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ABSTRACT

This work addresses the problems of global stabilization and local stability analysis of
discrete-time piecewise affine (PWA) systems.

To tackle the global stabilization problem, this work considers a PWA state feedback
control law, a recently proposed implicit PWA representation and piecewise quadratic
(PWQ) Lyapunov candidate functions. Through Finsler’s Lemma, congruence transfor-
mations and some structural assumptions, quasi-LMI sufficient conditions to ensure the
global exponential stability of the origin of the closed-loop PWA system are derived from
the stability conditions. An algorithm is proposed to solve the quasi-LMI conditions and
compute the stabilizing gains.

Regarding the problem of local stability analysis, this work proposes a method to test
the local nonnegativity of PWQ functions using the implicit representation. This method
is used to assess the local stability of the origin of PWA systems by considering PWQ
Lyapunov candidate functions. Estimates of the Region of Attraction of the Origin (RAO)
are obtained as level sets of the Lyapunov function. Approaches to obtain maximized
estimates of the RAO are therefore discussed.

Keywords: Piecewise affine systems, stability and stabilization, piecewise quadratic
Lyapunov functions, semidefinite programming.



RESUMO

Este trabalho trata dos problemas de estabilização global e análise de estabilidade local
de sistemas afim por partes (PWA, do inglês, Piecewise Affine) de tempo discreto.

Para tratar o problema de estabilização global, considera-se uma lei de controle do tipo
realimentação de estados afim por partes, uma representação implícita de sistemas PWA
e funções de Lyapunov quadraticas por partes (PWQ, do inglês, Piecewise Quadratic).
Através do Lema de Finsler, transformações de congruência e algumas suposições de
estrutura, condições suficientes na forma de quasi-LMIs para assegurar a estabilidade
exponencial global da origem do sistema PWA em malha fechada são derivadas das
condições de estabilidade. Um algoritmo para resolver as condições quasi-LMIs e computar
os ganhos estabilizantes é proposto.

Quanto ao problema de análise local de estabilidade, um método para testar a não
negatividade local de funções PWQ usando a representação implícita é proposto. Este
método é então utilizado para verificar a estabilidade local da origem de sistemas PWA
através de funções de Lyapunov PWQ. Estimativas da região de atração da origem (RAO,
do inglês, Region of Attraction of the Origin) são obtidas como curvas de nível da função
de Lyapunov. Abordagens para maximizar a estimativa da RAO são então discutidas.

Palavras-chave: Sistemas afim por partes, estabilidade e estabilização, funções de
Lyapunov quadráticas por partes, programação semidefinida.
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1 INTRODUCTION

A generic discrete-time piecewise affine (PWA) system is defined by partitioning the
extended input-state space in different regions and associating each region with an affine
state update equation, as expressed by

x+ = Aix+Biu+ ai ∀

[
x

u

]
∈ Ωi (1)

where x and x+ ∈ Rn are, respectively, the current and successor state, u ∈ Rnu is the
input and Ai ∈ Rn×n, Bi ∈ Rn×nu and ai ∈ Rn define the dynamical behavior of the
system within the region Ωi.

As pointed by JOHANSSON (2003), commom nonlinear behaviors encountered in
control systems are piecewise affine, such as switches, relays, deadzones and saturations.
For example, a linear system with a single saturating actuator is a PWA system partitioned
in three regions: linear region, positively saturated and negatively saturated. Hybrid
systems that contains both analog (continuous) and logical (discrete) components can be
equivalently described as PWA systems (HEEMELS; DE SCHUTTER; BEMPORAD,
2001) and smooth nonlinearities which are not piecewise affine can be conveniently
approximated as such.

Thanks to its versatility to model several nonlinearities, SONTAG (1981) proposed
the use of PWA systems as a systematic approach to numerical nonlinear control and
this class of systems became an active topic of research throughout the last decades. The
idea of using least squares identification to model continuous-time nonlinear systems
as PWA systems was investigated by PAUL; PHILLIPS (1994). To obtain a discrete-
time representation, the conventional method consists in discretizing the model in each
region, but a more general method of discretization, able to deal with sliding modes, was
studied by SCHWARZ et al. (2005). Stability analysis and stabilization for discrete-time
piecewise linear systems (i.e without affine terms ai in (1)) were studied by MIGNONE;
FERRARI-TRECATE; MORARI (2000) using a Linear Matrix Inequality (LMI) approach
and considering piecewise quadratic (PWQ) Lyapunov candidate functions. FENG (2002)
extended previous results on global stability analysis to systems with affine terms. For
continuous-time PWA systems, JOHANSSON (2003) studied the stability considering
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PWQ and piecewise linear (PWL) Lyapunov candidate functions. Then, the stabilization
of such systems and the estimation of the region of attraction were also tackled.

Recently, GROFF; VALMORBIDA; GOMES DA SILVA JR. (2019) formulated a new
implicit representation based on ramp functions for discrete-time continuous PWA systems,
where the partition depends only on the state and the vector field is continuous across the
boundary of the polyhedral partition. When compared with the standard representation
used in the works of MIGNONE; FERRARI-TRECATE; MORARI (2000) and FENG
(2002), this implicit representation was proved advantageous in the global stability analysis
problem (GROFF; VALMORBIDA; GOMES DA SILVA JR., 2020). Those advantages
derive from the fact that the implicit representation does not require a priori knowledge of
the possible transitions between regions. Also, the implicit representation is able to deal
with uncertainties regarding the partition.

This dissertation investigates the use of the novel implicit representation in two
problems: global stabilization and local stability analysis. For the stabilization problem,
quasi-LMI sufficient conditions are formulated using Finsler’s Lemma, congruence trans-
formations and some structural assumptions to synthesize an affine state feedback law to
stabilize the system. Those conditions are then solved using convex optimization tools in
addition to an algorithm of grid search. Regarding the local stability analysis, a method is
developed to ensure the local nonnegativity of PWQ functions and used to derive sufficient
local stability conditions along with estimates of the region of attraction as level sets of
PWQ functions.

The outline of this dissertation is as follows. Chapter 2 presents a literature review on
PWA systems. First, PWA systems are categorized based on their characteristics and the
class of discrete-time continuous piecewise affine (CPWA) systems is defined. Different
representations are reviewed and previous results on the problems of global stability
analysis and global stabilization are recalled. Chapter 3 addresses the problem of global
stabilization. Quasi-LMI sufficient conditions are derived to synthesize an affine state
feedback control law to stabilize the system. Those conditions can be solved using convex
optimization tools and an additional grid search algorithm described. Chapter 4 considers
the problem of local stability analysis. First, conditions to ensure the local nonnegativity
of implicit PWQ functions are derived. Those conditions are applied to the analysis of
the local stability of PWA systems, providing estimates of the Region of Attraction of the
Origin (RAO) obtained as sub level sets of PWQ Lyapunov functions. Finally, chapter 5
concludes with final remarks and discusses future lines of research and perspectives.
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2 LITERATURE REVIEW

This chapter presents an overview on piecewise affine (PWA) systems. Firstly, different
representations and the relation among them, mainly focused in the explicit representation
commonly used and a recently developed implicit representation, are introduced. Then,
the main approaches to tackle the problem of global stability analysis and stabilization are
recalled.

2.1 Considered Class of Piecewise Affine Systems

The class of discrete-time PWA systems is generically defined by partitioning the
extended state-input space into polyhedral regions and associating with each region a
different affine state update equation (CHRISTOPHERSEN, 2007), as in (1). However,
this general definition is often narrowed into subclasses, such as PWA systems where the
switching between different affine state update equations depends only on regions Γi of
the state space. This subclass can be written as

x+ = Aix+Biu+ ai ∀x ∈ Γi ⊂ Rn, i ∈ I = {1, ..., NΓ}, (2)

with I denoting the region index set and NΓ the number of regions in the partition such
that ⋃

i∈I

Γi = Rn.

The subclass (2) where Γi is only state-dependent is frequently considered, such as
in the works of MIGNONE; FERRARI-TRECATE; MORARI (2000), FENG (2002),
JOHANSSON (2003) and GROFF; VALMORBIDA; GOMES DA SILVA JR. (2019).

Moreover, if the vector field of a PWA system is continuous over the boundary of the
polyhedral partition, we refer to this subclass as Continuous Piecewise Affine (CPWA)
system. The subclass of CPWA systems will be considered in the present dissertation and,
for simplicity, it will be just referred as PWA.
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2.2 Representations

There are different ways to represent a PWA system. This section reviews some
representations and draws relations among them, with focus in the commonly used explicit
represention (refered in this work as standard explicit representation) and the recently
developed implicit one.

2.2.1 Standard explicit PWA representation

The standard explicit PWA representation traces back the work of SONTAG (1981)
and was applied in the stability analysis and stabilization for instance by MIGNONE;
FERRARI-TRECATE; MORARI (2000), FENG (2002) and JOHANSSON (2003). It is
characterized by partitioning the state space into polyhedral regions represented by a finite
set of inequalities and associating with each region an affine state update equation, that is

x+ = Aix+Biu+ ai ∀x ∈ Γi ⊂ Rn, i ∈ I = {1, ..., NΓ}, (3a)

Γi = {x ∈ Rn | Hix ⪰ hi}, (3b)

where matrix Hi ∈ Rnki×n and vector hi ∈ Rnki defines, for each polyhedral region
Γi, the nki boundary hyperplanes. Alternatively, regions Γi can be represented by cone
rays and vertices (FUKUDA; PICOZZI; AVIS, 2002) as done for stability analysis of
continuous-time PWA systems by IERVOLINO; TANGREDI; VASCA (2017).

To illustrate the standard explicit representation (3) consider the following nonlinear
circuit in Figure 1, proposed by RODRIGUES; BOYD (2005), whose continuous-time
dynamical behavior is given by (4).

Figure 1 – Circuit with nonlinear resistor.

+_

+

_

+

_

Source: RODRIGUES; BOYD (2005)

ẋ =

[
−30 −20
0.05 0

]
x+

[
20

0

]
u+

[
24

−50g(x(2))

]
(4)

In (4) the time is expressed in 10−10 seconds, the state x(1) is the inductor current in
milliamperes, x(2) is the voltage across the capacitor in Volts and input u is also given in
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Volts. The nonlinear resistor voltage-current characteristic is given by iR = g(vR) and
modeled as the continuous PWA function depicted in Figure 2, from where we notice the
existence of three regions, Γ1, Γ2 and Γ3. The circuit load is given by the resistor connected
in series with the input voltage source (1.5 kΩ for this example). In this case, the system
presents three equilibrium points, xeq1, xeq2 and xeq3, one on each set of the partition. The
partition is determined by the state variable x(2), which is equal to the voltage across the
nonlinear resistor, as follows:

Γ1 =
{
x ∈ R2 |

[
0 −1

]
x ≥ −0.2

}
(i.e. x(2) ≤ 0.2),

Γ2 =

{
x ∈ R2 |

[
0 1

0 −1

]
x ⪰

[
0.2

−0.6

]}
(i.e. 0.2 ≤ x(2) ≤ 0.6) and

Γ3 =
{
x ∈ R2 |

[
0 1

]
x ≥ 0.6

}
(i.e. x(2) ≥ 0.6).

Figure 2 – Piecewise voltage-current characteristic of the nonlinear resistor (black) and the
load given by the 1.5 kΩ resistor (blue) in Figure 1.

Source: RODRIGUES; BOYD (2005)

A discrete-time dynamic behavior can be derived from (4) using Euler discretization
for each region Γi. A sampling period of T × 10−10 second leads to the following matrices
and vectors

A1 =

[
1− 30T −20T
0.05T 1− 0.25T

]
, A2 =

[
1− 30T −20T
0.05T 1 + 0.1T

]
, A3 =

[
1− 30T −20T
0.05T 1− 0.2T

]
,

a1 =

[
24T

0

]
, a2 =

[
24T

−0.07T

]
, a3 =

[
24T

0.11T

]
and B1 = B2 = B3 =

[
20T

0

]
.
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Furthermore we have the regions Γ1, Γ2 and Γ3 described, respectively, with

H1 =
[
0 −1

]
, H2 =

[
0 1

0 −1

]
, H3 =

[
0 1

]
,

h1 = −0.2, h2 =

[
0.2

−0.6

]
and h3 = 0.6,

which completes the standard explicit PWA representation (3).

The standard explicit representation is often viewed as the most straightforward way
of representing a PWA system. Its main advantage is its versatility, since it is possible
to represent discontinuous systems (i.e. systems where the vector field is not continuous
over the boundary of the polyhedral partition), systems with different matrices Bi for each
region and also switched systems by including the input u in the set of inequalities. On
the other hand, the main drawback is the complexity in problems such as stabilization
and stability analysis, where is often necessary to know a priori what are the possible
transitions among regions. Also, the standard explicit PWA representation is not suitable
to handle uncertainties in the partition.

2.2.2 Implicit representation

The implicit representation considered in this work is the one recently proposed by
GROFF; VALMORBIDA; GOMES DA SILVA JR. (2019). It takes the form

x+ = F1x+ F2ϕ(y(x)) +Bu (5a)

y(x) = F3x+ F4ϕ(y(x)) + f5 (5b)

where x and x+ ∈ Rn are, respectively, the current and successor state and u ∈ Rnu

is the input. The system is defined by matrices F1 ∈ Rn×n, F2 ∈ Rn×ny , B ∈ Rn×nu ,
F3 ∈ Rny×n, F4 ∈ Rny×ny and vector f5 ∈ Rny . Vector y ∈ Rny is the argument to the
vector-valued ramp function ϕ : Rny → Rny , which is defined elementwise in terms of the
ramp function r : R→ R as

ϕ(i)(y) = r(y(i)) =

 0 if y(i) < 0

y(i) if y(i) ≥ 0
(6)

for each i = 1, ..., ny, where y(i) and ϕ(i)(y) are, respectively, the i-th element of vector y
and vector function ϕ(y). The scalar ramp function r(y(i)) is depicted in Figure 3.

Remark 1. Since the vector field of the PWA system is assumed to be continuous across

region boundaries, it is equivalent to interchange the strict and the nonstrict inequalities

in (6). In fact, it is more accurate to consider the boundary as belonging to both regions.

See, for example, (RODRIGUES; BOYD, 2005).
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Figure 3 – Scalar ramp function r(y(i)).
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Source: The author

The partition is implicitly defined by (5b) and x belongs to the region Γi depending
on the combination of elements of ϕ(y(x)) that are activated (corresponding to y(i) ≥ 0)
or inactivated (corresponding to y(i) < 0). Hence, it is possible to represent NΓ = 2ny

regions utmost, altought some of them may result in empty sets. To illustrate, consider the
same nonlinear circuit in Figure 1 with continuous-time dynamic given by (4).

The three regions of Figure 2 can be constructed by inspection in the implicit represen-
tation with

F3 =

0 0

0 0.007

0 0.006

 , F4 = 0 and f5 =

 24

−0.0014
−0.0036

 ,

leading to the definition of the three regions as

Γ1 =
{
x ∈ R2 | y(1)(x) ≥ 0, y(2)(x) < 0, y(3)(x) < 0

}
,

Γ2 =
{
x ∈ R2 | y(1)(x) ≥ 0, y(2)(x) ≥ 0, y(3)(x) < 0

}
and

Γ3 =
{
x ∈ R2 | y(1)(x) ≥ 0, y(2)(x) ≥ 0, y(3)(x) ≥ 0

}
.

Other combinations of active and inactive elements of ϕ(y(x)) result in empty sets. To
illustrate this situation, note that in this example the elements of y(x) are given by

y(1)(x) = 24,

y(2)(x) =
[
0 0.007

]
x− 0.0014 and

y(3)(x) =
[
0 0.006

]
x− 0.0036.

Since element y(1)(x) is a positive constant, every possible region Γi defined by a com-
bination containing an inactive y(1) (i.e. y(1) < 0) is an empty set. On the other hand, a
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non-empty region such as Γ2 is defined by

Γ2 =

x ∈ R2

∣∣∣∣∣
y(1) ≥ 0

y(2)(x) ≥ 0⇔ x(2) ≥ 0.2

y(3)(x) < 0⇔ x(2) < 0.6

 .

Once F3, F4 and f5 are settled, the state update equation can also be constructed by
inspection, resulting in

F1 =

[
1− 30T −20T
0.05T 1− 0.25T

]
, F2 =

[
T 0 0

0 50T −50T

]
and B =

[
20T

0

]
.

To better illustrate the equivalence between this representation and the standard explicit
one, take as an example region Γ2, whose combination of active and inactive elements of
y(i) was previously defined. Then, the dynamic in this region is written as

F1x+ F2ϕ(y)

=

[
1− 30T −20T
0.05T 1− 0.25T

]
x+

[
T 0 0

0 50T −50T

]
×

 24

0.007x(2) − 0.0014

0

+

[
20T

0

]
u

=

[
1− 30T −20T
0.05T 1 + 0.1T

]
x+

[
20T

0

]
u+

[
24T

−0.07

]
= A2x+B2u+ a2

In general, when F4 does not have a particular structure (such as F4 = 0 or an upper
triangular matrix), (5b) is an implicit equation due to the algebraic loop. In such case it
is necessary to ensure its well-posedness, i.e. to ensure the existence and uniqueness of
solution for every x ∈ Rn. This can be done by the following Proposition, whose proof
can be found in (GROFF; VALMORBIDA; GOMES DA SILVA JR., 2019).

Proposition 1. (GROFF; VALMORBIDA; GOMES DA SILVA JR., 2019) If there exists

diagonal matrix X ∈ Dny such that

−2X +XF4 + F T
4 X < 0

then the implicit equation (5b) is well-posed.

Thanks to the relation between partition and dynamics that exists in the implicit rep-
resentation (5), the partition enumeration and a priori knowledge of possible transitions
among regions are not needed for stability analysis and stabilization. Moreover, uncertain-
ties in the partition can be handled without further difficulties (GROFF; VALMORBIDA;
GOMES DA SILVA JR., 2020). Those features constitute a major advantage when
compared to the explicit representation, as will become clear in the next sections. However,
a procedure to obtain a minimal implicit representation, that is, the implicit representation
with the minimal amount of ramp functions, must be further investigated.
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2.2.3 Relations between standard explicit and implicit representations

The implicit representation of the nonlinear circuit example presented in section 2.2.2
was obtained by inspection. In general, this can only be done when the order of the system
and the number of regions in the partition are relatively small. This section will be focused
in a brief discussion about the relation between the standard explicit representation and the
implicit one.

As previously discussed, the partition in the implicit representation (5) is determined
by (5b), namely x ∈ Rn will belong to a region Γi if ϕ(y(x)) satisfies the combination of
activated (i.e. y(i) ≥ 0) and inactivated (i.e y(i) < 0) elements that defines Γi. Hence, we
can write that

ϕ(y(x)) = Φiy(x) ∀x ∈ Γi ⊂ Rn,

where diagonal matrices Φi ∈ Dny are defined by the combination of active and inactive
elements of a given region as

Φi(j,j) =

 1 if y(j) ≥ 0 ∀x ∈ Γi

0 if y(j) < 0 ∀x ∈ Γi

for i ∈ I and j = 1, ..., ny. As (I − F4Φi) is guaranteed to be non-singular if the system
is well-posed (GROFF; VALMORBIDA; GOMES DA SILVA JR., 2020), it is therefore
possible to rewrite (5b) for each region Γi as follows:

y(x) = F3x+ F4Φiy(x) + f5

= (I − F4Φi)
−1F3x+ (I − F4Φi)

−1f5.
(7)

The combination of active and inactive elements of y associated with each region Γi

defines inequalities on each element of y. Some of those inequalities are strict and some
are nonstrict. However, as stated in Remark 1, it is possible to consider all of them as
nonstrict. Consider now diagonal matrices Λi ∈ Dny having entries 1 or -1 depending on
the combination of active and inactive elements of ϕ(y) defining the region Γi, as

Λi(j,j) =

 1 if y(j) ≥ 0 ∀x ∈ Γi

−1 if y(j) < 0 ∀x ∈ Γi

for i ∈ I and j = 1, ..., ny. This allows to write the regions Γi from an elementwise vector
inequality, that is:

Γi = {x ∈ Rn | Λiy(x) ⪰ 0} ∀i ∈ I, (8)

where "lesser or equal to" inequalities had both sides multiplied by −1, resulting in all
inequalities being of the "greater or equal to" type. Then, (7) and (8) allow to recover
matrix Hi and vector hi corresponding to the explicit description (3) of Γi, since

Γi = {x ∈ Rn | Λi(I − F4Φi)
−1F3x ⪰ −Λi(I − F4Φi)

−1f5)} ∀i ∈ I,
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from where the equivalence with the standard explicit representation (3) is

Hi = Λi(I − F4Φi)
−1F3 and

hi = −Λi(I − F4Φi)
−1f5.

To complete the equivalente between (3) and (5) we rewrite (5a) as

x+ = F1x+ F2Φi((I − F4Φi)
−1F3x+ (I − F4Φi)

−1f5) +Bu

= (F1 + F2Φi(I − F4Φi)
−1F3)x+ F2Φi(I − F4Φi)

−1f5 +Bu

for i ∈ I, from where we obtain

Ai = F1 + F2Φi(I − F4Φi)
−1F3,

ai = F2Φi(I − F4Φi)
−1f5 and

Bi = B.

The conversion from the standard explicit representation to the implicit one can be
done by inspection in simple cases. In more general cases, it is possible to convert a
CPWA system from the standard explicit representation to the canonical representation
(CHUA; KANG, 1977) and, then, to the implicit representation (GROFF, 2020). The
interested reader should consult those works. Relations between representations other than
the standard explicit and the implicit are discussed next.

2.2.4 Other representations and their relations

Since PWA systems are common in different areas of interest, several representations
for this class of systems were proposed, each one with their own advantages and drawbacks.
For example, CHUA; KANG (1977) proposed the canonical PWA representation to deal
with nonlinear circuit modeling related problems (CHUA, 1972). Also, hybrid systems
were shown to be related to PWA systems by HEEMELS; DE SCHUTTER; BEMPORAD
(2001) using five representations: mixed logical dynamical (MLD) systems, linear com-
plementarity (LC) systems, extended linear complementarity (ELC) systems, standard
piecewise affine (PWA) systems and max-min-plus-scaling (MMPS) systems. Note that
the equivalence is sometimes guaranteed under additional assumptions and the interested
reader shall consult those works for further information.

The parallel between the implicit representation and others was initially discussed by
GROFF; VALMORBIDA; GOMES DA SILVA JR. (2020), where MMPS was related to
the implicit representation, which, from (HEEMELS; DE SCHUTTER; BEMPORAD,
2001) can therefore be related to other representations. A more extense discussion can be
found in (GROFF, 2020), where the relation among the implicit, MMPS and canonical
representations was derived. The interested reader should consult those works for more
details.
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2.3 Global Exponential Stability Analysis

This section focuses on the global stability analysis of the origin of PWA systems. First,
the global stability analysis problem is defined and necessary conditions for global stability
(i.e. all trajectories in the state space converge asymptotically to the origin) are recalled.
Then, using the standard explicit representation the stability analysis is reviewed for the
special case of Piecewise Linear (PWL) systems and for the general case of Piecewise
Affine (PWA) systems. Finally, the stability analysis is reviewed for PWA systems using
the implicit representation. The stability analysis considered in this work is based on
Lyapunov’s second method, with a quadratic or piecewise quadratic (PWQ) structure for
Lyapunov candidate functions. In this case, the existence of a positive definite candidate
function whose difference along the trajectories is negative definite can be assessed through
convex constraints formulated as Linear Matrix Inequalities (LMIs).

2.3.1 Necessary conditions for global stability

The global stability analysis problem can be stated as following: given a discrete-time
PWA system, verify if all trajectories in the state space will converge asymptotically to
the considered equilibrium point. Moreover, if the rate of convergence is bounded by
an exponential decay, the system is named globally exponentially stable (GES). Without
loss of generality, as a translation of the state coordinates system can always be done, we
consider that the equilibrium point of interest is the origin.

Let the set of region indices I be defined by subsets I = I0 ∪ I1, where I0 is the
set of indices of regions containing the origin (including cases when the origin coincides
with the region boundaries) and I1 is the set of indices of regions that do not contain
the origin. Then, a necessary condition for global stability, expressed in the standard
explicit representation (3), is ai = 0 ∀i ∈ I0, since otherwise the origin would not be an
equilibrium point (MIGNONE; FERRARI-TRECATE; MORARI, 2000).

Considering the implicit representation (5), a sufficient condition to ensure the origin
is an equilibrium point is f5 ⪯ 0 (elementwise nonpositive), case where f5 is the solution
to the implicit equation

y(0) = F3 × 0 + F4ϕ(y(0)) + f5 = f5.

Hence, since ϕ(y(0)) = ϕ(f5) = 0, we have that

x+(0) = F1 × 0 + F2ϕ(y(0)) = 0

at the origin. Also, GROFF (2020) has proved that if the origin is an equilibrium point
then there is always an implicit representation with f5 ⪯ 0 when F4 is lower triangular and
provided a method to obtain this representation. Note that if f5 has positive elements, the
origin will be an equilibrium point only if F2ϕ(y(0)) = 0 (i.e. ϕ(y(0)) ∈ Ker(F2)).



24

Finally, note that trying to deduce the stability or instability of a PWA system by the
stability or instability of its subsystems (i.e. the dynamics on each region) is incorrect as
stated by MIGNONE; FERRARI-TRECATE; MORARI (2000). For continuous-time, an
example of unstable PWA system composed by stable subsystems is given by BRANICKY
(1998), while an example of globally stable PWA system composed by unstable subsystem
is given by UTKIN (1977).

2.3.2 Stability of PWL systems with the explicit representation

This subsection discusses the stability analysis for the special case of discrete-time
Piecewise Linear (PWL) systems given by

x+ = Aix+Biu ∀x ∈ Γi ⊂ Rn, i ∈ I = {1, ..., NΓ}, (9a)

Γi = {x ∈ Rn | Hix ⪰ 0}. (9b)

Note that PWL systems (9) are PWA systems (3) with all affine terms ai = 0. Moreover,
the partition in the PWL systems (9) is given by vector inequalities with hi = 0 in (9b),
rather than inequalities with possibly non-null terms hi as in (3b). From this fact follows
that every region of the partition contains the origin, that is, I0 = I while I1 = ∅.

One idea to assess the global stability of PWL systems (9) is to use a quadratic
Lyapunov candidate function given by

V (x) = xTPx (10)

with P = P T ∈ Rn×n (JOHANSSON; RANTZER, 1998). In this case, the global
exponential stability of the origin can be verified by the following Lemma.

Lemma 1. (MIGNONE; FERRARI-TRECATE; MORARI, 2000) If there exists a symmetric

matrix P = P T ∈ Rn×n such that the LMIs

P > 0 (11a)

AT
i PAi − P < 0 ∀i ∈ I (11b)

are satisfied, then the origin of the unforced (u ≡ 0) PWL system (9) is globally exponen-

tially stable.

Proof. By pre and post multiplying (11a) by xT and x, respectively, we obtain

V (x) > 0.

On the other hand, pre and post multiplying (11b) by xT and x, respectively, leads to

V (x+)− V (x) < 0,

from where the global exponential stability of the origin follows. ■
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A PWL system (9) whose stability is verified by Lemma 1 is called quadratically
stable. However, the quadratic stability conditions (11) are very restrictive. One source of
conservatism arises from the fact that a common matrix P must ensure the positivity of
V (x) and the negativity of ∆V (x) ≜ V (x+)− V (x) in every region of the partition. An
example of PWL system with a globally stable origin whose stability cannot be assessed
by a common quadratic Lyapunov function is given by FENG (2002).

Less restrictive conditions for the stability analysis can be obtained by considering a
Piecewise Quadratic (PWQ) Lyapunov candidate function

V (x) = xTPix ∀x ∈ Γi,

with Pi = P T
i ∈ Rn×n ∀i ∈ I. In this case, the global exponential stability of the origin

can be verified by the following Lemma.

Lemma 2. (MIGNONE; FERRARI-TRECATE; MORARI, 2000) Let the set Sall = I × I
contain all combinations of region indices. If there exist symmetric matrices Pi = P T

i ∈
Rn×n, for i = 1, ..., NΓ, such that the LMIs

Pi > 0 ∀i ∈ I (12a)

AT
i PjAi − Pi < 0 ∀(i, j) ∈ Sall. (12b)

are satisfied, then the origin of the unforced (u ≡ 0) PWL system (9) is globally exponen-

tially stable.

Proof. By pre and post multiplying (12a) by xT and x, respectively, we obtain

xTPix > 0 ∀i ∈ I,

implying that V (x) > 0. On the other hand, pre and post multiplying (12b) by xT and x,
respectively, leads to

V (x+)− V (x) < 0

for all combinations of regions indices. This accounts for transitions between regions (i.e.
i ̸= j in (12b)) and steps where the trajectory does not leave the current region (i.e. i = j

in (12b)). Hence, ∆V (x) is negative definite for all trajectories, from where the global
exponential stability of the origin follows. ■

A PWL system (9) whose stability is verified by Lemma 2 is called piecewise quadrati-
cally stable. The conditions (12) regarding PWQ stability are less conservative than (11)
since different matrices Pi, for i = 1, ..., NΓ, are responsible for the positive definiteness
of V (x) in different regions. However, there are still two main sources of conservatism
in the PWQ stability conditions (12). The first one is the use of the set Sall. This implies
that (12b) ensures ∆V (x) < 0 for all combinations of transitions between regions, even
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if some of them may be infeasible due to the system dynamics. To evercome this issue,
a reachability analysis (BEMPORAD; FERRARI-TRECATE; MORARI, 2000) must be
performed to compute, a priori, the set Sfea of feasible transitions. By replacing Sall by
Sfea in (12) the stability analysis is less conservative, since impossible transitions among
regions are removed from the negative definiteness test of ∆V (x).

The second main source of conservatism in (12) lays in the positivite definiteness
condition (12a). Note that this condition requires each component xTPix of the PWQ
Lyapunov function V (x) to be positive definite for all state space and not only within its
respective region Γi. Moreover, the inequality (12b) should be verified only if x ∈ Γj .

To obtain less conservative positive definiteness conditions and verify (12b) only if
x ∈ Γj , it is possible to use the S-procedure (see Appendix A.1) to impose positivity
of each component of V (x) and negativity of each component of ∆V (x) only within its
respective region. In order to do that, we take into account the term Hix from (9b). This
term is used to define the regions of the partition and is elementwise nonnegative if and
only if x ∈ Γi. From this fact the following Proposition is stated.

Proposition 2. For any symmetric elementwise nonnegative matrix U = UT ⪰ 0 ∈
Rnki×nki , the following expression holds:

xTHT
i UHix ≥ 0 ∀x ∈ Γi. (13)

Proof. Note that from (9b) the term Hix results in a elementwise nonnegative vector (or a
nonnegative scalar, depending on the dimensions of Hi) for any x ∈ Γi. Since the matrix
U is assumed to be elementwise nonnegative, then (13) holds. ■

Proposition 2 allows to state the following Lemma regarding the exponential stability
of PWL systems (9).

Lemma 3. If there exist symmetric matrices Pi = P T
i ∈ Rn×n, symmetric elementwise

nonnegative matrices Ui = UT
i ⪰ 0 ∈ Rnki×nki and Zij = ZT

ij ⪰ 0 ∈ Rnki×nki , for

i, j = 1, ..., NΓ, such that the LMIs

Pi −HT
i UiHi > 0 ∀i ∈ I (14a)

AT
i PjAi − Pi +HT

i ZijHi < 0 ∀(i, j) ∈ Sall (14b)

are satisfied, then the origin of the unforced (u ≡ 0) PWL system (9) is globally exponen-

tially stable.

Proof. Pre and post multiplying (14a) by xT and x, respectively, results in

xTPix > xTHT
i UiHix.

From Proposition 2 the term xTHT
i UiHix is a nonnegative scalar provided that x ∈ Γi for

any elementwise nonnegative matrix Ui, implying that

xTPix > 0 ∀x ∈ Γi and ∀i ∈ I,
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that is, V (x) is positive definite.
On the other hand, pre and post multiplying (14b) by xT and x, respectively, leads to

xTAT
i PjAix− xTPix < −xTHT

i ZijHix.

Once again, from Proposition 2 the term xTHT
i ZijHix is a nonnegative scalar for any

elementwise nonnegative matrix Zij provided that x ∈ Γi. This implies that within each
region Γi the function ∆V (x) is negative definite, from where the global exponential
stability follows. ■

The terms HT
i UiHi and HT

i ZijHi in conditions (14) relax the stability analysis problem,
since the positive definiteness of the PWQ Lyapunov function V (x) and the negative
definiteness of the PWQ function ∆V (x) are only required within each respective region.

The following subsection addresses the stability analysis for the general case of PWA
systems, where the results presented will be extended.

2.3.3 Stability of PWA systems with the explicit representation

To extended the stability analysis results presented in subsection 2.3.2 to the general
case of PWA systems, consider the extended state vector x̄ ≜ [1 xT ]T . Then, the PWA
system (3) can be compactly written as

x̄+ = Āix̄+ B̄iu =

[
1 0

ai Ai

]
x̄+

[
0

Bi

]
u ∀x ∈ Γi ⊂ Rn (15a)

Γi = {x ∈ Rn | H̄ix̄ =
[
−hi Hi

]
x̄ ⪰ 0}. (15b)

When we consider the extended state vector x̄, the notation of a PWA system (3)
becomes similar to a PWL system (9). However, it is important to note that the extended
dynamic matrix Āi is not a Schur matrix (i.e. a matrix with absolute values of all
eigenvalues strictly less than 1). Consequently, it is not possible to apply the quadratic or
the piecewise quadratic stability conditions from Lemmas 1 and 2 for this extended PWL
system representation, since this would lead to infeasible LMI constraints (CUZZOLA;
MORARI, 2001).

To avoid infeasible conditions we must introduce terms to relax the problem, in a
similar fashion to what was done in Lemma 3. In order to do that, consider the following
Proposition, derived as an extended version of Proposition 2.

Proposition 3. For any symmetric elementwise nonnegative matrix U = UT ⪰ 0 ∈
Rnki×nki , the following expression holds:

x̄T H̄T
i UH̄ix̄ ≥ 0 ∀x ∈ Γi. (16)

Proof. Note that from (15b) the term H̄ix̄ results in an elementwise nonnegative vector (or
scalar, depending on the dimensions of H̄i) for any x ∈ Γi. Since the matrix U is assumed
to be elementwise nonnegative, then (16) holds. ■
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From the Proposition 3, the term H̄ix̄ is elementwise nonnegative if and only if x ∈ Γi.
This term can then be used along with the S-procedure to propose conditions for the
stability analysis of PWA systems. This is done by the following Lemma (FENG, 2002):

Lemma 4. (FENG, 2002) Consider the PWA system (3) such that hi = 0 ∀i ∈ I0 and a

PWQ Lyapunov function

V (x) =

 xTPix ∀x ∈ Γi, i ∈ I0
x̄T P̄ix̄ ∀x ∈ Γi, i ∈ I1.

(17)

If there exist symmetric matrices Pi ∈ Rn×n for i ∈ I0, P̄i ∈ R(1+n)×(1+n) for i ∈ I1,
symmetric elementwise nonnegative matrices Ui ∈ Rnki×nki , Gi ∈ Rnki×nki and Zij ∈
Rnki×nki such that the following LMIs are satisfied:

Pi −HT
i UiHi > 0 ∀i ∈ I0 (18a)

P̄i − H̄T
i UiH̄i > 0 ∀i ∈ I1 (18b)

AT
i PiAi − Pi +HT

i GiHi < 0 ∀i ∈ I0 (18c)

ĀT
i P̄iĀi − P̄i + H̄T

i GiH̄i < 0 ∀i ∈ I1 (18d)

AT
i PjAi − Pi +HiZijHi < 0 ∀(i, j) ∈ Sall, i, j ∈ I0 (18e)

ĀT
i P̄jĀi − P̄i + H̄iZijH̄i < 0 ∀(i, j) ∈ Sall, i, j ∈ I1 (18f)

ĀT
i P̄jĀi − P̄i + H̄iZijH̄i < 0 ∀(i, j) ∈ Sall, i ∈ I1, j ∈ I0 (18g)

ĀT
i P̄jĀi − P̄i + H̄iZijH̄i < 0 ∀(i, j) ∈ Sall, i ∈ I0, j ∈ I1 (18h)

where we define

P̄j ≜

[
0 0

0 Pj

]
for j ∈ I0 in (18g) and

P̄i ≜

[
0 0

0 Pi

]
for i ∈ I0 in (18h),

then the origin of the PWA system (3) is globally exponentially stable.

The formal proof can be found in (FENG, 2002), but the outline is given next. Con-
ditions (18a) and (18b) ensure the Lyapunov candidate function is positive for all x in
the state space, partitioned in regions containing the origin and not containing the origin,
respectively. The remaining conditions guarantee that ∆V (x) is decreasing along the
trajectories for all possible transitions among regions. Equations (18c) and (18d) deal with
the case when the state does not leave the current region in one step, (18e) tackles the
case when a transition occurs between regions containing the origin while (18f) handles
transitions between regions that do not contain the origin and, finally, equation (18g)
addresses the case when the transition occurs between a region that does not contain the
origin to a region that contains it and (18h) handles the other way around.
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As mentioned before, to reduce conservatism, infeasible transitions due to the system
dynamics can be removed from the stability conditions through a reachability analysis
(BEMPORAD; FERRARI-TRECATE; MORARI, 2000).

2.3.4 Implicit representation

For the implicit representation (5) we can consider a piecewise quadratic (PWQ)
Lyapunov function described as follows

V (x) =

[
x

ϕ(y(x))

]T [
P1 P2

P T
2 P3

][
x

ϕ(y(x))

]
=

[
x

ϕ(y(x))

]T

P

[
x

ϕ(y(x))

]
, (19)

with P1 = P T
1 ∈ Rn×n, P2 ∈ Rn×ny and P3 = P T

3 ∈ Rny×ny . Provided that f5 ⪯ 0, this
Lyapunov candidate function has a quadratic upper bound given by the following Lemma.

Lemma 5. (GROFF; VALMORBIDA; GOMES DA SILVA JR., 2020) If f5 ⪯ 0 and the

implicit representation is well-posed, the function V (x) in (19) has a quadratic upper

bound given by V (x) ≤ ϵmax ∥x∥2, with ϵmax = ∥P1∥ + 2σ ∥P2∥ + σ2 ∥P3∥ and σ =

max∆∈D[0,1]
∥∆(I − F4∆)−1F3∥, where D[0,1] is the set of diagonal matrices with elements

in [0, 1].

Proof. Let ỹ(x) ≜ y(x)− f5. Then (5b) gives

ỹ(x) = F3x+ F4ϕ(ỹ(x) + f5). (20)

Since f5 ⪯ 0, then 0 ⪯ ϕ(ỹ(x) + f5) ⪯ ϕ(ỹ(x)) and it is possible to write ϕ(ỹ(x) + f5) =

∆ỹ(x), with ∆ ∈ D[0,1]. As the matrix (I − F4∆) is guaranteed to be non-singular for all
∆ ∈ D[0,1] due to well-posedness assumption (GROFF; VALMORBIDA; GOMES DA
SILVA JR., 2019), (20) implies that

ỹ(x) = (I − F4∆)−1F3x.

Thus, it follows that

ϕ(y(x)) = ϕ(ỹ(x) + f5) = ∆ỹ(x) = ∆(I − F4∆)−1F3x,

yielding an upper bound of ∥ϕ(y(x))∥ given by

∥ϕ(y(x))∥ ≤ σ ∥x∥

with σ = max∆∈D[0,1]
∥∆(I − F4∆)−1F3∥. Finally, from (19) it follows that

V (x) ≤ ∥P1∥ ∥x∥2 + 2 ∥P2∥ ∥x∥ ∥ϕ(y(x))∥+ ∥P3∥ ∥ϕ(y(x))∥2

≤ (∥P1∥+ 2σ ∥P2∥+ σ2 ∥P3∥) ∥x∥2 = ϵmax ∥x∥2 .

■
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To state Lyapunov-based conditions, it is necessary to ensure the positivity of such
piecewise quadratic functions. One trivial way to do that, for the function presented in
(19), is to require P to be positive definite. However, this would be very conservative since
it would be valid for any function ϕ, and not only the considered vector ramp function ϕ.

To obtain less conservative conditions, specific properties of the considered vector
function ϕ must be taken into account. These properties are inherited from properties of
the scalar ramp function r, stated below and valid for any y(i) ∈ R.

r(y(i)) ≥ 0 (21a)

(r(y(i))− y(i)) ≥ 0 (21b)

r(y(i))(r(y(i))− y(i)) = 0 (21c)

Let (r(y(i))− y(i)) be called the complement of r(y(i)), with a graphic representation
given in Figure 4. Properties (21a) and (21b) state the nonnegativity of both the ramp
function and its complement, respectively. Property (21c) is a complementarity equality
constraint, where the product of the ramp function by its complement is identically zero. As
a brief remark, properties (21) can be derived from Karush-Kuhn-Tucker (KKT) optimality
conditions that implicitly characterize the nonlinear function r. This approach was used
for the saturation function by PRIMBS; GIANNELLI (2001) and specifically for the scalar
ramp function r by GROFF; VALMORBIDA; GOMES DA SILVA JR. (2020).

Figure 4 – Complement of the ramp function, that is, r(y(i))− y(i).
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Source: The author

From the properties (21) of the ramp function, the following Lemmas state several
properties verified by the function ϕ. These properties will have a key role to derive
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conditions to guarantee that function V (x) given by (19) is a Lyapunov function for the
PWA system (5).

Lemma 6. (GROFF, 2020) For any symmetric elementwise nonnegative matrix M ∈
R(1+2ny)×(1+2ny)

s1(M, y) =

 1

ϕ(y)

ϕ(y)− y


T

M

 1

ϕ(y)

ϕ(y)− y

 ≥ 0 ∀y ∈ Rny (22)

Proof. From (6), function ϕ is defined elementwise in terms of scalar ramp function.
Properties (21a) and (21b) ensures that all elements of ϕ and its complements are non-
negative. Since, by definition, M contains only nonnegative elements, (22) holds for any
y ∈ Rny . ■

Lemma 7. (GROFF, 2020) For any diagonal matrix T ∈ Dny

s2(T, y) =

 1

ϕ(y)

ϕ(y)− y


T 0 0 0

0 0 T

0 T 0


 1

ϕ(y)

ϕ(y)− y

 = 0 ∀y ∈ Rny . (23)

Proof. Since T is a diagonal matrix, s2(T, y) can be written as

s2(T, y) = 2

ny∑
i=1

T(i,i)ϕ(i)(y)(ϕ(i)(y)− y(i)).

As function ϕ is defined elementwise in terms of scalar ramp function, from the comple-
mentarity equality constraint (21c), each term in the sum is identically zero. Thus, (23)
holds for any y ∈ Rny . ■

Remark 2. Lemmas 6 and 7 were derived in (GROFF; VALMORBIDA; GOMES DA

SILVA JR., 2019) using ϕ(−y). The results presented here are equivalent thanks to the

following identity: ϕ(−y) ≡ ϕ(y)− y.

Lemmas 6 and 7 refer to intrinsic properties of function ϕ, valid for any vector argument
y ∈ Rny . On the other hand, the following Lemma is based on the relation between y(x)

and x given by (5b).

Lemma 8. (GROFF; VALMORBIDA; GOMES DA SILVA JR., 2020) Let nχ ≜ 1+n+2ny

and

χ(x) ≜
[
1 xT ϕT (y(x)) (ϕ(y(x))− y(x))T

]T
∈ Rnχ .

For any vector ζ ∈ Rnζ and matrix R ∈ Rnζ×ny the following identity holds:

s3(R, ζ, x) = 2ζTR
[
f5 F3 (F4 − I) I

]
χ(x) = 0 ∀x ∈ Rn. (24)
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Proof. For each x ∈ Rn, the state x belongs to some region Γi of the partition. Hence,
from the discussion in section 2.2.2 and the well posedness assumption, it follows that x
verifies (5b) and[

f5 F3 (F4 − I) I
]
χ(x) = f5 + F3x+ (F4 − I)ϕ(y(x)) + (ϕ(y(x))− y(x))

= F3x+ F4ϕ(y(x)) + f5 − y(x) = 0

for any x ∈ Rn. Thus, (24) holds. ■

The Lemmas previously presented in this section are instrumental to verify the global
exponential stability of the origin of PWA systems, as stated by the following Theorem.

Theorem 1. (GROFF; VALMORBIDA; GOMES DA SILVA JR., 2020) Consider the PWA

system (5) with f5 ⪯ 0 and a PWQ Lyapunov candidate function V (x) as in (19). If

there exist a symmetric matrix P ∈ R(n+ny)×(n+ny), T1 ∈ Dny , T2 ∈ D2ny , R1 ∈ Rnχ×ny ,

R2 ∈ Rnχ̄×2ny , elementwise nonnegative matrices M1 ∈ R(1+2ny)×(1+2ny) and M2 ∈
R(1+4ny)×(1+4ny), a positive scalar ϵmin and η ∈ (0, 1) such that

(V (x)− ϵminx
Tx)− s1(M1, y(x)) + s2(T1, y(x)) + s3(R1, χ(x), x) ≥ 0 (25)

and

− (V (x+)− ηV (x))− s1(M2, ȳ(x)) + s2(T2, ȳ(x)) + s3(R2, χ̄(x), x) ≥ 0 (26)

with

χ(x) =


1

x

ϕ(y(x))

ϕ(y(x))− y(x)

 , ȳ(x) ≜

[
y(x)

y(x+)

]
and χ̄(x) ≜


1

x

ϕ(ȳ(x))

ϕ(ȳ(x))− ȳ(x)

 ,

then the origin of system (5) is globally exponentially stable.

Proof. From Lemmas 5, 6, 7 and 8 and as f5 ⪯ 0, if (25) and (26) hold it respectively
follows that

ϵmin ∥x∥2 ≤ V (x) ≤ ϵmax ∥x∥2 (27a)

V (x+) ≤ ηV (x) (27b)

with ϵmax = ∥P1∥+ 2σ ∥P2∥+ σ2 ∥P3∥. Since η ∈ (0, 1) and V (x) > 0, then ∆V (x) =

V (x+) − V (x) < 0. Moreover, from (27b) we conclude that V (x(k)) ≤ ηkV (x(0)),
which, from (27a), implies that ∥x(k)∥ ≤

√
ϵmax/ϵmine

ln(
√
η)k ∥x(0)∥ ∀x ∈ Rn, from

where the global exponential stability of the origin follows. ■
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Remark 3. The assumption of f5 ⪯ 0 in Theorem 1 ensures a quadratic upper bound to

V (x) without the need of additional constraints. However, as stated in subsection 2.3.1,

it is possible for a PWA system in the implicit representation (5) to have the origin as an

equilibrium point and positive entries in f5. In this case, Theorem 1 can still be used to

assess the exponential stability of the origin of PWA systems through the inclusion of one

additional constraint to ensure a quadratic upper bound to V (x): if there exist a diagonal

matrix Tϵ ∈ Dny , a symmetric elementwise nonnegative matrix Mϵ ∈ R(1+2ny)×(1+2ny), a

matrix Rϵ ∈ Rnχ×ny and a positive scalar ϵmax such that

−(V (x)− ϵmaxx
Tx)− s1(Mϵ, y(x)) + s2(Tϵ, y(x)) + s3(Rϵ, χ(x), x) ≥ 0, (28)

then V (x) ≤ ϵmaxx
Tx ∀x ∈ Rn. In this case, from the Lemmas 6, 7 and 8 regarding the

nonnegativity of PWQ functions, we conclude that

−(V (x)− ϵmaxx
Tx) ≥ s1(Mϵ, y(x)) ≥ 0,

from where the fact that V (x) ≤ ϵmaxx
Tx ∀x ∈ Rn follows.

Inequalities (25) and (26) can be represented as LMI constraints for a fixed value of η,
as stated by the following Theorem.

Theorem 2. Given η ∈ (0, 1), if there exist a symmetric matrix P ∈ R(n+ny)×(n+ny) as in

(19), T1 ∈ Dny , T2 ∈ D2ny , R1 ∈ Rnχ×ny , R2 ∈ Rnχ̄×2ny ,

M1 =

M11,1 M11,2 M11,3

⋆ M12,2 M12,3

⋆ ⋆ M13,3

 ∈ R(1+2ny)×(1+2ny),

M2 =

M21,1 M21,2 M21,3

⋆ M22,2 M22,3

⋆ ⋆ M23,3

 ∈ R(1+4ny)×(1+4ny)

and a positive scalar ϵmin such that the LMIs
0 0 0 0

0 P1 − ϵminI P2 0

0 ⋆ P3 0

0 0 0 0

−

M11,1 0 M11,2 M11,3

0 0 0 0

⋆ 0 M12,2 M12,3 − T1

⋆ 0 ⋆ M13,3

+ He{R1Q1} ≥ 0, (29)

and

−


0 0 0 0

0 N1 N2 0

0 ⋆ N3 0

0 0 0 0

−

M21,1 0 M21,2 M21,3

0 0 0 0

⋆ 0 M22,2 M22,3 − T2

⋆ 0 ⋆ M23,3

+ He{R2Q2} ≥ 0 (30)
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and the nonnegativity elementwise constraints

M1 ⪰ 0 and M2 ⪰ 0 (31)

are satisfied with

N1 = F T
1 P1F1 − ηP1,

N2 =
[
F T
1 P1F2 − ηP2 F T

1 P2

]
,

N3 =

[
F T
2 P1F2 − ηP3 F T

2 P2

⋆ P3

]
,

Q1 =
[
f5 F3 F4 − I I

]
and

Q2 =

[
f5 F3 F4 − I 0 I 0

f5 F3F1 F3F2 F4 − I 0 I

]
,

then the origin of system (5) with f5 ⪯ 0 is globally exponentially stable.

Proof. Note that the terms s1(M1, y(x)), s2(T1, y(x)) and s3(R1, χ(x), x) in (25) can be
written, respectively, as

s1(M1, y(x)) = χT (x)


M11,1 0 M11,2 M11,3

0 0 0 0

⋆ 0 M12,2 M12,3

⋆ 0 ⋆ M13,3

χ(x),

s2(T1, y(x)) = χT (x)


0 0 0 0

0 0 0 0

0 0 0 T1

0 0 T1 0

χ(x) and

s3(R1, χ(x), x) = He{χT (x)R1Q1χ(x)}.

Thus, by pre and post multiplying (29) by χT (x) and χ(x), respectively, it follows that the
inequality (25) is verified.

Moreover, since ȳ(x) is given by

ȳ(x) ≜

[
y(x)

y(x+)

]
=

[
F3

F3F1

]
x+

[
F4 0

F3F2 F4

]
ϕ(ȳ(x)) +

[
f5

f5

]
,

the term s3(R2, χ̄(x), x) in (26) can be written as

s3(R2, χ̄(x), x) = He{χ̄T (x)RQ2χ̄(x)}
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with χ̄(x) = [1 xT ϕT (ȳ(x)) (ϕT (ȳ(x)) − ȳ(x))T ]T , as defined in Theorem 1. The
remaining terms s1(M2, ȳ(x)) and s2(T2, ȳ(x)) in (26) can be equivalently written as

s1(M2, ȳ(x)) = χ̄T (x)


M21,1 0 M21,2 M21,3

0 0 0 0

⋆ 0 M22,2 M22,3

⋆ 0 ⋆ M23,3

 χ̄(x) and

s2(T2, ȳ(x)) = χ̄T (x)


0 0 0 0

0 0 0 0

0 0 0 T2

0 0 T2 0

 χ̄(x),

respectively. Lastly, the term V (x+)− ηV (x) is equivalently represented by

V (x+)− ηV (x) = χ̄T (x)


0 0 0 0

0 N1 N2 0

0 ⋆ N3 0

0 0 0 0

 χ̄(x).

Thus, by pre and post multiplying (30) by χ̄T (x) and χ̄(x), respectively, it follows that the
inequality (26) is verified. Finally, constraints (31) ensure the elementwise nonnegativity
of matrices M1 and M2 required by Theorem 1. ■

As stated in Remark 3, Theorem 2 can be applied if the origin of the PWA system
(5) is an equilibrium point but the vector f5 has positive entries. In order to do that, one
additional convex constraint can be included to ensure a known quadratic upper bound to
V (x). This convex constraint is given by the following LMI: if there exist a symmetric
matrix P ∈ R(n+ny)×(n+ny) as in (19), diagonal matrix Tϵ ∈ Dny , matrix Rϵ ∈ Rnχ×ny , a
symmetric elementwise nonnegative matrix Mϵ ∈ R(1+2ny)×(1+2ny) and a positive scalar
ϵmax such that

0 0 0 0

0 −P1 + ϵmaxI −P2 0

0 ⋆ −P3 0

0 0 0 0

−

Mϵ1,1 0 Mϵ1,2 Mϵ1,3

0 0 0 0

⋆ 0 Mϵ2,2 Mϵ2,3 − Tϵ

⋆ 0 ⋆ Mϵ3,3

+He{RϵQ1} ≥ 0 (32)

is verified, then V (x) is upper bounded by ϵmaxx
Tx. The proof follows directly by pre and

post multiplying the expression in (32) by χT (x) and χ(x), respectively.

2.4 Stabilization of PWA Systems with the Explicit Representation

This section recalls the stabilization methods proposed in the literature regarding the
special case of PWL systems and a PWL state feedback control law. Then, the difficulties
of extending those methods to the general case of PWA systems are discussed.
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2.4.1 Special case of PWL systems

In (MIGNONE; FERRARI-TRECATE; MORARI, 2000) stabilization methods consid-
ering a PWL state feedback control law are proposed. Those methods are based on the
quadratic stability (11) and the piecewise quadratic stability (12) regarding the special case
of PWL systems. Since the method based on quadratic stability is a particular case of the
method based on the piecewise quadratic stability, let us recall only the latter.

Consider a PWL state feedback control law given by

u = Kix ∀x ∈ Γi. (33)

Then, the PWL closed-loop system (9) and (33) reads

x+ = (Ai +BiKi)x ∀x ∈ Γi. (34)

To assess the PWQ stability of the closed-loop system (34) the following Lemma is stated.

Lemma 9. If there exist symmetric matrices Qi ∈ Rn×n and matrices Wi ∈ Rnu×n such

that the following set of LMIs

Qi > 0 ∀i ∈ I and (35)[
Qj (AiQi +BiWi)

⋆ Qi

]
> 0 ∀(i, j) ∈ Sall (36)

is verified, then the origin of the closed-loop system (34) is globally exponentially stable

and the stabilizing gains are given by Ki = WiPi, where Pi ≜ Q−1
i .

Proof. Since Pi = Q−1
i , the set of LMIs (35) implies that Pi > 0 ∀i ∈ I. Hence, the

PWQ Lyapunov function V (x) = xTPix ∀x ∈ Γi is positive definite.
On the other hand, by pre and post multiplying (36) by the symmetric matrix[

I 0

0 Pi

]
,

and considering that Pj = Q−1
j and Ki = WiPi, we obtain[

P−1
j Ai +BiKi

⋆ Pi

]
> 0 ∀(i, j) ∈ Sall.

Using Schur complement, we note that this implies that

(Ai +BiKi)
TPj(Ai +BiKi)− Pi < 0 ∀(i, j) ∈ Sall,

that is, ∆V (x) is negative definite, from where the global exponential stability of the origin
follows for the stabilizing gains Ki = WiPi. ■



37

This stabilization approach is restrictive. First, note that the set of all combinations of
transitions Sall is considered in (36). However, in the stabilization case, it is not possible
to perform the reachability analysis to know a priori the set of feasible transitions Sfea.
The impossibility arises from the fact that the control gains Ki may change the feasible
transitions. Lacking of better knowledge, one needs to take into account the set Sall of all
transitions, which may be conservative.

Another source of conservatism in the PWQ stabilization procedure of Lemma 9 is
not to take into account the relaxation terms as in (14). The absence of those terms in
(36) ensures that ∆V (x) is negative definite for any type of switching, and not only the
switching that occurs due to the system dynamics.

If we take into account the relaxation terms, sufficient conditions to ensure the
exponential stability of the origin of the closed-loop system is given by the following
Lemma.

Lemma 10. If there exist symmetric matrices Pi = P T
i ∈ Rn×n, symmetric elementwise

nonnegative matrices Ui = UT
i ⪰ 0 ∈ Rnki×nki and Zij = ZT

ij ⪰ 0 ∈ Rnki×nki and

matrices Ki ∈ Rnu×n for i, j = 1, ..., NΓ, such that the LMIs

Pi −HT
i UiHi > 0 ∀i ∈ I (37a)

(Ai +BiKi)
TPj(Ai +BiKi)− Pi +HT

i ZijHi < 0 ∀(i, j) ∈ Sall (37b)

are satisfied, then the origin of the closed-loop PWL system (34) is globally exponentially

stable for the gains Ki.

The proof follows directly from Lemma 3. However, in this case, applying the Schur
complement leads to the following inequality:[

P−1
j Ai +BiKi

⋆ Pi −HT
i ZijHi

]
> 0.

Then, pre and post multiplying this inequality by the block diagonal matrix diag(I,Qi),
where Qi = P−1

i , does not lead to a convex constraint as it would in the case without
relaxation terms.

Hence, it is not possible to derive convex or quasi-convex stabilization conditions from
the PWQ stability with relaxation terms.

2.4.2 General case of PWA systems

In subsection 2.3.3 the quadratic and the PWQ stability analysis were extended to
the general case of PWA systems. This was done by representing the PWA system as an
extended PWL system (15). In this extended representation, the dynamic matrix Āi is not
a Schur matrix. Consequently, it is not possible to apply the quadratic or the piecewise
quadratic stability conditions from Lemmas 1 and 2 in this case, since this would lead to
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infeasible LMI constraints (CUZZOLA; MORARI, 2001). Hence, the use of relaxation
terms are necessary to obtain feasible stability conditions.

However, as seen in subsection 2.4.1, if we take into account the relaxation terms, it
is not possible to obtain convex nor quasi-convex stabilization conditions from the PWQ
stability conditions. Also, to the author’s knowledge, no stabilization methods based on
the stability conditions (14) are proposed in the literature for PWL or PWA systems.

2.5 Final Remarks

This chapter reviewed the definition of PWA systems and different forms to represent
them, with special emphasis on the traditionally used explicit representation (named, in this
work, standard explicit representation) and a recently developed implicit representation. In
the standard explicit representation the regions of the partition are defined by a finite set of
explicit inequalities on the state variables. On the other hand, in the implicit representation
the regions are defined by an implicit equation based on vector ramp functions.

Conditions to assess the global exponential stability based on convex feasibility
problems were presented for both representations. One difficulty to address the stability
analysis problem using the explicit representation is that not all transitions between regions
are feasible due to the system dynamics. Hence, to relax this problem, a reachability
analysis is necessary to obtain a priori knowledge about the set of possible transitions
among regions.

The difficulties of deriving convex or quasi-convex stabilization conditions for PWA
systems using the explicit representation based on the relaxed PWQ stability conditions
were briefly discussed in Section 2.4. They derive mainly from the inclusion of relaxation
terms, which prevents reaching convex stabilization conditions.

Based on what was presented so far, the next chapters will adress the problems of global
stabilization and local stability analysis of PWA systems using the implicit representation.
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3 GLOBAL STABILIZATION

In Section 2.3.4 sufficient conditions to verify if the origin of a PWA system in the
implicit representation is globally exponentially stable were presented in Theorem 1. Then,
Theorem 2 allows to assess the stability of the origin through a direct LMI feasibility test.
However, the same cannot be done in the stabilization problem due to the product between
variables. This chapter defines the stabilization problem and presents sufficient conditions
that aims to eliminate or relax the nonlinearities coming from the analysis conditions
when the control law gains are variables. Then, an algorithm based on the solution of
Semidefinite Programming (SDP) problems (i.e. feasibility LMI problems) to compute a
stabilizing controller is suggested and tested in numerical examples.

3.1 Problem Statement

Consider the open-loop PWA system given by the implicit representation

x+ = F1x+ F2ϕ(y(x)) +Bu (38a)

y(x) = F3x+ F4ϕ(y(x)) + f5 (38b)

with a PWA feedback control law defined as

u = K1x+K2ϕ(y(x)) (39)

with K1 ∈ Rnu×n and K2 ∈ Rnu×ny . The control law (39) is piecewise affine since the
gain K2 modifies the control action according to the active region Γi of the partition, that is,
depending on the elements of the function ϕ(y(x)) that are equal to zero or not. However,
note that the control law does not alter the implicit equation (38b). As (39) does not change
(38b), the well-posedness of the system is left unchanged, depending only on the matrix F4.
The proposed method also requires that the origin is an equilibrium point of the open-loop
system (38). Due to those characteristics, the following Assumptions are made.

Assumption 1. The algebraic loop in (38b) is well-posed, i.e. there is an unique solution

to the implicit equation (38b).

Assumption 2. The implicit PWA system (38b) has f5 ⪯ 0.
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Assumption 1 ensures the closed-loop system is well-posed thanks to the open-loop
well-posedness. Assumption 2 ensures that the origin of the open-loop system is an
equilibrium point. In this case, the closed-loop system (38) and (39) reads

x+ = (F1 +BK1)x+ (F2 +BK2)ϕ(y(x)) (40a)

y(x) = F3x+ F4ϕ(y(x)) + f5. (40b)

The goal is to provide conditions to compute gains K1 and K2 such that the origin of
the closed-loop system (40) is globally exponentially stable.

3.2 Conditions for Stabilization

From (40), if gains K1 and K2 are fixed, Theorem 2 allows to assess the global
exponential stability of the origin of the closed-loop system through a direct LMI feasibility
test. However, considering the gains as variables, then Theorem 2 leads to non-convex
conditions. The reason is twofold. First, in the closed-loop situation the terms N1, N2 and
N3 of Theorem 2 read

N1 = (F1 +BK1)
TP1(F1 +BK1)− ηP1,

N2 =
[
(F1 +BK1)

TP1(F2 +BK2)− ηP2 (F1 +BK1)
TP2

]
,

N3 =

[
(F2 +BK2)

TP1(F2 +BK2)− ηP3 (F2 +BK2)
TP2

⋆ P3

]

from where we notice the product between the gains and the matrix defining the Lyapunov
candidate function. Second, since s3(R2, χ̄(x), x) is written in terms of χ̄T (x) and χ̄(x) as

He

{
χ̄T (x)R2

[
f5 F3 F4 − I 0 I 0

f5 F3(F1 +BK1) F3(F2 +BK2) F4 − I 0 I

]
χ̄(x)

}

there is a product between variable R2 and the matrix containing the gains K1 and K2.

To derive sufficient conditions to compute the stabilizing gains the idea is to write an
extended version of Theorem 2 using Finsler’s Lemma. This eliminates the non-convex
condition introduced by the terms N1, N2 and N3. Then, a fixed structure is imposed to
variables R1 and R2, allowing to write quasi-convex conditions to stabilization after some
congruence transformations.

3.2.1 Alternative stability conditions

This subsection states alternative stability conditions considering a vector ξ(x) ∈
R1+2n+2ny defined as

ξ(x) ≜
[
1 xT (x+)T ϕT (y(x)) (ϕ(y(x))− y(x))T

]T
.
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Note that ξ(x) is an extended version of χ(x) by the inclusion of the successor state x+.
The relation between x and x+ expressed by (40a) allows to state an extended version of
Lemma 8.

Lemma 11. For any vector ζ ∈ Rnζ and matrix R ∈ Rnζ×(ny+n)

s̄3(R, ζ, x) = 2ζTR

[
f5 F3 0 (F4 − I) I

0 (F1 +BK1) −I (F2 +BK2) 0

]
ξ(x) ≡ 0 (41)

is verified along the trajectories of the system (40).

Proof. From (40) it follows that[
f5 F3 0 (F4 − I) I

0 (F1 +BK1) −I (F2 +BK2) 0

]
ξ(x)

=

[
f5 + F3x+ (F4 − I)ϕ(y(x)) + (ϕ(y(x))− y(x))

(F1 +BK1)x+ (F2 +BK2)ϕ(y)− x+

]
≡

[
0

0

]
.

Thus, (41) holds for any trajectory of the system (40). ■

Lemma 11 allows to represent the stability conditions in terms of an extended vector
with an additional equality constraint. This constraint represents the relation between the
inserted variable x+ and the others. As a brief remark, Lemma 11 can also be derived using
Finsler’s Lemma (see Appendix A.2), as usually done in the control literature (OLIVEIRA;
SKELTON, 2007). Then, Theorem 2 can be equivalently stated as follows.

Theorem 3. Given η ∈ (0, 1), if there exist a symmetric matrix P ∈ R(n+ny)×(n+ny)

as in (19), T1 ∈ Dny , T2 ∈ D2ny , R1 ∈ R(1+2n+2ny)×(ny+n), R2 ∈ R(1+2n+4ny)×(2ny+n),

M1 ∈ R(1+2ny)×(1+2ny), M2 ∈ R(1+4ny)×(1+4ny) and a positive scalar ϵmin such that the

LMIs
0 0 0 0

0 P1 − ϵminI P2 0

0 ⋆ P3 0

0 0 0 0

−

M111 0 M112 M113

0 0 0 0

⋆ 0 M122 M123 − T1

⋆ 0 ⋆ M133

+ He{R1Q1} ≥ 0, (42)

and

0 0 0 0 0 0 0

0 ηP̃1 0 ηP̃2 0 0 0

0 0 −P̃1 0 −P̃2 0 0

0 ⋆ 0 ηP̃3 0 0 0

0 0 ⋆ 0 −P̃3 0 0

0 0 0 0 0 0 0


−


M21,1 0 0 M21,2 M21,3

0 0 0 0 0

0 0 0 0 0

⋆ 0 0 M22,2 M22,3 − T2

⋆ 0 0 ⋆ M23,3

+ He{R2Q̄2} ≥ 0

(43)
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and the elementwise nonnegativity constraints

M1 ⪰ 0 and M2 ⪰ 0 (44)

are satisfied with

Q1 =
[
f5 F3 F4 − I I

]
and

Q̄2 =

f5 F3 0 F4 − I 0 I 0

f5 0 F3 0 F4 − I 0 I

0 (F1 +BK1) −I (F2 +BK2) 0 0 0

 ,

then the origin of the PWA system (5) is globally exponentially stable.

Proof. The procedure is similar to the proof of Theorem 2. Since (42) was not changed, it
implies in (25). Moreover, pre and post multiplying (43) by ξ̄T (x) and ξ̄(x), respectively,
with ξ̄(x) ∈ R1+2n+4ny defined as

ξ̄(x) ≜
[
1 xT (x+)T ϕT (ȳ(x)) (ϕ(ȳ(x))− ȳ(x))T

]T
,

where ȳ(x) = [yT (x) yT (x+)]T , results in the following condition

−(V (x+)− ηV (x))− s1(M2, ȳ(x)) + s2(T2, ȳ(x)) + s̄3(R2, ξ̄(x), x) ≥ 0.

Since s̄3(R2, ξ̄(x), x) ≡ 0, then ∆V (x) is negative definite and the origin of the PWA
system is globally exponentially stable. ■

3.2.2 Stabilization theorem

The advantage of Theorem 3 over Theorem 2 is that non-convex conditions introduced
by N1, N2 and N3 are eliminated. However there is still the product between the multiplier
R2 and matrix Q̄2, which contains the gains to be computed. To eliminate this non-
convexity, some congruence transformations are made along with the choice of a particular
structure for the multiplier R2. The following Theorem formalizes that and presents
sufficient conditions to ensure that the origin of the closed-loop system (40) is globally
exponentially stable.

Theorem 4. Given η ∈ (0, 1), if there exist a symmetric matrix P̃ ∈ R(n+ny)×(n+ny), a

positive definite symmetric matrix Ẽ ∈ Rn×n, M̃1 ∈ R(1+2ny)×(1+2ny), T̃1 ∈ Dny , M̃2 ∈
R(1+4ny)×(1+4ny), T̃2 ∈ D2ny , non-singular symmetric matrices W1 ∈ Rn×n, W2 ∈ Dny ,

W3 ∈ Dny , W4 ∈ Dny and W5 ∈ Dny , matrices K̃1 ∈ Rnu×n and K̃2 ∈ Rnu×ny and

scalars α, β and γ such that the matrix inequalities
0 0 0 0

0 P̃1 − Ẽ P̃2 0

0 ⋆ P̃3 0

0 0 0 0

−

M̃111 0 M̃112 M̃113

0 0 0 0

⋆ 0 M̃122 M̃123 − T̃1

⋆ 0 ⋆ M̃133

+ He{R̃1Q̃1} ≥ 0 (45)
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0 0 0 0 0 0 0

0 ηP̃1 0 ηP̃2 0 0 0

0 0 −P̃1 0 −P̃2 0 0

0 ⋆ 0 ηP̃3 0 0 0

0 0 ⋆ 0 −P̃3 0 0

0 0 0 0 0 0 0


−


M̃211 0 0 M̃212 M̃213

0 0 0 0 0

0 0 0 0 0

⋆ 0 0 M̃222 M̃223 − T̃2

⋆ 0 0 ⋆ M̃233

+ He{R̃2Q̃2} ≥ 0

(46)
and the elementwise nonnegativity constraints

Π−1
1


M̃111 0 M̃112 M̃113

0 0 0 0

⋆ 0 M̃122 M̃123

⋆ 0 ⋆ M̃133

Π−1
1 ⪰ 0 (47)

Π−1
2


M̃211 0 0 M̃212 M̃213

0 0 0 0 0

0 0 0 0 0

⋆ 0 0 M̃222 M̃223

⋆ 0 0 ⋆ M̃233

Π−1
2 ⪰ 0 (48)

are satisfied with

Π1 = ΠT
1 = diag(1,W1,W2,W5),

Π2 = ΠT
2 = diag(1,W1,W1,W2,W2,W3,W4),

R̃1 =
[
0 0 γI I

]T
,

Q̃1 =
[
f5 F3W1 (F4 − I)W2 W5

]
,

R̃2 =

0 0 0 I 0 I 0

0 0 0 0 βI 0 I

0 I αI 0 0 0 0


T

and

Q̃2 =

f5 F3W1 0 (F4 − I)W2 0 W3 0

f5 0 F3W1 0 (F4 − I)W2 0 W4

0 (F1W1 +BK̃1) −W1 (F2W2 +BK̃2) 0 0 0

 ,

then the gains K1 = K̃1W
−1
1 and K2 = K̃2W

−1
2 ensure that the origin of the closed-loop

system (40) is globally exponentially stable.

Proof. Consider (42) with the matrix ϵminI replaced by a symmetric positive definite
matrix E. In this case, the following condition is ensured:

(V (x)− xTEx)− s1(M1, y(x)) + s2(T1, y(x)) + s3(R1, χ(x), x) ≥ 0.
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The positive definiteness of matrix E, along with Lemmas 6, 7 and 8 regarding the global
nonnegativity of PWQ functions, ensures that

V (x) ≥ xTEx > 0

and the quadratic lower bound of V (x) is given by λmin(E) ∥x∥2, where λmin(E) is the
minimal eigenvalue of E. The use of E instead of ϵminI allows for a subsequent change of
variables.

Consider now the following structure for matrix

R1 =
[
0 0 γW−1

2 W−1
5

]T
.

Then, after pre and post multiplying (42) with ϵminI replaced by E, by the symmetric
matrix Π1, the term Π1R1Q1Π1 becomes R̃1Q̃1 and the following change of variables is
considered to obtain the remaining terms of (45):

Ẽ ≜ W1EW1; M̃111 ≜ M111 ;

M̃112 ≜ M112W2; M̃113 ≜ M113W3;

M̃122 ≜ W2M122W2; M̃123 ≜ W2M123W3;

M̃133 ≜ W3M133W3; T̃1 ≜ W2T1W3;

P̃1 ≜ W1P1W1; P̃2 ≜ W1P2W2;

P̃3 ≜ W2P3W2.

(49)

Consider now (43) with the following particular structure for matrix R2:

R2 =

0 0 0 W−1
2 0 W−1

3 0

0 0 0 0 βW−1
2 0 W−1

4

0 W−1
1 αW−1

1 0 0 0 0


T

.

After pre and post multiplying (43) by the symmetric matrix Π2 and considering the
change of variables K̃1 ≜ K1W1 and K̃2 ≜ K2W2, the term Π2R2Q2Π2 becomes R̃2Q̃2

and the remaining terms in (46) are obtained from the following change of variables:

M̃211 ≜ M211 ; T̃2 ≜

[
W2 0

0 W2

]
T2

[
W3 0

0 W4

]
;

M̃212 ≜ M212

[
W2 0

0 W2

]
; M̃213 ≜ M213

[
W3 0

0 W4

]
;

M̃222 ≜

[
W2 0

0 W2

]
M222

[
W2 0

0 W2

]
; M̃223 ≜

[
W2 0

0 W2

]
M223

[
W3 0

0 W4

]
;

M̃233 ≜

[
W3 0

0 W4

]
M233

[
W3 0

0 W4

]
.

(50)
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Thus, (46) implies that (43) is satisfied, with K1 = K̃1W
−1
1 and K2 = K̃2W

−1
2 . Finally,

note that the elementwise constraints (47) and (48) ensure that the elementwise constraints
(44) are satisfied, i.e., matrices M1 and M2 in Theorem 3 are elementwise nonnegative.
Hence, the conditions from Theorem 4 imply in the conditions from Theorem 3, from
where the global exponential stability of the origin follows. ■

The following section discusses an algorithm to compute the stabilizing gains K1 and
K2 from Theorem 4.

3.3 Proposed Algorithm

Since constraints (45) to (48) are non-convex, it is important to discuss an algorithm to
solve the feasibility problem defined by such constraints.

First, there is the product between variable matrices R̃1Q̃1 and R̃2Q̃2. Since matrices R̃1

and R̃2 have only a few scalar variables, then a gridding method can be used (RODRIGUES;
BOYD, 2005), i.e., define a grid of values for α, β and γ and, for each point in the grid,
(45) and (46) are LMIs. The grid is characterized by a minimal value (αmin, βmin, γmin), a
step value (αs, βs, γs) and a maximum value (αmax, βmax, γmax) for each variable. In this
work, these values were chosen based on preliminary tests.

We must also satisfy the elementwise constraints (47) and (48). Noting that W2, W3,
W4 and W5 are diagonal matrices, the idea is to impose these matrices to be positive or
negative definite and then add constraints on the corresponding elements of matrices M̃1

and M̃2. We have, therefore, 16 possible cases as described in Table 1. For instance,
consider case 3 (i.e. W5 > 0, W4 > 0, W3 < 0, W2 < 0). In this case, from (49), we must
impose the following elementwise constraints

M̃11,1 ⪰ 0, M̃11,2 ⪯ 0,

M̃11,3 ⪯ 0, M̃12,2 ⪰ 0,

M̃12,3 ⪰ 0 and M̃13,3 ⪰ 0

to ensure that matrix M1 is elementwise nonnegative. Taking into account (48), the same
procedure must be applied to M̃2 to ensure that matrix M2 is elementwise nonnegative.

Hence, the idea is to check the feasibility of LMIs (45) and (46) on a grid on α, β and
γ, considering the elementwise contraints associated to each one of the cases in Table 1.
This is summarized in Algorithm 1.

Regarding the global exponential stability of the origin of (40), any pair K1 and K2

leading to a feasible solution to the LMIs associated with Algorithm 1 stabilizes the
system. It is also possible to consider an optimization criterion, such as maximization of
convergence rate of trajectories. This could be done by taking, among the set of feasible
solutions, the one that leads to a minimal value for η.
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Table 1 – Table of cases tested for matrices W2 to W5

Test Case W5 W4 W3 W2 Test Case W5 W4 W3 W2

0 > > > > 8 < > > >

1 > > > < 9 < > > <

2 > > < > 10 < > < >

3 > > < < 11 < > < <

4 > < > > 12 < < > >

5 > < > < 13 < < > <

6 > < < > 14 < < < >

7 > < < < 15 < < < <

Algorithm 1 Algorithm for stabilization of PWA Systems
for α = αmin : αs : αmax do

for β = βmin : βs : βmax do
for γ = γmin : γs : γmax do

for testCase = 0 : 15 do
Solve the convex feasibility problem
composed by LMIs (45) and (46) and
the elementwise constraints (47) and (48)
associated with the case in Table 1.
if a feasible solution was found then

End algorithm. The stabilizing gains are
given by K1 = K̃1W

−1
1 and K2 = K̃2W

−1
2 .

end if
end for

end for
end for

end for
if no feasible solution was found then

End algorithm. The PWA system cannot be stabilized by this method.
end if
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Finally, note that Table 1 considers positive or negative definiteness constraints on
matrices W2, W3, W4 and W5, casting 16 possible combinations of constraints irrespective
of the size of the system or the number of regions in the partition. This same idea could be
applied to the positivity or negativity of each diagonal element of matrices W2, W3, W4

and W5, leading to more degrees of freedom for matrices M̃1 and M̃2. However, in this
case, the number of possible combinations of constraints is 24ny , depending on the number
of regions. This may be computationally prohibitive for some systems and testing only the
16 cases in Table 1 is often sufficient, as illustrated by the following numerical examples.

3.4 Numerical Examples

This section presents two numerical examples to illustrate the application of the method
proposed in this chapter. All the examples in this section were solved using YALMIP
(LÖFBERG, 2004), SeDuMi (STURM, 1999) and MATLAB.

3.4.1 Example 1

Consider the continuous-time nonlinear system presented in Section 8.1 of (MOREIRA
et al., 2020), whose dynamics is represented by

ẋ =

[
0 1

4 0

]
x+

[
0

1

]
u+

[
0

0.5

]
f(x(2))

where f : R→ R is a nonlinear function given by

f(a) =


0, if ∥a∥ ≤ 1

ln(a), if a > 1

−ln(−a), if a < −1

for any a ∈ R.
The continuous nonlinear function f can be approximated by a PWA function. For

this example, it was considered a PWA function with five regions to model function f in
the interval −10 ≤ x(2) ≤ +10, as depicted in Figure 5. However, note that an arbitrarily
good approximation can be obtained by considering more regions in this interval.

A discrete-time PWA system can be obtained by discretizing the system (using Euler
discretization with T = 0.5) and considering the PWA approximation of the continuous
nonlinearity in Figure 5. This procedure leads to the PWA system (38) with

F1 =

[
1 T

4T 1− 0.25T

]
, F2 =

[
0 0 0 0

T −T −T T

]
, B =

[
0

T

]

F3 =


0 0.4024

0 0.2638

0 −0.4024
0 −0.2638

 , F4 = 0, and f5 =


−0.4024
−1.3190
−0.4024
−1.3190

 .
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Figure 5 – Example 1: Nonlinear function f(x(2)) (black) and a PWA approximation of
f(x(2)) with five regions (blue).

Source: The author

It should be noticed that the origin of the open-loop system is not globally exponentially
stable. Thus applying Algorithm 1 with parameters η = 0.9999, αmin = −1.5, αs = 0.5,
αmax = 1.5, βmin = −1.5, βs = 0.5, βmax = 1.5, γmin = −1.5, γs = 0.5 and γmax = 1.5

results in the following global stabilizing gains

K1 =
[
−5.2350 −3.9165

]
and

K2 =
[
−0.1614 0.1243 0.1625 −0.1242

]
for α = 1.5, β = 1.0, γ = 1.5 and test case 1. Some closed loop trajectories are shown in
Figure 6 while Figure 7 describes the control input for one trajectory.

Note that, since the PWA approximation is only locally valid, the global exponential
stabilization of the discrete-time system does not imply in the global stabilization of the
continuous-time system. Nonetheless, this example shows the application of the proposed
method.

3.4.2 Example 2

Recall the nonlinear circuit presented in Figure 1 and consider its discrete-time
approximation as discussed in subsection 2.2.2 for T = 0.03. As shown in Figure 2,
the system has three equilibrium points, one in each region. The goal is to make the
equilibrium point in Γ3 (i.e. xeq3 = [0.3714 0.6429]T ) globally exponentially stable. To do
that, we first apply a translation, from which the origin of the resulting system represented



49

Figure 6 – Example 1: Closed-loop trajectories (black dots) for a set of initial conditions
(black stars). The trajectory highlighted in red has its control input depicted in Figure 7.

Source: The author

Figure 7 – Example 1: Control input for the trajectory highlighted in red in Figure 6.

Source: The author
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with the implicit PWA representation (38) is given by

F1 =

[
1− 30T −20T
0.05T 1− 0.2T

]
, F2 =

[
0 0

−50T 50T

]
, B =

[
20T

0

]
,

F3 =

[
0 −0.006
0 −0.007

]
, F4 = 0 and f5 =

[
−0.0003
−0.0031

]
.

Note that the origin of the resulting system is the equilibrium point xeq3 of the original
system and, in this case, f5 ⪯ 0 and Assumption 2 is met.

The algorithm was then applied with parameters η = 0.9999, αmin = −1.0, αs = 0.25,
αmax = 1.0, βmin = −1.0, βs = 0.25, βmax = 1.0, γmin = −1.0, γs = 0.25 and
γmax = 1.0 resulting in the following global stabilizing gains

K1 =
[
−0.7123 7.4337

]
and

K2 = 103
[
1.9028 −0.9602

]
for α = 1.0, β = 0.25, γ = 0.25 and test case 1. Some closed loop trajectories are
shown in Figure 8. The closed-loop trajectory highlighted in Figure 8 has its control input
depicted in Figure 9.

Figure 8 – Example 2: Closed-loop trajectories (black dots) for a set of initial conditions
(black stars). The trajectory highlighted in red has its control input depicted in Figure 9.

Source: The author

3.5 Final Remarks

This chapter addressed the stabilization of discrete-time PWA systems considering
a PWA state feedback control law and a PWQ Lyapunov candidate function. The basic
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Figure 9 – Example 2: Control input for the trajectory highlighted in red in Figure 8.

Source: The author

problem resides with the nonconvexity introduced by the stability conditions when the
controller gains are variables, since this leads to product between variables. To overcome
this issue, new stability conditions were derived for the extended vector ξ(x) (which
contains the successor state x+) using Finsler’s Lemma. Moreover, congruence transfor-
mations and some structural assumptions were performed in order to reach quasi-LMI
sufficient conditions for the closed-loop global exponential stability of the origin. An
algorithm, based on the solution of a set of LMI feasibility problems, was proposed to
compute the stabilizing gains and was tested in numerical examples.

Differently from previous approaches in the literature, the stabilization method pro-
posed in this work does not require a priori knowledge of possible transitions between
regions. Moreover, the nonconvexity introduced by the relaxation terms in the explicit
representation is avoided with our method and the presence of the affine term is taken into
account without further difficulties.
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4 LOCAL STABILITY ANALYSIS

Section 2.3.4 presented the global stability analysis for PWA systems using the implicit
representation. This chapter proposes Lyapunov conditions to ensure local exponential
stability of PWA systems and derives a method to estimate the Region of Attraction of the
Origin (RAO) based on LMIs considering a PWQ Lyapunov candidate function.

4.1 Local Exponential Stability

The local asymptotic stability of a discrete-time nonlinear system is guaranteed if there
is a Lyapunov candidate function V (x) such that (ÅSTRÖM; WITTENMARK, 1997)

V (x) > 0 ∀x ∈ D − {0}

∆V (x) < 0 ∀x ∈ D − {0}.

Moreover, if the Lyapunov candidate function also satisfies

ϵmin ∥x∥2 ≤ V (x) ≤ ϵmax ∥x∥2 ∀x ∈ D − {0}

∆V (x) < −ϵ∆ ∥x∥2 ∀x ∈ D − {0}
(51)

for positive scalars ϵmin, ϵmax and ϵ∆ then, the origin is exponentially stable (KHALIL,
2002). In both cases, an estimate of the RAO is obtained as sub level sets of V (x) given by
Lρ = {x ∈ Rn | V (x) ≤ ρ, ρ > 0} ⊆ D.

The following sections derive methods to estimate the RAO of discrete-time systems
represented with the implicit representation.

4.2 Local Stability Analysis

Consider a PWQ Lyapunov candidate function V (x) as in (19). Then, to ensure the
local stability of a given PWA system origin it is necessary to test the local positivity
of such functions and the local negativity of ∆V (x) in a set D, as stated in (51). The
following Lemma is instrumental to this task, being an extended version of Lemma 6
suitable for the local analysis.
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Lemma 12. Let the symmetric matrix M(x) ∈ R(1+2ny)×(1+2ny) be defined elementwise by

locally nonnegative functions m(i,j) : Rn → R, such that M(i,j)(x) = m(i,j)(x) ≥ 0 ∀x ∈
D ⊆ Rn, i, j = 1, ..., 1 + 2ny. Then, it follows that

s1(M(x), y(x)) =

 1

ϕ(y(x))

ϕ(y(x))− y(x)


T

M(x)

 1

ϕ(y(x))

ϕ(y(x))− y(x)

 ≥ 0 ∀x ∈ D ⊆ Rn.

(52)

Proof. For any x ∈ D ⊆ Rn we have M(x) ⪰ 0, since each m(i,j)(x) ≥ 0, i, j =

1, ..., 1+2ny. Since each element of [1 ϕT (y(x)) (ϕ(y(x))−y(x))T ]T is nonnegative for
any y(x) ∈ Rny thanks to properties (21a) and (21b) of the ramp function, (52) holds. ■

Remark 4. Note that Lemma 6 is a special case of Lemma 12 with M(x) being a constant

elementwise nonnegative matrix and, as a consequence, D = Rn.

A matrix function M(x) satisfying Lemma 12 will be called a locally elementwise
nonnegative matrix in D. Such matrix allows to state the following theorem regarding the
local exponential stability of the origin of a PWA system.

Theorem 5. Consider a PWQ Lyapunov candidate function V (x) as in (19). If there

exist a symmetric matrix P ∈ R(n+ny)×(n+ny), T1 ∈ Dny , T2 ∈ D2ny , R1 ∈ Rnχ×ny ,

R2 ∈ Rnχ̄×2ny , locally elementwise nonnegative matrices M(x) ∈ R(1+2ny)×(1+2ny) and

M̄(x) ∈ R(1+4ny)×(1+4ny) ∀x ∈ D, a positive scalar ϵmin and η ∈ (0, 1) such that

(V (x)− ϵminx
Tx)− s1(M(x), y(x)) + s2(T1, y(x)) + s3(R1, χ(x), x) ≥ 0 (53)

and

− (V (x+)− ηV (x))− s1(M̄(x), ȳ(x)) + s2(T2, ȳ(x)) + s3(R2, χ̄(x), x) ≥ 0 (54)

with

χ(x) =


1

x

ϕ(y(x))

ϕ(y(x))− y(x)

 , ȳ(x) ≜

[
y(x)

y(x+)

]
and χ̄(x) ≜


1

x

ϕ(ȳ(x))

ϕ(ȳ(x))− ȳ(x)

 ,

then the origin of the PWA system (5) is locally exponentially stable and an estimate of the

RAO is given by any sub level set of V (x) contained in D, that is Lρ ⊆ D.

Proof. From Lemma 5 it follow that exists a scalar ϵmax such that

V (x) ≤ ϵmax ∥x∥2 .
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Moreover, if (53) holds, then, from Lemmas 7, 8 and 12, it follows that

(V (x)− ϵminx
Tx) ≥ s1(M(x), y(x)) ≥ 0 ∀x ∈ D ⊆ Rn

V (x) ≥ ϵmin ∥x∥2 ∀x ∈ D ⊆ Rn.

On the other hand, considering Lemmas 7, 8 and 12, (54) implies in

− (V (x+)− ηV (x)) ≥ s1(M̄(x), ȳ(x)) ≥ 0 ∀x ∈ D ⊆ Rn

V (x+) ≤ ηV (x) ∀x ∈ D ⊆ Rn

ensuring the local exponential stability of the origin with any sub level set Lρ ⊆ D being
an estimate of the RAO. ■

The goal now is to write conditions presented in Theorem 5 as LMI constraints. The
basic problem resides with writing terms like s1(M(x), y(x)) as quadratic terms in χ(x) =

[1 xT ϕT (y(x)) (ϕ(y(x)) − y(x))T ]T and ensure the local elementwise nonnegativity
of a matrix M(x) with LMIs. Note that the other terms in conditions (53) and (54) can
be written as quadratic terms similarly to what was done in Theorem 2. To deal with
this problem, the idea is to consider the following structure for the locally elementwise
nonnegative matrix M(x) in (53) (or M̄(x) in (54)):

M(x) =

M1,1(x) M1,2(x) M1,3(x)

⋆ M2,2 M2,3

⋆ ⋆ M3,3

 , (55)

where blocks M2,2, M2,3 and M3,3 are constant elementwise nonnegative matrices of
appropriate dimensions and

M1,1 : Rn → R, M1,1(x) = χT (x)Saχ(x),

MT
1,2 : Rn → Rny M1,2(x) = χT (x)Sϕ,

MT
1,3 : Rn → Rny M1,3(x) = χT (x)Sϕ̄.

(56)

with Sa = ST
a ∈ Rnχ×nχ , Sϕ ∈ Rnχ×ny and Sϕ̄ ∈ Rnχ×ny . Then, the term s1(M(x), y(x))

can be expressed as follows:

s1(M(x), y(x)) = χT (x)



0 0 0 0

⋆ 0 0 0

⋆ ⋆ M2,2 M2,3

⋆ ⋆ ⋆ M3,3

+ Sa + He




01×nχ

0n×nχ

ST
ϕ

ST
ϕ̄




χ(x),

which is a quadratic expression in χ(x).
Furthermore, to derive LMIs that ensure the local elementwise nonnegativity of M(x),

note that each element of vector functions M1,2(x) and M1,3(x) can be written as the
following quadratic expressions in χ(x):

M1,2(x)(i) = χT (x)Sϕ(:,i) = χT (x)
[
Sϕ(:,i) 0 0 0

]
χ(x),

M1,3(x)(i) = χT (x)Sϕ̄(:,i) = χT (x)
[
Sϕ̄(:,i) 0 0 0

]
χ(x)
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for i = 1, ..., ny.
Now let the set D be defined by a quadratic expression in χ(x) as

D = {x ∈ Rn | d(x) = χT (x)Dχ(x) ≥ 0} (57)

with D ∈ Rnχ×nχ .

Remark 5. Regarding condition (54), it is also useful to represent the set D as a

quadratic expression in terms of χ̄(x) = [1 xT ϕT (ȳ(x)) (ϕ(ȳ(x) − ȳ(x))T ]T , with

ȳ(x) = [yT (x) yT (x+)]T . In order to do that, define

D̄ ≜


1 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 0 I 0


T

D


1 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 0 I 0

 . (58)

Then, we can rewrite function d(x) as

d(x) = χT (x)Dχ(x) ≡ χ̄T (x)D̄χ̄(x).

Using the S-procedure (see Appendix A.1) the local nonnegativity of each element of
M(x) for x ∈ D can therefore be ensured from the following Lemma.

Lemma 13. Consider a matrix function M(x) as in (55)-(56), y(x) given by (5b) with

ϕ(y(x)) defined as in (6) and the set D as defined in (57). If there exist a symmetric

nonnegative matrix Ma ∈ R(1+2ny)×(1+2ny), a diagonal matrix Ta ∈ Dny , Ra ∈ Rnχ×ny

and a nonnegative scalar αa such that

(M1,1(x)− αad(x))− s1(Ma, y(x)) + s2(Ta, y(x)) + s3(Ra, χ(x), x) ≥ 0 (59)

and if there exist symmetric elementwise nonnegative matrices Mϕi ∈ R(1+2ny)×(1+2ny)

and Mϕ̄i
∈ R(1+2ny)×(1+2ny), diagonal matrices Tϕi ∈ Dny and Tϕ̄i

∈ Dny , matrices

Rϕi ∈ Rnχ×ny and Rϕ̄i
∈ Rnχ×ny and nonnegative scalar αϕi and αϕ̄i

for i = 1, ..., ny,

such that

(M1,2(x)(i) − αϕid(x))− s1(Mϕi, y(x)) + s2(Tϕi, y(x)) + s3(Rϕi, χ(x), x) ≥ 0 (60)

and

(M1,3(x)(i) − αϕ̄i
d(x))− s1(Mϕ̄i

, y(x)) + s2(Tϕ̄i
, y(x)) + s3(Rϕ̄i

, χ(x), x) ≥ 0 (61)

are satisfied for i = 1, ..., ny, then M(x) is locally elementwise nonnegative in D.

Proof. From Lemmas 6, 7 and 8 regarding the global nonnegativity of PWQ functions and
the fact that y(x) is given by (5b), (59) implies that

M1,1(x) ≥ αad(x) ≥ 0 ∀x ∈ Rn ⊆ D
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for any nonnegative scalar αa. Similarly, (60) and (61) imply, respectively, that

M1,2(x)(i) ≥ αϕid(x) ≥ 0 ∀x ∈ Rn ⊆ D

and

M1,3(x)(i) ≥ αϕ̄i
d(x) ≥ 0 ∀x ∈ Rn ⊆ D

for each element i = 1, ..., ny. Since the remaining blocks of M(x) are elementwise
nonnegative matrices, we conclude that M(x) is locally elementwise nonnegative in
D. ■

Similarly, the ideas previously presented are applied to matrix M̄(x) in (54) with the
same structure as given in (55)-(56). Then, using Lemma 13, we can now express the
conditions of Theorem 5 as LMIs. The following Theorem formalizes that.

Theorem 6. Consider V (x) as in (19). If there exist symmetric matrices P , Sa ∈ Rnχ×nχ ,

S̄a ∈ Rnχ̄×nχ̄ , D ∈ Rnχ×nχ diagonal matrices T1 ∈ Dny , Ta ∈ Dny , Tϕi ∈ Dny , Tϕ̄i
∈

Dny , T2 ∈ D2ny , T̄a ∈ D2ny , T̄ϕj
∈ D2ny and T̄ϕ̄j

∈ D2ny , matrices Sϕ ∈ Rnχ×ny ,

Sϕ̄ ∈ Rnχ×ny , S̄ϕ ∈ Rnχ̄×2ny , S̄ϕ̄ ∈ Rnχ̄×2ny , R1 ∈ Rnχ×ny , Ra ∈ Rnχ×ny , Rϕi
∈

Rnχ×ny , Rϕ̄i
∈ Rnχ×ny , R2 ∈ Rnχ̄×2ny , R̄a ∈ Rnχ̄×2ny , R̄ϕj

∈ Rnχ̄×2ny and R̄ϕ̄j
∈

Rnχ̄×2ny , symmetric elementwise nonnegative matrices M2,2 ∈ Rny×ny , M3,3 ∈ Rny×ny ,

M̄2,2 ∈ R2ny×2ny , M̄3,3 ∈ R2ny×2ny Ma ∈ R(1+2ny)×(1+2ny), Mϕi
∈ R(1+2ny)×(1+2ny),

Mϕ̄i
∈ R(1+2ny)×(1+2ny), M̄a ∈ R(1+4ny)×(1+4ny), M̄ϕj

∈ R(1+4ny)×(1+4ny) and M̄ϕ̄j
∈

R(1+4ny)×(1+4ny), elementwise nonnegative matrices M2,3 ∈ Rny×ny and M̄2,3 ∈ R2ny×2ny ,

a positive scalar ϵmin, a scalar η ∈ (0, 1) and nonnegative scalars αa, αϕi
, αϕ̄i

, ᾱa, ᾱϕj

and ᾱϕ̄j
, for i = 1, ..., ny and j = 1, ..., 2ny, such that the following LMIs

0 0 0 0

0 P1 − ϵminI P2 0

0 ⋆ P3 −M2,2 −M2,3 + T1

0 0 0 −M3,3

− Sa − He




0

0

ST
ϕ

ST
ϕ̄


+ He{R1Q1} ≥ 0,

(62)
0 0 0 0

0 −N1 −N2 0

0 ⋆ −N3 − M̄2,2 −M̄2,3 + T2

0 0 0 −M̄3,3

− S̄a − He




0

0

S̄T
ϕ

S̄T
ϕ̄


+ He{R2Q2} ≥ 0 (63)

Sa − αaD −


Ma1,1 0 Ma1,2 Ma1,3

0 0 0 0

⋆ 0 Ma2,2 Ma2,3 − Ta

⋆ 0 ⋆ Ma3,3

+ He{RaQ1} ≥ 0 (64)
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0.5He




ST
ϕ(:,i)

0

0

0


− αϕi

D −


Mϕi1,1

0 Mϕi1,2
Mϕi1,3

0 0 0 0

⋆ 0 Mϕi2,2
Mϕi2,3

− Tϕi

⋆ 0 ⋆ Mϕi3,3

+ He{Rϕi
Q1} ≥ 0

(65)

0.5He




ST
ϕ̄(:,i)

0

0

0


− αϕ̄i

D −


Mϕ̄i1,1

0 Mϕ̄i1,2
Mϕ̄i1,3

0 0 0 0

⋆ 0 Mϕ̄i2,2
Mϕ̄i2,3

− Tϕ̄i

⋆ 0 ⋆ Mϕ̄i3,3

+ He{Rϕ̄i
Q1} ≥ 0

(66)

S̄a − ᾱaD̄ −


M̄a1,1 0 M̄a1,2 M̄a1,3

0 0 0 0

⋆ 0 M̄a2,2 M̄a2,3 − T̄a

⋆ 0 ⋆ M̄a3,3

+ He{R̄aQ2} ≥ 0 (67)

0.5He




S̄T
ϕ(:,j)

0

0

0


− ᾱϕj

D̄ −


M̄ϕj1,1

0 M̄ϕj1,2
M̄ϕj1,3

0 0 0 0

⋆ 0 M̄ϕj2,2
M̄ϕj2,3

− Tϕi

⋆ 0 ⋆ M̄ϕj3,3

+ He{R̄ϕj
Q2} ≥ 0

(68)

0.5He




S̄T
ϕ̄(:,j)

0

0

0


− ᾱϕ̄j

D̄ −


M̄ϕ̄j1,1

0 M̄ϕ̄j1,2
M̄ϕ̄j1,3

0 0 0 0

⋆ 0 M̄ϕ̄j2,2
M̄ϕ̄j2,3

− T̄ϕ̄j

⋆ 0 ⋆ M̄ϕ̄j3,3

+ He{R̄ϕ̄j
Q2} ≥ 0

(69)
are satisfied with N1, N2, N3, Q1 and Q2 as defined in Theorem 2 and D̄ as defined in (58),
then the origin of the PWA system (5) is locally exponentially stable and any sub level set

Lρ ⊆ D ⊆ Rn is an estimate of the RAO.

Proof. By pre and post multiplying (62) by χT (x) and χ(x), respectively, we obtain (53)
with M(x) as defined in (55)-(56). Moreover, by pre and post multiplying (63) by χ̄T (x)

and χ̄(x), respectively, we obtain (54) with M̄(x) having the same structure as (55)-(56).

Finally, it is necessary to ensure that both M(x) and M̄(x) are locally elementwise
nonnegative matrices in D. By pre and post multiplying (64), (65) and (66) by χT (x)

and χ(x), respectively, we obtain conditions (59), (60) and (61) of Lemma 13, ensuring
that M(x) is locally elementwise nonnegative in D. On the other hand, by pre and post
multiplying (67), (68) and (69) by χ̄T (x) and χ̄(x), respectively, we obtain the conditions
of Lemma 13 for M̄(x), ensuring its locally elementwise nonnegativity in D.

Hence, any solution for the conditions presented in Theorem 6 is also a solution for the
conditions of Theorem 5, from where the local stability of the origin follows. ■
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Note that any sub level set Lρ ⊆ D is contractive and, therefore, is an estimate of the
RAO. However, the great interest lies on determining the best function V (x), that is, the
best matrix P leading to the largest estimate possible according to some criteria. Those
criteria can be related, for instance, to the volume of the estimate or the inclusion of specific
points of the state space in Lρ through the use of additional constraints (TARBOURIECH
et al., 2011). Next subsections deal with this issue.

4.2.1 Choosing region D

The estimate of the RAO is defined as any sub level set Lρ of the Lyapunov function
contained within the set D, defined by a PWQ function in (57). This set plays, therefore,
an important role in the estimation of the RAO. This subsection presents a brief discussion
on how this set is choosen.

In this work we consider the set D defined by a level set of a quadratic function of the
state x, given as follows.

D =

x ∈ Rn

∣∣∣∣ χT (x)


r2d − xT

c Ixc xT
c I 0 0

⋆ −I 0 0

0 0 0 0

0 0 0 0

χ(x) ≥ 0

 .

Note that D defines a hypersphere with radius rd and center given by xc. Furthermore,
the values of rd and xc must ensure that the origin is included in D.

In this work, the region D was chosen by the following procedure. We start with a
small regionD and test the feasibility of the LMIs proposed in Theorem 6. If the feasibility
is verified, we proceed to consider larger regionsD. Otherwise, the last regionD for which
the feasibility of the conditions is verified is then used in the procedures described in the
following subsections.

4.2.2 Optimizing the estimate of the RAO

Once the conditions in Theorem 6 are solved, i.e. a solution defined by matrices
satisfying those conditions is found, we have a PWQ Lyapunov function V (x) as in (19)
which certifies the local stability of the PWA system origin (that is, it verifies conditions of
Theorem 5). As mentioned before, any sub level set Lρ of this Lyapunov function within
region D is an estimate of the RAO. Then, for this Lyapunov function V (x) the larger
estimate of the RAO L∗

ρ is given by

L∗
ρ = max

ρ
Lρ s.t. Lρ ⊆ D. (70)

Since L∗
ρ is computed for the obtained Lyapunov function V (x) satisfying Theorem 5, the

optimization procedure in (70) does not optimize the choice of V (x) and, therefore, the
shape of the level set Lρ.
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However, from the set of possible solutions of Theorem 5, some of them may lead to
larger estimates of the RAO. In order to compute these solutions, additional conditions
can be included along with the local stability ones given in Theorem 5, allowing the
computation of more suitable Lyapunov functions V (x), that is, a more suitable matrix P

among all feasible solutions.
One idea to optimize the shape of the estimate of the RAO is to maximize Lρ in certain

directions while ensuring that Lρ is contained inD, i.e. Lρ ⊆ D. Without loss of generality,
let us consider the specific sub level set L1 = {x ∈ Rn | V (x) ≤ 1} to estimate the RAO.
Then, a sufficient condition to ensure that L1 is contained in D is given next.

Lemma 14. If there exist a nonnegative scalar αL, an elementwise nonnegative matrix

ML ⪰ 0 ∈ R(1+2ny)×(1+2ny), a diagonal matrix TL ∈ Dny and a matrix RL ∈ Rnχ×ny such

that

αLD−


1 0 0 0

0 −P1 −P2 0

0 ⋆ −P3 0

0 0 0 0

−

ML1,1 0 ML1,2 ML1,3

0 0 0 0

⋆ 0 ML2,2 ML2,3 − TL

⋆ 0 ⋆ ML3,3

+He{RLQ1} ≥ 0 (71)

with Q1 as in Theorem 2, then the sub level set L1 is contained in D, that is, L1 ⊆ D.

Proof. Pre and post multiply (71) by χT (x) and χ(x), respectively, and apply Lemmas 6,
7 and 8 regarding the global nonnegativity of PWQ functions to obtain

αLd(x)− (1− V (x)) ≥ 0 =⇒ αLd(x) ≥ (1− V (x)).

Note that for any x ∈ L1 we have (1− V (x)) ≥ 0, leading to

αLd(x) ≥ 0 ∀x ∈ L1.

Since αL is a nonnegative scalar, this implies that d(x) ≥ 0 ∀x ∈ L1, and thus it follows
that L1 ⊆ D. ■

On the other hand, we want to maximize L1 in certain directions. In order to do that,
let those directions be encoded by a set vectors V = {λ1v1, ..., λkvk}, where vi ∈ Rn are
unitary vectors and λi are nonnegative scalars, for i = 1, ..., k. Then, a necessary and
sufficient condition to ensure that all vectors in the set V are contained in L1 is given by
the following set of k constraints:[

λivi

ϕ(y(λivi))

]T

P

[
λivi

ϕ(y(λivi))

]
≤ 1 ∀i = 1, ..., k. (72)

The proof follows from the fact that (72) reads V (λivi) ≤ 1 ∀i = 1, ..., k, implying
that every vector λivi ∈ V is contained in L1.
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Once the set of unitary vectors vi, for i = 1, ..., k, is defined, that is, the directions in
which we want to maximize the shape of L1 are chosen, it is possible to consider a criterion
based on the magnitude of those vectors to maximize L1 in the specified directions. In
this work the adopted criterion to maximize the shape of L1 is the sum of the nonnegative
scalars λi. Hence, the optimization problem to maximize the estimate of the RAO is given
by

max
λ1,...,λk

k∑
i=1

λi s.t. Constraints of Theorem 6, (71), (72) and λi ≥ 0. (73)

Note that (72) is not a convex constraint since both λi and P are variables. Hence, the
optimization problem (73) is quasi-convex. In this work, this quasi-convex optimization
problem was solved using the following Algorithm.

Algorithm 2 Algorithm to maximize the shape of the estimate of the RAO
Define a value for the parameter ∆λ (the step increment of the scalars λi).
Define an initial set of vectors V0 = {λ1v1, ..., λkvk}, with λi ≥ 0 for i = 1, ..., k, such
that the constraints of Theorem 6, (71) and (72) form a feasible SDP problem.
while the optimization criterion

∑k
i=1 λi is increasing do

for i = 1, ..., k do
λi← λi +∆λ (that is, increase the magnitude of vector vi).
if the SDP problem becomes infeasible then

λi← λi −∆λ (that is, return vi to its previous magnitude).
end if

end for
end while
End algorithm. The obtained estimate of the ROA is given by L1 and the optimal set of
vectors V∗ is given by V in the last iteration.

As a remark, note that a level set of a PWQ function is not necessarily a convex set.
Hence, the procedure proposed in (73) and summarized in Algorithm 2 does not guarantee
that the convex hull defined by the vectors in V (and similar sets such as V0 and V∗) is
contained in L1.

The following subsection deals with refining the original partition in order to obtain
larger estimates of the RAO.

4.2.3 Analysis with modified partition

So far the local stability analysis was performed using the partition defined by the
system dynamics, called original partition. However, a given PWA system can be
represented with a new partition of the state space obtained by refining the original
partition (IERVOLINO; TANGREDI; VASCA, 2017). First, it is necessary to define a
method of refinement. Some algorithms for automated partition refinements are proposed
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in (IERVOLINO; VASCA; IANNELLI, 2015). In the present work we consider a partition
refinement by considering successor instances of y(x), i.e., the region in the original
partition where future instances of y(x) will be.

Let xk denote the state k steps ahead (k ≥ 1) and yk ≜ y(xk). Note that with this
notation we have x+ = x1 and y0 = y(x). Then, for an unforced (u ≡ 0) PWA system the
value of xk can be computed by (5a) recursively, leading to

xk = F k
1 x+

[
F k−1
1 F2 F k−2

1 F2 ... F1F2 F2

]
ϕ(ŷk−1)

where ŷk−1 ≜ [(y0)T (y1)T ... (yk−1)T ]T contains previous values of the vector ramp
function necessary to compute xk. Each element of ŷk−1 is defined by an implicit equation,
leading to

ŷk−1 =



F3

F3F1

F3F
2
1

...
F3F

k−1
1


x+



F4 0 0 . . . 0

F3F2 F4 0 . . . 0

F3F1F2 F3F2 F4 . . . 0
...

...
... . . . ...

F3F
k−2
1 F2 F3F

k−3
1 F2 F3F

k−4
1 F2 . . . F4


ϕ(ŷk−1) +



f5

f5

f5
...
f5


.

(74)

Remark 6. Note that (74) can be written as ŷk−1 = F̂1x + F̂2ϕ(ŷ
k−1) + f̂5, analogous

to the implicit equation (5b) from the original PWA system. Since F̂4 has a lower block

diagonal structure, (74) is well-posed if the original system is well-posed.

The system dynamics (5a) can be expressed as a function of ŷk−1 as follows

x+ = F1x+
[
F2 0 0 . . . 0

]
ϕ(ŷk−1) = F̂1x+ F̂2ϕ(ŷ

k−1)

with F̂1 ≜ F1 and F̂2 ≜ [F2 0 0 . . . 0]. Considering F̂3, F̂4 and f̂5 as defined in
Remark 6, the system with refined partition is described by

x+ = F̂1x+ F̂2ϕ(ŷ
k−1) (75a)

ŷk−1 = F̂3x+ F̂4ϕ(ŷ
k−1) + f̂5. (75b)

This refined representation of the original PWA system can be used to assess the local
stability using Theorem 5, allowing PWQ Lyapunov functions V (x) with an increased
number of components. For example, a system with a single input subject to input
saturation has an original partition with three regions: negative saturation, linear and
positive saturation. Hence, the original partition of this example leads to PWQ Lyapunov
functions defined with three quadratic components corresponding to each one of the
regions. If we consider a refined partition composed by the successor instance of y(x) (i.e.
y1 = y(x+)) we obtain nine regions, originated from the combinations of original regions.
Hence, the PWQ Lyapunov function V (x) is now defined by 9 quadratic components,
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increasing the flexibility of possible solutions and possibly leading to larger estimates of
the RAO. On the other hand, representing the system with a refined partition increases
the numerical complexity of the SDP problem of Theorem 6, since we added new regions
to the partition. Because of that, there is a trade-off between increasing the degrees of
freedom and numerical complexity.

4.3 Numerical Example

This section provides a numerical example to illustrate the application of the proposed
method. The results obtained are compared with other methods to estimate the RAO
proposed in the literature.

4.3.1 Asymetric Saturation

The analysis of local stability are particularly important in feedback systems subject to
input saturation when the open-loop dynamic is unstable. In such cases, the closed-loop
stability is only local and some initial conditions will lead to trajectories that diverge to
infinity or form a limit-cycle. Since those behaviors are unsought, an estimate of the RAO
is necessary (TARBOURIECH et al., 2011).

Consider a linear system with a stabilizing state feedback gain K subject to input
saturation

x+ = Ax+Bsat(Kx, µmin, µmax) (76)

where sat : Rnu → Rnu is the saturation function defined by

sat(v, µmin, µmax) =


−µmin(i) if v(i) < −µmin(i)

v(i) if − µmin(i) ≤ v(i) ≤ +µmax(i)

+µmax(i) if v(i) > +µmax(i)

and parameters µmin ⪰ 0 and µmax ⪰ 0 ∈ Rnu are elementwise nonnegative vectors
specifying the lower and upper saturation limits, respectively. The saturation is symmetric
if µmin = µmax and, in this case, several methods to assess the local stability and estimate
the RAO can be found, for instance, in (TARBOURIECH et al., 2011). In the more general
case where µmin ̸= µmax the saturation is asymmetric and a method to assess the local
stability for the continuous-time case is found in (LI; LIN, 2017) while a method based on
the use of deadzone functions to assess the stability and estimate the RAO for discrete-time
systems can be found in (GROFF; GOMES DA SILVA JR.; VALMORBIDA, 2019).

We show now how the results developed in this chapter can be applied to this problem.
The feedback system subject to input saturation (76) can be written in the implicit PWA
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representation with

F1 = A+BK, F2 = B
[
−I I

]
,

F3 =

[
K

−K

]
, F4 = 0 and f5 =

[
−µmax

−µmin

]
,

for which (5) reads

x+ = (A+BK)x+B
[
−I I

]
ϕ(y(x))

y(x) =

[
K

−K

]
x+

[
−µmax

−µmin

]
.

(77)

Note that the implicit PWA representation for the saturation case (77) is always well-posed,
since matrix F4 = 0. Also note that (77) satisfies Assumption 2 and its origin is an
equilibrium point.

Consider the numerical example of a second-order single-input discrete-time system
subject to asymmetric input saturation from (GROFF; GOMES DA SILVA JR.; VALMOR-
BIDA, 2019), given by (76) with

A =

[
1.20 0.00

−0.05 1.00

]
, B =

[
1

0

]
, K =

[
−1 1

]
, µmin = 1 and µmax = 6.

The resulting closed-loop PWA system in the implicit representation is therefore given by

x+ =

[
0.20 1.00

−0.05 1.00

]
x+

[
−1 1

0 0

]
ϕ(y(x))

y(x) =

[
−1 1

1 −1

]
x+

[
−6
−1

]
.

(78)

The partition of (78) is the original partition defined by the asymmetric input saturation
and is depicted in Figure 10, where Γ1 is the positive saturation region, Γ2 is the linear
region and Γ3 is the negative saturation region.

To assess the local stability of the system (78), SDP problems are built with the LMI
constraints given by Theorem 6. In order to maximize the estimate of the RAO, the
optimization problem (73) is considered and, therefore, the additional constraints (71) and
(72) are taken into account. The optimization problem (73) is solved using Algorithm 2
with parameters

V0 =

{[
−1
0

]
,

[
0

−1

]
,

[
1

0

]
,

[
0

1

]}
and ∆λ = 0.1. (79)

An estimate of the RAO with area of 68.1 units squared was obtained from Algorithm 2
and is depicted in Figure 11. The optimal set of vectors V∗ included in the estimate of the
RAO found by Algorithm 2 is given by

V∗ =

{[
−13.0

0

]
,

[
0

−2.2

]
,

[
2.5

0

]
,

[
0

2.4

]}
.
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Figure 10 – Original partition of (78) defined by its asymmetric input saturation (green).
Γ1 represents the positive saturation, Γ2 the linear region and Γ3 the negative saturation.
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As stated in subsection 4.2.3, the local stability analysis can be performed considering
a refined partition. To illustrate this idea, a new partition was generated for the system
subject to asymmetric input saturation (78) by considering the one step ahead instance of
y(x). This refined partition is depicted in Figure 12 and the representation of system (78)
with this partition is given by

x+ =

[
0.20 1.00

−0.05 1.00

]
x+

[
−1 1 0 0

0 0 0 0

]
ϕ(ŷ(x))

ŷ(x) =


−1 1

1 −1
−0.25 0

0.25 0

x+


0 0 0 0

0 0 0 0

1 −1 0 0

−1 1 0 0

ϕ(ŷ(x)) +


−6
−1
−6
−1

 .

(80)

The refined partition proposed in this example is composed by nine regions representing
all two steps combinations for the three original regions. Table 2 associates each region of
the refined partition depicted in Figure 12 with its respective combination of two regions of
the original partition. For example, any trajectory starting within region Γ5 of the refined
partition in Figure 12 has its first sample in the linear region (input not saturated) and its
second sample in the positive input saturation region of the original partition.

Note that the system (78) represented with the refined partition (i.e. (80)) has the
same form of the implicit PWA representation (5). Hence, the same procedure used to
estimate the RAO for the system represented with the original partition can be used with
the extended partition. As a remark, note that (80) has a non-null matrix F4 with a lower
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Figure 11 – Estimate of the RAO (blue) considering the original partition given by the
asymmetric saturation (green). The optimal set of vectors V∗ included in the estimate of
the RAO are shown in red. Examples of trajectories are shown as black dots.
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block diagonal structure and, as presented in subsection 4.2.3, in this case (80) inherits the
well-posedness of the original system (78).

To estimate the RAO, the optimization problem (73), which includes the constraints
of Theorem 6, (71) and (72), is solved again using Algorithm 2 and parameters (79). The
estimate of the RAO obtained for the system represented with the refined partition is
depicted in Figure 13 and has 71.2 units squared. Thus, the use of the refined partition in
this numerical example lead to an increase of 4.6% in area when compared to the estimate
of the RAO obtained with the original partition. The optimal set of vectors V∗ included in
the estimate of the RAO found by Algorithm 2 is given by

V∗ =

{[
−13.5

0

]
,

[
0

−2.4

]
,

[
3.0

0

]
,

[
0

2.5

]}
.

The method proposed in this chapter was compared with other techniques in the
literature. This comparison is presented in Figure 14, where four estimates of the RAO
were obtained using different methods: in black using a method for symmetric saturation
from (TARBOURIECH et al., 2011), where it was considered the worst case symmetric
saturation (i.e. both input saturation limits µmin and µmax equal to 1), in red using
a method suitable for asymmetric saturation from (GROFF; GOMES DA SILVA JR.;
VALMORBIDA, 2019), in green using the formulation proposed for PWA systems with
the implicit representation considering the original partition and, in blue, considering the
refined partition with the one step ahead instance of y(x) (partition depicted in Figure 12).
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Figure 12 – Refined partition (green) considering one successor instance of y(x).
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The area of each estimate is, respectively, 37.3, 58.4, 68.1 and 71.2 units squared,
meaning that the proposed method for PWA systems with the implicit representation and
refined partition obtained an estimate of the RAO 21.9% larger, in area, than the method
presented in (GROFF; GOMES DA SILVA JR.; VALMORBIDA, 2019). It is interesting to
note that even considering the method proposed in this work with the original partition, the
estimate of the RAO obtained is 16.6% larger than the method of (GROFF; GOMES DA
SILVA JR.; VALMORBIDA, 2019).

4.4 Final Remarks

This chapter derived sufficient conditions to assess the local exponential stability of
the origin of PWA systems with the implicit representation considering PWQ Lyapunov
candidate functions. Those sufficient conditions were formulated as LMI constraints
of a SDP problem, which allows to obtain estimates of the RAO given by sub level
sets of the PWQ Lyapunov function computed as solution. Moreover, a quasi-convex
optimization problem was formulated including additional constraints in order to compute
larger estimates of the RAO.

A systematic procedure to refine the partition, that is, insert additional regions, was
proposed based on future instances of vector y(x). The idea is that the additional regions
of the refined partition allow more flexibility for the solutions of the SDP problems. Each
region of the refined partition is associated with a combination of regions in the original
partition. For instance, this partition refinement in the case of feedback systems subject to
input saturation is equivalent to create additional regions associated with the saturation
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Table 2 – Regions of the refined partition in Figure 12 and the corresponding two steps
combinations of the original partition.

Region y(x) y(x+)

Γ1 Pos. Sat. Pos. Sat.

Γ2 Linear Linear

Γ3 Neg. Sat. Neg. Sat.

Γ4 Linear Neg. Sat.

Γ5 Linear Pos. Sat.

Γ6 Pos. Sat. Linear

Γ7 Neg. Sat. Linear

Γ8 Pos. Sat. Neg. Sat.

Γ9 Neg. Sat. Pos. Sat.

of the current and future samples. The number of regions added in the refined partition
depends on the number of future instances of y(x) taken into account.

It is important to notice that the local stability analysis with the implicit PWA repre-
sentation proposed in this work does not require enumeration of the regions or a priori

knowledge of what regions are contained within the set D.
Finally, the method proposed was tested in a numerical example regarding the case of

discrete-time systems subject to asymmetric input saturation. In this numerical example
a larger estimate of the RAO was obtained when compared with other methods in the
literature, demonstrating its usefulness. To the author’s knowledge, there is no work in the
literature regarding the local stability of discrete-time PWA systems with maximization of
the shape of the RAO.
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Figure 13 – Estimate of the RAO (blue) considering the extended partition with the
successor instance of y(x) (green). The optimal set of vectors V∗ included in the estimate
of the RAO are shown in red. Examples of trajectories are shown as black dots.
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Figure 14 – Estimate of the RAO obtained by considering the worst case symmetric
saturation (black), the asymmetric saturation (red), the PWA implicit representation with
the original partition (green) and the PWA implicit representation with refined partition
(blue).
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5 CONCLUSION

This work addressed the problems of global stabilization and local stability analysis
of discrete-time continuous piecewise affine (CPWA) systems. To tackle those problems,
a recently proposed implicit representation was used, since it was proved advantageous
in the global stability analysis problem. Differently from the commonly used explicit
representation, the novel implicit one does not require a priori knowledge of the possible
transitions between regions in its stability analysis conditions.

Regarding the problem of global stabilization addressed in Chapter 3, a PWA state
feedback control law and PWQ Lyapunov candidate functions were considered. The
idea was to use the recently proposed implicit representation to avoid the nonconvexity
introduced by the relaxation terms when the standard explicit representation is considered in
the stabilization problem. With the implicit representation, quasi-LMI sufficient conditions
to ensure the global exponential stability of the origin of the closed-loop PWA system
were derived. Those conditions were obtained from the stability conditions presented
in Chapter 2 through the use of Finsler’s Lemma, congruence transformations and some
structural assumptions. An algorithm based on convex optimization tools was proposed
to solve the stabilization problem (i.e. compute the stabilizing gains). The method
derived was tested in numerical examples and it provided a systematic approach to the
stabilization problem of a class of PWA systems, which was not possible with the explicit
representation. The results from this chapter were accepted for publication (CABRAL;
GOMES DA SILVA JR.; VALMORBIDA, 2021).

Chapter 4 addressed the problem of local exponential stability analysis. To tackle
this problem, the conditions for global stability analysis were generalized to ensure the
nonnegativity of PWQ functions in a local context. This was achieved by extending the
Lemma 6 regarding the nonnegativity of PWQ functions, allowing to build a locally nonneg-
ative matrix function χT (x)M(x)χ(x), that is, such that the PWQ term χT (x)M(x)χ(x) ≥
0 ∀x ∈ D ⊆ Rn. Then, this locally nonnegative PWQ term is used to assess the local
exponential stability of the origin of PWA systems considering a PWQ Lyapunov candidate
function through convex constraints written as LMIs. Estimates of the Region of Attraction
of the Origin (RAO) are obtained as sub level sets of the Lyapunov function computed as
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a solution to a Semidefinite Programming (SDP) problem. Furthermore, procedures to
maximize the estimate of the RAO based on additional constraints were also discussed.
One of those procedures consists in a systematic method to refine the partition (i.e. include
additional regions without altering the system’s dynamic) based on the successor instances
of vector y(x). The idea is that the refined partition allows more flexible solution to the
SDP problem, in the expense of numerical complexity. The proposed method was applied
in the local stability analysis of a linear system subject to asymmetric saturation. The
results obtained were compared with other techniques in the literature and it was observed
that the method proposed in this work outperforms the other techniques when the area of
the estimate of the RAO is used as a figure of merit. To the author’s knowledge, there is
no work in the literature regarding the local stability of discrete-time PWA systems with
maximization of the shape of the RAO.

Since the implicit representation used in this work was recently proposed, PWA systems
in this representation possesses several lines of research. Some of them are listed below:

• Formulate other optimization problems for the local analysis: it was pointed in
subsection 4.2.2 that the optimization problem formulated to maximize the area of
the estimate of the RAO is not a convex problem. Other optimization criteria should
be investigated in order to formulate the optimization of the estimate of the RAO as
a convex problem;

• Refine the partition with backward steps: the use of successor instances of y(x)
to systematically generate the refined partition is not the only procedure possible.
For example, if the discrete-time system has a non-singular matrix F1, then, it is
possible to compute the system state in previous samples. Hence, the partition can
be refined by also taking into account previous instances of y(x), in addition to
the successor instances as done in Chapter 4. The idea is that by considering the
predecessor instances of y(x), the refined partition has its additional regions inserted
closer to the origin, which can be advantageous to estimate the RAO;

• Create a MATLAB package to work with the implicit representation: the
creation of tools with good user interface to deal with the implicit representation of
PWA systems is instrumental to make this representation available to the interested
technical community, increasing the relevance of the methods proposed;

• Continuous-time systems: the application and extension of the results presented in
this work for continuous-time PWA systems should be investigated.

• Investigate other applications of PWA systems: methods regarding PWA systems
can be applied to problems in different areas of interest. For example, some neural
networks use a model of neurons called Rectifier Linear Unit (ReLU). The ReLU
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activation function is the ramp function (6) depicted in Figure 3. Hence, such neural
networks can be described as PWA systems and the methods proposed in this work
can be applied.
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APPENDIX A LINEAR MATRIX INEQUALITIES

A linear matrix inequality (LMI) has the following form (BOYD et al., 1994):

F (x) ≜ F0 +
m∑
i=1

piFi > 0

where p ∈ Rm is the variable and the symmetric matrices Fi = F T
i ∈ Rl×l, i = 0, ...,m

are given. This implies that F (x) is positive definite, i.e. for all v ̸= 0 ∈ Rl we have
vTF (x)v > 0. If the inequality is nonstrict (i.e. is composed by ≥ instead of >), then this
is a nonstrict LMI and the matrix F (x) is called positive semidefinite, meaning that for
any v ∈ Rl we have vTF (x)v ≥ 0.

A.1 S-Procedure

It is often necessary to constraint some quadratic function to be negative (or positive)
whenever other quadratic functions are all negative (or positive) (BOYD et al., 1994). In
some cases, this can be expressed as an LMI in the data defining those quadratic functions,
resulting in an LMI that is conservative but often an useful approximation of the original
constraint. This is done by a method called S-procedure, presented below.

Let F0, ..., Fp be quadratic functions of the variable ζ ∈ Rn:

Fi(ζ) ≜ ζTTiζ + 2uT
i ζ + vi, i = 1, ..., p

where Ti = T T
i . Then, consider the following condition on F0, ..., Fp:

F0(ζ) ≥ 0 ∀ζ | Fi(ζ) ≥ 0, i = 1, ..., p

If there exist nonnegative scalars τ1, ..., τp such that

∀ζ | F0(ζ)−
p∑

i=1

τiFi(ζ) ≥ 0

then the original constraint holds. This derived constraint can be rewritten as[
T0 u0

uT
0 v0

]
−

p∑
i=1

τi

[
Ti ui

uT
i vi

]
.
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A.2 Finsler’s Lemma

Finsler’s Lemma can be stated as

Lemma 15. (FINSLER, 1936) Consider an euclidean space Rk (k ∈ N) and let v ∈ Rk,

Qa ∈ Rk×k and Qb ∈ Rk×k. There is λ ∈ R such that

Qa + λQb > 0 (81)

if and only if

vTQav > 0 ∀v | vTQbv = 0, v ̸= 0. (82)

whose proof is found in (FINSLER, 1936).
Finsler’s Lemma can also be stated in different forms, as stated by the next Lemma.

Lemma 16. (OLIVEIRA; SKELTON, 2007) Consider an euclidean space Rk (k ∈ N) and

let v ∈ Rk, Qa ∈ Rk×k, Qb ∈ Rm×k such that rank(Qb) < k andN{Qb} is a basis for the

null-space of Qb. The following statements are equivalent:

vTQav > 0, ∀Qbv = 0, v ̸= 0 (83a)

N{Qb}TQaN{Qb} > 0 (83b)

∃λ ∈ R | Qa − λQT
b Qb > 0 (83c)

∃X ∈ Rk×m | Q+XQb +QT
b X

T > 0 (83d)

The proof of Lemma 16 can be found in (OLIVEIRA; SKELTON, 2007). Those
equivalent forms are useful in control problems since they allow to work with an extended
state vector which includes the successor state x+. This can be done since an additional
algebraic constraint between the current state x and successor state x+ is codified by the
null space of matrix Qb.


