UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
CURSO DE CIENCIA DA COMPUTACAO

IVAN PETER LAMB

SDN Control Plane with Information Flow
Control

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Adpvisor: Prof. Dr. José Rodrigo Azambuja
Coadvisor: Prof. Dr. Weverton Cordeiro

Porto Alegre
November 2021

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos André Bulhdes Mendes

Vice-Reitora: Prof®. Patricia Helena Lucas Pranke

Pro-Reitora de Ensino: Prof?. Cintia Inés Bolls

Diretora do Instituto de Informatica: Prof*. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciéncia de Computacgdo: Prof. Rodrigo Machado
Bibliotecdria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

“We can only see a short distance ahead,
but we can see plenty there that needs to be done.”

— ALAN TURING

ACKNOWLEDGEMENTS

Foremost, I give my thanks to both of my parents, Ivan Lamb and Marlene Nunes,
for guiding me not only to the completion of this work, but also to at its very beginning
by establishing a high quality education as a goal in my life.

This work was also made possible by my teachers, specially my advisors José
Rodrigo Azambuja and Weverton Cordeiro, and my colleagues Guilherme Buenno and

Matheus Saquetti that supported me throughout my undergraduate jorney at UFRGS.

ABSTRACT

This work describes the development of a control plane for a Software Defined Network
with an emphasis on security through Information Flow Control. The developed control
plane was implemented in Python with a modular design, making it easy to read, maintain
and extend, should it be necessary. A wide variety of environments, in terms of the data
plane and application plane, are supported by the control plane, which was tested in mul-
tiple SDN controllers and data plane abstractions. In regards to security, a state-of-the-art
solution for Information Flow Control was employed and extended to address a specific

class of network integrity attacks on virtual switches.

Keywords: Software Defined Networking. Information Flow Control. Control Plane.

Plano de Controle de SDNs com Controle de Fluxo de Informacao

RESUMO

Esse trabalho descreve o desenvolvimento de um plano de controle para uma Rede Defi-
nida por Software com uma énfase em seguranca através de Controle de Fluxo de Infor-
macao. O plane de controle desenvolvido foi implementado em Python com um design
modular, tornando-o féacil de ler, manter e extender, caso seja necessario. Uma grande va-
riedade de ambientes, em termos de plano de dados e plano de aplicagdes, sdo suportados
pelo plano de controle, que foi testado em multiplos controladores SDN e abstragdes de
plano de dados. Em relacdo a seguranga, uma solugdo estado-da-arte para Controle de
Fluxo de Informacao foi empregada e extendida para lidar com uma classe especifica de

ataques a integridade da rede em switches virtuais.

Palavras-chave: Redes Definidas por Software, Controle de Fluxo de Informacao, Plano

de Controle.

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 3.1
Figure 3.2

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

LIST OF FIGURES

Classic network and SDN COMPArISON.eveeevriiieeeiiiiee e e 15
SDN ArchiteCture OVEIVIEW.eceruieieiieeniiieeieeeniieeeieeesieeeeiee et eesireeseeeens 16
The architecture of a protocol-independent switch architecture (PISA). 18
Example of an Ethernet header definition on the P4 language...................... 19
RPC protocol with gRPC..........ccooiiiiiiiiiee e 21
CAP Attack eXample.cooovriiiiiiiiiiiiiiee e 24
Control Engine interacting with other PvS SDN elements............c.ccccceenee. 28
Sample scenario to execute the control plane.cccceevevveeiieinciieenieeninne 32
CAP attack vector €Xample.ccceeeiiieriiiiiiienieeeieeeee e 35
Conceptual Architecture for VIFC.c.coooviiiviiiiiiiiieeeeee, 36
CAP attack topology for the Reactive Forwarding test case.cccuuenee.. 39
CAP attack topology for the In-Band Telemetry test case.ccceevuvveenneee. 40
CAP attack topology for the Mixed test Case.ccceevveeevieeniieinieenieeen. 41
VIFC efficacy on FWD, INT and PAVBOX test Cases.c.ccceeveeveerueecueennnens 42
Topology for the VIFC Stress test.ovuiiiniiiniieriiiieniieeiieeeiee e 44
CDF for the VIFC Stress test. .e...eivieriiriirieeiieniienieeieesiee e 45

LIST OF TABLES

Table 4.1 vIFC latency on the Reactive Forwarding attack (f£S)......cccceeevevveeerriiieeennnnnn. 43
Table 4.2 vIFC latency on the In-Band Telemetry attack (1£S).cceevveeevieeniieeniiceneene 43

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface
APP Application

ARP Address Resolution Protocol

ASIC Application-Specific Integrated Circuit
bmv2 Behavioral-Model Version 2

CAP Cross-App Poisoning

CDF Cumulative Distribution Function
CDPI Control-Data-Plane Interface

CLI Command-Line Interface

CPU Central Processing Unit

DSL Domain Specific Language

FPGA Field-Programmable Gate Array
GUI Graphical User Interface

IFC Information Flow Control

Ip Internet Protocol

MAC Media Access Control

MRI Multi-Hop Route Inspection

NBI Northbound Interface

NFV Network Function Virtualization
ONF Open Networking Foundation
ONOS Open Networking Operating System
P4 Programming Protocol Independent Packet Processors
PDP Programmable Data Plane

PISA Protocol-Independent Switch Architecture

RBAC

RFC

RPC

SBI

SDN

SSL

TCP

TTL

UDP

vIFC

VSMA

VM

Role-Based Access Control
Request For Comments

Remote Procedure Call
Southbound Interface

Software Defined Networking
Secure Socket Layer
Transmission Control Protocol
Time to Live

User Datagram Protocol

Virtual Information Flow Control
Virtual Switch Management API

Virtual Machine

CONTENTS

1 INTRODUCTION..... 12
2 BACKGROUND 14
2.1 Software Defined Networking.... .. 14
2.1.1 Programmable Data Planesccocueeriiiiiiiiiiiiiiieeieeee e 16
2.1.2 P4 Domain Specific Language.........cccccocvieviieriiniiniiieieiceiecieeeeeee e 17
2.2 P4 Runtime. 19
2.3 Remote Procedure Calls and gRPC ... 20
2.4 Switch Virtualization . w22
2.5 Mininet w22
2.6 CAP Attacks 23
2.6.1 CAP Attack EXaMPIe.....cocviviiiiiiiiiiiiiiiiieieceeeeeeeeeeeee e 24
2.6.2 Other PoisOnIing AtACKSc..eeeriiiriiieiiieiiie ettt ettt 26
3 CONTROL PLANE DEVELOPMENT. 27
3.1 Main Components. . . w27
BULl SEIVET ottt et ettt et 27
3.1.2 RPC Management........c.cooeiriiriieiieiienieeteesieesiee et saee e sree s s 28
3.1.3 Database MOdE]cccuoriiiiiiiiiieeceeeee e 29
3.1.4 Switch Modules Management.............cceeerueerrieeeniieniiieenieeeiieesieeeieeeseeesieeesneees 30
3.2 Installation and Test App Sample .31
3.2.1 DEPENACIICIESeeeenieiieeeiiiieeeiteeeeitee ettt e e et e e ettt e e st eeessatteeesabeeesssseeessnsaeaeanns 31
3.2.2 Executing the EXamPplecc.cooiiiiiiiiiiiiiiiece et 31
4 SECURITY WITH INFORMATION FLOW CONTROL... 34
4.1 Virtual Information Flow Control (VIFC).... 34
4.1.1 Threat MOdel.......c..cooiiiiiiiiiiee et 34
4.1.2 Conceptual ATCRItECTUTEccouviieiieeeiieeiee ettt et sre e e iee e aeeeeaeesaeeens 35
4.1.3 POLICY MOAELoiiiiiiiiieeieeeee ettt ettt e e et e e st e e e e nnaeee s 36
4.1.4 Out-of-band FIOW DEteCtiOnceevuiiiriiiiiniieaiieeiieeteeeite ettt 37
4.1.5 Data Provenance Graphccccoviiiiiiiiiniiniiieecce e 38
4.2 Test Case Attacks .. 38
4.2.1 Reactive FOrwarding Attackcoocveeeiiieeniiieeiiieniieerieeeieeestee e sveeeiee e ene 39
4.2.2 In-Band Telemetry Attack........ccueeieiiiiiiiiiieeeiiee ettt 40
4.2.3 MIXEA ATLACK ...eveeiiiiiiiieeeiteeee ettt ettt et 41
4.3 Evaluation... 42
431 BAfICACY .eveeiiiieiiie ettt et ettt e et e s e e eneeen 42
4.3.2 EBAfICIEINICY toeuuvieiiiieeiieeiieeete ettt ettt ettt ettt e et e st e et e e e bae e nteeenaeenaneeens 43
5 CONCLUSIONS AND FUTURE WORK ...46
REFERENCES.. .47

12

1 INTRODUCTION

With recent advances in the computer networks area, emerging paradigms are
challenging the traditional approach in terms of network architecture and device imple-
mentation. Innovative ideas made possible a multitude of services with infrastructure ad-
vancements, such as data center networks and switch virtualization. Those advancements
reduce the equipment and maintenance cost for companies and improve performance for
the final users.

However, control plane functionalities regarding management and security of vir-
tual forwarding devices in the programmable data plane did not advance at the same
pace, as recent vulnerabilities discovered demonstrates. Those vulnerabilities must be
addressed along with other technological improvements to ensure that SDNs achieve in-
dustry quality standards.

The presented work’s goal is to develop a Software Defined Networking (SDN)
control plane that utilizes modern technology to achieve flexibility, such as the P4 Domain
Specific Language (BOSSHART et al., 2014) and the P4 Runtime switch configuration
protocol. SDNs and related technologies contrast with the traditional computer networks
industry mainly in separating the control logic and the forwarding logic from the devices
and creating flexibility to the implementation of novel protocols. This flexibility allows
the data plane of the network to be implemented with different paradigms, be it ASIC
devices, FPGA switches, software-emulated switches, etc. and also allows for multiple
SDN controllers to interact simultaneously with the control plane.

Moreover, the security of the whole network is a core principle of the developed
control plane, with a Role Based Access Control authentication model implemented. Ad-
ditionally, a module for protecting against a novel class of attacks, named Cross-App
Poisoning, is designed to enhance network resilience using Information Flow Control to
detect malicious applications. Security on SDNs is a highly discussed topic (DACIER
et al., 2017), but it still needs more time to evolve to a point where it reaches industry
standards.

While flexibility is a focus of this work, the control plane was designed to be inte-
grated with the PvS (Programmable Virtual Switches) with PAVBox as a Programmable
Data Plane (PDP). PvS is a project that allows multiple virtual forwarding devices to be
deployed on the same physical hardware, such as an FPGA, and that allows partial recon-

figuration during runtime of said hardware. It allows multiple tenants to split the physical

13

hardware and manage its devices independently, reducing the individual operational cost.
Tenants can also run custom applications on the SDN application plane with permissions
to interact with their own devices. In the next chapters, this integration will be noticed in
performance tests, and a comparison with other data planes (mainly software-emulated)
will be addressed.

This work is divided as follows: Chapter 2 presents the core concepts for the
understanding of this work’s background, as well as previous works on the same area;
Chapter 3 contains the development of the control plane, with implementation details
and the technologies used, including programming languages, APIs, modules, etc.; A
link to a public GitHub repository is also provided for further understanding of the im-
plemented functionalities. Chapter 4 presents a security module of the developed control
plane, VIFC, that focuses on Information Flow Control in a scenario with virtual switches,
presenting efficacy and performance results in multiple test cases. Lastly, Chapter 5 con-
cludes with a summary of the project and possible extensions and research opportunities

for future works.

14

2 BACKGROUND

In this chapter, the main concepts for this work are presented. The key concepts
for the understanding of this work’s control plane and information flow control will be
explained in a greater level of detail, but references are provided for all the topics men-
tioned. It is encouraged to make use of those references for further understanding of

specific topics that may spark an interest.

2.1 Software Defined Networking

Software Defined Networking (SDN) is a flexible approach to the implementation
of network systems. According to Benzekki, Fergougui and Elalaoui (2016), “SDN is
an innovative approach to design, implement, and manage networks that separate the
network control (control plane) and the forwarding process (data plane) for a better user
experience.”.

Traditionally, each individual network element (layer 2 and 3 forwarding devices
such as switches and routers) implements both control and forwarding logic on its own
hardware. This creates a scenario where those device’s hardware’s complexity increases
for them to be able to implement the required network functionalities, such as routing
(NETO; BEZERRA, 2002) and forwarding. This complexity increases the individual
implementation and maintenance cost of each element and lowers the reliability of the
network structure in case of frequent failings.

SDNs reduce the device’s complexity by transferring the responsibility of routing
and forwarding rules definitions of the network elements to a centralized control plane,
and the data plane responsibility becomes only dealing with the traffic itself according to
the control plane implemented logic. More specifically, SDNs separate this infrastructure
into three layers: application plane, control plane and data plane. Figure 2.1 compares
both approaches, on the left the classic approach with decentralized network elements and
on the right the SDN approach with a centralized control logic layer.

For the purpose of establishing how the three layers of an SDN network communi-
cate between them, protocols such as OpenFlow (MCKEOWN et al., 2008) emerged and
became widely adopted. Those protocols are generally maintained by organizations such
as the Open Networking Foundation, which specifies the OpenFlow protocol (OPEN-
NETWORK-FOUNDATION, 2015).

15

Figure 2.1: Classic network and SDN comparison.

Applications

l - Controller

Classical Architecture SDN Architecture

Source: (BENZEKKI; FERGOUGUI; ELALAOUI, 2016)

The Open Networking Foundation also provides an overview of the SDN archi-
tecture (OPEN-NETWORK-FOUNDATION, 2013), as seen in Figure 2.2. From top to
bottom: (i) the application plane consists of applications, which are programs that com-
municate with the SDN through an interface with the control plane called “Northbound-
interface” (NBI), receiving information about the network state and performing requests
according to its own logic; (ii) the controller is the centralized entity' that translates the
requirements from the SDN Application layer to the SDN data plane and provides the
applications with a logical view of the network. In summary, it consists of interfaces with
the application layer (NBIs), the control logic, and an interface with the data plane, called
Control-Data-Plane Interface (CDPI); (iii) the data plane, where the network elements are
located. As mentioned before, those devices are “simpler” than classical network ele-
ments, being responsible for the actual processing of packet traffic instead of the network
routing logic, which they receive from the control plane through the CDPI Agent. Having
a uniform CDPI Agent on each device provides a powerful abstraction tool since the con-
trol plane does not have to know the exact specifications of each device (for instance, in
Figure 2.2, the network elements might have been different devices from different manu-

facturers, but the CDPI Agent is uniform).

IThe abstraction of the control layer as a centralized entity does not exclude the possibility of multiple
controllers running on the control plane of the network. The implementation of this work, for instance,
considers that multiple controllers may be running on the control plane.

16

The Management & Admin entity depicted in Figure 2.2 is responsible for busi-
ness management between the network provider and clients (tenants), such as deploying
the devices and implementing authentication. While this work’s main focus is the imple-
mentation of the control plane, the Management & Admin is also implemented to provide

an interface to establish user authentication and device deployment.

Figure 2.2: SDN Architecture Overview.

o | SDN Application* SDN Application* SDN Application*
[=
o SDN App Logic SDN App Logic SDN App Logic COQE:“?
c =21
% NBI Driver® NBI Driver® NBI Driver* N—V
o
= » \ 7
o
< 5 *QEJ) \ 4 /’
= o : rd
§EMA T SDN Northbound Interfaces (NBIs) { s
o= |¥d] T TTTea - "\ PO L Multiple NBIs at
a3 (84 s - varying latitudes
SN I R > 7) =
25 <7 and longitudes. =
o SDN Controller My £
r_% Expose Instrumentation, = j::(’
& | statistics and events up NBI Agent ‘ o3
2 | Translate reqg’s d) =
= - SDN Control Logic NV g
5] Configure Policy uE)
9 Enforce Behavior CDPI Driver Monitor Performance @
Low-level C;lrl %
Capability Discovery /"\ S
Stats and Faults c ot
— SDN Control-Data-Plane Interface (CDPI)
Network Element” . Network Element s
L A
Q
5| | SONDatapath ' ¢ SDN Datapath* %
o
© CDPI Agent CDPI Agent 1 Y
© \\ V/
o ’ y . .
Forwarding Engine® / Forwarding Engine® / Element
Processing Function* Processing Function* setup

*indicates one or more instances | * indicates zero or more instances

Source: (OPEN-NETWORK-FOUNDATION, 2013)

2.1.1 Programmable Data Planes

Programmable Data Planes (PDPs) are a key concept of SDNs for this work.
While protocols such as OpenFlow (MCKEOWN et al., 2008) established the foundation
of the communication between SDN layers, it also imposed a limitation on the data plane,
since these protocol specifications supported a small set of header protocols (BOSSHART
et al., 2014). Therefore, innovative ideas in terms of protocols and headers would be only
supported through OpenFlow specification updates. This limitation created a collective
effort to develop alternatives in terms of flexibility, such as PDPs.

The goal of PDPs is to allow network operators to define an arbitrary number of
packet header fields to be matched and to define the actions to be performed when those

fields are matched. For that end, Domain Specific Languages (DSLs) were introduced as

17

a standard way of describing the packet processing logic and to allow data plane program-
ming. Those languages allow the specification of header fields, match table definitions,
implementation of actions performed, checksum verification, security protocols, etc. One

such DSL is P4 (BOSSHART et al., 2014).

2.1.2 P4 Domain Specific Language

The P4 language (Programming Protocol Independent Packet Processors) is a
high-level language to implement PDPs (BOSSHART et al., 2014). The motivation for
the creation of P4 was to increase the flexibility of manufactures to create and implement
new network headers and protocols, a scenario which the language creators described as
“showing no signs of stopping”, citing NVGRE, VXLAN and STT as new packet encap-
sulation advances of the time. More specifically, the design principles of the P4 language

are, citing Bosshart et al. (2014):

e Reconfigurability. The controller should be able to re-define the packet parsing

and processing in the field.

e Protocol independence. The switch should not be tied to specific packet formats.
Instead, the controller should be able to specify (i) a packet parser for extract-
ing header fields with particular names and types and (ii) a collection of typed

match+action tables that process these headers.

e Target independence. Just as a C programmer does not need to know the specifics
of the underlying CPU, the controller programmer should not need to know the
details of the underlying switch. Instead, a compiler should take the switch’s capa-
bilities into account when turning a target-independent description (written in P4)

into a target-dependent program (used to configure the switch).

The Target independence principle is an interesting one in particular since it
allows this work’s control plane to manage a wide array of switch implementations. Be-
cause of this flexibility, ASIC based devices, an FPGA switch implementation (SAQUE-
TTI; BUENNO; AZAMBUIJA, 2020), a software-emulated switch (MININET, 2017), etc.
are all supported in the data plane of this work’s control plane implementation.

Figure 2.3 shows an example of a P4-defined protocol-independent switch archi-
tecture (HANG et al., 2019). In the switch, the parser and deparser are configured to

process user-defined packet headers. The ingress and egress pipelines implement match-

18

Figure 2.3: The architecture of a protocol-independent switch architecture (PISA).

| Switch. pd (P4 data plane programs) 4—1Jrngrdm—L-
Runtime

| Compile time configuration | | Runtime configuration | | Control plane |
i._..T i Mt et W e o it (e At e e
T l'______l_—________'l_:l'
_J R —— B — g
| I Ingress Control API lngress Control API I |
| S —— i E L e L T
=) :—_, g Header Path —IN= Header Path = =
el @) e e
= =iy }:m i) Yasda) Wil ' piress =
— b pmm e —— — — — T pmmm————_—_——— — —— | I
JI | ’ (Metadata Path } ‘‘ fl (Metadata Path) ">| 1 ‘>
—_——- LT T T I et i it e e e ==

Source: (HANG et al., 2019)

action tables to process the packets in arbitrary user-defined stages, matching the packet
headers with rules to perform the corresponding actions>. Those actions use language
primitives to modify the packet’s metadata and headers.

It is also depicted on Figure 2.3 the process to deploy the source code (Switch.p4)
to the switch, which involves the compilation (P4 Compiler) and configuration (blue
lines). The runtime configuration (red lines) allows the Control Plane to insert match-
action rules on the switches after the initial deployment. Section 2.2 describes runtime
configuration of the switches in more detail.

From the programmer’s point-of-view, a P4 program consists of:

e Headers: Headers define the structure of a set of fields, including width and con-
straints on the values of those fields. Figure 2.4 shows an example of an Ethernet

header definition.

e Parsers: A definition of a parser specifies how to identify headers and valid header
sequences within packets.

e Tables: The main mechanism for packet processing. Match-action tables apply
match actions on the packet’s defined headers and perform the specified action for
the match.

e Actions: Complex actions can be built from the P4 protocol-independent primi-
tives. Those actions are available within match-action tables.

e Control Programs: The control program determines the order of match-action

tables to be applied to the packets. It is a simple imperative program to describe

this flow of control.

2 Actions may be decreasing TTL, calculating checksum, dropping invalid packets, sending the packet
to the control plane, etc.

19

Figure 2.4: Example of an Ethernet header definition on the P4 language.

header ethermnet {
fields {
dst_addr : 48; // width in bits
src_addr : 48;
ethertype : 16;

Source: (BOSSHART et al., 2014)

2.2 P4 Runtime

P4 Runtime is a framework for the control / application planes of a SDN to manage
devices in the data plane that are defined by a P4 program. It inherits the abstraction
advantages of having a common interface with the devices, regardless if they are ASICs,
FPGA based, Software based, etc. allowing it to control multiple types of switches.

As McKeown (2017) explains: “In the past, switch chips were controlled by
closed, fixed and proprietary APIs. A fixed API written to the target chip covered the
needs, and there was little or no need to extend the API over time.” An inflexible API
disallows innovation from network operators in the implementation of new headers and
protocols.

Before P4 Runtime, OpenFlow (MCKEOWN et al., 2008) was created to provide
certain vendor-independent flexibility, as discussed in Section 2.1.1. However, OpenFlow
was never designed to be extended, it was only a standard way to implement operations
on protocols used at the time. P4 Runtime, on the other hand, is by design protocol
independent. For this work, the control plane manages the switches with P4 Runtime
requests it receives from the application plane, inheriting great flexibility to the data plane.

The P4 Runtime specification provided by the Open Networking Foundation (ONF,
2020) provides a set of requests the applications may send to the control plane to inter-
act with the data plane. Those requests are implemented with Remote Procedure Calls
(explained on Section 2.3) to a P4 Runtime Server running on the control plane. Sev-
eral methods are defined on the specification, but the most important ones for this work’s

control plane are:

e Stream Channel. Creates a bi-directional connection between an application (client)

and the control plane (server). This connection is used to receive / send packets to

20

the devices® and to perform any other required communication with the control
plane (on this work, for instance, Stream Channel is used to perform application
authentication, granting permissions to perform read / write actions on the data
plane).

e Write. Writes data to a P4 entity on a certain device. P4 entities may be match-

action tables, counters or registers. The data written may be of types UPDATE,

DELETE or MODIFY.

e Read. Retrieves information about a P4 entity on a certain device. With this RPC
it is possible to read table entries and the corresponding actions or counters and

registers on the device.

2.3 Remote Procedure Calls and gRPC

Remote Procedure Calls (RPC) is a protocol to implement communication be-
tween two processes, and its main concept is that a process can call procedures (methods
or functions) on the other process (which may be running on another host). The protocol is
defined in Request For Comments (RFC) 1831 (SRINIVASAN, August 1995). A phrase
from the RFC describes this main concept: “The caller process first sends a call message
to the server process and waits (blocks) for a reply message. The call message includes
the procedure’s parameters, and the reply message includes the procedure’s results”.

One of the uses of RPCs is to implement a client-server model, where all the
message exchanges between processes happen through the defined procedure calls. The
protocol itself does not address some of the classical network problems, such as reliable
data transfer and network latency, but most concrete implementations are developed with
those issues in mind.

gRPC is a framework to implement RPCs (GRPC, 2021) available in multiple
programming languages, allowing the programmer to define a service and specify the
procedures that can be called by the clients and the server. It implements the connec-
tion between the clients and the server with the TCP transport layer protocol, offering
reliable data transfer, and also implements transport layer security with SSL. Figure 2.5
illustrates RPCs with gRPC, using clients and server programs implemented in multiple

programming languages.

3 Applications may send and receive data packets from the devices. A “Packet-In” is a packet sent by a
data plane device to an application plane app, and a “Packet-Out” is a packet sent by an app to a device.

21

Figure 2.5: RPC protocol with gRPC.

gRPC Server Ruby Client

C++ Service

/'o[
© Response(s)

Android-Java Client

Source: gRPC Documentation (GRPC, 2021).

Citing the gRPC documentation (GRPC, 2021), four types of RPCs are available
for the programmer to define with gRPC:

e Unary: Where the client sends a single request to the server and gets a single

response back, just like a normal function call.

e Server Streaming: Where the client sends a request to the server and gets a stream
to read a sequence of messages back. The client reads from the returned stream
until there are no more messages. gRPC guarantees message ordering within an

individual RPC call.

e Client Streaming: Where the client writes a sequence of messages and sends them
to the server, again using a provided stream. Once the client has finished writing
the messages, it waits for the server to read them and return its response. Again

gRPC guarantees message ordering within an individual RPC call.

¢ Bidirectional Streaming: Where both sides send a sequence of messages using a
read-write stream. The two streams operate independently, so clients and servers
can read and write in whatever order they like: for example, the server could wait
to receive all the client messages before writing its responses, or it could alter-
nately read a message then write a message, or some other combination of reads

and writes. The order of messages in each stream is preserved.

Of the four RPC types, the most important for this work are the Unary and Bidi-
rectional ones. The unary RPCs will be used by the control plane to implement the Write
and Read P4 Runtime requests, and the bidirectional RPCs will be used to implement the

Stream Channel connection, which is described in Section 2.2.

22

2.4 Switch Virtualization

Virtualization is a technique to split a resource (in most cases, hardware) of a
host between multiple tenants (guests). It is a broadly discussed topic by many authors.
TANAEMBAUM; BOS (2014), for instance, lists some of the advantages of Virtual Ma-
chine* virtualization, such as service isolation to increase fault tolerance without incurring
additional costs of independent hardware. An entity called “hypervisor” is responsible for
this division of the host’s resources between the guests.

The computer networks area has also seen advances in regards to virtualization
recently. Network Function Virtualization (NFV), for instance, is an emergent technology
to run Internet’s core high-volume packet-processing functions on commodity hardware
through virtualization (JOSH; BENSON, 2016). For this work, the most relevant form of
network virtualization involves switch virtualization on the data plane.

With the virtualization of programmable data planes, many forwarding devices
may be deployed on a physical substrate (SAQUETTI; BUENNO; AZAMBUIJA, 2020),
performing its defined functions independently of each other and allowing more efficient
use of hardware, which reduces the overall network cost. PDP virtualization is not limited
to hardware resource sharing. Research and development of emulation of P4 programs
with a general-purpose program as in Hyper4 (HANCOCK; MERWE, 2016) and HyperV
(ZHANG et al., 2017), and composition of several instances of P4 programs in a single

program as in P4Visor (ZHENG; BENSON; HU, 2018) are also active topics.

2.5 Mininet

Mininet (MININET, 2017) is a tool to create a software-emulated network that
can run custom switch application code, such as a P4 compiled program, on a single
machine or VM. It is intended to be easy to use for prototyping, development, teaching
and research; situations where high-level performance is not a requirement.

It is specially useful for running P4 switches and using P4 Runtime in a controlled
environment, therefore it is one of the most important development tools in this work.
Many examples on Chapters 3 and 4 are executed with Mininet managing the data plane

of the SDN.

“One of the most common type of virtualization employed are Virtual Machines, in which many logical
hosts may operate sharing the same physical hardware.

23

2.6 CAP Attacks

Cross-App Poisoning (CAP) has been recently identified as a critical class of con-
trol plane integrity attacks in SDNs (DACIER et al., 2017). Ujcich et al. (UJCICH et al.,
2018) described in detail the workflow of the attack, which involves installing a malicious
application (app) on the SDN controller (that could be downloaded from a repository or
public SDN app marketplace (Aruba, 2021; ONOS, 2021)). The malicious app’s goal is to
cause legitimate apps to perform actions in the control and data plane that the malicious
app itself cannot perform due to insufficient permissions, such as writing flow rules to
specific device’s tables. To that end, the malicious app may write control data on shared
objects among the other apps in memory, which causes legitimate apps to perform the de-
sired actions when consumed (similar to the classic confused deputy problem) (HARDY,
1988).

It was demonstrated that Role-Based Access Control (RBAC) solutions alone are
insufficient to prevent such attacks, as they do not track information flow or enforce in-
formation flow control (IFC). The use of data provenance and a data provenance graph (a
core concept in the prevention of those attacks), was also proposed by Ujcich (UJCICH et
al., 2018) as ProvSDN, a solution that intercepts app requests that violate predefined IFC
policies.

The main limitation of ProvSDN is that it assumes a scenario in which switches
are standalone entities, i.e., have a single pipeline of match-action stages, and are man-
aged through a single controller. However, recent advances in lightweight programmable
forwarding planes virtualization solutions (HANCOCK; MERWE, 2016; SAQUETTI;
BUENNO; AZAMBUIJA, 2020) dramatically changed that scenario. In summary, a phys-
ical switch may either run a composition of pipelines of match-action stages from dis-
tinct programs or emulate virtual switches through a general-purpose switch program; in
both cases, each virtual switch instance may be managed independently, by multiple ten-
ants, through different controllers. Under such scenario, a single controller can no longer
maintain a complete view of the information flow between apps and virtual switches.
Consequently, apps that have control of a single switch may poison every virtual switch
composed or emulated in the target switch.

Preventing CAP attacks that explore switch virtualization is challenging. It in-
volves tracking the packet flow between multiple virtual switches and detect violations of

the IFC policies on those packet flows.

24

2.6.1 CAP Attack Example

Figure 2.6: CAP Attack example.

SDN App 1 @ SDN App 2 SDN App 3

(1| (2) A3) (4) (5) (6) (7)
Control Plane

. . N
Physical Device
i

Source: The Author

Figure 2.6 illustrates an example of a conceptual CAP attack. In this scenario,
suppose the SDN applications 1, 2 and 3 are installed and running on the control plane
after being downloaded from a public SDN repository, such as Aruba Networks (Aruba,
2021) and that Apps 1 and 2 are managed by Controller 1 and App 3 is managed by a
different one, Controller 2. Controller 1 manages virtual switches 1 and 2 and Controller
2 manages virtual switch 3.

However, SDN App 1 is a malicious application that intends to explore vulnera-
bilities in the control plane to launch a CAP attack on the network. The seeming purpose
of this application is to monitor packets received from the data plane through Packet-In
events (packets flowing from the devices to the applications) and create diagnostic infor-
mation of the network to the system administrator. With that in mind, the administrator
gives this application only the PACKET_EVENT permission, which allows it to send and
receive packets from the switches. The obscure purpose of SDN App 1 is to manipu-
late the forwarding tables on virtual switches to cause disruption on the network (or to
forward data flows to an attacker’s controlled computer). To perform those malicious ac-
tions, SDN App 1 would need the FLOWRULE_WRITE permission. Other applications,
such as SDN App 2 and 3 have both PACKET_EVENT and FLOWRULE_WRITE permis-

sions, so they can receive packets from the data plane and also modify the forwarding

25

tables on switches.

The CAP attack starts with a fabricated packet from the malicious application.
Since SDN App 1 has the PACKET_EVENT permission it can create Packet-Out mes-
sages (a packet from the application to the device) for the switches managed by the SDN
controller in which it is installed. In this case it sends this message to Virtual Switch
1 (flow 1 on Figure 2.6). The packet’s source and destinations addresses are fabricated
to cause a table miss on the switch, that occurs when the switch table has no entry that
matches the inbound packet’s destination. One possible action that a switch may take to
deal with these table misses is to send a Packet-In message to the controller. SDN App
2 may be registered to receive such Packet-In messages from Virtual Switch 1, therefore
receiving the message (flow 2). In response, the legitimate application may reconfigure
the forwarding table that caused the table miss on Virtual Switch 1, installing a malicious
flow rule with fabricated source and destination addresses (flow 3).

ProvSDN (UJCICH et al., 2018) can act on this scenario ensuring that the IFC
policies are respected. In that case in particular, if ProvSDN was installed and running
on Controller 1, it would notice that information (the fabricated data packet) is flowing
from a least privileged application (SDN App 1) to a more privileged application (SDN
App 2). Because of this, ProvSDN will block either flow 2 (the Packet-In) or flow 3
(the flowrule write), depending on the control policy and preserve the integrity of the
forwarding tables on Virtual Switch 1. Although ProvSDN is effective in this scenario, it
cannot maintain a complete view of the information flow between virtual switches. It may
be the case that the fabricated packet is sent to Virtual Switch 2 from Virtual Switch 1 in
an out-of-band flow (dashed flow in the figure) through a logical link between the virtual
switches®. In this case, Virtual Switch 2 could be the one that sends the packet through
a Packet-In event to SDN App 2 (flow 4), which may trigger the table reconfiguration
of the previous scenario. In this case, the attack will be successful, since ProvSDN will
not be able to trace the packet as being created by SDN App 1, since it considers Virtual
Switch 1 and 2 to be distinct entities, although they are virtual switches executing in
the same physical device. As a consequence, applications with permissions on a single
virtual switch may poison each virtual switch composed/emulated on the target switch.
Furthermore, ProvSDN does not prevent a CAP attack that a malicious application may
launch against another application running on a different controller (flow 6 and flow 7)

through similar methods.

SThis flow may occur, for example, if Virtual Switch 1 is a top-level switch in a load-balancing archi-
tecture, and simply forwards every package to lower levels.

26

The implementation of this work’s control plane contains a module that expands
on the foundation of ProvSDN’s data provenance analysis to deal with those challenging
scenarios. It is capable of detecting the previously mentioned out-of-band flows, and to
trace the source of the information to the malicious application. The module is described

in greater detail on Chapter 4.

2.6.2 Other Poisoning Attacks

While (UJCICH et al., 2018), to the best of my knowledge, is the only discussion
of Cross-App Poisoning attacks, many similar poisoning attacks can be launched against
SDNs. (SATTOLO et al., 2019) classifies poisoning attacks (including CAP attacks) and
explains the subtle differences between them. This survey also classifies each type of
attack based on its outcomes, such as a Flowrule Change for CAP attacks or a Data
Leakage for Host Hijacking.

The main differences between CAP attacks and the other attacks cited on that sur-
vey is that (i) they are initiated by a malicious application and (ii) they operate through
information flow. Thus, a solution to deal with this type of attack must enforce Informa-

tion Flow Control between the application plane and the data plane.

27

3 CONTROL PLANE DEVELOPMENT

This chapter presents in detail the implementation of the control plane. The con-
trol plane was implemented in Python, with a modular design to separate its function-
alities. The source code for the whole project is available on GitHub!, and Python is
an easy-to-read programming language, therefore, it is encouraged to refer to the source
code for a better understanding of specific implementation details, if some part of the
explanation leaves gaps to be filled.

Figure 3.1 provides an overview of the control engine interacting with other SDN
elements on PvS (SAQUETTI; BUENNO; AZAMBUIJA, 2020). PvS is a project that al-
lows for multiple tenants to deploy virtual switches on the same physical hardware, such
as an FPGA, providing runtime partial reconfiguration of this hardware, being able to
deploy / remove devices without interfering with others that are already deployed. This
work’s control plane is used in this bigger project? as the control engine that provides an
interface between the applications, data plane, and management. Figure 3.1 also depicts
the control flow that applications use to interact with the data plane (through the P4 Run-
time Interface) and the control flow that the Management & Admin uses to interact with
the data plane and update the switch config database and auth info database through the
Command-Line Interface (CLI).

Section 3.1 discusses the main components of the system and how the technologies
presented in Chapter 2 were used to implement those components. Section 3.2 contains
a brief setup guide and a test case sample for the system on a Mininet software-emulated
data plane and a simple app running on the application plane, if it is desired to execute

the project.

3.1 Main Components

3.1.1 Server

The server script (located in server/grpc_server.py) is the entry point of the control

plane. It starts by opening a log for debugging, loading the devices and users databases

ILink to the repository: <https://github.com/Ivanatorion/p4runtime-grpc-tcc>
2 As mentioned before, the developed control plane is not limited to PvS. It can be deployed with other
data plane abstractions.

https://github.com/Ivanatorion/p4runtime-grpc-tcc

28

Figure 3.1: Control Engine interacting with other PvS SDN elements.

SDN App SDN App SDN App Lo

7y A Vo

SDN Controller SDN Controller b
gRPC Client (CDPI Driver)] .
fieicscesssesesbasewe P4Runtime L iiiiiiciiaes .
Interface Voo

PvS Vo
rForwarding] (controi Engine (CDPI Agent)) E c E
Engine i =
P4Runtime Interface e 1y 2

' - B

[gRPC Server] Command-Line Ve

‘ Interface D2

[Instrumentation] E E gi

5!

Virtual Switch Management API (VSMA) =

Platform API : v

FE Tables(€ 1{[{SUME driverf-=====------= Switch o
: Config : :

vS € vS driver P4 Tables API v

vS [€ vS driver P4 Regs API Auth E i

: Info] !

i Virtual Networking daemon .

Source: The Author

to the memory, creating a thread to receive Packet-Ins from the data plane, and starting a
gRPC server to receive P4 runtime requests.

Most server parameters are configurable (on the config/ServerConfig.py file), such
as the server port, SSL certificates, Packet-In / Packet-Out interfaces, etc. Plugins of
additional modules, vVIFC (discussed in Chapter 4), for instance, can also be enabled /

disabled in this configuration file.

3.1.2 RPC Management

After a client connects to the server, the message exchanges are made through
RPCs through the PARuntime Inteface, as seen in Figure 3.1. The server’s RPC methods,
such as Stream Channel, Write Request, Read Request and other additional methods
for device arbitration defined in the P4 runtime specification, can be called to interact

directly with the data plane devices, provided that the application has the required per-

29

missions on the device it is communicating with.

The first message a client must send to the server upon connecting is a call to
open a Stream Channel so that it can send an authentication message. Other RPCs
cannot be called by the client until it has sent a valid authentication message with its user
credentials (username and password), because the RBAC model must know if the client
has permission to perform the specific requests.

The Virtual Switch Management API (VSMA) depicted in Figure 3.1 is responsi-
ble for converting the P4 Runtime requests that require interaction with the virtual devices
(such as Read and Write requests) to function calls of the specific device. For the PvS
example, those function calls are provided by the FPGA’s Platform API. The system ad-
ministrator can also interact with the VSMA directly through a Command Line Interface.

The Packet-In and Packet-Out operations (receiving and sending data plane pack-
ets) are also implemented on the Stream Channel method. The Packet-In is implemented
by creating a packet buffer for each connection and storing the packets each client is al-
lowed to receive according to the RBAC model. The Packet-Out is implemented with a
socket to an interface to which the packets are forwarded along with metadata about the
switch ID and ingress port, which are used on the data plane to determine the device and

port that will receive the packet.

3.1.3 Database Model

A SQL database is used to store the necessary information about the forwarding
devices such as table fields and register and to store user information and permissions.
The database is also used to store VIFC’s (Chapter 4) policies. The database contains the

following tables:

e Switches: Contains information about the data plane devices?, such as name, ID,
API paths and management addresses.

e Switch Tables: Contains information of the forwarding tables on each device, in-
cluding base addresses and match types.

e Switch Registers: Registers that are available to read / write on each device, which

might serve any purpose (e.g. ingress queue size).

3The term “switch” is usually used to refer to a layer 2 device, but for this work it can represent any
device, such as a layer 3 router.

30

e Table match fields - Table actions - Table action fields: Those three tables are
used to register information of the tables required to perform P4 Runtime requests,

most importantly the bit length of each field.

e Users: This table stores the users registered in the system. It is a simple table

containing the username and password of each user.

e Permissions: This tables stores the permissions that each user has on each device.
The permissions are defined on the config/PermEnum.py file. One of the design
principles of the control plane is access control through this permission system,
which gives control to the system administrator over each deployed data plane de-
vice. On PvS, for instance, permissions for each device may be given only to the
tenants of that device.

e Policies: Stores the system-administrator defined policies for vIFC. These policies
are better explained on Chapter 4, which addresses security functionalities of the

control plane.

The methods for interacting with the database, which manages concurrent access
to the database through mutexes, are also defined in files on this folder. For performance
reasons every time an entry is queried from some of the database tables it is stored in
a buffer in memory, which reduces disk access. If the network’s complexity is high (in
terms of number of forwarding elements), it might be required to disable this buffering

functionality.

3.1.4 Switch Modules Management

The developed control plane can interact with multiple types of switches through
P4 Runtime, but each device has its peculiarities when it comes to calling the read and
write methods. PvS switches, for instance, run on a NetFPGA-SUME board, which comes
with C APIs that implement the P4 Runtime calls, while Mininet switches implement
them on multiple programming language modules (such as Python classes).

The GitHub repository contains examples of those APIs. The bmv2_module folder
contains the required method definitions for Mininet switches and the platform_api con-
tains the NetFPGA-SUME interface for the C function calls, along with sample P4 pro-
grams that implement simple layer 2 and layer 3 forwarding devices, operating with Eth-

ernet and IP protocols.

31

The Switch Modules Management (file utils/SM_mgmt.py) is responsible for load-
ing those modules for each device, so that when the control plane receives a RPC call (on
the RPC Management class) it knows how to translate it to an actual P4 Runtime call that
is sent to the data plane. Those modules are always loaded on memory when the system
initiates or when a new device is registered in the system by the network administrator

through the Management & Admin CLI depicted in Figure 3.1.

3.2 Installation and Test App Sample

3.2.1 Dependencies

There are many dependencies required to execute the project: gRPC, bmv2, P4
compiler, etc. For that reason, a bash script is provided to install all those dependencies in
scripts/install_dependencies.sh. It is encouraged to create a Virtual Machine with Ubuntu
16.04 (which is the system version in which the control plane was developed, and it is

verified to run properly) and execute the script for a clean installation of the dependencies.

3.2.2 Executing the Example

A sample test case for executing the project is provided in the examples/test_case
folder. It contains two client applications to connect to the control plane and manage data
plane devices. It also contains a folder with a Mininet topology definition, which will be
used as the data plane for the example.

Figure 3.2 illustrates the network topology for the sample scenario and the packet
and control flows that occur. S1, S2 and S3 are simple layer 2 switches implemented in
P4, configured to send packets that result in a “table-miss” to the control plane through
Packet-Ins. At the beginning of the experiment, all switches start with empty forwarding
tables. First host 42 starts an iperf3 server, which will be used to create a packet flow. Host
h1 will connect to the iperf3 server with host’s 42 IP (it’s ARP cache already has an entry
that indicates the MAC address of 42, so no MAC address discovery is necessary). The
packet flow will begin (1, on the figure) and reach S1, which will send the first packet to
the control plane since it will not match on its forwarding table (2). The control plane will

send the packet to Client App 2, which simulates an application that installs flowrules on

32

Figure 3.2: Sample scenario to execute the control plane.

Client App 1 Client App 2

@)\ \(10) (2) (5)

Source: The Author

devices based on table-misses*, and it will react by inserting a flowrule on S1 to forward
the packets to S2 (3). A similar process occurs with S2 after the packet flow reaches it (4,
5 and 6). Host h2 receives the first packet (7), and a normal iperf3 session begins. After
10 seconds, Client App 1 will install a flowrule on S1 that redirects the packet flow to S3
(8), disturbing the iperf3 session for a while. Another 10 seconds later, Client App 1 will
re-establish the original flow, inserting another flowrule on S1 (10). The iperf3 session
will finish 30 seconds after it is started. It should be possible to visualize the moments
the flowrules alter the packet flows through the iperf3 reports, which should also indicates
around 33% packet loss.
The link <https://www.youtube.com/watch?v=xYyBXHVGDqA> contains a video

of the execution of the experiment. If the replication of this scenario is desired, execute

the following steps:

1. Open four terminals on the root directory of the project.

2. On the first terminal, enter root mode with:
$ sudo su

3. On the second terminal, navigate to the Mininet folder and start the network simu-

lation with:

$ c¢d examples/test_case/Mininet

$ make

“This type of application is discussed in more detail in Chapter 4.

https://www.youtube.com/watch?v=xYyBXHVGDqA

33

. On the third terminal, start Client App 1 with:

$ source scripts/export_vars.sh

$ python examples/test_case/client_table_write.py

. On the fourth terminal, start Client App 2 with:

$ source scripts/export_vars.sh

$ python examples/test_case/client_table_write_2.py
. On the Mininet terminal, create 2 terminals for hosts 4/ and /42 with:

$ xterm hl h2

. On h2’s terminal, start the iperf3 server:

$ iperf3 -s

. And on hl’s terminal, connect to the iperf3 server:

$ iperf3 —c 10.0.1.2 —u -t 30 -b 500K

. As mentioned before, the experiment will run the iperf3 session for 30 seconds,
with some trafic steering occurring during this time. The iperf3 report will indicate

the moments that the florules were installed on S1.

34

4 SECURITY WITH INFORMATION FLOW CONTROL

This chapter presents vVIFC, a module of the developed control plane that enhances
security against Cross-App Poisoning (CAP) attacks that may be launched by malicious
applications trying to explore vulnerabilities in the access control policy through infor-
mation flow. CAP attacks are described in this work’s background chapter (Section 2.6).
First, in Section 4.1 the implemented solution, VIFC, is introduced along with implemen-
tation details and examples. Then, Section 4.2 presents the results of the implementation
on a few test cases, in terms of efficacy (detecting CAP attacks) and efficiency (the latency

added to the control plane processing time).

4.1 Virtual Information Flow Control (vIFC)

The module for the proposed control plane, Virtual Information Flow Control
(VIFC), extends the data provenance graph proposed by ProvSDN (UJCICH et al., 2018)
to register messages exchanged by virtual switches, so that the source of a message sent
to a virtual switch may be tracked to the original application. Furthermore, vIFC ensures
the compliance of security policies even with applications running in different controllers

with user-based authentication.

4.1.1 Threat Model

When proposing ProvSDN, Ujcich et al. (UJICICH et al., 2018) consider a threat
model in which (i) the SDN controller is reliable and secure, but may provide services
to a malicious application, (ii) the attacker controls a malicious application that has least
privileged permissions, and (iii) applications have identities and cannot fabricate actions
to cause it to be seen as performed by another application. On their policy model, the
authors also consider switches as applications, even though they only consider control
plane applications as potentially malicious.

Using the model from Ujcich et al. (UICICH et al., 2018), Figure 4.1 illustrates a
CAP attack vector. ProvSDN can prevent application a; from poisoning object o, using
permission p3 from virtual switch aq, but it cannot track the out-of-band flow between as

and as (dashed line), which allows a; to use permission p4 from ag to poison o3.

35

Figure 4.1: CAP attack vector example.

Source: The Author

For vIFC, the scope of CAP attack detection in comparison to ProvSDN is en-
larged by considering that multiple virtual switches can be executed in the same physical
device. In this case, the goal is to ensure that out-of-band information flow can be traced
by comparing new messages with those previously seen by the control plane, which will
allow the identification of information flow from least privileged to more privileged appli-
cations. To that end, the threat model from Ujcich et al. is extended to consider that virtual

switches share the same control interface, that is also trusted and cannot be corrupted.

4.1.2 Conceptual Architecture

Figure 4.2 presents an overview of the conceptual architecture for vIFC. It has an
interface with the control plane to receive the requests from the applications or switches
and indicate if a data flow should be allowed or blocked. Before processing a request from
an application and sending it to a virtual switch (1), the control interface sends the request
to VIFC (2). VvIFC then querries the User Data database to obtain information from it
(for example, if the requesting application has the necessary permissions for that switch).
After that, similar to ProvSDN, vIFC updates a provenance graph (MISSIER; BELHAJ-
JAME; CHENEY, 2013; UJCICH et al., 2018) on the Provenance Graph database,
that tracks the source of data flows. After updating the provenance graph, vIFC verifies
if the resulting graph is consistent with the set of policies kept in the ITFC Policies
database. If the request from the application does not violate the established IFC poli-
cies, VIFC will signal to the control engine interface (3) that it may proceed and send the

request to the virtual switch (4), otherwise, the request is blocked.

36

Figure 4.2: Conceptual Architecture for vIFC.

SDN App 1 SDN App 2 SDN App 3
(m Control Plane
(2) vIFC
Control Ty Ty
(3)
a4 4) Physical Device
i1 | vnea svicn |
_ /

Source: The Author

4.1.3 Policy Model

This work considers a policy model similar to Ujcich et al. (UICICH et al., 2018),
but with a few changes to help with information flow detection between virtual switches.
Policies may be applied to read or write information flows. In the example from Fig-
ure 2.6, flows (2), (4) and (6) are read information flows, because the message is flowing
from the data plane (virtual switches) to the control plane (application). Likewise, flows
(3), (5) and (7) are write information flows, because the information is flowing from an
application in the control plane to a virtual switch and this control flow is modifying the
configuration on those devices. On that note, policies that are applied to read information
flows would block flows (2), (4) and (6), and policies that are applied to write information
flows would block only flows (3), (5) and (7), should a violation be detected.

Formally, the model for VIFC consists of:

e U: A set of users. All applications must authenticate with the credentials of a user.
The permissions for a given application depends on the user it uses to authenticate,
therefore they may change if the user changes.

e S: A set of switches or other forwarding devices. Virtual switches are also included

in this set.

37

e L: A set of permissions (labels) to interact with switches (e.g. read/write tables or
receive packets).
e T: A mapping that determines the permissions each user has on each switch. Math-

ematically, T is a function T : U — (L x S)2.

e P: A set of policies defined by the system administrator. An example of policy is
(L1, Lo, WRITE, W ARN), where L, and L, are labels. This policy indicates that
information flow may happen from an application with label L; to an application
with label L, (on the same switch), but a warning must be issued (WARN) when
an application performs an action that changes the state of the data plane due to
this information flow (WRITE). The possible response types are: WARN, BLOCK
and NONE, and are very useful to help the system administrator in detecting and

dealing with false positives.

4.1.4 Out-of-band Flow Detection

One of the challenges in CAP attack detection is to correlate data that flows be-
tween the switches and identify if they have any relation with the requests that originated
from the control plane. The employed strategy was to create metadata for each flow be-
tween the control plane and the data plane. Examples of metadata include a timestamp,
network addresses for Packet-In and Packet-Out, data segment hash, etc.

With this approach, it is possible to infer if a packet arriving at the control plane is
the same one from a previous request. In Figure 2.6, for instance, when the packet from
(4) arrives in the control plane, VIFC will correlate its metadata to detect it is the same
packet from (1), and also detect the information flow between Virtual Switch 1 and 2.

It is worth mentioning that the out-of-band flow from this previous example, be-
tween Virtual Switches 1 and 2, is only deduced by the fact that they are the switches
that directly interact with the control plane, but the real path of the packet might have
been different, such as Virtual Switch 1 forwards the packet to 3, 3 forwards it to 2 and
then it is sent to the control plane. Although vIFC does not track the complete path, it is
still sufficient to the scope of this work to know that the packet eventually was sent to the
control plane through Virtual Switch 2. In future works in which a complete packet trace
would be desired, it is worth considering implementing part of VIFC on the data plane,

which would also reduce the workload on the control plane.

38

4.1.5 Data Provenance Graph

As it was previously mentioned, a core piece of VIFC and other IFC solutions
is the provenance graph. vIFC’s provenance graph is initialized with all users and all
switches as nodes, and it is updated by adding edges between nodes when a data flow is
detected between them. It is easy to detect data flow between users and switches since this
flow must go through the control plane (Figure 4.2), but it is not straightforward to detect
data flow between two switches as in the out-of-band examples, since the control plane
cannot “see” them directly. Those data flows are detected with the strategies previously
mentioned, such as comparing packet metadata. After updating the graph, we check if a
path was created that indicates an information flow from a least privileged application to

a more privileged one, or that violates one of the administrator-defined policies.

4.2 Test Case Attacks

The evaluation of VIFC is based on two test case attacks: (i) an attack that manip-
ulates legitimate applications that manage forwarding tables on virtual switches and (ii)
an attack that manipulates In-Band telemetry data (TU; HYUN; HONG, 2017). Those
attacks were chosen due to the open-source nature of the applications, which run in the
ONOS controller (ONOS, 2021). For those test cases, Mininet (MININET, 2017) was
employed to create an emulated data plane, running simple layer-2 bmv2 switches'.

A third test case that mixes concepts from the other ones was also designed to be
executed with a different concrete data plane, using P4VBox (SAQUETTI; BUENNO;
AZAMBUIJA, 2020). The goal of this test case is to demonstrate that vIFC (as well as
the developed control plane as a whole) is platform-independent, being able to perform
information flow control under a variety of environments. The switches deployed for this
test case are also layer-2 P4 switches, with vlan tags and a Packet-In implementation to
comply with P4VBox requirements.

The following subsections present the test cases in more detail. For all test cases,
the attacker’s malicious application is considered to have fewer permissions being able

only to receive and send packets to the network through Packet-In and Packet-Out, whereas

'bmv2 (Behavioral Model Version 2) is a software switch not intended to have production-grade per-
formance, but offers a good data plane abstraction for debugging purposes. It is available on Github at:
<https://github.com/p4lang/behavioral-model>

https://github.com/p4lang/behavioral-model

39

the legitimate applications have additional permissions to write data on the data plane de-
vices. The goal of the attacker is to manipulate the legitimate applications to make use of

those additional permissions.

4.2.1 Reactive Forwarding Attack

The Reactive Forwarding application (fwd) is a SDN app available on the ONOS
controller’. The application captures packets that are sent to the control plane through
a Packet-In after a “table-miss” on the data plane, and reacts by creating and inserting
forwarding flow rules on switches (hence its name) to allow the packet flow between the
communicating hosts. It is often the case that P4 switches have smaller tables in terms of
possible match entries and old entries have to be replaced often, thus the need for constant

operation of the fwd app.

Figure 4.3: CAP attack topology for the Reactive Forwarding test case.

Trigger App e Reactive Forwarding App &%

/

SDN Controller (ONOS)

Physical Switch /
| Control Interface (Control Engine) < vIFC

v

vSwitch A —{ vSwitchB || vSwitch C

— T |

N I [O A

h1 h2 h3 h4 h5 h6
Source: The Author

Figure 4.3 illustrates this scenario, where A/ starts a packet flow to 42. To perform
the CAP attack a malicious app (Trigger App) was implemented, which sends a fabricated
ARP reply packet to the network through a Packet-Out (1). That ARP reply has fake
information that a valid IP address (h2’s IP) is present at a malicious-app controlled MAC
address (this packet is sent with the goal of steering the flow from this IP to the attacker’s

computer). This packet is then sent to the Reactive Forwarding app from vSwitch A (2).

2Source code for the Reactive Forwarding app: <https://github.com/opennetworkinglab/onos/tree/
master/apps/fwd/src/main>

https://github.com/opennetworkinglab/onos/tree/master/apps/fwd/src/main
https://github.com/opennetworkinglab/onos/tree/master/apps/fwd/src/main

40

The legitimate application will consume the packet and react by creating and inserting a
flow rule on vSwitch A (3) that will redirect the flow from A1 to h2 to another host (which

may be /3 or a host linked to another virtual switch).

4.2.2 In-Band Telemetry Attack

For the test case with the In-Band Telemetry (int) application, a malicious app
was also implemented. The malicious app sends fabricated packets periodically to the
network, which contains fake telemetry data. The int app monitors the switches on the
data plane with Multi-Hop Route Inspection (MRI)?, which tracks the path that the pack-
ets go through and the queue depth for the switches in that path.

Figure 4.4: CAP attack topology for the In-Band Telemetry test case.

Trigger App g InBand Telemetry App &%

SDN Controller (ONOS)

\

'Physical Switch
| Control Interface (Control Engine) < vIFC

2 v
vSwitch A — vSwitch B — vSwitch C

] O 0O 0O -

h1 h2 h3 h4 h5
Source: The Author

The workflow for this test case is shown in Figure 4.4. The malicious app sends
the fabricated packet with fake information about the queue depth of vSwitch B (1). The
packet is forwarded to vSwitch B from vSwitch A in the “out-of-band” flow and then sent
to the In-Band Telemetry app (2). The legitimate application notices the high queue depth
(considering the normal data plane scenario for the MRI example, an average of the queue
depths for the virtual switches is 40, whereas the fabricated reports indicate a 4000 queue

depth). The legitimate application blocks the flow from vSwitch A to vSwitch B (3).

3Source code for MRI: <https://github.com/p4lang/tutorials/tree/master/exercises/mri>

https://github.com/p4lang/tutorials/tree/master/exercises/mri

41

4.2.3 Mixed Attack

This last test case was designed to be executed in a different data plane, PAVBox.
Moreover, the applications on this scenario do not run in the ONOS controller, but were
simulated in Python, connecting directly to the control plane. The goal is to change the
environment, in terms of SDN controller and data plane implementation, to assert that

vIFC is platform-independent.

Figure 4.5: CAP attack topology for the Mixed test case.
Trigger App &2 FWD App INT App &

/ \ |

SDN Controller

@ @ @/ %3) """""" (é}\' B v/ (6)
/ \

<
Control Interface (Control Engine) < V|FC>

I
(4
¥ vSwitch A vSwitch B
L - Y,
(1)
()
| o
h1 h2

Source: The Author

The test case consists of a mix of the previous ones, with the malicious app trying
to poison the In-Band Telemetry app to block a legitimate flow. Figure 4.5 illustrates the
attack flow. Initially, no forwarding rules are defined on the tables of both virtual switches.
Host i1 starts a flow with host 42 destination address (1). Since the first packet of the flow
results in a “table-miss” on vSwitch A, it is sent to the control plane through a Packet-
In and forwarded to the applications that can receive this Packet-In (2). The Reactive
Forwarding app will create and install appropriate flow rules on both virtual switches to
allow the intended legitimate flow to occur (3). The malicious app will also trigger a
routine upon receiving the Packet-In to create a fabricated Packet-Out after a short delay,
aiming to poison the In-Band Telemetry app similar to the previous scenario (4). The
malicious packet is sent “out-of-band” to vSwitch B (5) and then sent to the legitimate
application through a Packet-In (6). The legitimate application blocks the legitimate flow

in reaction to the malicious packet (7).

42

4.3 Evaluation

4.3.1 Efficacy

Using the CAP attack test cases of Section 4.2, vIFC’s efficacy (being able to
block the attacks) and efficiency (additional overhead / latency to the control plane) were
evaluated to verify its viability. The expected outcome is that vIFC will block the ma-
licious flow reaching the legitimate apps on all test cases since they violate the default

policy of a less privileged application sending data to a more privileged one.

Figure 4.6: vIFC efficacy on FWD, INT and P4VBox test cases.
Legitimate (no IFC) Legitimate (IFC) - - -

m Steered ——
o
§ 1 1 1 1 1 1 1 1 1 1 1 1
SooemsL
L e s
D 025 [A
: | | | | | | | | | | |
g 0 I I I I I I I I I
|-E 0 1 2 3 4 5 6 9 10 11 12

Time (s)

(a) Reactive Forwarding

w Legitimate (no IFC) —— Legitimate (IFC) - - -
o 1
2 : : : : : : : : : : :
075
2 050 N\
g : : : : : : : : : : :
D 025
o 0 A SN S S N M A S SN S
I'E 0 1 2 3 4 7 8 9 10 11 12

Time (s)

(b) In-Band Telemetry

m Legitimate (no IFC) —— Legitimate (IFC) - - -
Q- 8 T T T
= s s
S 6l — o
g_ 4\ S ,, |
S |
S 20/ e S S W S
2 0 | | | \ | I I
F 0 1 2 3 4 5 6 7

Time (s)

(c) PAVBox

Source: The Author

43

Figure 4.6 demonstrates the operational impacts of the three test cases on the le-
gitimate flows of the network and vIFC’s efficacy in mitigating said impacts. The green
lines represents an iperf3 flow between two hosts that passes through a virtual switch that
receives a malicious flow rule from a CAP attack without vIFC, while the dashed blue
lines represents the same scenarios with vIFC used to mitigate the attacks. For the Re-
active Forwarding case (Figure 4.6a), VIFC detects and blocks the malicious Packet-In,
preventing the traffic steering that occurs around 7 seconds of the experiment. In the In-
Band Telemetry case (Figure 4.6b), vIFC also prevents the malicious packet containing
the fake telemetry data from reaching the legitimate app, by inferring the “out-of-band”
flow after detecting that the Packet-In is the same Packet-Out that the malicious app sent
before. Finally, the PAVBox case (Figure 4.6c) shows that vIFC can also detect malicious

information flow on a different, more complex, test case.

4.3.2 Efficiency

For the efficiency evaluation, data from the Reactive Forwarding and In-Band
Telemetry test cases was gathered by measuring the total processing time of the con-
trol plane for the Packet-In and Packet-Out operations and the fraction of this time that
was employed on vIFC during the attacks. For this purpose, an additional policy was de-
fined to allow the malicious information flow to reach the legitimate apps and generate a
warning when this happens®, so that the attack can go through but vIFC’s ability to detect

it also be asserted.

Table 4.1: vIFC latency on the Reactive Forwarding attack (us).

PacketOut Packetln
Total VIFC Baseline | Total VIFC Baseline
avg. | 478.1 409.8 (85%) 69.8 425.0 396.1 (93%) 63.3
o 78.3 74.35 10.56 69.67 67.42 59.92

Table 4.2: vIFC latency on the In-Band Telemetry attack (ys).

PacketOut PacketIn
Total vIFC Baseline | Total vIFC Baseline
avg. | 1,095.90 905.67 (82%) 90.40 1,419.47 1,341.40 (96%) 60.23
o 590.33 202.02 67.69 575.52 557.62 34.52

“Using the model from Section 4.1.3, the policy used for the latency tests is:
(PACKET,FLOWRULE, Read, Warn)

44

Tables 4.1 and 4.2 contain the average results of the efficiency tests from 30 rounds
of each experiment. For the Reactive Forwarding experiment, the proportion of the pro-
cessing time of the control plane for vIFC on Packet-Out and Packet-In respectively was
85.71% and 93.20%, whereas for the experiment with the In-Band Telemetry application
the proportion was 82.64% and 96.88%. This high fraction of time is due to the simplic-
ity of the other operations that the control plane performs in the Packet-In and Packet-Out
operations, which is basically sending the packet through a socket.

It takes more time for VIFC to verify the requests on the In-Band Telemetry sce-
nario compared to the Reactive Forwarding scenario. This is due to the detection of the
“out-of-band” flow on the former. It ultimately depends on the judgment of the system
administrator if those times are acceptable for its specific scenario. In the test cases, con-
sidering that the applications only request Packet-Ins from the control plane each 5 - 10
seconds, a latency of less than 2ms is deemed acceptable. Even so, it is certainly possible

to improve VIFC’s performance in future work with a more optimised code.

Figure 4.7: Topology for the VIFC stress test.
Trigger App Q Admin App ﬂ-

Controller

| Control Interface (Control Engine) | { vIFC »
Y

vSwitch 1 vSwitch 2 vSwitch N
A
=

h1 h2

Source: The Author

A stress test on VIFC was also performed to assert its impact on the control plane
through a Cumulative Distribution Function (CDF). Figure 4.7 illustrates the topology for
the test, which was repeated 10 times, with N ranging from 5 to 50. For each switch
other than vSwitch 1, the malicious app sends a Packet-Out that will be forwarded to that
switch and then send to a higher priority app (Admin App). vIFC should be able to detect
the violation in all Packet-Ins. Figure 4.8 shows the resulting CDF, which indicates an

expected slight performance overhead when using vIFC.

45

Figure 4.8: CDF for the vIFC stress test.
vIFC No vIFC

CDF

300 400 500 600
Time (ms)
Source: The Author

It is worth noting that vIFC has a configurable max memory limit. For the CDF
test case, the memory limit was set high enough so that all attacks were blocked. However,
with the memory limit set lower, some attacks will go through since vIFC will not be able

to trace the information flows that it already discarded.

46

5 CONCLUSIONS AND FUTURE WORK

The classical approach to computer networking is still broadly employed in to-
day’s commercial and industrial environments due to legacy structures. Research and
development of SDNs continue to evolve, and it will eventually surpass this barrier of
adoption when the technology becomes mature enough.

This work presented the development process of a SDN control plane with a mod-
ular design, in contrast with the classical inflexible approach. The main advantages of
SDNss are the separation between the functionalities of each component, leading to a com-
plex structure with simple components, which facilitates the development of new features
and the maintenance of deployed hardware and software. The modular design also makes
it easier to implement new functionalities on the control, application or data planes. A
switch “load balance” for a data center, for instance, could be implemented by changing
the P4 code of a deployed switch or by an additional module on the control plane.

Another problem addressed in this work is the control plane security and network
integrity, mainly focused on a novel, emerging class of SDN attacks known as CAP at-
tacks. Research in this topic is still in the early stages, as UICICH et al. 2018 firstly
introduced the problem and proposed an initial solution. The developed control plane
made use of the core concepts of that work, such as data provenance through Information
Flow Control and adapted it to a scenario where a single switch may virtualize multiple
switches that can be seen independently by the control plane.

While this work presents a fully functional control plane for a SDN that can be eas-
ily adapted to execute in multiple SDN environments, future work can certainly improve
its usability so that it reaches production grade quality. An interface with a Graphical
User Interface (GUI) would make it more appealing to network administrators; support
for other runtime protocols such as OpenFlow in addition to P4 Runtime will make it even
more flexible, etc.

In regards to security, VIFC can be improved in terms of false-positive detection.
One of the main advantages of the policy system is helping the system administrator detect
and override specific cases where an information flow will be seen as a violation, but it is
indeed legitimate and not a malicious attack. Improving the detection of those cases is a
challenging research goal that would increase the system autonomy, not having to rely on

external user-defined exceptions.

47

REFERENCES

Aruba. Aruba Networks. SDN Apps - Airheads Community. 2021. Retrieved April
18, 2021 from https://www.arubanetworks.com/sdn-apps/.

BENZEKKI, K.; FERGOUGUI, A. E.; ELALAOUI, A. E. Software defined networking
(sdn): a survey. Security Comm. Networks 2016, p. 5803-5833, 2016.

BOSSHART, P. et al. P4: Programming protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review, v. 44, p. 87-95, 2014.

DACIER, M. C. et al. Security challenges and opportunities of software-defined
networking. IEEE Security & Privacy, IEEE, v. 15, n. 2, p. 96-100, 2017.

GRPC. gRPC: A high performance, open source universal RPC framework. 2021.
Retrieved September 16, 2021 from <https://grpc.i0/>.

HANCOCK, D.; MERWE, J. van der. Hyper4: Using p4 to virtualize the programmable
data plane. In: 12th International on Conference on Emerging Networking
EXperiments and Technologies. New York, NY, USA: Association for Computing
Machinery, 2016. (CoNEXT ’16), p. 35-49. ISBN 9781450342926.

HANG, Z. et al. Programming protocol-independent packet processors high-level
programming (p4hlp): Towards unified high-level programming for a commodity
programmable switch. 2019.

HARDY, N. The confused deputy: (or why capabilities might have been invented).
SIGOPS Oper. Syst. Rev., Association for Computing Machinery, New York, NY,
USA, v. 22, n. 4, p. 36-38, oct. 1988. ISSN 0163-5980. Available from Internet:
<https://doi.org/10.1145/54289.871709>.

JOSH, K.; BENSON, T. Network function virtualization. IEEE Internet Computing,
v. 20, p. 7-9, 2016.

MCKEOWN, N. P4 runtime — putting the control plane in charge of
the forwarding plane. ONF News and Events, 2017. Retrieved Septem-
ber 8, 2021 from <https://opennetworking.org/news-and-events/blog/
p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane>.

MCKEOWN, N. et al. Openflow: Enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, v. 38, p. 67-79, 2008.

MININET. Mininet, An instant virtual network on your laptop (or other PC). 2017.
Retrieved September 6, 2021 from http://mininet.org/.

MISSIER, P.; BELHAJJAME, K.; CHENEY, J. The w3c prov family of specifications
for modelling provenance metadata. In: 16th International Conference on Extending
Database Technology. New York, NY, USA: ACM, 2013. p. 773-776.

NETO, M. C. M.; BEZERRA, R. M. d. S. Protocolos de roteamento RIP e OSPF.
2002. Retrieved September 6, 2021 from <https://www.researchgate.net/publication/
260637894>.

https://grpc.io/
https://doi.org/10.1145/54289.871709
https://opennetworking.org/news-and-events/blog/p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane
https://opennetworking.org/news-and-events/blog/p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane
https://www.researchgate.net/publication/260637894
https://www.researchgate.net/publication/260637894

48

ONF. P4Runtime Specification. 2020. Retrieved September 8, 2021 from <https:
/lopennetworking.org/wp-content/uploads/2020/10/P4Runtime- Specification- 120-wd.
html>.

ONOS. Open Network Operating System. Apps and Use Cases. 2021. Retrieved
September 2, 2021 from <https://wiki.onosproject.org/display/ONOS/Apps+and+Use+
Cases>.

OPEN-NETWORK-FOUNDATION. SDN Architecture Overview. 2013. Retrieved
September 3, 2021 from <https://opennetworking.org/wp-content/uploads/2013/02/
SDN-architecture-overview-1.0.pdf>.

OPEN-NETWORK-FOUNDATION. OpenFlow Switch Specification. 2015. Retrieved
September 2, 2021 from <https://opennetworking.org/wp-content/uploads/2014/10/
openflow-switch-v1.5.1.pdf>.

SAQUETTI, M.; BUENNO, G.; AZAMBUIJA, J. r. PAvbox: Enabling p4-based switch
virtualization. IEEE Communications Letters, v. 24, 2020.

SATTOLO, T. et al. Classifying poisoning attacks in software defined networking. 2019
IEEE International Conference on Wireless for Space and Extreme Environments
(WIiSEE), IEEE, p. 96-100, 2019.

SRINIVASAN, R. RFC 1831, RPC: Remote Procedure Call Protocol Specification
Version 2. August 1995.

TANAEMBAUM, A. S.; BOS, H. Modern Operating Systems. 4th. ed. [S.1.]: Prentice
Hall, 2014.

TU, N. V.; HYUN, J.; HONG, J. W.-K. Towards onos-based sdn monitoring using
in-band network telemetry. In: IEEE. 2017 19th Asia-Pacific Network Operations and
Management Symposium (APNOMS). [S.1.], 2017. p. 76-81.

UJCICH, B. E. et al. Cross-app poisoning in software-defined networking. In: 2018
ACM SIGSAC Conference on Computer and Communications Security. New York,
NY, USA: ACM, 2018. (CCS ’18), p. 648-663. ISBN 9781450356930.

ZHANG, C. et al. Hyperv: A high performance hypervisor for virtualization of the
programmable data plane. In: IEEE. International Conference on Computing and
Communication Networks 2017. [S.1.], 2017. p. 1-9.

ZHENG, P.; BENSON, T.; HU, C. P4visor: Lightweight virtualization and composition
primitives for building and testing modular programs. In: International Conference of
Emerging Networking EXperiments and Technologies. [S.1.]: ACM, 2018. (CoNEXT
"18), p. 98—111. ISBN 978-1-4503-6080-7.

https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120-wd.html
https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120-wd.html
https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120-wd.html
https://wiki.onosproject.org/display/ONOS/Apps+and+Use+Cases
https://wiki.onosproject.org/display/ONOS/Apps+and+Use+Cases
https://opennetworking.org/wp-content/uploads/2013/02/SDN-architecture-overview-1.0.pdf
https://opennetworking.org/wp-content/uploads/2013/02/SDN-architecture-overview-1.0.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 Software Defined Networking
	2.1.1 Programmable Data Planes
	2.1.2 P4 Domain Specific Language

	2.2 P4 Runtime
	2.3 Remote Procedure Calls and gRPC
	2.4 Switch Virtualization
	2.5 Mininet
	2.6 CAP Attacks
	2.6.1 CAP Attack Example
	2.6.2 Other Poisoning Attacks

	3 Control Plane Development
	3.1 Main Components
	3.1.1 Server
	3.1.2 RPC Management
	3.1.3 Database Model
	3.1.4 Switch Modules Management

	3.2 Installation and Test App Sample
	3.2.1 Dependencies
	3.2.2 Executing the Example

	4 Security With Information Flow Control
	4.1 Virtual Information Flow Control (vIFC)
	4.1.1 Threat Model
	4.1.2 Conceptual Architecture
	4.1.3 Policy Model
	4.1.4 Out-of-band Flow Detection
	4.1.5 Data Provenance Graph

	4.2 Test Case Attacks
	4.2.1 Reactive Forwarding Attack
	4.2.2 In-Band Telemetry Attack
	4.2.3 Mixed Attack

	4.3 Evaluation
	4.3.1 Efficacy
	4.3.2 Efficiency

	5 Conclusions and Future Work
	References

