techniques considering reliability,

performance, and precision of the adopted CNN model.
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1.1 Hypothesis to be demonstrated in Thesis

This Thesis relies on three hypotheses:

• The first hypothesis of this Thesis is that virtual platform FI frameworks provide

truthful results with significant performance gains when compared to the most

classical ones. A fast and consistent FI tool enable engineers to ensure the accuracy

of soft errors and failures to assess the reliability of complex computing systems (i.e.,

real software stacks, state-of-the-art Instruction Set Architectures (ISA)s), ensuring

a realistic results at early design phases. Furthermore, the proof of this hypothesis

allow us to enable us to provide a consistent assessment of the soft error reliability of

CNN models, which would be unfeasible in traditional models due to the simulation

time.

• With the use of architecture specific kernel optimizations as well as reduced precision

to enable the execution of CNN models on IoT systems, engineers are more likely

to identify meaningful relationships or associations between FI results, software

optimizations, and parameters quantizations. In this regard, the second hypothesis

of this thesis is to early investigate and identify the correlation between FI results,

NN optimized kernels, and reduced precision parameters of CNNs executing on

resource-constrained IoT edge devices. The proof of this hypothesis allow us to

distinguish soft errors occurring in such models and apply lightweight and non-

intrusive mitigation techniques to improve the reliability and lifetime of CNN models

executing on resource-constrained IoT edge systems.

• When dealing with those parameters, the existing evaluation techniques in the

literature are not sufficient to correlate the real impact of faults in the soft error

reliability of CNN models considering the IoT device storage. With that in mind,

the third hypothesis of this Thesis is that the reduced precision optimizations impacts

not only in the CNN execution, but also in the CNN code, parameters, and data stored

in memory. The proof of such hypothesis allow us to isolate and identify the most

vulnerable memory sections of a CNN deployed to a resource-constrained IoT edge

device.



25

1.2 Thesis Goal

In order to address the reliability of ML models using VPs, the strategic goal of

this Thesis is first to perform an in-depth and statistical significance soft error consistency

evaluation of a JIT-based FI framework called SOFIA (BANDEIRA et al., 2019; ROSA et

al., 2019). This work aims to further contribute to the use of virtual platform FI frameworks

in the design flow of safety-critical industry applications considering soft error reliability

aspect. The second strategic goal of this Thesis is to combine existing features support

by SOFIA (e.g., FI techniques) along with new tools and mitigation techniques aiming

to assess the soft error reliability of CNN models executing on resource-constrained

IoT edge devices considering different case studies, model optimizations (e.g., precision

quantization, thread parallelism), processor models and ISAs. Finally, the third strategic

goal of this thesis comprises to evaluate the impact of soft errors on memory units of IoT

edge devices executing reduced precision ML models.

The following specific objectives should be fulfilled to accomplish the first strategic

goal:

• Port several benchmarks from embedded and IoT domains, considering standard

open-source Clang and GNU Compiler Collection (GCC) compilers and commercial

Advanced RISC Machines (Arm) compilers, along with standard optimization flags

to cover a wide range of probabilities in soft error consistency evaluation.

• Port FI techniques and scripts that enable us to trace, evaluate, and identify the

particular source of errors in RTL processor descriptions.

• Evaluate the soft error assessment consistency of a VP FI tool w.r.t. a real single-core

commercial processors at the RTL with a discrete event full system simulator.

The second goal requires the following task to be achieved:

• Port reduced and mixed precision CNN models for the SOFIA environment to enable

the soft error assessment with a significant number of FI campaigns.

• Propose a realistic fault classification aiming to evaluate the real impact on the

output parameters of CNN models.

• Investigate the impact of reduced precision and architecture specific optimizations on

soft error reliability of CNN models executing on resource-constrained IoT systems.

• Employ the use of soft error software-based mitigation techniques to improve the

reliability of CNN models executing on resource-constrained IoT systems.
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• Assess both performance and reliability impact when using lightweight and non-

intrusive software-based mitigation techniques in such CNN models.

• Evaluate the relative trade-off between soft error software-based mitigation tech-

niques considering performance, reliability, and precision.

Finally, the third goal comprises the following milestones:

• Evaluate different aspects of CNN models executing on IoT systems using novel FI

techniques that enable us to isolate specific system execution moments and memory

sections.

• Investigate the impact of reduced and mixed precision memory parameters on the

soft error reliability of the adopted CNN models.

• Investigate the impact of thread parallelism on soft error reliability of existing NN

kernels.

1.3 Original Contributions of this Thesis

Figure 1.1 illustrates the main contributions of this work, which are joined into a soft

error analysis flow that includes: the FI techniques and extensions, fault classification, and

soft error mitigation techniques (fully described in Chapter 4); the cross compilation and

platform simulators used to evaluate the consistency of the SOFIA framework (described

in Chapter 5); the case studies and libraries adopted to asses soft error reliability of ML

models executing on resource-constrained IoT edge devices (described in Section 6.1

and Section 6.2); the validation boards; the automated framework flow that allowed to

evaluate different aspects of soft error reliability in a feasible time, i.e., Section 6.1.2

and Section 6.2.2 considering the ML model execution (e.g., isolated layers, target ISA

optimization, precision bitwidth), Section 6.1.3 and Section 6.2.3 considering the ML

model storage, Section 6.1.4 considering thread parallelism; and the adopted non intrusive

soft error software-based mitigation techniques used as alternative to improve reliability

in the adopted case studies with lower performance costs in Section 6.2.4.

The contributions of this Thesis are summarized as follows:
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Figure 1.1 – Contributions of this Thesis considering the soft error assessment flow in the SOFIA
framework.
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increase in OMM and decreases in Vanished. MWTF is also
severely affectedwith areduction of 19.40⇥ fromsingle-core
to dual-coreand afurther 2.29⇥ reduction fromdual-coreto
quad-core.

TABLE 2: NASParallel Fault Injection Campaign Results.

CoreVariant Van. ONA OMM UT Hang MWTF

Single 91.45 0.03 1.32 7.10 0.10 88.45

Dual 79.16 0 9.35 11.35 0.13 4.56

Quad 74.68 0.29 13.42 11.35 0.26 1.99
Soft error values are in %.

Vitor: juntando as secoes para bater com a figura
Vitor: TheML modulecombinesdatafromtheprofileand
soft error to speed up the analysis of the application’s be-
haviour for different configurations and parameters. Fig. 3
show four ML correlations generated for a set of FI cam-
paigns for thesameapplication varying someconfigurations
(e.g., number of cores, compiler flags). Fig. 3a shows that
the increase in thenumber of branch instructions is directly
related to therisein thesystemHangs. In Fig. 3bweseethat
the increase in the number of entries in the integer register
is related to the decrease in UT. In Fig. 3c, we see that the
rise in the number of accesses to ALU is associated with
the reduction of ONA. Finally, in Fig. 3d, we have a direct
relationship between the number of readings from control
registers and the increase in OMM.

(a) Hang vs Branches (b) UT vs Int Register Writes

(c) ONA vs Int ALU Ac-
cesses

(d) OMM vs CC Register
Reads

Fig. 3: Sub-figures (a-d) show ML analysis examples gen-
erated using a set of FI campaigns. The circles are FI cam-
paigns, and the lines aredistinct ML regression techniques:
red, poly; green, linear; and, blue, rbf regression).

4.4 Application Hardening

In this step, themitigation technique is selected. The initial
analysis considers TMR and P- TMR mitigation techniques.

Fig. 4: Example of the TMR applied in an operation inside
IS application. From (1) C code, to (2) LLVM IR code, then
(3) LLVM IR with TMR, and finally the(4) protected Aarch64
assembly.

Fig. 4 shows the transformation of a block of C code to
LLVM IR, then to protected LLVM IR, and finally to the
aarch64assembly code.Notethat theTMRmajority voter has
two instructions in theLLVM IR codeand four instructions
in the ARMv8-A. Later on (Section 6.1), we show that an
application with a large number of majority voters can
increasesusceptibility to soft errorsdueto theincreasein the
single points of failure, indicating that theuseof a selective
protection technique may be more appropriate depending
on theapplication.

4.5 Results Comparison

With the data from the unhardened binary and the two
hardened versions (TMR and P- TMR), Software engineers
can use the visualisation module to compare the reliability
vs performance trade-off and then define which protection
strategy is best suited for thechosen application.

Fig. 5 shows the results regarding system reliability
and the overhead for runtime and code size. This data
set considers two different mitigation techniques and three
corevariants, with all valuesnormalised by theunhardened
version. The program code size has a 44% increase when
applying TMR against 16% in P- TMR, showing an interest-
ing finding for memory-constrained projects. Considering
the reliability metrics, there is a significant impact on the
normalised MWTF for the single-coreplatform. TheMWTF
for TMRand P- TMRhasareduction of 79%and 66%(respec-
tively) — thus, showing that thememory errors mitigation
was inefficient. The reason for this behaviour is that the
application already has a natural high fault-masking rate
(90%+), and our tool cannot reach external functions and OS
routines that use the most susceptible registers. However,
thenormalised reliability improveswith thenumber of sys-
tem cores. This effect occurs because we have a significant
increase in the execution of OpenMP functions and other
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1.3.1 Evaluation of SOFIA consistency w.r.t. RTL

The design flexibility, debugging and simulation performance capabilities of virtual

platform frameworks led to the increase the popularity in both academia and industrial

sectors. While the gain in simulation speed is trivially observed in VP simulators based

on JIT dynamic binary translation, the soft error assessment consistency of underlying

FI frameworks remains unclear. In order to investigate the soft error consistency of

VP simulators, recent works demonstrate that higher level FI approaches provide more

flexibility and simulation performance at the cost of accuracy, mostly resulting from

the lack of microarchitecture and timing modelling aspects (KALIORAKIS et al., 2015;

CHATZIDIMITRIOU et al., 2019; ROSA et al., 2017). In this direction, one of the main

contributions of this thesis is an in-depth and statistical significance soft error consistency

evaluation of SOFIA framework(BANDEIRA et al., 2019) against FI campaigns conducted
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with event-driven simulators (i.e., more realistic and accurate platforms) considering Arm

Cortex-M processor architectures. Reference single-core FI campaigns are performed on

RTL descriptions of Arm Cortex-M0 and M3 processors. Campaigns consider different

open-source and commercial compilers as well as real software stacks including FreeRTOS

kernel and 26 applications. Such contribution have already published at ABICH et al.

2021.

1.3.2 Early soft error assessment of ML models executing on Resource-constrained
IoT edge devices

ML algorithms have provided straightforward solutions to a wide range of ap-

plications. The high computational demand of such algorithms limits their adoption in

resource-constrained devices, typically relying on reduced memory footprint, low-power,

and low performance processors. While performance improvement, customized, and

reduced-precision implementations of ML models have been studied extensively, their

susceptibility to soft errors caused by radiation particles is still an open research question.

In this regard, the second main contribution of this thesis relies on the soft error reliability

assessment of reduced and mixed precision CNNs executing on resource-constrained IoT

edge devices. In order to cover a wide range of aspects from such models, this study

evaluates the soft error reliability considering the fault impact in:

• isolated critical function layers;

• different processor architectures;

• reduced and mixed precision quantizations;

• isolated memory sections;

• multi-threaded execution.

In this contribution, we propose a more realistic fault classification to evaluate the

impact of soft errors on the output probabilities of the target models. The evaluated results

employs a FI technique that isolates the critical layers’ functions of the adopted CNNs.

The second case study(ABICH; REIS; OST, 2020) investigates the impact of precision

bitwidth on the soft error reliability of the MobileNet (HOWARD et al., 2017) CNN devel-

oped based on the CMSIS-based Mixed precision API for Neural Networks (CMix-NN)

library(CAPOTONDI et al., 2020) and executed on an Arm Cortex-M processor. In the

subsequent study, we propose an extension to the physical memory FI technique avail-
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able in SOFIA (BANDEIRA et al., 2019) that isolates the memory sections, evaluating

and comparing the fault impact on the object code and the CNN weights, bias, and

buffers. Furthermore, our late approach aims to assess the soft error reliability of a multi-

threaded version of a CNN model developed based on the Arm CMSIS API for Neural

Networks (CMSIS-NN) kernels considering 1, 2 and 4 cores. Such contributions have

already published at ABICH et al. 2020, ABICH; REIS; OST 2020, ABICH et al. 2021,

and ABICH et al. 2022, and accepted to publication ABICH et al. 2022.

1.3.2.1 Applying Lightweight Soft Error Mitigation Techniques to Embedded Mixed Pre-

cision Deep Neural Networks

While CNNs’ precision and performance can vary and are essential, it is also vital

to deploy trained models that provide high reliability at low cost. To achieve an unyielding

reliability and safety level, it is imperative to provide electronic computing systems with

appropriate mechanisms to tackle soft errors. In this sense, the third main contribution of

this Thesis is to investigate the relationship between soft errors, performance, and model

accuracy while promoting the use of a Register Allocation Technique (RAT) GAVA;

REIS; OST that allocates the critical CNN function/layer to a pool of specific general-

purpose processor registers. This study comprises an extensive soft error assessment of

the MobileNet model considering 2, 4, and 8 precision bitwidth variations running on an

Arm Cortex-M processor. Such results have already published (ABICH et al., 2021).

1.3.2.2 Consistent and Extensive Evaluation

In order to provide a consistent and extensive evaluation, the results comprise

more than 14.8 millions of FIs considering distinct case studies, architectures, number of

cores, OS, parallelization libraries. Different from other works, the promoted framework

flow uses a realistic software stack comprising bare-metal applications and running over an

operating system (e.g., Linux and FreeRTOS), parallelization libraries (e.g., OpenMP), and

ML libraries (e.g., CMSIS-NN and CMix-NN). Furthermore, to reinforce the experiments,

all adopted case study applications (i.e., benchmarks and CNNs) have been validated by

running them on a real board or on the available RTL desciption, which also provide some

performance measurements.
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1.3.3 Legacy of tools integrated into the SOFIA framework

In addition to the evaluation of soft error consistency the contributions of this

work are fully integrated into SOFIA automated soft error analysis flow, which leverages

the high simulation performance of M*DEV (IMPERAS, 2021a) to efficiently acquire

representative error/failure-related data considering state-of-the-art single and multi-core

processor architectures, from ARMv6-M to recent ARMv8-A. Such contributions also

comprise the support to:

• compiler scripts considering GCC, Clang, and Arm compilers;

• ML libraries and models targeting resource-constrained IoT edge devices;

• TCL scripts to assess the soft error reliability in RTL processor descriptions;

• a fault injection technique that isolates memory sections;

• a fault classification considering the critical faults affecting the output probabilities

of ML models.

Furthermore, the visualization tools have been improved to meet the proposed assessments

to correlating faulty results and find some particular behavior according to each case study.

1.4 Thesis Outline

This Thesis is organized into seven Chapters:

Chapter 1 - Introduction: this Chapter introduces the current issues found in

the literature to enable a consistent reliability assessment of ML models executing on

resource-constrained IoT edge devices and summarizes the contributions of this Thesis.

The following paragraphs present a succinct Thesis summary Chapter by Chapter.

Chapter 2 - Background: this Chapter presents the required background in works

related to ML models (Section 2.1) and Radiation induced soft errors (Section 2.2).

Chapter 3 - Related Works: this Chapter presents the works related to the chal-

lenges of evaluating soft errors in ML models using VPs. In this sense, Section 3.1 presents

the state-of-the-art on soft error assessment using VPs. Next, Section 3.2 presents the

state-of-the-art on soft error assessment of ML models considering different FI approaches.

Finally, we place the contributions of this work regarding the ones found in the literature

in Section 3.2.2 and Section 3.1.1.

Chapter 4 - Methodology: this Chapter describes the adopted methodology in this
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study considering the FI approaches, the fault classification, and the assessment metrics.

First, Section 4.1 details the adopted FI approaches and their different level of accuracy.

Then, Section 4.1.1, Section 4.1.2.1, and 4.1.2.2 details each adopted FI modules for RTL,

gem5, and Open Virtual Platform Simulator (OVPsim) respectively. Section 4.2 details

the proposed fault classification according the ones existing in the literature. Finally,

Section 4.3 presents the assessment metrics used to asses the soft error reliability from

the adopted case studies, and Section 4.3.1 present a brief description of the mitigation

techniques promoted in this work.

Chapter 5 - Results on Soft Error Consistency Assessment: this Section

presents the conducted experiments considering different FI approaches to evaluate the

consistency of SOFIA against RTL and gem5 FI approaches. First, Section 5.1 presents

the results of the soft error consistency assessment for single-core processors. Next,

Appendix A presents the results of the soft error consistency assessment for multi-core

processors. In each of those analyses, we present a detailed consistency evaluation ad-

dressing different aspects of adopted architectures and simulators.

Chapter 6 - Soft Error Reliability Assessment of ML Models on Resource-
constrained IoT edge devices: this Chapter presents the proposed case studies considering

the execution of ML models in resource-constrained IoT edge devices. Section 6.1 and

Section 6.2 details the ML kernels and APIs used to deploy the adopted case studies. Then,

following sub sections comprise the results from conducted FI campaigns considering dif-

ferent soft error reliability aspects on the execution of CNN models in resource-constrained

IoT edge devices.

Chapter 7 - Conclusions: this Chapter summarizes the contributions of this

while highlights the results published in significant journal papers and peer-reviewed

international conferences. Finally, this Chapter also points out the possible future works

enabled by the contributions reported in this Thesis.
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2 BACKGROUND IN ML MODELS AND RADIATION EFFECTS

This Chapter aims to introduce some necessary backgrounds and works related

to this Thesis, the soft error assessment of ML models applied to IoT systems. First,

Section 2.1 presents a background in ML models and the challenges to enable the ex-

ecution of such models in IoT edge devices. Further, Section 2.2 addresses the basic

concepts regarding radiation-induced errors and their impact on electronic computing

system devices.

2.1 Basic Concepts of ML models

Figure 2.1 – Different types and applications of ML exploited for solving computer science
problems.

Source : Adapted from KATO et al. (2017).

ML is a special branch of artificial intelligence that acquires knowledge from

training data based on known facts without explicit programming (MAHDAVINEJAD

et al., 2018). As described by SAMUEL in 1959, ML is a “Field of study that gives

computers the ability to learn without being explicitly programmed”. Learning is a

matter of finding statistical regularities or other patterns in the data, and the performance
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analysis of such learning models can give insight into relative difficulty of learning in

different environments (AYODELE, 2010). ML models are organized into a taxonomy

presented in Figure 2.1 (KATO et al., 2017). The literature classifies ML models into three

broad categories such as: supervised learning, unsupervised learning, and reinforcement

learning.

Supervised learning is the learning method where the instances are labeled in the

training phase generating a function that maps inputs to desired outputs. Unsupervised

learning is a type of ML model, which models a set of inputs without labeled examples.

Reinforcement learning means a computer interacting with an environment to achieve a

certain goal considering a policy of how to act given an observation of the real world

scenario. Every action has some impact in the environment, and the environment provides

feedback that guides the learning algorithm.

According to reviewed works (SHANTHAMALLU et al., 2017; MAHDAVINE-

JAD et al., 2018; CHEN; RAN, 2019; MARCHISIO et al., 2019), supervised and unsuper-

vised learning have been and are still widely applied in smart data analysis. In this sense,

the following subsections present a review focused on these ML types (Section 2.1.1 and

Section 2.1.2) thus focusing on ML models commonly used in IoT devices (Section 2.1.3).

2.1.1 Supervised learning

Supervised learning is the most common subbranch of ML (AYODELE, 2010).

The objective of such learning method is to learn how to predict the appropriate output

vector for a given input vector. The supervised learning means that the training phase

needs supervisor interaction. During the training phase, the algorithm will search for

patterns in the data that correlate with the desired outputs. The training data will consist

of inputs paired with the correct outputs. After training, a supervised learning algorithm

will take in new unseen inputs and will determine which label the new inputs will be

classified as based on prior training data.

There are several supervised learning techniques known in the literature such

as: Artificial Neural Network (ANN), Bayesian Statistics, Gaussian Process Regres-

sion, Lazy learning, Nearest Neighbor, Support Vector Machine (SVM), Hidden Markov

Model, Bayesian Networks, Decision Trees(C4.5,ID3, CART, Random Forrest), K-Nearest

Neighbor (kNN), Boosting, Ensembles classifiers (Bagging, Boosting), Linear Classifiers

(Logistic regression, Fisher Linear discriminant, Naive Bayes classifier, Perceptron), and
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Quadratic classifiers.

According to CARUANA; NICULESCU-MIZIL (2006), supervised learning can

be split into two subcategories: classification and regression. Applications where the

target labels consist of a finite number of discrete categories are known as classification

tasks (MORENTE-MOLINERA et al., 2017). Cases where the target labels are composed

of one or more continuous variables are known as regression tasks (XIE; LIU, 2010). In

both regression and classification, the goal is to find specific relationships or structure in

the input data that allow us to effectively produce correct output data. In this sense, a

correct output is determined entirely from the training data. However, noisy or incorrect

data labels can reduce the effectiveness of a given model in real-world situations. Thus, to

provide efficient data labels, the main considerations when conducting supervised learning

are the model complexity (JAIN et al., 2007; MORENTE-MOLINERA et al., 2017) and

the bias-variance trade-off (VALENTINI; DIETTERICH, 2004; BELKIN et al., 2019;

REPPEN; SONER, 2020).

Figure 2.2 – Bias and variance using bulls-eye diagram.
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In ML, the model complexity often refers to the number of features or terms

included in a given predictive model. High complexity models are harder to interpret

and have a high probability of overfitting, consequently these models are computationally
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expensive. Overfitting refers to learning a function that overly fits the training data, and

essentially captures the noise and outliers. Underfitting happens when a model is unable to

capture the underlying pattern of the data. As consequence, the model will not accurately

predict cases that are not represented by the training data. There are some methods

to control or reduce model complexity including linear modeling and subset selection,

regularization, and dimensionality reduction. Such methods, essentially, keep all features,

but reduce (or penalize) the effect of some features on the model’s predicted values.

Figure 2.3 – Model complexity curve defined by Equation (2.1)

E
rr

o
r

Complexity

Total Error

Bias²
Variance

O
p

ti
m

a
l M

o
d

e
l C

o
m

p
le

xi
ty

Source : Adapted from GUDIVADA; APON; DING (2017).

Figure 2.2 shows the bias-variance trade-off, where the center of the target is a

model that perfectly predicts correct values. Bias is the difference between the average

model’s prediction and the correct value which must be predicted. Variance is the vari-

ability of the model’s prediction for a given data point or a value that shows the dispersion

of the dataset. While models with high bias oversimplify the trained model, models with

high variance increases the model complexity. In both cases the resultant model leads to

high error rates on the test data. This trade-off must find the right/good balance without

overfitting and underfitting the data.

Total Errors = 𝐵𝑖𝑎𝑠2 +𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒𝐸𝑟𝑟𝑜𝑟 (2.1)

An optimal balance of bias and variance would never overfit or underfit the trained

model. To build a good model, it is necessary to find a good balance between the bias and

the variance such that it minimizes the total error defined by Equation (2.1). The Total

Errors is the sum of Bias2, variance and the irreducible error. Irreducible error is the error
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that cannot be reduced by creating good models (i.e., amount of noise in training data).

Finally, Figure 2.3 shows the bias-variance trade-off curve where the center represents the

optimal model complexity.

2.1.2 Unsupervised learning

Unsupervised learning techniques are regarded as self-learning algorithms that

possess the capacity to explore and locate the previously unknown patterns in a dataset

(BARLOW, 1989). While supervised learning (Section 2.1.1) requires a labeled dataset, in

unsupervised learning algorithms the training data consists of a set of input vectors without

any corresponding target values (HASTIE; TIBSHIRANI; FRIEDMAN, 2009). Such

learning algorithms are left to their own devises using a set of statistical tools to discover

and represent interesting patterns from data structures (CELEBI; AYDIN, 2016). Some

of the most common unsupervised learners are: Cluster analysis (K-means clustering,

Fuzzy clustering), Hierarchical clustering, Self-organizing map, Apriori algorithm, Eclat

algorithm, and Outlier detection. Unsupervised learning algorithms can be further grouped

into the following three categories: clustering, dimensionality reduction, and density

estimation (e.g., Figure 2.1).

Figure 2.4 – Examples of clustering algorithms.
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Clustering is the most common unsupervised learning problem, which categorizes

the observed dataset into groups that maximize some similarity criterion, equivalently dis-

similar to the objects belonging to other clusters. Clustering algorithms may be classified

as Exclusive (Figure 2.4a), Hierarchical(Figure 2.4b), Overlapping(Figure 2.4c), and Prob-

abilistic Clustering(Figure 2.4d). In exclusive or partitioning clustering, data are grouped

in such a way that one data can belong to one cluster only (KANUNGO et al., 2002).

Hierarchical clustering technique considers every data as a cluster and the iterative unions

between the two nearest clusters reduce the number of clusters (SONAGARA; BADHEKA,

2014). There are two types of hierarchical clustering, Divisive and Agglomerative. In

the divisive (top-down) clustering method, the algorithm assigns all of the observations

to a single cluster and then partition the cluster to two least similar clusters. Thus, the

algorithm proceed recursively on each cluster until there is one cluster for each observa-

tion. In turn, agglomerative or bottom-up clustering method performs the opposite. The

overlapping technique use fuzzy sets to cluster data where each point may belong to two

or more clusters with separate degrees of membership (HATHAWAY; BEZDEK, 2006;

GHOSH; DUBEY, 2013). Probabilistic clustering technique uses probability distribution

to create the clusters (FIGUEIREDO; JAIN, 2002; XU; LI, 2008).

Figure 2.5 – Example of dimensionality reduction using matrix decomposition technique.

3D - 1000 data points

1D - 10 data points

2D - 100 data points

Source : Adapted from TSUGE et al. (2001).

Dimensionality reduction transforms a high-dimensional set of variables into a low-

dimensional space where the resultant representation retains some meaningful properties
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of the original data, ideally close to its intrinsic dimension (WEINBERGER; SHA; SAUL,

2004). For instance, Figure 2.5 shows an example of matrix decomposition data correlation

used to reduce a 3D matrix to a single data vector. Such learning technique correlates

the number of features present in the dataset in order to remove redundant information,

reducing model’s complexity, and avoid overfitting(MAATEN; POSTMA; HERIK, 2009).

In this sense, dimensionality reduction splits into two main categories: feature selection

and feature extraction (KHALID; KHALIL; NASREEN, 2014). In feature selection, the

algorithm select a subset of features of the original dataset, aiming to obtain a model

capable of automatically selecting the subset of features most relevant to a faced problem

(DY; BRODLEY, 2004). Feature extraction derives the information from the original

dataset to reduce the number of features and build a new feature subspace(HILD et al.,

2006). In contrast to the feature selection, the output features will not be the same as the

originals(KHALID; KHALIL; NASREEN, 2014). In this sense, the extracted features are

combinations of the original features, compressed in a way that they will retain the most

relevant information.

Figure 2.6 – 1D Kernel density estimation example.
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Density estimation uses statistical models to find an underlying probability distri-

bution that gives rise to the observed variables (SMYTH; WOLPERT, 1997). For example,

Figure 2.6 shows the kernel density estimation for three choices of kernels considering as

input 100 points from a bimodal distribution. The goal in such learning problems is to

model the underlying structure or distribution in the data in order to identify the inher-

ent structures of a dataset without using explicitly-provided labels (TRENTIN; FRENO,

2009). Some of the most popular and useful density estimation techniques are mixture
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models such as Gaussian mixtures, and neighbor-based approaches (e.g., kernel density

estimation) (DINH; SOHL-DICKSTEIN; BENGIO, 2016). Gaussian mixtures are dis-

cussed more fully in the context of clustering, because the technique is also useful as an

unsupervised clustering scheme.

2.1.3 ML for the IoT Edge devices

The size of computing devices in current technology nodes is largely reducing

while their computing capability is drastically improving. Such resultant increase in

computing power and advancements have made it possible to map and process much

larger and deeper neural networks than was possible in earlier generations(SZYDLO;

SENDOREK; BRZOZA-WOCH, 2018). These upgrades encouraged the current shift of

ML models to IoT environment, aiming to explore the execution of smart applications

on resource-constrained devices(DAWIT; FRISK, 2019). In contrast to other ML models

shown in Figure 2.1 that must be highly tuned to solve specific problems and need a plenty

of rules for successful operation, IoT edge deep inference techniques must deal with the

constraints of power, performance, and resources inherent to such devices (KATO et al.,

2017).

Figure 2.7 – Trade-off between approaches used to enable deep inference in resource-constrained
IoT Edge devices.
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Figure 2.7 shows the trade-off between the techniques used to promote deep infer-

ence in HPC and resource-constrained devices. While the HPC environment capabilities
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support hardware acceleration, multi-core execution, and optimized instructions, to en-

able deep inference tasks on IoT edge side, there are two main considerations: architecture

specific optimized software libraries and model pruning. One of the important aspects in

the industrial IoT is the response time of such systems, which means that the IoT systems

using ML models tend to be moved to the edge of the network. Currently, researchers

aim to achieve a feasible performance while using optimizations allowed by the target

ISAs. In this sense, to provide the execution of Deep Neural Network (DNN) models

on the underlying devices, software libraries and APIs have been proposed (SUN; LIU;

GAUDIOT, 2017; LAI; SUDA; CHANDRA, 2018; GAROFALO et al., 2019; STMI-

CROELECTRONICS, 2020; CAPOTONDI et al., 2020). Such libraries/APIs are devoted

to streamlining the design and development of embedded deep learning-based applica-

tions through the fine-tuning of pre-trained network models, thus enabling their efficient

execution in edge-computing platforms (AMOH; ODAME, 2019; MAHDAVINEJAD et

al., 2018). In additional, to add more performance to IoT platform researchers also tried

to make the ML models lighter with a similar level of performance and accuracy. Such

approaches aim to reduce the number of inference parameters (e.g., weights and bias)

to reduce the memory requirements from deep inference models while achieving such a

performance improvements (HAN; MAO; DALLY, 2015; HE; ZHANG; SUN, 2017).

The resultant trade-off between performance and resource constraints shifts the

deep inference models to fixed point integer quantization methods. Such techniques aim

to reduce the size of the parameters from deep neural networks and improve inference

latency and throughput by taking advantage of high throughput integer instructions (WU

et al., 2020). In this sense, researchers already found that quantized models reach almost

the same level precision when considering reduced precision of NN parameters, mostly

the weights (GUPTA et al., 2015; JUDD et al., 2015). While the resultant precision is

degraded (e.g., < 1% in MobileNet), the memory overhead is drastically reduced by 75%

when using integer 8-bit parameters instead of 32-bit respectively. Moreover, with the

cooperation of hardware, the quantization can also lead to faster model execution speed.

Considering IoT applications targeting Arm processor, a category of SIMD instructions is

introduced to accelerate the add and multiply operations (LAI; SUDA; CHANDRA, 2018;

CAPOTONDI et al., 2020), which are the essential elements in ML model execution.

In the domain of resource-constrained devices one can find many implementations

of ML models on mobile and embedded devices that cooperate with the cloud computing

(SZYDLO; SENDOREK; BRZOZA-WOCH, 2018). For the time being, the majority of
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embedded trained models and their inference engines have been evaluated only according

to their accuracy and performance over a given dataset (QI; LIU, 2018). In contrast, as

DNN become increasingly common in mission-critical applications, ensuring their reliable

operation has become crucial nowadays (MITTAL, 2020). For that reason, this work aims

to contribute by evaluating the soft error reliability aspects that can impact such kind of

systems.

2.2 Radiation Environment an its Effects on Semiconductors Devices

Current challenges presented in the semiconductor industry target not only perfor-

mance but also the system reliability, since the capacity of transistor integration in existing

technology nodes has been presenting significant issues provided by highly energetic ra-

diation particles (MANSOUR; VELAZCO, 2013; ISO, 2011). Such particles may induce

the occurrence of Single Event Effects (SEE)s on integrated transistor circuits causing

the change of data states (e.g., from 0 to 1), which might incur into catastrophic results

(i.e., human life losses). In order to comprehend the origin of those effects, this Section

presents a brief summary of radiation effects.

Figure 2.8 – Sketch of the Earth’s radiation environment.
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Source : Adapted from BARTH; DYER; STASSINOPOULOS (2003) and CIANI;
CATELANI; VELTRONI (2008).

Figure 2.8 illustrates the possible sources of atmospheric radiation known in the

literature (ZIEGLER, 1996; BARTH; DYER; STASSINOPOULOS, 2003; CIANI; CATE-
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LANI; VELTRONI, 2008). The main sources of atmospheric radiation are galactic and

solar cosmic rays, which can generate high energy particles according to the particle’s tra-

jectory in the Earth’s atmosphere, such as: neutrons, protons and heavy-ions. In addition

to spacecrafts that suffer with radiation effects, such particles are those that can pene-

trate the planetary magnetic field, causing SEEs on devices inside the Earth’s atmosphere

(BARTH; DYER; STASSINOPOULOS, 2003). Neutrons (Figure 2.8A) are the primary

particles generated by the shock between radiation ions and atoms from the atmosphere

(NORMAND, 1996). For that reason, such particles are more likely to generate SEEs at

high altitudes. The shock of primary cosmic rays with the atoms in the air can also result in

protons, pions, kaons, and electrons particles. In turn, most studies consider only Protons

(Figure 2.8B), since this particle have similar occurrence to neutrons, including energy,

charging capacity and altitude. Furthermore, the heavy-ion particles (Figure 2.8C) are

composed by one or more electric charge units with a mass that exceeds the alpha particle.

The occurrence of these particles is related to the outer layer of the Earth’s atmosphere,

or in the combination of high altitudes and high latitudes (polar), where they manage to

cross the magnetic belt. Such effect occurs due to the interactions of heavy-ions with the

Eath’s atmosphere cause fragmentation and thereby remove such ions.

Once one of these ions hits a device, it can generate an SEE which in turn can be

classified according to the resulting effect. The next Section describes the SEE types and

how they are commonly classified.

2.2.1 Classification of SEEs

This Section aims to review the types of radiation effects that lead to errors

occurring in transistor-based devices. The possible types of SEEs are destructive, those

that imply in hard errors mostly non recoverable, and nondestructive, soft errors that can

be observed in microelectronic devices (digital or analog). Soft errors imply in single

particle strikes that generate some noise or crash in common workflow. The types of hard

and soft errors can be classified as follows:

• Hard Errors: Single Event Latchup (SEL), Single Event Burnout (SEB), and Single

Event Gate Rupture (SEGR);

• Soft Errors : Single Event Upset (SEU) and Single Event Transient (SET).
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2.2.1.1 Hard Errors

The hard errors comprise irreversible changes in a device, which may imply in

permanent damage even after a restart. Most of the known hard errors are caused by thermal

stress generated by the impact of high energy ions (TORO et al., 2013). The aerospace and

microelectronic industry have identified the occurrence of SEL on a wide range of devices

based on Complementary Metal-Oxide-Semiconductor (CMOS) technology over the last

35 years (SOLIMAN; NICHOLS, 1983; JOHNSTON, 1996; BRUGUIER; PALAU, 1996;

HUTSON et al., 2009). With the technology scaling, the decreased transistor size along

with reduced nodal capacitance increase the device sensibility to charges induced by

radiation particles that can modify the electrical field and create a latchup (SCHWANK

et al., 2005; SCHWANK et al., 2006). The SEL consists of charges deposited by striking

energetic particles that modify the transistor electrical field and can trigger a parasitic

bipolar structure, leading to device destruction as a consequence of thermal stress. In

order to reduce the SEL sensitivity, the major existing solutions are based on layout

and/or process optimizations. As an alternative, since latchup is known to be temperature

dependent, a thermal controller that turns off the device power supply can disable the

parasitic structure in case of stress, avoiding the device damage (i.e., turning this effect

into a soft error).

Similarly, several studies over the past 30 years have shown that heavy ions can

trigger catastrophic failure modes in power Metal-Oxide-Semiconductor Field-Effect Tran-

sistor (MOSFET)s (JOHNSON et al., 1996; TITUS, 2013) Power MOSFETs, subjected

to cosmic environments or with widespread occurrence of particles, are prone to SEGR

and SEB, which can adversely affect a device’s performance and can cause system failures

(HANDS et al., 2011). In general, an SEB occurs in n-channel MOSFETs, combining the

off state and abnormal applied voltages. In this situation, when an particle collides with

the circuit it forms a parasitic structure that causes a high-density current and consequently

the device’s transistor burn (WROBEL et al., 1985). Similar to SEB, SEGR effects occur

mainly in MOSFETs. In this effect, the impact of accumulated ions holes under the gate,

increasing the electric field through the silicon dioxide that cause dielectric break that

results in a leakage current, which can also cause a door oxide’s thermal failure (TITUS et

al., 1998). Furthermore, the literature shows, both experimentally and theoretically, that

such effects must be considered at early circuit design phase in order to reduce/avoid their

occurrence (BARAK et al., 2008; TITUS, 2013; MUTUEL, 2014).
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2.2.1.2 Soft Errors

On the contrary to hard errors, soft errors are non-destructive effects induced by

the impact of energetic ions. Soft errors may emerge either during intensive or idle

working periods, affecting both critical and non-essential system functionalities. For

instance, Processor-based systems working at sea level are expected to experience at least

one soft error per day (GRANLUND; GRANBOM; OLSSON, 2003). Figure 2.9 shows

the occurrence of both SET and SEU in a given circuit example.

The difference between SET and SEU regards to the affected target and its duration

over time. The SET is a momentary voltage spike at a node of an integrated circuit

generated by a single energetic particle passing through or near the junctions creating

an ionization track. As illustrated in Figure 2.9, the peak voltage affects non-latched

elements such as combinational logic(LOVELESS et al., 2012). The resulting effect

may propagate any significant distance through the combinational logic and, if it is not

masked, can reach a memory element where can be sampled causing a fault (WIRTH;

KASTENSMIDT; RIBEIRO, 2008). In this sense, an SET can become an SEU when

it reaches an memory element, since it is stored in a memory element the error is no

longer transient. Although these effects are recurrent and widely studied, other radiation

effects appear with reduced scaling in current technology nodes. For instance, the charge

sharing causes signal degradation by transferring charges from one electronic domain

to another (FERLET-CAVROIS; MASSENGILL; GOUKER, 2013). Furthermore, the

reduced scale CMOS circuits have been showing a significant sensitivity to SETs (DODD

et al., 2010; PRINZIE; STEYAERT; LEROUX, 2018). Despite that, recent technology

nodes consider either Fin Field Effect Transistor (FinFET) and Fully Depleted Silicon On

Insulator (FDSOI) nanotechnologies that show significant improvements in terms of fault

resilience (LIU et al., 2016; AGUIAR et al., 2017).

Figure 2.9 – SEU and SET effects occurring in a circuit example.

Source: KASTENSMIDT; RECH (2016).
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As shown in Figure 2.9, the SEU differs from SET with regard to the affected

target in the integrated circuit and its duration over the time. The SEU phenomenon

may occur in a digital circuit when an ionizing particle strike results to a change in data

states from a storage element such as latches, flip-flops, Random Access Memory (RAM)

cells, or asynchronous memory logic (VARGAS; NICOLAIDIS, 1994). When a SEU

occurs, a simple reset or rewriting masks the resultant soft error effect, preserving device’s

normal behavior. In this sense, logical masking can occur through an operation that

instantly overwrites the faulty value in the memory element. Besides that, an electrical

masking can occur when the signal interference is not enough to change the logic state.

However, in the worst case scenario, the SEU effect can remain several clock cycles, for

synchronous logic, or until the next transition of an input signal in asynchronous logic

(TABER; NORMAND, 1993). In this case, the soft error could imply in catastrophic

results in the circuit operation.
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3 RELATED WORKS

The soft error assessment and mitigation literature is abundant, requiring a tax-

onomy to classify the different approaches. This thesis considers the definitions from

AVIŽIENIS; LAPRIE; RANDELL (2004) for fault, error, and failure. A fault is an event

that may cause the internal state of the system to change, e.g., a radiation particle strike.

When a fault affects the system’s internal state, it becomes an error. If the error causes a

deviation of at least one of the system’s external states, then it is considered as a failure.

To achieve compliance with safety and reliability standard requirements, it is utmost im-

portance to provide systems with appropriate mechanisms to tackle systematic, SEU, or

SET faults, also known as soft errors.

In this regard, this Chapter presents a literature review of the works related to this

Thesis contributions on the soft error reliability assessment of ML models executing on

resource-constrained IoT systems. First, Section 3.1 presents a review of fault injector

frameworks implemented on the top of VPs. Next, Section 3.2 discusses some related

works on soft error reliability assessment of ML models in different scopes. Finally,

we distinguish this Thesis from the works found in the literature (Section 3.2.2 and

Section 3.1.1).

3.1 Soft Error Assesment Considering Virtual Platforms

Fault injection simulation frameworks are gaining momentum due to their effi-

ciency to obtain prominent results on the soft error resilience of different systems early in

the design phase. These FI frameworks can be divided into two classes: (i) those focused

on the accuracy of the results and (ii) those that deal with highly complex systems or have

little time to explore the project reliability. Simulation-based soft error analysis at RTL or

gate levels are examples of the first class. Within this category, MANSOUR; VELAZCO

2013 presented a method called Direct Fault Injection (DFI) to emulate the consequences

of a SEU occurring in the processor’s memory cells. However, this approach might, in

same cases, require modification of the circuit architecture, which is not easily applied

anywhere. ABBASITABAR; ZARANDI; SALAMAT 2012 also investigated the fault

susceptibility of the LEON3 processor in RTL, but their approach relies on the Modelsim

simulator to inject faults without explicitly changing the reference design. Although both

approaches produce accurate results, they are restricted to relatively small or specific sys-
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tems, where experimental fault campaigns provide some simulation performance but with

low observability (i.e., fault must be detected by the system).

Researchers started investigating other approaches, such as the use of VPs, aiming

to boost the soft error analysis of complex systems comprising not only real software stacks

but also ISAs and state-of-the-art processors (HARI et al., 2012; PARASYRIS et al., 2014;

ROSA et al., 2015; KALIORAKIS et al., 2015). VP simulators facilitate fault injection

implementation and analyses due to their design flexibility (e.g., several processor models

available) and debugging capabilities (e.g., GDB support). Table 3.1 shows related works

considering fault injection capabilities in VP simulators, which are detailed below.

Authors in HARI et al. 2012 present the Relyzer, a hybrid simulation framework

for Scalable Processor Architecture (SPARC) core using Simics (MAGNUSSON et al.,

2002) and General Execution-driven Multiprocessor Simulator (GEMS) (MARTIN et

al., 2005) simulators coupled with a pruning technique to reduce injected faults and

targeting architectural integer registers and in the output latches of the address generation

units. The low number of injected faults is due to the high-cost simulation time of

the simics+GEMS simulator, which can achieve a few hundred Kilo Instructions Per

Second (KIPS). Further HARI et al. 2014 presented the GangES approach, a Relyzer

extension to more aggressive pruning and reducing the number of faults that must be

simulated. With these techniques embedded in the GangES, the authors further reduce

this simulation time by half. In GEISSLER; KASTENSMIDT; SOUZA 2014, the authors

proposed a fault injection framework based on Quick Emulator (QEMU) (BELLARD,

2005) to inject faults in an x86 architecture running applications in a Real-Time Operating

System (RTOS). This approach considers an in-house experimental setup that achieved

some performance related to the number of injected faults (i.e., an average of less than one

fault per second).

PARASYRIS et al. 2014 introduced the GemFI, a fault injection tool based on the

cycle-accurate full-system model of the gem5 simulator (BINKERT et al., 2011). Authors

improve the fault injections by creating checkpoints and parallelization strategies to gain

simulation performance (i.e., 64.5x faster on average). Moreover, KALIORAKIS et al.

2015 propose two tools: the GeFIN tool, a gem5-based fault injection framework and

MaFIN, a MIPS Assembler and Runtime Simulator (MARSS)-based (PATEL et al., 2011)

fault injection framework. In this work, faults are injected, randomly in time, in general-

purpose registers, caches control registers, and other micro architectural components.

(ROSA et al., 2015) presented a fault injection framework based on another VP, the
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OVPsim (IMPERAS, 2021b), which has the advantage of supporting parallel simulation

to boost up the fault injection process. Such works denote the VP fault injection simulators

not only has higher performance but the flexibility to perform techniques that reduce the

simulation time (e.g., checkpoints and parallelization) considering much more complex

scenarios.

To cover higher fault probabilities, the authors in TANIKELLA et al. 2016 in-

troduces the gemV, a gem5-based (BINKERT et al., 2011) fault injection framework for

micro-architectural elements such as instruction queue, reorder buffer, load-store queue,

pipeline queue, renaming unit, and register file. Similarly, DIDEHBAN; SHRIVASTAVA

2016 presented a gem5-based fault injection capable of flipping random register file bits,

pipeline registers, functional units, and load-store queue. GUAN et al. 2016 presents the

P-FSEFI tool, developed around the QEMU (BELLARD, 2005) simulator to injects faults

in the Central Processing Unit (CPU) logic units, registers, caches, and memory. The ex-

perimental setup consists of seven applications from the NAS Parallel Benchmark (NPB)

(BAILEY et al., 1991), each one in a sequential and a parallel version. Recently, BAN-

DEIRA et al. 2019 presented the SOFIA framework, an extension of the works presented

in ROSA et al. 2015 and ROSA et al. 2017. The framework’s construction considers

OVPsim (IMPERAS, 2021b) as a base, and the latest version has been enhanced with

the Multicore/Multiprocessor Software Development Kit (M*DEV) simulator capabili-

ties (IMPERAS, 2021a), which allowed us to incorporate the injection of bit-flips in six

different scopes: register file, physical memory, application virtual memory, application

variables and data structures, function object code, and function lifespan. Such approaches

evaluate soft error reliability considering parallel benchmarks and more comprehensive

fault coverage considering not only register files but other micro-architectural elements

and software structures. Furthermore, SOFIA flexibility allow us to use the same FI

approach and FI flow to evaluate the soft error reliability even in low level RTL1 processor

descriptions.

1The adopted RTL model must allow to access the register file and memory addressing
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3.1.1 Contribution in Soft Error Assessment Considering Virtual Platforms

Reviewed FI frameworks are also used to investigate different software stacks

configurations, such as standard parallelization libraries (ROSA et al., 2018) and compiler

optimization flags (LINS et al., 2017; SANGCHOOLIE et al., 2014; MEDEIROS et al.,

2018), and their impact on soft error reliability. For instance, authors in SANGCHOOLIE

et al. 2014, LINS et al. 2017, and MEDEIROS et al. 2018, investigate the impact of GCC

compilation flags (e.g., O0, O3, etc) on the application behavior under fault influence.

These works consider either simple (i.e., in-house and bare-metal applications) or small

scenarios, where only a single processor is considered. Modern compilers have specific

characteristics, which directly impact on applications performance, power-efficiency, and

reliability (HOSTE; EECKHOUT, 2008). Taking a step forward in compiler assessment,

SERRANO-CASES et al. 2019 proposed a method to find out the best combination of

compiler optimizations and parameters to improve the fault tolerance of applications.

Aiming to demonstrate the discrepancies between fault injections conducted at

different levels, CHO et al. 2013 evaluate the accuracy trade-offs associated with a variety

of high-level fault injection techniques (i.e., RTL) comparing to a flip-flop-level baseline.

Similarly, SCHIRMEIER; BREDDEMANN September 2019 apply gate, flip-flop, and

ISA level (i.e., register file) FI techniques to evaluate error-rate discrepancies considering

the gate-level FI as reference. Authors in CHO et al. 2013 use geometric means to show

the mismatch between the FI levels. Although useful, the authors mention that the adopted

metric may not capture how mismatch levels vary across various applications. To improve

the soft error assessment accuracy analysis, authors in SCHIRMEIER; BREDDEMANN

September 2019 use a ranked correlation to evaluate the mismatch between the FI ap-

proaches considering the Extrapolated Absolute Failure Count (EAFC) (SCHIRMEIER;

BORCHERT; SPINCZYK, September 2015) normalized according to the gate-level FI.

Such an approach ranks the results from FI techniques of each application, considering the

rank shuffling to evaluate the mismatch between the FI approaches. Authors demonstrate

that even with discrepancies in such an approach, ISA-level FI approaches are sufficient to

evaluate the soft error reliability of low-resource constraint processors (e.g., Cortex-M0).

However, the soft error analysis consistency conducted in this work was made based on

the EAFC metric. This metric only considers the occurrence of Silent Data Corrup-

tions (SDC)s, which might lead to an inadequate mismatch assessment between different

levels of FIs since not all fault classifications are taken into account.
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KALIORAKIS et al. 2015 were the first to be concerned with the accuracy of such

FI frameworks based on VPs, comparing FI implementations for gem5 (BINKERT et al.,

2011) and MARSS (PATEL et al., 2011). In the same sense, CHATZIDIMITRIOU et

al. 2019 proposed to analyze the soft error rate accuracy of a gem5-based FI framework

against results obtained from a neutron beam experiment, considering an Arm Cortex-

A9 processor and 13 benchmarks. An initial effort to evaluate the soft error assessment

consistency of a JIT-based FI framework is described in (ROSA et al., 2017), where a

Fault Injection Module (FIM) was integrated into gem5 and OVPsim. Results considering

several fault injection campaigns were compared, and a mismatch of up to 20% is reported.

In further experiments, the Authors achieved a lower worst-case mismatch of 12% by

reducing the simulation granularity of OVPsim, i.e., the number of instructions executed

per simulation cycle. Similar to KALIORAKIS et al. 2015, conducted experiments aim

to evaluate and provide insights on how to improve the accuracy of FI frameworks based

on VP simulators.

In this regard, the work conducted in this Thesis is complementary to SERRANO-

CASES et al. 2019 that evaluated x86 processors, as it aims to find out which is the

best compiler combined with an optimization flag for Arm processors. It also com-

plements CHATZIDIMITRIOU et al. 2019 because it considers other parameters (e.g.,

cross-compilers), and the soft error consistency analysis focus on a JIT-based VP. Finally,

differs from ROSA et al. 2017 with regard to the investigation of multi-core systems is

that we introduce the discussion on the different cross-compilers.

Even with most reviewed approaches in Table 3.1 covering several scenarios of

fault injection and application benchmark capabilities, the real consistency of soft error

reliability assessment in VP simulators remains open.

This Thesis distinguishes from works found in the literature by making an extensive

and statistical significance soft error consistency assessment of a JIT-based fault injection

framework (the SOFIA OVPsim fault injection module presented in Chapter 5). This work

is the first to cover so many aspects together, such as: single and multi-core processors

(i.e., Arm Cortex-M0, Cortex-M3, and Cortex-A9); two parallel programming models (i.e.,

Message Passing Interface (MPI) and Open Multi-Processing (OpenMP)) compared with

Serial execution; operating system (i.e., FreeRTOS, Linux kernel); five sets of compilers

and versions (i.e., GCC 4.9, GCC 7.2, Clang 6, Arm 6.10 and Arm 5.06); optimization

flags (i.e., O0, O1, O2, O3, Os and Ofast); and more than 50 applications taken from

the NPB (BAILEY et al., 1991), Rodinia (CHE et al., 2009), and the Mälardalen Worst-
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Case Execution Time (WCET) benchmarks (GUSTAFSSON et al., 2010). This range of

parameters led to more than 12.7 million fault injections, bringing an excellent confidence

level to the results. Note that the soft error consistency evaluation in multi-core processors

are presented in Appendix A since those results were conducted at ROSA (2018).

3.2 Soft Error Reliability Assessment of Machine Learning Techniques

The trend towards having edge computing in our daily lives is to see a wide variety

of promising new applications and devices where data collection and analysis are combined

(HAO et al., 2021). In this regard, lightweight and performance-efficient CNN inference

models have been deployed in resource-constrained devices thanks to software libraries

and Application Programming Interfaces (APIs) (LAI; SUDA; CHANDRA, 2018). These

libraries/APIs integrate different kernels and quantization techniques (CAPOTONDI et

al., 2020) that are devoted to reducing traditional machine learning (ML) models’ memory

and computational requirements.

While the bespoke and optimized implementations of ML models have been stud-

ied extensively, the susceptibility of such algorithms to soft errors is still an open research

question. In this sense, fault injection campaigns must be conducted to assess the reliability

of ML models and understand the fault vulnerability in different approaches (BREWER

et al., 2019). In this direction, recent works conduct fault injections considering soft-

ware frameworks (GRANAT et al., 2009; LI; PATTABIRAMAN; DEBARDELEBEN,

2018; CHEN et al., 2019), Field-Programmable Gate Arrays (FPGA)s (LIBANO et al.,

2017; SALAMI; UNSAL; KESTELMAN, 2018; TRINDADE et al., 2019; KHOSHAVI;

BROYLES; BI, 2020), Graphic Processing Units (GPU) (REAGEN et al., 2018; SANTOS

et al., 2018; IBRAHIM et al., 2020), and Application-Specific Integrated Circuits (ASIC)

(LI et al., 2017; BREWER et al., 2019).

Aiming to evaluate and improve the reliability of a SVM used in the Mars

Odyssey spacecraft, GRANAT et al. 2009 proposed a FI tool built on the Valgrind de-

bugger/profiler (NETHERCOTE; SEWARD, 2007) called Basic Instrumentation Tool for

Fault Localized Injection of Probabilistic SEUs (BITFLIPS). Such a tool was used to

validate an Algorithm-Based Fault Tolerance (ABFT) technique implemented in the SVM

by injecting faults in the application variables. The experiments demonstrate a significant

improvement in system reliability while using ABFT techniques in different SVM kernel

functions. The authors in LI; PATTABIRAMAN; DEBARDELEBEN 2018 proposed the
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TensorFI, a FI tool used to evaluate the reliability of TensorFlow ML applications (ABADI

et al., 2016). TensorFI uses a Software Implemented Fault Injection (SWIFI) to inject

faults at the inference phase of ML operators in TensorFlow. Furthermore, CHEN et

al. 2019 proposed the BinFI, an extension of TensorFI, which uses a binary-search tech-

nique to pinpoint the safety-critical bits and measure overall resilience in the TensorFlow

framework reducing the execution costs. Although both approaches produce significant

results, they are restricted to relatively generic software frameworks and do not consider

the execution in real devices.

The flexibility of FPGAs enable engineers to design distinct ML models in order

to assess different aspects of the soft error reliability in such approaches. For instance,

LIBANO et al. 2017 proposed a reliability evaluation methodology for two Feedfor-

ward ANNs implemented in an FPGA. Such work started to evaluate the influence of

the layer functions complexity in the NN reliability. The experiments consider both

radiation-induced and simulation fault injections to evaluate the impact on the Sigmoid

activation function considering three discretization levels. The study demonstrates that

faults occurring at neurons are propagated to multiple instances of the data set having

a higher occurrence in hidden layers when compared to output layers. In SALAMI;

UNSAL; KESTELMAN 2018, the authors evaluate the resilience aspects of a typical

fully-connected NN accelerator processing the Modified National Institute of Standards

and Technology (MNIST) dataset (DENG, 2012). This case study considers faults ran-

domly injected in specific NN registers while streaming the NN input data. The authors

compare the results from fault campaigns with the golden output data and correlate the in-

ference errors in the classification outputs to the application and architecture specifications.

TRINDADE et al. 2019 evaluate the soft error reliability of an SVM under both radiation-

induced and simulation fault injections experiments. Such an approach assesses the

reliability of an FPGA-designed SVM while classifying the fault’s criticality. Such study

demonstrates that the high number of soft errors in the target SVM architecture critically

affects the SVM accuracy. The authors in KHOSHAVI; BROYLES; BI 2020 investigate

the soft error effects in a Binarized Neural Network (BNN) accelerator implemented in

FPGA considering two topologies: a CNN composed with twelve layers used to classify

the Canadian Institute for Advanced Research (CIFAR)-10 dataset (KRIZHEVSKY; HIN-

TON et al., 2009); and a Fully-Connected NN with four layers used to classify MNIST

dataset (DENG, 2012). The experiments were performed with a modified version of the

Fast Inference for binarized Neural Networks (FINN) framework (UMUROGLU et al.,
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2017) targeting weights and activations of the NNs. In this reviewed case, the results

demonstrate that the classification accuracy in the BNN accelerator can drastically drop

in the presence of soft errors for the worst-case scenarios. Furthermore, the reviewed

FPGA-based works started to assess the soft error reliability of ML models considering

different scopes, and demonstrate that radiation-induced soft errors might critically affect

both the reliability and accuracy of ML inference models.

Reliability becomes an increasing concern as researchers started using CNNs

running on GPU Compute Unified Device Architecture (CUDA) cores applied to safety-

critical environments. In this sense, REAGEN et al. 2018 proposed the Ares tool, a

fault injection framework that enables the evaluation of soft error reliability of DNNs

executing directly on GPUs. Ares is built on top of Keras (CHOLLET et al., 2018),

which takes high-level DNN descriptions using either Theano (AL-RFOU et al., 2016)

or TensorFlow (ABADI et al., 2016). In this work, the fault injections were performed

at specific DNN design points, including weights, activations, and hidden states. The

authors demonstrate that the soft error reliability varies across the DNN concerning

different scopes such as the model, layer type, and data structure. SANTOS et al. 2018

use SASSI-based Fault Injector (SASSIFI) tool (HARI et al., 2017) and neutron beam

experiments to evaluate the reliability of object detection algorithms in GPUs. The

study demonstrates a significant reliability reduction in CNNs once the faults occurring

in a GPU tend to propagate to multiple threads. Also, soft errors occurring in CNN

layers are most likely to generate critical errors (i.e., errors that could potentially impact

safety-critical applications). Similarly, IBRAHIM et al. 2020 evaluate layer and kernel

vulnerabilities of Residual Network (ResNet) CNN architectures executing on GPUS. This

work’s experiments show the vulnerability of ResNet kernel and layers while generating a

high number of crashes and critical errors. Although GPUs allow a high parallelism and

performance capabilities in the execution of CNNs, this advantage generates a high fault

propagation through the NN, which means faults are most likely to generate critical errors.

To understand the reliability implications of using high-performance ML accelera-

tors, researchers started to evaluate the fault impact on such devices. LI et al. 2017 modify

the Tiny-DNN framework (TINY-DNN, 2017) to inject faults in the buffers of four CNNs

running on the specialized Eyeriss DNN accelerator (CHEN; EMER; SZE, 2016). This

work compares the DNN application outputs to evaluate the Failure-in-Time (FIT) rates

of the Eyeriss accelerator and classify the output rank deviation (i.e., critical SDCs). The

study demonstrates that the sensitivity of the DNN depends on different aspects, such as
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the network topology and the data type used. Besides that, the buffers implemented to

leverage data locality are hugely affected by soft errors, increasing the overall FIT rate of

the DNN accelerator. In BREWER et al. 2019, the authors use radiation-induced experi-

ments to evaluate the reliability of a spontaneously Spiking Neural Network (SNN) from

International Business Machines (IBM) TrueNorth neurosynaptic systems (AKOPYAN et

al., 2015). Although the high occurrence of false positives and false negatives in the SNN

output classifications, the authors found that the overall classification accuracy remains

unaffected.

The impact of SEUs in the execution of ML inference models, particularly convolu-

tional ones has received more attention recently SANTOS et al.; KHOSHAVI; BROYLES;

BI; TRINDADE et al.. Such works demonstrated that the soft error reliability of CNN

models executing on resource-constrained devices depends on (i) the instruction set archi-

tecture, (ii) the layer where the faults are injected, and (iii) the adopted precision bitwidth.

Furthermore, other works have also demonstrated that SEUs occurring in data or NN

parameters (e.g., weights and activation quantizations) stored in memory affect inference

models’ soft error reliability and accuracy. Memory faults (e.g., bit flips in memory

elements), which may result from environment perturbations and radiation-induced soft

errors, may change the stored data (e.g., CNN parameters), which may lead to large de-

viations of the inference results (LI et al., 2017; REAGEN et al., 2018). In this context,

some works aimed at protecting memory cells to ensure the reliability of inference results

in the presence of register and memory faults (AZIZIMAZREAH et al., 2018; GUAN

et al., 2019; JASEMI; HESSABI; BAGHERZADEH, 2020). More recently, some works

also assess the fault impact considering hardware independent algorithms in TensorFlow

backend (BOSIO et al., 2019; PING; TAN; YAN, 2020). In turn, other works investigated

the soft error reliability of weights and activations from DNNs (REAGEN et al., 2018;

KHOSHAVI; BROYLES; BI, 2020).

LI et al. 2017 investigated the soft error effects on datapath registers and buffers

of a DNN considering a specialised Tensor Processing Unit (TPU). REAGEN et al.

2018 started evaluating the soft error reliability of DNN parameters in the training phase

through fault injections in bias, weights, activations, and hidden states. In (REAGEN et

al., 2018)(SANTOS et al., 2019) authors assessed the impact of soft errors on weights,

bias, and hidden states of DNN models (e.g., CNN) executing on GPUs. In TRINDADE

et al. 2019, the authors exposed an FPGA board to radiation effects in order to evaluate

the soft error reliability in SVM algorithms. Results show that critical faults present
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high probability to propagate in along the inference. Moreover, SANTOS et al. 2019

demonstrate that the dataset is critically affected by a single soft error occuring in memory

parameters of the CNN executing in GPUs. Similarly, in KHOSHAVI; BROYLES; BI

2020 and LUZA et al. 2020, the analysis comprise the effects of faults on BNN and CNN

parameters stored in FPGA based memory. Other works (KHOSHAVI; BROYLES; BI,

2020; LUZA et al., 2020; CORNELIOU et al., 2021) demonstrate that the occurrence of

bit-flips in NN’s parameters stored in memory affect both reliability and accuracy. Authors

have also evaluated the soft error reliability of NN models taking into account different

precision implementations varying from floating-point CNNs (SANTOS et al., 2019;

LUZA et al., 2020) to 1-bit precision Binarized Neural Networks (BNNs) (KHOSHAVI;

BROYLES; BI, 2020). Researchers are also investigating new technologies and memory

designs aiming at protecting memory cells to reduce disturbances in NN parameters

and buffers in the presence of soft errors (AZIZIMAZREAH et al., 2018)(JASEMI;

HESSABI; BAGHERZADEH, 2020). The reviewed works demonstrate that a single fault

occurring in bias, weights, and activations may cause critical errors compromising the

entire classification and causing the majority of the input vectors to be misclassified, which

has a serious effect on applications’ reliability and accuracy.

The development of ML models targeting the edge is non-trivial due to the lim-

ited computational capabilities and energy efficiency of resource-constrained IoT edge

devices (TABANELLI; TAGLIAVINI; BENINI, 2021). In recent years, both academic

and industrial researchers have focused their interest on NNs performance and sustain-

ability trade-off, where emerging parallel IoT processors represent an appealing target for

tiny ML models since they enable to meet the ML computational constraints (QI; LIU,

2018). Recent works have been proposed parallel solutions to lift the performance of

neural network models (ZHANG et al., 2020; GAROFALO et al., 2020; TABANELLI;

TAGLIAVINI; BENINI, 2021). GAROFALO et al. 2020 provide quantized neural network

kernels ranging from 8-bit to 1-bit fixed-point integer inferences targeting a multi-core

RISC-V based cluster. In TABANELLI; TAGLIAVINI; BENINI 2021, the authors employ

non-neural ML kernels to maximize the speedup while using floating-point emulations on

a multi-core RISC-V platform. Although underlying approaches enables the execution of

ML algorithms on parallel devices, software engineers must consider parallelism as a new

issue to be addressed while developing lightweight and performance-efficient software to

avoid catastrophes in safety-critical applications. In this sense, while most of the existing

works consider HPC or architecture-specific approaches (LI et al., 2017; REAGEN et al.,
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2018; SANTOS et al., 2018; KHOSHAVI; BROYLES; BI, 2020), the works SANTOS et

al. 2018 and ROSA et al. 2019 demonstrate that the parallelization of ML models affects

their soft error reliability. Furthermore, the assessment of the soft error reliability at the

level of sequential and parallel ML models might be an emergent research question for the

next years.

The reviewed works presented different approaches to evaluate several aspects on

the soft error reliability of ML models. However, the next step in the soft error reliability

assessment is to improve reliability while protect the target platform against radiation

effects. Radiation-induced soft errors can be handled either in hardware or software using

mitigation techniques. In this sense, the following Section 3.2.1 presents a brief review

considering system-level soft error mitigation techniques rather than technology-specific

approaches that require control of the chip fabrication process, which is often outsourced.

3.2.1 Review of System-level Soft Error Mitigation Techniques

With the high adoption of nanotechnology manufacturing process the search of

methods to reduce the thread of radiation effects in computing systems has become promi-

nent in recent years (KASTENSMIDT; CARRO; REIS, 2006; AVIRNENI; SOMANI,

2011). Soft error mitigation techniques comprise different methods of protection that

might be applied either in hardware, software, or in a hybrid mode. While hardware

approaches lead to the area and power overhead, software techniques are generally im-

plemented on a per-application basis that usually incurs performance penalties. Most

of such techniques implement any type of redundancy that can vary in terms of time or

area/space. The temporal redundancy comprises the same combinational logic used at

many separate times, while spatial redundancy replicates the computing element main

times (MAVIS; EATON, 2002). However, soft error mitigation techniques implemented

in hardware require physical modification of the target device during the design phase.

Aiming at mitigating soft errors that affects the processor’s control-flow and data-

flow without changing the chip design, some mitigation techniques are developed on a

per-application basis. Such approaches are used due to flexibility and proper fault coverage

while charging some performance and energy penalties. For instance, NICOLESCU;

VELAZCO 2003 propose an error detection technique that is based on the introduction of

data and code redundancy using a set of transformation rules applied to high-level code.

In turn, BENSO et al. 2000 introduce the REliable Code COmpiler (RECCO), a tool that
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exploits code reordering and selective variable duplication to generate hardened C/C++

source code automatically. SERRANO-CASES et al. 2019 use genetic algorithms to find

a combination of optimization flags that can increase the final binary reliability while

maintaining a reasonable performance and memory utilization trade-off. The authors in

RODRIGUES et al. 2016 developed software-based Triple Modular Redundancy (TMR)

and Conditional Modular Redundancy (CMR) mitigation implementations, aiming to

reduce the occurrence of soft errors in a Cortex-A9 processor running Linux kernel.

Another software-based alternative to mitigate soft errors comes from low-level

code protection. Authors in REIS et al. 2005 promote the SoftWare Implemented Fault

Tolerance (SWIFT) technique aiming to reduce the overhead associated with Error Detec-

tion by Duplicated Instructions (EDDI) (OH; SHIRVANI; MCCLUSKEY, 2002). They

remove duplicate store instructions, reducing both memory and performance overhead.

The SWIFT technique assumes that the system’s memory architecture is protected by some

error correction mechanism. Results showed a 14% speed-up over EDDI when tested with

an Intel Itanium 2. Furthermore, DIDEHBAN; SHRIVASTAVA 2016 improved SWIFT

technique by checking the load instructions right after a store instruction and creating re-

dundant load instructions in critical sections to achieve near-zero the occurrence of SDC.

A popular instruction-level mitigation technique introduced by REIS; CHANG; AUGUST

2007 is the SWIFT-R, which implements a TMR to recover from soft errors in the register

file. Instead of duplicating instructions, it triplicates, and change the checking points to a

voter mechanism.

In FENG et al. 2010, authors presented the Shoestring technique, which exploits a

low-cost symptom-based error detection mechanism that focuses on applying instruction

duplication to protect only those code segments that are likely to result in user-visible

faults and do not exhibit symptomatic behaviour. Results show that Shoestring can re-

cover from an additional 33.9% of soft errors that are undetected by a symptom-only

approach. Authors in FENG et al. 2011 present the Encore, a software-based error re-

covery mechanism (paired with other error detection techniques) that combines program

analysis, profile data, and simple code transformations to create code portions, which can

recover from faults at a minimal cost. Gathered results show that Encore can recover

from 97% of transient faults on average with 14% additional runtime overhead. Another

TMR-based technique, called ELZAR, is proposed in KUVAISKII et al. 2016. It tripli-

cates arithmetic and logical operations, and the voting mechanisms are inserted between

register operands of memory and control flow operations for recovery. To reduce the
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performance overhead introduced by replicated instructions, they utilize Intel Advanced

Vector Extensions (AVX), which includes SIMD instructions. The experiments show that

the performance overhead is reasonable for CPU-intense applications with many floating-

point operations. However, for some case studies, the instruction-level parallelism was

inefficient, resulting in a performance penalty that surpassed the SWIFT-R technique.

The NEMESIS technique introduced by DIDEHBAN; SHRIVASTAVA; LOKAM

2017 is a duplication with recovery technique. It replicates instructions and checks the

results of memory write operations and branches’ direction. If an error is detected, it

then recovers to a valid state if possible; otherwise, a power restart is needed. The

results, obtained from ten selected applications, show that at least 97% of the detected

errors are recoverable. Another error recovery technique is the InCheck (DIDEHBAN;

LOKAM; SHRIVASTAVA, 2017), which is an extension of the near Zero silent Data

Corruption (nZDC) technique (DIDEHBAN; SHRIVASTAVA, 2016). The proposed

technique comprises of error detection, diagnosis, and recovery schemes. Unlike SWIFT-

R, the InCheck mitigates faults by protecting error handling routines in addition to the

main program instructions. The authors claim that their technique offers complete error

coverage for the tested applications.

3.2.2 Contribution in Machine Learning Soft Error Assessment and Mitigation

Most of the reviewed works consider different approaches to evaluate the relia-

bility of ML models in distinct scopes. Some of the reviewed works evaluate the soft

error reliability considering the fault injections in ML operators (e.g., data and parame-

ters) through the early phases of the ML model development framework (i.e., TensorFlow,

PyTorch, Keras). Either FPGA and GPU-based works consider both radiation-induced

and simulation fault injections to evaluate soft error reliability of different ML models and

algorithms. Regarding evaluations, specific points of the analysis stand out considering

the layers of the NN and the types of data used in the inference. These characteristics

are relevant since they are directly related to the effect of failures both in the reliability

and accuracy of ML models. Even with an overall resilience, ASIC-based ML accelera-

tors presented a high occurrence of false positives and false negatives, which can mean

catastrophic consequences when applied to safety-critical environments. Table 3.2 shows

related works considering soft error assessment in ML models and highlights the approach

adopted in this Thesis.
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Emerging IoT systems are expected to incorporate ML models aiming to recognize

patterns and predict how systems (e.g., medical) would react to unexpected circumstances

(MAHDAVINEJAD et al., 2018; AMOH; ODAME, 2019). Aiming to enable the ex-

ecution of such computationally intensive ML models under resource-constrained IoT

devices, researchers and industrial leaders are investigating software libraries and APIs.

Such libraries/APIs are devoted to support the efficient execution of ML models at reduced

memory footprint, which is critical to edge-computing devices (LAI; SUDA; CHANDRA,

2018). Another approach relies on developing bespoke and optimized ML models, allow-

ing their execution on battery constrained edge IoT devices. The resulting benefit comes

at the cost of precision, which has crucial importance in the ML models efficiency and

applicability.

In the context of soft error assessment, with the exception of TRINDADE et al. 2020

and the work resulting from this Thesis, reviewed approaches do not consider resource-

constraint on their experiments. The majority of these works consider either FPGA

implementations of ML models (LIBANO et al., 2019; TRINDADE et al., 2019; LUZA

et al., 2020) or their execution on GPU (SANTOS et al., 2018), DNN accelerators (LI et al.,

2017; REAGEN et al., 2018; KUNDU et al., 2021) or general-purpose processors (ROSA

et al., 2019; CHEN et al., 2019). On the soft error mitigation side, traditional partial TMR

or specific mitigation techniques have been considered either in FPGA implementations

(LIBANO et al., 2019) or applied to specialized hardware accelerators (LI et al., 2017) or

more generic GPUs (SANTOS et al., 2018).
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Regarding the findings from the reviewed works highlighted in Table 3.2, soft

errors can affect either the reliability and the accuracy of ML models. In this sense, the

authors demonstrate that the fault effects vary according to different aspects of the ML

model: the model, the topology (i.e., layers and activations), and the dataset (i.e., data

type and data optimizations). Different from the above works mentioned in Table 3.2, this

Thesis contributes with the soft error assessment of reduced and mixed precision CNNs

developed with specialized NN kernels ( CMSIS-NN and CMix-NN), which are devoted to

improve the performance and minimize the memory footprint of NN -based applications.

To better understand how soft errors affect the reliability of the ML models, gathered results

had been obtained through fault injection campaigns conducted with SOFIA framework

(BANDEIRA et al., 2019). The proposed evaluation comprises both the reduced precision

CMSIS-NN (LAI; SUDA; CHANDRA, 2018) kernels, which support 8-bit fixed point

quantizations, and CMix-NN (CAPOTONDI et al., 2020) kernels, which supports 8, 4,

and 2 bit mixed precision quantizations. The adopted case studies are: (i) the CIFAR-10

CNN composed of 7 layers developed with CMSIS-NN and trained with CIFAR-10 dataset

(KRIZHEVSKY; HINTON et al., 2009); and (ii) the MobileNet CNN composed of 29

layers developed with CMix-NN and trained with ImageNet dataset (DENG et al., 2009).

To evaluate the soft error reliability considering the application inference flow, this work

employs a fault injection technique that isolates the critical functions of the CNN model’s

layers. In order to conduct a more relevant assessment, this Thesis also promotes a fault

classification, which considers the impact of critical faults on the output predictions of

evaluated ML models. Furthermore, to asses the impact of soft errors in the ML model’s

parameters (e.g., activation values) storage in memory elements, SOFIA was extended to

enable the fault injection in isolated memory sections (i.e., Flash and RAM).

In summary, this Thesis innovates from previous work in five key directions:

– First, this is the first work to investigate the relationship between the soft error

susceptibility and reduced precision CNN models, which is completely ignored in

the works presented in Table 3.2;

– Second, this work evaluates the soft error reliability of reduced and mixed precision

CNN applications executing on resource-constrained IoT devices, considering dif-

ferent aspects: register file, layers, activations, multithreads, and memory sections;

– Third, this Theses focuses on reducing the occurrence of soft errors in resource-

constraint devices. Therefore, this is the first work to evaluate the benefits of using

a lightweight technique, RAT, w.r.t. a partial replication technique;
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– Fourth, this work explores the relative performance, memory utilization, and soft

error reliability trade-offs of two system-level mitigation techniques considering

a microprocessor running different precision bitwidth variations of MobileNet on

ImageNet;

– Fifth, extensive and consistent soft error assessment of adopted case studies consider-

ing more than 14.8 million fault injections while maintaining acceptable consistency

metrics defined in the literature (LEVEUGLE et al., 2009).
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4 SOFT ERROR ASSESSMENT METHODOLOGY

This Chapter details the adopted fault injection approaches and their fault injec-

tion modules, used to evaluate the soft error resilience of single or multi-core systems

(Section 4.1). In this sense, each fault injection module is detailed to show its usefulness,

that is, RTL (Section 4.1.1), gem5 (Section 4.1.2.1), and OVPsim (Section 4.1.2.2). Next,

Section 4.2 details the adopted fault classification, which is implemented in the three

FIMs so that the results are automatically classified. Section 4.3 presents the assessment

metrics used in this work, which guarantees the consistency and statistical significance of

the results and subsequent conclusions of the research. Finally, Section 4.3.1 details the

adopted software-based soft error mitigation techniques used in this Thesis.

4.1 Fault Injection Frameworks

This Section first describes two event-driven fault injection frameworks based

on Questa Advanced Simulator (Section 4.1.1) and gem5 (Section 4.1.2.1), the latter is

integrated into the SOFIA framework. Such approaches are used in the present work as

references for the assessment of single and multi-core systems since RTL descriptions

represent the synthesizable real processors and gem5 is known as an accurate simulator

for complex multi-core systems(BUTKO et al., 2012). The main functionalities of SOFIA

are presented in Section 4.1.2.2, and then Section 4.1.2.2 describes the OVPsim-based

fault injection module.

4.1.1 RTL Fault Injection Module

This Section depicts the developed fault injection module for RTL descriptions,

similar to that presented in (ABBASITABAR; ZARANDI; SALAMAT, 2012; BOR-

TOLON et al., 2018). The main distinction between FIMs is the moment in which the

fault is injected. RTL-FIM executes under a discrete event model of computation (e.g.,

Questa Advanced Simulator), enabling the injection of faults at any or even within half

a clock cycle. Therefore, inserted faults may affect the behavior of both the current and

the next instructions. Developed RTL fault injection module explores built-in simulator

commands and its observability capability to control and monitor the internal signal of a
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given processor without requiring any changes in its description.

Figure 4.1 – Fault injection campaign flow applicable to the three fault injection approaches, i.e.,
RTL, gem5 and SOFIA.
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This approach assumes that the fault injection campaigns comprise the five phases

illustrated in Figure 4.1: (1) Platform Setup; (2) Golden Reference Model; (3) Fault

Injection Setup; (4) Fault Injection Simulation; (5) Fault Analysis. First, the Platform

Setup defines the parameters used in the fault campaign, such as the target architecture

and the evaluated application. In the second phase, the FIM executes the target system

to extract its behavior under ideal circumstances (i.e., no presence of faults). To improve

the performance of the RTL fault injection campaign, this step generates checkpoints

from simulation time slices. Then, in the Fault Injection Setup phase, the engine defines

the fault configuration, which consists of its location (e.g., register, memory address),

position (e.g., register bit), and its insertion time. The fault injection configuration relies

on a random uniform function, which is a well-accepted fault injection technique since it

covers the majority of possible faults on a system at a low computation cost(LEVEUGLE

et al., 2009; CHO et al., 2013). In the Fault Injection Simulation phase, the FIM loads the

checkpoint, executes the target system architecture in the presence of the configured faults

(i.e., flipped bits), and extracts its behavior. Throughout the Fault Injection Simulation,

the developed engine uses available interrupt signals to detect any unexpected activity.

Finally, in the last phase, the FIM compares the results against its golden reference data to

automatically classify the occurred faults.

4.1.2 SOFIA Framework

Rather than develop a fault injection (FI) framework from scratch, this Thesis

adopted SOFIA - an open-source toolset developed by (BANDEIRA et al., 2019; ROSA,

2018). The SOFIA framework integrates well-accepted FI techniques along with several
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facilities (e.g., error tracer module), which enable reliability and software engineers to

identify and classify the effects of soft errors on the system’s behavior, considering both

hardware and software architectures. The adopted framework emulates the occurrence of

Single Bit Upsets (SBU)s by injecting faults into pre-selected register or memory locations

during the execution of a given software stack (i.e., kernels, drivers, and applications). In

this work, SBUs targets only storage elements due to its higher susceptibility to radiation

events when compared to logic elements (SEIFERT et al., 2012). Furthermore, register FI

modeling is useful to evaluate low-end processors’ soft error reliability since it concentrates

injection into the more critical structures of the ISA (SCHIRMEIER; BREDDEMANN,

September 2019). Nevertheless, the framework supports the injection of bit-flips in the

six different scopes presented in Figure 4.2: (a) register file, (b) physical memory, (c)

application virtual memory, (d) application variables and data structures, (e) function

object code, and (f) function lifespan. The FI techniques provided in SOFIA can be

implemented in any simulation environment that provides access to the system Memory

Management Unit (MMU) (BANDEIRA et al., 2019). Note that in addition to random

register file, the function lifespan technique consider the injection of bit-flips in the register

file during the execution of a selected function, while the remaining techniques consider

the MMU translation to inject bit-flips in physical memory addresses. The following

Sections describe the fault injection modules available in SOFIA framework.

Figure 4.2 – Fault injection types available in SOFIA.
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4.1.2.1 SOFIA: gem5 Fault Injection Module

The SOFIA framework uses the gem5 (BINKERT et al., 2011) among the available

cycle-accurate virtual platform simulators due to its open and free availability as well as

its support for the Arm processor architectures with four CPU models, which differ in

speed/accuracy trade-offs. gem5 also supports a rich set of component models, including

processor cores, memories, caches, and interconnections. It targets microarchitecture

explorations, which incurs substantial simulation overheads due to the number of mod-

eled aspects; typically, it reports simulation performances varying form 2 to 10 Million

Instructions Per Second (MIPS).

Additionally, gem5 is a well-known simulator used in many research projects

underlying the soft error assessment systems (PARASYRIS et al., 2014; KALIORAKIS

et al., 2015; CHATZIDIMITRIOU et al., 2019; ROSA et al., 2018). Our gem5-based FIM

follows the five-phase fault injection flow illustrated in Figure 4.1.

Although the phase split is the same for the three FIMs, each one has its own

implementation. The first difference w.r.t. RTL is in the platform setup. Here, the

application, the kernel, and the configuration of the target architecture are compiled to

simulate together in the first phase of the flow. Another difference is on how to inject a

fault. While RTL relies on proprietary Questa Advanced Simulator commands such as

force -deposit, gem5-FIM employs Python scripts to control the simulation flow and uses

C/C++ modules to model the microarchitectural components. The deployed fault injection

approach minimizes intrusion into the simulator’s engines, allowing any researcher in

possession of the original simulator to use, modify, or extend its functionality.

4.1.2.2 SOFIA: OVPsim Fault Injection Module

Due to the high simulation speed (typically at hundreds of MIPS), virtual platform

simulators based on JIT dynamic binary translation appear to have an advantage over

event-driven simulators (ROSA et al., 2015). The SOFIA framework also considers the

M*DEV toolset (IMPERAS, 2021a), an advanced version of the OVPsim (IMPERAS,

2021b) that includes specific tools to improve the development and verification of embed-

ded software, utilizing virtual platforms. Among available JIT-based virtual platforms,

OVPsim (IMPERAS, 2021b) distinguishes by its rich number of component models, which

includes more than 170 processor variants, memories, Universal Asynchronous Receiver

Transmitter (UART), among other components. Note that the JIT-based simulator remains
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OVPsim and the M*DEV’s capabilities are used to enable and improve fault injection tech-

niques and campaigns. In this sense, OVPsim-FIM is an instruction-accurate simulation

engine, and thus faults can only occur between instructions. Consequently, injected faults

can only influence the behavior of the next instructions. The lack of micro-architecture

components and its untimed simulation engine restrict the soft error reliability analysis

and impact on the results accuracy. Results demonstrating the loss of accuracy w.r.t. lower

level FI simulation approaches is discussed in Sections 4.1.1 and 4.1.2.1.

OVPsim-FIM also relies on the five-phase fault injection flow shown in Figure 4.1.

However, OVPsim-FIM has an improved fault injection infrastructure, including two sim-

ulation techniques to boost the fault injection assessment: checkpoint and an independent

parallel simulation engine. The checkpoint technique consists of collecting platform com-

ponents context during the Golden Reference Model (phase 1) to restore the appropriate

context later during the FI campaign, reducing the amount of re-executed code and, con-

sequently, accelerating the simulation time. This technique is built using M*DEV’s save

and restore functions, allowing restoring the processor and memory context. In addition,

the independent parallel simulation technique benefits from the host’s processing capacity.

The proposed simulation infrastructure comprises a set of C-based functions (e.g., man-

agement) and bash scripts developed according to the OVPsim guidelines (IMPERAS,

2021a). The goal is to allocate one platform model per available host-core, enabling

the execution of multiple fault injection campaigns in parallel (ROSA et al., 2015). For

example, considering a quad-core processor machine, it is possible to run four platform

models injecting 1,000 faults each, reaching 4,000 fault injections in parallel. This being

one of the techniques used to enable the assessment of an extremely large number of FI

scenarios in this work.

Among the different scopes of bit-flip injections, this work considers the random

register file, the function lifespan, and the physical memory to assess complex safety critical

applications, for instance, deep inference networks. Aforementioned reviewed works

indicate that engineers must be able to early asses the soft error reliability considering

both the application execution flow and the storage elements used to accommodate the

object code and a given dataset of a neural network application. On the one hand, the

random register file is a FI technique that homogeneously stimulates all general-purpose

registers that execute the CNN application and operating system codes. On the other

hand, function lifespan reduces the FI spectrum by limiting the insertion time to those

small intervals where the target function is active. As the name implies, physical memory
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reproduces faults coming from radiation particles through bit-flip injections into system

memory. In the latter technique, to assess the different effects of soft errors occurring in

storage elements, this work extends the OVPsim-FIM to inject faults into specific memory

sections (e.g., RAM or Flash). Such facility allowed us to assess the reliability of the

CNN data, both stored in register files and memory, as later discussed in Section 6.1.3 and

Section 6.2.3.

Figure 4.3 – Proposed extension in the physical memory FI technique.
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Figure 4.3 illustrates the proposed extension inside the framework FI flow. The

developed extension uses the application memory map defined by the compiler to inject

faults into the memory section selected in the Platform Setup phase. At phase 3, the

scripts generate the fault list according to the mapped addressing range. Further, it maps

the injection address and the application’s output variable to verify and classify the impact

of the failure. Note that developed extension is totally non-intrusive, thus not influencing

the platform simulation process and consequently without impacting the performance at

the fault injection campaign.

4.2 Fault Classification

Aiming to achieve a reasonable confidence level, the three fault injection modules

execute the FI campaigns according to an adopted statistical analysis (Section 4.3) to

characterize the target architecture behavior in the presence of faults, so that additional

campaigns do not disturb the result. By default, the gathered results are classified according
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to the well accepted classification proposed by CHO et al. 2013, which defines five possible

behaviors for a system in the presence of soft errors:

– Vanish: no fault traces are left in both memory and architectural state.

– Output Not Affected (ONA): the resulting memory is not modified, however, one

or more remaining bits of the architectural state is incorrect.

– Output Memory Mismatch (OMM): the application terminates without any error

indication, and the resulting memory is affected.

– Unexpected Termination (UT): the application terminates abnormally with an error

indication.

– Hang: the application does not finish requiring a preemptive removal.

Complementary to Cho’s classification, this work proposes a bespoke fault clas-

sification that evaluates the impact of soft errors on the output probabilities of ML case

studies. This classification follows the pattern shown in (LI et al., 2017; TRINDADE et

al., 2019; KHOSHAVI; BROYLES; BI, 2020), where the authors identify the faults in

the outputs as: correct output, tolerable faults, critical faults, and crashes. As shown in

Figure 4.3, the proposed classification relies on the application output trace during either

golden and fault injection simulations. The resulting faulty data is automatically classified

according to the following behavior:

– Correct outputs: are the scenarios where the output probabilities (e.g., recognized

top ranked classification) are the same as faultless execution (i.e., Vanished and

ONA);

– Critical faults: consider only the OMM faults that affect the output with incorrect

probabilities and no predictions (i.e., cases where odds are dispersed, therefore, they

have no probabilities in the output data). Incorrect probabilities are those results

from OMM, which covers two possibilities: (i) when the top-ranked classification

differs from the one predicted in the fault-free execution of the ML model; (ii) when

there is no top-ranked classification (i.e., the odds are dispersed). No prediction

cases are those that have no probabilities in the output data.

– Tolerable faults: are the remaining OMMs, which are those that have the top-ranked

classification equals to the fault-free execution of a NN.

– Crash: comprises the application that ends abnormally with an error indication or

does not finish, requiring a preemptive removal after a threshold execution time (i.e.,

effects of UT and Hangs).
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Note that such proposed fault classification have been developed based on clas-

sification of CNN models. However it can be used for any ML model that saves the

output (i.e., probabilities or other either information) after it’s execution. Furthermore, it

is essential to mention that the main difference between critical fault and crash is that the

former refers to a silent error (i.e., the application ends without an error signal) while the

latter is a detectable one (i.e., an error signal or unexpected behaviour). Silent errors are

considered critical in this work as they can be propagated, which might ultimately incur in

human life losses for safety-critical applications (e.g., autonomous vehicles). In contrast,

detectable errors can be handled by the system as there is the possibility to reset the system

or rerun the algorithm to obtain the correct result.

4.3 Assessment Metrics

One of the main concerns when assessing a system’s reliability is to develop a

precise, well-covered and realistic approach. In this sense, this work sought to ensure

that the number of fault injections has a statistical significance by applying the equations

developed by (LEVEUGLE et al., 2009). Equation (4.1) shows the minimum number of

campaigns needed to cover a certain confidence level with their respective margin of error.

While the confidence level assures that if we repeat the experiments, the same results are

obtained, and the margin of error indicates the percentage difference between the obtained

results and the real value of the population.

𝑛 =
𝑁

1 + 𝑒2 × 𝑁−1
𝑡2×𝑝×(1−𝑝)

(4.1)

where: 𝑁 is the initial population, 𝑝 is the estimated probability of a failure (defined as

50%), 𝑒 is the considered margin of error, and 𝑡 is the minimum required confidence level

(usually 95% is eligible), which is calculated from t-Distribution table (MCKAY, 1932)

considering the number of exposed bits as degree of freedom.

Our initial population is the product of possible spatial and temporal fault injec-

tions, i.e., the location (e.g., register, memory address) and the position (e.g., register

bit) at which the bit-flip will be applied to and its insertion time (e.g., a random clock

cycle), respectively. An essential characteristic of the Equation (4.1) is that when the

initial population (𝑁) is large, its increase has little influence on the FI campaign size for

a given margin of error and confidence level. For example, for a population greater than 1
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million (𝑁), if the chosen confidence level is 99% (in which the calculated t corresponding

to 2.575829303549), with a margin of error of 5% (𝑒 = 0.05), we must perform at least

664 fault injections to provide the necessary confidence in our results.

While maintaining consistency of results, the use of metrics is essential to assess

the soft error reliability of a given system. Therefore, this work uses the Mean Work To

Failure (MWTF) metric (REIS; CHANG et al., 2005) to properly assess the soft error

reliability impact on the adopted case studies (Chapter 6). Complementary to the fault

classification, the MWTF shows the average amount of work that an application can

perform until reaching a failure (i.e., higher values are better). This is a fair metric to

either compare or evaluate the effects generated by different mitigation techniques. This

metric is evaluated in the Fault Analysis step (Figure 4.1). Note that for deep inference

networks, the unit work is defined as the relationship between the application’s runtime

and the most critical vulnerability (i.e., critical faults), as shown in Equation (4.2).

𝑀𝑊𝑇𝐹 =
1

(𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 × 𝐴𝑉𝐹𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐹𝑎𝑢𝑙𝑡𝑠)
(4.2)

The Architecture Vulnerability Factor (AVF) is used to measure the probability

of a fault result in an error (i.e., SDC or Crash) (MUKHERJEE et al., 2003). The AVF

critical considers only the SDCs that actually led to wrong classifications. For example, in

safety-critical applications, such as autonomous cars, a critical fault can alter the detection

of an obstacle in front of the vehicle, which can lead to an accident. For this reason, this

work uses the critical-based AVF (𝐴𝑉𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑓 𝑎𝑢𝑙𝑡𝑠).

The execution time metric is not ever available in virtual platform simulators such

as OVPsim. In this sense, to provide accurate and consistent analysis all case studies have

been validated in an of those environments: evaluation board, RTL description, or gem5

simulator. Such environments provide accurate execution time metrics according to the

respective platform, which is defined for each case study at the experimental setup (i.e.,

platform setup phase).

4.3.1 Supported Soft Error Mitigation Techniques

To ensure failsafe functionality of ML-based systems, reliability engineers should

be able not only to identify but also explore efficient mitigation solutions to reduce the
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occurrence of soft errors. SOFIA provides support to 2 mitigation techniques, including

Partial Triple Modular Redundancy (P-TMR) and RAT.

The first mitigation technique is based on a replication approach, i.e., a technique

that replicates instructions (except stores and branches) and adds majority voters before

conditional branches, load, and store instructions on top of the language-independent Low

Level Virtual Machine (LLVM) Intermediate Representation (IR) (LATTNER; ADVE,

2004) compilation environment. However, unlike traditional approaches that replicate

the entire code, this work uses the P-TMR technique that only replicates specific/critical

functions, thus minimizing the performance overhead.

The second adopted mitigation technique is the register allocation technique (RAT)

(GAVA; REIS; OST, 2020). This hardening technique restricts the number of available

registers used to execute a specific functions, thus reducing the exposed area. Unlike

replication approaches, RAT does not involve code redundancy and is an architecture-

independent approach. Also, RAT is a compiler-based mitigating technique; thus, it can

be associated with other mitigation techniques.

This work uses the underlying techniques as means to improve the soft error

reliability of deep inference models as highly explored in Chapter 6.
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5 EARLY SOFT ERROR CONSISTENCY ASSESSMENT

This Chapter presents the evaluation of the soft error assessment consistency

considering the SOFIA OVPsim-FIM w.r.t. RTL and gem5 FIMs. This Thesis contribution

lead to the ABICH et al. 2021 publication. The Section 5.1 and Appendix A detail the case

studies adopted to assess the consistency of the results considering single-core and multi-

core architectures respectively. As mentioned before, the soft error results’ consistency

regarding multi-core architectures are presented in the separate Appendix A of this thesis

as they were generated by ROSA (2018).

5.1 Soft Error Consistency Assessment for Single-core Processors

This Section aims to thoroughly assess the SOFIA soft error consistency when

targeting single-core processors. In this sense, this work considers two real commercial

RTL processor descriptions from the Arm Cortex-M family (i.e., Arm Cortex-M0 and

Cortex-M3), both available under the Arm University Program (ARM, 2020). SOFIA

natively supports both processor models, and the synthesis-ready netlist descriptions of

the underlying processors were used to conduct the fault injection campaigns at the RTL

level. Section 5.1.1 presents the experimental setup used in the proposed case study. The

first results in Section 5.1.2 cover the simulation performance brought by the JIT simulator

used in SOFIA. Further, in Section 5.1.3, we analyze the consistency and the reliability

of single-core systems considering different ISAs software stacks (Section 5.1.3.1), and

cross-compilers (Section 5.1.3.2).

5.1.1 Experimental Setup

To provide trustworthy results, conducted experiments consider more than 8.5 mil-

lion fault injections using 26 applications and varying parameters such as target processor,

software stack, and cross compiler with its optimization flags. Table 5.1 presents the

proposed experimental setup used to measure the soft error assessment consistency of

SOFIA with respect to the RTL approach.

Selected applications from the Mälardalen WCET benchmark suit (GUSTAFS-

SON et al., 2010) include: Adpcm, Binary Search, Bit Manipulation, Blowfish, Bubble
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Table 5.1 – RTL vs. SOFIA Experimental Setup. The * means a sub-flag used in conjunction
with other standard flags (e.g., O0, O1, O2, O3).

Processors Arm Cortex-M0 and Cortex-M3
Software Stack Bare-Metal and FreeRTOS
Benchmark Suite Mälardalen WCET
Number of Applications 26
Compilers GCC 4.9, GCC 7.2, Clang 6, Arm 6.10 and Arm 5.06
Optimization Flags O0, O1, O2, O3, Os, Ofast, Ospace and Otime
Number of Compiler Sets
(with optimization flag) 32

Number of FI Campaigns 1140
Injections per Campaign 1,000 (Section 5.1.3.1) and 10,000 (Section 5.1.3.2)
Total Fault Injections 208,000 (Section 5.1.3.1) and 8,320,000 (Section 5.1.3.2)

Source : The authors

Sort, Counts, CRC, Data Compression, Dhrystone, Edn, Exponential Integral, Factorial,

Fdct, Fibonacci, Hanoi Tower, Harmonic Calculations, Insert Sort, Jfdctint, Matrix Mul-

tiplication, MDC, PeakSpeed, Petri Net, Prime Numbers, Switch Cases, Ud, and Usqrt.

Results were performed on a Linux machine with a Quad-core Intel® Core™i7-

7700K CPU and 32 GB DDR4 RAM memory. Fault analyses are obtained by injecting

faults (i.e., bit-flips) into the processor’s registers (i.e., R0-R15) in a random and uniformly

distributed manner, which is widely accepted that circuits are affected (MUKHERJEE et

al., 2003). The purpose is to analyze the parameters and Arm processors according to the

AVF (MUKHERJEE et al., 2003), i.e., a percentage estimate of errors that are not masked,

considering the different applications.

5.1.2 FI Simulation Performance of SOFIA w.r.t. RTL

Although electronic hardware engineers usually describe their circuit designs using

Hardware Description Languages (HDL) and fault injection at that level seems to be more

straightforward due to the accuracy of the results, there are two main reasons for not using

HDL models. First, commercial processors are rarely available to Universities and general

users in HDL descriptions (DEVOE, 2015). Second, the simulation time at this level

is exceptionally high. This particularity made the simulation speedup of fault injection

campaigns one of the leading motivations found in the literature to use virtual platforms

(KALIORAKIS et al., 2015; ROSA et al., 2017). In this sense, our first experiment

enable to quantify the simulation speed for each of the adopted applications, as shown in
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Figure 5.1.

Figure 5.1 – Speedup of SOFIA over the RTL-FIM, considering the Cortex-M0 executing 26
benchmarks in bare-metal.

Source : The authors

Figure 5.1 depicts a comparison between the simulation time required to execute a

complete fault injection campaign in the RTL and SOFIA approaches. To make straight-

forward and trustworthy comparisons, the simulation time was extracted considering the

Arm Cortex-M0 and bare-metal applications. Results show that SOFIA achieves a re-

markable simulation performance, reaching more than three orders of magnitude speedup

when compared to the detailed fault injection approach conducted at RTL. Thus, if RTL

is considered, thousands of simulations may take several months, which is not suitable

to assess the soft error resilience of electronic computing systems. In this context, the

utilization of a fault injection JIT-based virtual platform is promising since it can also be

used to compare different processor models, ISAs, and benchmarks considering complex

Operating Systems (OS) and large scenarios, as shown in Section 5.1.3.

5.1.3 Soft Error Reliability Mismatch

This Section presents the accuracy results of the soft error resilience assessment

considering single-core processors, comparing SOFIA and RTL-FIM. The following
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subsections detail each proposed experiment to provide a reasonable and consistency

analysis.

5.1.3.1 Mismatch Analysis Considering Different Processor Architectures

The first discussion considers Arm processor architectures, their ISAs and different

software stacks to provide us with a solid number of results. In this regard, Equation (5.1) is

used to provide the mismatch between the reference approach (i.e., RTL) and the SOFIA.

The mismatch here is defined as the difference between results obtained in RTL and

SOFIA, for each application (app) and the same fault class (class) divided by the number

of injected faults in the campaign.

Mismatch =
(𝑅𝑇𝐿[ app, class ] − 𝑆𝑂𝐹𝐼𝐴[ app, class ])

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐼𝑛 𝑗𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠
(5.1)

The first results highlight the effects of the Arm Cortex-M0 and Cortex-M3 ar-

chitectures and their respective ISAs on soft error resilience. Although both processors

are from the Cortex-M Family, they differ in terms of computer architectures (i.e., Von

Neumann and Harvard, respectively). While the Cortex-M3 has a larger ISA (i.e., entire

thumb and thumb-2, 32-bit and 64-bit result multiplication, and 32-bit quotient division),

the Cortex-M0 has a reduced ISA (i.e., most thumb, some thumb-2, and 32-bit result

multiplication).

Different from CHO et al. (2013) and SCHIRMEIER; BREDDEMANN (Septem-

ber 2019), our evaluation considers an empirical data distribution that shows the minimum,

maximum, and mean mismatch values with the interquartile ranges. Such data distribu-

tion enables us to show a detailed inter-benchmark mismatch variation considering all

fault classifications and not only the EAFC (SCHIRMEIER; BREDDEMANN, Septem-

ber 2019) nor only the overall accuracy (CHO et al., 2013). Figure 5.2 shows the mismatch

distribution for each fault class, considering the impact of using different processors and

software stacks. This means that each bar in Figure 5.2 represents 26,000 fault injections,

which means a confidence level of 99.8% and a error margin of 1%, according to the Equa-

tion (4.1). In addition, the experiments used the GCC 4.9.3 compiler with O0 optimization

flag, which facilitates the reproducibility of the experiments by other researchers.

First, results show that the architectural difference between the two processors

affects the soft error system’s reliability, producing different fault class behaviors, as

shown in Figure 5.2. A significant architectural difference is that the Arm Cortex-M0 has
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Figure 5.2 – Boxplot of fault mismatch between SOFIA and RTL-FIM considering different
architectures and software stacks. Outlier cases (represented by circles) are at least two standard

deviations from the mean.
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a reduced instruction set, which demands the execution of a broader set of instructions

to complete more complex operations than the Cortex-M3. For instance, while a 32-bit

multiplication operation may vary from 1 up to 32 cycles in the Cortex-M0, the Cortex-M3

multiplier instruction needs a single cycle to complete the same operation.

From a bird’s eye view, Figure 5.2 shows that results obtained from SOFIA differ

more prominently, from the reference, in the occurrence of ONA and UT faults, whereas

the mean is out of ±5% (i.e., a low mismatch reference). In this regard, the RTL approach

is more likely to either mask an injected fault targeting a general-purpose register (i.e.,

Vanished) or propagate it to other registers (e.g., ONA and UT). In addition, the results

differ due to the simulation nature of each fault injection approach. In SOFIA, faults

are injected between instructions, which can restrict their propagation and, consequently,

reduce the cumulative effects of soft errors. In turn, the nature of discrete event simulators

allows the injection into any clock cycle, which can affect the execution of multi-cycle

instructions (e.g., a division execution can take 2 to 12 cycles on the Cortex-M3). In

this case, the value of a register can change a mid instruction, which may lead to either a

masked fault; or an undefined processor state; or even wrong application execution.

On the other hand, looking at specific points, it is possible to infer that the mismatch

distribution between bare-metal scenarios revealed a higher occurrence of ONA (i.e., mean

value indicated by (1) in Figure 5.2) for the Cortex-M0 on RTL approach, and a lower

mismatch with Cortex-M3 (i.e., mean value highlighted by (2) in Figure 5.2). Also, the

results show that SOFIA presents lower mismatches of Hang, OMM, and Vanish faults for

both processors, i.e., most mean values are in the ±5% range.

Results in Figure 5.2 (highlighted by (3) and (4)) show that the mismatch dis-
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tribution from ONA faults is more disperse when using SOFIA, which affects the other

fault types proportionally, i.e., the sum of the variations in the average mismatch between

bare-metal and FreeRTOS is equal to zero. The collected results show that the mean

values remain between +
−4%, confirming that the inclusion of FreeRTOS did not affect the

SOFIA soft error assessment accuracy.

5.1.3.2 Mismatch Analysis Considering Cross-compilers

Compilers play an essential role due to their direct impact on applications perfor-

mance, power-efficiency, and reliability (HOSTE; EECKHOUT, 2008), as they provide

software engineers with a wide variety of optimization settings (i.e., flags), which can be

used to either configure debugging and warning messages or to achieve code optimization.

In addition, industrial leaders employ different compilers in their projects, so assessing the

impact of these compilers on soft error reliability is vital to guarantee the success of their

products. On the one hand, most of the work on compilation flags in the literature focuses

on performance optimization (MACHADO et al., 2017), and on the memory usage and

code size reduction (SONG et al., 2014). Few are those that assess the soft error reliability

provided by compilers (LINS et al., 2017; MEDEIROS et al., 2018; SERRANO-CASES

et al., 2019). In this scenario, this Section investigates the impact of widely adopted

compilers and their optimization flags on the soft error reliability to find the most reliable

set for Arm processors.

The long simulation time inherent to RTL approach restricts its use for the soft

error assessment of multiple scenarios. For that reason, the evaluation considers only the

Arm Cortex-M3 to investigate whether the nature of cross-compilers and optimization

flags affect the accuracy of soft error results obtained with SOFIA. In this sense, five

cross-compilers are considered:

– GCC 4.9.3: free-software, still widely used by legacy systems and applications;

– GCC 7.2.1: free-software, currently shipped with popular Linux distributions;

– Clang 6.0.1: free-software, which is an LLVM-based compiler;

– Arm 5.06: proprietary-compiler developed based on the GCC compiler;

– Arm 6.10: proprietary-compiler developed based on the LLVM compiler.

These compilers consider six optimization flags (i.e., O0, O1, O2, O3, Os, and

Ofast), with the exception of the Arm 5.06 compiler, which has a different approach for

Os and Ofast. In this case, the traditional flags O0, O1, O2, and O3 are combined with
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other flags (i.e., Ospace and Otime), which are equivalent to either Os and Ofast, resulting

in eight flag combinations.

Table 5.2 presents a mismatch percentage summary of the compiler sets (i.e., com-

piler with optimization flag) between the RTL and SOFIA FI modules. Considering only

bare-metal applications, each compiler set comprises 26,000 fault injection campaigns,

which means that our results have a confidence level of 99.8% and a margin of error of

1%, according to Equation (4.1). The results show that compilers have an impact on soft

error resilience. However, the mismatch between the two approaches is very low, with

means close to 2 for all compiler sets.

Regarding the mismatch distribution, worst-case scenarios maintain the absolute

mismatch below 8%. Considering that the calculated margin of error is at 1%, even the

outlier values are very close between the two FI approaches, which means that SOFIA

provides good reliability results with orders of magnitude faster than RTL. In turn,

comparing the compilers, the results of the two GCCs show that they have the highest

number of outliers in worst-cases (see red values in Table 5.2). These outliers may

not yield an apparent correlation, but they present a difference in terms of executed

instructions. For example, the GCC versions of the Dhrystone application execute 1.7×
more instructions than the version generated by the Arm 5.06 compiler, which affects the

application vulnerability window.

After presenting an overview of the compilers and optimization flags showing

the accuracy of the results in relation to RTL, we increased fault injection campaigns to

10,000 for each compiler set and compared them using SOFIA. The goal is to find the most

reliable compiler set, so the FI campaigns were increased to produce a more significant

result in terms of confidence level and lower error margin. In this scenario, each compiler

set has 260,000 FI campaigns, which leads to a confidence level of 98% and a 0.2% of

margin of error.

Figure 5.3 shows the soft errors related to the fault injection campaigns for the five

compilers and their optimization flags using SOFIA. This evaluation considers AVF to

be the percentage of the sum of all faults that could be analyzed (i.e., ONA, OMM, UT,

and Hang). Thus, the reliability is related to the percentage of Vanishes found. Among

the evaluated compilers, the commercial Arm 6.10 presents more occurrences of Vanish,

indicating that it has a greater soft error resilience. From the open-source alternatives,

Clang appears to be the best option due to two main reasons: (i) a higher number of
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Table 5.2 – Mean and worst-case absolute mismatch percentages for different cross-compilers and
their optimization flags in Arm Cortex-M3. The * means a combined flag equivalent to Ofast.

Arm 5.06 Arm 6.10
O0 O0* O1 O1* O2 O2* O3 O3* O0 O1 O2 O3 Os Ofast

Vanished Mean 1.5 1.6 1.5 1.6 1.6 1.8 1.6 1.8 1.4 1.7 2.0 1.9 1.8 2.1
Worst 4.2 6.1 4.7 4.2 5.6 5.1 4.9 5.9 7.5 4.9 5.4 5.9 5.2 5.1

ONA Mean 1.1 1.1 1.1 1.4 1.5 1.6 1.3 1.6 1.8 2.9 1.6 1.2 1.7 1.3
Worst 3.6 5.3 4.6 4.1 4.9 4.9 5.0 6.0 6.8 7.1 5.6 6.2 6.0 5.4

OMM Mean 1.2 1.5 1.1 1.8 1.3 2.0 1.2 1.6 1.2 1.9 1.4 1.3 1.4 1.3
Worst 4.0 4.5 3.8 5.5 3.1 5.2 3.2 5.4 4.8 5.5 6.4 3.5 3.3 5.1

UT Mean 1.6 2.6 1.2 2.4 1.2 2.0 1.4 1.4 1.3 1.7 1.5 1.7 1.7 1.9
Worst 6.1 5.9 5.2 6.6 5.7 5.6 5.2 3.1 3.4 4.3 4.2 3.9 4.5 4.5

Hang Mean 1.3 1.6 1.4 1.6 1.4 2.2 1.7 1.9 2.0 1.5 1.7 1.5 1.7 1.6
Worst 4.1 3.8 4.4 4.4 4.6 4.4 5.8 4.7 6.0 3.6 4.4 3.4 4.3 3.5

Clang 6.0.1 GCC 4.9.3 GCC 7.2.1
O0 O1 O2 O3 Os Ofast O0 O1 O2 O3 Os Ofast O0 O1 O2 O3 Os Ofast

Vanished Mean 0.9 1.7 1.5 1.5 1.9 1.6 1.8 2.3 2.0 2.1 1.7 1.9 1.4 1.4 1.3 1.8 1.8 1.5
Worst 2.6 4.6 4.1 3.9 5.5 3.8 4.3 6.7 7.5 6.8 5.6 3.9 3.2 4.4 8.0 6.5 6.8 5.3

ONA Mean 1.8 2.0 1.5 1.5 1.7 1.7 1.4 2.4 1.8 1.7 1.9 2.2 1.4 1.6 1.1 1.7 1.7 1.8
Worst 6.2 5.2 6.3 4.4 3.8 5.9 3.6 6.3 5.9 5.8 5.8 6.9 4.5 4.0 6.8 6.2 4.9 5.3

OMM Mean 1.2 2.0 2.2 2.0 1.8 2.4 2.4 2.2 1.7 1.8 1.9 1.7 2.2 2.0 1.2 1.6 1.9 1.8
Worst 7.3 6.9 5.1 4.9 4.7 5.0 7.2 6.8 6.5 6.3 5.0 4.0 5.6 6.1 4.5 6.1 6.2 6.0

UT Mean 1.9 1.4 2.0 1.6 1.6 1.7 3.1 1.7 2.4 2.2 2.6 1.7 2.6 2.3 1.6 1.8 2.1 1.9
Worst 4.5 5.3 5.5 5.5 6.5 5.4 7.1 6.0 6.3 4.5 7.4 6.3 5.6 5.0 6.0 3.9 4.9 3.9

Hang Mean 1.9 1.0 0.8 0.8 1.6 0.7 1.5 1.8 1.6 1.6 1.8 2.2 1.6 1.8 1.5 1.6 1.4 1.4
Worst 5.4 2.8 2.5 2.4 5.4 2.3 3.2 4.8 4.5 4.1 6.9 4.5 5.0 4.7 4.9 4.3 4.8 4.1

Source : The authors

Figure 5.3 – Average faults for compilers and their optimization flags. The red line represents the
average number of Vanished faults.
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vanishes were identified, and (ii) its adoption leads to a lower occurrence of Hangs. On

the other hand, the GCC compilers followed the trend shown in Table 5.2 and continued to

present the worst results in terms of soft error resilience, where no optimization flag passed
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Figure 5.4 – Average vanished faults for compilers and their optimization flags.
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the dashed red line shown in Figure 5.3. To facilitate this view, Figure 5.4 is a zoom-in

considering only the occurrence of Vanishes. Although the newer GCC version uses

more specific Arm Cortex-M3 ISA instructions, the resulting improvement is negligible

compared to the previous version. In short, compilers with better results regarding Vanish

are LLVM-based. Although restricted to only two ISAs, these findings suggest a pattern

for adopting LLVM-based compilers, but additional experiments considering other ISAs

would be necessary to further explore the reliability benefits of this compiler.

Figure 5.5 – Average execution time and executed instructions vs number of Vanishes considering
different compiler sets.
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Lastly, we believe that the industry will not adopt a compiler set just because it is

more reliable, except for a niche such as critical-safety applications (e.g., autonomous vehi-

cle applications). In this sense, we propose to evaluate which compiler set is more reliable

and also offers the best performance. Figure 5.5 shows a trade-off between performance

(i.e., execution time from RTL and executed instructions from SOFIA) and reliability

(i.e., the occurrence of Vanishes), considering the aforementioned cross-compilers. The

upper-left corner presents the best of both performance and reliability; conversely, the

lower-right corner has the worst performance and reliability. In turn, the lower-left corner

assemblies are the configurations that show reasonable performance but low soft error

reliability.

Results show that the applications compiled with the O0 flag presented a higher

susceptibility to soft errors and a low performance, except for the codes generated with

the Arm 5.06 compiler, which showed a reliability improvement but still below the other

sets of compilers. At the other end are the Arm 6.10 and Clang 6.0.1 compilers (i.e., both

LLVM-based), the two have the best set of performance and reliability. Among them,

the O2 optimization flag stands out, presenting superior results for the two compilers.

However, due to the significance of our results (high confidence level and low margin of

error), Clang has a certain advantage, and it would be our compiler suggestion. Finally,

the remaining compiler sets maintain similar results to the mean of this trade-off.

5.1.4 Closing Remarks

This Chapter demonstrated that the use of virtual platforms brings orders of magni-

tude speedups to FI campaigns. This also showed that the architectural difference between

the two Arm processors affects the system’s reliability, producing different fault class

behaviors. However, the inclusion of an operating system did not affect the soft error

assessment accuracy. Next, after a solid and extensive soft error reliability assessment

considering a variety of off-the-shelf compilers, it is possible to conclude that the best

compilers are LLVM-based and that the best set in terms of performance and reliability

would be the Clang 6.0.1 compiler using the 02 optimization flag.
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6 SOFT ERROR RELIABILITY ASSESSMENT OF ML INFERENCE MODELS

EXECUTING ON RESOURCE-CONSTRAINED IOT EDGE DEVICES

This Chapter provides in-depth insights and results related to the second main

contribution of this Thesis: the early soft error assessment and mitigation of ML inference

models executing on resource-constrained IoT edge devices. The underlying contribution

has been published in several international conferences (ABICH et al., 2020; ABICH;

REIS; OST, 2020; ABICH et al., 2022) and high quality journals (ABICH et al., 2021;

ABICH et al., 2022). In this sense, different soft error reliability assessments of ML models

build from industrial libraries and APIs targeting resource-constrained IoT edge systems

are detailed discussed. The discussion is based on reasonable number of results obtained

from a vast number of FI campaigns, taking into account different reliability aspects of

a NN model, such as topology, layers, target ISA optimizations, memory parameters,

precision bitwitdh, mitigation techniques, and parallelization.

Table 6.1 – Contributions organized by Case study.

ML Model
Target Evaluation CIFAR-10 CNN MobileNet CNN

Topology ✓ ✓
Layers ✓ ✓
ISA ✓
Memory ✓ ✓
Precision Bitwidth ✓
Soft Error Mitigation ✓
Parallelism ✓

Source : from Authors

Table 6.1 details the target evaluation according to each executed CNN model.

Section 6.1 presents the early soft error assessment considering the CIFAR-10 CNN

execution in resource-constrained IoT edge devices. Furthermore, Section 6.2 comprise

the soft error reliability results considering the MobileNet CNN with different bitwidth

configurations.
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6.1 Soft Error Reliability Assessment of the CIFAR-10 CNN

This section presents the soft error reliability assessment results for the CIFAR-10

CNN case study. First, Section 6.1.1 presents a detailed description of the CIFAR-

10 CNN developed with the CMSIS-NN library. Next, Section 6.1.2, Section 6.1.3,

and Section 6.1.4 comprise the soft error reliability assessment considering the CIFAR-

10 CNN execution, topology, isolated layers, target ISA optimizations, memory (code,

parameters and data), and thread parallelism.

6.1.1 CIFAR-10 CNN Developed with CMSIS-NN

This Section presents the CIFAR-10 case-study, which consists of a 7-layer CNN

developed with the CMSIS-NN kernels (LAI; SUDA; CHANDRA, 2018) to run in

Common Microcontroller Software Interface Standard (CMSIS) supported processors

(e.g., Arm Cortex-M).

Figure 6.1 – Brief illustration of the adopted CIFAR-10 CNN topology.
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Source : Adapted from LAI; SUDA; CHANDRA (2018)

The CNN is trained with the CIFAR-10 dataset (KRIZHEVSKY; HINTON et al.,

2009), consisting of 60,000 32x32 color images divided into ten output classes. Figure 6.1

shows an overview of a typical CNN topology based on the built-in example provided in

CMSIS-NN (LAI; SUDA; CHANDRA, 2018). Table 6.2 details the CNN layers with the

kernel shapes (i.e., filter and output) used in each layer. Such CNN consists of multiple

layers composed of convolution layers, interspersed by non-linear activation layers, pooling

layers, and a fully-connected layer at the end of CNN.
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Table 6.2 – Layer parameters for the CIFAR-10 CNN.

Layer Type Filter Shape Output Shape

1 Convolution 5x5x3x32 32x32x32
2 Max Pooling 3x3 16x16x32
3 Convolution 5x5x32x32 16x16x32
4 Max Pooling 3x3 8x8x32
5 Convolution 5x5x32x64 8x8x64
6 Max Pooling 3x3 4x4x64
7 Fully-connected 4x4x64x10 1x10

Source : Adapted from LAI; SUDA; CHANDRA (2018)

Figure 6.2 – Overview of the CMSIS-NN kernel structure.
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Source : Adapted from LAI; SUDA; CHANDRA (2018)

The overview of CMSIS-NN kernel is shown in Figure 6.2. The kernel code con-

sists of two parts: NNFunctions and NNSupportFunctions. As described in (LAI; SUDA;

CHANDRA, 2018), the NNFunctions includes the functions that implement popular neu-

ral network layer types while the NNSupportFunctions includes the utility functions.

Different from the traditional NN models trained using 32-bit floating-point data

representation, the CMSIS-NN uses low-precision fixed-point representation as high pre-

cision is generally not required during the inference. The use of such quantization avoids

the need for floating-point de-quantization between layers, as some Arm Cortex-M proces-

sors do not have a dedicated Floating-Point Unit (FPU). The CMSIS-NN kernels deploy

optimizations that aim to boost performance while reducing the memory-footprint when

executing complex NN inferences in resource-constrained processors. Such optimizations

focus on enabling neural networks on Cortex-M based systems that support SIMD instruc-

tions, especially 16-bit Multiply-And-Accumulate (MAC) instructions, such as Signed
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Multiply Accumulate Long Dual (SMLAD), which are very useful for NN computation.

In this sense, the CMSIS-NN kernel implements matrix multiplications with a 2x2 dimen-

sion to enable some data reuse and reduce the number of load instructions. Further, it

performs accumulation with dedicated SIMD MAC instruction, and data transformation

occurs without reordering, achieving reasonable performance (LAI; SUDA; CHANDRA,

2018).

To achieve such a performance, the convolution layer implements a partial image-

to-column data transformation considering the Height-Width-Channel (HWC) format.

Rectified Linear activation Unit (ReLU) layer implements a loop over all elements and

makes them 0 if they are negative using a similar concept as SIMD Within a Register

(SWAR). After the activation layer, the Max Pooling layer reduces the feature dimensions,

the number of parameters, and computations in the network using split x-y pooling,

contributing to performance improvements while reducing the need for additional memory.

The fully-connected layer has a matrix-vector multiplication that can also be implemented

with a 1×2 kernel size to improve even more the execution time. This layer has full

connections to all activations in the previous layer to define the output classification

probabilities.

6.1.2 Soft Error Reliability Assessment of CIFAR-10 CNN Execution on Resource-
constrained IoT Devices

This Section aims to explore the erroneous behavior of the adopted CNN when

exposing its layers to faults (i.e., flipped bits). Section 6.1.2.1 presents the early results

when considering the execution of the CIFAR-10 CNN in two Arm Cortex-M processors:

Cortex-M3 and Cortex-M4.

6.1.2.1 Experimental Setup

In order to estimate the percentage of errors from the CNN case study, the results

are obtained by injecting bit-flips in the general-purpose registers (i.e., r0-r15) of both

Cortex-M3 and Cortex-M4 Arm processors considering random register file and function

lifespan FI techniques. Table 6.3 shows the experimental setup used to perform the

proposed evaluation.

Each fault injection considers a single input image for one CNN execution, thus
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Table 6.3 – Experimental Setup

ML Model Cifar-10 CNN
API/Libraries CMSIS-NN
Dataset Cifar-10
Arm Processors Cortex-M3 (47 millions)
(executed instructions) Cortex-M4 (15 millions)
Target FI Register File, Function Lifespan

3 Convolution (3 ReLU Activations),
CNN Topology 3 Max Pooling,

1 Fully-Connected
Number of FI Campaigns 22
Injections per Campaign 17k
Total Fault Injections 374k

Source : The authors

not considering fault propagation to the subsequent executions. One of the main concerns

when assessing the soft error reliability of a system is to develop a precise, well-covered,

and realistic approach. In this sense, this work sought to ensure that the number of fault in-

jections has a statistical significance by applying the equations developed by (LEVEUGLE

et al., 2009). These results comprise 17k fault injections per campaign, thus generating a

1% error margin with a 99% confidence level. Although both processors share the same

architecture (ARMv7-M) and instruction set (Thumb-2), the Cortex-M4 has an additional

Digital Signal Processor (DSP) extension with a range of saturating and SIMD instruc-

tions. For that reason, Cortex-M3 requires 3× as many instructions to execute the same

CNN (Table 6.3). In addition, these results consider the same compilation environment:

GCC 9.3 and optimization flag -O2.

6.1.2.2 CIFAR-10 CNN Execution Lifetime

Asserting the experimental setup accuracy is paramount to obtain meaningful and

useful results. In this regard, the CIFAR-10 CNN was executed in the absence of faults

over a RTL description of the Arm Cortex-M3, comparing gathered outputs with those

obtained with the SOFIA execution. Results show that the CIFAR-10 CNN execution in

SOFIA presents no difference in the output probabilities for the selected image w.r.t. the

RTL execution (4.5 hours), thus validating the utility of the adopted framework, which

needs only 1 second to execute the same inference CNN model. Figure 6.3 shows the

CNN execution detailing the lifespan of each layer, considering both the Arm Cortex-M3

and the Cortex-M4.
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Figure 6.3 – CNN timeline with CMSIS-NN Kernel executing on Cortex-M3 and Cortex-M4
processors.
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Observing the functions’ lifespan in Figure 6.3, it is notable that convolution layers

execute at most of the time while the remaining layers execute in a small part of the CNN

execution. In this sense, it is expected that faults injected randomly are more likely to

reach the convolution layers, having a considerable impact on the CNN execution. The

execution percentages for the RTL model are based on clock cycles, while in SOFIA,

the percentages are based on the number of executed instructions. Such percents differ

due to the number of required clock cycles to execute some instructions (e.g., division

requires 2 to 12 cycles in Cortex-M3 RTL description). Note that the RTL description

of the Cortex-M4 is not available at the Arm University program. These findings assist

in the decision to properly evaluate the fault impact on the CNN layers considering both

processor architectures.

6.1.2.3 CIFAR-10 CNN Soft Error Reliability Assessment

Figure 6.4 shows the results for the FI campaigns targeting all CNN layers. Such

results are compared with those obtained from fault injection campaigns that target indi-

vidual CNN layers and activation functions.

The CNN functions use several loops to process data, which requires many con-

trol instructions, consequently generating high UT and Hang occurrence (i.e., 22% on

average) in both architectures. Even with a reduced number of crashes (UT and Hangs),

ReLU and pooling layers show high soft error vulnerability in the Cortex-M3 when com-

pared to Cortex-M4 (i.e., high occurrence of OMM and ONA). The results also show a
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Figure 6.4 – Fault classification when injecting faults in the CNN Layers.
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higher masking effect on Cortex-M4 due to the CMSIS-NN optimizations targeting SIMD

instructions (i.e., ∼20% more vanished when comparing to Cortex-M3), reflecting such

masking factor when injecting faults on the CNN Convolution layers. In turn, the injec-

tions in the ReLU activation layers produced similar results in both processors. The ReLU

layers perform a reduced data set (i.e., less execution time), thus reducing the masking

rate even without SIMD optimizations.

The MWTF (REIS; CHANG et al., 2005) metric is used to evaluate the CNN soft

error reliability, since it shows the average amount of work an application can perform

until reaching a failure (i.e., higher values are better). Figure 6.5 shows the MWTF of

each layer normalized with the CNN MWTF for fault injections on the Cortex-M3. The

results show a reasonable MWTF reduction regarding the occurrence of soft errors in

the different layers. While soft errors from pooling layers reduce the MWTF in 35% on

average, the faults from ReLU activation layers achieve an MWTF reduction of 62%. In

this manner, the activation layers are critically affected in both architectures once such

functions present high fault occurrence. Our findings denote that the CNN reliability is

related to the layer types and its topology since the soft error occurrence increases from

input to output layers.

Table 6.4 compares the output data from the fault injection campaigns along with

the fault-free execution. The effective faults are very similar in both processors once
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Figure 6.5 – Normalized MWTF for fault injections in different layers of CNN in Cortex-M3.

L1
 C

on
v

L1
 R

eL
u

L2
 P

oo
l

L3
 C

on
v

L3
 R

eL
u

L4
 P

oo
l

L5
 C

on
v

L5
 R

eL
u

L6
 P

oo
l

L7
 Fu

ll

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

or
m

al
iz

ed
 M

W
TF

CNN MWTF

Source : The authors

Table 6.4 – Percentages of tolerable and critical faults in the CNN.

Cortex-M3 Cortex-M4
Layers Correct Tolerable Critical Crash Correct Tolerable Critical Crash

1 Convlution 56.0 10.3 8.2 25.5 57.3 13.0 12.2 17.4
ReLU 37.2 3.6 37.3 21.9 42.7 5.4 21.2 30.8

2 Max Pooling 46.5 21.7 10.1 21.8 47.9 17.8 8.6 25.7
3 Convlution 54.4 12.8 6.7 26.1 61.1 10.1 12.3 16.6

ReLU 31.1 2.7 39.8 26.4 38.6 5.0 21.1 35.4
4 Max Pooling 47.6 21.0 9.4 22.0 48.8 17.6 8.5 25.1
5 Convlution 57.1 7.8 8.8 26.4 66.1 7.5 10.0 16.4

ReLU 31.3 5.0 41.8 21.9 39.9 6.5 27.4 26.2
6 Max Pooling 51.2 18.8 8.4 21.6 49.9 18.7 7.0 24.4
7 Fully-Connected 37.2 15.4 22.1 25.4 40.9 11.4 22.6 25.1
all All 55.8 11.8 7.8 24.5 59.6 11.1 12.0 17.2

Source : The authors

the ONA fault types do not affect the output probabilities, thus not affecting the CNN

accuracy. The effective and the critical faults achieve higher percentages while tolerable

faults have lower ones. Note that highlighted results represent the worst-case scenarios.

While pooling and convolution layers have high tolerable faults, the ReLU and the fully-

connected functions are critically affected by the injected faults in both architectures. Even

with tolerable faults, critical faults reach from 13% up to 60,85% of the output data, which

reveals the vulnerability on the accuracy of the adopted CNN. Such results demonstrate

that the occurrence of soft errors has a significant impact on the CNN execution and its
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accuracy when considering the individual analysis of distinct layers and processors.

6.1.3 The Impact of Soft Errors in Memory Units of Edge Devices Executing CIFAR-
10 CNN

This Section explores the CIFAR-10 CNN’s behaviour in the presence of soft errors

by applying fault injections to the register file and isolated memory sections.

6.1.3.1 Experimental Setup

Table 6.5 shows the experimental setup, where 102k bit-flip are injected in the

general-purpose register file (i.e., r0-r15) and Flash and RAM memory sections. This

section applies the equations developed by Leveugle et al. (LEVEUGLE et al., 2009) to

ensure the statistical relevance of the fault injection results (KRZYWINSKI; ALTMAN,

2013). In this sense, each FI campaign includes 17k experiments, providing results with an

1% error margin and 99% confidence level. Note that these experiments do not consider

the propagation of faults to subsequent executions, as each experiment consists of one

bit-flip injection and a single CNN execution with a single input image.

Table 6.5 – Experimental Setup

ML Model Cifar-10 CNN
API/Libraries CMSIS-NN
Dataset Cifar-10
Arm Processor Cortex-M3 (47 millions)
(executed instructions) Cortex-M4 (15 millions)
Target FI Register Files, Flash (code and parameters), RAM
Number of FI campaigns 6
Injections per campaign 17k
Total Fault Injections 102k

Source : The authors

The FI campaigns are conducted considering both Arm Cortex-M3 and M4 proces-

sors. Although both Arm Cortex-M3 and M4 rely on the same instruction set architecture

(ARMv7-M), results in Table 6.5 show that the Cortex-M3 requires 3× as many instruc-

tions w.r.t. to the M4. The reason for that is the DSP capabilities of Arm Cortex-M4,

which includes saturating arithmetic and SIMD instructions. Table 6.6 shows that such

ISA specific optimizations reflects on the memory occupation of the target evaluation

boards.
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Table 6.6 – On-chip Memory Occupation (MO) for the inference CNN models, considering code,
parameters and data

Arm Reference Chip On-chip Memory CNN Inference Model MO(%)Processor Flash(kB) SRAM(kB) Code(kB) Parameters(kB) Data(kB)

Cortrex-M3 STM32F103RCT6 256 48 4.3 36.5 43.2 27.63
Cortrex-M4 STM32F407ZGT6 1024 192 7.6 36.5 43.2 7.15

Source : The authors

6.1.3.2 Soft Error Reliability Analysis

Figure 6.6 shows the CIFAR-10 CNN soft error results gathered from the injection

of bit-flips in the register file, Flash and RAM memory sections considering the Arm

Cortex-M3 and M4. The results show that the RAM section has no crash occurrence.

This is because this type of fault does not affect the application’s object code and NN

parameters, but rather the CNN application data. In turn, the Flash section presents less

crash occurrence than the register file. In regard to the memory sections, Flash and RAM

show many critical faults because these faults are not overwritten at runtime (i.e., up to

2.3× more critical faults than the register file).

Figure 6.6 – Results showing fault classifications for Register File, Flash, and RAM memory
sections for the CIFAR-10 CNN considering two Arm processors.
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To understand the nature of the memory section faults, the CNN code, parameters

and data are evaluated separately considering both Flash and RAM sections. Table 6.7

details the fault impact of the Flash code section for both Arm Cortex-M3 and M4

processors. Note that processor architecture influences the resulting CNN object code

and therefore its vulnerability to bit-flips. The main difference relies on the use of

SIMD instructions, i.e., the split of the convolution layers into convolution and matrix

multiplication and the use of standard memset and memmove functions to fill out buffers

in the Cortex-M4. These features directly impact on the occurrence of soft errors, since

the variation in memory footprint and execution lifespan alter the vulnerability window

(i.e., probability of a fault strike).

Table 6.7 – Percentages of memory occupation (MO), execution lifespan (ELS), and classification
of faults occurring on CIFAR-10 CNN functions object code stored in Flash memory section

Sections MO ELS Correct Tolerable Critical Crash
M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4

Convolution 34.3 39.6 94.8 9.7 35.1 39.3 5.4 4.8 35.0 37.3 25.5 18.6
Matrix M. - 21.2 - 85.6 - 52.0 - 5.4 - 25.1 - 17.5
ReLu 1.2 1.4 0.4 0.6 13.2 41.7 4.7 3.0 43.4 32.7 38.7 22.6
MaxPool 14.1 8.9 4.6 3.0 10.3 17.4 4.4 12.2 50.3 35.5 35.0 34.9
Fully C. 24.9 10.8 <0.1 0.1 24.1 28.2 14.7 9.3 33.6 37.2 27.5 25.3
Softmax 5.2 2.1 <0.1 <0.1 16.8 12.2 21.9 19.7 41.7 48.4 19.6 19.7
Main 20.3 9.7 0.2 0.2 51.5 52.0 4.8 4.3 29.1 28.0 14.6 15.7
MemFunc - 6.3 - 0.8 - 58.3 - 1.9 - 15.6 - 24.2

Source : The authors

Table 6.7 also shows the fault percentages for each function object code section.

Percentages are normalised according to the number of faults that affect each memory

section, disregarding the faults that fall into portions of the code that do not influence the

CNN execution (i.e., initialization and architecture-specific functions). These results show

that the Arm Cortex-M4 is more reliable than Arm Cortex-M3. On the Arm Cortex-M3

side, activation and pooling are the most affected functions. In turn, pooling, fully-

connected, and softmax present more soft errors when executed on the Arm Cortex-M4,

because they have less SIMD instructions.

To understand the nature of the errors shown in Figure 6.6, Figure 6.7 presents the

fault impact of the Flash memory addressing (i.e., CNN object code) for the two Arm pro-

cessor architectures. The main difference between the object codes in these architectures

is the use of SIMD instructions and the split of the convolution layers into convolution and

matrix multiplication in Arm Cortex-M4. Considering these differences, the faults that

occur in Arm Cortex-M3 have unaffected sections that comprise saturation instructions.
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Figure 6.7 – Fault effects on Flash memory sections considering the CNN object code.
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In the Arm Cortex-M4, the non-affected sections also include these instructions along with

code portions with SIMD instructions. In addition, the first portion of the convolution

code object is flawless due to the understanding of the first layer and, consequently, it has

a smaller execution window than the other CNN functions.

To analyse the soft error impact between Flash and RAM sections, Figure 6.8

details the faults on the CNN parameters and data for the two Arm processor architectures.

The most affected CNN parameters (i.e., Flash) are weights and bias, while the most

affected data (i.e., RAM) is the scratch buffer. Note that the input figure (InFig) is not
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Figure 6.8 – Fault classifications for CIFAR-10 CNN parameters and data stored in Flash and
RAM memory sections for Arm Cortex-M3 and M4 processors.
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affected since the faults occur during the execution of the CNN. Image-to-column (Im2Col)

is an auxiliary buffer used for matrix to column conversion, thus presenting either, high

masking effect and low probability to propagate faults to the outputs. Weights and bias

are key parameters used in CNN inferences, and therefore faults that occur in these areas

tend to slightly impact on the output classification probabilities. In turn, the scratch buffer

stores the inferences’ results between layers, which present more faults. This is because

the buffer is used as input and output of the convolution layers in a streaming fashion,

consequently affecting the output probabilities.

In regard to the faults of the two processor architectures, the most significant

difference was bias, which comprises essential data used in inferences. In this case, the

number of instructions executed on Arm Cortex-M4 is 3× less than on Arm Cortex-M3,

opening a vulnerability gap where the fault can occur before or during the inference, which

might affect the output classification probabilities.

6.1.4 Impact of Thread Parallelism on the Soft Error Reliability of CIFAR-10 CNN

This Section proposes a multi-threaded version of the convolution neural network

based on the CMSIS-NN kernel (LAI; SUDA; CHANDRA, 2018) applying to the Arm

Cortex-A processor (i.e., ARMv7-A).

The first experiment analyses the CNN profile to understand the CNN application
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Table 6.8 – CNN runtime percentages according to layer type

Layer Type Thumb Runtime (%) SIMD Runtime (%)

Convolution 97.15 97.28
MaxPooling 2.59 2.22
ReLU 0.23 0.40
Fully-Connected 0.02 0.10

Source : The authors

structure and which functions are most used. Table 6.8 shows the execution time percent-

ages for a single thread running on the Arm Cortex-A7 processor according to each CNN

layer kernel. These values demonstrate that the convolution layers execute almost all the

time (i.e., 97%) in both the Thumb and SIMD instruction sets. Therefore, these layers are

the best candidates to be parallelized to achieve such a performance improvement. In this

regard, the following Section describes changes made to the CMSIS-NN kernel to allow

parallel execution of convolution layers.

6.1.4.1 Parallel Convolution Kernels

To improve the performance of computational and memory limited edge devices,

current approaches have been applying fixed-point arithmetic and quantization of weights

and activations on 8-bit (LAI; SUDA; CHANDRA, 2018) or smaller data types (CAPO-

TONDI et al., 2020). On the other hand, this work extends the CMSIS-NN convolution

kernel to support multiple threads considering the SIMD and Thumb instruction sets when

executed on an Arm Cortex-A7 processor. The proposed extension relies on the OpenMP

library (DAGUM; MENON, 1998) to support threads according to the number of cores

available in the adopted processor. The main feature of this extension is that it does not

change the goals of the CMSIS-NN kernel, i.e., it keeps the performance and memory

optimizations with a low memory footprint overhead (< 1%). Figure 6.9 demonstrates

an example of pseudo-code where the proposed extension instantiates the threads in the

convolution kernel.

The convolution kernel usually comprises two operations. First, the input reorder-

ing and expansion. Then, matrix multiplication operations are applied. In this regard,

threads are defined between the two operations not to change the CMSIS-NN kernel’s

characteristics. Furthermore, the APP_THREADS environment variable specifies the

maximum number of threads to run in parallel, and the omp_set_dynamic method guaran-
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Figure 6.9 – CMSIS-NN extension to provide a parallel convolution kernel.
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tees that the number of threads will be the same as defined by the user in the num_threads

method, avoiding bottlenecks, as shown in Figure 6.9. In addition, the SIMD and ordered

directives indicate that the loop can be turned into a SIMD loop (i.e., multiple iterations

of the loop can be executed concurrently using SIMD instructions), and those operations

must be ordered to ensure they do not affect the inference precision.

6.1.4.2 Multi-thread Speedup Analysis Experimental Setup

The first experiment aims to reveal the speedup gains when applying thread par-

allelism to the CMSIS-NN convolution kernel. Table 6.9 shows the experimental setup

used to evaluate the relative speedup considering the Thumb and SIMD instruction sets.

To ensure results consistency, we consider the GCC compiler version 9.3 along with opti-

mization flag −𝑂2 and OpenMP version 4.5 for all experiments. The optimizations from

the CMSIS-NN library are disable in Thumb versions by the architecture specific flag

−𝐷__𝐴𝑅𝑀_𝐹𝐸𝐴𝑇𝑈𝑅𝐸_𝐷𝑆𝑃 = 0, ensuring that the object code is generated entirely by

the compiler. To provide accurate results regarding application runtime, we validate the

proposed CMSIS-NN extension on a Raspberry Pi 2 (RPi2) Model b board (PI, 2021). In

this sense, the number of threads is defined ranging from 1 to 4, since the RPi2 board is

composed of a quad-core Arm Cortex-A7 processor.

Figure 6.10 shows the speedup improvement applying multi-threaded parallelism in

the adopted CNN application. Such results are calculated from the execution time obtained

from the multi-thread execution over the single thread version. The SIMD-based CNN

application presents a low speedup improvement in multi-threaded versions. On the other

hand, the Thumb-based CNN application shows an almost linear speedup improvement

(i.e., up to 3.5× improvement w.r.t. single-core version). This performance difference
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Table 6.9 – Validation Experimental Setup

Evaluation Board Raspberry Pi 2 Model b
Processor Arm Cortex-A7
ML Model Cifar-10 CNN
API/Libraries CMSIS-NN
Dataset CIFAR-10
Compiler and optimization flag GCC 9.3 with −𝑂2
OpenMP version 4.5
Instruction Sets Thumb and SIMD
Parallel Threads 1, 2, 3, and 4

Source : The authors

Figure 6.10 – Speedup results for 1, 2, 3 and 4 thread implementations for Thumb and SIMD
instruction sets.
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is because the Thumb implementation (i.e., generic convolution) has no optimization,

whereas the SIMD version promotes architecture-specific CMSIS-NN optimizations. In

this sense, the compiler can optimize the object code of the Thumb instruction set more

than SIMD. However, the SIMD vs Thumb curve shows that SIMD still has a performance

2.8× higher than Thumb even with the multi-core speedup.

6.1.4.3 Soft Error Reliability Analysis Experimental Setup

This Section explores the system soft error reliability by injecting faults (i.e.,

flipped bits) on processor registers during the execution of the CNN application with the
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proposed CMSIS-NN extension.

Table 6.10 – FI Experimental Setup

Processor Arm Cortex-A7
ML Model Cifar-10 CNN
API/Libraries CMSIS-NN
Dataset CIFAR-10
Compiler and optimization flag GCC 9.3 with −𝑂2
OpenMP version 4.5
Instruction Sets Thumb and SIMD
Target FI General-purpose registers
Number of FI campaigns 6
Injections per campaign 17k
Total Fault Injections 102k

Source : The authors

To assess the reliability of the proposed CMSIS-NN extension, we have used the

SOFIA framework to inject faults in the general-purpose registers of the Arm Cortex-

A7 processor (i.e., r0-r15). Note that all CMSIS-NN optimizations, including SIMD

instructions and OpenMP extension, only require general-purpose registers. Table 6.10

shows the FI experimental setup, which includes experiments with Thumb and SIMD

instruction sets considering 1, 2, and 4 cores/threads running on the Arm Cortex-A7

model supported by the SOFIA framework. Such experimental setup considers the same

version of compiler and optimization flags that was used for speedup analysis, keeping the

consistency of the FI campaign results.

Note that each FI campaign contains N experiments, where each one contains a

single input image and one CNN execution. Therefore, faults cannot be propagated to

subsequent CNN executions. In addition, developing a realistic and precise approach is

one of the main concerns for assessing the soft error reliability of a system. In this sense,

this work applies the equations developed by LEVEUGLE et al. 2009. These equations

ensure the statistical significance of the fault injection results. Thus, each FI campaign

has 17k experiments to generate results with a 1% error margin and 99% confidence level.

6.1.4.4 Soft Error Reliability Assessment

Figure 6.11 presents the fault injection campaign results executing the adopted

CNN application considering Thumb and SIMD instruction sets. The x-axis shows the

Arm Cortex-A7 configurations for single, dual, and quad-core systems. The left y-axis

shows the fault classes, while the red dots on the right y-axis show the MWTF gain
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compared to the single thread execution version.

Figure 6.11 – Results from FI campaigns evaluating the thread parallelism with single, dual, and
quad-core configurations.
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The results show that soft errors can affect the Thumb version more than the opti-

mised SIMD version in terms of crashes. These faults are mostly unexpected terminations

(e.g., handling exceptions) and are faults detected by the architecture. Even when the

number of threads is compared, the same behaviour is observed (i.e., similar percentages

in single, dual, and quad-core). This is mainly due to a large number of control and

memory instructions between the calculations. Furthermore, the CNN application runs on

a Linux kernel; thus, the longer the execution time, the more kernel control instructions

are executed.

On the other hand, the SIMD version exploits MAC instructions to provide opti-

mizations in the inference phase, reducing the fault impact. In addition, CNN’s perfor-

mance improvement by increasing the number of threads also increases correct outputs

and tolerable faults. However, the SIMD instruction set presented a slight increase in

critical faults. This behaviour is caused by the more significant number of SIMD MAC

instructions executed between load/store operations, which are more sensitive to soft errors

affecting the registers that contain the inference data.

Finally, Figure 6.11 also shows the impact of soft error reliability on parallel ap-

plications. Regarding the execution on dual and quad-core Arm Cortex-A7 processors,

we can see that increasing the number of threads positively impacts the soft error relia-

bility, reducing affected outputs (i.e., tolerable and critical faults) and increasing correct
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outputs for both SIMD and Thumb versions. Although the SIMD version shows a higher

percentage of critical faults, it has the best trade-off between reliability and performance

when comparing the normalised MWTF. This is due to the architecture-specific opti-

mizations of CMSIS-NN kernels aimed at SIMD instructions. According to the results

shown in Figure 6.10, even with an almost linear speedup in Thumb parallel execution, the

SIMD parallel version still provides 3× more performance than the Thumb, consequently

impacting the resulting MWTF.

6.2 Soft Error Reliability Assessment of the MobileNet CNN

This section presents the soft error reliability assessment results for the MobileNet

CNN case study. First, Section 6.2.1 presents a detailed description of the MobileNet CNN

developed with the CMix-NN library. Next, Section 6.2.2, Section 6.2.3, and Section 6.2.4

comprise the soft error reliability assessment considering the MobileNet CNN execution,

topology, isolated layers, precision-bitwidth, memory (code, parameters and data), and

soft error mitigation techniques.

6.2.1 MobileNet CNN Developed with CMix-NN

This Section presents the MobileNet case-study (HOWARD et al., 2017), which

consists of a 29-layer CNN developed with the CMix-NN library (CAPOTONDI et al.,

2020) to run in SIMD featured Arm Cortex-M processors. The CNN is trained with the

ImageNet dataset (DENG et al., 2009), consisting of 10 million labeled images depicting

1000 object categories.

Table 6.11 shows the MobileNet layers that include multiple convolution layers

interspersed by depthwise separable convolutions, with an average pooling and a fully-

connected layer at the end of CNN. Figure 6.12 shows an overview of a typical CNN

topology and the depthwise separable convolutions, which factorize a standard convolution

into a depthwise convolution and a 1×1 pointwise convolution. In this factorization,

depthwise separable convolution splits filtering and combining processes into two layers,

drastically reducing computation and memory footprint.

The MobileNet CNN (HOWARD et al., 2017) is a streamlined architecture that

aims to build lightweight deep inference networks. Different from standard convolution
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Table 6.11 – Layer parameters for the Mobilenet CNN.

Layer Type Stride Filter Shape Input Shape

1 Standard Convolution 2 3x3x3x8 160x160x3
2 Depthwise Convolution 1 3x3x8 80x80x8
3 Poitwise Convolution 1 1x1x8x16 80x80x8
4 Depthwise Convolution 2 3x3x16 80x80x16
5 Poitwise Convolution 1 1x1x16x32 40x40x16
6 Depthwise Convolution 1 3x3x32 40x40x32
7 Poitwise Convolution 1 1x1x32x32 40x40x32
8 Depthwise Convolution 2 3x3x32 40x40x32
9 Poitwise Convolution 1 1x1x32x64 40x40x32
10 Depthwise Convolution 1 3x3x64 20x20x64
11 Poitwise Convolution 1 1x1x64x64 20x20x64
12 Depthwise Convolution 2 3x3x64 20x20x64
13 Poitwise Convolution 1 1x1x64x128 10x10x64

14-23 5x Depthwise Convolution 1 3x3x128 10x10x128
Poitwise Convolution 1 1x1x128x128 10x10x128

24 Depthwise Convolution 2 3x3x128 10x10x128
25 Poitwise Convolution 1 1x1x128x256 5x5x128
26 Depthwise Convolution 2 3x3x256 5x5x256
27 Poitwise Convolution 1 1x1x256x256 5x5x256
28 Average Pool 1 5x5 5x5x256
29 Fully-connected 1 256x1000 1x1x256
30 Softmax 1 Classifier 1x1x1000

Source : Adapted from HOWARD et al. (2017)

Figure 6.12 – Brief description of the MobileNet CNN topology.
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layers that filter and combine inputs into a new set of outputs in one step, MobileNet

CNN is based on depthwise separable convolutions, which split this single step into two

layers: depthwise convolutions and pointwise convolutions. First, depthwise convolutions

apply a single filter to each input channel. Then, the pointwise convolution uses a 1×1

convolution to combine the depthwise convolution outputs. The depthwise separable

convolution splits this into two layers, one separate layer for filtering and another layer

for combining data, which drastically reduces the computation and model size. In this

case study, the adopted MobileNet CNN was configured with a 3×3 depthwise separable
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convolution, representing savings of up to 9 times in computational cost compared to

standard convolutions. In addition to the convolution layers, an average pooling layer is

employed to reduce the spatial resolution to 1 before the fully connected layer. In this

sense, MobileNet has 29 layers, considering depthwise and pointwise convolutions as

separate layers, except for the first layer that is a full standard convolution.

The adopted MobileNet CNN uses the CMix-NN library (CAPOTONDI et al.,

2020) to implement mixed low-precision standard convolution and depthwise separable

convolution layers functions. Unlike traditional CNN models that are trained using 32-

bit floating-point data representation, the CMix-NN uses mixed low-precision unsigned

integer representation. The CMix-NN kernels deploy optimizations focusing on enabling

the execution of CNNs on Cortex-M based systems that support SIMD instructions,

especially 16-bit MAC instructions (e.g., SMLAD). The CMix-NN library provides a

complete set of convolutional kernels featuring a mixed low-bitwidth for the weights,

input, and output activations that supports 8, 4, and 2 bitwidth combinations and different

quantization techniques.

A typical mixed-precision Quantized Convolutional Layer (QCL) workload splits

the convolution between quantized image-to-column and a matrix multiplication loop.

The quantized functions load Q-bits input data in temporary buffers casting from the

original Q-bits format to execute through vectorized SIMD 2×16 MAC instructions.

Figure 6.13 illustrates the QCL internal components with memory requirements (e.g.,

inputs, weights, and structures) and the computational dataflow, which implement the

mixed low-precision convolutional functions. The low-precision MAC unit accumulates

the convolution result over a temporary 32-bit precision variable through vectorized MAC

operations. In asymmetric quantizations, Zw and Zi apply the offset to the loaded parameter

values to transpose them into the custom asymmetric domain. While the Unpack operation

loads the convolution operands, the Compressor unit operates the final compression on the

high-precision accumulation, considering a set of parameters TA, which varies depending

on the applied quantization technique.

In addition, CMix-NN library supports Per-Layer (PL) and Per-Channel (PC) com-

pression techniques for any combination of bitwidth between input, output, and weights.

While a PL quantization exploits a single min/max value for the entire layer, the PC

computes a min/max value for any output channel. This latter approach is most beneficial

when the weight distribution varies widely between channels. Furthermore, the CMix-NN

library also supports the Inter-Channel Normalization (ICN) activation (RUSCI; CAPO-
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Figure 6.13 – CMix-NN quantized convolutional layer.
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TONDI; BENINI, 2019). This technique allows the introduction of lower bitwidth models

with negligible inference loss, opening opportunities to exploit the soft error reliability

of convolutional layers with precision bitwidth. The MobileNet mixed precision parame-

ters have been acquired through the training scripts1 provided by RUSCI; CAPOTONDI;

BENINI (2019).

6.2.2 The Impact of Precision Bitwidth on the Soft Error Reliability of the MobileNet
CNN Execution on Resource-constrained IoT Devices

This Section explores the soft error reliability of the MobileNet CNN considering

different aspects: precision bitwidth and layer vulnerability analysis. In this sense, Sec-

tion 6.2.2.1 details the experimental setup used to perform the fault injection campaigns.

Section 6.2.2.2 rely on to analyze the execution lifetime of the adopted CNN. Furthermore,

Section 6.2.2.3 exploits the MobileNet soft error reliability considering different precision

bitwidth configurations.

6.2.2.1 Experimental Setup

To estimate the percentage of errors from the adopted case study, the two FI

techniques mentioned in Section 4.1.2 are used to obtain the results, by injecting bit-flips

in the general-purpose registers (i.e., r0-r15) of the Arm Cortex-M7 processor. Note that

1https://github.com/marco-fariselli/training-mixed-precision-quantized-networks
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all optimizations from CMix-NN, including SIMD instructions, requires only the general-

purpose registers. Table 6.12 shows the experimental setup to perform the proposed

evaluation. For this experimental setup we consider 8 and 4 bit precision quantizations in

weights (i.e., w in Table 6.12) and input/output activations (i.e., a in Table 6.12).

Table 6.12 – Experimental Setup.

Arm Processors Cortex-M7
ML model MobileNet CNN
API/Libraries CMix-NN
Dataset ImageNet

CNN Topology

1 Standard Convolution,
13 Depthwise, 13 Pointwise,

1 Average Pooling,
1 Fully-Connected

Target FI Register File, Function Lifespan
Evaluated Precisions w4a4, w8a4,
(w: weights, a: activations) w4a8, w8a8
Number of FI Campaigns 40
Injections per Campaign 17k
Total Fault Injections 680k

Source : The authors

In order to maintain the coherence, these results consider the same compilation

environment: GCC 9.3 and optimization flag -O2. Each fault injection scenario considers

a single input image for one CNN execution, thus not considering fault propagation to

the subsequent executions. Developing a precise, well-covered, and realistic approach

is one of the main concerns when assessing a system’s soft error reliability. Aiming to

ensure that the number of fault injections has a statistical significance, this work applies

the equations developed by (LEVEUGLE et al., 2009). In this sense, the fault injection

campaigns consider 17k faults per scenario, thus generating a 1% error margin with a 99%

confidence level.

6.2.2.2 MobileNet CNN Execution Lifetime

Asserting the experimental setup accuracy is paramount to obtain meaningful

and useful results. To validate the adopted framework’s utility, we compare the outputs

reported in MobileNet2 execution on the STM32H7 board with those gathered from the

2https://github.com/EEESlab/mobilenet_v1_stm32_cmsis_nn.git
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Figure 6.14 – CNN timeline with CMix-NN library executing on Arm Cortex-M7 processor.
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execution in the absence of faults over the SOFIA. The results from CNN execution in

SOFIA presented no difference in the output probabilities for the selected image w.r.t. the

on-chip execution. Figure 6.14 shows the MobileNet CNN execution detailing the lifespan

of each layer, considering the execution on Arm Cortex-M7 through the STM32H7 board

and SOFIA.

Observing the functions’ lifespan in Figure 6.14, it is notable that both standard

convolution and depthwise separable convolution layers execute at most of the time while

the remaining layers execute in a small part of the CNN execution. The variation of

precision bitwidth also changes the function lifespans increasing the execution percent of

depthwise separable convolutional layers. In this sense, it is expected that faults injected

randomly are more likely to reach the convolution layers, having a considerable impact

on the CNN reliability according to the precision bitwidth variations. Moreover, the

execution percentages for the STM32H7 board are based on clock cycles, while in SOFIA,

the percentages are based on the number of executed instructions. Such percents differ

due to the number of required clock cycles to execute some instructions (e.g., a division

might require from 2 to 12 cycles).
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Figure 6.15 – Results from fault injection campaigns when injecting faults in the CNN layers with
different precision bitwidth configurations.
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6.2.2.3 Soft Error Reliability Analysis

Aiming to evaluate the reliability considering the different aspects of the CNN

execution, Figure 6.15 shows the results for the FI campaigns targeting all CNN layers

when considering different precision bitwidth configurations. Such results are compared

with those obtained from fault injection campaigns that target distinct layers of the CNN

topology considering different volumes of data processed. The CNN functions use several

loops to process data, which requires many control instructions, consequently generat-

ing high UT and Hang occurrence (i.e., 15% on average) in all precision configurations.

Fully-connected and pooling layers show high soft error vulnerability in all configura-
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tions since such layers do not vary in terms of quantized precision bitwidth. Observing

the effect of quantizations on the CNN reliability, the quantization of inference weights

affects reliability more than the quantization of activations since there is an increase in

the masking rate when compared to w8a8 (i.e., ∼21% more vanished on w4a4 and w4a8

scenarios). According to the differences between the convolution layers, depthwise sepa-

rable convolution layers are more susceptible to soft errors (i.e., high occurrence of ONA).

Furthermore, the precision bitwidth can be linked to the increased vulnerability due to the

greater probability of a failure spreading to the next layers (on average, OMM increases

from 5% in w4a4 to 35% in w8a8 configurations).

Table 6.13 – Percentages of tolerable and critical faults in the CNN considering different
precision bitwidth configurations.

w4a4 w4a8
Layers Correct Tolerable Critical Crash Correct Tolerable Critical Crash

1 Std. Convolution 79,16 0 5,99 14,84 76,03 0 6,76 17,21
2 Depthwise 78,87 0 5,79 15,34 77,79 0 7,74 14,47
3 Pointwise 79,46 0,03 7,03 13,48 74,58 0 11,86 13,55
4 Depthwise 80,21 0 4,44 15,35 84,51 0 1,97 13,52

25 Pointwise 86,32 0,83 0,32 12,53 85,85 1,10 0,55 12,49
26 Depthwise 81,85 3,83 0,19 14,13 75,68 11,48 0,91 11,93
27 Pointwise 78,48 10,36 3,56 7,59 79,34 11,26 1,70 7,70
28 Av. Pool 49,71 16,35 11,74 22,21 53,16 9,40 15,45 21,99
29 Fully-Connected 47,05 29,62 4,24 19,08 48,73 26,37 6,17 18,73
all All 81,83 1,29 3,18 13,71 82,36 0,80 3,72 13,12

w8a4 w8a8
Layers Correct Tolerable Critical Crash Correct Tolerable Critical Crash

1 Std. Convolution 71,59 0,04 10,85 17,52 50,38 24,50 8,19 16,94
2 Depthwise 66,68 0 16,61 16,71 48,21 31,28 5,09 15,41
3 Pointwise 69,64 0,04 15,56 14,77 55,01 24,13 5,93 14,93
4 Depthwise 72,06 0 11,90 16,04 45,05 35,57 5,26 14,12

25 Pointwise 71,61 10,64 0,55 17,21 45,26 32,93 5,78 16,04
26 Depthwise 57,29 26,36 1,58 14,76 46,64 32,44 8,66 12,26
27 Pointwise 72,42 14,90 4,56 8,11 72,42 15,32 3,98 8,28
28 Av. Pool 49,68 17,56 10,76 21,99 49,48 14,58 13,94 22,01
29 Fully-Connected 46,62 31,15 3,92 18,31 44,54 31,48 5,28 18,71
all All 68,78 2,43 12,29 16,50 44,79 35,49 4,69 15,04

Source : The authors

Table 6.13 shows the results comparing the output data from the fault injection

campaigns with the fault-free execution. These results allow us to evaluate the soft error

impact on the CNN accuracy according to the classification presented in Section 4.1.2.

Considering the results of fault injections in all layers of the CNN, most of the effective

faults tend to become critical, or system crashes in lower precision configurations (i.e.,

lower percents of tolerable faults in w4a4, w4a8 and w8a4). Such an effect can be noted in
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the convolutional layers with a high volume of data processing where the tolerable faults

tend to 0% (i.e., layers 1 to 4). In turn, the number of effective faults increases when

reducing the volume of data processed in the convolution layers (i.e., layers 25 and 26),

where the number of effective faults increases when incrementing the precision bitwidth.

Such results demonstrate that soft errors have a significant impact on the CNN execution

and its accuracy, when considering the individual analysis of distinct layers and precision

bitwidths.

6.2.3 The Impact of Soft Errors in Memory Units of Edge Devices Executing the
MobileNet CNN

This Section explores the MobileNet CNN’s behaviour in the presence of soft

errors by applying fault injections to the register file and isolated memory sections.

6.2.3.1 Experimental Setup

Table 6.14 shows the experimental setup, where 459k bit-flip are injected in the

general-purpose register file (i.e., r0-r15) and Flash and RAM memory sections. This work

applies the equations developed by Leveugle et al. (LEVEUGLE et al., 2009) to ensure

the statistical relevance of the fault injection results (KRZYWINSKI; ALTMAN, 2013).

In this sense, each FI campaign includes 17k experiments, providing results with an 1%

error margin and 99% confidence level. Note that these experiments do not consider the

propagation of faults to subsequent executions, as each experiment consists of one bit-flip

injection and a single CNN execution with a single input image.

The FI campaigns are conducted considering the Arm Cortex-M7. As mentioned

before, the MobileNet was developed with the CMix-NN library, which only supports

SIMD instructions. However, due to the large volume of data inherent to weights and

bias of MobileNet and the limited amount of memory available in STM32F407ZGT6

(Table 6.15), this model was deployed in the STM32H743VIT6 that includes a Cortex-

M7.

6.2.3.2 Soft Error Reliability Analysis

This case study assesses the soft error reliability of the MobileNet CNN considering

its precision bitwidth variation defined according to the CMix-NN library. Figure 6.16
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Table 6.14 – Experimental Setup

Arm Processor Cortex-M7
(executed instructions) (400 millions)
ML Model MobileNet CNN
API/Library CMix-NN
Dataset ImageNet
Precision Bitwidths 8, 4, and 2
API/Libraries CMix-NN
Target FI Register Files, Flash (code and parameters), RAM
Number of FI campaigns 27
Injections per campaign 17k
Total Fault Injections 459k

Source : The authors

Table 6.15 – On-chip Memory Occupation (MO) for 8-bit precision inference CNN models,
considering code, parameters and data

Arm Reference Chip On-chip Memory CNN Inference Model MO(%)Processor Flash(kB) SRAM(kB) Code(kB) Parameters(kB) Data(kB)

Cortrex-M7 STM32H743VIT6 2048 1024 20.2 1492.3 450.1 63.87

Source : The authors

shows soft error results obtained from the injection of bit-flips in the register file, Flash

and RAM sections considering the Arm Cortex-M7. The Flash results present a large

number of faults - most of them are tolerable. In addition, the percentage of critical faults

remains similar for most precision bitwidths, the exception is the w8a8 configuration. The

results for the RAM section show that the higher precision (i.e., weights w and activations

a) the more critical errors are expected.

Figure 6.17 presents the relative trade-off between the normalised Mean Work To

Failure (MWTF) and memory-saving, considering different precision bitwidth configura-

tions. The MWTF shows the average amount of work an application can perform until

reaching a failure (i.e., higher values are better) (REIS; CHANG et al., 2005). Here, the

memory-saving represents the amount of Flash/RAM not required by an implementation

with regard to the highest and lowest requirements. This measure is based on the .text

(Flash area for CNN code), .data (Flash area for CNN parameters) and .bss (RAM area

for uninitialised variables) values reported by the compiler.

Figure 6.17 (a) shows that lower MWTF values are obtained at reduced precision

bitwidths for code (CM), parameters (PM) and data (DM). This occurs because the inci-

dence of a bit-flip in a reduced precision configuration is more likely to modify the code

or weights, which might ultimately impact on the CNN’s functional behaviour or output
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Figure 6.16 – Results showing fault classifications for Register File, Flash, and RAM memory
sections for the MobileNet CNN according to the precision bitwidth.
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classification. It is important to mention that the opposed happens in register files whereas

faults are more often masked during the inference.

In regard to the memory-saving, results show that higher precision bitwidths (e.g.,

Figure 6.17 (i)) incur a larger amount of parameters and data, which lead to a larger

vulnerability window. In this sense, the occurrence of a soft error might have a greater

impact on the precision bitwidth variation of weights (from w2 to w8), with an increase

in the occurrence of critical failures when increasing the precision of activations (from a2

to a8). This behavior is intensified in the w8a8 configuration because, in this case, there

is no precision offset between weights and activations and thus the fault tend to propagate

through the CNN execution.

The results demonstrated that the soft error reliability of edge devices executing

CNNs varies according to the affected memory section. If on the one hand the fault effects

on register files are related to executed instructions and execution time. On the other hand,

the fault effects on memory addressing are closely associated with the size of function

object code, CNN parameters, and data. Furthermore, even in quantized solutions, a

single bit-flip occurring on sensitive data stored in memory can compromise the entire

CNN application.
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Figure 6.17 – Relative trade-off between the normalised Mean Work To Failure (MWTF) and
memory-saving, considering different precision bitwidth configurations, comparing Code MWTF
(CM), Parameters MWTF (PM), Data MWTF (DM), Flash-Saving (FS), and RAM-Saving (RS).
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6.2.4 Applying Lightweight Soft Error Mitigation Techniques to Embedded Mixed
Precision Deep Neural Networks

This Section explores the soft error reliability of the MobileNet CNN considering

different aspects: precision bitwidth, layer vulnerability, mitigation techniques, and rela-

tive trade-off analysis. In this sense, Section 6.2.4.1 details the experimental setup used to

perform the fault injection campaigns. Section 6.2.4.2 exploits the MobileNet soft error

reliability considering different precision bitwidth configurations. Then, Section 6.2.4.3

presents the reduction of soft errors when applying two system-level mitigation techniques.

Finally, Section 6.2.4.4 presents the relative performance and reliability trade-off for the

adopted soft error mitigation techniques.



114

6.2.4.1 Experimental Setup

To provide trustworthy results, experiments consider more than 4.5 million fault

injections to assess the soft error reliability of two mitigation techniques applied to the

MobileNet on ImageNet. This work considers two FI techniques (i.e., function lifespan and

random register file) to inject flipped bits in the general-purpose registers (i.e., r0-r15) of

the Arm Cortex-M7 processor. This choice was motivated for two reasons. First, because

the two FI techniques provide better coverage of the soft errors presented. Second, because

all CMix-NN optimizations, including the SIMD instructions, require only the general-

purpose registers. Note that this work focuses on the assessment and mitigation of soft

errors originated from general-purpose registers, and hence it is assumed that the memory

is protected by some type of error correction, such as Error Correcting Code (ECC) or

parity bit.

Table 6.16 – Experimental Setup

Processor Arm Cortex-M7
ML Model MobileNet CNN
API/Library CMix-NN
Dataset ImageNet

1 Standard Convolution,
Topology 13 Depthwise, 13 Pointwise,

1 Average Pooling, 1 Fully-Connected
All, L01, L02,

Target Layers L03, L04, L25, L26,
L27, L28, L29

Evaluated Precisions
(w: weights, a: activations)

w2a2, w2a4, w2a8,
w4a2, w4a4, w4a8,
w8a2, w8a4, w8a8

Mitigation Techniques P-TMR and RAT
Number of FI campaigns 270
Injections per campaign 17k
Total Fault Injections 4.59 millions

Source : The authors

Table 6.16 shows the experimental setup. The adopted MobileNet CNN has per-

channel quantization with ICN layers (PC+ICN)(RUSCI; CAPOTONDI; BENINI, 2019),

configured with the width multiplier of 0.5 and input sizes of 192, since this configuration

has the minimum channel width required by 2-bit configurations.

In addition, this work uses the same compilation environment (i.e., Clang 6.0.1
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and optimization flag -O2) to set the bitwidth configurations and the mitigation techniques.

Each fault injection campaign considers a single input image for each MobileNet CNN

execution, thus not considering the fault propagation to the subsequent executions. Also,

each campaign is a particular configuration scenario and the 270 campaigns comprise:

10 target layers * 9 precision bitwidths * 3 mitigation cases (Code unprotected, P-TMR,

and RAT). Furthermore, conducting a precise, well-covered, and realistic approach is

key when assessing a system’s soft error reliability. In this sense, to ensure the results’

statistical significance, this work injects 17k faults per campaign, which according to

LEVEUGLE et al. 2009, generates a margin of error of 1% with a 99% confidence level.

6.2.4.2 Soft Error Reliability Assessment of the MobileNet CNN Considering the Precision

Bitwidth

Initially, we validated the SOFIA framework’s faultless reference against the out-

puts reported by the MobileNet repository3 and its on-chip execution. In this regard, we

executed MobileNet CNN on an STM32H7434 device, and then compared it with those

collected from its execution on SOFIA, where no difference in the output probabilities

was shown. This experiment is of paramount importance to guarantee the reproducibility

and meaningfulness of the results.

After validating the reference flow, we generate fault injection campaigns consider-

ing the variation of precision bitwidth with weights raging from w2 to w8 and input/output

activations from a2 to a8. Table 6.17 shows the MobileNet CNN soft error results detailing

the fault classification for each bitwidth configuration.

In general, results show a similar soft error reliability behaviour between the

different quantization configurations. For example, the results from fault injections in

All layers in Table 6.17, crash occurrences handle 6.92% on average across all precision

bitwidth configurations; this is because MobileNet CNN functions use multiple loops

to process data that require many control instructions. Note that CNNs are known to

have a lot of redundancy built-in, due to which they present a reasonable masking rate,

which justifies the average of 86.7% of correct outputs. However, a single critical fault

occurrence in safety-critical systems running the underlying trained models can lead to

fatal consequences (i.e., life-threatening).

Table 6.17 also shows how the quantization of inference activations affects the

3https://github.com/EEESlab/mobilenet_v1_stm32_cmsis_nn.git
4https://www.st.com/en/microcontrollers-microprocessors/stm32h743vi.html
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Table 6.17 – Percentages of tolerable and critical faults on MobileNet CNN considering different
precision bitwidth configurations.

w2a2 w2a4 w2a8
Layers Correct Tolerable Critical Crash Correct Tolerable Critical Crash Correct Tolerable Critical Crash

1 Std Convolution 91.65 0.01 2.03 6.31 89.98 0.01 1.42 8.58 89.81 0.41 0.93 8.85
2 Depthwise 92.66 0.08 0.15 7.11 92.77 0.01 0.24 6.98 85.62 5.02 2.95 6.41
3 Pointwise 90.58 0.07 3.76 5.58 88.32 0.12 3.44 8.12 83.31 2.06 6.23 8.40
4 Depthwise 91.61 0.06 1.55 6.77 88.55 0.00 4.37 7.08 79.93 6.59 7.11 6.36

25 Pointwise 92.84 1.31 0.47 5.39 89.75 1.85 0.58 7.82 87.53 3.66 0.78 8.03
26 Depthwise 84.49 7.10 1.29 7.12 84.44 7.13 1.26 7.17 82.22 11.27 0.55 5.96
27 Pointwise 80.04 9.84 2.13 8.00 79.94 11.15 1.21 7.70 79.28 12.19 0.71 7.81
28 Average Pooling 65.28 20.11 3.86 10.74 65.19 20.02 4.04 10.75 65.55 20.19 3.47 10.78
29 Fully-Connected 75.08 17.57 1.89 5.46 74.30 18.15 1.93 5.62 74.19 18.17 1.97 5.67
all All 91.32 0.84 1.80 6.04 88.51 1.11 2.66 7.72 83.96 5.45 3.02 7.56

w4a2 w4a4 w4a8
Layers Correct Tolerable Critical Crash Correct Tolerable Critical Crash Correct Tolerable Critical Crash

1 Std Convolution 91.81 0.00 1.75 6.45 90.18 0.01 1.08 8.74 89.60 0.60 0.87 8.93
2 Depthwise 92.84 0.00 0.15 7.01 92.79 0.05 0.18 6.98 84.63 8.72 0.65 6.00
3 Pointwise 90.64 0.03 3.78 5.55 88.51 0.01 3.47 8.01 81.47 6.35 4.31 7.86
4 Depthwise 91.60 0.00 1.54 6.86 88.04 0.04 5.03 6.89 78.94 13.78 1.19 6.08

25 Pointwise 92.11 2.04 0.25 5.60 89.95 1.92 0.42 7.71 85.76 5.78 0.54 7.93
26 Depthwise 85.49 6.77 1.21 6.53 84.36 7.09 1.50 7.05 80.51 13.05 0.46 5.98
27 Pointwise 81.51 8.35 2.32 7.83 82.10 8.89 1.43 7.58 80.22 10.81 0.94 8.04
28 Average Pooling 65.66 19.55 3.85 10.94 65.41 20.21 3.79 10.59 66.04 19.54 3.49 10.94
29 Fully-Connected 75.19 17.18 1.95 5.67 74.21 18.16 1.99 5.64 74.42 17.91 2.16 5.51
all All 91.79 0.66 1.88 5.67 88.43 0.72 3.24 7.61 81.68 8.61 1.86 7.85

w8a2 w8a4 w8a8
Layers Correct Tolerable Critical Crash Correct Tolerable Critical Crash Correct Tolerable Critical Crash

1 Std Convolution 92.88 0.01 0.70 6.41 90.19 0.01 0.87 8.93 89.78 0.64 0.66 8.92
2 Depthwise 92.85 0.06 0.19 6.89 92.06 0.03 0.32 7.58 83.90 8.90 0.54 6.66
3 Pointwise 90.56 0.04 3.58 5.82 87.73 0.02 3.87 8.38 78.65 11.58 1.49 8.28
4 Depthwise 91.60 0.06 1.39 6.95 86.15 0.02 6.35 7.48 75.77 17.18 0.68 6.36

25 Pointwise 89.99 4.14 0.20 5.68 88.72 3.23 0.28 7.77 79.27 9.22 3.54 7.97
26 Depthwise 84.19 7.03 1.62 7.16 82.93 7.94 1.92 7.21 79.98 8.45 4.94 6.64
27 Pointwise 81.24 8.51 2.49 7.76 81.39 8.86 1.64 8.11 84.01 6.58 1.64 7.78
28 Average Pooling 65.80 19.73 3.55 10.92 65.65 19.56 3.69 11.10 66.73 6.89 15.44 10.94
29 Fully-Connected 74.52 17.67 2.13 5.68 73.56 18.39 2.11 5.94 75.79 16.56 2.23 5.42
all All 91.60 0.74 1.78 5.88 86.84 1.22 3.61 8.34 78.71 11.64 2.21 7.45

Source : The authors

MobileNet CNN soft error reliability by reducing the correct outputs in up to 10.12%

when varying from a2 to a8. Although it affects less, increasing the weight bitwidth also

reduces the soft error reliability by up to 2.21% on the correct outputs when varying the

configurations from w2 to w8. This occurs because a SIMD MAC instruction splits a 32-

bits register into different segments, which are set according to the bitwidth configuration.

This leads to a higher probability to overwrite the faulty bit, thus reducing the probability

to propagate the fault to the inference phases. Results show that both higher precision

bitwidths and the unpack/compress process can led to an increase number of faults. The

unpack/compress process is related to load and store instructions that are executed before

and after SIMD MAC operations, which increases the probability of a fault impacts on the

output probabilities. Note that the increase in the precision bitwitdh can also reduce the

fault criticality since a soft error in a less significant bit is less likely to generate a critical

fault. Such behaviour can be seen in Table 6.17 All when comparing w8a4 and w8a8

configurations, where the number of critical faults decreases and tolerable faults increases



117

significantly.

To understand the layers’ vulnerability to the soft errors, Table 6.17 shows the

results obtained from FI campaigns that target distinct layers of the MobileNet CNN

topology considering different data volumes. Results show that the most effective faults

tend to become either critical or system crashes in low-precision activation configurations

(i.e., a2 and a4). Such an effect can be seen in convolutional layers with a high volume of

input data processing, where tolerable faults tend to 0% (i.e., layers 1 to 4). In turn, the

number of tolerable faults increases as the input data volume reduces in the convolution

layers (i.e., layers 25 and 27). This is because the dimensions of input activations are

reduced during MobileNet CNN execution, while the channel width increases, thus making

the data volume larger in weights w.r.t. input activations. Consequently, faults occurring

in these layers are more likely to propagate to the output, i.e., the appearance of a high

number of tolerable and critical faults in layers 26 and 27. Note that the occurrence of

faults (i.e., Tolerable + Critical + Crash) also increases alongside the precision bitwidth.

6.2.4.3 Applying mitigation techniques to MobileNet CNN

Aiming to reduce the MobileNet CNN susceptibility to soft errors, this Section

considers the use of two software-based mitigation techniques: P-TMR and RAT. Both

techniques are applied to the matrix multiplication function, which is considered here the

most critical one due to its higher active period within the MobileNet execution time.

Figure 6.18 shows the reliability improvement of MobileNet CNN by applying the

two mitigation techniques. The x-axis has three bars for each adopted precision bitwidth

configuration. The first bar represents MobileNet CNN with unprotected code (_), and the

other two the mitigation techniques P-TMR (𝛾) and RAT (𝛽). The left-hand y-axis shows

the soft error percentage obtained from the fault injection campaigns, and the right-hand

y-axis shows the MWTF normalized by the unprotected version. While the left-hand

metric shows an overview of the generated faults, the one at the right-hand side relies on

a well-accepted reliability metric to compare the two mitigation techniques.

As expected, Figure 6.18 shows that both mitigation techniques significantly in-

crease the number of correct outputs while reducing the number of critical faults. In

general, a lower precision bitwidth configuration (i.e., 2 and 4-bits to w and a) lead to a

reduction in fault occurrences. On the other hand, 8-bit configurations present a higher

occurrence of tolerable faults. This is due to larger bitwidth operations that reduce the

fault masking rate. Even under these conditions, both mitigation techniques protect the
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Figure 6.18 – Results showing fault classifications comparing MobileNet CNN without
protection, with P-TMR, and RAT mitigation techniques. The red dots indicate the normalized

MWTF (right y-axis).
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code and turn critical faults into correct or tolerable ones. Figure 6.18 shows that P-TMR

has a significant AVF improvement in all scenarios, but the performance penalty does not

compensate for w4a2 and w8a8 configurations (i.e., normalized 𝑀𝑊𝑇𝐹 < 1). In turn, the

RAT improved the MWTF in all configurations, raising up to 4.7× in the w8a4 precision

bitwidth.

Figure 6.19 shows the reliability improvement per layer for the most affected

precision bitwidth configurations (i.e., w8a4 and w8a8). Compared to the unprotected

version, both mitigation techniques show soft error reliability improvements. On the one

hand, Figure 6.19.a shows a reduction of up to 8% in critical faults and system crashes

in the 4-bit precision activation. On the other hand, Figure 6.19.b illustrates that some

tolerable, critical, and crash faults become correct outputs for 8-bit precision activations.

In the P-TMR perspective, this effect occurs mainly due to faults striking registers used by

redundant instructions. Unlike, RAT reduces the number of vulnerable registers during the

critical function’s execution, taking advantage of the inherent high resilience of MobileNet.

6.2.4.4 Trade-off Between Performance and Reliability

This Section details the drawbacks introduced by the two mitigation techniques and

discusses the trade-off between increased protection and performance penalty. Figure 6.20

shows the performance overhead of the P-TMR and RAT compared to no protection
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Figure 6.19 – Results of fault classification by layer of the two most affected precision bitwidth
configurations.
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execution. The execution times were extracted by running the MobileNet CNN on an

STM32H743 board. Results show a performance degradation of up to 1.2× for RAT

and 3.8× for P-TMR, depending on the precision bitwidth configuration. In this regard,

the original MobileNet achieves ∼1.9 inferences per second. In turn, when applying
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the P-TMR mitigation technique, the number of inferences per second reduces to ∼0.5

while the RAT ∼1.5 in worst-case scenarios. Note that the most remarkable performance

overhead occurs because P-TMR is applied to the application’s intermediate code without

further optimization, i.e., the application is compiled with -O2 and the mitigation technique

is applied without architecture-specific optimizations. This approach is required to avoid

code removals made by the compiler’s backend.

Figure 6.20 – MobileNet execution time overhead considering P-TMR and RAT.
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Figure 6.21 compares the relative trade-off between reliability, accuracy, perfor-

mance and memory footprint overhead for two precision bitwidth configurations (w8a4

and w8a8). Table 6.18 shows the footprint overhead, which is calculated based on the

additional hardened application code size resulting from both P-TMR and RAT mitigation

techniques w.r.t. the original application code (i.e., Flash memory).

Table 6.18 – Normalized MobileNet footprint overhead when applying soft error mitigation
techniques.

Mitigation w2a2 w2a4 w2a8 w4a2 w4a4 w4a8 w8a2 w8a4 w8a8

P-TMR 1.78 1.80 1.59 1.80 1.82 1.60 1.81 1.82 1.59
RAT 1.16 1.16 1.13 1.16 1.17 1.13 1.16 1.17 1.13

Source : The authors

This comparison provides an overview of the advantages and disadvantages of

both mitigation techniques when applied to the MobileNet CNN. Gathered values are

normalized between 1 and 5, and the top axis represents the MWTF improvement, the two
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Figure 6.21 – Relative trade-off between P-TMR and RAT mitigation techniques considering
w8a4 and w8a8 precision bitwidth configurations, comparing Mean Work To Failure (MWTF),
Performance Overhead (PO), Footprint Overhead (FO), Accuracy (AC), and Tolerable Faults

(TF).
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left axes represent the performance and memory overheads, and the two right axes show

the precision and the tolerable percentages. Figure 6.21 clearly shows that RAT presents

a significant lower performance overhead, which directly led to an improved MWTF w.r.t.

the P-TMR.

The resulting performance overhead can be explained not only by the increased

number of instructions but also the instruction set employed by each mitigation technique.

Table 6.19 shows that P-TMR consists of almost 5× more Thumb instructions, which

correspond to near 90% of the entire hardened code. This highly increase is mainly due

to the register spilling forced by the high register pressure and the impact of replicated

instructions. In turn, RAT slightly increases the number of executed Thumb and SIMD,
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Table 6.19 – Percentage of use and relative increase in executed instructions considering different
instruction sets.

w8a4 w8a8
Type None P-TMR RAT None P-TMR RAT

SIMD 34.3% 9.8% 32.2% 36.7% 10.1% 30.5%
Thumb 65.7% 90.2% 67.8% 63.3% 89.9% 69.5%
Type None P-TMR RAT None P-TMR RAT

SIMD 1× 1.1× 1.05× 1× 1.1× 1.06×
Thumb 1× 4.8× 1.15× 1× 4.9× 1.23×

Source : The authors

maintaining the percentage of both instruction sets compared to the reference MobileNet

execution. Aforementioned results demonstrate that RAT provides the best relative per-

formance, reliability and memory footprint utilisation trade-off.

These results are of paramount importance for safety-critical applications because,

in addition to reliability, these applications have real-time requirements. For example, in

self-driving cars, a late reaction can lead to a fatal accident (BANERJEE et al., 2018). In

this context, traditional soft error mitigation solutions involving time redundancy, such as

TMR, may not be suitable for such kind of applications. Even when partially applied, this

technique might inflict a significant response time penalty that is not tolerable in real-time

applications, thus justifying the need for lightweight techniques, such as RAT, especially

for resource constraint systems.
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7 CONCLUSIONS AND FUTURE WORK

The first goal of this Thesis comprises to make an extensive and statistical signif-

icance soft error consistency assessment of a JIT-based fault injection framework. This

work has investigated the soft error assessment consistency of a JIT virtual platform

simulator (SOFIA) with more than 12 million fault injections considering single and

multi-core Arm processor architectures. The fault injection campaigns considered differ-

ent cross-compilers, software stacks, programming models, and 52 applications. Results

demonstrated that the architectural difference, such as the ISA, between the two Arm

processors, affects the reliability of single-core systems. However, the addition of tiny

operating systems (e.g., FreeRTOS) in the software stack did not affect the consistency

of soft error assessment. Regarding cross-compilers, those based on LLVM appeared

to be more reliable ones, with the best compiler set being the Clang 6.0.1 using the 02

optimization flag.

Furthermore, we showed a worsened of the mismatch while increasing the number

of cores that can be mitigated a little by improving the workload balance and context

switching in parallel applications, such as in the MPI programming model. Finally, we

demonstrated that by tuning the SOFIA for a more detailed simulation by the quantum

size parameter (i.e., 44-instruction block), we obtained the best cost-benefit in terms of

soft error assessment accuracy, with a worst-case mismatch of 8.76% and high simulation

performance, reaching up to 345 MIPS. We conclude that achieved mismatches are accept-

able and are not a hindrance to evaluate soft errors at early design phases. Further, given

the remarkably achieved speedup, SOFIA’s utilization appears promising since it can also

be used to compare different processor models, ISAs, kernel, and complex benchmarks

with billion of instructions. Finally, authors also believe that the high statistical signifi-

cance presented gives to this work the potential to be a reference for other studies with

concerns about soft error resilience of Arm processors. In this sense, the obtained results

validates the first hypothesis of this Thesis. Considering the consistency of these results,

it is possible to state that SOFIA provides a consistent soft error reliability assessment

while achieving some performance w.r.t. RTL and gem5 simulators. Also, these findings

allow us to proceed to assess the reliability of more complex benchmarks such as ML

applications targeting resource-constrained IoT devices.

In the second goal of this Thesis, we use the SOFIA framework to assess the

soft error reliability of CNNs developed based on CMSIS-NN and CMix-NN specialized
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libraries, which enable the execution of complex CNNs in Arm Cortex-M processor

architectures featuring SIMD instructions. SOFIA’s flexibility allows us to cover different

aspects of a given software stack while adopting different fault injection techniques. This

work uses two fault injection techniques (Random register file and Function Lifespan) to

isolate specific moments of CNN’s execution, making it possible to perform fault injections

on each CNN layer. The first case study comprises the soft error reliability evaluation of

the quantized CIFAR-10 CNN (i.e., 8-bit precision) developed with CMSIS-NN library

considering two Arm Cortex-M processor architectures and trained with the CIFAR-10.

The evaluated results demonstrate that the adopted CNN has a high susceptibility to soft

errors since, in most cases, the effective faults exceed 50%. The activation layers are more

susceptible to soft errors since critical failures affect both the MWTF and the accuracy

of CNN. Furthermore, the results from Cortex-M4 show that SIMD based optimizations

reduce the CNN susceptibility to soft errors when comparing to Cortex-M3. The second

case study comprise the MobileNet CNN, which is developed based on the mixed low-

precision CMix-NN library considering the Arm Cortex-M7 processor architecture and

trained on the ImageNet dataset. The evaluated results demonstrate that the adopted

CNN has a high susceptibility to soft errors in higher precision bitwidth configurations

since, in most cases, the effective faults exceed 50%. Also, the precision bitwidth of the

weights is more susceptible to soft errors than the activations, since critical failures affect

both the reliability and the accuracy of CNN. Moreover, reducing the precision bitwidth

of weights and activations further affects CNN’s soft error reliability by increasing the

masking rate by 21%. Considering such early evaluations, our third case study relies on

apply lightweight soft error mitigation techniques to mixed precision MobileNet CNN.

The evaluated results demonstrate that the adopted CNN has a high susceptibility to soft

errors in higher precision bitwidth configurations, since the fault occurrence achieves up

to 20%. Results also demonstrate that the variation of precision bitwidth of the activations

is more susceptible to soft errors than the weights, since critical failures affect both the

reliability and the accuracy of CNN. Moreover, the reduction of weights and activations

precision bitwidth increases the fault-masking capability of up to 10%, thus reducing the

MobileNet CNN susceptibility to the occurrence of soft errors. However, such precision

bitwidth reduction does not eliminate the occurrence of critical failures, requiring the

use of fault mitigation techniques. Finally, gathered results show that RAT provides

significant soft error reliability improvement at a lower performance penalty (i.e., ∼1.2×
on average) when compared to the P-TMR. Such conducted studies validates the second
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hypothesis of this Thesis, which early investigates and identifies the correlation between

FI results, NN optimized kernels, and reduced precision parameters of CNNs executing

on resource-constrained IoT edge devices.

The third goal of this Thesis relies on investigate the soft error reliability of two

CNN inference models deployed in three low-power Arm microprocessors. The results

obtained from more than 500k fault injection campaigns show that CNN’s code and

parameters stored in Flash memory are more susceptible to soft errors than related data

in RAM memory. While boosting the performance, SIMD instructions supported by Arm

Cortex-M4 and M7 processors increase the memory footprint and the CNN susceptibility

to soft errors. In regard to the precision bitwidth variation on MobileNet CNN, the

occurrence of soft errors might have a greater impact on weights, with an increase in

the occurrence of critical errors when increasing the precision of activations. Finally,

this confirms the third hypothesis of the Thesis, that the reduced precision optimizations

impacts not only in the CNN execution, but also in the CNN code, parameters, and data

stored in memory.

Although many works in the literature address dedicated to ultra-low-power inte-

grated circuits (e.g., Arm Cortex-M family), an alternative to achieve better performance

requirements is the execution of underlying ML models in more powerful processors (e.g.,

Arm Cortex-A family). As an effort to cover the constraints of this approach, the late

results of this thesis comprises the assessment of the soft error reliability of a CIFAR-10

trained CNN model, which was developed based on the CMSIS-NN kernel to support

multi-threaded execution. The proposed extension showed that threaded parallelism could

increase the performance of the adopted CNN application with a low memory footprint

overhead (i.e., less than 1%). Furthermore, the results showed that the evaluated CNN

application is highly susceptible to failures as it presents critical faults in both configura-

tions. In turn, multi-threaded versions positively impact CNN reliability while increasing

the number of correct outputs, performance and, consequently, the MWTF of the adopted

CNN.

Future works will focus on two main directions. The first direction comprises the

soft error assessment of accelerator-based IoT devices, which are more suitable for highly

computing-intensive AI applications. The second direction relies on explore the faults

occuring on memory sections. Although protection mechanisms implemented in Flash

and RAM memories can be employed to prevent data loss, identifying the most vulnerable

CNN’s code, parameters or data gives the opportunity to promote bespoke software-based
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solutions such as the replication of a specific function or set of parameters.

Regarding the contributions of this work, Table 7.1 summarizes the papers submit-

ted for publication during the Ph.D. program. It is important to mention that the first two

publications will be used in future works that aim to assess the reliability of ML models

executing on NoC-based multiprocessor systems. Also, the most recent submissions refer

to the results presented in the Chapter 5 and Chapter 6.

Table 7.1 – Publications Summary.

Year Target Title Status Thesis Section

2018 ISCAS Exploring the impact of soft errors on NoC-based multipro-
cessor systems Published —

2018 SBCCI A design patterns-based middleware for multiprocessor
systems-on-chip Published —

2020 ICECS Soft Error Reliability Assessment of Neural Networks on
Resource-constrained IoT Devices Published Section 6.1.2

2021 IET-CDT Evaluation of the Soft Error Assessment Consistency of a
JIT-based Virtual Platform Simulator Published Chapter 5

2021 LASCAS The Impact of Precision Bitwidth on the Soft Error Relia-
bility of the MobileNet Network Published Section 6.2.2

2021 TCAS-1 Applying Lightweight Soft Error Mitigation Techniques to
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APPENDIX A — SOFT ERROR CONSISTENCY ASSESSMENT FOR

MULTI-CORE PROCESSORS

Given the growing complexity of both application and software stacks, most com-

puting systems consider multi-core processors. Differently from single-core, in multi-core

processor architectures, the number of cores and the parallel programming model have

a direct impact in terms of performance, power efficiency, and reliability. According to

the previous section, the software stack complexity, as well as the instruction set, slightly

affects the accuracy of the soft error evaluation of SOFIA w.r.t. an RTL approach. Unfor-

tunately, RTL descriptions of multi-core processors are not freely available to the public,

and for that reason, this section considers the gem5 simulator (BINKERT et al., 2011) as

the reference model.

In this scenario, this section evaluates the soft error consistency assessment of

SOFIA using gem5-FIM as a reference model. Appendix A.1 details the adopted experi-

mental setup. Next, Appendix A.2 presents the simulation speedup improvement achieved

by SOFIA, detailing some virtual platform parameters. Then, Appendix A.3 presents the

assessment of soft error consistency considering three main aspects: number of cores

(Appendix A.3.1), different parallel programming models (Appendix A.3.2), and different

VP parameters that directly impacts on the soft error resilience (Appendix A.3.3). Addi-

tionally, it is important to mention that the results used in this section have been conducted

in (ROSA et al., 2017) and (ROSA, 2018).

A.1 Experimental Setup

Table A.1 presents the proposed experimental setup used to measure the soft error

analysis consistency between the two VPs. The target processor is an Arm Cortex-A9

processor (ARMv7-A architecture) because it can be configured to use one, two, or four

cores.

The proposed experimental setup adopts two distinct workloads: the Rodinia

benchmark suite (CHE et al., 2009) and the NAS Parallel Benchmarks (NPB) (BAILEY

et al., 1991). The two benchmarks provide a set of applications that use different parallel

programming models (i.e., OpenMP, MPI, CUDA, and OpenCL) designed to assess the

performance of parallel supercomputers. This experimental setup considers 16 OpenMP
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Table A.1 – gem5 vs. SOFIA Experimental Setup.

Processors Arm Cortex-A9 with 1, 2, and 4 cores

Benchmarks Rodinia (CHE et al., 2009) and
NPB (BAILEY et al., 1991)

Number of Applications 27
Programming Models Serial, MPI, and OpenMP
M*DEV Quantum Sizes 448,000, 4,480, 448, and 44
Injections per Campaign 8,000
Number of FI Campaigns 526

1,248,000 (Appendix A.3.1) and
Total Fault Injections 1,072,000 (Appendix A.3.2) and

1,888,000 (Appendix A.3.3)

Source : The Authors

Rondinia applications: (A) backprop, (B) BFS (Breadth-First Search) , (C) heartwall, (D)

hotspot, (E) hotspot3d, (F) kmeans, (G) lavaMD, (H) lud, (I) myocyte, (J) nn (Nearest

Neighbours), (K) nw (Needleman-Wunsch), (L) particle filter, (M) pathfinder, (N) sradv1,

(O) sradv2, and (P) stream cluster. In addition, we also selected 11 NPB applications (from

Serial, MPI, and OpenMP programming models): (BT) Block Tri-diagonal solver, (CG)

Conjugate Gradient, (DC) Data Cube, (DT) Data Trafic, (EP) Embarrassingly Parallel,

(FT) Discrete 3D fast Fourier Transform, (IS) Integer Sort, (LU) Lower-Upper Gauss-

Seidel solver, (MG) Multi-Grid on a sequence of meshes, (SP) Scalar Penta-diagonal

solver, and (UA) Unstructured Adaptive mesh.

To avoid external influences and ensure the most solid comparison between virtual

platforms, the software stack of both uses the same compilation environment regarding

compiler (GCC 6.2.0), optimization flag (-O3), libraries, and target an identical Linux

kernel (version 3.13.0-rc2). Operating system reliability is not the main focus of this

section and, therefore, fault injections only occur during the application lifespan (i.e., the

OS startup is not subject to faults). Nevertheless, the operating system calls that arise

during this period (i.e., application execution time) are susceptible to fault injections as

part of the application’s behavior.

A.2 FI Simulation Performance of SOFIA w.r.t. gem5-FIM

Simulation speedup is one of the main reasons for adopting VPs, however, their

engines make them different from each other, providing more or less accuracy according

to their performance. For example, gem5 is an event-based cycle-accurate simulator, i.e.,
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it describes the target microarchitecture as components (e.g., register-file, pipeline, and

cache) interconnected by a series of events. A scheduler in the gem5 engine executes these

events at each simulation tick, updating the whole system state. One tick corresponds

to 1 picosecond; therefore, for a 2 GHz CPU clock, events are executed at a rate of 500

ticks per CPU cycle in the simulated system and, consequently, a complete instruction

requires a few thousand ticks (i.e., the resulting clock cycle accuracy at the expense of

higher computation and memory cost).

Due to the high simulation speed, typically at hundreds of MIPS, virtual platform

simulators based on JIT dynamic binary translation, such as M*DEV, appear to have an

advantage over event-driven simulators since it translates the target ISA (e.g., ARMv7-

A) to host x86-64 instructions. Further, a complete instruction is the M*DEV minimal

simulation granularity; in other words, the simulation always advances one instruction,

which provides a higher simulation speed than gem5. Similar to an OS scheduler in

which several processes share the same CPU time, the M*DEV engine simulates each

model instance (i.e., processor, core, peripheral) for a fixed-length instruction block called

Quantum. The quantum size is configurable using a variable time-slice, representing a

time in seconds that refers to an internal configuration parameter and not to the simulation,

host, or real-time. The quantum size is given by Equation (A.1), where, by default, the

time-slice is 0.001 seconds (one millisecond) and the target processor’s nominal MIPS

rate is 448 MIPS, resulting in a quantum size of 448,000 instructions, being our reference

size in Table A.1.

Quantum Size = (processor nominal MIPS rate) × 1𝑒6 × (time slice duration) (A.1)

The M*DEV also deploys a scheduling policy to manage the simulation of pro-

cessors and other components. For example, the simulator selects the first processor, after

it has been simulated for 448,000 instructions, it is suspended, and the next processor

assumes. In the case of multi-core processors, such as Arm Cortex-A9x2, each proces-

sor core receives a separate quantum and is scheduling accordingly. Figure A.1 shows

two simulation scenarios for a dual-core processor, one with the default quantum and the

other using half of its size (i.e., 224,000 instructions). By reducing the quantum size, the

number of model switches for an identical workload increases. This configuration choice

delays inter-core communication (or synchronization events) and consequently reduces
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Figure A.1 – M*DEV scheduling policy varying the quantum size for a dual-core processor
executing the same workload.
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Source : Adapted from (ROSA, 2018)

their simulation speedup.

To quantify the simulation speedup difference between gem5-FIM and SOFIA, we

analyzed multiple configurations and workloads on a Quad-core Intel Core I7-7700K 4.2

GHz with 16 GB DDR4 2400 MHz. Figure A.2 presents the results from 1 to 4 cores,

showing the scalability and speedup of supported parallel simulations by the two VPs.

Figure A.2.a displays the first set of simulations considering the Rodinia applications.

In this experiment, using four cores, the gem5-FIM atomic simulation speedup ranges

from 4.2 to 11 MIPS (Figure A.2.a), while the SOFIA ranges from 345 to 2,921 MIPS

depending on the quantum size and application. Note that the reduction in quantum size

decreases the number of instructions executed per block, directly affecting the simulator

performance due to the increasing switching between the models (i.e., cores).

In addition, Figure A.2.b presents NPB applications, which are larger than Ro-

dinia’s, reaching up to 87 billion instructions. Figure A.2.b shows a better performance of

SOFIA in all configurations while the gem5-FIM atomic remains stable. Looking at the

scenario with four cores, the longest workload reaches 12.5 MIPS using atomic gem5. On

the other hand, SOFIA reaches 3,910 MIPS, approximately 312 times faster. The SOFIA

simulation speedup increases as the application grows due to the just-in-time engine al-

gorithm, thus benefiting from larger applications. For example, comparing the larger and

smaller applications, the simulation speedup ranges from 1,190 to 3,910 MIPS (i.e., an

increase of 3.28 times) where the gem5 atomic difference is less than 20%, ranging from

10 to 12 MIPS.
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Figure A.2 – Simulation speedup and scalability of the two virtual platforms, showing the
performance gain achieved by using the SOFIA.
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A.3 Soft Error Mismatch Analysis

This section presents the assessment of soft error resilience in multi-core processors

comparing SOFIA and gem5-FIM. First, we assess the impact due to the number of

cores (Appendix A.3.1). Then, we investigate which programming model would be the

most reliable (Appendix A.3.2). Finally, in Appendix A.3.3, we discuss how SOFIA

configuration (i.e., quantum size) affects the soft error resilience.

A.3.1 Mismatch Analysis Considering the Number of Cores

In the last decade, multi-core architectures have been gaining prominence in several

semiconductor sectors, being found today in cars, medical, and consumer electronic

devices. Due to its importance, engineers must understand how this architectural choice

affects the system’s reliability. With this intention, we analyzed the Arm Cortex-A9

for the Rodinia and NPB benchmark suites. For simplicity, this analysis considers only

OpenMP-based applications; the difference between the programming models is analyzed

in Appendix A.3.2.

Figure A.3 and Figure A.4 presents a detailed multi-core mismatch between the

SOFIA and the gem5-FIM atomic (GA), considering Rodinia and NPB applications re-

spectively. Concerning the two benchmarks, Rodinia applications execute on average 80

million instructions, while NPB applications execute on average 17 billion instructions

(i.e., 212x larger). The longer NPB execution reduces the probability of ONA due to a

higher likelihood of a bit masking when compared to Rodinia applications. This behavior

is seen in Rodinia applications that reach more than 5% of ONA mismatch (F, I, L, and

P). Further, Rodinia applications have a higher number of Hangs than NPB applications,

increasing notably with the number of cores. The two possible causes are: (i) the fault

affected a loop statement (e.g., while, for) where a longer execution translates to more

significant recovery time; and (ii) kernel malfunctions: the fault injection leads to unre-

coverable kernel perturbations (e.g., a thread scheduler error). A longer execution time

reduces the Linux kernel exposure time (i.e., the probability of kernel function be stroke

by a fault). In other words, the longer the applications, proportionally, the fewer kernel

functions are executed. In short, longer workloads reduce overall mismatch. NPB ap-

plications’ average mismatch varies from 1.32% to 1.68%, in contrast to Rodinia, which

ranges from 1.39% and 2.63%. Further, the worst-case mismatch between the gem5-FIM
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Figure A.3 – Mismatch between gem5-FIM and SOFIA varying the number of cores in Arm
Cortex-A9 while executing the Rodinia Benchmarks.
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(b) Dual-core
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Figure A.4 – Mismatch between gem5-FIM and SOFIA varying the number of cores in Arm
Cortex-A9 while executing NPB Benchmarks.
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and SOFIA is reduced to up to 55% for NPB applications.

Analyzing the presence of multi-core architectures, applications show a worsening

mismatch while increasing the number of cores, most notably in the Rodinia applications

B, D, and K (Figure A.3) and in the NPB applications MG and CG (Figure A.4). In

the worst-cases, Rodinia’s mismatch increases to 17.71% using quad-core compared to

6.06% using single-core processors. In addition, the average error grows from 1.39% to

2.51% considering one and two cores and remains stable for four cores with a mismatch

of 2.63%, increasing the core count results in more thread context switching. For Rodinia

applications, this behavior combined with sub-linear scalability (i.e., underutilized cores)

leads to further errors in the kernel. These kernel errors occur because, during CPU

downtime, the OS executes the scheduler algorithm by running one application at a time

(i.e., no other threads are running), and then moves to a sleep mode (i.e., waiting for the

interruption). Furthermore, the number of Vanish increases in multi-core architectures (2

and 4 cores). This difference can be attributed to the inter-core communications. Due to

its instruction-accurate engine, the SOFIA simulation time (i.e., the number of instructions

executed) is affected by the running application characteristics (Appendix A.3.3 details

this behavior by modifying parameters on the SOFIA framework).

A.3.2 Mismatch Analysis Considering Parallel Programming Models

The emerging use of multi-core processors requires specialized libraries that in-

clude additional complexity in the soft error assessment. Regarding this distinction, this

section considers NPB applications to assess the mismatch between our reference Serial

programming model on a single-core processor with the OpenMP and MPI programming

models based on multi-core architectures. The OpenMP library uses a series of forks

and joins approaches to parallel loop statements, in which the API automatically creates

children threads, being suitable for shared memory. On the other hand, the MPI standard

is adequate for distributing systems due to the use of a message-oriented parallelization

technique, which requires direct parallelization of the user in relation to the creation and

communication of threads.

The introduction of parallel programming models increases the software stack,

which makes some components more critical to the system’s correct behavior. For ex-

ample, injecting faults into a thread scheduling function has a potentially more hazardous

effect on system reliability than a purely arithmetic code portion. By comparing the active
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Figure A.5 – Mismatch between gem5-FIM and SOFIA considering different programming
models.
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periods of these critical functions with the application’s execution time, it is possible to

define a time interval called the vulnerability window, which varies with the number of

calls and executions of the function. In this sense, the use of the NBP benchmark suite

provides a real high-performance workload, allowing a more accurate assessment of the

impact of the OpenMP and MPI libraries on the system’s reliability. Due to its reduced

vulnerability window, the parallelization mechanism has a limited effect on the final reli-

ability assessment, less than 23% in the worst-case. To assess this reliability, Figure A.5

shows FI campaigns and mismatches comparing MPI and OpenMP applications.

First, we compare the Serial implementation with the two parallelization libraries,

considering a single-core processor. The purpose is to assess how each software stack

affects the susceptibility to soft errors. For each application, we assess 8,000 FI campaigns,

which means that our results have a confidence level of 95% and a margin of error of 1.1%.

Comparing with both parallel programming models, no significant variation was found

for single-core execution, i.e., the fault distribution is within the margin of error in most

applications. However, some applications follow the same pattern, while BT, CG, and IS

have fewer soft errors in the Serial implementation; EP, FT, and SP have fewer soft errors

when increasing the software stack using either of the two parallel programming models.

On the other hand, when we compare the two parallel programming models in a

multi-core system, we see that out of 27 possible scenarios between the MPI (Figure A.5.b)

and OpenMP (Figure A.5.c), in 22 the MPI has a higher masking rate (i.e., executions

without any errors). This is due to two main reasons: First, MPI applications have a better

workload balance among the used cores, i.e., the number of executed instructions per

core is very similar. For instance, the average difference concerning executed instructions

per core is around 4% for both ARMv7-A and ARMv8-A considering MPI applications,

while the OpenMP variation reaches up 16%. As the OpenMP does not fully utilize

the available cores due to the fork/join parallelization approach where a loop statement

executes in parallel and other code portions hastily, corroborating the results presented

in (ROSA et al., 2018). By contrast, the MPI has individual and independent working

threads for each running core providing a better workload balance during its execution.

Whenever a core is sub-utilized, it executes a thread scheduling policy and, when no

thread is suitable, the core waits in a sleep mode. Consequently, the kernel’s relative

exposure time and its probability of suffering a transient fault increase, as the scheduling

is more often executed. Second, OpenMP benchmarks have a shorter execution time, 16%

on average, compared against the MPI applications. By consequence, this reduces the
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vulnerability window of the MPI inner-functions when comparing against the OpenMP.

Further, the longer execution increases the chance of the injected fault being erased due to

the software and microarchitectural masking mechanisms. These results show that MPI

should be prioritized over OpenMP to improve the reliability of multi-core systems.

A.3.3 Mismatch Analysis Considering the SOFIA Quantum Parameter

This section explores the impact of using distinct quantum-sized configurations

(i.e., 448,000, 4,480, 448, and 44 instructions per block) in the SOFIA to assess the soft

error reliability of single and multi-core processors. This analysis provides the trade-off

between the performance discussed in Section A.2 with the reliability accuracy brought

by each configuration, making it easier for engineers to understand and choose the best

configuration for their purposes.

Figure A.6 shows the reference FI framework, the gem5-FIM atomic (𝜓), compared

to SOFIA using four quantum sizes 448,000 (_), 4,480 (𝛾), 448 (𝛽), and 44 (𝛿) instructions

per block for single-, dual-, and quad-cores in an Arm Cortex-A9, respectively. Figure A.6

shows that the variation in quantum size affects the accuracy of the soft error results of

SOFIA. As expected, the best performing configuration (i.e., _ – first column of each

application shown in Figure A.6) is the one with the greatest mismatch with the results

provided by the reference (i.e., 𝜓 – last column of each application shown in Figure A.6).

On the other hand, the one with the lowest performance of SOFIA (i.e., 𝛿), which is at

least 31× faster than the reference in quad-core simulations according to Section A.2,

presents the closest values. For example, the quad-core processor model (Figure A.6.c)

has an average improvement of 40% in the results consistency when using the smallest

block (𝛿) instead of the largest block (_) in the applications that have a large mismatch with

the reference results (e.g., B and K). Note that reducing the quantum size decreases the

communication cycles between cores, approaching the SOFIA and gem5-FIM behaviors.

Another behavior is the migration from ONA to OMM by decreasing the quantum size, in

other words, the incorrect content previously restricted to the register file migrates to the

end of the memory.

The resulting mismatch shown in Figure A.6 can be traced back to its block-based

simulation engine, as discussed in Section A.2, where each core executes a fixed amount

of instructions before moving to the next one. Note that inter-core communications are

completed during the core switch, leading to temporally unsynchronized cores. Inter-core
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Figure A.6 – Mismatch between the gem5-FIM (𝜓) and SOFIA quantum sizes: 448,000 (_ );
4,480 (𝛾); 448 (𝛽); and 44 (𝛿).
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(a) Single-core
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(b) Dual-core
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communication is necessary to synchronize events across multiple cores, for instance, in a

parallelization library. Rodinia OpenMP-based applications use a fork-join parallelization

paradigm, where synchronization barriers coordinate multiple children threads execution.

One synchronization event that requires all cores to reach the same statement (i.e., a barrier)

requires multiple quantum executions to complete. Delaying these communication events

lead to some additional instructions executed by SOFIA due to other cores waiting. In

this regard, we investigate how programming models behave with quantum size changes,

as shown in Table A.2.

Table A.2 – Mismatch comparison of programming models of SOFIA with default (DF) and
small quantum size (Q) in relation to gem5-FIM.

# Workload and Single-core (%) Dual-core (%) Quad-core (%)
Programming Models DF Q DF Q DF Q

Worst Case

NPB Serial 5.24 3.51 * * * *
NPB MPI 5.17 1.19 4.08 1.64 4.69 5.59

NPB OpenMP 5.39 2.06 5.27 1.67 9.61 2.25
Rodinia OpenMP 6.06 4.16 13.35 8.76 17.71 3.64

Best Case

NPB Serial 0.01 0.01 * * * *
NPB MPI 0.01 0.00 0.01 0.00 0.01 0.01

NPB OpenMP 0.01 0.01 0.01 0.00 0.01 0.01
Rodinia OpenMP 0.03 0.00 0.04 0.01 0.01 0.01

Average

NPB Serial 1.15 0.55 * * * *
NPB MPI 1.06 0.26 0.83 0.35 0.63 0.80

NPB OpenMP 1.32 0.52 1.42 0.41 1.68 0.42
Rodinia OpenMP 1.39 0.82 2.51 1.53 2.63 1.08

Source : The authors

Table A.2 shows the mismatch between gem5-FIM and SOFIA using the default

quantum size (DF) of 448,000 instructions and a smaller quantum size (Q) of 44 instruc-

tions, considering four distinct workloads: NPB Serial, NPB MPI, and NPB OpenMP,

along with Rodinia OpenMP applications. Results show that the SOFIA(Q) decreases the

mismatch whenever compared to the gem5-FIM atomic for the Rodinia suite, and is further

accentuated in the quad-core system due to the instruction count reduction, as previously

mentioned. For example, the average mismatch reduced from 2.63% to 1.08%, as shown

in the last row of Table A.2. In the same scenario, the worst-case result decreased from

17.71% to only 3.64%. Interestingly, we have one case where the reduction of the quantum

size causes a worsening in the soft error consistency, which is for NPB MPI in a quad-core

system. In this scenario, the results derived from the Table A.2 show an average difference

of 0.17% (i.e., 0.80% - 0.69%) and a worst-case of 0.9% (i.e., 5.59% - 4.69%).



156

In order to understand where the mismatches shown in Table A.2 come from,

Figure A.7 shows the accuracy difference presented by Rodinia (Figure A.7.a) and NPB

applications (Figure A.7.b) when SOFIA is configured with the smallest quantum size (i.e.,

a 44-instruction block). Regarding the migration from ONA to OMM, this trend is evident

when looking at Rodinia’s applications A, F, I, L, and P, compared to Figure A.3 that is

configured with the default quantum size. In addition, the FI campaigns simulated with

the SOFIA(Q) presents a mismatch reduction in 24 out of 26 scenarios (except Rodinia’s

applications C and O) with a significant (5×) improvement in the worst-case of OpenMP-

based benchmarks, which is justified by the impact of synchronization barriers between

children threads. The most significant reductions are for Rodinia’s application K, using a

quad-core system, reducing from 20% to 4%, and MG application of the NPB benchmark,

also in a quad-core system, reducing from 12% to less than 2.5%.

Regarding the benchmarks’ difference, Rodinia includes applications with up to 220

million, while NPB applications vary from 16 to 87 billion instructions. By consequence,

NPB benchmarks have more extended computations between synchronization points than

the Rodinia, which impacts on the soft error assessment accuracy. NPB benchmark also

has a better workload distribution and scalability, which means, in conjunction with the

more prolonged execution, that children threads have enough instructions to complete

one or more quantum blocks between OpenMP barriers. On the other hand, Rodinia

applications have less computation between synchronization points, sometimes shorten

then one quantum execution, leading OpenMP barriers to execute extra instructions while

waiting for other threads. The Rodinia behavior magnifies the mismatch originated due to

the SOFIA simulation policy using fixed-length instructions blocks, and, as a consequence,

these applications benefit more by reducing the quantum size, achieving an accuracy gain

up to 5×, as seen in Figure A.7.

A.4 Closing Remarks

This section presents a complete multi-core soft error resilience assessment. As

simulation performance is fundamental for early design space explorations, this section

started by showing that the peak SOFIA simulation speed is around 4,000 MIPS, consid-

ering a quad-core system. This finding proves that JIT-based FI frameworks are efficient

means to assess the soft error resilience early in the design phase. Next, results demon-

strate that applications showed a worsened mismatch while increasing the number of cores.



157

Figure A.7 – Multi-core mismatch between gem5-FIM and SOFIA with smallest quantum size (a
44-instruction block).
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Source : The authors

However, MPI-based applications have been shown to bring the best results in terms of

reliability accuracy, even in multi-core scenarios. This mismatch can be mitigated by

improving the workload balance and context switching in parallel applications, such as

in the MPI programming model. Finally, we show that the SOFIA Quantum parameter

affects the soft error reliability assessment and that a good trade-off between simulation

performance and reliability accuracy would be using a small quantum size, such as a

44-instruction block.
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