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”If I had an hour to solve a problem

I’d spend 55 minutes thinking about the problem

and five minutes thinking about solutions.”

— ALBERT EINSTEIN
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ABSTRACT

The current advances in neuroscience, signal processing, and artificial intelligence allow

scientists to explore new ways to communicate with computers continually. These ef-

forts will drastically impact society, especially individuals with neuromuscular disorders

that prevent them from using conventional communication and/or motor methods. Brain-

Computer Interfaces (BCI) are the current state-of-the-art method that seeks to tackle the

mentioned difficulties. Due to the lack of pre-existing software tooling, BCI research

workflows and pipelines are currently developed on-demand, requiring a computer sci-

ence background. Therefore, this work presents a new software tool and pipeline to make

BCI research accessible to those lacking a computer science background for signal pro-

cessing. The proposed software generates images from EEG signals to then be used to

train a Deep Learning model, namely, a Convolutional Neural Network (CNN), which

aims to extract and classify the BCI features automatically. The initial implementation

comprises Python algorithms for generating the images from the time series (EEG signals)

using the Gramian Angular Field (GAF) and Event-Related Spectral Dynamics (ERSP)

techniques. This software aims to reduce time and effort in creating image data sets to

train CNN models, using rich diversity of customizable settings, like the window size,

channels, and method (GAF or ERSP), that can improve the classification rates. Thus, we

expect the BCI research community to benefit from this tool, allowing the ability to ex-

plore the EEG classification problem using different images rather than the time series for

explaining BCI signatures and improving the classification stage. Finally, we experiment

with the software training a Deep Learning architecture (VGG-16) using the generated

images from the well-known BCI Competition IV data set B.

Keywords: Brain-computer interface. gramian angular field. event-related spectral per-

turbation. convolutional neural networks. electroencephalography. machine learning.

deep learning.



TS2Image: Um programa para converter séries temporais de EEG em imagens

para treinamento de Redes Neurais Convolucionais de sistemas de Inteface

Cérebro-Computador

RESUMO

Os recentes avanços em neurosciencia, processamento de sinais, e inteligência artificial

permitem cientistas explorar novas formas de se comunicar com computador continua-

mente. Estes esforços impactarão drásticamente a sociedade, especialmente indivíduos

com distúrbios neuromusculares que os impedem de utilizar métodos convencionais de

comunicação e/ou motores. As Interfaces Cérebro-Computador (ICC) são o atual mé-

todo estado da arte que busca contornar as dificuldades mencionadas. Devido à falta de

ferramentas de software pré-existentes, os fluxos de trabalho e pipelines de pesquisa em

ICC são desenvolvidos sob demanda, exigindo conhecimentos em ciência da computação.

Portanto, este trabalho apresenta uma nova ferramenta de software e pipeline para tornar

a pesquisa em ICC mais acessível aqueles que não possuem experiência em ciência da

computação para processamento de sinais. O software proposto gera imagens a partir de

sinais de EEG para, então, serem utilizadas no treinamento de um modelo de Deep Le-

arning, mais especificamente, uma Rede Neural Convolucional (RNC), visando extrair e

classificar as características da ICC de forma automática. A implementação inicial inclui

algoritmos em Python para geração de imagens a partir de séries temporais (sinais EEG)

usando as técnicas Gramian Angular Field (GAF) e Event-Related Spectral Dynamics

(ERSP). Este software visa reduzir o tempo e esforço na criação de conjuntos de dados

de imagem para treinar modelos CNN, utilizando uma rica diversidade de configurações

personalizáveis, como o tamanho da janela, canais e método (GAF ou ERSP), que podem

melhorar as taxas de classificação. Assim, esperamos que a comunidade de pesquisa em

ICC se beneficie desta ferramenta, permitindo a capacidade de explorar o problema de

classificação EEG usando imagens diferentes ao invés de séries temporais para explicar

assinaturas de sinais de ICCs e melhorar o estágio de classificação. Finalmente, expe-

rimentamos o de treinamento uma arquitetura de Deep Learning (VGG-16) usando as

imagens geradas pelo software a partir do conhecido conjunto de dados BCI Competition

IV.

Palavras-chave: redes neurais, gramian angular field, event-related spectral perturbation.
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1 INTRODUCTION

Society is evolving and eager to find faster, more reliable, and accessible ways to

communicate with machines and systems. Every advance in this area makes the technol-

ogy cheaper, more portable, and open for the lower-income population. Communication

between humans and machines also significantly impacts the accessibility realm, where

people can rely on prostheses controlled by some commands sent to it by the impaired

person.

A Brain-Computer Interface(BCI) is a hardware and software system that enables

communicatation between humand and machines using brain signals. BCI is sometimes

know as brain-machine interface(BMI). Besides the impressive progress in BCI research,

finding practical and useful real-world application is still a challenge (CHAVARRIAGA

et al., 2016).

Thus, this thesis seeks to develop a software able to translate the brain signals

(time-series) into images to train deep learning models, offering a new alternative to create

and configure the classification step in the BCI pipeline.

1.1 Motivation and scope

BCI applications could be more appropriately explored with advanced tools and

software; therefore, more and more researchers without computer science backgrounds

can investigate this area if the number of tools and software increases. The lack of soft-

ware tooling to easily manipulate EEG data and posteriorly train Machine Learning mod-

els for BCI negatively impacts this research domain’s development. Indeed, these diffi-

culties have been a vital motivation factor for this work and experimenting with novel ap-

proaches to EEG signal classification like Convolutional Neural Networks using Gramian

Angular Field (GAF) and Event-Related Spectral Perturbation (ERSP) images.

The scope of this work is to create an extensible open-source software with con-

figurable parameters to convert time series files into GAF or ERSP images. To test the

software’s image generation EEG data sets are used, and then these images are used to

train a CNN to classify other EEG signals.
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1.2 Problem description

BCI devices can be seen as a signal pattern recognition system (Prashant; Joshi;

Gandhi, 2015), hence it’s vital for it to have great digital signal processing and well-

trained machine learning models (CHAVARRIAGA et al., 2016).

While (PASCANU; MIKOLOV; BENGIO, 2013) wrote about the how hard is it

to properly train recurrent neural networks(RNN), Convolutional Neural Networks have

shown outstanding results in image classification in many different applications. As men-

tioned in 1.1, the lack of software tooling is also a primary factor here, many times requir-

ing researchers to have some programming knowledge to manipulate the data they want

to work with.

1.3 Objective and approach

This work aims to build software to convert EEG time-series into ERSP or GAF

images, enabling researchers to generate images and train CNN models for BCI appli-

cations or whatever else these images might be helpful to them. To accomplish such

objective, the following specific tasks are proposed:

1. Understanding EEG, BCI, time-series and Machine Learning fundamentals.

2. Exploring EEG data sets focusing on BCI ones.

3. Studying time series data set exploration tools.

4. Research existing libraries to analyze EEG data.

5. Software prototyping.

6. Software design, test, clean up, documentation and publication.

7. Machine Learning model training.

1.4 Outline

The following chapter presents a background in brain physiology and neuroimag-

ing, Electroencephalography, BCI, time-series, and machine learning. Chapter 3 presents

related work on BCI, time-series analysis, the usage of CNN with time series, and lastly,

CNN usage for BCI systems. Section 4 describes the materials and methods to be used
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by this work. Lastly, chapter 5 presents the main findings and chapter 6 the respective

conclusions.



14

2 BACKGROUND

This section will introduce the reader to the main subjects related to this project:

Brain and Neuroimaging, Electroencephalography (EEG), Brain-Computer Interface (BCI),

Time Series, and Machine Learning.

2.1 Brain and Neuroimaging

The 86 billion neurons of the human brain are fundamentally building blocks,

relying on chemical and also electric signals to transmit information (MORRISON, 2018).

A neuron is composed of three essential parts: soma or cell body, axon, and dendrites.

The soma is the cell body, where we can find the nucleus and the dendrites; dendrites

are ramifications in the cell body; the axon is a conductor for electrical signals from the

soma to its terminals; and finally, a synapse is a communication between one neuron’s

axon terminals and another neuron’s dendrites. Figure 2.1 shows a simplified version of

a neuron with these parts.

Electroencephalography (EEG) is a neuroimaging technique that measures elec-

tric potentials, but this is not the only type of signal that can be measured. Magnetic and

metabolic brain activity can also be measured by Magnetoencephalography (MEG) and

Functional Magnetic Resonance Imaging (fMRI), being these some of the most represen-

tative recording methods in BCI literature (Prashant; Joshi; Gandhi, 2015). In this work,

we will focus on EEG.
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Figure 2.1: A simplified version of the neuron with its fundamental parts.

Adapted from https://sapiensoup.com/serotonin

2.2 Electroencephalography

Due to the expressive number of neurons generating currents, some of the elec-

tric potentials reach the scalp surface, and we can measure these electric potentials with

electrodes in a subject’s head. Hans Berger, a German psychiatrist, first introduced this

neuroimaging technique usage in humans (BERGER, 1929), (LOUIS et al., 2016) that

is called Electroencephalography (EEG) (BRONZINO, 1970). It records the electric po-

tential changes over time, creating a time series(more about time series later). Figure 2.2

shows the main frequency bands present in brain waves.

2.2.1 Acquisition and type of signals

The brain is divided into regions. It has a left and right hemisphere (MORRISON,

2018), and Figure 2.3 shows such brain divisions - the frontal, temporal, parietal, and

occipital lobes.
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Figure 2.2: Frequency bands produced in the brain

Source: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/brain-waves

Figure 2.3: Brain divisions.

Source: (LIM et al., 2018)

This division is important to consolidate a standardized system for EEG electrode

placement, so the International Federation of Societies for Electroencephalography and

Clinical Neurophysiology created the 10-20 system (THE. . . , 1961), defining the standard

for positioning the electrodes. Figure 2.4 shows the placement system.
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Figure 2.4: 10-20 electrode positioning and region primary function.

Source: <http://www.edmontonneurotherapy.com/>

From its conception, EEG was thought of as a neurological and psychiatric diag-

nostic tool, with numerous applications in health and medicine areas. These areas can

be used in surgical interventions, diagnosis of neurophysiological disorders, psychology,

and neuroscience. For being non-invasive, portable, and relatively cheap, EEG presents

a good fit for being used, including in mass scale, as an interface with computers - this

specific use case is known as Brain-Computer Interface(BCI).

2.3 Brain-Computer Interface

Humans have been seeking new ways to communicate with machines, and one of

these is called Brain-Computer Interfaces(BCI). This subject is particularly interested in

impaired people, who can benefit from BCI devices by controlling prostheses or com-

municating, for example, and neuroscientists interested in leveraging the computational

advances to expand this area of knowledge.

BCI applications can range from medical to consumer entertainment, particularly

controlling robotic prostheses to help motor-impaired people. It has historically been out

of reach due to its complexity by several factors, like limited resolution and reliability,

high information variability, real-time systems pricing, or simply because the technology

did not exist yet (Prashant; Joshi; Gandhi, 2015).

The last 30 years of evolution in hardware, leading to price reduction; and in soft-

ware, leading to increased availability, has made a significant impact in the BCI research

community. In recent times, machine learning evolved and became very accessible to lots

http://www.edmontonneurotherapy.com/
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of research areas, including BCI, making deep learning an up-and-coming tool for BCI

systems.

BCI enables the execution of a command in a machine by recording brain signals

from specific tasks and then training classifiers to identify these commands. These five

main steps make a typical BCI system structure:

1. signal acquisition: signals can be recorded from the brain using many different

ways. This work will focus on EEG.

2. signal processing: apply filters to increase signal-to-noise ratio.

3. feature extraction: reduction from a high dimensional space to a feature space

aiming to improve the classification (Prashant; Joshi; Gandhi, 2015).

4. classification: a feature vector is the input to a classifier to identify a mental state.

5. feedback application: the user receives feedback on how well the task is being

performed.

In summary, for this work, BCI can be seen as a pattern recognition system whose

specific job is to classify signals into mental states (Prashant; Joshi; Gandhi, 2015).

2.4 Time series

In studying a phenomenon, we often encounter data sets where the observations

are captured over time. This time-ordered sequence of observations is called a time series,

and its fundamental characteristic is that its observations are correlated (LITTLE, 2013).

A time series can have one or more variables over time, called univariate and multivariate

time series, respectively. EEG data sets usually have recordings of multiple channels.

Therefore, EEG recordings are multivariate time series.

2.4.1 Time series analysis techniques

Time series analysis has many possible applications like predicting stock prices,

hourly energy demand, country census data, disease incidence, and time domain and fre-

quency domain approaches (LITTLE, 2013). Fourier analysis (FOURIER, 1878) is a

usual technique used in time and frequency domain analysis.

Time series could become images for visual analysis, and the most common way
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we see it is in the form of 2D charts, where, usually, the horizontal axis represents time,

while the vertical axis represents the observed value on a specific time point. With the

advances and results presented in the latest years in machine learning and computer vision

research, these tools became a well-suited tool for time series analysis and forecasting,

offering acceptable accuracy in real and artificial data sets in a variety of domains (GON-

ZALEZ; BARONE, 2018).

2.4.2 Gramian Angular Field (GAF)

To generate the images from time series, one of the methods we propose is Gramian

Angular Field (WANG; OATES, 2015). GAF was used in data sets from different domains

presenting highly competitive classification performance. Since time series correlate in

time, we need a method that preserves the temporal dependency to explore it. GAF does

so by encoding the time into the geometry of the matrix, from top-left to bottom-right

- this diagonal also preserves the original time series values so one can also explore a

reconstruction of the original time series from generated images.

Given a time series X = x1, x2, ..., xn, we normalize it by linearly rescaling X to

fit all values in the interval [−1, 1], creating X̃ .

GAF uses a polar coordinate system to represent time series to preserve absolute

temporal relations by exploring the trigonometric sum between two angles generated from

values at different times. The polar angle is defined as:

θi = arccos(x̃i) (2.1)

ri =
ti

normalization value
(2.2)

A Gram matrix is a matrix where each element is an inner product between two
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vectors. So a Gram matrix of the new rescaled time series X̃ can be defined as:

G =


< x̃1, x̃1 > . . . < x̃1, x̃1 >

< x̃2, x̃1 > . . . < x̃2, x̃n >
... . . . . . .

< x̃1, x̃1 > . . . < x̃n, x̃n >

 (2.3)

By defining I as the unit row vector [1, 1, ..., 1], and the inner product as 2.4, the

final Gram matrix used to generate the image becomes 2.5.

< x, y >= x.y −
√
1− x2.

√
1− y2 (2.4)

GAFImage =


cos(φ1 + φ1) . . . cos(φ1 + φn)

cos(φ2 + φ1) . . . cos(φ2 + φn)
... . . . . . .

cos(φn + φ1) . . . cos(φn + φn)

 (2.5)

GAFImage = X̃T .X̃ −
√
I − X̃2

T

.
√
I − X̃2 (2.6)

Since it uses a matrix, GAF will increase the problem dimension from N samples

toN2, so to reduce the final size (WANG; OATES, 2015) proposes the usage of Piecewise

Aggregation Approximation(PAA). This method is only applicable for univariate time

series, so for multivariate time series, multiple GAF images can be stacked vertically as

(YANG CHEN-YI YANG, 2019).

2.4.3 Event-Related Spectral Perturbation (ERSP)

When modeling event-related responses in an EEG experiment, amplitude and

phase effects may be considered separately or in combination (MAKEIG, 1993).

The time course of event-related attenuation in alpha-band EEG was first quanti-
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fied in (PFURTSCHELLER; ARANIBAR, 1977) and called event-related desynchroniza-

tion (ERD). In contrast, the opposite phenomenon, event-related synchronization (ERS),

describes the phasic and regional increase of brain activity (PFURTSCHELLER, 1992).

The Event-Related Spectral Perturbation can be viewed as a generalization of the

ERD/ERS patterns (MAKEIG, 1993). First, a windowed baseline is calculated by aver-

aging out trials and frequency bands. Then this average is subtracted from the original

event-related spectrum. Figure 2.5 shows how we can see variations way more clearly in

the ERSP image when compared to the absolute spectrum.

Figure 2.5: Raw event-related spectrum (absolute log-ERS) on the left versus baseline

corrected ERSP (log-ERSP) on the right for scalp EEG data trials.

Source (GRANDCHAMP; DELORME, 2011)

2.5 Machine Learning

Historically, software tools have been developed to perform specific tasks imper-

atively, specifying the steps to complete a particular task, similar to a recipe. Machine

Learning (ML) brings the concept of building software to create models that can change

their performance over time by being exposed to data. A brief and more precise definition

of Machine Learning(ML) by (MITCHELL, 1997) is:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.
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2.5.1 Learning methods

In machine learning, there are three main learning methods when categorizing by

the task feedback type: supervised learning, unsupervised learning and reinforcement

learning.

1. Supervised learning: algorithms work with full feedback, relying on input data

that has the expected output labeled (RUSSELL; NORVIG, 2009), like classifica-

tion and regression.

2. Unsupervised learning: algorithms have no feedback; it groups data and find re-

lations between attributes by learning the data features. It is suited for descriptive

tasks and exploratory analysis to investigate connections and associations between

data instances by looking for data set intrinsic properties.

3. Reinforcement learning: algorithms get partial feedback about the action taken

towards the task goal, as a positive or negative reward, for example.

2.5.2 Deep Learning

A Neural Network(NN) is a data processing structure widely used and heavily

inspired in the inner working of the brain’s neurons. Each node of the network represents

a neuron, and the connections between the nodes represent the axons. Each node can

connect or receive connections from many other nodes, assembling the network. The

basic mathematical model for a neuron used in an Artificial Neural Network(ANN) is

composed of:

1. input values: can be represented as the multiple dendrites the biological neuron

has

2. multiply and accumulate(MAC): the neuron cell body encapsulates this idea

3. activation function: non-linear function to map the MAC to an output value

4. output value: the output is sent through the axon

This model is illustrated in Figure 2.6 as follows:

The concept of deep learning comes from a neural network having multiple layers

and can classify and extract features due to its dense architecture.
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Figure 2.6: A neuron (a) and it’s basic mathematical model(b).

Adapted from (SANTANA, 2019).

2.5.3 CNN

While identifying objects can be a simple task for a human, writing image recog-

nition code is not a simple task. Image recognition software is hard to create due to

countless possibilities in the high dimensional space of an image like color channels,

shapes, different view angles. An example of a classical image recognition problem is

to classify handwritten digits using Convolutional Neural Networks(CNN), explicitly de-

signed to handle 2D shapes, as explored by (LECUN Y., 1998) with outstanding results

outperforming all other techniques at the time (1998).

The convolution operation consists in a filter(or kernel) matrix, sliding stride num-

ber of rows and columns, over another matrix, considering a padding number of extra

rows and columns added to the original input, applying a mathematical operation on each

matrix region, mapping the initial matrix to an activation map.

CNNs are heavily used on image recognition tasks, mainly due to the character-

istics of the convolution operation. The convolution operation makes feature extraction

happens naturally by using a filter that can identify increasingly complex patterns. In

a multi-layered architecture, the first convolution layer can identify edges. The second

can identify textures, and a third may recognize objects, and so on. The benchmark for

CNNs has been the ImageNet (RUSSAKOVSKY et al., 2015) competition, which has

given CNNs first place every year since the breakthrough results presented by AlexNet in

2012.
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Figure 2.7: A convolutional layer full pass using a 3x3 filter, stride = 1, padding = 1, on a
6x6 input matrix. The resulting activation map is a 6x6 matrix.

Adapted from (SANTANA, 2019).
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3 RELATED WORK

This section describes some of the related work around the basics of this work

proposal: BCI, time series analysis, CNN for time series, and CNN for BCI.

3.1 BCI

BCI systems can has been used in many applications from a variety of domain ar-

eas. Smart home environments controlled by physiological human state (LIN et al., 2014)

relying on Mahalanobis distance from an alert mental state reference signal as classifica-

tion method; insight extraction from TV commercials (VECCHIATO et al., 2009); and

even as a game controller in a game to reduce stress (HJELM; BROWALL, 2000) using

closed source software to classify and interpret the received signals, to name a few. We

can notice that even though all data sets used in the previous works cited are time series

they all had different approaches on how to work with it. Since at least 2007, the classifi-

cation step on BCI systems have been using and exploring Machine Learning techniques

showing and are currently the state of the art (LOTTE et al., 2007; LOTTE et al., 2018).
From a market perspective, as of 2021, Emotiv, Nuerosky, and Neuralink, are three

companies having BCI as its core business:

Emotiv was founded in 2011 by tech entrepreneurs Tan Le (CEO) and Dr. Ge-
off Mackellar (CTO), the company is headquartered in San Francisco, U.S.A.
with facilities in Sydney, Hanoi and Ho Chi Minh.

Founded in 2004, NeuroSky is a privately held, Silicon Valley-based company
with offices throughout Asia and Europe.

Neuralink is a team of exceptionally talented people. We are creating the future
of brain interfaces: building devices now that will help people with paralysis
and inventing new technologies that will expand our abilities, our community,
and our world.

While Neurosky and Emotiv focus is portable, non-invasive, and head-sized de-

vices, Neuralink’s solution focuses on an implanted device, bringing it to 23mm x 8mm,

while having 1024 electrodes.

3.2 Time series analysis

Time series analysis and forecasting can explore the time, and frequency domain

approach with Fourier Analysis (FOURIER, 1878) for example. Multiple knowledge

areas have time series as a data structure that can be useful in extracting experiments’ re-
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sults, like characterizing the principal neocortical cells by analyzing network interactions

that have time correlation (BARTHó et al., 2004).

With all the advances in computer vision in recent years, novel frameworks and

architectures for time series, especially multivariate, feature extraction and classification

using deep learning techniques, were proposed, some of these being Multi-Layer Per-

ceptron(MLP), Fully Convolutional Neural Network(FCN), Residual Network(ResNet),

Encoder, Multi-scale Convolutional Neural Network(MCNN) and Multi-Channel Deep

Convolution Neural Network(MCDCNN) (FAWAZ et al., 2019).

3.3 CNN for time series

FCNN and ResNet achieve state-of-the-art performance in time series classifica-

tion (FAWAZ et al., 2019). Considering that time series can be multivariate, an adaptation

can be made on the CNN architecture side, or the data set side (HATAMI TANN GAVET,

2017). On the CNN architecture, it is possible to modify the CNN architecture to receive

1D signals. On the other hand, on the data side, it is possible to convert signals from 1D to

2D and then use traditional CNN, which is the approach this work proposes by converting

raw signals into 2D images.

3.4 CNN for BCI

Neural Networks have been a powerful tool in BCI studies (GONZALEZ et al.,

2017). The usage of CNN in raw EEG signal, without domain-specific pre-processing,

has shown state-of-the-art performance for motor imagery (MI) classification (Dose et al.,

2018), making CNN a potential technique for further exploration seeking higher perfor-

mance metrics.

CNN has been proved to be a robust machine learning architecture to solve a

variety of problems, as well as in BCI systems, not only with raw signal data but also

using 2D EEG images for signal classification, outperforming traditional methods (Gao

et al., 2020).
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4 MATERIALS AND METHODS

This work proposes to build software to export images to train machine learn-

ing models for BCI systems. The software can separate images into its respective class

folder, a well-known pattern for organizing images in data sets for supervised training and

allowing users to configure a set of parameters better to fit the images to their needs and

exploration processes.

4.1 Data sets

For the experiments, this work used the existing BCI Competition IV 2008 Graz

2B data set (LEEB C. BRUNNER; PFURTSCHELLER, 2008) since there are classifica-

tion performances available in the literature to compare to our classification methods. The

following subsections explain more about the data set.

4.1.1 Description

The BCI competition IV 2B data set contains data from 9 right-handed subjects

performing a motor imagery task. Each subject had 5 data collection sessions, 3 for

training and 2 for evaluation, each with several runs as in figures 4.1 and 4.2.

Motor imagery EEG recording experiments can vary slightly depending on a num-

ber of factors, but are usually conducted as follows:

• Some interval to "reset" mental state

• A cue is presented to the subject for a period of time

• The subject performs the task indicated by the presented cue

Figures 4.1 and 4.2 presents the 2 schemes used in this data set for motor imagery

recording sessions:

From this scheme, we can identify that it may be interesting to have pre and post-

event time padding and event type selection to be a configurable setting - a researcher

could, for example, use the "Pause" event to use as baseline brain activity; or add extra

padding to an event to mitigate signal processing harsh border effects.

It is essential to highlight that during development was noticed that this scheme’s
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Figure 4.1: BCI competition 2b motor imagery task data set screening scheme.

Adapted from (LEEB C. BRUNNER; PFURTSCHELLER, 2008).

Figure 4.2: BCI competition 2b motor imagery task data set smiley feedback scheme.

Adapted from (LEEB C. BRUNNER; PFURTSCHELLER, 2008).

data set does not provide events for all the boxes demonstrated in their scheme. For this

reason, the cue start had to be used as a reference point and calculate the time sections to

be processed according to the duration set up by the end-user of the software. Likewise,

since we can only provide one reference point and duration settings, only data from the

screening scheme was used in experiments, so files from smiley feedback sessions end-

ing with 03T.gdf were ignored, as well as the evaluation ones ending with 04E.gdf and

05E.gdf, since these do not have classification data.

4.1.2 Files

The BCI data sets found in our research have a few different file types to store

EEG information. Besides the recorded EEG data, these files usually contain the list of

channels available in the BCI device used to collect the data, event types to identify each

type of task and some other control events, markers tracking when events occurred, and
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Figure 4.3: No events to reference fixation cross, beep or pause

sigviewer software listing events from B0101T.gdf

some other types of data as described on each data set.

Some of the files found are .gdf, .edf and .xdf binary files and .csv ASCII files.

We highlight the binary GDF (SCHLöGL, 2013) and EDF/EDF+ (KEMP et al., 1992;

KEMP; OLIVAN, 2003) files for being specific for biosignals. While XDF is not specific

for biosignals, it is intended for scientific use, and it is used in some EEG data sets.

Our software loops through all the current events in these specific files to generate

event images considering the chosen settings for the image generation method and pre

and post-event time padding. More details about how the software works can be found in

Section 5.1.

4.2 Hardware

The application was developed and tested using an Apple MacBook Pro (15-inch,

2018), 2.6 GHz 6-Core Intel Core i7-8850H CPU, 16 GB 2400 MHz DDR4 RAM, and

a Radeon Pro 560X 4 GB graphics card, running macOS 11.5.2 (20G95). Also, Google

Colab Pro was used for training the machine learning models.
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4.3 Python

Python (ROSSUM; DRAKE, 2009) is the 4th most popular technology and the

most popular programming language, according to (Stack Overflow, 2020). It has a lot of

documentation and resources and a vast community, especially around data science and

machine learning. For theses reasons this work is implemented using Python.

4.4 Keras

Several libraries and frameworks can be used for training machine learning models

such as PyTorch (PASZKE et al., 2019), Keras (CHOLLET et al., 2015), and Scikit-learn

(PEDREGOSA et al., 2011). Keras uses Tensorflow as a backend in a Google Colab

notebook to train the classification models for the GAF and ERSP images generated with

TS2Image. Their creators describe it as follows:

Keras is a deep learning API written in Python, running on top of the machine
learning platform TensorFlow. It was developed with a focus on enabling fast
experimentation. Being able to go from idea to result as fast as possible is key
to doing good research.

Both GAF and ERSP models were based on VGG model (SIMONYAN; ZISSER-

MAN, 2014) and used transfer learning. The entire Google Colab notebooks for GAF and

ERSP are publicly available. The base code for models creation and training is presented

in listing 4.1:

Listing 4.1 – Base code for models creation

import t e n s o r f l o w as t f

from k e r a s import backend as K

K. s e t _ l e a r n i n g _ p h a s e ( 1 )

wid th = 256

h e i g h t = 256

c h a n n e l s = 3

epochs = 10

b a t c h _ s i z e = 32

n _ c l a s s e s = 3

c l a s s _ t y p e = " c a t e g o r i c a l "

model = ’VGG’

https://colab.research.google.com/drive/11cSz06L5o6KYK3uogxO_tzKyrY0M_oug
https://colab.research.google.com/drive/1eyifJMiK7azgLf9usFuUnYynXNxjzIbw
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t r a i n _ g e n e r a t o r , v a l i d a t i o n _ g e n e r a t o r = t r a i n _ v a l i d a t i o n _ d a t a (

d a t a _ b a s e ,

model ,

h e i g h t ,

width ,

b a t c h _ s i z e ,

c l a s s _ t y p e ,

v a l _ s p l i t =0 .2

)

p r e _ t r a i n e d _ m o d e l = model_TL ( model , h e i g h t , width , c h a n n e l s )

h i s t o r y = t r a i n i n g _ m o d e l ( p r e _ t r a i n e d _ m o d e l ,

epochs =epochs ,

b a t c h _ s i z e = b a t c h _ s i z e ,

l e a r n i n g _ r a t e =0 .0001 ,

t r a i n i n g _ d a t a = t r a i n _ g e n e r a t o r ,

v a l i d a t i n g _ d a t a = v a l i d a t i o n _ g e n e r a t o r ,

p a t i e n c e =5 ,

s t a g e = ’ t r a i n ’ ,

model_name=model )

t e s t _ l o s t , t e s t _ a c c = p r e _ t r a i n e d _ m o d e l . e v a l u a t e _ g e n e r a t o r (

v a l i d a t i o n _ g e n e r a t o r )

p r e d i c t _ l a b e l = p r e _ t r a i n e d _ m o d e l . p r e d i c t ( v a l i d a t i o n _ g e n e r a t o r ,

b a t c h _ s i z e )

4.5 MNE

MNE 0.22.0 (GRAMFORT et al., 2013) implements reading GDF, EDF+ and

some other file types commonly used for neurophysiological data. It also has useful

methods for processing the data, which will generate GAF and ERSP images. MNE is

described as:

Open-source Python package for exploring, visualizing, and analyzing human
neurophysiological data: MEG, EEG, sEEG, ECoG, NIRS, and more.
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4.6 pyts

pyts version 0.11.0 is used to generate GAF matrices, and it is describe by (FAOUZI;

JANATI, 2020) as:

pyts is a Python package dedicated to time series classification. It aims to make
time series classification easily accessible by providing preprocessing and util-
ity tools, and implementations of several time series classification algorithms.
The package comes up with many unit tests and continuous integration ensures
new code integration and backward compatibility. The package is distributed
under the 3-clause BSD license.
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5 RESULTS AND ANALYSIS

This chapter presents the final software product, generated images examples, and

an analysis of these results. Initially, Section 5.1 describes the software created, Section

5.2 presents the results obtained for GAF images, while Section 5.3 presents the results

obtained for ERSP images. Finally, Section 5.4 shows the deep learning results obtained

from the generated images.

The proposed pipeline using the software created, leveraging its re-usability to

multiple data sets and ease of use, saved a fair amount of time since there was no need

to create custom processing tools for different data sets. It was just a matter of setting

up a few parameters and running a single command. The domain experts can then use

this time to focus on the task at hand rather than committing to a software development

iteration cycle and eventual maintainability. Moreover, since software created is publicly

available in TS2Image GitHub repository, anyone has full access to it and can propose

new features, improvements, and bug fixes. Having the source code in a public repository

makes worldwide collaboration seamless and probable.

The final generic pipeline demonstrated, for any time series application or use case

and focusing on reducing friction when generating images to explore CNN classification

capabilities, can then be summarized as follows:

1. Signal aquisition as GDF files

2. Optional signal pre processing

3. Use GDF files as input into TS2Image

4. Train CNN using GAF or ERSP images generated

5.1 TS2Image

TS2Image was created using the technologies described in chapter 4. Its imple-

mentation served as a proof of concept to automate the image generation process for CNN

training and make this framework more accessible to researchers without a computer sci-

ence background.

The usage of the software has been proved valuable and stable during testing.

Exploring multiple files and data sets became as simple as configuring the software pa-

rameters to match each specific data set.

https://github.com/hvsw/TS2Image
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To those interested, the complete source code can be accessed in <https://github.

com/hvsw/TS2Image>. The README.md file contains all information needed to set up

and run the software. The source files have plenty of comments explaining how methods,

parameters, and specific parts of the code work, to help users understand more about

TS2Image.

The following subsections will present the setup and how to use it and some im-

plementation details to those looking for expanding this work.

5.1.1 Setup and usage

The end-user entry point is main.py. This file was created to make it easier for

researchers with no computer science background not to dive into how the main compo-

nents of the software work, making the execution just a single command line in terminal:

python main.py (GAF|ERSP). To those with a computer science background, the explo-

ration of the source is advised. Some features are not exposed through public APIs,

like vertically stacking multiple channels into a single image for classification, similar to

(YANG CHEN-YI YANG, 2019), and enabling the generation of both stacked and indi-

vidual images, aiming to reduce iteration time when processing data sets so researchers

can focus on optimizing models and experimenting with it.

TS2Image allow users to configure parameters to process the GDF recording

files. These are the customizable parameters currently available for user configuration

in main.py and used in ts2i.generate_images(...) invocation:

• input_folder: folder containing files to be processed

• output_folder: folder used by TS2Image to save image files

• valid_events_descriptions: events to generate images for

• events_dictionary: a dictionary specifying the all the data set events’ identifier and

description. This is optional and only needed by GAF class to get the description

to create folders to save the generate images. This is not used by ERSP class.

• t_start: value summed to event start time to crop the data to generate the image

• duration: value summed to event start time and t_start to crop the data to generate

the image

By setting up these parameters, TS2Image can process the GDF files specified and

output the images accordingly.

https://github.com/hvsw/TS2Image
https://github.com/hvsw/TS2Image
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5.1.2 Implementation details

This section is intended to share some high level implementation details to guide

those interested in expanding TS2Image.

The software entry point is TS2Image class, with its constructor and gener-

ate_images method. This class holds logic to list files from an input folder path, iter-

ate over this list of files, instantiates the proper class, GAF or ERSP, and then ask the

instance to generate the images. An execution flow is presented in figure 5.1.

Figure 5.1: Execution flow and its main components

Source: The author

The GAF and ERSP classes were divided in a way to separate its responsibilities.

It helped development speed in the early stages of the project, and due to the nature of

the project, in which we iterate over files’ events, it also caused some code duplication

because each class implements its approach to go through events and can be improved.

This is a high level overview of the algorithm implemented in TS2Image class,

and part of what is presented in execution flow in figure 5.1:

1. Get a list of files from input folder and iterate over it

2. Create GAF or ERSP instance according to method parameter for each file

3. Call generate_images method in the created instance

This is a high level overview on how GAF and ERSP classes work:

1. Band-pass filter, currently configured from 1 to 40Hz

2. List events for each file

3. List channels for each event

4. Generate image for each specific event channel

Figures 5.2 and 5.3 show some of the inner workings of GAF and ERSP classes,

respectively.
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Figure 5.2: GAF class image generation flow

Source: The author

Figure 5.3: ERSP class image generation flow

Source: The author

As mentioned in chapter 4, TS2Image uses third party libraries; figure 5.4 shows

how the dependencies are organized in the source.
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Figure 5.4: TS2Image dependency graph.

TS2Image class depends on both GAF and ERSP classes, which depends on pyts and mne li-
braries. Source: The author

5.2 GAF

The GAF class is responsible for generating GAF images as described in section

2.4.2. More information about the arguments and how to use them can be found in source

code comments. The public API is defined by its constructor and a method to generate

the images, as follows:

g a f = GAF( f i l e _ p a t h : s t r ,

v a l i d _ e v e n t s _ d e s c r i p t i o n s : l i s t ,

cue_map : d i c t )

g a f . g e n e r a t e _ i m a g e s ( o u t p u t _ f o l d e r : s t r ,

t _ s t a r t : f l o a t , d u r a t i o n : f l o a t ,

g e n e r a t e _ i n t e r m e d i a t e _ i m a g e s : bool ,

g e n e r a t e _ d i f f e r e n c e _ i m a g e s : bool ,

d e s i r e d _ c h a n n e l s : l i s t ,

m e r g e _ c h a n n e l s : bool )

Figure 5.5 shows an example of configuration used to generate GAF images from
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BCI competition IV 2b data set (LEEB C. BRUNNER; PFURTSCHELLER, 2008):

Figure 5.5: Configuration used to generate GAF images

Source: The author

5.2.1 Generated images samples

These are some example images of the first left and right-hand movements events,

represented by 769 and 770, from the B0101T.gdf file, generated by using the configura-

tion (Figure 5.5):

Figure 5.6: C3 channel from B0101T.gdf, first left hand event from t=223.56 to 224.81.

Source: The author
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Figure 5.7: C4 channel from B0101T.gdf, first left hand event from t=223.56 to 224.81.

Source: The author

Figure 5.8: CZ channel from B0101T.gdf, first left hand event from t=223.56 to 224.81.

Source: TS2Image

Figure 5.9: C3 channel from B0101T.gdf, first right hand event from t=233 to 234.25.

Source: The author
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Figure 5.10: C4 channel from B0101T.gdf, first right hand event from t=233 to 234.25.

Source: The author

Figure 5.11: CZ channel from B0101T.gdf, first right hand event from t=233 to 234.25.

Source: The author
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5.3 ERSP

The ERSP class is responsible for generating ERSP images as described in section

2.4.3. Its public API is defined by its constructor and a method to generate the images, as

follows:

e r s p = ERSP ( f i l e _ p a t h : s t r )

e r s p . g e n e r a t e _ i m a g e s ( o u t p u t _ f o l d e r : s t r ,

d e s i r e d _ e v e n t s : l i s t ,

t _ s t a r t : f l o a t ,

t _ e n d : f l o a t ,

g e n e r a t e _ i n t e r m e d i a t e _ i m a g e s : bool ,

d e s i r e d _ c h a n n e l s : l i s t ,

m e r g e _ c h a n n e l s : bool )

5.3.1 Generated images samples

Using the configuration shown in figure 5.12, ERSP images 5.13, 5.14 and 5.15

were generate. Notice the only change, in comparison with generating GAF images as

shown in figure 5.5, is the method parameter.

Figure 5.12: Configuration used to generate ERSP images

Source: The author
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Figure 5.13: Averaged out ERSP image from channel C3 and B0101T.gdf

Source: The author

Figure 5.14: Averaged out ERSP image from channel C4 and B0101T.gdf

Source: The author

Figure 5.15: Averaged out ERSP image from channel Cz and B0101T.gdf

Source: The author

5.4 Classification

GAF and ERSP images were generated from the BCI competition data set 2B and

used to train machine learning models and thus validate the pipeline. It is essential to

highlight that achieving the state-of-the-art classification performance is not the goal of

this work, yet our method, even having more classes, which is a known factor to degrade

classification performance, did not rank the last.

Transfer learning was used with the VGG16 model (SIMONYAN; ZISSERMAN,

2014). In both cases, GAF and ERSP, ten epochs were used. Since ERSP images were

averaged out, a lower number of images was available for training. Therefore a batch size

of 64 was chosen, in comparison to 32 chosen for GAF images. The GAF and ERSP

generated images sizes were, respectively, 256x256 and 256x39. The input layer needs

to accommodate the three channels (red, green, and blue) since these are colored images.

The complete source code is available in Google Colab notebooks for GAF and ERSP.

Table 5.1: Model characteristics per image type
Image type Input layer dimensions Batch size
GAF 256 x 256 x 3 32
ERSP 256 x 39 x 3 64

Due to the lower number of ERSP images available a batch size of 64 was used

5.4.1 GAF

To classify GAF images, the following CNN architecture was used:

https://colab.research.google.com/drive/11cSz06L5o6KYK3uogxO_tzKyrY0M_oug
https://colab.research.google.com/drive/1eyifJMiK7azgLf9usFuUnYynXNxjzIbw
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Figure 5.16: Model used to train with GAF images

GAF with 3 classes: left and right hand, and pause. Source: The author.

The classification performance obtained from GAF images converged to 70.15%

accuracy and 59.02% loss. For reference, these are some state of the art classification

methods:

Table 5.2: BCI Competition IV 2B data set classification performances
Method Accuracy % number of classes
(ALANSARI et al., 2018) 67.8 2
Ours 70.15 3
(WANG; FENG; LU, 2017) 81.2 2
(SILVA et al., 2017) 83.8 2

Even though this work is not focused on optimizing the model, and the used method is not the
worst, there are room for improvement.
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Figure 5.17: GAF training and validation accuracy evolution across epochs

Accuracy converging to final 70.15% accuracy result. Source: The Author.

Figure 5.18: GAF training and validation loss evolution across epochs

Accuracy converging to final 59.02% loss result. Source: The Author.
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5.4.2 ERSP

To classify GAF images the following CNN architecture was used:

Figure 5.19: Model used to train with ERSP images

ERSP classification was binary: left and right hand. Source: The author.

While GAF classification results converged, ERSP images did not converge and

topped around 65% accuracy and 70% loss. These are some of the reasons we believe

could improve the results in future work:

1. The values used to generate the ERSP images were averaged per subject file. There-

fore the number of images generated was lower, 54 per class(left and right) in a total

of 108, compared to GAF, 3371 left, 3371 right, and 6760 pauses. Having more im-

ages to train the model is encouraged.

2. No pre-processing statistical filtering was applied to ERSP images. For future work,

exploring image masks for areas with p values < 0.05 is encouraged.
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Figure 5.20: ERSP training and validation accuracy evolution across epochs. Source: The

Author.

Figure 5.21: ERSP training and validation loss evolution across epochs. Source: The

Author.
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6 CONCLUSION AND FUTURE WORK

TS2Image performed its tasks as expected, images were generated according to

our settings, so it can serve as a valid proof of concept for the idea of automating image

generation for training CNNs. TS2Image offers a new way researchers without coding

skills can explore time series.

During TS2Image development, was verified that the data sets have slightly dif-

ferent data collection characteristics, that sometimes do not match their descriptions. For

example, while one data set would provide the start and end of events, others would mark

the start, taking more time to find a more generic configuration solution that would work

for both cases. Nonetheless, it is possible to achieve a more generic configuration with

future work expanding on it.

Regarding the software implementation, these are some items to be improved in

the long run:

• Modularization: it could introduce the architecture to extend TS2Image easily.

A suggestion is to add plugin or components patterns and separate file reading,

processing, and image generation.

• Configuration: as demonstrated in figure 4.3, the data sets available have a variable

range of data collection characteristics. Therefore, every new data set to be stud-

ied to add support to TS2Image should bring more generalization to configuration

settings.

• Support more domains: This work focuses on EEG, so expanding to support time

series from different knowledge domains is advised and possible since GDF files

can be used for EEG data.

• Public contribution: This software serves as a proof of concept, and starting point,

of what could be implemented by the main libraries used if they want to. These

libraries could give the option to the client to add default and custom filtering and

data processing as we implemented here.

• File types: add support to more file types as described in 4.1.2.

• Multithreading:During the development, some multi-thread approaches were tested,

but they did not make it to the final version of the software due to time constraints.

It is essential to mention that a significant performance improvement was pre-

sented by implementing one file per process per CPU thread, using Python’s mul-
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tiprocessing library https://docs.python.org/3/library/multiprocessing.htmlmodule-

multiprocessing, when processing multiple files.

• Test coverage: tests can contribute to increasing trust in TS2Image’s output and

make eventual refactors and corrections easier to verify.

• Open to contributors: having an open-source project that the community can ver-

ify is good practice to improve software quality since more interested people will

lay eyes on it, and more use cases are tested every day.

• Improve user interface: currently, TS2Image only offers a simple command-line

user interface. A Graphical User Interface can make it even more accessible to

those with less familiarity with computer science skills.

• Select frequency bands: on EEG classification, a current use case is to split

alpha(8-12Hz) and beta(12-35Hz) frequencies, hence adding support to generate

individual images for each frequency band is advised.

As time passes, BCI tends to play an increasingly important role in society, spe-

cially for those impaired. Having proper tooling is essential to explore and help evolve

every research area, and BCI is no exception. TS2Image comes as a tool to contribute

by reducing the time experts invest into creating custom software for every use case, so

they can focus on their expertise area, data acquisition and machine learning models train-

ing. From a software engineering standpoint, the current version has its limitations and

it’s ready to be expanded by the research community with public contribution through its

GitHub repository.
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