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Prof. Dr. Rodrigo Lambert
FAMAT – UFU

Porto Alegre, 30 de março de 2021



CIP - Catalogação na Publicação

Zava Bello, Débora
   Inferência em agrupamento considerando múltiplos
grupos / Débora Zava Bello. -- 2021.
   65 f. 
   Orientador: Marcio Valk.

   Coorientadora: Gabriela Bettela Cybis.

   Dissertação (Mestrado) -- Universidade Federal do
Rio Grande do Sul, Instituto de Matemática e
Estatística, Programa de Pós-Graduação em Estatística,
Porto Alegre, BR-RS, 2021.

   1. clustering. 2. múltiplos grupos. 3. agrupamento.
I. Valk, Marcio, orient.  II. Bettela Cybis, Gabriela,
coorient. III. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os
dados fornecidos pelo(a) autor(a).



Resumo

Métodos de agrupamento são ferramentas úteis na identificação de padrões em con-
juntos de dados. No contexto de alta dimensionalidade e tamanho amostral pequeno, o
desafio de decidir se o agrupamento encontrado é estatisticamente significativo é ainda
maior. Entre os métodos de agrupamento adequados à esse contexto, poucos possuem
inferência e muitas vezes são espećıficos para dois grupos. Estamos propondo um método
para agrupar de forma ótima em mais conjuntos, nesse caso três. Além de uma abordagem
para clusterização dos elementos em três grupos, propomos um teste de homogeneidade
para verificar a sua significância. Apresentamos a estat́ıstica de teste, suas propriedades
assintóticas e, através de simulações, estudamos propriedades como tamanho e poder do
teste proposto. Comparações com outras metodologias binárias indicam que nossa pro-
posta é mais adequada para situações em que os dados têm uma estrutura inerente de
três grupos.

Palavras-chave: Cluster. U-estat́ıstica. Inferência. Múltiplos grupos.
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em especial à Dra Gabriella Cybis pela ensinamentos durante a coorientação. Agradeço

também aos professores que aceitaram fazer parte da minha banca por suas considerações

quanto ao trabalho.

Aos meus colegas de mestrado por compartilharem os momentos de desespero presen-

cialmente ou remotamente.

Aos Mestres Daiane Oliveira e Ruan Vianna por todo o apoio não somente durante a

pós graduação, mas desde o planejamento de ingressar no programa.

Aos amigos que me apoiaram durante a pandemia. Em especial: Paulo Zava pelas
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1 Introdução

Métodos de agrupamento são ferramentas estat́ısticas que consistem em separar da-

dos baseadas em caracteŕısticas que estes possuem. O presente trabalho tem o objetivo

de apresentar nova abordagem para clusterização de dados, baseada em U-estat́ıstica,

para três grupos enquanto verifica se esta separação é estatisticamente significativa. Tal

método é recomendado para casos de alta dimensão dos dados e tamanho pequeno de

amostra (HDLSS). A metodologia apresentada pode ser adaptada para diferentes me-

didas de distância, além de ser não paramétrica. Como o método é uma extensão do

agrupamento baseado em U-estat́ıstica, uclust (VALK; CYBIS, 2020), a nova aborda-

gem busca ser mais poderosa ao separar os dados em três grupos, quando essa estrutura

espećıfica de grupos é inerente ao conjunto de dados.

U-estat́ıstica vem sendo utilizada para construção de métodos de agrupamento e se

mostrou uma ótima ferramenta para obtenção de propriedades estat́ısticas desses métodos.

(PINHEIRO; SEN; PINHEIRO, 2009) apresentou como adequar a teoria do agrupamento

baseado em U-estat́ıstica em MANOVA ou modelos de alta dimensão. Para dados de séries

temporais a metodologia baseada em U-estat́ıstica, mostrou-se adequada para encontrar

agrupamentos estatisticamente significativos, como mostrado em (VALK; PINHEIRO,

2012).

Essa abordagem começou ainda a ser aplicada para estudar inferência em agrupamen-

tos. O trabalho de (CYBIS; VALK; LOPES, 2018) apresentou teste de homogeneidade

em um conjunto de dados. Também foi proposto como obter significância em classificação

de um elemento em um determinado grupo.

Por fim, essa teoria foi generalizada por (VALK; CYBIS, 2020), abrangendo o caso

em que o conjunto de dados possui um outlier e apresentando método hierárquico para

agrupamento dos dados com a verificação da significância estat́ıstica desse agrupamento.

O presente trabalho é organizado da forma que primeiro uma noção básica de U-

estat́ıstica e suas propriedades são expostas. Na sequência, o artigo completo e seu ma-
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terial suplementar encontram-se anexados. O referido artigo consta de ampla introdução

ao assunto, descreve a metodologia utilizada e apresenta a proposição do método para o

qual as propriedades assintóticas são demonstradas. Além disso, estudos de simulação e

aplicação em dados reais foram abordados ainda no artigo.
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2 U-estat́ısticas

Para melhor entender a discussão teórica desse trabalho, um resumo da teoria de U-

estat́ıstica é abordada nessa seção. A motivação por trás da classe, além de resultados

teóricos importantes para o desenvolvimento do método proposto são explicados aqui.

A classe de U-estat́ısticas foi apresentada por (HALMOS, 1946) e (HOEFFDING,

1948), em 1946 e 1948 respectivamente. Esta é motivada como (LEE, 1990) apresenta.

Seja θ = θ(F ) um funcional definido no conjunto de funções de distribuição F ∈ F ,

F em R. Tem-se então o interesse em estimar θ(F ) na base de uma amostra de variáveis

aleatórias (v.a.’s), X1, · · · , Xn independentes e identicamente distribúıdas (i.i.d.) com

função de distribuição acumulada F .

O interesse é saber se existe estimador para θ independente de qual seja F . E, se existe,

se este é não viesado. Caso exista mais de um estimador não viesado para θ, busca-se

verificar ainda qual o melhor. Com base nessas curiosidades, o trabalho de (LEE, 1990)

apresenta teoremas e lemas discutindo esses desejos e por fim define U-estat́ıstica com

suas descobertas.

Seja F um subconjunto do conjunto de funções de distribuição em R e θ(F ) um

funcional definido em F . Suponha então que para cada n inteiro suficientemente grande,

existe uma função fn(X1, · · · , Xn) de n variáveis, tais que

E [fn(X1, · · · , Xn)] = θ(F ) (2.1)

para todo F em F , onde X1, · · · , Xn é sequência de v.a.’s com distribuição F . Então,

θ(·) admite estimador não viesado.

De maneira mais formal, o livro de (LEE, 1990) apresenta o seguinte teorema.

Teorema 2.1 Um funcional θ definido em um conjunto F de funções de distribuição
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admite estimador não viesado se e somente se existe uma função ψ de k variáveis tal que

θ(F ) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
ψ(x1, x2, · · · , xk)dF (x1) · · · dF (xk) (2.2)

para todo F em F .

Se θ é definido como (2.2), então um estimador não viesado é da forma

fn(X1, · · · , Xn) = ψ(X1, · · · , Xk). (2.3)

Um funcional que satisfaz (2.2) para alguma função ψ é chamado de estat́ıstica

funcional regular de grau k. A função ψ é chamada de kernel do funcional.

Para a investigação quanto a unicidade do estimador, primeiro define-se aqui esti-

madores idênticos. Considera-se estimadores como idênticos se estes concordam com o

mesmo conjunto de Borel E. A escolha de E depende do conjunto F abordado. Lee cita

como exemplos de escolhas para E: se F é todas as distribuições no conjunto {0, 1}, então

uma escolha válida para E é {0, 1}; ou ainda, se F é todas as distribuições onde a média

existe, então uma escolha para E é R.

Além disso, se F é suficientemente grande (até a igualdade em E), então há somente

um estimador simétrico não viesado. Com ”F suficientemente grande”considera-se que

F é grande o suficiente para incluir todas as distribuições com suporte finito em E.

Teorema 2.2 Seja F que contem todos as distribuições com suporte finito em E e seja θ

funcional regular que satisfaz (2.2). Então, para a igualdade em E, há somente um único

estimador simétrico não viesado para θ.

Quanto aos interesses iniciais, é preciso verificar ainda como caracterizar o estimador.

Seja

ψ[n](x1, · · · , xn) =
(n− k)!

n!

∑
ψ(x1i , · · · , xik), (2.4)

onde a soma compreende todas as (n−k)!
n!

permutações (i1, · · · , ik) de inteiros distintos

escolhidos entre {1, 2, · · · , n}. É posśıvel mostrar que ψ[n] também é não viesado. Então,
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quando há mais de um estimador não viesado, o livro de (LEE, 1990) apresenta resultados

para encontrar qual o melhor estimador.

Lema 2.1 Seja F conjunto que contem todas as distribuições com suporte finito em E e

seja f uma função simétrica de n variáveis com

∫
· · ·
∫

Rn

f(x1, · · · , xn)
n∏

i=1

dF (xi) = 0,

∀f ∈ F . Então, f(x1, · · · , xn) = 0 quando xi ∈ E, i = 1, · · · , n.

No caso onde E = R o estimador simétrico essencialmente único ψ[n] é também o de

variância mı́nima.

Teorema 2.3 Seja θ um funcional regular de grau k definido da forma (2.2) em um

conjunto F de funções de distribuição contendo todas as distribuições com suporte finito.

Seja f estimador não viesado de θ baseado em uma amostra de tamanho n que satisfaça

(2.1). Então, Var(f) > Var(ψ[n]), ∀f ∈ F .

Teorema 2.4 (I) Seja θ estat́ıstica regular funcional de grau k com kernel ψ definida

em um conjunto F de funções de distribuição contendo todas as funções de dis-

tribuição absolutamente cont́ınuas. Então, ψ[n] é o único estimador simétrico não

viesado para θ.

(II) O estimador ψ[n] tem variância mı́nima na classe de todos os estimadores não vie-

sados de θ.

Lema 2.2 Seja θ estat́ıstica funcional regular com kernel simétrico ψ de ordem k definida

no conjunto F de funções de distribuição absolutamente cont́ınuas e suponha θ(F ) = 0

∀F ∈ F . Então, ψ = 0 quase certamente em Rk.

Os resultados apresentados nos lemas anteriores são pertinentes ao conceito de es-

tat́ıstica completa. Lembrando que seja X1, · · · , Xn uma amostra aleatória de X ∼ D(θ) e

T (X) uma estat́ıstica da amostra. Esta é dita estat́ıstica completa se E [g (T (X))] = 0

∀ θ ⇒ P (g(T (X))) = 1 ∀ θ.

Com todos os interesses iniciais satisfeitos, o próximo passo é a definição de U-

estat́ıstica como um estimador simétrico não viesado e único.

Definição 2.1 Para famı́lias F contendo todas as distribuições com suporte finito ou

todas absolutamente cont́ınuas escolhe-se como estimativa para θ o estimador essencial-

mente único θ̂ = ψ[n] definido como (2.4). Pode-se definir então
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ψ[k](x1, · · · , xk) =

(
1

k!

)∑
ψ(xi1 , · · · , xik), (2.5)

onde a soma é composta por todas as permutações (i1, · · · , ik) de {1, · · · , k}. Então,

pode-se escrever

θ̂ =

(
n

k

)−1∑

(n,k)

ψ[k](Xi1 , · · · , Xik), (2.6)

onde a
∑

(n,k)

é composta por todos os subgrupos 1 6 i1 6 · · · 6 ik 6 n de {1, · · · , n}.

Porém, é posśıvel notar que

∫
· · ·
∫

Rk

ψ(x1, · · · , xk)
k∏

i=1

dF (xi) =

=

∫
· · ·
∫

Rk

ψ[k](x1, · · · , xk)
k∏

i=1

dF (xi).

Dessa forma, sem perda de generalidade pode-se reescrever o estimador simétrico,

único e não viesado da forma

θ̂ =

(
n

k

)−1∑

(n,k)

ψ(Xi1 , · · · , Xik). (2.7)

Este estimador é chamado de U-estat́ıstica.

Uma outra notação para U-estat́ıstica é Un, para a continuação do trabalho esta será

abordada.

Un =

(
n

k

)−1∑

(n,k)

ψ(Xi1 , · · · , Xik). (2.8)

A literatura apresenta ampla discussão quanto as escolhas dos conjuntos E e F .

Para os métodos desenvolvidos nesse trabalho esse questionamento não se fez necessário.

Porém, caso o leitor esteja interessado em outros universos para os conjuntos, este é
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convidado a ler os trabalhos de (BELL et al., 1960) e (YAMATO; MAESONO, 1989).

2.1 Variância de U-estat́ıstica

Ainda com o foco nas discussões futuras do presente trabalho, uma análise da teoria

de U-estat́ıstica é essencial. Dessa vez, será abordada a variância de U-estat́ıstica para

amostras finitas. Propriedades destas são amplamente discutidas em (LEE, 1990). Nessa

seção um resumo das propriedades mais importantes é apresentado.

A variância de uma U-estat́ıstica baseada em variáveis aleatórias independentes e iden-

ticamente distribúıdas pode ser expressa em termos de esperanças condicionais. Defina

então para c = 1, 2, · · · , k as esperanças condicionais:

ψc(x1, · · · , xc) = E[ψ(x1, · · · , xc, Xc+1, · · · , Xk)]

e a variância

σ2
c = Var[ψc(X1, · · · , Xc)].

Além disso, defina

σ2
0 = 0.

A partir dessas definições, se seguem algumas propriedades das esperanças condicio-

nais.

Teorema 2.5 As funções ψc definidas acima têm as seguintes propriedades:

(I) ψc(x1, · · · , xc) = E[ψd(x1, · · · , xc, Xc+1, · · · , Xd)], para 1 6 c < d 6 k

(II) E[(ψc(X1, · · · , Xc)] = Eψ(X1, · · · , Xk)

A variância σ2
c das esperanças condicionais tem uma interpretação de covariância,

para isso (LEE, 1990) apresenta o seguinte teorema.
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Teorema 2.6 Sejam S1 e S2 dois k-subconjuntos de {1, · · · , n} com c elementos em

comum. Então, uma forma alternativa de σ2
c é

σ2
c = Cov (ψ(S1), ψ(S2)) .

Com base dessas esperanças condicionais é posśıvel então estabelecer uma expressão

para a variância de uma U-estat́ıstica de amostra finita, esta se encontra no teorema

apresentado por (LEE, 1990) a seguir.

Teorema 2.7 Seja Un U-estat́ıstica com kernel ψ de grau k. Então,

Var(Un) =

(
n

k

)−1 k∑

c=1

(
k

c

)(
n− k
k − c

)
σ2
c .

Os dois próximos resultados têm papel importante na demonstração do Teorema Cen-

tral do Limite (TCL) de U-estat́ısticas.

Teorema 2.8 Para 0 6 c 6 d 6 k

σ2
c

c
6
σ2
d

d
.

Teorema 2.9 A função Var(nUn) é decrescente em relação a n.

As demonstrações dos teoremas e lemas se encontram em (LEE, 1990). O livro ci-

tado também aborda covariância de duas U-estat́ısticas além de momentos maiores de

U-estat́ısticas. Novamente, como o objetivo dessa seção é fornecer uma base para enten-

der os cálculos utilizados nos métodos desenvolvidos pelo trabalho, estes foram omitidos

do presente texto.

2.2 Decomposição de Hoeffding

Essa seção tem o objetivo de apresentar a decomposição de Hoeffding, resultado muito

utilizado na teoria de U-estat́ıstica e nos métodos propostos pelo projeto. Essa decom-

posição permite reescrever a U-estat́ıstica de grau k em termos de somas de U-estat́ısticas

não correlacionadas de grau 1, 2, · · · , k.
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O primeiro passo para falar da decomposição é apresentar os kernels h(1), h(2), · · · , h(k)

de graus 1, 2, · · · , k, definidos recursivamente pelas equações:

h(1)(x1) = ψ1(x1)− θ (2.9)

e

h(j)(x1, · · · , xj) = ψj(x1, · · · , xj)−
j−1∑

k=1

∑

(j,k)

h(k)(xi1 , · · · , xik)− θ (2.10)

para j = 2, 3, · · · , k. Em posse destes, é posśıvel reescrever os subconjuntos de

{1, · · · , n}.

Seja Sj(ij, · · · , ik) a soma
∑
h(j)(xν1 , · · · , xνj) de todos os j subconjuntos {ν1, · · · , νj}

de {i1, · · · , ik}.

Pode-se então utilizar a relação

∑

(n,k)

Sj(i1, · · · , ik) =

(
n− j
k − j

)∑

(n,j)

h(j)(xν1 , · · · , xνj), (2.11)

(
n

k

)−1(
n− j
k − j

)
=

(
k

j

)(
n

j

)−1
(2.12)

e a relação (2.10) quando j = k para reescrever Un da forma
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Un =

(
n

k

)−1∑

(n,k)

ψ(xi1 , · · · , xik)

=

(
n

k

)−1∑

(n,k)

k∑

j=1

Sj(i1, · · · , ik) + θ

= θ +

(
n

k

)−1 k∑

j=1

(
n− j
k − j

)∑

(n,j)

h(j)(xν1 , · · · , xνj)

= θ +
k∑

j=1

(
k

j

)
H(j)
n ,

onde H
(j)
n é a U-estat́ıstica de grau j com kernel h(j).

De maneira mais formal, o livro de (LEE, 1990) descreve o seguinte teorema definindo

a decomposição de Hoeffding de uma U-estat́ıstica.

Teorema 2.10 Para j = 1, · · · , k, seja H
(j)
n a U-estat́ıstica de kernel h(j) definido por

(2.10). Então

Un = θ +
k∑

j=1

(
k

j

)
H(j)
n . (2.13)

A decomposição (2.13) é chamada de decomposição de Hoeffding. As funções H
(j)
n

são não-correlacionadas, com variância de ordem decrescente em n. Para demonstrações

dessas afirmações, consultar (LEE, 1990).

Essa decomposição é utilizada para verificar as propriedades da estat́ıstica proposta

pelo presente trabalho.

2.3 Teoria assintótica

Para a elaboração dos métodos propostos nesse projeto a teoria assintótica utilizada

foi a normalidade assintótica de U-estat́ısticas. Novamente, para mais detalhes e demons-

trações é indicado a leitura do terceiro caṕıtulo do trabalho do (LEE, 1990).

Teorema 2.11 Seja σ2
1 > 0. Então, n1/2(Un − θ) é assintoticamente normal com média

zero e variância assintótica k2σ2
1.
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Esse resultado é consequência do Teorema Central do Limite para variáveis aleatórias

independentes.

Até o momento foram apresentados resultados, teoremas e lemas envolvendo U-

estat́ısticas de grau k, porém para o desenvolvimento do método proposto pelo projeto

serão utilizadas U-estat́ısticas de grau k = 2. Com a leitura disposta até aqui é esperado

que o leitor acompanhe sem dificuldade as discussões abordadas pelo artigo no caṕıtulo a

seguir.
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Abstract

Inference in clustering is paramount to uncovering inherent group
structure in the data. Clustering methods which assess statistical sig-
nificance have recently drawn attention owing to their importance for the
identification of patterns in high dimensional data with applications in
many scientific fields. We present here a U-statistics based approach, spe-
cially tailored for high-dimensional data, that clusters the data into three
groups while assessing the significance of such partitions. Because our ap-
proach stands on the U-statistics based clustering framework of uclust, it
inherits its characteristics being a non-parametric method relying on very
few assumptions about the data, and thus can be applied to a wide range
of dataset. Furthermore our method aims to be a more powerful tool to
find the best partitions of the data into three groups when that particular
structure is present. In order to do so, we first propose an extension of the
test U-statistic and develop its asymptotic theory. Additionally we pro-
pose a ternary non-nested significance clustering method. Our approach
is tested through multiple simulations and found to have more statistical
power than competing alternatives in all scenarios considered. An appli-
cation to image recognition shows that our proposal presents a superior
performance for this special case.

1 Introduction

In clusters analysis the aim is to divide data into groups of similar items and
there are different ways to accomplish this task. A large number of algorithms
based on different measures have been proposed and each different measure may
lead to potentially different results ([Euan et al., 2019]). Clusters can be in-
herently present in the data like phylogenetic analysis ([Rosenberg et al., 2002,
Chen et al., 2015]) or they can be built when clustering should take place regard-
less of whether innate cluster structure is present as in customer segmentation
([Motlagh et al., 2019, Hennig, 2015]). In order to evaluate clustering methods,
it is necessary to consider the context, the objectives of clustering and to have a
suitable measure of dissimilarity ([Von Luxburg et al., 2012]). A critical issue is
how to discover inherent cluster structure in data, in other words, whether the
clusters represent in fact an important feature or are simply the result of sample
variation. This becomes even more challenging when considering the context
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of high dimensional data. We present here a U-statistics based approach that
clusters the data in three groups while assessing the significance of such parti-
tions. Our method is specially tailored for high-dimensional data and adaptable
to different distance measures.

In a typical application of inference in clustering when the groups are al-
ready defined and there is no need for an algorithm or method to find them,
the null hypothesis is that all groups are random samples from the same pop-
ulation (overall sample homogeneity). In the multivariate analysis of variance
(M)ANOVA procedure, when presented in terms of a linear model, the homo-
geneity of groups stands for equality of means between all groups. Assumptions
of independence and normality of the data, homoscedasticity of variance and
homogeneity in group are required for exact (finite sample) inference. In addi-
tion, a large sample size, depending on the dimension of the data is generally
necessary. For the context where there is no information about the existence of
groups and the objective is to know if they exist and what they are, some ap-
proaches have been proposed for addressing the problem of assessing significance
of partitions, or determining which clustering layers represent actual population
structure and which are simple consequence of spurious random effects. To avoid
resorting to heuristic criteria or the researcher’s judgement to define which par-
tition levels should be assigned meaning these approaches proposes to assess
statistical significance. However the success of these methods depends on the
underlying cluster structure ([Adolfsson et al., 2019]).

Several approaches have been proposed to assess statistical significance in
clustering, for example the procedure presented in [McLachlan and Peel, 2004]
which considers mixture models of distributions such as the Gaussian. A max-
imum likelihood approach is used by [Demidenko, 2018] to test no-clusters hy-
pothesis. However, when the data are high dimensional and have small sam-
ple sizes the problem becomes increasingly challenging, since it involves com-
plete parametric estimation, usually requiring costly matrix inversions. The
works of [McShane et al., 2002, Helgeson et al., 2020] address this issue by us-
ing reduction of dimensionality of the data matrix and sparse covariance es-
timation. An approach inspired on the bootstrap strategy is proposed by
[Shimodaira et al., 2004] which is implemented in the R package pvclust
([Suzuki and Shimodaira, 2006]) and used in phylogenetics to assess confidence
in hierarchical clustering. [Liu et al., 2008] proposes a statistical test to assess
the significance of clustering the data into K groups, specifically tailored to the
high dimension low sample size (HDLSS) scenario, that has been implemented in
the R package sigclust. However, the implementation and applications consider
only two groups. Additionally, [Kimes et al., 2017] extend the method to assess
significance in hierarchical clustering. However, this approach requires that the
data comes from a single multivariate normal distribution, which can be an is-
sue since rejection of the no cluster hypothesis may be a simple consequence of
non-normal data.

Our work focuses specifically on the HDLSS setting and extends the works of
[Cybis et al., 2018, Valk and Cybis, 2020] making it possible to simultaneously
test the homogeneity of three groups, one of which may have size one. The test
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statistic to compare three groups, where one of them may be an outlier, is a
extension of the test statistic Bn proposed by [Pinheiro et al., 2009]. Here the
hypotheses are similar to those of (M)ANOVA where the null is that the elements
in the three groups come from the same distribution (homogeneity, no-clusters)
versus the alternative hypothesis that the data distribution (not necessarily
normal) of at least one of the groups is different from the others. Asymptotic
normality of the extended Bn is obtained using U-statistics theory. An estimator
for the variance of the extended Bn is proposed. In addition, we have developed
an algorithm (uclust3) that finds the best significant separation in three groups.
Simulation studies show that our proposal presents coherent results, such as
control of Type I Error and the increased Power to identify clusters as they
become more separated. Furthermore, our comparative simulation study with
other methods shows that in the case where there are exactly three groups,
the approach we are proposing has greater power, that is, greater ability to
correctly identify three clusters. More accurate results of uclust3 are found in an
application to real image recognition data, corroborating the better performance
of our approach observed in the simulations. Although we are using Euclidean
distance and simulating data with normal distribution, these aspects are not
essential to the validity of the method properties.

The steps to developing our three groups clustering method are outlined
as follows. First, in Section 2.1 we review the U-statistics based theory of
the homogeneity test of [Cybis et al., 2018] and present the U-statistics theory
for three groups. In Section 2.2 we present the extension of the Bn statistics
proposed by [Pinheiro et al., 2009] to contemplate three groups in which one
may have size one, in order to devise a clustering algorithm that can properly
identify outlier elements. Additionally an investigation of theoretical properties
that show its compatibility with the previous framework and asymptotic theory,
is also presented. In Section 2.3 we explore the variance aspects of the extended
Bn and propose an approach to estimate this variance. In Section 3 we propose
the uclust3 method which finds the statistically significant data partition that
better separates the sample into three groups. The remainder of the paper
focuses on evaluating the methodology through simulation studies, in Section
4, and an applications to real data in Section 5. Finally, in Section 6 we discuss
the overall results.

2 Methods

2.1 U-Statistics based test for three group separation

Let X = (X1, . . . ,Xn) be a random sample of n L-dimensional vectors divided
in three groups G1, G2 and G3 of sample sizes n1, n2 and n3, respectively,
where n = n1 + n2 + n3. In the g-th group, for g ∈ {1, 2, 3}, observations

X
(g)
1 , . . . ,X

(g)
ng are assumed to be independent and identically distributed with

a L-variate distribution Fg. Here, the distribution Fg admits finite mean vector
µg and positive definite dispersion matrix Σg (not necessarily multi-normal).
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Following the approach of [Sen, 2006] and [Pinheiro et al., 2009], we define the
functional distance θ(Fg, Fg′) as

θ(Fg, Fg′) =

∫ ∫
φ(x1, x2)dFg(x1)dFg′(x2), x1, x2 ∈ RL, (1)

where g, g′ ∈ {1, 2, 3} and φ(·, ·) is a symmetric kernel of order 2. If we assume
that θ(·, ·) is a convex linear function of its marginal components, then we have

θ(Fg, Fg′) ≥
1

2
{θ(Fg, Fg) + θ(Fg′ , Fg′)}, (2)

for all distributions Fg and Fg′ , with equality holding whenever µg = µg′ .
Note that the functional θ(·, ·) can be used to define both distance within and

between groups. It follows from U-statistics theory that an unbiased estimator
of this functional for within group distance θ(Fg, Fg) is a generalized U-statistic
[Hoeffding, 1948], with kernel φ(·, ·), defined as

U (g)
ng

=

(
ng
2

)−1 ∑

1≤i<j≤ng

φ(X
(g)
i ,X

(g)
j ), (3)

where g ∈ {1, 2, 3}. Analogously, the unbiased estimator for the between group
functional distance θ(Fg, Fg′) is defined by

U (g,g′)
ng,ng′

=
1

ngng′

ng∑

i=1

ng′∑

j=1

φ(X
(g)
i ,X

(g′)
j ), (4)

where g, g′ ∈ {1, 2, 3} and g 6= g′.
The combined sample U-statistic is usually decomposed as

Un =

3∑

g=1

ng
n
U (g)
ng

+
∑

1≤g<g′≤3

ngng′

n(n− 1)

{
2U (g,g′)

ng,ng′
− U (g)

ng
− U (g′)

ng′

}

= Wn +Bn. (5)

Decomposition (5) leads to the statistic Bn, which provides the focal point of
our methodology,

Bn =
∑

1≤g<g′≤3

ngng′

n(n− 1)

{
2U (g,g′)

ng,ng′
− U (g)

ng
− U (g′)

ng′

}
. (6)

Here U
(g)
ng for g ∈ {1, 2, 3} are U-statistics associated to within group dis-

tances, as defined in (3), and U
(g,g′)
ngng′ , g 6= g′ ∈ {1, 2, 3}, are the U-statistics

associated to between group distances as defined in (4). Note that the defi-

nition of U
(g)
ng require a minimum of 2 elements in the group. This imposes

minimum group sizes ng ≥ 2, for g ∈ {1, 2, 3} for proper definition of Bn.
The methodology proposed in [Cybis et al., 2018] and [Valk and Cybis, 2020]

considers a group homogeneity test which verifies whether two groups in fact
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constitute separated groups, or if they stem from the same distribution. In
this work, for data arranged in three groups G1, G2 and G3, the interest is in
verifying whether the data are homogeneous or if there is at least one group
statistically separated. Thus, the null hypothesis H0 states that F1 = F2 = F3,
while the alternative H1 states that there are i 6= j, ∈ {1, 2, 3} where Fi 6= Fj .
In cases where groups G1, G2 and G3 have more than two elements, the asymp-
totic properties of Bn are addressed in [Pinheiro et al., 2009]. The statistics Bn
is in the class of degenerate U-statistics for which asymptotic normality prevails
and the convergence rates are L and/or

√
n. Additionally, under the null, we

have E(Bn) = 0 and under the alternative, E(Bn) > 0. The null hypothesis is
rejected for large values of standardized Bn, where the variance of Bn, under
H0, is obtained by a resampling procedure [Sen, 2006].

2.2 The extension of test U-statistics for tree groups

The homogeneity test proposed in [Cybis et al., 2018] presents an essential con-
cept for our clustering algorithm. However, the group size restriction required
by the definition of the U-statistic Bn in (6) constrains this method to cases
where all subgroups have sizes ni ≥ 2, i = 1, 2, 3, and consequently clustering
methods will fail in cases where the data has an outlier. In order to build a
clustering algorithm that admits groups of size 1 we propose an extension of
Bn. We can assume, without loss of generality, that only the group G1 may
have one element, and define

Bn =





2n2

n(n−1)

(
U

(1,2)
1,n2

− U (2)
n2

)
+ 2n3

n(n−1)

(
U

(1,3)
1,n3

− U (3)
n3

)

+ n2n3

n(n−1)

(
2U

(2,3)
n2,n3 − U (2)

n2 − U (3)
n3

)
, if n1 = 1, and n2, n3 > 1

∑

1≤i<j≤3

ninj
n(n− 1)

(
2U (i,j)

ni,nj
− U (i)

ni
− U (j)

nj

)
, if n1, n2, n3 > 1.

(7)

where U
(g,g′)
ng,ng′ and U

(g)
ng are defined, respectively, in (4) and (3).

This is a natural extension of Bn considering data separation in three groups,
when allowing for clusters of size 1. This extension coincides with that of ex-
pression (6) for group of sizes n1, n2, n3 > 1, and thus all properties mentioned
above are still valid for the new definition in that case. We ascertain the validity
of these asymptotic properties or analogous alternatives in the case of n1 = 1.

Note that, when G1 has size one, we can rewrite Bn as

Bn =
2n2

n(n− 1)
U

(1,2)
1,n2

+
2n3

n(n− 1)
U

(1,3)
1,n3

+
2n2n3
n(n− 1)

U (2,3)
n2,n3

−n2(2 + n3)

n(n− 1)
U (2)
n2
− n3(2 + n2)

n(n− 1)
U (3)
n3
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where U
(1,g)
1,g and U

(g)
ng , g = 2, 3 are as defined in (4) and (3). If we consider the

extension of Bn in (7), then we can write the combined sample U-statistics as

Un = Bn +W ∗n .

whereW ∗n is an appropriate modification the termWn. Thus, Bn still arises from
the decomposition of the combined sample U-statistics into Bn and a modified
term Wn. This extended definition allows us to build a U-test when a group
has size 1. We conveniently labeled the data in order to arrange the groups as
follows. Let G1 = {X1}, G2 = {X2, . . . ,Xn2+1} and G3 = {Xn2+2, . . . ,Xn},
n = 1 + n2 + n3. We still have E[Bn] = 0, under the null hypothesis of overall
group homogeneity. Additionally, if we make the assumption that

θgg′ > θg, (8)

for g 6= g′ ∈ {1, 2, 3} where θg = E [φ(Xg, Xg)] and θgg′ = E [φ(Xg, Xg′)], then
under alternative we have that E[Bn] > 0. Note that this assumption is usual
and when (8) is valid then equation (2) is always satisfied.

Asymptotic theory for the Bn statistic for group sizes greater than 2 is
developed in the work of [Pinheiro et al., 2009], where it is established that Bn
is a degenerate U-statistic and asymptotic normality is provided. The following
theorems demonstrate that the extended Bn is a non degenerated U-statistics
and establish the asymptotic distribution of the extended Bn under H0 for
increasing dimension L and sample size n, requiring regularity conditions akin
to those of the n1, n2, n3 > 1 case.

Theorem 1 Let X1,X2, . . . ,Xn be a sequence of i.i.d. L × 1 random vec-
tors. Let φ(·, ·) be a kernel of degree 2 satisfying E[φ(X1,X2)2] < ∞ and
Var[E(φ(X1,X2)|X1)] = σ2

1 > 0. Consider definition (7) for Bn when n1 = 1

and let Vn = Var(Bn), τn = (n/2)V
1/2
n and W = J1 + J2 − J3 − J4, where

ψ1(X1)
τn

D−→ J1, and J2, J3 and J4 are random variables with normal distribution.
Then

(n/2)Bn
τn

D−→W as n →∞. (9)

Proof: See Supplementary Material.
This result shows that the test statistic asymptotically converges in n to a

non-degenerate random variable whose limit distribution depends on the choice
of kernel φ(·, ·).

Theorem 2 Let X1,X2, . . . ,Xn be a sequence of i.i.d. L× 1 random vectors.
Let φ(·, ·) be a kernel of degree 2 such that

φ(Xi,Xj) =
1

L

L∑

l=1

φ∗(Xil, Xjl) (10)
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for some kernel φ∗(·, ·) : R2 → R, where Xil is the l-th entry of Xi. De-
fine φ∗1(xil) = E[φ∗(Xil, Xjl)|Xil = xil] and suppose Var(φ∗1(Xil)) > 0 and
Var(φ∗(Xil, Xjl)) < ∞. Let Bn be defined by (7) for the case where n1 = 1,
and assume that all conditions in Theorem 1 hold. Suppose also that

∑

1≤l<m≤n
E[φ∗(Xil, Xjl)φ

∗(Xim, Xjm)] = O(L) (11)

and ∑

1≤l<m≤L
E[φ∗1(Xil)φ

∗
1(Xjm)] = O(L). (12)

Then
Bn√

Var(Bn)

D−→ N(0, 1) as L→∞. (13)

Proof: See Supplementary Material.
This result is fundamental to our inference procedure for clustering in the

HDLSS context.

2.3 Variance of Bn

In the utest the estimation of Bn’s variance under H0 plays an essential role
in hypothesis testing (see [Cybis et al., 2018] ). As shown below, even under
H0, the variance of Bn depends on the particular group configuration under
consideration. For the homogeneity test of Section 3, we must evaluate this
variance for the many group configurations visited in an optimization algo-
rithm. This variance estimation is performed through a resampling procedure,
however it becomes computationally expensive to perform one resampling pro-
cedure for each individual group size configuration. To circumvent this issue,
[Cybis et al., 2018] propose a reweighting scheme taking advantage of analytic
calculations for the variance for the case K = 2 groups. They are able to com-
pute all variances from a single resampling procedure. In this section we extend
their argument to the case of K = 3 groups.

In this Section we provide an estimator for the variance of Bn underH0 based
on U-statistics properties of Bn. For cases where all groups have more than two
elements, the Hoeffding decomposition of Bn can be found in
[Pinheiro et al., 2009] which is given by

Bn =

(
2

n(n− 1)

) ∑

1≤i<j≤n
ηnijψ2(Xi, Xj), (14)

where ψ2(,̇)̇ is the second order term of the Hoeffding decomposition of Bn and

ηnij =





1, if i and j are from different groups

− (n−ng)
ng−1 , if i and j are from the same group g.

(15)
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Thereby,

Var(Bn) =

(
2

n(n− 1)

)2

τ22
∑

1≤i<j≤n
η2nij . (16)

where τ22 = Var(ψ2(X1, X2)). From [Pinheiro et al., 2009] we also know that

∑

1≤i<j≤n
η2nij =

(
n

2

)
(G− 1)

{
1 +

1

n

G∑

g=1

n− ng
(ng − 1) (G− 1)

}
. (17)

For the case in which we have three groups, G1, G2 and G3, with sizes n1, n2
and n3, respectively, where n1 + n2 + n3 = n, it can be rewritten as

Cn(n1, n2) =
∑

1≤i<j≤n
η2nij = 2

(
n

2

){
1 +

1

n

3∑

g=1

n− ng
2 (ng − 1)

}
, (18)

and therefore

Var(Bn) =

(
2

n(n− 1)

)2

τ22Cn(n1, n2) = Vn1,n2
. (19)

Note that only τ22 depends on the probability distribution of the data. Given
three groups of sizes n1, n2 and n3, the variance of Bn for this configuration is
estimated through a resampling procedure. For optimization purposes, it is not
interesting to perform a resampling procedure for each group configuration, so
the idea is to use (the relation) expression (19) to estimate Bn’s variance for
any group configuration from a single resampling procedure. Let G∗1, G∗2 and
G∗3, with sizes n∗1, n∗2 and n∗3, respectively, where n∗1 + n∗2 + n∗3 = n, be an other
group configuration for the same data set. From (19) it follows that

Vn∗1 ,n∗2 =
Cn(n∗1, n

∗
2)

Cn(n1, n2)
Vn1,n2

. (20)

Thus estimating Vn1,n2
through a resampling procedure is sufficient to es-

timate the variance of Bn for any other group configuration. Although the
variance of Bn is estimated under H0, we note that the choice of n1 and n2
may be important to reduce the bias of the variance estimator. To understand
the Cn(·, ·) function’s behavior we plot (18) assuming that n1, n2, n3 ≥ 2 and
n = n1 +n2 +n3. As τ22 does not depend on group sizes, the behavior of Cn(·, ·)
governs the behavior of Bn’s variance and Figure 1 shows that smaller values
are obtained when groups have balanced sizes, while larger values of Cn(·, ·) are
obtained when group sizes are unbalanced.
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n1

n2

z

Figure 1: Cn(·, ·) function behavior for n1, n2, n3 ≥ 2 and n = n1 + n2 + n3.

2.3.1 Variance of the extended Bn

We propose an extended statistic Bn in (7) to accommodate cases in which
the data set is divided into three groups, one of which has size one. For infer-
ence purposes it is essential establish a strategy to estimate the variance of the
extended Bn. Through the Hoeffding decomposition of (7) (see Suplementary
Material) we have that the variance of the extended Bn is

Var(Bn) = ζ1(n)τ21 + ζ2(n, n2)τ22 , (21)

where τ21 = Var(ψ1(X1)) and τ22 = Var(ψ2(X1, X2)) are, respectively, the vari-
ance of the first and the second order terms of the Hoeffding decomposition,

ζ1(n) =
4

n(n− 1)
,

ζ2(n, n2) =
4

n2(n− 1)
+

4n2n3
n2(n− 1)2

+
2n2(2 + n3)2

n2(n2 − 1)(n− 1)2
(22)

+
2n3(2 + n2)2

n2(n3 − 1)(n− 1)2
,

n1 = 1, and n3 = n − n2 − 1. Note that in expression (21) the terms τ21 and
τ22 depend on the probability distribution of the data, ζ1(·) depends only on n
and ζ2(·, ·) depends on n and n2 since n3 = n− n2 − 1. Thus for another group
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configuration keeping one of the groups with size one, the only change occurs
at n2, say n∗2. For this new group configuration, the extended Bn variance is
given by

Var(Bn) = ζ1(n)τ21 + ζ2(n, n∗2)τ22 . (23)

Again, the choice of n2 may affect the variance of the estimator. Denoting
(21) by Vn2

and (23) by Vn∗2 , we have from simple algebra that

Vn∗2 = Vn2
+ [ζ2(n, n∗2)− ζ2(n, n2)]τ22 . (24)

For a given n2 we can estimate Vn2 from a resampling procedure. Addition-
ally, an estimate for τ22 can be obtained from the strategy employed to estimate
the variance of Bn without outlier through expression (19) as

τ̂22 =
V̂n1,n2

C(n1, n2)
(

2
n(n−1)

)2 . (25)

Thus we have a procedure to estimate the extended Bn´s variance for any
group configuration from only two independent resampling procedures, through
expression

V̂n∗2 = V̂n2
+ [ζ2(n, n∗2)− ζ2(n, n2)]τ̂22 , (26)

where τ̂22 is obtained from the resampling employed to estimate the variance

of Bn without outlier and V̂n2
is obtained from an additional resampling specific

to n1 = 1 case. Thus, taking into account the resampling procedure performed
to estimate the variance of Bn when the groups are larger than two and, with
one more resampling procedure for the size one group, we have an estimator for
extended Bn’s variance.

In Figure 2 we have the behavior of ζ2(n, n2) as a function of n2.
These results are fundamental for the development of feasible algorithms

that find significant clusters which is computationally challenging problem.
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Figure 2: Behavior of function ζ2(n, n2) for a given n, with n1 = 1 and n =
1 + n2 + n3.

3 Homogeneity test for three groups

Assessment of group homogeneity is a great challenge for standard statistics, es-
pecially in the HDLSS context. The uclust algorithm presented in [Cybis et al., 2018]
and [Valk and Cybis, 2020] is effective to assess overall group homogeneity by
verifying whether there exists some significant partition of the data in two
groups. Here we are proposing an extension of the uclust algorithm for data
partitions in three groups G1, G2 and G3. A combinatorial procedure like the
one proposed by [Valk and Pinheiro, 2012] in which a utest is applied for each
possible partition of all group elements into three subgroups has serious compu-
tational restrictions due to the exponential increase in the number of tests that
need to be performed. We show that (See Section S2 in the Supplementary Ma-
terial) the number of possible assignments of all n elements in three subgroups
is

γ3(n) =
233(3n−6) + 1 + n− n2 − 2n

2
, (27)

which becomes computationally onerous, especially for large sample size n. To
address this issue, we proceed similarly to [Cybis et al., 2018] proposing an op-
timization procedure to assess group homogeneity by finding the group config-
uration G1, G2 and G3 that maximizes the objective function

f(G1, G2, G3) =
Bn√

Var(Bn)
. (28)

By maximizing the standardized Bn we must apply only one test. If this three
group partition is found significant, then there is at least one subgroup that is
significantly different from the others. However, if H0 is not rejected for this par-
tition, then all other three group partitions will also be non-significant, and the
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whole data will be considered homogeneous. While only the group configuration
with maximum standardized Bn is tested we have to consider the distribution
of Bn’s maximum under H0. Making the untrue, but useful, simplifying as-
sumption that the Bn’s are independent for different group configurations, the
asymptotic cumulative distribution function of the maximum standardized Bn
is given by

Fmax(x) = P

(
max

(
Bn√

Var(Bn)

)
< x

)
= Φ(x)n

∗
, (29)

where n∗ = γ3(n), for γ3(n) defined in (27) and Φ(·)n∗ is the standard normal
cumulative distribution function at the power n∗. For Fmax(x) > 1 − α, we
reject the null hypothesis of overall group homogeneity with α significance level.

The number of tests increases rapidly, even for moderate sample size due
to the combinatorial nature of our approach. The maximum distribution in
(29) adequately accounts for multiple testing for reasonably small values of
n∗. However, this approach has some shortcomings since n∗ rapidly increases.
Proceeding similarly to [Valk and Cybis, 2020] and considering the simplifying
assumption that the Bn’s are independent, we use extreme value theory and
model it as Gumbel. However, the Gumbel approximation is only valid for very
large values of n∗. Thus, for small n we employ the standard max distribution
of (29), and when n∗ ≥ 228 the Gumbel distribution.

3.1 The clustering method uclust3

Our homogeneity test in the Section 3 is a method that finds the configuration
of three subgroups that maximizes the standardized Bn. This is appropriate
for the context, since if the homogeneity test accepts the null for this par-
tition, then it would also be accepted for all other partitions. However, the
standardized Bn might not be the best criteria to choose between competing
partitions when more than one significant group separation exists. This issue
is addressed in [Cybis et al., 2018] and arises from the fact that the variance of
Bn has different magnitudes depending on subgroup sizes n1 and n2 (expres-
sion (18) dictates the relationship between variances, which is shown in Figure
1). Consequently, this criteria favours partitions with group sizes of smaller
variance, namely n1, n2 ≈ n/3. We note that the magnitude of the variance
is quite different when we have a size one group, being much smaller in that
case. Again if we use the standardized Bn statistic as a criterion, we will have
an effect of choosing groups of size one over the configurations of groups that
present greater variance according to the Figure 1.

Considering this issue, we proceed similarly to [Valk and Cybis, 2020] start-
ing by testing overall group homogeneity which is based on maximum of stan-
dardized Bn. If the dataset is not homogeneous we adopt instead the maximum
Bn as the criteria for finding the configuration that better divides the sample
into three groups. Thus our significance clustering algorithm uclust3 will find
the partition with maximum Bn among the universe of all significant partitions
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in three groups. This is sufficient to ensure that the chosen configuration is sta-
tistically significant. However, it is not efficient to find all arrangements of the
data in three groups that are statistically significant. Furthermore, we cannot
simply test the clusters that maximizes Bn since there are non-homogeneous
samples for which this maximal partition is not significant.

Based on these characteristics of the Bn we propose a restricted search algo-
rithm, which is based on the behaviors of the Bn’s variances (see Figure 1). It
starts from the group configuration that maximizes Bn and if that partition is
not significant, it searches for partitions whose Bn’s variances are smaller than
the previous one. This is suitable since only for smaller variances, standardized
Bn can be significant. The equation (20) is used to avoid a new resampling pro-
cedure to estimate the Bn’s variance. As there is a difference in the magnitudes
of the Bn’s variances (see Figures 1 and 2) this algorithm treats separately the
cases when we have a group of size one and the cases with no outlier. The
detailed algorithm can be found in Section S3 of the supplementary materials.

4 Simulation Studies

In this section we present simulation studies in order to evaluate some aspects
of our proposed methodology. For that we simulate canonical data and use the
euclidean distance on our studies, but those are not mandatory for our methods.
As presented in Section 2.3, Bn’s variance has a behavior that depends on the
groups sizes. Moreover when we have a size one group, the order of magnitude
of the Bn’s variance is quite different when compared to cases in which groups
sizes are larger than one. For this reason, our simulations studies typically
have a configuration in which a group has size 1 and another configuration in
which all groups have more than one element. Figures 1 and 2 show that Bn’s
variance is smaller at a central group configuration, where the three groups
have approximately the same number of elements. Conversely, the variance is
greater for extreme group configurations, in which one of the groups has only
two elements and the other has n/2 elements (or n− 1− n2 elements for cases
where we have a group of size one). Naturally, the third group’s size is defined
as n3 = n− n1 − n2. These scenarios are explored in our simulation studies.

In the Section 4.1 we evaluate the empirical size and power of the proposed
utest for homogeneity of three groups. Section 4.2 present a simulation
study to evaluate the empirical properties of the homogeneity test uclust3. The
ability to find correct clusters of uclust3 and kmeans clustering are compared
in Section 4.3.

4.1 Simulations for the utest

We present here a simulation study to evaluate the empirical performance of the
utest for three groups. We simulate data from independent normally distributed
(i.i.d.) samples divided in three groups G1, G2 and G3. The elements of the L
dimensional vectors in G1 are generated from i.i.d. normal with mean m1 = 0
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and standard deviation equal to one. The vectors in G2 and G3 have the same
properties with mean m2 and m3, respectively. In order to allow a graphical
representation of the power of the test which is the proportion of rejection con-
sidering a significance level α (the power curves), the groups were symmetrically
separated and on the x-axis the difference m2 −m1 is reported. The difference
m3 − m2 = m2 − m1. The sample size n takes values in {10, 20, 50}. Figure
3 presents power curves of the utest for three groups with separation degree
m2 − m1, where the vectors have dimension L = 1000 (gray) and L = 2000
(black) and we have 100 replications of each scenario. Furthermore group G1

has size one and group G2 was set to have size n2 = bn/3c, where bxc means the
integer part of x. Naturally the third group’s size is defined as n3 = n− 1−n2.
The significance level used to determine whether the test rejects the null hy-
pothesis that the elements in G1, G2 and G3 have the same distribution was
α = 0.05.
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Figure 3: Power curves of utest for two dimension L = 1000 (gray) and L = 2000
(black) for 100 replications of each scenario of n ∈ {10, 20, 50} with α = 0.05.

The empirical results obtained in this study reported in Figure 3 corroborate
the theoretical properties. As the L increases, the rejection ratio also increases
and as the groups become more separated, the power increases. When there is
no separation, m2 −m1 = 0, the rejection ratio is close to the significance level
α suggesting control of Type I error. Similar results are found for cases where
all groups have more than one element (see Figure S1 in the Supplementary
Material).
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4.2 Simulations for the homogeneity test in uclust3

To evaluate the statistical properties of the homogeneity test uclust3 considering
the max distribution (29) with the Gumbel correction when appropriate, we
simulate data with the same characteristics as the data in Section 4.1. For each
sample size n in {10, 20, 50}, group G1 has size one and group G2 was set to
have size n2 = 2 and n2 = n/2, and consequently the third group’s size was
defined as n3 = n−1−n2. Table 1 shows the proportion of rejection of the null
hypothesis for significance level α = 0.05 considering two scenarios of (m2,m3)
and the dimension L taking values in {1000, 2000}.

Table 1: Empirical power of the homogeneity test uclust3 with a group of size
one

(m2, m3) (n2)
Dimension L

n 1000 2000

10
(0.25, 0.5)

2 0.27 0.36
5 0.69 0.89

(0.5, 1)
2 0.22 0.25
5 0.98 1

20
(0.25, 0.5)

2 0.93 1
10 1 1

(0.5, 1)
2 0.9 0.89
10 0.92 1

50
(0.25, 0.5)

2 0.68 0.68
25 1 0.99

(0.5, 1)
2 0.99 0.96
25 1 1

We can observe that even in an extreme group configuration, where the group
G1 has size one and the group G2 has size two, the method presents consistent
empirical power to reject the null hypothesis. The power increases as L and/or
n and/or the difference between m2 and m3 increases, emphasizing the inherent
properties of the method.

Supplementary Table S1 presents estimates of type I error rates for uclust3.
The significance level considered in this simulations was α = 0.05 and we can
observe that the method presents an adequate control of the Type I Error for
cases where L >> n (typically HDLSS scenario). Supplementary Table S2
presents power of the uclust3 for group configurations of sizes greater than
1. For small sample size n the test had more difficulty in finding the correct
clusters. However, for larger n the method showed an excellent performance.
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4.3 Simulations for finding correct clusters

In order to evaluate the accuracy of our clustering method, we present simula-
tion studies comparing uclust3 with kmeans clustering, one of the most popular
clustering algorithms. We refer the reader to the vastly cited work of [Jain, 2010]
for a general discussion about kmeans. The data were simulated under the same
distribution scheme of Section 4.2, with Re = 100 replications and the methods
were compared in terms of mean Adjusted Rand Index (ARI) which measures
the agreement of clustering results with simulation scenarios, adjusting for ran-
domness [Hubert and Arabie, 1985]. An ARI of one indicates perfect matching.
No inference is used in this analysis. This is an appropriate comparison as both
methods are set to find exactly three groups. Table 2 reports the results for
three sample sizes n ∈ {10, 20, 50}, two dimension L ∈ {1000, 2000} and three
groups of sizes n1, n2 and n3 = n − n1 − n2. The data vectors in group G1

have zero mean and the data vectors in G2 and G3 have mean m2 and m3,
respectively. Note that the clustering method uclust3, based on the maximiza-
tion of Bn is comparable to kmeans to find the correct clusters, considering
this data configuration. However for larger sample sizes, as the clusters become
better defined, with greater separation between the means, uclust3 outperforms
kmeans. Table S3 shows that for the case where G1 has size one, kmeans tends
to perform slightly better for smaller sample sizes.
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Table 2: Comparison of mean ARI and standard deviation (Sd) of the accuracy
in clustering of kmeans and uclust3 methods.

(m2, m3) (n1, n2) Method
Dimension L

n 1000 2000
Mean Sd Mean Sd

10

(0.25, 0.5)
(2, 5)

kmeans 0.59 0.05 0.73 0.06
uclust3 0.58 0.03 0.63 0.02

(3, 3)
kmeans 0.56 0.05 0.74 0.08
uclust3 0.52 0.05 0.6 0.05

(0.5, 1)
(2, 5)

kmeans 0.91 0.04 0.94 0.03
uclust3 0.74 0.01 0.74 0

(3, 3)
kmeans 0.9 0.05 0.87 0.07
uclust3 0.92 0.03 0.96 0.02

20

(0.25, 0.5)
(2, 10)

kmeans 0.73 0.02 0.77 0.03
uclust3 0.7 0.02 0.74 0.02

(6, 6)
kmeans 0.74 0.05 0.94 0.03
uclust3 0.68 0.04 0.91 0.02

(0.5, 1)
(2, 10)

kmeans 0.96 0.01 0.94 0.02
uclust3 1 0 1 0

(6, 6)
kmeans 0.81 0.07 0.84 0.07
uclust3 1 0 1 0

50

(0.25, 0.5)
(2, 25)

kmeans 0.76 0.01 0.79 0.01
uclust3 0.73 0 0.74 0.01

(16, 16)
kmeans 0.93 0.02 0.89 0.05
uclust3 0.94 0 1 0

(0.5 , 1)
(2 , 25)

kmeans 0.95 0.01 0.95 0.01
uclust3 1 0 1 0

(16, 16)
kmeans 0.8 0.07 0.81 0.07
uclust3 1 0 1 0

4.4 Finding correct clusters and comparing uclust3 and
uhclust in a presence of an outlier

A simulation study similar to Section 4.1 was performed to compare our uclust3
with the hierarchical methods uhclust from [Valk and Cybis, 2020] and sigclust
from [Kimes et al., 2017, Kimes, 2019] in terms of the ability to correctly find
statistically significant groups. The group G1 has only one element, the size of
G2 is n2 = bn/3c. For all three methods the same level of significance α = 0.05
was considered. The sigclust method was not able to find the correct groups
in any scenario, with a proportion of correct answers equal to zero and for this
reason it was excluded from the analysis. Figures 4 and 5 report curves of
proportion times that the algorithms found significant separation and correct
groups considering different values of m2−m1 varying on the x axis, with sample
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size n taking values in {10, 20, 50} and dimension L = 1000 and L = 2000 The
results are based on 50 repetitions.
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Figure 4: True cluster proportion curves of uclust3 (dark gray) and uhclust
(light gray) for dimension L = 1000 with 50 replications of each scenario of n
with α = 0.05 and one outlier.
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Figure 5: True cluster proportion curves of uclust3 (dark gray) and uhclust
(light gray) for dimension L = 2000 with 50 replications of each scenario of n
with α = 0.05 and one outlier.

The uclust3 method (dark grey) outperforms uhclust method (light gray)
in all scenarios presenting greater ability to find the correct groups for less
separation. However, for n = 50 these method are more competitive although
the method proposed here uclust3 still stands out for larger separations. The
conclusions do not change with the variation of dimension L. In Section S5 on
the supplementary materials we present results of a simulation study for the
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cases where there are no outlier. Supplementary Figures S2 and S3 shows the
true cluster proportion curves of uclust3 and uhclust for dimension L = 1000
and L = 2000. We note that the uclust3 method outperforms uhclust in all
scenarios.

5 Application

We consider a simple example of image recognition to illustrate the applicabil-
ity of our methodology. The data consists of images from three public figures
(Tony Blair, Colin Powell and George W. Bush) which were selected from the
Labeled Faces Wild (LFW) dataset ([Huang et al., 2007]). The data were run
through OpenFace’s convolutional neural network ([Amos et al., 2016]), a proce-
dure that outputs a 128-dimensional representation of the faces which preserves
Euclidean distances. In case the reader wants to know more about how the
OpenFace works, we recommend reading their website [Amos et al., 2016]. In
this illustrative application, we randomly select 10 images from each public fig-
ure in the above cited dataset and analysed them using OpenFace. To visualize
the data, we provided a heatmap of the transformed images as follows.
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Figure 6: Heatmap of public figures
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Then we run uhclust, sigclust and uclust3 with significance level α = 0.05.
Figure 7 presents the hierarchical clustering dendrogram annotated with p-
values for all tests performed in the uhclust method. We found 4 homogeneous
groups, with a significant division in the Bush image group and an ARI=0.8585.
Figure 8 presents the dendrogram with corresponding sigclust analysis of the
same data which produces six significant clusters, segregating Bush and Pow-
ell’s images from the reminder and finding one outlier in Blair’s group. The
ARI for this case was 0.7788. Applying the uhclust3 method we found exactly
3 homogeneous groups, each corresponding to one of the public figures with
ARI=1.

In the Section S6 in the supplementary materials we consider the same
dataset and public figures to carry out an analysis with three groups in which
one has size one. Figures S4 and S5 in the supplementary materials present
the clustering dendrogram annotated with results of all tests performed in the
uhclust and sigclust methods. None of these methods were able to identify the
outlier and both methods achieved ARI of 0.8135593. However, when we ap-
plied the uclust3 method we found the correct groups with ARI of 1, supporting
the best results uclust3 in the simulation study.
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Figure 7: Annotated dendrogram of significance analysis for hierarchical cluster-
ing uhclust for 30 pictures of 3 public figures. P-values and corrected significance
levels α∗ are shown for each test performed at the corresponding node.
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Figure 8: Annotated dendrogram of significance analysis for hierarchical clus-
tering sigclust for 30 pictures of 3 public figures. P-values and corrected signif-
icance levels α∗ are shown for each test performed at the corresponding node.

6 Discussion

We have developed a clustering method that separates a dataset specifically
into three groups allowing the assessment of significance of this partition. Our
methodology is based on the U-statistics clustering framework proposed in
[Pinheiro et al., 2009] and is an extension of the approach of [Cybis et al., 2018,
Valk and Cybis, 2020]. Considering the Bn statistic of [Pinheiro et al., 2009]
that aims to test homogeneity of three predefined groups we propose an exten-
sion of the Bn statistic to allow for an outlier, namely one of the groups has
only one element (n1 = 1). Additionally we verified statistical properties that
ensure the compatibility of this new definition with the overall framework. We
then considered group homogeneity testing with this newly defined statistic, and
explored empirical properties such as Type I error control and power, showing
adequate preformance. Afterwards, we extended this framework to address the
issue of partitioning a dataset into three optimal statistically significant clusters,
proposing a new clustering criteria that defines the uclust3 method. This differs
from previous methods for instead of find and testing a two group separation,
uclust3 finds the best significant partitions in three clusters. This can pave the
way for inference in K groups.

This U-statistics based methodology can be applied to a wide range of prob-
lems, since they make very few assumptions about the distribution of the data.
Although in the simulation study and in the application we have used Euclidean
distance, this is not a necessary requirement for theory development. Addition-
ally, even if the data come from a non-normal multivariate distribution, the
required asymptotic normality is guaranteed as long as the distances have finite
variance and the sum of all distance covariances do not grow too fast (O(L)
see Theorem 2). The clustering procedures uclust3 proposed here require large
L since Bn for n1 = 1 is only asymptotically normal in the dimension L. As
verified in previously work of [Valk and Cybis, 2020], for the settings in the sim-
ulation studies, in practice our tests achieve good Type I error control having
difficulties only when L is smaller than 10n. This is, by excellence, the HDLSS
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setting.
An important step for developing the homogeneity test is to establish the

number of possible configurations of n elements separated in three groups. A
system of recursive equations was developed to solve this combinatorial problem
and the idea may be used to solve an equivalent problem involvingK > 3 groups.

The significance clustering method uclust3 proposed here returns the parti-
tion that better separates the data into three statistically significant groups in
terms of the Bn statistic. Thus we can compare it with kmeans, which is one of
the most popular clustering method, regarding the ability of correctly find three
groups. A simulation study suggests that uclust3 is competitive with kmeans
when we have a size one group and outperforms kmeans in the context in which
groups having an underlying cluster structure with more than 2 elements each
and large sample sizes.

Since our methodology is a natural extension of the uclust method proposed
by [Valk and Cybis, 2020] it inherits many helpful properties such as the ability
to avoid the hazards of directly estimating the covariance matrix, by obtain-
ing Var(Bn) through resampling. However, they have different purposes, while
uclust aims to find the best significant partition in two groups, uclust3 aims to
find the best significant separation in three groups, so they are not directly com-
parable. To support the usefulness of the uclust3, we carried out a simulation
study to compare this method with the hierarchical version of uclust (uhclsut)
and with another hierarchical approach (sigclust), which both are able to find
a significantly partition into three groups, when this partition exists. We simu-
lated normal data with a three group structure, separating these groups in terms
of the means and use the proportion of correct configurations found to compare
the methods. In the situations considered, sigclust had serious difficulties in
finding the proper arrangement, while uclust3 performed better than uhclust
in all scenarios. Additionally, in the application to image recognition data sets
we select three public figures and observe that the uclust3 method was the only
one able to correctly find the three groups of figures.

Finally the conclusion is that our uclust3 method is appropriate to separate a
high dimensional low sample size dataset into three groups, being more powerful
than some other methods in the specific situation in which a structure of three
groups is present in the dataset.

Supplementary material

Supplementary material: Derivations, supplementary tables and figures (pdf)

Code: R-functions containing all methods developed in this article (will be
available in the uclust package at CRAN).

Data: Dataset used in the application and corresponding script (zip).
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APÊNDICE 1 -- Material suplementar
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S1 The extended Bn for three groups

In this work we propose an extension of the statistic Bn for three groups allowing
for a size one group. This extension, as shown in the Section 2.2 of the main
manuscript, was defined as

Bn =





2n2

n(n−1)

(
U

(1,2)
1,n2

− U (2)
n2

)
+ 2n3

n(n−1)

(
U

(1,3)
1,n3

− U (3)
n3

)

+ n2n3

n(n−1)

(
2U

(2,3)
n2,n3 − U (2)

n2 − U (3)
n3

)
, if n1 = 1, and n2, n3 > 1

∑

1≤i<j≤3

ninj
n(n− 1)

(
2U (i,j)

ni,nj
− U (i)

ni
− U (j)

nj

)
, if n1, n2, n3 > 1.

(S.1)

where U
(g,g′)
ng,ng′ and U

(g)
ng are defined, respectively, in equations (3) and (4) in the

manuscript. As properties of Bn are well described for cases where groups have
more than one element we focus on the special case in which one of the groups
has size one. Without loss of generality assume that n1 = 1 and n2, n3 > 1.
Thus Bn becomes

Bn =
2n2U

(1,2)
1,n2

n(n− 1)
− 2n2U

(2)
n2

n(n− 1)
+

2n3U
(1,3)
1,n3

n(n− 1)
− 2n3U

(3)
n3

n(n− 1)
+

2n2n3U
(2,3)
n2,n3

n(n− 1)

−n2n3U
(2)
n2

n(n− 1)
− n2n3U

(3)
n3

n(n− 1)

=
2n2U

(1,2)
1,n2

n(n− 1)
+

2n3U
(1,3)
1,n3

n(n− 1)
+

2n2n3U
(2,3)
n2,n3

n(n− 1)
− n2(2 + n3)U

(2)
n2

n(n− 1)
−

n3(2 + n2)U
(3)
n3

n(n− 1)
.

1



where U
(k)
nk =

(
nk

2

)−1 ∑

1≤i<j≤k
φ(Xki, Xkj) and

Ung,ng′ = 1
ngng′

∑ng

i=1

∑ng′
i=1 φ(Xgi, Xg′j).

The Hoeffding decomposition of Bn is

Bn =
2n2

n(n− 1)

[
1

n2

n2∑

i=1

φ(X1, X2i)

]
+

2n3
n(n− 1)


 1

n3

n3∑

j=1

φ(X1, X3j)


+

+
2n2n3
n(n− 1)


 1

n2n3

n2∑

i=1

n3∑

j=1

φ(X2i, X3j)




−n2(2 + n3)

n(n− 1)



(
n2
2

)−1 ∑

1≤i<j≤n2

φ(X2i, X2j)




−n3(2 + n2)

n(n+ 1)



(
n3
2

)−1 ∑

1≤i<j≤n3

φ(X3i, X3j)




=
2

n(n− 1)

n2∑

i=1

φ(X1, X2i) +
2

n(n− 1)

n3∑

j=1

φ(X1, X3j) +

+
2

n(n− 1)

n2∑

i=1

n3∑

j=1

φ(X2i, X3j)

−n2(2 + n3)

n(n− 1)

2

n2(n2 − 1)

∑

1≤i<j≤n2

φ(X2i, X2j)

−n3(2 + n2)

n(n− 1)

2

n3(n3 − 1)

∑

1≤i<j≤n3

φ(X3i, X3j).

Is known from the theory of U-statistics (see [Hoeffding, 1948]) that the
kernel φ(, ) can be expressed as sum of orthogonal components, φ(Xi, Xj) =
ψ1(Xi) + ψ1(Xj) + ψ2(Xi, Xj) + θ, where ψ1(Xi) = E[φ(Xi, Xj)|Xi], and
ψ2(Xi, Xj) = E[φ(Xi, Xj)|Xi, Xj ].

Then,
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Bn =

2

n(n− 1)

n2∑

i=1

[ψ1(X1) + ψ1(X2i) + ψ2(X1, X2i) + θ] +

+
2

n(n− 1)

n3∑

j=1

[ψ1(X1) + ψ1(X3j) + ψ2(X1, X3j) + θ] +

+
2

n(n− 1)

n2∑

i=1

n3∑

j=1

[ψ1(X2i) + ψ1(X3j) + ψ2(X2i, X3j) + θ] +

+

(
− 2(2 + n3)

n(n− 1)(n2 − 1)

) ∑

1≤i<j≤n2

[ψ1(X2i) + ψ1(X2j)

+ψ2(X2i,X2j) + θ] +

+

(
− 2(2 + n2)

n(n− 1)(n3 − 1)

) ∑

1≤i<j≤n3

[ψ1(X3i) + ψ1(X3j)+

+ψ2(X3i, X3j) + θ]

= θ

[
2n2

n(n− 1)
+

2n3
n(n− 1)

+
2n2n3
n(n− 1)

− 2(2 + n3)

n(n− 1)(n2 − 1)

n2(n2 − 1)

2

− 2(2 + n2)

n(n− 1)(n3 − 1)

n3(n3 − 1)

2

]
+ ψ1(X1)

[
2n2

n(n− 1)
+

+
2n3

n(n− 1)

]
+

n2∑

i=1

ψ1(X2i)

[
2

n(n− 1)
+

2n3
n(n− 1)

− 2(2 + n3)

n(n− 1)

]
+

+

n3∑

j=1

ψ1(X3j)

[
2

n(n− 1)
+

2n2
n(n− 1)

− 2(2 + n2)

n(n− 1)

]

+
2

n(n− 1)

n2∑

i=1

ψ2(X1, X2i) +
2

n(n− 1)

n3∑

j=1

ψ2(X1, X3j) +

+
2

n(n− 1)

n2∑

i=1

n3∑

j=1

ψ2(X2i, X3j)

− 2(2 + n3)

n(n− 1)(n2 − 1)

∑

1≤i<j≤n2

ψ2(X2i, X2j)

− 2(2 + n3)

n(n− 1)(n3 − 1)

∑

1≤i<j≤n3

ψ2(X3i, X3j)

= ψ1(X1)

(
2

n

)
+

n2∑

i=1

ψ1(X2i)

(
2 + 2n3 − 4− 2n3

n(n− 1)

)
+

+

n3∑

j=1

ψ1(X3j)

[
2 + 2n2 − 4− 2n2

n(n− 1)

]
+

2

n(n− 1)

n2∑

i=1

ψ2(X1, X2i) +

+
2

n(n− 1)

n3∑

j=1

ψ2(X1, X3j) +
2

n(n− 1)

n2∑

i=1

n3∑

j=1

ψ2(X2i, X3j)

− 2(2 + n3)

n(n− 1)(n2 − 1)

∑

1≤i<j≤n2

ψ2(X2i, X2j)

− 2(2 + n2)

n(n− 1)(n3 − 1)

∑

1≤i<j≤n3

ψ2(X3i, X3j)
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Thus, the Hoeffding decomposition of Bn for size one group case is

Bn =
2

n


ψ1(X1)− 1

n− 1

n2∑

i=1

ψ1(X2i)−
1

n− 1

n3∑

j=1

ψ1(X3j)+

+
1

n− 1

n2∑

i=1

ψ2(X1, X2i) +
1

n− 1

n3∑

j=1

ψ2(X1, X3j) +

+
1

n− 1

n2∑

i=1

n3∑

j=1

ψ2(X2i, X3j)−
(2 + n3)

(n− 1)(n2 − 1)

∑

1≤i<j≤n2

ψ2(X2i, X2j)

− (2 + n2)

(n− 1)(n3 − 1)

∑

1≤i<j≤n3

ψ2(X3i, X3j)




S1.1 Finite sample properties of Bn

Let E [φ(Xg, Xg)] = θg and E [φ(Xg, Xg′)] = θgg′ , then

E(Bn) =
2n2θ12
n(n− 1)

+
2n3θ13
n(n− 1)

+
2n2n3θ23
n(n− 1)

− 2(2 + n3)

n(n− 1)(n2 − 1)

n2(n2 − 1)

2
θ2

− 2(2 + n2)

n(n− 1)(n3 − 1)

n3(n3 − 1)

2
θ3

=
1

n(n− 1)
[2n2θ12 + 2n3θ13 + 2n2n3θ23 − n2(2 + n3)θ2

−n3(2 + n2)θ3]

=
1

n(n− 1)
[n2(2θ12 − 2θ2) + n3(2θ13 − 2θ3)+

+n2n3(θ23 − θ2) + n2n3(θ23 − θ3)]

Under the null hypothesis H0, θg = θgg′ and clearly E(Bn) = 0. Under the
alternative H1, E(Bn) > 0 since we have θgg′ > θg, for all g 6= g′ ∈ {1, 2, 3}.
This condition was already required in the work of [Valk and Cybis, 2020].

For accessing the Bn’s variance we handle with Hoeffding decomposition of
n
2Bn and otain Var

(
n
2Bn

)
. It follows that
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n

2
Bn = ψ1(X1)− 1

n− 1

n2∑

i=1

ψ1(X2i)−
1

n− 1
ψ1(X3j) +

+
1

n− 1

n2∑

i=1

ψ2(X1, X2i) +
1

n− 1

n3∑

j=1

ψ2(X1, X3j) +

+
1

n− 1

n2∑

i=1

n3∑

j=1

ψ2(X2i, X3j)

− (2 + n3)

(n− 1)(n2 − 1)

∑

1≤i<j≤n2

ψ2(X2i, X3j)

− (2 + n2)

(n− 1)(n3 − 1)

∑

1≤i<j≤n3

ψ2(X3i, X3j)

Define τ21 = Var [ψ1(X1)] and τ22 = Var [ψ2(X1, X2)]. Then, under H0 when
we have a size one group

Var
(n

2
Bn

)
= τ21 +

(
1

n− 1

)2 n2∑

j=1

τ21 +

(
1

n− 1

)2 n3∑

j=1

τ21 +

+

(
1

n− 1

)2 n2∑

i=1

τ22 +

(
1

n− 1

)2 n3∑

j=1

τ22 +

+

(
1

n− 1

)2 n2∑

i=1

n3∑

j=1

τ22 +

+

[
(2 + n3)

(n− 1)(n2 − 1)

]2 ∑

1≤i<j≤n2

τ22 +

+

[
(2 + n2)

(n− 1(n3 − 1)

]2 ∑

1≤i<j≤n3

τ22

= τ21 +
1

n− 1
τ21 +

1

n− 1
τ21 +

+
n2n3

(n− 1)2
τ22 +

n2(2 + n3)2

2(n2 − 1)(n− 1)2
τ22 +

n3(2 + n2)2

2(n3 − 1)(n− 1)2
τ22

= τ21
n

n− 1
+ τ22

[
1

n− 1
+

n2n3
(n− 1)2

+

+
n2(2 + n3)2

2(n2 − 1)(n− 1)2
+

n3(2 + n2)2

2(n3 − 1)(n− 1)2

]

Therefore
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Var(Bn) = τ21

[
4

n(n− 1)

]
+ τ22

[
4

n2(n− 1)
+

4n2n3
n2(n− 1)2

+

+
2n2(2 + n3)2

n2(n2 − 1)(n− 1)2
+

2n3(2 + n2)2

n2(n3 − 1)(n− 1)2

]
(S.2)

Note that n3 = n− 1− n2, then we can rewrite Var(Bn) as

Var(Bn) = η1(n)τ21 + η2(n;n2)τ22 (S.3)

S1.2 Asymptotic properties Bn’s variance

We show that

Var
(n

2
Bn

)
= τ21

n

n− 1
+ τ22

[
1

n− 1
+

n2n3
(n− 1)2

+
n2(2 + n3)2

2(n2 − 1)(n− 1)2
+

+
n3(2 + n2)2

2(n3 − 1)(n− 1)2

]
.

Note that

Var
(n

2
Bn

)
= τ21O(1) + τ22

[
O(n−1) +O(1) +O(1) +O(1)

]

= O(1).

Let τn = n
2

√
Var(Bn).

A simple consequence is that Var(n2Bn) = n2

4 Var(Bn) = O(1). Thus, it
follows that

τn =
n

2

√
Var(Bn) = O(1).

S1.3 Asymptotic properties of Bn

At the Section 2.2 of the main manuscript we presented two Theorems about
the asymptotic properties of Bn, in this present section the proof of those The-
orems are conveyed. The following Lemma is an important result required to
demonstrate the asymptotic convergence of the test statistic.

Lemma S1.1 Let X
δn

D−→ N(0, 1), δn = O(1) and δ∗n = O(1). Then, X
δ∗n

D−→
N(0,M) where M = lim

(
δ2n
δ∗2n

)
.

Proof: Note that
X

δ∗n

δn
δn

=
δn
δ∗n

X

δn

D−→ N(0, γ),
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where

γ = Var

(
δn
δ∗n

X

δn

)
→ lim

n→∞

(
δn
δ∗n

)2

= M.

Theorem 1 Let X1,X2, . . . ,Xn be a sequence of i.i.d. L × 1 random vec-
tors. Let φ(·, ·) be a kernel of degree 2 satisfying E[φ(X1,X2)2] < ∞ and
var[E(φ(X1,X2)|X1)] = σ2

1 > 0. Consider definition (S.1) for Bn when n1 = 1

and let Vn = Var(Bn), τn = (n/2)V
1/2
n and W = J1 + J2 − J3 − J4, where

ψ1(X1)
τn

D−→ J1, and J2, J3 and J4 are random variables with normal distribution.
Then

(n/2)Bn
τn

D−→W as n →∞. (S.4)

Proof:
We are interested in the distribution of Bn with fixed L and n → ∞. We

just saw that τn = O(1).
From the Hoeffding decomposition of Bn we have:

n

2
Bn = ψ1(X1)− 1

n− 1

n2∑

i=1

ψ1(X2i)−
1

n− 1

n3∑

j=1

ψ1(X3j) +

+
1

n− 1

n2∑

i=1

ψ2(X1, X2i) +
1

n− 1

n3∑

j=1

ψ2(X1, X3j) +

+
1

n− 1

n2∑

i=1

n3∑

j=1

ψ2(X2i, X3j)

− (2 + n3)

(n− 1)(n2 − 1)

∑

1≤i<j≤n2

ψ2(X2i, X2j)

− (2 + n2)

(n− 1)(n3 − 1)

∑

1≤i<j≤n3

ψ2(X3i, X3j) (S.5)

Observe now that n
2Bn = W1+W2−W3−W4 and the asymptotic distribution

of Bn can be obtained from the distribution of each of these variables, where
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W1 = ψ1(X1)− 1

n− 1

n2∑

i=1

ψ1(X2i)−
1

n− 1

n3∑

j=1

ψ!(X3j) +

+
1

n− 1

n2∑

i=1

ψ2(X1, X2i) +
1

n− 1

n3∑

j=1

ψ2(X1, X3j) (S.6)

W2 =
1

n− 1

n2∑

i=1

n3∑

j=1

ψ2(X2i, X3j) (S.7)

W3 =
2 + n3

(n− 1)(n2 − 1)

∑

1≤i<j≤n2

ψ2(X2i, X2j) (S.8)

W4 =
2 + n2

(n− 1)(n3 − 1)

∑

1≤i<j≤n3

ψ2(X3i, X3j) (S.9)

Under the null hypothesis X1, X2 and X3 are identically distributed, thus
W1 can be expressed as

W1 = ψ1(X1)− 1

n− 1

n∑

i=2

ψ1(Xi) +
1

n− 1

n∑

j=2

ψ2(X1, Xj). (S.10)

By the Law of Large Numbers (LLN) follows that

1

n− 1

n∑

i=2

ψ1(Xi)
P−→ E[ψ1(X1)] = 0 (S.11)

1

n− 1

n∑

j=2

ψ2(X1, Xj)
P−→ E[ψ2(X1, X2)] = 0. (S.12)

Thereby,

W1
P−→ ψ1(X1).

As ψ1(X1)
τn

D−→ J1 and W1
P−→ ψ1(X1), then, by Slutsky’s theorem, W1

τn

D−→ J1.
From the Central Limit Theorem (TCL) we have

W2 − E(W2)√
Var(W2)

=

1
n−1

n2∑

i=1

n3∑

j=1

ψ2(X2i, X3j)

√
n2n3

(n−1)2 τ
2
2

→ N(0, 1). (S.13)

Observe that
√

n2n3

(n−1)2 τ
2
2 = O(1) and τn = O(1). Then by Lemma S1.1

follows that
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W2

τn

D−→ J2 ∼ N(0,M2), where M2 = lim

(
n2n3

(n−1)2 τ
2
2

τ2n

)
. (S.14)

Similarly,

W3 − E(W3)√
Var(W3)

=

(2+n3)
(n−1)(n2−1)

∑

1≤i<j≤n2

ψ2(X2i, X2j)

√
(2+n3)2n2τ2

2

2(n−1)2(n2−1)

→ N(0, 1). (S.15)

Other properties are that
√

(2+n3)2n2τ2
2

2(n−1)2(n2−1) = O(1) and τn = O(1), then by

the Lemma S1.1

W3

τn

D−→ J3 ∼ N(0,M3), where M3 = lim




(2+n3)
2n2τ

2
2

2(n−1)2(n2−1)
τ2n


 . (S.16)

Analogously,

W4 − E(W4)√
Var(W4)

=

(2+n2)
(n−1)(n3−1)

∑

1≤i<j≤n3

ψ2(X3i, X3j)

√
(2+n2)2n3τ2

2

2(n−1)2(n3−1)

→ N(0, 1).. (S.17)

Once more,
√

(2+n2)2n3τ2
2

2(n−1)2(n3−1) = O(1) and τn = O(1), then

W4

τn

D−→ J4 ∼ N(0,M4), where M4 = lim




(2+n2)
2n3τ

2
2

2(n−1)2(n3−1)
τ2n


 . (S.18)

Thus, applying Slutsky’s theorem we have

(n/2)Bn
τn

=
(n/2)Bn

(n/2)V
1/2
n

=
Bn√

Var(Bn)

=
W1 +W2 −W3 −W4

τn

D−→ J1 + J2 − J3 − J4 (S.19)

The asymptotic distribution of Bn for a fixed L depends on the choice of the
kernel φ(, ). However, it is important to note that Bn converges in distribution
to a random variable (not necessarily normal) when n increases. The next
theorem addresses the asymptotic distribution of Bn in L for a fixed n.
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Theorem 2 Let X1,X2, . . . ,Xn be a sequence of i.i.d. L× 1 random vectors.
Let φ(·, ·) be a kernel of degree 2 such that

φ(Xi,Xj) =
1

L

L∑

l=1

φ∗(Xil, Xjl) (S.20)

for some kernel φ∗(·, ·) : R2 → R, where Xil is the l-th entry of Xi. De-
fine φ∗1(xil) = E[φ∗(Xil, Xjl)|Xil = xil] and suppose var(φ∗1(Xil)) > 0 and
var(φ∗(Xil, Xjl)) < ∞. Let Bn be defined by (S.1) for the case where n1 = 1,
and assume that all conditions in Theorem 1 hold. Suppose also that

∑

1≤l<m≤n
E[φ∗(Xil, Xjl)φ

∗(Xim, Xjm)] = O(L) (S.21)

and ∑

1≤l<m≤n
E[φ∗1(Xil)φ

∗
1(Xjm)] = O(L). (S.22)

Then
Bn√

Var(Bn)

D−→ N(0, 1) as L→∞. (S.23)

Proof: We start writing ψ1(Xi) and ψ2(Xi, Xj) as a function of φ∗1(·) and
φ∗2(·, ·). Note that

ψ1 (Xi) =
1

L

L∑

l=1

ψ∗1 (Xil) (S.24)

ψ2 (Xi,Xj) =
1

L

L∑

l=1

φ∗(Xil, , Xjl)−
1

L

L∑

l=1

ψ∗1(Xil)

− 1

L

L∑

l=1

ψ∗1(Xjl)− θ (S.25)

where

ψ∗1(Xil) = φ∗1(Xil)− θ (S.26)

φ∗1(xil) = E[φ∗(Xil, Xjl) | Xil = xil] (S.27)

φ∗2(xil, xjl) = E[φ∗(Xil, Xjl) | Xil = xil, Xjl = xjl]. (S.28)

We can write ψ1(·) as

ψ1(Xi) =
1

L

L∑

l=1

[φ∗1(Xij)− θ] , (S.29)
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or

ψ1(Xi) =
1

L

L∑

l=1

ψ∗1(Xij). (S.30)

Thus the variance of ψ1(·) is given by

Var(ψ1(Xi)) = Var

[
1

L

L∑

l=1

ψ∗1(Xil)

]
. (S.31)

By (S.21) we have that

Var (ψ1 (Xi)) =
1

L2

{
L∑

l=1

Var [ψ∗1 (Xil)]

+2
∑

1≤l<m≤L
Cov (ψ∗1 (Xil) , ψ

∗
1 (Xim))





= O
(
L−1

)
(S.32)

and by (S.22) the variance of ψ2(, ) is

Var (ψ2 (Xi,Xj)) =
1

L2

{
L∑

l=1

Var (φ∗ (Xil, Xjl)) +

+ 2
∑

1≤l<m≤L
Cov (φ∗ (Xil, Xjl) , φ

∗ (Xim, Xjm))

+2 Var

(
1

L

L∑

l=1

ψ∗1 (Xil)

)}

=O
(
L−1

)
.

(S.33)

Thus, for fixed n and for L→∞ it follows that

Bn√
Var(Bn)

= V −1/2n Bn
D−→ N(0, 1) (S.34)

S2 Total of combinations

In order to develop the homogeneity test described in Section 3 of the main
manuscript we require the number of different group configurations that can
be formed by separating n elements, x1, x2, . . . , xn into three groups, G1, G2 e
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G3. Follows from [Valk and Pinheiro, 2012] that the number of combination of
n elements into two groups is

p(n) = 2n−1 − n− 1. (S.35)

Then if we divide n elements into three groups where one of them has size 1, it
follows that the number of combinations is

δ3(n) = (2n−2 − n)n. (S.36)

Now we focus on the case where all groups have more than one element. We
can fix, without loss of generality, x1 as an element that belongs to the first
group, G1. Thus, we still have n−1 elements to be distributed among the three
groups. Since we cannot have a unitary group, we need at least one more point
for the first group. This group can have up to n − 4 observations, since the
remaining sets must necessarily have two elements each. Thus, we then have
the following number of possible first sets

(
n− 1

1

)
+

(
n− 1

2

)
+ · · ·+

(
n− 1

n− 5

)
.

For the remaining elements that need to be divided into two clusters, just divide
them into two groups with at least 2 elements in each using the function p(·).
Combining these results, we have a number of different configurations of non-
unitary groups when we separate n elements into 3 groups given by

S3(n) =

(
n− 1

1

)
p(n− 2) +

(
n− 1

2

)
p(n− 3) + · · ·+

(
n− 1

n− 5

)
p(4)

=
n−5∑

k=1

(
n− 1

k

)
p(n− k − 1). (S.37)

We can still rewrite this equation on a recurring basis. Note that if we
already know how many configurations of groups we have with n non-unitary
elements, and how many configurations with a unitary group, then it is possible
to calculate S3(n+ 1) as

S3(n+ 1) = 3S3(n) + δ3(n). (S.38)

With such equations we can rewrite S3(n) as

S3(n) =
233(3n−6) + 1 + n+ n2 − (2 + n)2n−1

2
. (S.39)
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Thus, the number of different group configurations where at most one of
them has size one is given by

γ3(n) =
233(3n−6) + 1 + n+ n2 − (2 + n)2n−1

2
+ δ3(n)

=
233(3n−6) + 1 + n− n2 − 2n

2
. (S.40)

S3 The clustering method uclust3

The algorithm for the clustering method uclust3, introduced in the Section 3.1
of the main manuscript, can be described as follows. We apply the homogeneity
test on the dataset and if it returns “non homogeneous”, we then find the
partition {G?1, G?2, G?3} that maximizes Bn and set n?1 as the smallest subgroup
size. Among all possible configurations in which one of the groups has size one,
we find the configuration {G?11 , G?12 , G?13 } that maximizes Bn and set this Bn
value as B1

n. If {G?1, G?2, G?3} is a significant configuration and Bn > B1
n, we

have found our optimal partition. If {G?1, G?2, G?3} is a significant partition and
Bn < B1

n with B1
n significant, then {G?11 , G?12 , G?13 } is our optimal partition.

However, if this maximal Bn comes from a non significant partition
{G?1, G?2, G?3}, then there are no other significant partitions in configurations
with smaller group size between 2 and n?1. The restricted search is done on
subgroups with sizes larger than n1?, until it finds the significant partition and
compares with B1

n, returning the configuration with maximum significant Bn.
By exploring this insight, we built the following clustering algorithm based on
restricted optimization problems.
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uclust3 Algorithm: Finds the data partition that maximizes Bn in the universe
of all significant partitions

Input: Data X
Output: Partition {G?

1, G
?
2, G

?
3}

01: Apply homogeneity test to X
02: if Accept H0

03: Return G?
1 = ∅, G?

2 = ∅ and G?
3 = {X1, . . . ,Xn}

04: else
05: find G?

1, G?
2 and G?

3 that optimize Bn. Set this results as Bn

06: For G?1
1 of size one, find G?1

1 , G?1
2 and G?1

3 that optimize Bn.
Set this results as B1

n

07: If Bn is significant
08: If Bn < B1

n and B1
n is significant, G?

1 = G?1
1 , G?

2 = G?1
2 and G?

3 = G?1
3

9: else
10: Set G?

1 size (n?
1) as the smallest size among G?

1, G?
2 and G?

3

11: while {G?
1, G

?
2, G

?
3} is not significant partitions

12: while {G?
1, G

?
2, G

?
3} is not significant partitions.

13: n2 ∈ {(n?
1 + 1), . . . , (n− 2n?

1 + 1)}, find
G1, G2 and G3 that optimize Bn for subgroup size and set
G?

1 = G1, G?
2 = G2 and G?

3 = G3

14: n?
1 = n?

1 + 1
15: Compare Bn and B1

n and do 08
16: Return {G?

1, G
?
2, G

?
3}

The multiple optimization subproblems in the uclust3 algorithm are solved
through a cyclic coordinate ascent algorithm repeated multiple times with ran-
dom starting clusters to account for local optima.

S4 Simulations Studies

In this section we present simulation studies in order to evaluate some aspects of
our proposed methodology, a complementary material for the simulation studies
shown at Section 4 of the main manuscript. At first we evaluate the size and
power of the proposed utest for homogeneity of three groups.

S4.1 Simulations for the utest

We present here a simulation study to evaluate the performance of the utest
for three groups. The data was simulate as shown at Section 4.1 of the main
manuscript, but this time without group of size one. The groups G1 and G2

were set with the same size n1 = n2 = bn/3c.
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Figure S1: Power curves of utest for two dimension L = 1000 (gray) and L =

2000 (black) for 100 replications of each scenario of n with n1 = n2 = bnc
3 and

n3 = n− n1 − n2.

S4.2 Simulations for homogeneity test uclust3

Similarly to Section 4.2 of the main manuscript we used simulation studies to
evaluate the homogeneity test.

S4.2.1 Size of homogeneity test uclust3

First the data were simulated following the same distribution. All elements from
the n ∈ {10, 20, 30, 40, 50, 100} vectors with dimension L ∈ {1000, 2000} were
generated following a Normal distribution with mean 0 and variance 1. The
homogeneity test was applied to the dataset and observed if the null hypothesis
was rejected or not. This process was replicated 100 times and the size of the
test can be seen at the following table.

Table S1: Size of homogeneity test uclust3

n
Dimension L
1000 2000

10 0.01 0.01

20 0 0

30 0.01 0

40 0.02 0

50 0.03 0.03

100 0.14 0.03
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S4.2.2 Power of homogeneity test uclust3

In order to evaluate the power of our proposed homogeneity test uclust3 we
simulate data from independent normally distributed vectors divided in three
groups G1, G2 and G3. The L dimensional vectors in G1 are generated from
a independent and identically normal with mean m1 = 0 and variance 1. The
elements of the vectors in G2 and G3 have the same properties with mean m2

andm3, respectively. For each sample size n in {10, 20, 50}, theG1 andG2 group
sizes n1 and n2 were chosen so that we had a central configuration, in which
the groups have approximately the same number of elements and a extremely
configuration in which one of the groups has only two elements and the other
has n/2 elements. Naturally the third group size’s is defined as n3 = n−n1−n2.

Table S2: Power of homogeneity test uclust3

(m2, m3) (n1, n2)
Dimension L

n 1000 2000

10
(0.25, 0.5)

(2, 5) 0.21 0.31
(3, 3) 0.06 0.09

(0.5, 1)
(2, 5) 0.21 0.24
(3, 3) 0.02 0.02

20
(0.25, 0.5)

(2, 10) 1 1
(6, 6) 1 1

(0.5, 1)
(2, 10) 1 1
(6, 6) 1 1

50
(0.25, 0.5)

(2, 25) 1 1
(16, 16) 1 1

(0.5, 1)
(2, 25) 1 1
(16, 16) 1 1

S4.3 Simulations for finding correct clusters comparing
with the kmeans

We complement the simulations study in Section 4.3 by performing a comparison
between uclust3 method and kmeans clustering algorithm for the case where
we have a size one group.
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Table S3: Comparison of mean ARI and standard deviation (Sd) of the accuracy
in clustering of kmeans and uclust3 methods with a size one group.

(m2, m3) (n2) Method
Dimension L

n 1000 2000
Mean Sd Mean Sd

10

(0.25, 0.5)
2

kmeans 0.44 0.03 0.48 0.05
uclust3 0.47 0.03 0.5 0.06

5
kmeans 0.66 0.02 0.73 0.03
uclust3 0.74 0.03 0.79 0.03

(0.5, 1)
2

kmeans 0.86 0.07 0.94 0.04
uclust3 0.75 0.1 0.82 0.08

5
kmeans 0.93 0.03 0.97 0.01
uclust3 0.99 0 1 0

20

(0.25, 0.5)
2

kmeans 0.34 0.02 0.33 0.02
uclust3 0.33 0.01 0.36 0.02

10
kmeans 0.73 0 0.77 0.01
uclust3 0.73 0.01 0.74 0.01

(0.5, 1)
2

kmeans 0.62 0.12 0.83 0.09
uclust3 0.67 0.12 0.98 0.01

10
kmeans 0.95 0.01 0.97 0.01
uclust3 0.92 0.02 1 0

50

(0.25, 0.5)
2

kmeans 0.17 0.01 0.17 0.01
uclust3 0.15 0 0.15 0

25
kmeans 0.75 0 0.76 0
uclust3 0.74 0 0.74 0

(0.5, 1)
2

kmeans 0.22 0.02 0.35 0.1
uclust3 0.18 0.02 0.41 0.15

25
kmeans 0.9 0.02 0.94 0.01
uclust3 0.82 0.01 0.99 0

Over the 100 replications observing the different scenarios we can conclude
that both methods compete, alternating in the presentation of the best results.

S5 Finding correct clusters comparing uclust3
and uhclust in a presence of an outlier

We complement the simulation study presented in Section 4.4 of the manuscript
considering here only groups larger than 2. Figures S2 and S3 report curves of
proportion times that the algorithms found significant separation and correct
groups considering different values of m2 − m1 varying on the x axis, sample
size n taking values in {10, 20, 50} and dimension L = 1000 and L = 2000. The
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results are based on 50 repetitions.
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Figure S2: True cluster proportion curves of uclust3 and uhclust for dimension
L = 1000 with 50 replications of each scenario of n with α = 0.05.
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Figure S3: True cluster proportion curves of uclust3 and uhclust for dimension
L = 2000 with 50 replications of each scenario of n with α = 0.05.

S6 Application

In the interest of evaluating the performance of the proposed method uclust3
comparing with uhclust and sigclust we consider an image group configuration
with an outlier. The data are the same as described in Section 5 in the main
manuscript. We randomly select 1 image from Tony Blair and 10 images from
each other public figure in the above cited dataset and run uhclust, sigclust
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and uclust3. Figure S4 presents the dendrogram with uhclust groups. Note
that uhclust finds two significant clusters, with an ARI of 0.8135593. Figure S5
presents the dendrogram with corresponding sigclust p-values for the labelled
faces dataset. Note that sigclust also finds two significant clusters, with an ARI
of 0.8135593. None of the methods were able to identify the outlier. However,
when applying the uclust3 method we find the correct groups with ARI of 1.
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Figure S4: Annotated dendrogram of significance analysis for hierarchical clus-
tering uhclust for 11 pictures of 3 public figures. P-values and corrected signif-
icance levels α∗ are shown for each test performed at the corresponding node.
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Figure S5: Annotated dendrogram of significance analysis for hierarchical clus-
tering sigclust for 11 pictures of 3 public figures. P-values and corrected signif-
icance levels α∗ are shown for each test performed at the corresponding node.
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