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“The great growling engine of change - technology.”

— ALVIN TOFFLER
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ABSTRACT

The Internet of Things (IoT) is a paradigm that consists of heterogeneous devices with ca-

pabilities of sensing, acting, processing, communication, networking, and storage. These

devices are highly interconnected to reach a common goal – making people’s life easier.

In Smart Factories, for example, highly automated production processes can be enabled

leading to more efficiency and reduced costs. In the IoT, communication and continu-

ous transmission of collected data are conducted through standardized Internet protocols.

Well-known applications of the IoT include Smart Homes, Smart Factories, or Smart

Cities. Nevertheless, setting up new IoT environments usually requires manually setting

up the devices, configuring sensors, or writing scripts. Conducting these complex steps

can be very cumbersome, especially finding suitable technologies, protocols, or standards.

The heterogeneity of smart devices, communication protocols, and other technologies and

the high distribution in the IoT makes the configuration of smart environments and appli-

cations even more complex and time-consuming. Therefore, in this work, we propose

a holistic method to help domain experts setting up IoT environments and applications.

Our method is composed of (i) a toolbox with common building blocks of the IoT, and

(ii) a business process-based approach to orchestrating the setup of these building blocks.

Through our approach, domain experts can select the building blocks they require for their

IoT application and generate a step-by-step manual for their setup.

Keywords: Internet of Things. Business Process Management. Process-oriented ap-

proach. Toolbox. Holisthic method.



Abordagem orientada a processos para configuração de ambientes e aplicações IoT

RESUMO

A Internet das Coisas (IoT) é um paradigma que consiste de dispositivos heterogêneos

com capacidades de detecção, atuação, processamento, comunicação, armazenamento e

de rede. Esses dispositivos são altamente interconectados para atingir um objetivo em

comum – tornar a vida das pessoas mais fácil. Em indústrias inteligentes, por exem-

plo, processos de produção intensamente automatizados podem ser estimulados levando

a mais eficiência e custos reduzidos. Na IoT, a comunicação e a transmissão contínua

de dados coletados são conduzidas através de protocolos de internet padronizados. Apli-

cações bem conhecidas de IoT são Casas Inteligentes, Indústrias Inteligentes, e Cidades

Inteligentes. Contudo, a configuração de novos ambientes inteligentes comumente requer

a montagem manual dos dispositivos, configuração dos sensores ou escrita de scripts. A

realização dessas etapas complexas pode ser um trabalho árduo, especialmente no que

diz respeito a encontrar tecnologias, protocolos ou padrões adequados. A heterogenei-

dade de dispositivos inteligentes, protocolos de comunicação e outras tecnologias, além

da alta distribuição na Internet das Coisas torna a configuração de ambientes inteligentes

ainda mais complexa e demorada. Desse modo, nesse trabalho, propomos um método ho-

lístico para auxiliar na configuração de ambientes e aplicativos IoT. Nossa abordagem é

composta por (i) uma caixa de ferramentas com blocos de construção comuns da IoT, ser-

vindo de base para nosso método, e (ii) uma abordagem orientada a processos de negócio

para orquestrar a configuração dos blocos de construção. Por meio da nossa abordagem,

os especialistas do domínio podem selecionar os blocos de construção necessários para a

sua aplicação IoT e também gerar um manual passo a passo para sua configuração.

Palavras-chave: Gerenciamento de Processos de Negócio. Internet das Coisas. Aborda-

gem orientada a processos. Caixa de Ferramentas. Método holístico..
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1 INTRODUCTION

The Internet of Things (IoT) is a technological paradigm where a large number of

heterogeneous interconnected devices communicate through standardized Internet proto-

cols to share information or to perform actions (VERMESAN; FRIESS, 2013). The IoT

results from the advancement in many parallel and often overlapping fields. Some of the

fields that impact IoT expansion are embedded systems, ubiquitous and pervasive com-

puting, mobile telephony, telemetry, machine-to-machine communication, wireless sensor

networks, mobile computing, and computer networking (TEKINERDOGAN; KOKSAL,

2018). Usually, devices of the IoT are embedded systems with electrical or electronical

components, software, sensors, actuators, and network connectivity, that enable sensing,

acting, collecting, and exchanging data via the network (JANIESCH et al., 2017). More-

over, each device is uniquely identifiable through its embedded computing system and

interoperates within the existing network infrastructure.

According to Cook and Das (2007) smart environments enable to acquire and

apply knowledge about the surroundings and its inhabitants to improve their experience

in that context. Therefore, the IoT enables the creation of new kinds of applications, such

as Smart Homes (HARPER, 2006), Smart Cities (CHOURABI et al., 2012), or Smart

Factories (SHROUF; ORDIERES; G.MIRAGLIOTTA, 2014).

The interconnection of these IoT devices is expected to help in automation in

many fields as it enables continuous monitoring based on sensing devices and analytical

opportunities in smart environments and the possibility to actuate feedback. According to

Atzori et al. (2010) some of the fields impacted by the IoT are domotics (science that con-

cerns electronics and information application to domestic life), assisted living, e-health,

enhanced learning, automation and industrial manufacturing, logistics, business process

management, and intelligent transportation of people and goods. Moreover, the intercon-

nection of IoT devices also creates opportunities for more direct integration of the physi-

cal world into computer-based and digitized systems, improving efficiency, accuracy, and

economic benefits besides increased automation and reduced human intervention (JANI-

ESCH et al., 2017).

However, building IoT systems can be very complex (MCEWEN; CASSIMALLY,

2013) since the devices, protocols, technologies, and standards are highly heterogeneous.

There is a plethora of devices able to perform a specific task with different levels of per-

formance and costs. For example, Raspberry Pis are powerful devices able to provide an
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operating system and built-in communication technologies, such as WiFi or Bluetooth,

allowing it to process, communicate, and store. In contrast, there are very restricted IoT

devices, such as micro-controller boards, that do not provide any sophisticated operating

system, sometimes just capable of simple data pre-processing and communication (e.g.,

through either WiFi, Bluetooth, or cable), providing only a limited runtime environment

to run small scripts. Besides, there is a lack of IoT application development approaches

that combine IoT application requirements for heterogeneity and analyze them according

to the quality of service (BALEN; ŽAGAR; MARTINOVIC, 2011) requirements of IoT

applications at an early stage of application development.

Furthermore, in the IoT, not only the devices are very heterogeneous but also

the communication protocols. There are many alternative communication solutions with

diverse performance characteristics, e.g., CoAP (Bormann; Castellani; Shelby, 2012),

MQTT (Hunkeler; Truong; Stanford-Clark, 2008), LORA (AUGUSTIN et al., 2016), or

HTTP. These numerous available solutions provide different features and performance

trade-offs, making it very complex to select the most suitable IoT communication tech-

nology for a particular smart environment (GOMEZ et al., 2019).

Another challenge is related to building an optimal system for a domain-specific

application. IoT systems are highly heterogeneous, and a computing unit in a smart en-

vironment can have dramatically varying computing power, storage capabilities, network

bandwidth, and energy requirements. Other aspects, like I/O mechanisms, sensory capa-

bilities, supported input modalities can also vary considerably (TAIVALSAARI; MIKKO-

NEN, 2017). Not only a device specification but also its operation, for example, different

sensors and actuators can operate in other communication protocols, and it can have a

considerable impact on the application performance.

This abundance of devices, communication protocols, and technologies hampers

the selection of the proper hardware components and protocols for building IoT envi-

ronments and applications. Hence, there is a demand for coping with this considerable

heterogeneity and to support IoT developers choosing the proper hardware, technologies,

and protocols for their applications.

To cope with the complexity and to reduce the development time of building IoT

systems, one goal of the present work is the development of a holistic method to support

domain experts without necessary deep technical understanding in the whole process of

setting up the desired IoT system, covering requirements elicitation, choosing suitable

components, protocols, and technologies, and generating a step-by-step manual for the
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setup.

First, we introduce a toolbox containing common building blocks that are regu-

larly used in the creation of IoT environments and applications. These building blocks

can represent different parts of an IoT environment, e.g., hardware components, network

protocols, message brokers, gateways, platforms, or other software components. A build-

ing block, in our context, consists of a high-level description to be understandable by

domain experts as well as specific implementations. In our approach, the building blocks

are provided by experts in building IoT environments and are included in our toolbox,

which domain experts can access.

Second, we introduce a business process-based approach to set up the IoT envi-

ronments based on the suggested building blocks. Usually, setting up IoT environments

requires many different steps that can be conducted either in parallel or sequentially in

case of any dependencies. For example, before connecting a device to an IoT platform, a

network connection needs to be set up. Hence, to enable a robust setup of IoT systems, it

makes sense to use Business Process Management (BPM) (DUMAS et al., 2018) for the

orchestration of these steps.

BPM is a well-established discipline that deals with the identification, discovery,

analysis, (re-)design, implementation, execution, monitoring, and evolution of business

processes. A business process is a collection of inter-related events, activities, and deci-

sion points involving actors and resources and collectively lead to an outcome that is of

value for an organization or a costumer (DUMAS et al., 2018). Moreover, the Business

Process Model and Notation 2.0 (BPMN 2.0) (OMG, 2014) is a commonly used language

for process modeling.

Several works are emerging in the literature combining BPM and IoT, e.g., utiliz-

ing sensor data to enable the actuation on services or adapting running business processes

to align them with the state of the smart things continuously (e.g., assets, humans, and

machines) (JANIESCH et al., 2017). Process analytics, execution, and monitoring based

on IoT data can enable an even more comprehensive view of processes and realize the

potential for process optimization. It is known that in many areas, such as supply chain

management, intelligent transport systems, domotics, or remote healthcare, business pro-

cesses can gain a competitive edge by using the information and functionalities provided

by IoT devices (DOMINGOS; MARTINS, 2017).

The other goal of this work is to discuss the mutual benefits of both BPM and IoT

working together, modeling and executing processes taking into account the IoT devices
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(i.e., IoT-aware processes), as business processes can use IoT information to incorporate

real world data, to take informed decisions, optimize their execution, and adapt itself to

context changes (JEDERMANN; LANG, 2008). For example, a smart factory might be

better manageable when closely linking the digital process with the physical world as en-

abled by the integration of IoT and BPM. In this scenario, the completion of manual activ-

ities can be made observable through the usage of appropriate sensors. IoT can complete

BPM with continuous data sensing and physical actuation for improved decision-making.

Moreover, the increase in processing power of IoT devices enables them to become ac-

tive participants by executing parts of the business logic. IoT devices can aggregate and

filter data and make decisions locally by performing business logic functions whenever

central control is not required, reducing both the amount of exchanged data and central

processing (HALLER; KARNOUSKOS; SCHROTH, 2008).

1.1 Research Questions and Goals

The IoT has a pervasive impact on society, and an increasing number of systems

are now based on IoT (HALLER; KARNOUSKOS; SCHROTH, 2008). The major chal-

lenge for our work is the significant heterogeneity of the IoT domain. This brings up

many problems when dealing with IoT systems and all the plethora of heterogeneous

smart devices, communication protocols, and other technologies. First, this wide variety

introduces the challenge of creating and using a uniform way of describing things in IoT

environments and applications regarding what the particular thing is, what it does, and

how it communicates (KHALED et al., 2018). Based on these observations, the follow-

ing research question is raised:

• [RQ1]: Is it possible to represent the considerable diversity of components of the

IoT domain using Building Blocks?

In addition, the substantial growth of IoT environments and applications and the

usage of smart devices have increased the complexity in managing such environments,

especially the highly heterogeneous devices, due to their specific features and character-

istics (e.g., sensitivity, communication, response time, resource constraint). Therefore,

to leverage the potential supplied by these heterogeneous IoT devices, there is a visible

need to bridge the gap between IoT and the BPM field. IoT-aware processes need to be

efficiently designed in an unambiguous manner to achieve the association of IoT devices
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and their capabilities to activities in a process model.

However, it is essential to formally and explicitly define the characteristics of the

IoT resources participating in a process, e.g., two devices measuring the same metric,

such as the room temperature, may have non-trivial differences in their capabilities, such

as sensitivity or response time (SURI et al., 2017). Further, these observations raised

another research question:

• [RQ2]: Can IoT Building Blocks help in the IoT-aware process modeling?

The general goal of this work is to provide a holistic method that describes the

necessary steps domain experts need to take to set up IoT systems from scratch composed

of a toolbox with common building blocks of the IoT and a business process-based ap-

proach to orchestrate the setup and operation of these building blocks. This work includes

a formalization of common IoT components into Building Blocks. Moreover, we devel-

oped a web application as a prototype, and we discussed our approach in means of our

method applied into a Smart Factory case study.

1.2 Text Organization

The remainder of this work is organized as follows: Chapter 2 presents the funda-

mentals of this work and the related works. Chapter 3 presents the approach developed

dividing in: toolbox and holistic method. Chapter 4 presents the web-based prototype,

revealing the adopted architecture and technologies and describing the Front-End and

Back-End implementation. Chapter 5 presents the evaluation of our approach, applying

the proposed method and prototype to a real-world case study, also discussing its strengths

and weaknesses. Chapter 6 concludes the work and summarizes our contributions.
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2 FUNDAMENTALS AND RELATED WORK

In this chapter, we present the fundamental theoretical background referenced

along with this study. First, we introduce IoT concepts, discuss the growing presence

of IoT, the common architectures, and challenges emerging with this new paradigm. Sec-

ond, we present the fundamentals concepts related to BPM. We also discuss the both BPM

and IoT areas, their mutual benefits, and challenges. Finally, we present the related works.

2.1 Internet of Things

IoT is a global network that interconnects physical and virtual entities, or "things".

Things are the basic building blocks and the main ingredient of the IoT (KHALED et al.,

2018). IEEE Standard (2020) defines a "thing" as an IoT component or IoT system that

has functions, properties, and ways of information exchange.

An entity is a particular thing, such as a person, place, process, object, concept,

association, or event (IEEE, 2020). According to Bauer et al. (2013), a physical entity is a

discrete, identifiable part of the physical environment that is of interest to the user for the

completion of her goal. Physical entities can be almost any physical object or environ-

ment; from humans or animals to cars; from store or logistics chain items to computers;

from electronic appliances to closed or open environments. On the other hand, the same

authors define a virtual entity as a computational or data element representing a physical

entity.

The IoT pointed to the presence of smart environments, which embrace one or

more physical entities sensing, acting, and automatically performing different tasks to en-

able their self-organization (HIRMER et al., 2016). Smart environments are divided into

physical and digital environments. The physical environment contains devices, sensors,

and actuators. The digital representation, also known as the digital twin (BOSCHERT;

ROSEN, 2016), represents properties of the physical world based on a simplification of

the world.

The development of the IoT leads to a wide range of applications in different do-

mains where intelligent systems that obtain information from the physical world process

such information and may perform actions on the physical world. Figure 2.1 illustrates

the presence of IoT in people’s life. In the following, some of the well-known smart

environments are detailed.
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Figure 2.1: Internet of Things different domains

Source: UFRN (2021)

Smart Homes (HARPER, 2006) can be defined as a residence equipped with com-

puting and information technology which anticipates and responds to the needs of the

occupants, working to promote their comfort, convenience, security and entertainment

through the management of technology within the home and connections to the world

beyond. According to Gomez et .al (2019), the foundation of such systems are home

automation mechanisms, which provide the ability to monitor and control the building

blocks of a home, e.g., windows, doors, electrical system, air conditioning system, en-

ergy production subsystem, alarm, appliances and so forth.

Smart Cities (CHOURABI et al., 2012) are built over different initiatives, in-

cluding: management and organization, technology, governance, policy context, people

and communities, economy, built infrastructure, and natural environment. According to

Zanella et al. (2014), Smart Cities are about making better use of the public resources,

increasing the quality of the services offered to the citizens, and reducing the operational

costs of the public administrations.

Smart Factories (SHROUF; ORDIERES; G.MIRAGLIOTTA, 2014), also refered

as Smart Manufactoring, Intelligent Factory, and Industry 4.0, refers to the shared vision

of enhanced intelligence, flexibility, and dynamics over entire manufacturing processes

and production. According to Bulik (2017), the Smart, and mostly digital, factory con-



20

cept focuses on an integrated planning and monitoring process that includes product de-

sign, process planning, and overall integration and implementation of the manufacturing

operation, making the manufacturing process more efficient and responsive to change.

There are several existing terminologies in the IoT area, but despite this variety,

sensing and actuating objects are the most important for IoT. A sensor collects specific

data within physical environments, and once a property has been observed and converted

into a digital representation, the data/information is processed to create useful knowledge.

On the other hand, an actuator device is used to perform actions upon the IoT environ-

ments according to the collected data converting information into action on a physical

entity in the physical world, changing the state of the physical entity (IEEE, 2020).

In order to have a full understanding of this work is crucial to understand the dif-

ference between an IoT environment and an IoT system. An IoT system is "a system

of entities (including devices, information resources, and people) that exchange informa-

tion and interact with the physical world by sensing, processing information, and actuat-

ing" (IEEE, 2020). Differently, the IoT environment can be considered as the combination

of IoT systems, networks connecting the IoT components, and any services that provide

discovery, composition, and orchestration mechanisms.

2.2 Business Process Management

BPM is the discipline that aims to holistically operate, control, design, document

and improve cooperative processes (DUMAS et al., 2018). Business process is a col-

lection of events, activities, and decision points executed within application systems that

are part of the real world involving actors and resources (humans, cooperative computer

systems, and physical objects). Therefore, understanding the standard terms of a business

process is crucial for its representation and interpretation, and these terms are listed and

described below.

Activities can be seen as work that is done by participants of a process. As a

type of activities, there are tasks and subprocesses. Tasks are atomic activities that have

a time duration and represent units of work. They are performed by process participants,

generally being human actors involved in the business process (DUMAS et al., 2018).

Analogously, subprocesses are non-atomic activities.

Events correspond to elements that represent an atomic occurrence in the process,

meaning they have no duration. They are generally used to specify the occurrence of a
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specific trigger that may throw a result or lead to the execution of a sequential step (DU-

MAS et al., 2018).

Decision points are points in time when a decision is made such that the execution

flow of the business process is affected. There are different types of decision points: Ex-

clusive decisions model the relation between two or more alternative activities, meaning

that only one resulting alternative must be executed. Parallel executions occur when two

or more activities do not have any order dependencies to each other, meaning that one

does not require or exclude the other, thus, being able to be executed concurrently; In-

clusive decisions model situations when the result of a decision may lead to one or more

outcomes being executed. Rework and Repetition to repeat one or several activities, for

instance, because of a failed check (DUMAS et al., 2018).

In order to model the processes, a commonly used language is the BPMN (OMG,

2014). The following subsection presents some of the most important features provided

by BPMN.

2.2.1 Business Process Model and Notation

Like any other language, a modeling language consists of four aspects: vocabu-

lary, syntax, semantics, and notation (DUMAS et al., 2018). BPMN is a language with

more than a hundred elements used to model business processes creating a bridge be-

tween process design and implementation. BPMN 2.0 is a standard for business pro-

cess modeling that provides graphical notation easily understandable by users involved in

the management, implementation, creation, and monitoring of business processes (OMG,

2014). The essential subset of BPMN objects categories are flow objects, data, connecting

objects, swimlanes, and artifacts.

Flow objects are the main graphical elements to define the behavior of a business

process (OMG, 2014). The event is something that "happens" during the course of a

process. These events affect the flow of the model and usually have a cause (trigger)

or an impact (result). An activity is a generic term for work that company performs in

a process, and it can be atomic (task) or non-atomic (subprocess). A gateway is used

to control the divergence and convergence of sequence flow in a process. Hence, it will

determine branching, forking, merging, and joining of paths. The graphical representation

of these objects are shown in Figure 2.2.

There are different types of tasks identified within BPMN to separate the types of
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Figure 2.2: BPMN 2.0 Flow Objects

Source: The Authors

inherent behavior that tasks might represent. The list of task types may be extended along

with any corresponding indicators. A Task which is not further specified is called abstract

task. The mentioned task types are illustrated in Figure 2.3.

Figure 2.3: BPMN 2.0 Task Types

Source: The Authors

A service task is a task that uses some sort of service, which could be a Web

service or an automated application. A send task is designed to send a message to an

external participant relative to the process, and once the message has been sent, the task

is completed. Analogously, a receive task is designed to wait for a message to arrive from

an external participant. An user task is performed by a human with the assistance of a

software application and is scheduled through a task list manager of some sort. A manual

task is a task that is expected to be performed without the aid of any business process

execution engine or any application, e.g., IoT expert positioning and installing a sensor at

a specific location. Finally, a script task is execute by a business process engine with a

defined script with a supported language.

Data objects provide information about what activities are required to be per-

formed and/or what they produce. Data objects can represent a singular object or a col-

lection of objects. Data input and data output provide the same information for processes.

Figure 2.4 illustrates these objects.
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Figure 2.4: BPMN 2.0 Data Objects

Source: The Authors

The connecting objects, shown in Figure 2.5, enable flow objects to connect to

each other or other information. A sequence flow is used to show the order in that activities

will be performed in a process. A message flow is used to show the flow of messages

between two participants prepared to send and receive them. An association is used to

link information and artifacts with BPMN graphical elements where an arrowhead on the

association indicates a flow direction.

Figure 2.5: BPMN 2.0 Connection Objects

Source: The Authors

Within the swimlanes category, pools and lanes are meant to group the primary

modeling elements. The pool is the graphical representation of a participant in a collab-

oration, and its shown on the left of Figure 2.6. It also acts as a swimlane and a graphical

container for partitioning a set of activities from other pools. A pool may have internal

details, in the form of the process that will be executed, or a pool may have no internal

details, i.e., it can be a "black box". A lane is a sub-partition within a process, some-

times within a pool, and will extend the entire length of the process used to categorize

and organize activities. The lane is depicted on the right of Figure 2.6.

Figure 2.6: BPMN 2.0 Swimlanes

Source: The Authors

The artifacts are used to provide additional information about the process. A

group is a grouping of graphical elements within the same category (this type of grouping

does not affect the sequence flows within the group). Text annotations are a mechanism
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for a modeler to provide additional text information for the reader of a BPMN Diagram.

These elements are depicted in Figure Figure 2.7.

Figure 2.7: BPMN 2.0 Artifacts

Source: The Authors

Finally, we present a process model with the described BPMN elements in Fig-

ure 2.8. The process illustrates a simplified, automated irrigation system use case. The

system autonomously decides when to irrigate an Orchid based on the temperature and hu-

midity measurements. It consists of three pools: the Sensor Network, the Back-End Sys-

tem, and the Actuator Network. The Sensor Network process is triggered every minute.

After that, the parallel gateway splits the measurement of each variable to the respective

sensor on its respective lane. Then, the temperature and humidity values are sent to the

Back-End System pool. The message triggers the Back-End System process, and the first

task evaluates if the irrigation is needed based on the sensed variables. For this, the exclu-

sive gateway forces the process to follow only one of its paths. Suppose the temperature

and humidity are below a defined threshold. In that case, it computes the irrigation time

based on sensed variable levels, sends the request to the Actuator Network to start the

irrigation process. The intermediate timer event waits based on the previous calculation

and then sends a request to the irrigation to stop. Finally, the last task saves the sensors’

data to the database.

2.2.2 Business Process Management System

Business Process Management Systems (BPMS) are designed to support pro-

cesses at an operational level. It separates process logic from application code, creat-

ing an additional architectural layer and generally provides generic services necessary for

modeling, execution, and monitoring processes.
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Figure 2.8: Examplary of a simplified smart irrigation system

Source: The Authors

The BPMS can instantiate new process instances and control their execution based

on the process model besides monitoring the whole progress of a process instance. Thus,

business processes within BPMS are designed in a top-down manner as the processing

logic is explicitly described in terms of a process model providing the schema for process

execution.

In many scenarios, BPM approaches are used to automate processes through the

support of contemporary BPMS, which uses connectors to established web communica-

tion protocols, e.g., HTTP. This way, with a suitable connector to an IoT protocol (SCHöNIG

et al., 2020), it enables a communication architecture between process management and

IoT devices, thus, some activities may be executed with the teamwork between soft-

ware/hardware modules and humans.
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2.3 Intersection of IoT and BPM

IoT devices are heterogeneous by nature and can aggregate and filter data, besides

making decisions locally by executing parts of the business logic whenever central control

is not required. Correspondingly, business modelers define processes using high-level

languages, e.g., BPMN 2.0, needing to know just the domain but not specific knowledge

to the IoT devices. Therefore, this decentralization requires design as well as execution

time support.

Meaningful decisions in business processes require relevant information, and IoT

devices are a consistent data source in this context. IoT devices can provide relevant data,

such as events, in-memory databases, or complex event processing (CEP). Moreover, IoT

devices can lead to more accurate data, reduced error, and efficiency gains since they

could reduce the need to manually proclaim the completion of manual tasks with the

availability of sensor data.

Considering a complex system scenario, such as a Smart Factory with self-driving

vehicles, autonomous robots, and people moving around with localization tags as illus-

trated in Figure 5.1, the components interacting within this smart environment must be

aware of the other components’ locations and movements and interactions. Finally, such

an environment might be better manageable linking the digital process with the physical

world as enabled by the integration of IoT and BPM. For example, the completion of man-

ual activities can be made observable through the usage of appropriate sensors. This way,

IoT can complete BPM with continuous data sensing and physical actuation for improved

decision making.

2.4 Related Work

In order to deal with the lack of standardization in the IoT area for the past years,

several authors have contributed to the field with different approaches, architectures, mod-

els, ontologies, and frameworks. Moreover, many works are emerging in the literature

combining the well-established BPM field and IoT. The related works were divided into

a category focused on IoT contributions, including IoT architectures, models, and ap-

proaches to configuring environments. A second category discusses the works that com-

bine both BPM and IoT fields. In order to summarize the focus of the analyzed works

with the approach presented in this study, Table 2.1 shows each approach, its focus, and a
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brief description of the related work.

Table 2.1: Related work according to their focus

Authors Focus Approach

Our work Configuration
and Model

Provides a formalization of IoT compo-
nents to building blocks and a process-
based approach for configuration

(FRANCO DA SILVA
et al., 2017)

Configuration Setup of IoT environments using OASIS
standard TOSCA

(MAYER et al., 2014) Configuration Goal-driven configuration of IoT envi-
ronments for end users

(HIRMER et al.,
2016)

Configuration
and Architecture

Presents a method and a system archi-
tecture for automated provisioning and
configuration of devices

(YELAMARTHI;
AMAN; ABDEL-
GAWAD, 2017)

Architecture Presents an application-driven modular
architecture

(JUSAS, 2017) Model Presents a feature-model based method
for development of IoT-oriented appli-
cations

(OGC, 2008) Model Provides a semantically-tied means of
defining processes and processing com-
ponents associated of observations

(KHALED et al.,
2018)

Model and Archi-
tecture

Provides a machine- and human-
readable descriptive language for IoT
devices and lightweight architecture

(BERMUDEZ-EDO
et al., 2017)

Model Provides a lightweight semantic model
for IoT

(SURI et al., 2017) Configuration Presents a semantic framework for de-
veloping IoT-aware business processes

Source: The Authors

2.4.1 IoT: Architectures, models, frameworks and configuration approaches

Franco da Silva et al. (2017) present Internet of Things Out-of-the-Box, an ap-

proach using the OASIS standard TOSCA (OASIS, 2013) to automatically set up IoT

environments. The goals are similar to ours: setting up IoT environments with as little

effort as possible. Instead of a toolbox, they use a TOSCA Type Repository. However,

the steps of defining requirements and selecting the most suitable TOSCA types are not

described. Hence, it already needs to be known which hardware and software components
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are required to set up the IoT environment. Furthermore, the processes they use for setting

up the IoT environments do not support human tasks. Thus, hardware device setup and

other manual steps should already be done in their approach.

Mayer et al. (2014) present an approach that enables end-users to configure IoT

environments at different places (e.g., workplace, home, and in public places), combining

Semantic Web metadata and configuration of IoT devices. The configuration of the smart

environment can be facilitated using a developed intuitive graphical editor that enables

creating a model of the desired state of the user’s environment. Furthermore, Mayer et al.

lead with the complexity problem of configuring IoT environments by constraining end

users’ scope to the specific functionality offered by the graphical editor. Nevertheless,

their approach does not use a process-based approach for the setup.

Hirmer et al. (2016) also have a goal similar to ours: facilitating the configura-

tion of IoT environments even for domain users that are not familiar with all technical

details. By providing basic information about the physical environment, their approach

enables easy provisioning and configuration of devices. Furthermore, users’ monitoring

and managing of the IoT environments are enabled by its Digital Twin, i.e., the digital

representation of the physical environment. However, the Hirmer et al. does not consider

requirements to propose suitable software and hardware components neither a process-

based setup.

Yelamarthi et al. (2017) introduce a modular IoT architecture. Their work is sim-

ilar to our approach since they use modular building blocks to create an IoT architecture,

addressing the challenges in selection of computational devices, wireless connectivity,

internet gateway, and application cloud server to facilitate implementation in diverse ap-

plications. It shows that IoT architectures work best when built in a modular manner since

replacing parts of the architecture becomes easier. We built on the idea of such a modular

architecture and extended it by providing a means to set it up through a holistic lifecycle

method based on our toolbox containing a large variety of building blocks.

In the past, many IoT environment models have been developed. These mod-

els contain information about the devices of the IoT environment, their properties (e.g.,

location or computing resources), the attached sensors and actuators, and their intercon-

nection (FRANCO DA SILVA; HIRMER, 2020). However, these models highly differ in

their content, the formats being used, and the domain they are applied to. Famous exam-

ples for such models are SensorML (OGC, 2008), IoT-DDL (KHALED et al., 2018), or

IoT-Lite (BERMUDEZ-EDO et al., 2017). Large organizations maintain some of these
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models, and others have been created in research projects. Furthermore, some of them are

even standardized. These models can be used to provide a standardized mean to describe

the building blocks we aim for. Since many models are built based on ontologies (e.g.,

using the Web Ontology Language OWL (ANTONIOU; HARMELEN, 2004)), important

aspects, such as hierarchies and inheritance, dependencies, and attributes, are already pro-

vided. Therefore, these models can be considered as a foundation for the building block

design.

Jusas (2017) doctoral dissertation uses a feature modeling-based method for the

development of an IoT-oriented application product line. The modeling of the IoT devices

in many standard features is raised, and a Pareto optimal configuration of all possible IoT

configurations satisfying the user requirements is elaborated. As we used our building

blocks to deal with the IoT heterogeneity, this work used the development methods based

on feature models to deal with the complexity of requirements and the heterogeneity of

technology and environmental factors. Although this approach considers finding the most

suitable environment according to specific requirements, no process-based setup is given.

2.4.2 IoT and BPM

In the literature, many works combining BPM and IoT are emerging. As shown

by Janiesch et al. (JANIESCH et al., 2017), IoT poses challenges that will require en-

hancements and extensions of the current state-of-the-art in the BPM field. However, this

integration can enable a better basis for such complex systems’ planning, execution, and

safety.

The work of Torres et al. (TORRES et al., 2020) introduces a systematic mapping

study to find out how current solutions are modeling IoT into business processes. In their

work, they refer to the well-known term IoT-aware business process as IoT-enhanced

business process. They understand that business processes are more than informed or

alerted by existing IoT elements but strengthened by its use, increasing their value and

quality as a result. For example, business processes embracing IoT devices will be able

to take real-world data into account to make more informed decisions, automate business

process tasks, and improve their execution.

Suri et al. (SURI et al., 2017) present the IoT-BPO: a semantic framework for

developing IoT-aware business processes. First, they formalize IoT resource descriptions

in the context of business processes. Second, they formalize IoT properties and allocation
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rules for optimal resource management. Finally, the resource conflicts are resolved based

on a set of pre-defined strategies.

2.5 Chapter Summary

In this chapter, we presented the main background of this study, first describing

the main concepts and challenges of the IoT paradigm, emphasizing the present hetero-

geneity presented in the devices, protocols, and other related technologies. Following, we

presented the discipline of BPM, and its fundamental concepts. Moreover, we presented

some relevant BPMN 2.0 objects and discussed a exemplary of process model of a sim-

plified smart irrigation to provide a practical example of the presented elements in this

section. Then, notwithstanding, we presented the BPMS concept. Also, we discuss the

mutual benefits of IoT and BPM and which challenges are tackled with the intersection

of both areas.

Moreover, in this chapter, we presented numerous related works divided into two

different categories. The first category focuses on the IoT field contributions and con-

tains different architectures, models, and methods related to our approach. Approaches

such as Hirmer et al. (2016) and Mayer et al. (2014) focus on facilitating the configu-

ration of IoT environments in some aspect. The first one enables easy provisioning and

configuration of devices by providing basic information about the physical environment

and monitoring the implemented system through a digital twin. The second one offers

a graphical editor constraining the users’ scope but reducing the complexity. Franco da

Silva (2017) goal is to set up IoT environments with as little effort as possible using the

OASIS standard TOSCA to automatically configuration. The approach from Yelamarthi

et al. (2017) introduces a modular IoT architecture to tackle the complexity implementing

diverse applications. The BBs and BBIs of our Toolbox were built on the idea of such a

modular architecture and extended through a holistic method. In addition, Jusas (2017) a

feature modeling-based method to model IoT devices in many standard features, similiar

to what we did to model IoT devices to our BBs and BBIs. Furthermore, some models are

presented, such as SensorML (OGC, 2008), IoT-DDL (KHALED et al., 2018), or IoT-

Lite (BERMUDEZ-EDO et al., 2017), which were used to inspire the modeling of our

building blocks.
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3 HOLISTIC METHOD FOR CONFIGURING IOT ENVIRONMENTS

This chapter presents a holistic method that describes the necessary steps domain

experts need to undertake to set up IoT environments and their applications from scratch.

The method is depicted in Figure 3.1 and detailed in Section 3.2.

The foundation for this method is our toolbox, containing a predefined set of build-

ing blocks that can be combined to set up the desired IoT environment and a predefined

set of requirements to help domain experts select suitable building blocks.

Figure 3.1: Method for setting up IoT environments based on our toolbox

Source: The Authors

Even though our method is generic in terms of the kinds of applications that should

be set up, applying it specifically to the IoT domain emphasizes its strengths. In the

IoT, many heterogeneous software and hardware components usually need to be set up,

overwhelming application developers. Our method aims to reduce the effort for setting up

IoT environments and applications by decreasing the necessary domain knowledge, since

the technical details are abstracted through the building blocks.
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The remainder of this chapter is structured as follows: In Section 3.1, we introduce

the toolbox and its definitions. Section 3.2 details the method describing step-by-step.

Finally, in Section 3.3, we summarize the current chapter.

3.1 Toolbox

The toolbox serves as the foundation for our method. It offers a set of building

blocks (BB) that are divided into different categories. These categories include, for exam-

ple, sensor, actor, communication, gateway, or platform. The BBs are provided by experts

in building IoT applications and are provided by the toolbox, which domain experts can

then access.

In order to ensure understanding and applicability of our approach, we introduce

a formalization of the toolbox. A BB is formalized as follows:

Definition 3.1.1 (Building Block). Let bb ∈ BB be a tuple bb := (Name, Type, Icon,

Description,Dependencies, Capabilities), whereas BB is the set of all available build-

ing blocks in the toolbox TB. A bb has the following properties:

• Name 6= ∅: unique name of the building block.

• Type 6= ∅ : the type t ∈ T , where T is the set of available bb types.

• Icon 6= ∅: icon of the building block.

• Description: optional description.

• Dependencies: set of bb ∈ BB related to this building block.

• Capabilities: set of capabilities of the building block, used to map user require-

ments to the BBs of the toolbox.

Figure 3.2 depicts the structure of a building block on the left. Each block contains

a name, a type, a description (suitable for domain experts), dependencies to other building

blocks, an icon to ensure recognition, and a set of capabilities that can fulfill the users’

requirements. The example on the right of Figure 3.2 is a BB for the communication

paradigm publish-subscribe, enabling loosely coupled communication.

In an initial phase, experts in the IoT domain need to agree upon a common list

of building blocks, which must be extensible, since new technologies frequently appear

in the IoT. We are aware that this is an ambitious goal, which would require some sort

of standardization IoT experts agree upon. In our vision, IoT technology providers create
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Figure 3.2: Left: Remainder of a Building Block, right: Building Block example for
publish-subscribe communication

Name

Type

Description

Dependencies

Icon

Capabilities

BB:
Building Block

Name: Publish-
Subscribe

Type:
Communication

Description: Loosely 
coupled communication

Dependencies: None

Icon: 

Capabilities: 
Loose Coupling

BB:
Building Block

Source: The Authors

building blocks themselves in order to promote their new solutions and add them to the

toolbox. With a strong community, the toolbox could grow to a comprehensive collection

of all kinds of IoT components.

Each BB has one or more implementations, referred to as BBI in the following. A

BBI is a concrete implementation of a BB, which is formalized as follows:

Definition 3.1.2 (Building Block Implementation). Let bbi ∈ BBI be a tuple bbi :=

(Name,Artifact, Interface,Description, Icon, ImplementedBB,Dependencies), whereas

BBI is the set of all available building block implementations in the toolbox TB. A bbi

contains:

• Name 6= ∅: unique name of the building block implementation.

• Artifact: software artifacts.

• Interface: interface description.

• Description: optional description.

• Icon 6= ∅: icon of the building block implementation.

• ImplementedBB 6= ∅: a list of BB implemented by the building block imple-

mentation.

• Dependencies: list of bbi ∈ BBI related to this building block implementation.

• Features: set of features of the BBI, used to map user requirements to the BBIs

of the toolbox.

Furthermore, bbiMapping : BB → BBI corresponds to the mapping, which assigns a

BB to one or more BBIs.
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A BBI can contain a software artifact, which can be of different types, e.g., a

Docker container 1, a cloud service 2, or a binary application. Furthermore, BBIs can have

a set of dependencies that could require the installation of different BBIs. For example,

some BBIs might require installing certain programming languages (e.g., Java, Python)

or a specific operating system. In addition, each BBI requires a definition of its interfaces

to enable easy orchestration via business processes. In the case of software artifacts, these

interface descriptions should be defined based on standards, such as WSDL (Web Services

Description Language) (WEERAWARANA et al., 2005).

This set of attributes should describe the building block implementations and how

they can be managed and configured. Also, the different communication languages they

support, and eventually, the relevant IoT semantics of how a BB or BBI can use another

building block.

For our BB example in Figure 3.2, implementations include MQTT brokers, such

as Mosquitto (LIGHT, 2017) or RabbitMQ (RABBITMQ, 2007). Once domain experts

decide to use the publish-subscribe paradigm, they will find the according building block

in the toolbox and will be able to select one of the corresponding implementations.

Moreover, a significant feature to aid the user experience using the toolbox is the

recommendation of the BBs based on a set of requirements elected by the user. This

recommendation should be able to map stakeholder’s requirements to BB’s capabilities

and/or BBI’s features. The toolbox contains a predefined set of requirements which can

either be a functional requirement (e.g., Sensing Accuracy) or a non-functional require-

ment (e.g., Security).

In case the requirement is measurable, it must have a parameter attached to it. For

example, the user can select the requirement Data Transfer Rate and some parameters

might be required as input (e.g., at least 300 kbits/s). However, if the user selects a

non-functional requirement, there is usually no need for parameterization. Therefore, the

requirements and the requirements parameters are formalized as follows:

Definition 3.1.3 (Requirement). Let req ∈ Req be a tuple req := (Name, Type, Parameter),

whereas Req is the set of all available requirements in the toolbox TB. A req has the fol-

lowing properties:

• Name 6= ∅: unique name of the requirement.

• Type 6= ∅ : the type t ∈ T , where T is the set of available requirement types.

1https://www.docker.com/resources/what-container
2https://www.redhat.com/en/topics/cloud-computing/what-are-cloud-services
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• Parameter: optional parameter.

Definition 3.1.4 (Requirement Parameter). Let parameter ∈ req be a tuple parameter :=

(Label, Unit, Operator, V alue), whereas req is req ∈ Req in the toolbox TB. A

parameter has the following properties:

• Label 6= ∅: name of the requirement parameter.

• Unit 6= ∅ : unit of the requirement parameter.

• Operator: optional operator op ∈ Operators, where Operators is the set of

available operators.

• V alue: optional value of requirement parameter.

Finally, the BBs and BBIs can be defined in a hierarchical structure, meaning

that building blocks can inherit characteristics of other building blocks, enabling their

specialization. The depth of the hierarchy is arbitrary and is decided upon by the designer

of the toolbox. An example of the Wireless Connection BB hierarchy is depicted in

Figure 3.3.

Figure 3.3: Example of hierarchy of Wireless Connection BB

Source: The Authors
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3.2 Holistic Method for configuring IoT environments

After the toolbox is filled with BBs and BBIs, it can serve as a foundation for our

method to set up IoT environments. The following paragraph summarizes all the method

steps.

In step 1 of this method, domain experts and involved stakeholders discuss their

IoT environment or application requirements and define a set of requirements for the ap-

plication. The set of requirements is defined as R 6= ∅, whereas each r ∈ R describes a

specific application requirement. After that, in step 2, the toolbox recommends building

blocks selected by domain experts. In step 3, a business process is created by experts, us-

ing the BPMN 2.0 notation, based on the selected building blocks, defining the necessary

steps that need to be undertaken to set them up. In step 4, this process is executed through

a BPMS, guiding the domain experts in creating the IoT environment for their applica-

tion. In step 5, the IoT environment is already set up, and the application is running. This

step allows a continuous search for changes to the IoT environment for error detection or

for considering new requirements. In the final step 6, the IoT environment is retired once

an IoT application reaches its lifetime. In the following, the toolbox and the steps of this

method are described in more detail.

Additionally, each step has one or more feedback loops to the previous steps,

ensuring that new requirements or changes in the selection of building blocks can be done

throughout the whole method.

Step 1: Requirement Specification

In the first step of our method, IoT application developers, i.e., the domain experts

and their stakeholders, need to define a set of requirements for their application.

As discussed in the previous section, a requirement is a condition or capability

needed by the user to solve a problem or achieve an objective. These requirements in

an IoT system’s context can be functional (e.g., sensed variable, sending rate) or non-

functional (e.g., lifetime, reliability), typically referred to as quality-of-service (QoS) (BALEN;

ŽAGAR; MARTINOVIC, 2011) parameters in the IoT domain.

A service in IoT can be defined by the combinations of “functionalities, interop-

erability, interactions, communication abilities, related data and ability to use the related

data” (BHADDURGATTE; B.P, 2016) of devices for implementing the IoT system to
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meet the requirements of specific applications and end-user systems.

Our toolbox provides a list of predefined requirements for the most common IoT

application scenarios where the stakeholders can find the ones that fit their needs. The

list should be kept up-to-date to the current state-of-the-art of the IoT field. An IoT appli-

cation can be composed of various components (e.g., different devices, communication

protocols) that have their particular specializations and can come to satisfy one or more

requirements.

The heterogeneous nature of IoT hinders the specification of requirements. As

a consequence of the multi-layered architecture of IoT systems, the requirements need

to be specified differently for each layer (COSTA; PIRES; DELICATO, 2017). To cope

with this, the requirements in the Toolbox are divided into types (e.g., sensing, acting,

communication), and each type is mapped to one or more categories of BBs.

These requirements need to consider different aspects, such as network capabil-

ities, used communication paradigms, costs, efficiency, security, privacy, available com-

puting resources, and so on. Therefore, defining such requirements might involve many

different stakeholders and even a requirements engineer, i.e., a person who would un-

derstand the domain of the desired application and possess enough IoT knowledge to be

aware of the convenient features and resources for the development.

To enhance the reusability of the toolbox in multiple projects, a systematic collec-

tion of requirements and the respective chosen building blocks are documented to provide

an overview of possible relations, assisting in requirements engineering for future appli-

cations.

Step 2: Building Block Selection

In the second step of our method, involved stakeholders select the building blocks

they need based on the set of requirements created in step 1. The toolbox will contain a

collection of best practices in IoT application development and, hence, give an overview

of which technologies and approaches are available without the need for domain experts

to acquire this knowledge themselves.

The selection of BBs is made based on recommendations by the toolbox, which

are generated by matching the requirements of the IoT application to the capabilities of

the building blocks and the features of the building block’s implementation. The involved

stakeholders conduct the final selection. We define the mapping that assigns a requirement
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Table 3.1: Example of BB and BBI selection.
Building Block Matching Requirement Implemented by BBI
UWB localization indoor localization RTLS localization modules
BLE localization indoor localization BLE modules
WiFi wireless communication WiFi network
LTE wireless communication 4G network
5G wireless communication 5G network

Source: The Authors

to one or more building blocks as reqMapping : R→ BB.

To make this selection process clearer, let us assume that a company aims to de-

velop a smart factory application in which self-driving vehicles transport materials on the

shop floor. The goal of this application is that these vehicles dynamically determine the

best routes and consider other vehicles and people, and utilities of the shop floor. To

achieve this, the vehicles need to be equipped with sensors to monitoring the environment

and need to communicate with other vehicles and participants on the shop floor through a

wireless network. Setting up such a complex scenario requires the expertise of many dif-

ferent stakeholders that need to agree upon functional and non-functional requirements.

Regarding functionality, for example, an indoor localization system is essential to monitor

the position of vehicles, utilities, and people on the shop floor. In addition, a broad-band

wireless network needs to be established to cope with the high data load. Furthermore,

non-functional requirements are of high importance in such safety-critical environments.

Security, safety, robustness, accuracy, and real-time capabilities are only some of the es-

sential requirements of this scenario. In workshops, the stakeholders need to assess and

discuss the requirements.

Based on the functional requirements “indoor localization" and “wireless com-

munication", we show in Table 3.1, which BBs and BBIs could be recommended by the

toolbox.

If we now consider the non-functional requirements, such as high efficiency, ro-

bustness, and accuracy, the toolbox would filter the resulting BB list accordingly. For

example, localization using Bluetooth Low Energy (BLE) and triangulation has issues

regarding accuracy and also efficiency. Hence, the BB “BLE localization” would not be

recommended by the toolbox. Similar issues occur for WiFi connections since they tend to

be unstable. Instead, the toolbox could suggest using Long Term Evolution (LTE) (COX,

2014) or 5G (TOWNSEND et al., 2014) networks. The company can then choose de-

pending on costs or already available infrastructure on the shop floor.
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This example illustrates how requirements and building blocks fit together. After

the set of BBs and BBIs is retrieved from the toolbox, the domain experts and their in-

volved stakeholders need to choose among the BBs. Once the BBs are selected, they need

to choose from the BBIs the most fitting ones. This decision is usually made based on the

(e.g., hardware) costs or available expertise.

Step 3: Process Creation

The third step deals with the business process modeling (DUMAS et al., 2018) to

guide domain experts and involved stakeholders through the process of setting up their

IoT environment and applications. The tasks of the process set up the previously selected

BBIs, whereas usually several process tasks are required for each BBI. The business pro-

cess creation needs to be conducted manually by experts, which can become a cumber-

some and time-consuming task.

Even though our approach deals essentially with the configuration of the IoT envi-

ronment, it gives the foundation for the creation of an IoT-aware process, helping to deal

with some of the commonly tackled challenges when exploiting applications using BPM

and IoT. For example, in order to collect all relevant data, sensors need to be carefully

placed, whereas the placement of the device is part of the environment setup.

Hence, setting up a given BBI, in most cases, will require common steps to be

taken even in different scenarios, and the toolbox categorizes these typical steps as best

practices that can be used for the process creation. Assume, for example, that a BBI sets

up an indoor localization system on the shop floor. The corresponding steps that need to

be undertaken are mostly the same for different companies with only minor differences

based on the layout of the shop floor.

An example of a process is provided in Figure 3.4 in BPMN 2.0 syntax. As dis-

cussed above, this process shows a simplified version of the different steps to set up an

indoor localization system using UWB (ULLAH et al., 2009) technology. In parallel, the

receiver and sender hardware need to be installed on the shop floor. Furthermore, software

for the position calculation needs to be installed in an edge cloud environment, which will

later communicate with the receivers. Finally, after configuration and measurements of

the hardware, the system can be integrated, tested, and then go into production.

Note that the configuration of different BBIs can include multiple tasks in the

process due to its complexity, as shown in our example process. For manual creation, the
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Figure 3.4: Exemplary simplified BPMN 2.0 process to set up the indoor localization
system.

Source: The Authors

best practices can help in selecting the tasks for the creator. Which tasks can be conducted

in parallel needs to be decided by the creator as well. Hence, some domain knowledge is

required for process creation. In doubt, the steps should be conducted sequentially.

The toolbox allows for a huge variety of components to be selected, with different

levels of complexity regarding its manipulation. For example, there are plug-and-play

devices embedded with sensors and MCU (microcontroller unit) on the one hand and, on

the other hand, the user can also select a sensor module for the application setup, that will

need the assembled into a development board, like Arduino or users can build a totally

custom board in case they have the engineering skills. It is not a concern of the Toolbox

how the user will wire up the modules or build the custom board.

Step 4: Process Execution

In step 4, the process is then executed to realize the IoT environment’s setup. For

BPMN 2.0, for example, the established BPMS Camunda could be used. In each step

of the process, domain experts get notifications about the tasks they need to conduct, for

example, plugging in sensors, configuring a WiFi connection, or installing software on

IoT devices. Documentation of the different technologies that are set up can be found in

the BBIs. In simple scenarios, setting up the IoT environments should also be possible

for non-expert users. However, usually, this requires domain-specific expertise, as shown

in our Smart Factory example. After task completion, the process moves to the next task.

Parallelism is usually supported by such BPMS as well.

The toolbox provides an interface allowing the user to visualize the big picture
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of the process and show the current tasks that need to be completed. Depending on the

task type, the user can provide parameters when needed. Most of the current BPMS will

be supported in future work, and the Back-End will encapsulates the processing and the

logic of the chosen BPMS for the respective process. For example, if the process modeler

chose Camunda (CAMUNDA, 2021), the Back-End will be prepared to communicate

with the workflow engine through the Camunda Rest API, i.e., PUT, POST, and GET

HTTP requests.

Once the process has successfully reached its end, the IoT environment is set up.

This process can then be reused in similar scenarios, sometimes only with minor necessary

adaptations. However, in case of issues in the process creation or execution, e.g., due to

unforeseen errors, experts need to be available to cope with occurring difficulties and

fix the problems. All occurred problems should then be documented inside the BBI’s

description so that this knowledge is preserved.

Step 5: Process Monitoring and Adaptation

In this step, the IoT environment is already set up, and it is monitored in case of

some bad behavior needing some adaptation or a change in the requirements. It is not

unusual that adaptations are necessary overtime after an IoT environment was set up. For

instance, due to changes in the application and, hence, changes in the requirements or due

to failing devices that need to be replaced.

Our toolbox does not provide a monitoring strategy for IoT environments and

applications. The monitoring feature is part of future work and the goal is to integrate the

prototype with an IoT platform like Azure 3 or MBP 4.

If adaptations are necessary, the feedback loops in our method allow us to return

to one of the previous steps, redefining the application’s requirements, adding or remov-

ing requirements, changing the selection of BBs and BBIs, or executing the process for

configuring the environment again.

In case of changes in the selection of BBs and/or BBIs, the process creation step

then creates a so-called adaptation process, which includes removing unnecessary BBIs

and only setting up and integrating the newly added ones. After executing the adaptation

process, the IoT environment is set up again, considering the new requirements.

3https://azure.microsoft.com/
4https://github.com/IPVS-AS/MBP
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Step 6: Process Retirement

The final step is the retirement of the IoT environment, which is executed once

an IoT application reaches its lifetime. In this case, creating a termination process is

required, reversing the steps of the original process setting up the environment.

Using the process for creation as a foundation eases the conception of the termi-

nation process. Providing a termination process together with the creation process in Step

3 is a best practice using the Toolbox to ease the execution of the step. However, it is

known that after some time running the IoT environment, some tasks might change in the

provided termination process.

After this process is executed, the IoT environment is retired. Note that the cre-

ation and termination processes should be stored since they can be helpful to re-setup IoT

applications after some time.

3.3 Chapter Summary

In this chapter, we presented our contributions. In Section 3.1, we describe our

toolbox that serves as the foundation for our method. Along this section we introduce the

formalization of the definitions of the toolbox: Building Block, Building Block Implemen-

tation, Requirement, and Requirement Parameter.

Subsequently, we present our holistic method and detail each step. In the Require-

ment Specification step, stakeholders define the requirements of the IoT environment.

The toolbox provides a pre-defined set of requirements to be selected by the users. In

the Building Block Selection step, the BBs and BBIs are selected based on the previously

defined requirements. The recommendation of BBs and BBIs is made by the Matching

Algorithm, which is based on the defined requirements. The Process Creation deals with

the business process modeling to guide the stakeholders through the process of setting up

their IoT environments and applications. Afterward, in the Process Execution step, the

modeled process is executed on a BPMS process engine in order to realize the IoT en-

vironment’s setup. Then, in the Process Monitoring and Adaptation step, the configured

environment is monitored, and adaptations could be made through an adaptation process

request. Finally, in the Process Retirement step the termination process is executed to

retire the IoT environment.
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4 PROTOTYPE

This chapter describes the development of a practical application of the approach

presented in Chapter 3. The web-based prototype was developed to serve as a proof-

of-concept for our toolbox and method. The prototype is available on Github 1. The

homepage of the prototype is depicted in Figure 4.1.

Figure 4.1: BBI selection example

Source: The Authors

In the first section of this chapter, the architecture of the prototype is described,

designating the architectural pattern and the reasons of using it. The technologies section

then introduces the technologies used for the development of the prototype, including the

programming languages and the motivation of using for this context. In the following

sections, the server component and the client component are respectively described, ad-

ditionally presenting its UML class diagrams and sequence diagrams (SOMMERVILLE,

2015). Finally, the chapter summary section summarizes this chapter.

4.1 Architecture

The first step for developing the prototype was the definition of the architecture

based on the pre-established requirements: modularity, reusability, and scalability. The

modularity eases the individual development of the prototype’s features, i.e., each method

1https://github.com/IoToolbox
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step and other complex features, such as the requirements matching. Reusability is a good

software development practice and improves the software product development process.

Finally, scalability is important because we aim to use the prototype as a foundation for a

large-scale open-source IoT platform in future work.

Considering all the prototype requirements, the Microservice Architecture (MSA) (NEW-

MAN, 2015) was chosen. A Microservice Architecture is a distributed application where

all its modules are microservices. First, a microservice realizes a distinct architectural

capability and exhibits a high degree of independence regarding development and op-

eration (RADEMACHER; SACHWEH; ZüNDORF, 2017). Thus, the Microservice Ar-

chitecture denotes an architectural style that is focused on building distributed software

systems as sets of specialized, autonomous services (NEWMAN, 2015), which commu-

nicate with each other through lightweight mechanisms (i.e., a RESTful API).

The Microservice Architecture does not favor or forbid any particular program-

ming paradigm and the advantages are commonly accepted both in academia and industry,

i.e., maintainability, reusability, scalability, availability and automated deployment (AL-

SHUQAYRAN; ALI; EVANS, 2016).

Applying the Microservice Architecture to our approach, we isolate the complex

tasks of the project into different and independently developed microservices. Some com-

plex services are the matching between the set of selected requirements and the building

blocks, the BPMS interoperability, and other simple tasks, like user authentication in the

platform. Each microservice is detailed in Section 4.3.

Figure 4.2: Proposed MSA architecture of the prototype

Source: The Authors
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Figure 4.2 depicts the prototype architecture and its microservices, where the We-

bApp (Front-End) is the entry point for the user to the prototype. Then, all requests from

the Front-End to the Back-End first go to the Main API through the REST API. Then,

suppose the request is forwarded to another microservice. In that case, the request com-

municates with the desired module via the exposed API, e.g., communication with the

Matching Service is done via gRPC API, while BPMS Handler Service is via REST API.

However, the Data Extraction Service does not expose an API but only communicates

with the REST API of the Main API module.

4.2 Technologies

The key motivation for developing the prototype is to ease, graphically and inter-

actively, the entire process of configuring IoT environments and applications. Therefore,

the prototype features aim to go through the presented method step-by-step, ranging from

requirements elicitation and building blocks selection to the functional configuration of

the environment with the support of BPM.

Considering the opportunity provided by the Microservice Architecture, we chose

the technologies, programming languages, and libraries for each microservice and the ap-

plication interface individually, taking into account the service and function implemented

by the microservice and the developer’s familiarity with these resources.

The main programming languages used in the prototype development are JavaScript

and Python. JavaScript was initially created for developing client web applications run-

ning in the browser, but nowadays, it can also be run on the server-side. Therefore, work-

ing with JavaScript allows the developer to program for the client- and server-side using a

single programming language, enabling the reuse of components and resources (MOZILLA,

2015). This, in line with the developer’s familiarity with the language, was the motivation

to implement most of the microservices and the graphical interface using the respective

programming language, detailed in Section 4.3 and Section 4.4, respectively.

Python programming language was used to implement services that require more

processing and are somehow more complex. Millman and Aivazis (2011) state that

Python has become the standard language for exploratory, interactive and computation-

driven research. Moreover, according to Oliphant (2007), the Python programming lan-

guage stands out as a scientific computing platform for reasons such as an open-source

license to use and distribute any Python-based applications; no concerns about portabil-
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ity as it works across platforms; clear syntax and sophisticated constructs that allow for

object- or procedure-oriented code; ability to interact with a wide variety of other software

components.

A key technology for the developing of the prototype is Docker (Docker, 2021).

According to Jamillo et al. (JARAMILLO; NGUYEN; SMART, 2016), Docker has been

a disruptive technology which changes the way applications are being developed and dis-

tributed. With a lot of advantages, this technology is a very good fit for implementing mi-

croservices architecture. Docker is an example of a container service that is based on oper-

ating system virtualization and Linux container services. It encapsulates the microservice

in a Docker container, which can then be maintained and deployed independently. Each

of these containers will be responsible for running a specific business function, i.e., an

individual microservice (RAJ; JASMINE, 2021).

Microservices should be independent components, each having their own isolated

logic being equipped with dedicated memory persistence tools. In a Microservice Ar-

chitecture, the database is defined as a distributed-type database rather than a centralized

database, meaning the individual choice of database technology for each microservice.

The microservice’s dedicated databases in our prototype use MongoDB (MongoDB Inc.,

2021): an open-source document-oriented NoSQL database which allows high efficiency,

scalability, and data replication.

Moreover, the microservice’s communication with each other is conducted through

lightweight mechanisms, using the Representational State Transfer (REST) mechanism,

an architectural style that enables access to business logic in abstract resources at Uni-

versal Resource Identifiers (URI) using HTTP. REST facilitates loosely coupled sys-

tem development by providing JavaScript Object Notation (JSON), a lightweight data-

interchange format. Besides, the gRPC (Google, 2021) mechanism is another architec-

tural style. It is a modern open-source, high-performance Remote Procedure Call (RPC)

framework founded by Google. It uses the message format protobuf, which is highly

compact and efficient to serialize structured data.

Both mechanisms enhance reusability and flexibility in the applications. However,

the most important advantage of using these architectures is that a single application can

seamlessly interact with the software developed in many other languages, maintaining the

decoupling from the implementation platform.

In the following sections, Back-End (i.e., microservices, APIs, and databases) and

the Front-End (i.e., the interface of the prototype) are detailed.
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4.3 Back-End

The Back-End is responsible for the business logic implementation of the proto-

type and it is composed of the main API and a few microservices, besides the BPMS

integration for process management and execution environments. All the Back-End mod-

ules are illustrated in Figure 4.3 and summarized in Table 4.1. Each of them is presented

in the following subsections.

Figure 4.3: Back-End Microservices

Source: The Authors

Table 4.1: Back-End Microservices descriptions

Microservice Descriptions

Main API The gateway between client- and server-side. Also, CRUD op-
erations of Toolbox models.

Authentication Implements the prototype’s authentication flow.
Matching It is responsible for implementing the requirement, BBs, and

BBIs matching algorithm.
BPMS Handler The gateway between the prototypes backend to a BPMS. It

processes and translates the prototypes logic to a target BPMS
and communicates with it.

Data Extractor Responsible for gathering, filtering, and processing data to
BBs and BBIs models.

Source: The Authors

4.3.1 Main API

The main API is implemented in NodeJS (OpenJS Foundation, 2021), an open-

source JavaScript server environment with a REST-based program interface. It follows

the Back-End for Front-End Microservice Architecture pattern (PAVLENKO et al., 2020),

meaning a microservice implemented that serves as a gateway for requests from the Front-
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End.

As the entry point of the Back-End, this module serves as the orchestrator between

the Front-End and the Back-End interacting via REST-API. The requests are processed

or forwarded to some of the microservices (e.g., Matching Service), which means the

execution of basic CRUD operations for the application models or performing requests

to another application’s microservices and combining responses in case of one client’s

action leads to this case.

Figure 4.4: Main API class diagram

Source: The Authors

Figure 4.4 shows the class diagram of the Main API microservice. The main mod-

els of the prototype are managed by this component, meaning this service is responsible

for all the CRUD operations, i.e., creating, reading, updating and deleting, the BB, BBI,

Requirement, Project and Process models. To execute these operations, the implemented

REST API exposes, for each of these models, specific endpoints to create, read, update or
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delete executing POST, GET, PUT and DELETE requests.

4.3.2 Authentication Service

The Authentication Service implements the authentication and authorization flow

of the prototype. This microservice is implemented in NodeJS with a gRPC communi-

cation mechanism. The motivation to have an authorization flow comes with the need of

having different roles in the application. The User role has the permission to follow basic

steps of the implemented method. The differences are that the Admin has the permission

to create, update and remove the application models, and in the Process Creation Step,

the User can only request the creation of the process. In contrast, the Admin can attend

to the process creation request. Figure 4.5 shows the class diagram of the Authentication

Microservice.

Figure 4.5: Authentication Microservice class diagram

Source: The Authors

The decision to have a microservice module dedicated to the authorization flow is

to decouple the need for authentication to the rest of the application’s microservices. This

way, the microservices can work alone without authentication, easing their development

and making them detachable from the prototype. For example, the Matching Microservice

can be easily used by external projects.

When the User authenticates in the prototype, they make a request to the Main

API Microservice. The request is then forwarded to the Authentication Microservice

where it is processed. In the body, the request contains the user’s username and password.

Once the request arrives, an entry on the User’s database is searched containing the same

username. If it is found, the password from the request’s body is encrypted and then

compared to the entry’s password. If it is a match, a token is generated and returned to the

Main API and forwarded to the request’s source. This sequence is illustrate in Figure 4.6.
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Figure 4.6: Authentication sequence flow

Source: The Authors

4.3.3 Matching Service

The Matching Service is responsible for recommending BBs and BBIs according

to the selected Project Requirements. It is implemented using Python programming lan-

guage and communicates with the Main API using gRPC, meaning both microservices

share the same contract and know each other. Implementing the recommendation system

into an individual microservice eases its use for different applications. It can be improved

in future work, including developing a more complex recommendation system using arti-

ficial intelligence (RUSSELL; NORVIG, 2016). Moreover, the complexity of this feature

can lead to heavy processing that can be handled by scaling the service, which the Mi-

croservice Architecture also aids.

According to Isinkaye et al. (2015), recommender systems are information filter-

ing systems that deal with the problem of information overload by filtering vital infor-

mation fragments out of a large amount of dynamically generated information according

to user’s preferences, interests, or observed behavior about an item. In the case of the

prototype, the recommendation system aims to reduce the overwhelming task of choos-

ing among the massive heterogeneity of IoT components, filtering according to the user’s

requirements for a specific IoT environment configuration.

The recommendation system for the prototype matches the defined requirements

with the BBs and BBIs of the toolbox. The match is performed first trying to fit a re-
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quirement to a BB’s capability and then trying to match with a BBI’s feature. If there is a

match, the ID of the BB or BBI is appended to the corresponding match list.

4.3.4 BPMS Handler Service

The BPMS Handler Service is responsible for bridging the connection between

the Main API and the desired BPMS. The prototype will be BPMS agnostic in future

work, enabling the communication with several BPMS, e.g., Camunda, Signavio, Bonita.

Currently, the service is capable of communicating with Camunda BPMS through Ca-

munda REST API. This microservice is meant to implement all the necessary logic to

create a process to the desired BPMS and manipulate it according to the chosen envi-

ronment. The motivation to have a dedicated microservice to this responsibility is the

expected complexity once different BPMS logic is added.

This microservice implements all the process execution environments, including

creating a process deployment to the BPMS system by uploading a .bpmn file, creating a

definition of the process on the BPMS, and starting an instance of the process definition,

and complete tasks of the process instance. Figure 4.7 shows the class diagram of the

microservice.

Camunda Platform

Camunda (CAMUNDA, 2021) is an open source platform from Germany, which

supports the modeling and automation of business processes using BPMN, Case Manage-

ment Model and Notation (CMMN) and Decision Model and Notation (DMN) diagrams.

The Camunda’s infrastructure and the typical user roles are depicted in Figure 4.8, the

main components are described below:

• Process Engine: A Java library responsible for executing BPMN 2.0 processes. It

has a lightweight core and uses a relational database for persistence.

• Camunda Modeler: The modeling environment for BPMN 2.0, CMMN and DMN

diagrams.

• Web applications: Composed of a REST API – allows to use the process engine

from a remote application or a JavaScript application, the Camunda Tasklist – a web

application for human workflow management and user tasks that allows process
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Figure 4.7: BPMS Handler class diagram

Source: The Authors

participants to inspect their workflow tasks and navigate to task forms in order to

work on the tasks and prove data input, the Camunda Cockpit – a web application

for process monitoring and operations, allowing to search for process instances,

inspect their state and repair broken instances, and the Camunda Admin – a web

application that allows managing users, groups and authorizations.

When deploying a set of BPMN 2.0 files to the process engine, a process deploy-

ment model is created, then it will also create a registration for this deployment with the

process engine. If the deployment of an already deployed process is performed, it will be

resolved based on the process definition keys. The user can start a process instance once

the user has a process definition. Multiple instances can run in parallel, even from the

corresponding process definition. Moreover, the process instances can have several tasks,

where the User tasks can be inspected and manipulated through the Camunda Tasklist.

The BPMS handler service encapsulates all the logic needed for the prototype

to communicate with the Camunda Platform through the Camunda REST API. This in-



53

Figure 4.8: Camunda’s infraestructure and components

Source: Camunda Platform community (2021)

cludes the functionality of deploying a process uploading the corresponding BPMN 2.0

file to the Camunda process engine, starting an instance of a process definition, getting the

respective process XML and task list, and also claim, assign, and complete user tasks.

4.3.5 Data Extractor Service

The Data Extractor Service is responsible for getting input data, usually .csv files,

from well-known databases, filtering, aggregating, and parsing the data to create BBs

and BBIs for the toolbox. Hundreds of BBIs were created this way so that the matching

algorithm could be trained and for the toolbox to have a good range of options for user’s

applications.

The initial input batch data was from Mouser Electronics 2. There are thousands of

devices including sensors, actuators, microcontrollers, gateways, routers, wireless mod-

ules, and so on. Some categories of devices were selected and then their .csv files were

used as input for the microservice. Each input data was annotated with a previously de-

fined building block, e.g., csv files of Ambient Light Sensor downloaded from the Mouser

website used as input for BBIs for the BB Ambient Light Sensor.

The data extraction pipeline is depicted in Figure 4.9. First, a batch of .csv files is

2https://www.mouser.com/
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Figure 4.9: Data extraction pipeline

Source: The Authors

used as input. Then, the different files are merged into a unique file to ease the extraction.

The second step of the pipeline reads all the headers from the individual CSV file. Then,

these headers are annotated as mandatory and important. For example, Sensitivity and

Acceleration can be annotated as mandatory, and Maximum and Minimum Operating

Temperature can be annotated as important in a batch of Ambient Light Sensors files.

With the list of mandatory files, the entries are then filtered. If the entry does not have all

the mandatory headers, it is discarded, as is shown in Algorithm 1.

For each column of each filtered entry, if the value is valid, it is mapped to some

feature. A BBI is composed of these features. Besides, more details are described for

each entry with data from a request made to the Mouser API. After parsing the entry, the

BBI is created with the information from the API plus the mapped features and is then

saved to the toolbox database.

Algorithm 1: FILTERDATA filter an CSV file entry according to annotated
headers

Input: An entry e from a csv input file, and a set of C = {c1, c2, . . . , cn}
columns with the respective annotaded header

Output: False for filtered and True for not filtered
1 isV alid← true
2 for c ∈ C do
3 if isHeaderV alid(c) & valueOf(c) = ∅ then
4 isV alid← false

5 return isV alid
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4.4 Front-End

Frameworks and libraries can enhance JavaScript-based web applications to achieve

complex visual features and maintain a clean code structure overall. Therefore, to imple-

ment the Frontend, we collectively chose the JavaScript programming language with the

ReactJS 3 library, an open-source JavaScript library for building user interfaces and UI

components for web and mobile applications.

According to Vipul and Sonpatki (2016), ReactJS tries to solve the problem from

the View layer. It can very well be defined and used as the V in any of the MVC frame-

works. It breaks down parts of the view in the Components. These components encom-

pass both the logic to handle the display of view and the view itself. In addition, it can

contain data that it uses to render the state of the app.

Furthermore, the ReactJS library is used for building modular user interfaces using

a Single Page Application (SPA). The SPA principle enables web applications that do not

require a complete reload of the page to perform a change in the display or perform a user

interaction (VIPUL; SONPATKI, 2016). Moreover, Aggarwal (2018) states that ReactJS

shows high performance in comparison to other widely used frameworks and libraries

mainly due to the modifications performed first on a virtual Document Object Model

(DOM), followed by an alignment with the browser’s DOM, as opposed to the standard

approach of directly modifying the browser’s DOM.

The usage of ReactJS enables the integration with several modular components for

visualization and interaction of features. It leverages all the development and implemen-

tation of the Toolbox and the holistic method by allowing the implementation of one or

more Components to a Toolbox definition (e.g., BB) or, for example, a Step of the method.

Therefore, the Front-End represents a platform containing the Toolbox, including an in-

terface for the Requirements, Building Blocks, and Building Blocks Implementations, and

also contains the visualization and execution of each step of our holistic method.

Figure 4.10 illustrates the selected requirements for a specific project. In this

case, the requirements for the Sensing category are Sensing of Humidity AND Sensing of

Temperature with at least 0.5% of accuracy AND Sensing of Ambient Light with at least

0.2% of accuracy. Moreover, Figures 4.11 and 4.12 illustrate an example of BB and BBI

components interface, respectively.

Finally, an important component in terms of visualization is the Stepper, shown in

3https://reactjs.org/
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Figure 4.10: RequirementsPages component visual interface

Source: The Authors

Figure 4.13. For the end-user, it represents which is the current step of the method that

the application is currently in. The colored steps are already finished and the grey colored

steps are not yet executed.

In the context of the developed prototype, the chosen web architecture, program-

ming language, and library enabled a straightforward usage of external components and

libraries. ReactJS provides features which are particularly suitable for the implementation

of the platform overall: a component-based software engineering (CBSE).

CBSE allows the development of independent pieces of functionality as entities

that can be composed and when defined with clear interfaces, it promotes reusability, as is

the case with third-party external components (HOVLAND et al., 2003), and an effortless

integration with Cascading Style Sheets (CSS), external components (e.g., entire design

systems), and other libraries (e.g., bpmn.io).

Fedosejev (2015) details the typical architecture and primary component relations.

According to him, the App component is the entry point of a ReactJS application. Fur-

thermore, the App component is the orchestrator of the application and is responsible for
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Figure 4.11: Example of a BB component interface

Source: The Authors

Figure 4.12: Example of a BBI component interface

Source: The Authors

instantiating the smaller modular components, i.e., the components designed to be the

interface of the Toolbox and the method steps. Figure 4.14 shows the class diagram of the

designed components, and a brief description of each one is listed below:

• LoginPage: This component is responsible for authenticating the end-user in the

system. The user, after login, is redirected to the Dashboard component.

• Dashboard: The Dashboard is the home component of the application. In this

component, it is possible to see the number of relevant features of the prototype,

e.g., BBs, BBIs, and Projects. Also, this component has a button to initiate the

process and redirect the user to the ProjectPage.

• ProjectPage: This component is responsible for setting the current project of the

end-user. The user can also create a new project, describe its name, or select a pre-

viously created project. After selecting or creating a project, the user is redirected

to the RequirementsPage.

• RequirementsPage: The current component corresponds to the first step of the
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Figure 4.13: Stepper component

Source: The Authors

method. While in this component, the users can select and combine a set of pre-

defined requirements for their IoT environment with an easy-to-use interface.

• BBPage: At the current component, the users can select the suitable BB for their

IoT environment. It is shown for the user a list of BBs registered in the Toolbox.

According to the matching algorithm, the recommended BBs are highlighted to

help the user choose the BBs that fit its IoT environment requirements.

• BBIPage: Each BB has one or more BBIs shown on the BBIPage. The listed BBIs

in this component correspond to a BB. Moreover, to get to this page, the user must

interact with a certain button of a BB on the BBPage.

• ProcessCreationPage: This component has different visualizations according to the

user profile. For the common user, in this component, after selecting the BBs and

BBIs, the user requests the creation of a process to set up the desired IoT environ-

ment. After the process is available, the user can then be redirected to the Pro-

cessExecutionPage. On the other hand, for a user with the admin profile, in this

component, it is possible to upload a process for creating a previous request and,

additionally, to upload a process for the retirement of the respective IoT environ-

ment.

• ProcessExecutionPage: The current component is responsible for the execution of

a given process by executing a corresponded bpmn file. It makes use of external

libraries (bpmn.io4) to draw an interface for interacting with the process. Also, the

completion of the process tasks is made with the communication with some BPMS

systems. This component acts for the process creation as well as for the process

retirement.

• ProcessMonitoringPage: In the current state, this component is responsible for act-

ing as the feedback loop through the method. In future work, it will be possible to

integrate with some IoT platforms to monitor the environment.

4https://bpmn.io/
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Whenever an end-user is redirect to a different page component, the application

triggers a request to the Back-End 4.3, waits for a successful response with metadata and

data received through a JSON format, and loads the respective content to the page, e.g., a

list of BBs.

The Front-End supports a number of possible sequence flows, depending on which

action the end-user performs on the web application. Figure 4.15 illustrates a use case of

selecting requirements for a user project. At the initial point of the diagram, the App

component is at the LoginPage component, the login method is called in order to authen-

ticate and the request is properly handled by the Backend. Once the response is received,

the user is authenticated, and the received metadata payload is stored, then the user is

redirected to the Dashboard component. The user can click on the floating bottom to call

the goToProjectsPage method and is then redirect to the ProjectPage component. There,

they can select a project through the handleSelectProject method, which is called once

the user clicks on the respective button. After selecting a project, the user is redirected

to the RequirementsPage. Finally, depending on the user’s IoT environments, they can

select different requirements with the method handleAddRequirement, remove a require-

ment with the handleDeleteRequirement method, or add and remove requirement groups

with handleAddGroup and handleDeleteGroup, respectively. After selecting all the re-

quirements, the user can then use the handleNextStep method to go to BBPage.

4.5 Chapter Summary

In this chapter, first, we presented the elicited requirements for choosing the pro-

totype architecture. Therefore, we decided on Microservice Architecture because it offers

modularity, reusability, and scalability. Besides, we presented the main definitions and

challenges developing using this architecture. The second section showed the technolo-

gies used throughout the project’s development, including JavaScript, Python, Docker,

MongoDB, REST API, and gRPC.

After presenting the technologies, the server component and its microservices

were described in detail, including the main API, responsible for the creation, reading,

updating, and removal operations of the main application models; the authentication ser-

vice, responsible for implementing the authentication and authorization flow; the match-

ing service, which implements the matching algorithm between requirements and BBs

and BBIs; the BPMS service, designed to encapsulate the logic of interaction between
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different BPMS; and the data service, which is responsible for extracting data and creat-

ing BBs and BBIs from them.

Section 4.4 presented the client-side of the application, containing details about

the implementation of the prototype interface and its technologies used and demonstrating

with class and sequence diagrams the respective models and interactions.
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Figure 4.14: Class diagram of the Front-End

Source: The Authors
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Figure 4.15: Sequence Flow example of the Front-End

Source: The Authors



63

5 EVALUATION

In this chapter, we evaluate and discuss our work. The evaluation of the approach

presented in this study was performed by demonstrating the applicability of the approach,

using the prototype, to a real-world case study. Furthermore, this chapter also addresses

strengths and weaknesses and possible improvements, besides what is expected for future

work.

It is necessary to recall the goals and research question of the work to assess the

results of the approach and the prototype developed. The general goal of this work is to

provide a holistic method that describes the necessary steps domain experts need to take

to set up IoT systems from scratch. The Research Questions are listed below:

• [RQ1]: Is it possible to represent the considerable diversity of components of the

IoT domain using Building Blocks?

• [RQ2]: Can IoT Building Blocks help in the IoT-aware process modeling?

5.1 Case Study

This section presents a case study that applies our approach to a Smart Factory

scenario. In this scenario, depicted in Figure 5.1, the indoor localization of self-driving

vehicles should be realized. For example, these vehicles can pick up materials in a ware-

house and transport them to a different location. In order to realize this scenario, so it is

robust enough for real-world use, it must be known where the vehicles are at all times.

Each vehicle needs a localization tag, which communicates with multiple stationary tags

throughout the factory to determine the current location. Based on this data, an edge cloud

system calculates the position and determines the paths of the vehicles.

Furthermore, electric doors separate different factory parts and enable access to

the outdoors, e.g., to load goods into trucks. These doors need to open automatically as

soon as a vehicle approaches them. To make the scenario even more complex, people

are also moving around in the factory and need to be observed by multiple vehicles’

sensors. Hence, many sensors and actuators are required to be set up. This scenario is

very complex and can show the benefits of our toolbox. In the following, the steps of

our method are described specifically for this context expecting the configuration of the

indoor localization system.
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Figure 5.1: Smart Factory

Source: The Authors

Step 1: Requirement Specification

The requirement specification for this use case requires many different stakehold-

ers: Shop floor workers who have experience with the scenario’s environment, network

experts - setting up wireless connectivity and the edge cloud environment; indoor local-

ization experts - setting up the localization system; electricians - making sure that the

power supply for the localization is guaranteed; business experts - bringing in knowledge

about the processes, and so on. In a workshop, these stakeholders need to get together and

define the requirements for the scenario. These requirements include functional ones, e.g.,

an indoor localization system, person detection, door control, and non-functional require-

ments, including safety, security, privacy, and efficiency and accuracy of the localization

and robustness.

The toolbox provides a set of requirements where all the requirements mentioned

above can be select to be further used by the matching system to recommend building

blocks accordingly. An example of selection of the requirements provided by the toolbox

for the sensing category is depicted in Figure 5.2.

There are many possibilities of requirements combination using the pre-defined

requirements of the prototype. The user can select requirements and the relation of each

group or requirement individually. For example, possible selections for the communica-

tion category is depicted in Figure 5.3, and, in the first group, we can observe that the OR

condition is selected, meaning the matching algorithm will search for any component that
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Figure 5.2: Requirements selections for the sensing category for the case study indoor
localization system

Source: The Authors

uses BLE, UWB, or WiFi communication protocol. Moreover, the outer group will filter

only for the BBs and BBIs that also match the Security requirement.

Figure 5.3: Requirements selection for the communication category for the case study
indoor localization system

Source: The Authors



66

Step 2: Building Block Selection

After the requirements are selected, the corresponding BBs and BBIs are recom-

mended in the Building Block selection step and can be selected by the stakeholder. For

example, one requirement of the indoor localization system is the Sensing of localization.

The toolbox can propose using BLE localization through triangulation or more exact sys-

tems, using a real-time localization system, e.g., based on ultra-wideband (UWB). Since

the requirement Sensing Accuracy is also given, the recommendation suggests a more

accurate UWB based system. Furthermore, wireless communication might be required.

Due to the high efficiency requirements, a 5G network might be suggested instead of WiFi

or LTE.

Figure 5.4: List of prototype’s BBs with recommendations for the case study.

Source: The Authors

The suggestions of the toolbox are an essential part to decrease the time necessary

to analyze and select the suitable components for the scenario, which usually can take

months. However, if the domain experts prefer a not recommended Building Block, it can

be selected instead with no problem to the further creation process. Figure 5.4 illustrates

some pre-defined BBs of the toolbox, where the recommended BBs are highlighted.

The matching system is executed right after the requirements are selected, and the

user goes to the Building Block page. The specified requirements are the input for the

matching algorithm (see 4.3.3). Once the algorithm finishes, a list with the BBs and BBIs

is returned that matches the requirements. This way, the user can see in the platform the
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Figure 5.5: Prototype’s BBIs of the Distance Sensor BB with recommendations for the
case study

Source: The Authors

corresponding matches as it is highlighted. To illustrate this scenario, Figure 5.5 shows

possible matches for the Distance sensor BBI for this context.

Step 3: Process Creation

Once the stakeholders select the requirements, BBs and BBIs, they can request the

process creation to configure the desired environment. The process creation is conducted

by an IoT expert and is, for now, designed manually. All the selected BBs and BBIs are

saved as a project in the toolbox, and then a specialist can handle it and create a process

accordingly. Moreover, best practices based on previous scenarios can help in process

creation.

For complex scenarios, such as an entire floor configuration of a Smart Factory,

multiple processes are required to set up the specific parts (e.g., localization, door control,

networks, etc.). The process regarding the selection in previous step was created as shown

in Figure 3.4 for the localization system.

The IoT expert models the respective process considering the selections, and the

modeling can be made in any software capable of modeling BPMN 2.0 processes, e.g.,

Camunda Modeler1. Once the IoT expert has the .bpmn file of the modeled process,

the request can be attended and the bpmn file is uploaded to the platform. Finally, the

1https://camunda.com/products/camunda-platform/modeler/
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stakeholder can execute the modeled process.

Figure 5.6: Prototype interface for process creation step

Source: The Authors

Figure 5.6 shows the interface of the Process Creation step on the Admin, i.e., IoT

expert, view. In our approach, a process retirement model might be uploaded together

with the process creation model as a best practice using the prototype. It can be made

interacting with the respective Upload Button.

Step 4: Process Execution

In order to set up the desired scenario, the process in Figure 3.4 is executed. The

corresponding experts install the hardware, e.g., the localization system, by using the

steps given by the process. In the case of user tasks, the user should fill the variable(s) of

the corresponding task(s) if it is the case.

The prototype provides an interface that shows the current process instance and

the tasks. Figure 5.7 shows the interface. On the left of the figure, the user can visualize

the big picture of the process, while on the right, the tasks are listed correspondingly.

After all tasks and processes have been executed, the scenario is set up. In general,

during process execution, there might be dependencies between the processes. For exam-
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Figure 5.7: Prototype interface for process execution step

Source: The Authors

ple, it is necessary to set up wireless communication first before the localization system

can be set up. This needs to be modeled in the process.

Step 5: Process Monitoring and Adaptation

In step 5, the stakeholders could adapt the IoT environment, for example, to extend

the area the self-driving vehicles can move into or add more vehicles. This adaptation

usually requires installing more UWB receivers on the walls or UWB senders on the

vehicles. The overall setup should stay the same. Only necessary extensions should

be made in the IoT environment. In this case scenario, an adaptation process includes,

e.g., setting up more UWB senders and receivers and an additional configuration and

integration step.

Figure 5.8 shows the prototype’s interface for this step. The adaptation process

can be requested once the user reaches the Process Creation Step again, after changing

requirements, BBs or BBIs. In future work, in this step’s interface, the corresponding

Smart Environment variables might be visible by integrating the prototype with some IoT

platform. This way, the process monitoring would be possible.
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Figure 5.8: Prototype interface for process monitoring and adaptation step

Source: The Authors

Step 6: Process Retirement

Possible cases when such a scenario is retired are moving the factory to another

location or using other kinds of devices that fundamentally change the setup. In these

cases, a termination process reverses all steps of the setup, for example, by removing

the UWB senders, powering down the edge cloud, etc. The Figure 5.9 illustrates this

scenario. The termination process might be provided together with the creation process

in Step 3, although, running IoT environments might have changes systematically, e.g., a

component might be missing. In this case, a new termination process must be designed

and provided by the IoT expert.

5.2 Discussion and Future Work

In this chapter, we performed the evaluation of the approach through the case

study applied to the prototype, for which the main objective was to configure an indoor

localization system for a Smart Factory scenario. As such, the applicability of our holistic

method to a real-world situation revealed many positive points, challenges for future work

of our method and enhancements of the prototype. Moreover, this experiment leads us to

answer our Research Questions.

The Requirements Specification is a crucial step for the whole method to operate
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Figure 5.9: Prototype interface for process retirement step

Source: The Authors

accurately, and it is highly dependent on the stakeholders engagement of the project,

meaning a bad specification of requirements can compromise the succeeding steps. The

prototype supplies a pre-defined set of requirements, which can restrict more complex

projects or simple projects where the requirements are not found on the prototype. On the

other hand, as a positive aspect, the built prototype provides means of relation among the

selected individual requirements and group of requirements, i.e., OR and AND conditions,

as shown in the blue buttons in Figure 4.10. This way, the user can establish different

combinations, allowing a broader recommendation for BBs and BBIs.

In between Step 1 and Step 2, the Matching Algorithm takes place. The algorithm

is critical for one of the main purposes of this work: reducing the time stakeholders spend

to deal with the wide heterogeneity of the IoT devices. The developed algorithm is a key

feature for future work, whereas a more robust recommender system can be implemented,

for example, using techniques such as artifical intelligence. The Matching Service imple-

mented for the prototype aimed for matching the requirements selected in Step 1 and the

registered BBs and BBIs of the Toolbox. For the propose of this work the service worked

fine, but it is evident that is highly dependent of the selection of requirements and the

properly modeling and creation of requirements, BBs and BBIs.

The Building Blocks Selection step aims for helping the stakeholders to select

the IoT components for their IoT environments providing an abstraction of the common

IoT devices and technologies (e.g., sensors, actuators, Wi-Fi, BLE, etc.) in terms of

what we named on our approach of BB and its implementations BBI. In fact, it was
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possible to create this abstraction to many IoT components following our formalization,

which answers our first research question positively. However, an extensible map study

and comparison of other means of abstracting IoT components need to be realized for

future work. Moreover, developing ways to provide artifacts and interfaces besides the

description of BBIs, which can support automation for provisioning and configuration of

the IoT environments, are also pursued for future work.

In the Process Creation step, the selection of the BBs and BBIs guides the business

process modeling, and its creation needs to be conducted manually by experts. Notwith-

standing, creating the business process can be time-consuming and overwhelming, and

our approach does not provide any means of automation yet. Moreover, in the current

state of the project, the BBs and BBIs help the IoT expert to know the desired project’s

components, but not its expected operation. In order to integrate our BBs and BBIs with

the smart environments in a more efficient and robust way, the mentioned artifacts and

interfaces would provide more extensive help for the configuration of the smart environ-

ments and the execution of the IoT-aware processes.

Thereby, our BBs and BBIs have considerable potential to help in the IoT-aware

process modeling, although this approach must be extensible for more real-world cases to

affirm its meaningful guidance.

The Process Execution and Process Retirement steps execute the business pro-

cess designed to create and retire the IoT environment, respectively. Both implemented

components share the same Components (Front-End) and the same services (Back-End),

where the difference in operation is the inserted bpmn file. The integration of the well-

known Camunda BPMS reinforces the potential applicability of the developed prototype.

Furthermore, different BPMS should be integrated into future work, as an individual mi-

croservice encapsulates the integration logic, which imposes this extensibility.

The Process Monitoring and Adaptation step is responsible for monitoring once

the IoT environment is configured. There are several commercial and open-source IoT

platforms for the analysis and monitoring of IoT environments. Thus, in future work,

the integration of the prototype with an IoT platform could enhance the approach for the

whole lifecycle of smart environments through the developed prototype. Also, in this

step is possible to change the requirements, BBs, or BBIs of the application allowing

the adaptation of the IoT environments, not needing to retire it, but adapting through an

adaptation process.

The application of our method to a hypothetically real-world scenario raised some
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points. First, because in some cases the technical specification of the devices is scarce, or

presented in different formats. Finally, heterogeneity in components, whether in the same

or different categories, has a complex model as a consequence.

The other point addresses the struggle to provide the quantitative measure of non-

function requirements, such as security, energy, robustness, privacy, and many others. Ac-

cording to Venčkauskas et al. (2016), security, for example, at the communication level,

is evaluated by the communication protocols, cryptographic algorithms, key management

protocols, attack detections and preventions, secure routing, secure location detections,

secure data distributions, and other mechanisms. The energy at this level is evaluated

by routing algorithms, the use of sleep modes, and other mechanisms. This hampers the

development of a robust algorithm in order to match the requirements with BB capabili-

ties or BBI features and find the more suitable selection for the configuration of the IoT

environment.

5.3 Chapter Summary

This chapter details the evaluation of our method in terms of the applicability of

our holistic method to a hypothetically real-world case study. We first introduce the case

study and then addresses the motivation to use our method to cope with the complex-

ity and reduce the time of development of the configuration of this smart environment.

Then, we detail a Smart Factory case study where an indoor localization system is set up.

Furthermore, the application of our method is executed through the developed prototype.

Each step of our method applied to the smart environment configuration is de-

scribed in detail, which the positive and negative points are raised for each step, for the

method, and the prototype. We also present expected future work to solve the negative

issues. Moreover, some overall challenges and difficulties regarding our approach are

raised.
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6 CONCLUSION

In this work, we presented a holistic method to guide domain experts in config-

uring IoT environments and applications. The method is composed of a toolbox and a

business process-based approach using BPMN 2.0. The presented toolbox is the foun-

dation of our method and contains the common building blocks of the IoT, which in our

approach we named BBs BBIs. We also provide a formalization of BBs, BBIs, and Re-

quirements. Afterward, we present our holistic method describing it step-by-step.

We developed a web-based prototype to evaluate or toolbox and method. The cho-

sen architecture and technologies aim for a modular, scalable, and extensible prototype

to be an open-source platform in the future. Although being technology independent, the

motivation of implementing the prototype with extensible technologies was achieved and

detailed in Chapter 4, but in future work, the used technologies might be reviewed. The

developed prototype uses modern technologies to implement the formalized components

of this approach, such as BBs, BBIs, and Requirements and integrates with a well-known

BPMS process engine for its execution through a Microservice Architecture and program-

ming languages such as JavaScript and Python.

As observed during the evaluation of the approach, the proposed method can pro-

vide many insights on which IoT sensors, actuators, gateways, and other devices, besides

communication protocols, IoT platforms, and so on, can be selected to compose a specific

smart environment. Thus, our approach intends to reduce the complexity and develop-

ment time of building IoT environments. However, the time-reducing measure would be

possible only by evaluating a variety of IoT environments, which is expected in future

works.

We evaluate our approach by conducting it step-by-step to a real-world case study.

The application of our method is intended to configure an IoT environment of an indoor

localization system for a Smart Factory. Along with the applicability of our approach, we

evaluate the prototype going through the method. In the final, with the experiment, we

could answer the research questions of this works.

This work becomes relevant when realizing an abstract form to concept the mas-

sive variety of IoT devices and technologies into BBs and BBIs, helping domain experts

to find suitable components for desired smart environments. Moreover, this work ad-

dresses the mutual benefit of the intersection of the areas of IoT and BPM regarding the

configuration of smart environments.
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As a continuation of this work, we aim to extend many real-world case studies

to evaluate our approach pragmatically. Besides, enhance the prototype by increasing

the number of pre-defined BBs, BBIs, and Requirements, develop a robust recommender

system, integrate different BPMS and turn the prototype BPMS-agnostic, and finally turn

it into an open-source platform.

In conclusion, as it stands, the presented holistic method has shown promising to

cope with the complexity of the IoT domain and help domain experts through the whole

configuration process of IoT environments. Furthermore, besides the mentioned points

of improvements, this study can be used as a ground for future researches of IoT, BPM,

Software Engineering, Conceptual Modeling, and Recommender Systems fields. As such,

the value of this work is not restricted to the scope of this study but instead encourages

the emergence of complementary researches.

The main contribution of this work is a holistic method to help domain experts

through the process of configuring IoT environments and applications with the guidance

of a toolbox and a business process-based approach. Besides, web-based prototype was

developed.

Finally, part of this work was presented on the 39th International Conference on

Conceptual Modeling ER Forum, Demo and Posters 2020 (FRIGO et al., 2020).
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