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ABSTRACT

Graphics Processing Units (GPUs) have moved from being dedicated devices for multi-

media and gaming applications to general-purpose accelerators, employed in High Perfor-

mance Computing (HPC) and safety-critical applications, such as autonomous vehicles.

This market shift led to a burst in the GPU’s computing capabilities and efficiency, signif-

icant improvements in the programming frameworks and performance evaluation tools,

and a sudden concern about their hardware reliability.

In order to evaluate the GPU reliability, researchers expose a device to a neutron beam

and perform fault injection to simulate the fault propagation. While beam experiments

provide a very realistic error rate of the device, it lacks fault propagation visibility. Con-

trarily, fault injection allows the complete visibility of the fault propagation, but the fault

simulation and the error model are often limited to user-accessible resources and may lead

to unrealistic results. Consequently, a methodology to accurately estimate the error rate of

a device is necessary to answer two of the fundamental open questions in GPU reliability

evaluation: (1) whether fault simulation provides representative results and can be used to

predict the Failure In Time (FIT) rates of codes running on GPUs. (2) are the single and

double bit-flip accurate error models to simulate faults on a GPU.

This thesis presents a novel FIT estimation approach to predict the NVIDIA GPUs’ er-

ror rate. The proposed FIT estimation is achieved by comparing and combining high-

energy neutron beam experiments that account for more than 13 million natural terres-

trial exposure years, an extensive architectural-level fault simulation (using SASSIFI and

NVBitFI), and detailed application-level profiling, requiring more than 1,000 GPU hours.

Results show that, in most cases, the estimated Silent Data Corruption (SDC) rate is suf-

ficiently close (differences lower than 5×) to the experimentally measured SDC rates.

The knowledge from the FIT estimation is then used to present a new error model based

on the relative error in opposition to single/double bit flip. The relative error is based

on a new method that extracts the relative error differences from a fault injection at the

Register-Transfer Level (RTL).

Using the experimental, architectural, and algorithmic analysis, this work presents also

two novel hardening solutions for HPC and safety-critical applications: (1) Reduced

Precision Duplication With Comparison (RP-DWC). RP-DWC’s primary goal is to

lower the overhead of Duplication With Comparison (DWC) by executing the redundant

copy in reduced precision. RP-DWC achieves an excellent coverage (up to 86%) with



minimal overheads (as low as 0.1% time and 24% energy consumption overhead). (2)

Dedicated software solutions for hardening Convolutional Neural Networks (CNNs).

The Algorithm-Based Fault Tolerance (ABFT) employed to the matrix multiplication

(the core of the CNNs) can correct more than 60% of the critical SDCs in a CNN,

while re-designing the CNN’s max pool layers leads to a detection up to 98% of SDCs.

Additionally, this work is the first to evaluate the CNNs’ error rate and CNNs’ hardening

efficiency on neutron beam experiments.

Keywords: GPUs. Reliability. High Performance Computing. safety critical systems.



Entendendo e Melhorando a Confiabilidade das GPUs Combinando Experimentos

com Feixe e Injeção de Falhas

RESUMO

Graphics Processing Units (GPUs) passaram de dispositivos dedicados a aplicações mul-

timidia e gaming, para se tornarem aceleradores de propósito geral usados em High Per-

formance Computing (HPC) e aplicações críticas como carros autônomos. Tal mudança

no mercado das GPUs levou a um aumento nas capacidades computacionais, eficiência

energética, melhoras nas ferramentas de programação e de análise de performance, e tam-

bém um aumento na preocupação com a confiabilidade do hardware das GPUs.

Com o objetivo de avaliar a confiabilidade das GPUs, pesquisadores expõe o dispositivo a

um feixe de nêutrons e realizam injeções de falhas para simular a propagação das falhas.

Se por um lado experimentos de radiação provêm uma taxa de falhas realista, por outro

lado eles não permitem visualizar a propagação das falhas no hardware e na aplicação.

Contrariamente, a injeção de falhas permite a completa visualização da propagação de

uma falha injetada, porém, na maioria das vezes os modelos de falhas são por sua vez li-

mitados ao que o pesquisador consegue acessar e modificar, o que pode levar a resultados

não realísticos. Consequentemente, uma metodologia para estimar com precisão a taxa

de falhas de um dispositivo é necessária para responder duas questões fundamentais na

avaliação da confiabilidade das GPUs: Se a injeção de falhas consegue prover resultados

representativos que podem ser usados para estimar a taxa Failure In Time (FIT) de códi-

gos executando em GPUs, e se os modelos de falhas que consideram a modificação de

um único bit ou dois bits são modelos acurados para simular falhas em uma GPU. Sendo

assim, essa tese propõe uma nova metodologia para estimar a taxa Failure In Time de

GPUs NVIDIA. A metodologia proposta é possível através da comparação e combinação

dos resultados de experimentos de radiação realizados em um feixe de nêutrons de alta

energia, que correspondem por mais de 13 milhões de anos de exposição no fluxo terres-

tre natural, e extensivos experimentos utilizando simulação de falhas (usando SASSIFI

e NVBITFI), e profiling de aplicações que requerem mais de 1,000 horas de GPU. Os

resultados mostram que, para a maioria dos casos, as taxas de Silent Data Corruptions

(SDCs) estimadas são suficientemente perto (diferenças menores que 5×) das estimadas

experimentalmente nos testes de radiação. O conhecimento extraído da estimação do FIT

é então usado para propor um novo modelo de falhas em oposição ao bit flip único ou



duplo. O modelo de falhas proposto é baseado no erro relativo extraído de injeção de

falhas em Register Transfer Level (RTL) comparando as diferenças observadas na saída

das injeções.

Usando uma análise experimental, arquitetural, e algorítmica, esse trabalho apresenta

também duas novas soluções de tolerância a falhas para HPC e aplicações críticas. A pri-

meira solução proposta é a Reduced Precision Duplication With Comparison (RP-DWC),

onde o principal objetivo é diminuir a sobrecarga causada pela Duplication With Compa-

rison (DWC) executando a cópia redundante em uma precisão reduzida. A técnica RP-

DWC consegue uma taxa de detecção excelente, 86%, com sobrecarga mínima, podendo

chegar aumento de tempo de execução mínimos de 0.1%, e em alguns casos somente 24%

de aumento no consumo de energia. O segundo tipo de solução proposta é voltado para

Convolutional Neural Network, onde duas modificações foram apresentadas. A técnica

já conhecida, Algorithm Based Fault Tolerance (ABFT) empregada as multiplicações de

matrizes (maior parte do processamento das CNNs) conseguem corrigir mais de 60% dos

SDCs críticos em uma CNN, enquanto recriando camadas especificas de uma CNN, max-

pool, foi capaz de detectar 98% dos SDC. Adicionalmente, esse trabalho também é o

primeiro a validar a taxa FIT de CNNs, como também a eficiência de tolerância a falhas

aplicadas a uma CNN em experimentos de radiação.

Palavras-chave: GPUs, confiabilidade, Computação de Alta Performance, sistemas crí-

ticos.



LIST OF ABBREVIATIONS AND ACRONYMS

ABFT Algorithm-Based Fault Tolerance

AVF Architecture Vulnerability Factor

BFS Breadth-first search

CCL Connected Component Labeling

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

COTS Commercial Of The Shelf

CUDA Compute Unified Device Architecture

DMR Double Modular Redundancy

DUE Detected Unrecoverable Error

DWC Duplication With Comparison

ECC Error Correction Code

EPL Expected Precision Loss

FIT Failure In Time

GPU Graphics Processing Unit

HPC High Performance Computing

IOV Instruction Output Value model

IPC Instructions Per Cycle

ISA Instruction Set Architecture

LUD LU Decomposition

MWBF Mean Work Between Failures

MxM Matrix Multiplication

NW Needleman–Wunsch

RP-DWC Reduced Precision Duplication With Comparison

RTL Register-Transfer Level

SASS Source And Assembly



SDC Silent Data Corruption

SECDED Single Error Correction Double Error Detection

SM Streaming Multiprocessor

TMR Triple Modular Redundancy

TRE Tolerated Relative Error

YOLO You Only Look Once



LIST OF FIGURES

Figure 2.1 Abstract view of fault injection and propagation...........................................21
Figure 2.2 The images per second and performance per Watt achieved for NVIDIA

Tegra X1 and Intel i7. ...............................................................................................24
Figure 2.3 An example of a CNN’s architecture.............................................................26

Figure 3.1 Instruction type per code for Kepler and Volta..............................................34
Figure 3.2 Beam experiment setup at ChipIR.................................................................37

Figure 4.1 Normalized FIT rates for CNNs on Kepler and Volta architectures..............42
Figure 4.2 Normalized FIT rates for Kepler and Volta. ..................................................46
Figure 4.3 Architectural Vulnerability Factor for Kepler and Volta. ..............................47

Figure 5.1 SDCs spatial distribution in GEMM..............................................................53
Figure 5.2 YOLOv1 fault tolerance efficacy. ..................................................................55
Figure 5.3 Average percentage of corrupted elements at the output of each layer. ........56
Figure 5.4 AVF results for the micro-benchmarks..........................................................63
Figure 5.5 Normalized beam data for DWC methods.....................................................67
Figure 5.6 TRE for RP-DWC errors. ..............................................................................69

Figure 6.1 Micro-benchmarks experimental FIT rates. ..................................................76
Figure 6.2 Comparison between the SDC FIT rate measured with the beam and

predicted with fault injection. ...................................................................................80
Figure 6.3 Comparison between the DUE FIT rate measured with the beam and

predicted with fault injection. ...................................................................................82
Figure 6.4 Detailed DUE sources for Kepler and Volta GPUs. ......................................84
Figure 6.5 Code size and execution time relative to default NVCC compilation for

versions 10.2 and 11.3 ..............................................................................................88
Figure 6.6 Silent Data Corruption Probability (P(SDC)) distribution..............................90
Figure 6.7 SDC rate estimation (†FIT ) distribution. .....................................................92
Figure 6.8 Error rate for FMXM compiled with different configurations. .....................94

Figure 7.1 Scheme of the proposed two-level fault simulation framework. ...................97
Figure 7.2 AVF of the injections at RTL level on the functional units. ........................101
Figure 7.3 Distribution of the fault syndrome from the RTL fault injection for float

instructions..............................................................................................................103
Figure 7.4 Distribution of the fault syndrome from the RTL fault injection for in-

teger instructions. ....................................................................................................104
Figure 7.5 AVF of the scheduler (left) and pipeline (right) for DUEs, single and

multiple thread SDCs for the Max, Zero, and Random t-MxM..............................106
Figure 7.6 SDC Program Vulnerability Factor for HPC codes. ....................................108



LIST OF TABLES

Table 3.1 Codes used for reliability evaluation on Kepler. .............................................33
Table 3.2 Codes used for reliability evaluation on Volta.................................................33
Table 3.3 Summarized micro-benchmarks details. .........................................................36
Table 3.4 Evaluated modules, sizes and instructions used per module...........................40

Table 5.1 Error detection and overhead (Fault Injection). ..............................................64

Table 6.1 NVCC Ratio between NVCC 10.2 and 11.3. When the ratio is higher
than 1, NVCC 10.2 FIT rate is higher than NVCC 11.3...........................................94

Table 6.2 Ratio between the estimated SDC FIT rate and the SDC FIT rate obtained
from beam experiments.............................................................................................95

Table 7.1 Distribution of the multiple patterns (single corrupted elements are not
listed) observed with t-MxM. .................................................................................107



CONTENTS

1 INTRODUCTION.......................................................................................................13
1.1 Motivation................................................................................................................15
1.2 Goals and organization...........................................................................................16
2 BACKGROUND AND RELATED WORK..............................................................18
2.1 Radiation Effects on Computing Devices .............................................................18
2.2 Reliability evaluation ..............................................................................................19
2.3 Fault tolerance in artificial neural networks ........................................................22
2.3.1 The performance of CNNs on GPUs .....................................................................23
2.4 Mixed precision and error criticality ....................................................................26
2.4.1 SDC criticality .......................................................................................................27
3 METRICS AND EVALUATION METHODOLOGY .............................................29
3.1 Devices......................................................................................................................29
3.2 Tested Codes ............................................................................................................30
3.3 Synthetic Micro Benchmarks implementation.....................................................34
3.4 Beam Experiment Setup.........................................................................................36
3.5 Fault Simulation Frameworks ...............................................................................38
3.5.1 Software level fault injection .................................................................................38
3.5.2 RTL level fault injection ........................................................................................40
4 GPU RELIABILITY EVALUATION .......................................................................41
4.1 Evaluating CNNs reliability ...................................................................................41
4.2 GPU FIT rate...........................................................................................................45
4.3 Architectural Vulnerability Factor........................................................................47
4.4 Discussion on GPU reliability ................................................................................49
5 HARDENING TECHNIQUES..................................................................................50
5.1 Available hardening techniques for GPUs............................................................50
5.2 Fault Tolerance for CNNs.......................................................................................52
5.2.1 GEMM ABFT........................................................................................................52
5.2.2 Reliable Max-pooling ............................................................................................56
5.3 Reduced Precision Duplication With Comparison ..............................................57
5.3.1 Overview of the Implementation ...........................................................................58
5.3.2 Granularity of the Approach ..................................................................................61
5.3.3 Architectural Vulneratibility Factor .......................................................................62
5.3.4 Error Detection.......................................................................................................63
5.3.5 Overhead ................................................................................................................65
5.3.6 Neutron Beam Experiments...................................................................................66
5.3.7 Detected vs Undetected Errors...............................................................................68
5.3.8 Impact of Undetected Errors in HPC and Safety-Critical Applications ................70
6 FAILURE IN TIME ESTIMATION .........................................................................72
6.1 FIT rate prediction through fault simulation.......................................................72
6.2 Profiling kernel dynamic instructions ...................................................................74
6.3 Synthetic Micro benchmarks .................................................................................75
6.3.1 Micro-benchmarks profile and error rate ...............................................................75
6.4 Beam vs Fault injection ..........................................................................................79
6.4.1 SDC........................................................................................................................79
6.4.2 DUE .......................................................................................................................81
6.4.2.1 DUE source.........................................................................................................83



6.5 Case Study: Measuring the Compiler Impact on Reliability with SDC rate
estimation...........................................................................................................86

6.5.1 Optimization flags and compilers ..........................................................................86
6.5.2 Preliminary analysis: Dynamic instructions profiling ...........................................87
6.5.3 SDC probability .....................................................................................................89
6.5.4 SDC rate estimation ...............................................................................................91
6.5.5 Validation through beam experiments ...................................................................93
6.5.6 Mean Workload Between Failures .........................................................................95
6.6 Considerations on FIT estimation .........................................................................96
7 IMPROVED FAULT SIMULATION ERROR MODEL.........................................97
7.1 Overview of the Idea...............................................................................................97
7.1.1 Contributions and Limitations ...............................................................................99
7.2 RTL fault injection results ...................................................................................100
7.2.1 Fault Syndrome....................................................................................................102
7.2.2 Tiled MxM errors distribution .............................................................................105
7.3 HPC Applications Evaluation ..............................................................................108
8 CONCLUSIONS .......................................................................................................111
8.1 Summary of contributions ...................................................................................111
8.2 Future work...........................................................................................................112
8.3 Conclusions............................................................................................................113
REFERENCES.............................................................................................................115
APPENDIX A — RESUMO EXPANDIDO ..............................................................129
APPENDIX B — PUBLICATIONS ...........................................................................132



13

1 INTRODUCTION

Graphics Processing Units (GPUs) have evolved from supporting hardware for

user applications and graphics rendering to general-purpose accelerators extensively em-

ployed in High Performance Computing (HPC) and safety-critical applications such as

autonomous vehicles and aerospace markets. The highly parallel architecture of GPUs, in

fact, perfectly fits the computational characteristic of most HPC codes and is incredibly

efficient in executing matrix multiplication, which is the computing core of Convolutional

Neural Networks (CNNs) used to detect objects in autonomous vehicles. The most recent

GPU architecture advances, such as tensor core and mixed-precision functional units,

move toward improving the architecture performances and software flexibility for HPC

and deep learning applications.

Consequently, GPU vendors have been working on many architecture modifi-

cations to improve the GPUs reliability while maintaining high performances (HARI;

ADVE; NAEIMI, 2012; RECH et al., 2014; WADDEN et al., 2014a; HARI et al.,

2021). The researchers have proposed hardening at different levels of the GPU hard-

ware/software, such as in the memory cell (RECH et al., 2014), Error Correction Code

(ECC) (HARI; ADVE; NAEIMI, 2012), Redundant Multithreading execution (WADDEN

et al., 2014a), and Algorithm Based Fault Tolerance for deep learning applications (HARI

et al., 2021). Additionally, GPU vendors are working on the design of platforms compli-

ant with strict automotive reliability standards as the ISO26262 (ISO, 2011; NVIDIA,

2018). As shown in Section 5.2, this thesis demonstrates that it is possible to detect 98%

of the SDCs with a software-level hardening technique for CNNs executing on a GPU.

The research community has been carefully studying GPU reliability with both

fault-injection (Wei et al., 2014; Hari et al., 2017; TSELONIS; GIZOPOULOS, 2016;

TSAI et al., 2021), and beam experiments (Goncalves de Oliveira et al., 2016; SULLI-

VAN et al., 2021). Beam experiments provide a very realistic analysis but lack visibility.

As errors are observed only when they manifest at the program/chip output, it is impos-

sible to associate observed behaviors with their source of the fault (without specialized

hardware for observability) and identify the most vulnerable GPUs’ resources. In oppo-

sition, fault simulation provides complete visibility of the fault propagation and allows a

detailed analysis of the propagation through the micro-architecture (i.e., the Architecture

Vulnerability Factor (AVF)). This methodology enables identifying the resources or code

portions that, once corrupted, are more likely to affect the computation. However, faults
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usually can be injected only on a subset of the available resources, and the adopted fault-

model risks to be unrealistic if not tuned with experiments.

The comparison between beam experiments and fault simulation is an essential

missing piece in the GPU reliability evaluation puzzle that this research intends to find.

Unfortunately, it is still mostly unclear whether a reliability evaluation based only on fault

simulation is realistic. Evaluating the effectiveness of many error mitigation techniques

requires fault-injection experiments. However, data based on fault simulations alone does

not imply that the method will be useful in the field. This thesis investigates and com-

pares the programs’ Failure In Time (FIT) rates measured with beam experiments that

count for more than 13 ∗ 106 years of natural exposure with the failure rates estimated

from 400,000 fault injections using SASSIFI (Hari et al., 2017) and NVBitFI (TSAI et

al., 2021), evaluating at which level and under which assumptions fault simulation can

provide a realistic reliability evaluation for GPUs. Through beam experiments, this re-

search presents the FIT rates of the main functional units (including mixed-precision and

tensor core), register file, and shared memory of Kepler and Volta GPUs. The FIT rates of

15 representative codes for HPC and safety-critical applications, including three CNNs,

are also presented. Some codes have been executed using different data types (integer,

float-, single-, or half-precision) to understand the impact of mixed-precision on code’s

reliability.

Based on the data obtained from the beam experiments, profiling, and fault injec-

tion, this thesis proposes a multi-level fault simulation methodology to improve the GPU

error model. The new fault injection method consists of performing fault injection at

Register-Transfer Level (RTL) main structures and propagating the fault syndrome at the

software level. The proposed method can join the accuracy of the RTL simulations with

the performance of software fault injection. Then, for the first time, it is possible not only

to unveil the effects of faults on otherwise hidden GPU resources but also to propose a

more detailed fault model to be used in the reliability evaluation of complex codes. This

information is essential, as it helps researchers focus on designing a hardening solution to

a subset of critical resources.

The NVIDIA mixed-precision architectures are extremely interesting for the HPC

and safety-critical markets. On GPUs, good object detection accuracy can be achieved

through neural network representing data in half-precision float point (16 bits) or even in

short integer (8 bits) (COURBARIAUX; BENGIO; DAVID, 2014; GUPTA et al., 2015).

Several HPC applications could also be executed in reduced-precision, significantly im-
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proving the computing efficiency (BREUER, 2005; PUENTE et al., 2014). As reliability

is a primary concern for both safety-critical and HPC applications, it is mandatory to un-

derstand if and how mixed-precision influences the reliability of devices and codes. To

take advantage of mixed-precision GPU hardware, this work moves a step forward in the

performance efficiency of Duplication With Comparison (DWC) by presenting Reduced

Precision Duplication With Comparison (RP-DWC), an improvement over the tradi-

tional DWC approach, which consists of executing the replica in a lower precision. The

results show that RP-DWC achieves an excellent coverage (up to 86%) with minimal over-

heads. The time overhead can be as low as 0.1%, while the energy consumption overhead

can be as low as 24%.

In this thesis, two generations of NVIDIA GPUs are evaluated, Kepler and Volta.

The two GPUs architectures have almost 10 years of release difference, which is as an

interesting case study to understand where the architectural improvements can benefit

the GPU reliability. Additionally, for both architectures and most codes, experiments are

presented with Error Correction Code (ECC) enabled and disabled to evaluate the efficacy

of GPUs built-in reliability solutions and distinguish between the contribution of logic and

memory faults to the codes error rate.

1.1 Motivation

This thesis is about understanding and improving the GPU reliability by com-

bining the knowledge extracted from beam experiments, fault simulation, and pro-

filing. Currently, the difference between the data from the fault simulators and the error

rates from radiation experiments is one of the most significant issues for GPU reliability

analysis. This is the primary motivation of this research. In order to better characterize the

investigation developed in this work, the following topics are also covered in this thesis:

The reliability of machine learning on GPUs: CNNs algorithms can exploit

GPU’s ability to support data and thread-level parallelism. However, researchers have

been overly focused on the performance while neglecting other critical aspects, partic-

ularly reliability. While performance is vital in these applications, reliability needs to

be paramount. It is not possible to tradeoff performance for reliability in safety-critical

applications.

The reliability of mixed-precision GPUs: While it has been shown that mixed-

precision operations are very beneficial in terms of computing and power efficiency, their
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impact on the devices and applications reliability has not been thoroughly investigated

yet.

1.2 Goals and organization

By performing multiple levels of fault injection, beam experiments, RTL, and

software fault simulation, this work proposes a systematic and quantitative analysis of the

error rate on NVIDIA GPUs. The main contributions of this work are:

• Combining beam experiments and fault simulation to deeply understand GPUs’

reliability. This research also presents a comparison between the GPU’s FIT rate

measured with beam experiments with the FIT rate predicted using fault simulation

and kernel profiling. This study provides essential information to ensure that fault

simulation provides a realistic reliability evaluation.

• This work advances GPU reliability by characterizing how microarchitecture vul-

nerabilities in a GPU can undermine a CNN’s reliability. Most previous works

focused on HPC application reliability on a GPU.

• A new approach of hardening is proposed for mixed-precision architectures. This

thesis goes a step forward in the performance efficiency of DWC by presenting

Reduced-Precision DWC (RP-DWC), an improvement over the traditional DWC

approach, which consists of executing the replica in a lower precision.

• For the first time for GPUs, a fine grain RTL fault injection (using FlexGripPlus)

is combined with the flexibility and efficiency of software fault injection in real

GPUs. With the RTL analysis, this research gathers the syndrome induced by faults

in the micro-instruction output value, and produces an accurate fault model for the

most common machine operations. As all GPU modules are accessible in the RTL

model, presenting a reliability characterization that considers most GPU resources

is possible.

The remainder of the document is organized as follows. Chapter 2 gives a back-

ground on the reliability of electronic devices and a short introduction of GPU’s uses on

machine learning and its impact on reliability. Chapter 3 presents some error rate con-

cepts, the radiation tests setup, the fault simulators tools, and other artifacts used in this

work, such as devices and codes. Chapter 4 presents the reliability evaluation using beam

experiments and software fault simulation. New software fault tolerance techniques are
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presented in Chapter 5. A methodology to estimate the FIT rate based on profiling and

beam experiments is presented in Chapter 6. Chapter 7 presents the new fault injection

methodology. Chapter 8 summarizes the main achievements and concludes this research.
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2 BACKGROUND AND RELATED WORK

This chapter presents the background and the related work in radiation effects

in computing devices, Graphics Processing Unit (GPU) reliability, Convolutional Neural

Networks (CNNs), error rate estimation, and mixed-precision architectures necessary for

this research.

2.1 Radiation Effects on Computing Devices

Galactic cosmic rays, interacting with the terrestrial atmosphere, trigger a flux

of high-energy particles, mainly neutrons, that reach the ground. The natural flux of

high-energy neutrons at sea level has been estimated to be about 13 neutrons/((cm2)×

h) (JEDEC, 2006). A terrestrial neutron strike may perturb a transistor’s state, gener-

ating bit-flips in memory or current spikes in logic circuits that, if latched, lead to an

error (BUCHNER et al., 1997; MAHATME et al., 2011).

Neutron-induced events are typically soft errors in the sense that the device is

not permanently damaged. A new write operation will correctly store the value on the

struck memory cell, and a new operation using the struck logic gate will provide the cor-

rect result. Soft errors are the worst kind of errors since they are harder to detect and

are transient. Given the shrinking dimensions of transistors, the pursuit of lower power

consumption, and the integration of several resources in a single chip, the probability

of neutron-induced faults, in both memory and logic resources, has increased signifi-

cantly (BAUMANN, 2005; SRIDHARAN et al., 2015). On a GPU, a soft error leads to

three different main outcomes:

1. No effect on the program output, i.e., the fault is masked, the corrupted data is not

used, or the circuit functionality is not affected;

2. A Silent Data Corruption (SDC) is an incorrect program output. The application

finishes correctly, but its output does not contain correct data;

3. Multiple Data Corruption is an SDC caused by multiple errors in a GPU. For

instance, an error in the Streaming Multiprocessor (SM) scheduler can corrupt the

output of multiple threads;

4. A Detected Unrecoverable Error (DUE) is a detected but uncorrectable event, a

crash, or device reboot that make the system abort abruptly.
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Given a particle flux, the error rate of code being executed on a microproces-

sor depends on both the memory/logic sensitivity (BAUMANN, 2005; NOH et al.,

2015), the number of resources adopted for computation, and on the probabilities for

the fault to be propagated through the hardware design (the microarchitecture) and the

program (MUKHERJEE et al., 2003; SRIDHARAN; KAELI, 2010).

Modern parallel computing architectures such as GPUs have some inherent reli-

ability weaknesses (WUNDERLICH; BRAUN; HALDER, 2013; GOMEZ et al., 2014;

Goncalves de Oliveira et al., 2016). A single particle-induced fault in the scheduler or

shared memory is likely to affect the correctness of several parallel threads or kernels,

leading to the corruption of multiple output values (RECH et al., 2013). Additionally,

a single corrupted thread could feed thousands of future parallel threads with erroneous

data, again leading to multiple errors (LI et al., 2016). Previous studies have already

evaluated the reliability of FPGA, GPUs, and Xeon Phi running various codes through ra-

diation experiments (BAUMANN, 2005; QUINN et al., 2005; OLIVEIRA et al., 2017c)

or fault simulation (FANG et al., 2014; KALIORAKIS et al., 2015; LU et al., 2015; Hari

et al., 2017; OLIVEIRA et al., 2017a; TSAI et al., 2021). By the time this work was done,

this is the first research that combines beam experiments and fault simulation and com-

pares the GPU’s FIT rate measured with beam experiments with the FIT rate predicted

using fault simulation and kernel profiling. This study provides essential information to

ensure that fault simulation provides a realistic reliability evaluation.

2.2 Reliability evaluation

The error rate of computing devices, including GPUs, running specific applica-

tions has already been measured through-beam experiments in previous work (BAU-

MANN, 2005; ZIEGLER; PUCHNER, 2010; SEIFERT; ZHU; MASSENGILL, 2002;

NGUYEN et al., 2005; CONSTANTINESCU, 2002; OLIVEIRA et al., 2017b; SULLI-

VAN et al., 2021). By exposing the device running a code to an accelerated particle beam,

it is possible to induce transient faults in the hardware and, counting the manifestations

of errors at the output, measure the realistic error rate. While providing the realistic er-

ror rate, beam experiments jointly consider all the factors that influence the device error

rate, impeding the distinction of each factor’s contribution and making it challenging to

identify the most vulnerable parts of the system. Additionally, beam experiments are

performed on a silicon prototype or the final Commercial Of The Shelf (COTS) prod-
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uct, making any modification to the project, including improving the device reliability,

extremely expensive.

Fault simulation, contrarily, is used to understand the probability for a fault to

propagate, generating an error. Figure 2.1 illustrates a view of the available fault injection

methodologies across different levels of abstractions. Each evaluation methodology has

some benefits and limitations, which are summarized next:

• Circuit or Gate Level Simulations induce analog current spikes or digital faults in

the lowest abstraction level that still allows to track fault propagation (not available

with beam tests). There are two main issues with the level of details required to

perform this analysis on GPUs: (1) a circuit, or gate-level description of GPUs

is not publicly available and, even if it was, (2) the time required to evaluate the

whole circuit would definitely be excessive (the characterization of a small circuit

takes weeks (Kochte et al., 2010)).

• Register-Transfer Level (RTL) fault injection accesses all resources (flip flops

and signals) and provides a more realistic fault model, given the proximity of the

RTL description with the actual implementation of the final hardware (Ejlali et al.,

2003; SUBASI et al., 2018; CONDIA et al., 2020). However, the time required

to inject a statistically significant number of faults makes RTL injections imprac-

tical. The massive amount of modules and units in a GPU and the complexity of

modern HPC and safety-critical applications exacerbate the time needed to have

an exhaustive RTL fault injection (hundreds of hours for small codes), making it

unfeasible.

• Micro-architecture fault injection provides a higher fault coverage than software

fault injection as faults can, in principle, be injected in most modules. A prelim-

inary work, based on Multi2Sim (Ubal et al., 2012) GPU description, presented

micro-architectural fault injection data. However, most micro-architectural analysis

is limited to just memories (KALIORAKIS et al., 2015; TSELONIS; GIZOPOU-

LOS, 2016; Vallero; Gizopoulos; Di Carlo, 2017; YANG et al., 2021b). One of

the issues of micro-architectural fault injection in GPUs is that the description of

some modules (including the scheduler and pipelines) is behavioral. Thus, their

implementation is not necessarily similar to the realistic one.

• Software fault injection is performed at the highest level of abstraction and, on

GPUs, it was proved efficient and helpful in identifying those instructions or code

portions that, once corrupted, are more likely to affect computation (Wei et al.,
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2014; FANG et al., 2014; Hari et al., 2017; YANG et al., 2021a; TSAI et al., 2021).

However, the analysis is limited as faults can be injected only on that subset of

visible resources to the programmer. Unfortunately, critical resources for highly

parallel devices (i.e., hardware scheduler, threads control units, etc.) are not acces-

sible to the programmer and cannot be characterized via high-level fault injection.

• Hybrid or combined fault injections at different levels of abstraction have been

adopted to increase the efficiency of the reliability evaluation without jeopardizing

its accuracy. Some studies have proposed to use a detailed RTL fault injection in

specific portions of the circuit and a fast fault simulation in others (Ejlali et al.,

2003; SARTOR; BECKER; BECK, 2019). Recent works combined an extremely

detailed gate-level fault injection in tandem with a faster (but still impracticable

for complex devices) RTL evaluation (Kochte et al., 2010; NIMARA et al., 2016).

Cho et al. used high-level simulation (not using real hardware), triggering a RTL

model when the fault needs to be injected (Cho et al., 2015). Subasi et al. focus

on RTL injection to provide a more detailed fault model but limited to embedded

processors ALU (SUBASI et al., 2018). While this work takes inspiration from the

two-level fault injection concept, none of these works address GPUs (nor parallel

devices in general), but mainly embedded processors, with a completely different

complexity scenario. Additionally, none of the previous works provide, as this work

does, a fault model database that could be used in future evaluations (SANTOS et

al., 2021).

Figure 2.1: Abstract view of fault injection and propagation. Reliability evaluations closer
to the fault source (i.e., the silicon implementation) are more realistic by extremely costly.
Evaluations closer to the fault manifestation at the output are more efficient but risk to be
unrealistic. Single or double bit-flips injections at software level, for instance, accurately
simulate memory faults, only. Faults in other resources have a syndrome that depends on
operation and input value.
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In an effort to improve the analysis made using fault simulation, the concept of

SDC probability is proposed by some works (YIM et al., 2011; FENG et al., 2010; LI;
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PATTABIRAMAN, 2018; PALAZZI et al., 2019; ANWER et al., 2020). The SDC proba-

bility is the AVF normalized by the instruction probability to be sampled from the code’s

instructions. The SDC probability is a metric that connects the AVF (fault propagation)

and the instruction profiling of the application to determine the dependence of the AVF

on the instruction distribution. However, the SDC probability still lacks information on

the hardware sensitivity, which still presents as a model limitation.

Recent studies (Chatzidimitriou et al., 2019; Serrano-Cases et al., 2020) tried to

predict application SDC rate using micro-architectural fault injection on ARM CPUs.

For GPUs, only one study (HARI et al., 2020) attempted to predict the error rate at

low- and application-level. The low-level implementation considered beam experiments,

and application-level analysis employed fault injection. The results show that the SDC

prediction is plausible. However, the paper did not provide insights into the impact

of hidden GPU resources (parallelism management) on the SDC rate or identifying the

code/architecture characteristics/metrics that significantly impact GPUs. It focussed on

only one GPU architecture with a single ECC setting and did not study sensitivity to

compiler versions. This work is the first to demonstrate that analyzing multiple GPU

architectures and compiler versions are crucial for application failure rate analysis, and

investigating with both the ECC models reveals new insights.

2.3 Fault tolerance in artificial neural networks

Prior works, from the late 1990’s, have shown that ANNs are highly tolerant to

transient faults (ALIPPI; PIURI; SAMI, 1995; BETTOLA; PIURI, 1998; PIURI, 2001;

DISTANTE; PIURI, 1991; PHATAK; KOREN, 1995; DISTANTE et al., 1991; NETI;

SCHNEIDER; YOUNG, 1992). Software fault injection was performed at different lev-

els of abstraction to understand the vulnerability of various networks. Unfortunately,

GPUs tend to propagate a single fault to multiple output elements, a behavior not stud-

ied in previous research. Additionally, as the structure and topology of neural networks

have significantly evolved in recent years, most prior results cannot be easily extended

to today’s deep learning complex frameworks. Specifically, neural networks for object

detection have the peculiarity of using convolution to extract features from the data (LE-

CUN et al., 1998), a class of computations where reliability has not been deeply studied

to date. A study on CNN reliability, executed on dedicated accelerators, is presented

by Li et al. (LI et al., 2017), showing that each layer and flip-flop has a different injec-
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tion sensitivity. The authors also identify which flip-flops to harden to increase the CNN

reliability.

This work significantly advances the knowledge on CNNs reliability by consider-

ing realistic error models (provided by beam experiments) and understanding the propa-

gation of errors injected in memory elements and computing resources. This thesis con-

siders and compares three commercially available frameworks and three different GPU

architectures. Finally, hardening strategies proposed in this work do not require costly

hardware modifications and are experimentally proven to be very useful and efficient.

Given the results of previous studies, it is possible to expect that the fault-tolerance

of neural networks will be dominated by subsequent filtering operations. This was

suggested through the study of the mathematical algorithms present in general neural

paradigms, and by evaluating specific implementations (DISTANTE; PIURI, 1991; DIS-

TANTE et al., 1991; NETI; SCHNEIDER; YOUNG, 1992; ALIPPI; PIURI; SAMI, 1995;

PIURI, 2001).

Prior work has also considered how to improve the reliability of neural networks.

Most of the available solutions rely on partial or full duplication (or even triplication) of

operations (PHATAK; KOREN, 1995). Some solutions require specific hardware modifi-

cations (BETTOLA; PIURI, 1998; LI et al., 2017). These approaches are less than ideal

for real-time object detection, a task commonly performed in automotive applications,

due to processing overhead and added costs.

Some studies have used fault injection during network training (SEQUIN; CLAY,

1990; BOLT, 1992; KULAKOV; ZWOLINSKI; REEVE, 2015). Once the neuron values

are adjusted to support errors, the network can maintain the correct classification, even if

a fault happens. The main limitation of this approach is that it is hard to inject a repre-

sentative set of faults. The fault model set, unfortunately, is determined by the network

dimension. For deep CNNs, injecting a statistically significant set of fault models is a

considerable amount of work, infeasible for most frameworks.

2.3.1 The performance of CNNs on GPUs

In 1989, a new algorithm in machine learning proposed by LeCun et. Al placed a

breakthrough for image recognition in AI (LeCun et al., 1989). The authors proposed a

machine learning method called CNN to detect handwritten digits, which achieved more

than 98% of accuracy (LECUN et al., 1998). Since then, machine learning methods
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have increased their accuracy and complexity. However, with deeper neural networks

and the increasing number of classification method parameters, machine learning became

costly in performance for that time processors. Only in 2009, the machine learning meth-

ods were implemented using GPUs (RAINA; MADHAVAN; NG, 2009) with a single

NVIDIA GPU Raina et. Al achieved more than 72× speedup over a dual-core CPU. Ever

since, the machine learning algorithms get lots of improvement on NVIDIA GPUs in

terms of performance and power consumption (CHETLUR et al., 2014; KRIZHEVSKY,

2014). Nowadays, the standard COTS platform to train and execute machine learning

algorithms is through NVIDIA GPUs (GAWANDE et al., 2018).

As an example of how NVIDIA overpower the rivals in the deep learning market,

figure 2.2 shows a result adapted from (NVIDIA, 2015b). Two platforms are evaluated, an

embedded NVIDIA GPU, Tegra X1, and a general-purpose CPU, Intel i7 6700K, running

AlexNet Convolutional Neural Network object classification. For Tegra X1, the results

are shown for two float precisions, single and half (i.e., FP32 and FP16), without losing

classification accuracy. The batch sizes are plotted for No batching (batch size equals to

1) and Large batches (batch size equals to 128 for Tegra X1 and 48 for Intel i7). The

batch size defines the number of samples seen before updating the neural network model

in the training process. For images per second result, Intel i7 is only better than Tegra

X1 using a batch size of 1, while for large batches, Tegra X1 outperforms Intel i7 for

single and half precision. If the power consumption is taken into the analysis, Tegra

X1 half precision exceeds Intel i7 up to 6.6× without batching and 11.5× with large

batches. Today, NVIDIA GPUs are the most used commercial device for Deep Learning

researchers. Consequently, this work evaluated the NVIDIA GPU reliability running three

of the most accurate CNN when this work is done, YOLO, Faster R-CNN, and Resnet.

Figure 2.2: The images per second and performance per Watt achieved for NVIDIA Tegra
X1 and Intel i7 6700K. Adapted from (NVIDIA, 2015b)

(a) Images per second processed in the inference
process.

(b) The ratio between performance and power
consumption
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Convolutional Neural Networks (CNNs) are one of the most efficient ways to

perform image classification (CIREGAN; MEIER; SCHMIDHUBER, 2012), segmen-

tation (CIRESAN et al., 2012), and object detection (REDMON et al., 2015; Mao et

al., 2018; REN et al., 2015; GKIOXARI; MALIK; JOHNSON, 2019). Prior work has

adopted CNNs for real-time object detection,showing excellent results (ANGELOVA et

al., 2015; RIBEIRO et al., 2016; REDMON; FARHADI, 2018). Figure 2.3 shows an ex-

ample of how CNNs works, most of them are composed of two stages: Feature extraction

and classification (ALOM et al., 2019).

One of the basic steps when using CNNs for object detection is convolution. A

kernel filter is convolved with a matrix to extract specific features of the image. The kernel

filter slides over the input matrix, multiplying and accumulating products at every posi-

tion of the input with every position of the kernel. This process can be mapped to a matrix

multiplication operation. Each block is reorganized as a row of matrix A, and the filter

kernel is replicated as columns of a matrix B. Convolution is then computed as AxB.

Other methods consider convolutional algorithms or Fast Fourier Transforms. However,

they are less efficient than GEMM-based convolutions (CHETLUR et al., 2014; MATH-

IEU; HENAFF; LECUN, 2013). As GPUs are highly efficient for accelerating matrix

multiplication, they are an excellent target for CNNs. Specific processors can be designed

for CNN, achieving significant performance and low power consumption (LUO et al.,

2017; JOUPPI et al., 2017). However, the design of dedicated processors is exceptionally

costly and less than ideal for embedded applications.

A CNN has several layers that perform convolution on a raw image or feature map

(i.e., the output of an upstream convolutional layer). This work considers three modern

frameworks: i.) You Only Look Once (YOLO) versions, one, two and three (REDMON et

al., 2015; REDMON; FARHADI, 2016; REDMON; FARHADI, 2018), ii.) a 2) a Faster

Region-based Convolution Neural Network (Faster R-CNN) (REN et al., 2015), and iii.)

a Residual Network (Resnet) (HE et al., 2016). YOLO is based on Darknet, which is an

open-source CNN used for object classification and detection written in C and Compute

Unified Device Architecture (CUDA) (REDMON et al., 2015). Faster R-CNN is written

in C++ and Python, based on Caffe’s (JIA et al., 2014) deep learning framework. ResNet

is a CNN for classification based on the Torch7 deep learning framework (COLLOBERT;

KAVUKCUOGLU; FARABET, 2011). ResNet only performs object classification, while

YOLO and Faster R-CNN also provide detection (i.e., bounding boxes that highlight the

classified objects in the frame). However, the networks pipeline and operation performed
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are similar once all the CNNs share the same structure. There are other differences be-

tween YOLO, Faster R-CNN, and ResNet that are likely to impact their reliability as

demonstrated in (Santos et al., 2019).

The GPU microarchitecture can propagate a single fault to affect several output

elements, and this behavior significantly impacts CNN reliability. This work demonstrates

in Chapter 4.1 that, unfortunately, ECC is insufficient to ensure high reliability in CNNs,

as it does not reduce the number of critical errors. Chapter 5 presents more efficient

hardening techniques that can improve the fault-tolerance on CNNs.

Figure 2.3: An example of a CNN’s architecture, most of CNNs are split into two stages
feature extraction and classification. Figure extracted from (ALOM et al., 2019).

2.4 Mixed precision and error criticality

In recent years major hardware vendors are making available devices that enable

the execution of operations in mixed-precision. The market needs for more efficient archi-

tectures and applications in terms of execution time and power consumption pushed the

adoption of approximate computing in a growing number of applications. Consequently,

the demand for mixed-precision platforms increased since they are extremely interesting

for the HPC and safety-critical markets.

Some applications do not require the full precision provided by IEEE754’s dou-

ble or single precisions (STRZODKA; GODDEKE, 2006). As the float point functional

units area grows quadratically as the precision increase, using double and single-precision

data even if lower precision is sufficient would add unnecessary overhead to the appli-

cation (GODDEKE; STRZODKA; TUREK, 2007). Previous studies have shown sig-

nificant performance improvement using mixed precision on HPC (GODDEKE; STR-
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ZODKA; TUREK, 2007; CLARK et al., 2010), Deep Learning (COURBARIAUX; BEN-

GIO; DAVID, 2014; VENKATESH; NURVITADHI; MARR, 2017), physics simula-

tion (GRAND; GöTZ; WALKER, 2013), and approximate computing (HO et al., 2017;

MICIKEVICIUS et al., 2017).

Mixed-precision architectures can be used in low power devices (TONG; NA-

GLE; RUTENBAR, 2000), FPGAs (MINHAS; BAYLISS; CONSTANTINIDES, 2014),

GPUs (NVIDIA, 2017; MINHAS; BAYLISS; CONSTANTINIDES, 2014), general pur-

pose CPUs (LOMONT, 2011), etc. The architecture is said to be mixed precision if it has

support for at least two of the five float point arithmetics defined by the IEEE 754 (16 ,

32, 64, 128, and 256 bits) (IEEE, 2008). Modern devices such as NVIDIA GPUs, Intel

accelerators, and FPGAs, have support for half, single, and double precisions (MINHAS;

BAYLISS; CONSTANTINIDES, 2014; NVIDIA, 2017; INTEL, 2016). Nevertheless,

other architectures support different precisions, such as 8 bits operations (GUPTA et al.,

2015).

Many fields can benefit from float point mixed-precision arithmetic, such as Neu-

ral Networks, image processing, HPC, etc (CLARK et al., 2010; HWANG; SUNG, 2014;

COURBARIAUX; BENGIO; DAVID, 2014). Recently, efforts have been to improve the

performance of mixed-precision applications on modern devices. Most recent research

does not cover how mixed-precision arithmetics impact the device or application reliabil-

ity. This work also covers different precision reliability on Volta architecture.

2.4.1 SDC criticality

SDCs are not always critical, as some output errors can be tolerated. For instance,

if the corruption affects only the least significant positions of the mantissa of a float point

number, the results could still be inside float point operations’ inherent variance. Some

physical simulations accept as correct values in a range that can be as high as 4% for

wave simulations (PUENTE et al., 2014; OLIVEIRA et al., 2017b). Additionally, ap-

proximate computing is gaining interest in various HPC applications (BREUER, 2005;

NVIDIA, 2017). If the presence of SDCs does not impact the application output, SDCs

could be considered tolerable. Moreover, the output of most neural-networks-based object

detection frameworks is a vector of tensors containing the probability of eligible objects.

Objects identified with a sufficiently high probability are classified and eventually de-

tected. Transient faults that modify the probability without altering an object’s rank or
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change the coordinates of low-probability objects are not considered critical. Intuitively,

the reduction of data and operation precision is likely to increase the criticality of transient

errors, as demonstrated in a recent study (SANTOS et al., 2019).
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3 METRICS AND EVALUATION METHODOLOGY

This chapter describes the devices and codes characterized, the metrics adopted

for the reliability evaluation, and how they are measured for GPUs.

3.1 Devices

Devices: For this work, two NVIDIA GPU micro-architectures, Kepler (Tesla

K40c) and Volta (Titan V and Tesla V100), are considered. NVIDIA Kepler micro-

architecture, designed in 2013, was one of the most popular GPUs for HPC. Kepler

introduces significant changes compared to previous micro-architectures, such as intro-

ducing dynamic kernel parallelism and launching concurrent kernels in the same GPU.

The tested NVIDIA K40 (Kepler) is built with the Kepler ISA and fabricated in a 28nm

TSMC standard CMOS technology. This model has 2880 CUDA cores divided in 15

Streaming Multiprocessors (SMs). Each K40 SM has 64K registers, 64KB of L1/shared

memory, 1.5MB of L2 cache, and 6GB GDDR5 memory. Single Error Correction Dou-

ble Error Detection (SECDED) Error Correcting Code (ECC) protects the register file,

shared memory, and caches while read-only data cache is parity protected. K40 is used

with both the ECC enabled and disabled to evaluate the register file error rate’s impact on

the prediction.

Titan V and Tesla V100 (Volta) are designed with the Volta micro-architecture

and built with TSMC FinFET 12nm. Volta GPUs feature hardware acceleration for three

IEEE754 float point precisions: double, float, and half. Each of the 80 Volta SMs has 64

FP32 cores, 64 INT32 cores, 32 FP64 cores (HO; WONG, 2017; NVIDIA, 2018). Volta

also includes eight tensor cores, i.e., specific hardware that performs the Matrix Multipli-

cation and Accumulate (MMA) operation on 4x4 matrices. While the V100 operates at

1246MHz as a base clock, Titan V operates at 1200MHz. Tesla V100 has 16GB of HBM2

RAM, and Titan V has 12GB of HBM2 RAM. Finally, only the V100 has SECDED ECC

on the main memories.

It is worth noting this evaluation considers errors occurring in the GPU core, not

in the main memory. That is, injecting faults in the main memory is not studied. For

Kepler, the beam spot is sufficiently small (2cm of diameter) to not hit the onboard DDR

when ECC is disabled. For Volta, as HBM2 memories are on top of the chip when ECC is

disabled, all the global memory accesses are made through Triple Modular Redundancy
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(TMR). The choice of not considering main memory reliability that has already been

extensively studied (Saeng-Hwan Kim et al., 2007; Chen et al., 2016) is dictated by the

fact that bitflips in it would mask effects in the GPU core.

3.2 Tested Codes

Twelve representative codes listed in Table 3.1 (Kepler) and Table 3.2 (Volta) are

chosen for this work. A set of codes that comes from broad domains, from HPC to deep

learning. As a side contribution, this work measures which are the codes that are more

vulnerable or reliable. Additionally, all the codes, data, and tools used in this work are

available on GitHub to allow reproducibility. The radiation experiments setup tools and

codes are available in (SANTOS et al., 2014). The data extracted on CNNs and discussed

in Chapter 4.1 is available in (SANTOS et al., 2018). FIT prediction, discussed in Chap-

ter 6, data is available in (SANTOS et al., 2021). Finally, the data for RTL/Software fault

injections and the new error model discussed on Chapter 7 are available at (SANTOS et

al., 2021).

A detailed description of the chosen benchmarks are as follows:

1. Connected Component Labeling (CCL) is a labeling algorithm that is commonly

used for object detection. CCL scans the image in parallel in a row-wise fashion

to find contiguous pixels using child threads through dynamic parallelism in the

same row that belong to the same label. Then, CCL merges the components previ-

ously found and updates the respective labels using child threads through dynamic

parallelism (UKIDAVE et al., 2015).

2. Breadth-first search (BFS) is a search in graphs algorithm that is widely used

in GPS Navigation Systems. BFS kernel searches an undirected and unweighted

graph to find the minimum edges reaching all vertexes of the graph. The chosen

BFS algorithm uses each thread to represent each vertex of the graph them store

the results of visited vertices in an array of indexes, and another array to keep the

costs (HARISH; NARAYANAN, 2007). BFS is a well-known example of a not

well-suitable algorithm for GPUs since each thread has a very irregular memory

access pattern.

3. Lava simulates particle interactions in a large 3D space. It calculates the parti-

cle’s potential and relocation in a large 3D space due to mutual forces between
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them (CHE et al., 2009). Lava kernel computation is mostly dot-products with

float point data. Each thread performs one particle’s interactions with all particles

in neighboring boxes. Lava is representative of Multi-physics Particle Dynamics

Code applications which solve a series of ordinary differential equations using Fi-

nite Difference Methods (SZAFARYN et al., 2010).

4. Hotspot estimates a processor temperature using an architectural floor plan and

simulated power measurements (CHE et al., 2009). The computation is represented

by a grid, where each output cell represents the average temperature value of the

corresponding area of the chip. Hotspot is a 2D stencil highly parallelizable code

that achieves a high occupancy level. Hotspot is representative of stencil solvers,

used in applications from geophysics to molecular dynamics (PUENTE et al., 2014;

BIYIKLI; YANG; TO, 2014) and intensely studied by the community (NGUYEN

et al., 2010).

5. Gaussian elimination is a linear algebra algorithm that solves a system of equations

and computes the result for all of the variables in a linear system, row-by-row (CHE

et al., 2009).

6. LU Decomposition (LUD) is a linear algebra method that calculates solutions for

a square system of linear equations. LUD kernel factors a matrix as the product

of a lower triangular matrix and an upper triangular matrix. LUD is representa-

tive of highly CPU-bound codes (CHE et al., 2009). Additionally, this application

has many row-wise/column-wise interdependencies, significant inter-thread shar-

ing, and row/column dependencies.

7. Needleman–Wunsch (NW) is a bioinformatics algorithm that aligns DNA se-

quences. Possible pairs of sequences are organized in a 2D integer matrix, then

NW deduces the optimal alignment by finding the maximum path in the matrix.

NW uses smaller problems to solve the original problem (CHE et al., 2009), which

leads the NW kernel to have many control flow instructions.

8. Matrix Multiplication (MxM) is an essential tool for HPC and is also one reason

for GPUs’ success in CNNs training and execution. For this reason, this study

pays particular attention to this algorithm and test both the naive version (MxM)

and the optimized version that digest data in the most suitable way for GPUs as

General Matrix Multiplication (GEMM). The GEMM version considered is part of

the NVIDIA CUBLAS libraries, which is to be highly efficient, has a dedicated

kernel code for each group of size, precision, and device configuration.
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9. Mergesort is a divide and conquer sorting algorithm of O(n log n) complexity.

CUDA toolkit Mergesort sorts divided arrays with Bitonic sorting algorithm. Then

the final step organizes the data segments previously ordered. CUDA toolkit Merge-

sort creates an array of indexes for each input element. If an element on input data

is changed, its index is moved along (NVIDIA, 2015a). Sorting algorithms have a

high memory device utilization as also lots of control flow instructions.

10. Quicksort is one of the most known sorting algorithms. CUDA toolkit implemen-

tation chooses a random pivot between the two split segments, then each element

in the segment vector is sorted relative to the pivot. CUDA toolkit Quicksort uses

Cuda Dynamic Parallelism, which allows the main kernel to create child kernels

reducing the host-GPU communications overhead (NVIDIA, 2015a).

11. CFD Solver is an unstructured grid solver for Computational Fluid Dynamics

(CFD) (CHE et al., 2009). CFD is a type of numerical algorithms commonly used

to solve problems that involve fluids. The algorithm used in this work solves an

Euler equation for compressible flow.

12. You Only Look Once (YOLO) is an open-source high accurate real-time

CNN-based object detection framework for automotive applications (REDMON;

FARHADI, 2018). This work uses three versions of YOLO, version one, two, and

three. The newer version of YOLO is always different from the former one. For

instance, they all differ in the layer numbers, YOLOv1 has 31 layers, YOLOv2

has 32 layers, and YOLOv3 has 106 layers (REDMON et al., 2015; REDMON;

FARHADI, 2016; REDMON; FARHADI, 2018). The differences between the ver-

sions are mainly upgrades in the original algorithms that improved the object de-

tection’s accuracy and performance. In this work, all YOLO versions are tested

with Caltech dataset (DOLLÁR et al., 2012). Exceptionally, YOLOv3 is executed

in single and half precision on NVIDIA Volta. It is worth noting that, to focus

only on mixed-precision operation effects on CNN reliability, YOLOv3 is not re-

trained. The weights of the single-precision version are converted to half-precision

precision.

This work also discusses if the code reliability characteristic is due to the re-

sources’ sensitivity, the number of resources used for computation, or the probability

of propagating faults (AVF). Tables 3.1 and 3.2 also list the amount of shared memory

and the average number of registers used for computation together with the execution

time. They also include the IPC and occupancy metrics used to consider the GPU parallel
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management in the FIT rate prediction (details in Section 6.2).

Table 3.1: Codes used for reliability evaluation on Kepler.
Benchmark Precision SHARED (KB) RF (AVG) Execution Time [s] IPC Occupancy
CCL Integer 0.12 33.1 1.19 0.14 0.11
BFS Integer 0 20.3 0.27 1.22 0.81
Lava Float 7.04 37 2.43 4.12 0.57
Hotspot Float 3 23 1.7 3.89 0.94
Gaussian Float 0 13.9 0.27 0.51 0.34
LUD Float 8.61 26.1 1.44 0.58 0.37
NW Integer 8.26 32 0.33 0.2 0.08
MXM Float 8 25 0.38 1.5 1
GEMM Float 31.01 247.8 0.07 4.94 0.19
Mergesort Integer 2.51 15.4 0.75 2.11 0.97
Quicksort Integer 0.32 26.1 1.81 1.97 0.96
Yolov2 Float 8.02 96.2 0.1 2.84 0.59
Yolov3 Float 9.07 99.6 0.44 3.11 0.65
Faster R-CNN Float 5.4 67.7 0.09 2.40 0.58
Resnet Float 1.9 63.9 0.03 1.54 0.49

Table 3.2: Codes used for reliability evaluation on Volta.
Benchmark Precision SHARED (KB) RF (AVG) Execution Time IPC Occupancy

Lava
Half 8 255 0.31 0.26 0.1
Float 8 255 0.56 0.12 0.1
Double 16 254 1.07 0.07 0.1

Hotspot
Half 16 26 0.44 0.48 0.94
Float 32 27 0.65 0.32 0.95
Double 64 30 1.3 0.18 0.96

MXM
Half 0 27 1.17 2.84 1
Float 0 25 1.97 2.62 1
Double 0 29 2.4 2.3 1

GEMM
Half 64 127 0.4 2.34 0.25
Float 64 134 0.77 2.36 0.13
Double 64 234 1.3 1.22 0.13

Yolov3
Half 21.52 69.0 0.4 1.23 0.7
Float 34.18 122 0.46 1.74 0.7

The dynamic instructions are profiled for each code listed in Table 3.1 and 3.2 us-

ing NVPROF and NSIGHT-COMPUTE, respectively. Profiling the codes provide insights

into the micro-instructions that significantly contribute to the benchmark execution. Fig-

ure 3.1 shows, in percentage, the micro-instructions that compose each code. Each float

point code has the precision made explicit in the first letter of its name, D for double-

precision (64 bits), F for single-precision (32 bits), and H for half-precision (16 bits).

That is, HHOTSPOT is Hotspot executed in half-precision, DGEMM is GEMM executed

in double-precision. Codes that only operate with INT32 data do not have their names

modified.



34

The instructions in the kernel profile are divided into two classes: (1) the arith-

metic instructions commonly used on the benchmarks (i.e., FMA, MUL, ADD, INT,

MMA), and the primary instruction used for data movement (LDST). (2) "OTHERS" are

the ones that have a minor contribution to the final benchmark. (i.e., transcendental func-

tions, branch, inter-thread communication, thread barrier, NOP, and atomic directives).

The FIT rate of only the former set of instructions is measured through beam experiments,

as they are the most likely to be corrupted and the most common in a wide range of codes.

Testing all the micro-instructions would be unfeasible due to beam time restrictions (more

than 20 different micro-instructions types in the NVIDIA ISA). Nevertheless, as further

demonstrated in Chapter 6, even considering a (large but not exhaustive) subset of instruc-

tions allows a reasonable estimation of the code’s FIT rates. The information provided by

the profile tools is required to map how the application uses the GPU’s resources. Thus,

a detailed profile is crucial for a correct FIT prediction. Figure 3.1 shows that the arith-

metic instructions dominate the composition of chosen benchmarks, information that will

be useful later in this work.

Figure 3.1: Instruction type per code for Kepler and Volta.
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3.3 Synthetic Micro Benchmarks implementation

This section describes the implementation of the microbenchmarks used in this

work. Microbenchmarks are a set of synthetic applications designed to stress specific
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components of the GPU architecture. Using microbenchmarks, it is possible to evaluate

the error rate of a particular resource. Table 3.3 shows the main characteristics of each

microbenchmark. The microbenchmarks are tuned to stress mostly the unit that is being

evaluated. That is, in each microbenchmark composition, 99% of the instructions is the

one that is being assessed. For example, 99% of the FADD microbenchmark is FP32

ADD instructions. In sequence, each microbenchmark is explained in detail.

RF and SHARED micro-benchmarks measure the FIT rate of the Register File

and Shared Memory, respectively (L1 cache has the same technology as Shared Mem-

ory). Each thread per SM that writes a known pattern in all accessible registers or shared

memory (255 registers per thread and 48KB of static shared memory among all SM

threads) and, after a pre-defined time, read-backs the values counting bit-flips. The micro-

benchmark instantiates the lowest possible number of threads to reduce the probability of

having errors in other resources besides the memories. The time between a write and a

read should be long enough to ensure that the setup/read-back time is negligible and short

enough to prevent more than one neutron from generating faults. This latter constrain is

necessary to detect eventual Multiple Bit Upsets (MBUs, more than one bit corrupted in

a single word). The exposure time is heuristically set to 1s. It is anticipable that, for RF,

the MBU rate is lower than 2% and, for SHARED, is lower than 0.9%.

LDST performs a sequence of memory movements on the global memory (Load

followed by Store) with ECC enabled. The LDST kernel reads a memory region from

global memory that contains a unique pattern and stores it in another global memory

location. Each kernel consists of 4M threads, each performing 210 memory movements.

In total, this micro-benchmark allocates 2GB of memory. The host CPU setup compares

the expected pattern on the output memory and counts the number of corruptions. CPU

verification time is not considered for FIT calculation.

A group of specific micro-benchmarks was created to evaluate the arithmetic func-

tional units. Each thread in FMA (Fused Multiply and Add), ADD (Addition), MUL

(Multiplication), and MAD (Integer Multiply and Accumulate) micro-benchmarks ex-

ecutes 108 operations, while MMA performs 107 16x16 (the matrix is sliced into 4x4

smaller matrices, see Table 3.3) matrix multiplications (with FP16 on HMMA or FP32

casted to FP16 for FMMA). A lower of operations MMA was chosen to keep the ex-

posure time, and so the statistic, similar to the other micro-benchmarks. The inputs are

pre-defined and have been randomly generated off-line, ensuring to avoid overflow. The

integer and float versions of the micro-benchmarks have been tested on the Kepler and
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Table 3.3: Summarized micro-benchmarks details. The information present on the table
for the latency is extracted from (JIA et al., 2018; ARAFA et al., 2019). On Volta, the
FP16 corresponds to two operations performed in the same hardware (x2). Kepler sup-
ports FP64 instruction. However, as Kepler FP64 instructions are not used in this work,
they are not listed.

Instruction latency (cycles) Operand
descriptionINT32 FP16 FP32 FP64

Addition
(ADD)

Kepler 9 – 9 – 2 input registers
+ 1 output registerVolta 4 6 (x2) 4 8

Multiply
(MUL)

Kepler 9 – 9 – 2 input registers
+ 1 output registerVolta 4 6 (x2) 4 8

Multiply and
Add (FMA/MAD)

Kepler 9 – 9 – 3 input registers
+ 1 output registerVolta 4 6 (x2) 4 8

Shared memory
(SHARED)

Kepler 26 - 55
–

Thread Block load
followed by storeVolta 18 - 49

Matrix Multiply
and Accumulate

(MMA)
Volta –

4x4
matrix
1 cycle

– –
A warp of threads

perform 16x16
matrix multiply

Load Followed
by Store (LDST) Kepler 331 - 382 – – –

4 Bytes load followed
by 4 Bytes store

on global memory

Register File
(RF)

Kepler
and

Volta
–

255 loads followed
by 255 stores

the integer (INT32), double (FP64), float (FP32), and half (FP16) versions of the micro-

benchmarks on the Volta. The number of instantiated threads is tuned to occupy all the

GPU’s available functional units (3,840 threads for Kepler, 20,480 threads for Volta). The

micro-benchmarks can be easily adaptable to any GPU.

3.4 Beam Experiment Setup

Beam experiments are the most effective way to measure the Failure In Time (FIT)

rate of code running on a computing device. By dividing the number of observed errors

by the received particles fluence η (neutrons/cm2) it is possible to calculate the cross

section:

σ[cm2] =
#errors

η
(3.1)

The fluence is obtained by multiplying the average neutron flux provided by the

test facility (neutrons/(cm2 · s) by the effective execution time. The cross-section (cm2)

represents the circuit area that will generate an output error if hit by a particle. The higher
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the number of computation resources, the higher the cross-section, and the higher the

probability for an impinging particle to generate an error.

The experiments are performed at the ChipIR facility of the Rutherford Appleton

Laboratory, UK, and at the LANSCE facility of the Los Alamos National Laboratory,

USA. Figure 3.2 shows the setup mounted in the ChipIR facility. Both facilities deliver

a beam of neutrons with a spectrum of energies that resembles the atmospheric neutron

one (CAZZANIGA; FROST, 2018), the probability of generating an error of a neutron

produced in the experimental facilities is similar to a terrestrial neutron one.

Figure 3.2: Beam experiment setup at ChipIR

The available neutron flux was about 3.5 × 106n/(cm2/s), ∼8 orders of magni-

tude higher than the terrestrial flux (13neutrons/(cm2 · h) at sea level (JEDEC, 2006)).

Since the terrestrial neutron flux is low, it is improbable to see more than a single corrup-

tion during program execution in a realistic application. Thus, the experiments have been

carefully designed to maintain this property (observed error rates were lower than 1 error

per 1,000 executions). Experimental data can then be scaled to the natural radioactive en-

vironment without introducing artifacts. At least ten codes and seven micro-benchmarks

have been tested per device. Each code was tested for at least 72 effective hours (i.e.,

the actual time the device was running the tested code, without considering the setup,

result check, initialization, and recovery from the crash time). When scaled to the natural

exposure, the more than 1,224 hours of the test account for more than 13 million years.

When multiplied with the expected neutron flux at which the device will operate

(13 × 109neutrons/(cm2 · h) at sea level), the cross-section estimates the realistic error

rate, expressed in FIT, i.e., errors per 109 hours of operation. Not to reveal business-
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sensitive data, this work reports the FIT rate normalized by a constant factor of β, as

shown in equation 3.2.

FITnorm =
σ × 13× 109

β
(3.2)

It is worth noting that neither the cross-section nor the FIT rates depend on the

execution time, but only on the number of resources used for computation, their sensi-

tivity (probability for the fault to occur), and criticality (probability for the fault in the

resource to affect the calculation). If the same amount of memory is exposed for a given

time t or 2 × t its FIT rate would not change. In fact, in 2 × t it is expected twice the

error and twice the neutrons (i.e., twice the fluence). Similarly, under the correct assump-

tion that at most one fault can affect the GPU during code execution (the natural flux is

very low), executing x sequential ADDs or 2 × x sequential ADDs does not change the

probability of having one ADD corrupted by neutrons. However, what can change is the

probability of the error in one of the ADDs to propagate to the output of the sequence of

the operations (i.e., the AVF). If the additional x ADDs are executed in parallel with the

original sequence, the FIT rate is expected to double (same execution time, same fluence,

but doubled error rate). These observations in Section 6.2 are used to account for GPU

parallelism management in the FIT rate prediction based on fault injection. Code modifi-

cations that improve or reduce performances and change the number of resources or their

criticality are also expected to impact the FIT rate.

3.5 Fault Simulation Frameworks

For this work, the fault injection is performed in two levels, at RTL and Software

levels. Both methodologies are described in this section.

3.5.1 Software level fault injection

Fault simulation can help us understand how the fault propagates and which re-

source is more critical for the whole application. Fault simulation provides the Architec-

tural Vulnerability Factor (AVF) (MUKHERJEE et al., 2003) of the hardware components

where faults are injected, which expresses the probability of a fault leading to a failure.

The AVF identifies which resource, once corrupted, is more likely to affect the GPU com-
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putation.

SASSIFI and NVBitFI frameworks are used in this work, which can inject tran-

sient errors in the GPU’s Instruction Set Architecture (ISA) visible states, general-purpose

registers, and predicate registers, condition instructions, and arithmetic instructions (Hari

et al., 2017; TSAI et al., 2021). SASSIFI does not support ISAs newer than Maxwell,

while NVBitFI works for any NVIDIA GPU, including Volta. SASSIFI and NVBitFI are

the most suitable fault simulators for this work since it is possible to instruct the kernels at

the Source And Assembly (SASS) level. Other fault injectors such as GPUQin, CAROL-

FI (OLIVEIRA et al., 2017a), Kayotee (JHA et al., 2019), GPGPU-SIM (FANG et al.,

2014), neither allow to inject faults at the SASS level, nor they offer support for Kepler

and Volta architectures. At least 4,000 single bit flips faults are simulated per code on

NVBitIF, and at least 10,000 bit flips faults per application on SASSIFI (1,000 for each

instruction kind), for a total of more than 50,000 faults per ISA, ensuring 95% confidence

intervals to be lower than 5% (Hari et al., 2017).

SASSIFI is an older fault simulator than NVBitFI. SASSIFI has 14 injection sites

for the Instruction Output Value model (IOV), while NVBitFI has only four injection sites

for IOV. SASSIFI can inject faults on the output of the floating-point, integer, load, and

branch instructions. SASSIFI also inject faults in instructions that write in the predicate

registers, the register file, and the instruction address. In contrast, NVBitFI can inject

faults only at double, float, load instructions, and instructions that write in the general-

purpose registers. That is, SASSIFI is likely to be more refined than NVBitFI. The dif-

ferences between the fault injectors are also expected to lead to differences in the global

AVF, as shown in Chapter 4.

Unfortunately, neither SASSIFI nor NVBitFI (nor any other fault injector) sup-

ports fault injection on NVIDIA proprietary libraries such as cuDNN and CUBLAS on

Kepler. However, NVBitFI can inject faults in proprietary libraries on Volta. For the

NVIDIA libraries, then, the AVF measured with NVBitFI on Volta was chosen to calcu-

late the AVF for the Kepler prediction. Using NVBitFI on Volta is a simplification. As

shown in Chapter 4, on the codes that do not use proprietary libraries executed on Kepler,

the AVF measured with SASSIFI is 21% smaller than NVBitFI, on average. As shown in

Chapter 6, this still allows the accurate prediction of the SDC FIT rates.
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3.5.2 RTL level fault injection

At Register-Transfer Level (RTL) this work uses FlexGripPlus fault injec-

tor (CONDIA et al., 2020). FlexGripPlus is an open-source VHDL-based GPU model,

which implements NVIDIA Tesla micro-architecture (G80) (Lindholm et al., 2008).

NVIDIA proposed tesla micro-architecture in 2006. However, FlexGripPlus’s most repre-

sentative modules are very similar to current commercial CUDA devices. This model can

use three different configurations (8, 16, or 32) per Streaming Multiprocessor, selected

before simulation or synthesis.

A custom RT-level framework (Du et al., 2019) performs the fault injection

through a general controller that manages the ModelSim environment, which hosts Flex-

GripPlus. According to a faults list, the controller injects one fault (as a single transient)

in the targeted GPU module. For the analysis presented in this work, errors are injected

in: the warps scheduler, the pipeline registers, the Integer Functional Units (INT FUs),

the Single Precision Floating Point FUs (FP32 FUs), the Special FUs (SFUs) used for

transcendental functions, and the control logic (see Figure 7.1).

The RTL fault injection does not consider faults in the main memory structures

(caches, register file, shared memory). Table 3.4 lists the characterized modules, their

size, and the micro-instructions that use each module. Memory errors are not considered

for two reasons: (1) the syndrome of faults in memory is already established (single

or double bit-flips (BAUMANN, 2005)) and does not need an RT-level injection to be

characterized. (2) these resources are easily protected with ECC, making their reliability

evaluation less attractive. Overall, this study characterization covers 84% of the resources

(flip flops) involved in the computation of the characterized micro-instructions, excluding

memories (24% if considering ECC-protected memories).

Table 3.4: Evaluated modules, sizes and instructions used per module
Module RTL Size (Flip-Flops) Type Instructions
FP32 4,451 Execution/Data FADD, FMUL, FFMA
INT 1,542 Execution/Data IADD, IMUL, IMAD
SFU 3,231 Execution/Data FSIN, FEXP

SFU controller 190 Control FSIN, FEXP
Scheduler controller 3,358 Control ALL
Pipeline Registers 10,949 Control/Data ALL
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4 GPU RELIABILITY EVALUATION

This Chapter shows the error rate for Convolutional Neural Networks (CNNs) and

a set of High Performance Computing (HPC) codes for two NVIDIA architectures. Up to

15 applications are evaluated, providing an overview of the reliability of the GPUs. Then,

the Architecture Vulnerability Factor (AVF) is shown for all applications evaluated in the

beam.

4.1 Evaluating CNNs reliability

The most realist way to evaluate CNNs reliability is through beam experiments.

Beam experiment setup allows evaluating the realistic radiation-induced error rate of the

CNNs. Additionally, this work will draw general conclusions on the reliability of the

tested neural networks.

Figure 4.1 shows the normalized FIT rate of YOLOv1, YOLOv3, Faster R-CNN,

and Resnet executed on a Kepler and Volta GPUs (the later only YOLOv3 is evaluated).

All reported values are relative to the SDC FIT rate for YOLOv1 ECC ON. The reported

results are normalized not to reveal business-sensitive information. Even if the data is

normalized, it still allows a direct comparison among configurations.

The results are presented for Silent Data Corruption (SDC) and Detected Unre-

coverable Error (DUE) FIT rate. The SDC FIT is divided into Tolerable errors (i.e.,

that do not impact classification/detection) and Critical errors (i.e., that impact classifi-

cation/detection). The output of YOLO, Faster R-CNN, and ResNet is a vector of ten-

sors containing the probability of eligible objects. Objects identified with a sufficiently

high probability are classified. In YOLO and Faster R-CNN, a tensor also contains the

coordinates of a BB (i.e., potential object), which is then used to describe the detected

object. SDCs that modify the probability such that they do not impact an object’s rank,

or change the coordinates of a low-probability BB for a detection framework, are not

considered critical. When radiation significantly impacts classification or detection, the

Precision and Recall (FAWCETT, 2006) of the corrupted output are measured. Recall is

the fraction of existing objects that were detected (or classified), even in the event of a

radiation-induced error (Recall < 1 means that some objects were not detected). Pre-

cision measures the fraction of the detections produced by the classifier that relate to an

existing object (Precision < 1 means that some additional objects were detected). When



42

the Precision or Recall is different from 1, then the output is considered a critical error.

Figure 4.1: Normalized FIT rates for CNNs on Kepler and Volta architectures. FYOLOv1,
FFaster R-CNN, and FResnet run on Kepler with ECC OFF and ECC ON configurations.
HYOLOv3 and FYOLOv3 run only on Volta with ECC.
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Experimental data is presented with a 95% confidence interval. DUEs are more

probable than SDCs for all of the tested configurations, this result is in contrast to

the trends observed for HPC applications, as presented in prior work (Goncalves de

Oliveira et al., 2016; TIWARI et al., 2015), where the Crash rate is lower than the SDC

rate. Neural networks have already been demonstrated to be intrinsically resilient to

SDCs (SEQUIN; CLAY, 1990; PROTZEL; PALUMBO; ARRAS, 1993; TCHERNEV;

MULVANEY; PHATAK, 2005). Even if one or more neurons are compromised, a neural

network could potentially provide a correct output.

DUEs, on the contrary, have a component that depends on the GPU control logic

sensitivity, and on the CPU-GPU context change, which does not benefit from the SDC

tolerance of neural networks. CNNs kernels have a high level of reuse that requires sev-

eral device-host synchronizations. A transient fault during those synchronizations could

potentially result in a GPU crash. As a result, while a significant portion of SDCs could be

masked, crashes could still undermine the device reliability. For the same reason, Faster

R-CNN and Resnet, which requires a much larger number of CPU-GPU synchronizations,

shows up to 5× higher Crash rate than YOLO.

ECC has the drawback of increasing the DUE rate for Faster R-CNN, Resnet, and

YOLO. The ECC Crash rate increases up to 30%. ECC is able to correct one-bit flip in
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the memories, and when a double bit flip is detected, it throws a system exception. As

CNNs use lots of memory to perform classification/detection, multiple errors on memo-

ries are expected to happen, resulting in a higher DUE rate when ECC is enabled. The

experimental data attests that for YOLO, Faster R-CNN, and Resnet, radiation-induced

Crashes are a severe limitation of GPU reliability. A detection system that uses GPUs in

vehicles must have a watchdog or other fast Crash detection system to ensure availability

and avoid missed deadlines. Even if crashes are more frequent than SDCs, they could be

considered less critical since crashes could be, at least, detected (PATTABIRAMAN et

al., 2006). However, the system must be able to recover before causing any harm to the

environment (CANDEA; FOX, 2001).

SDC trends across GPUs are shown in Figure 4.1. The SDC rates are related to

framework complexity and accuracy. The complex structure of Faster R-CNN and the

deeper network of Resnet increases their SDC rate as compared to YOLO, more than

10x higher for Resnet and Faster R-CNN. Figure 4.1 shows that Resnet has a higher FIT

rate than YOLO (i.e., v1 and v3), though the rate is similar when compared to Faster

R-CNN. The higher efficiency and simpler convolution are insufficient to compensate for

the higher error rate associated with a deeper neural network. The results suggest that the

higher complexity of the CNN, unfortunately, the more likely that output errors will be

seen. Hardening solutions, as presented later in section 5.2, are then mandatory for safety-

critical applications. On the Kepler, the execution time for Faster R-CNN is 2.7x longer

than for YOLOv1. For Faster R-CNN, due to the limited performance, data remains in

caches and registers longer. This data is exposed and critical since it is likely to be used

in future operations.

For all the tested CNNs, a significant number of the radiation-induced errors that

propagate to the output are not considered critical, as they do not impact the detection

(see Figure 4.1). The main reasons Critical SDCs occur less often versus Tolerable SDCs

are: (1) some SDCs modify the object probabilities in such a way that the ranking is

unaffected, (2) Not all output data will be used for detection, and (3) even if an identified

object is corrupted, its shape could be sufficiently similar to the expected one, and thus, be

correctly detected. Additionally, all CNN operations use floating point operands. Some

of those floats represent the object coordinates, which need to be cast into integers. Errors

affecting the low-order bit positions are not expected to impact detection.

For object detection, the percentage of critical SDCs is much lower for Faster R-

CNN than for YOLOv1, independent of the architecture. For YOLOv1, the percentage
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of critical SDCs is 8% for ECC OFF, 61% for the Kepler with ECC ON. For Faster R-

CNN, the critical SDCs are 5% for ECC OFF and 25% for the Kepler with ECC ON. The

differences in the critical errors percentages between the CNNs come from the detection

mechanism and object representation used in Faster R-CNN. Several anchor boxes are

used to define an object, and corruption in one of the coordinates of a vertex does not

significantly impact the detected object shape.

Figure 4.1 shows the error rates for the Kepler with ECC enabled. ECC can reduce

the error rate, but the proportion of critical errors is not reduced, which is a symptom of

the poor resiliency provided by ECC. Based on the GPU-Qin analysis in (LI et al., 2016),

it is known that ECC does not mask all the faults as the error in computing elements could

propagate to the output. The beam tests provide, additionally, the realistic probability of

experiencing an SDC when ECC is enabled or not, which is the only way to evaluate the

effectiveness of ECC. A novel and worrying insight from beam tests is that ECC does not

reduce (or reduce only slightly) CNNs Critical SDC rate.

The SDC rate for YOLOv1, Faster R-CNN, and Resnet on the ECC ON is 21%,

14% and 22% the SDC rate seen for ECC OFF, respectively. ECC is not as effective on

these workloads as it is for other codes, mainly because neural networks are intrinsically

resilient to data errors. Similar to results from previous studies (Goncalves de Oliveira et

al., 2016), shows that ECC reduces the GEMM SDC rate by about one order of magnitude.

ECC is less efficient in protecting a CNN, as some of the SDCs that are masked by ECC

would not have affected the CNN execution. Valuable insight from the above results

is that ECC does not reduce the number of critical SDCs for YOLO, Faster R-CNN or

Resnet.

The portion of SDCs that impact detection is less than 8% for ECC OFF Kepler

and can be more than 60% in the ECC-protected Kepler. This confirms that most of the

critical SDCs come from faults outside of the main memory structures. The data strongly

suggests that faults in caches or registers are not as severe for CNNs, as compared to

corruptions in logic, the scheduler, or flip-flops. ECC reduces the absolute number of

SDCs but has the side effect of increasing the portion of multiple errors, which are more

likely to propagate through CNN layers and affect detection. Additionally, the average

difference between a corrupted element’s value and the expected value is higher when

ECC is enabled. It is then more likely for the faults not masked by ECC to significantly

impact the correctness of CNN.

On Volta GPU, YOLOv3 half precision version has lower FIT than float precision
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one. The amount of per-core resources required to perform the operations depends on

the chosen data precision, single precision use 152 registers per kernel, and half 126

registers. The half precision performance masks the problems of having fewer bits for data

representation. Namely, more executions will finish before YOLOv3 on half precision

experience a failure. Then the FIT rate decrease as the precision decrease.

The DUE rate grows as the data representation increase. A CNN has lots of PCI-

express bus interactions, like CPU-GPU communication. Data movement through the

PCI-express bus has been proved to generate more DUEs than SDCs (FRATIN et al.,

2018). As float needs a higher amount of memory transfer, it is expected as a larger rep-

resentation, the more significant is the DUE rate for YOLOv3. Comparing half and single

versions of YOLOv3 the size of memory grows 2x. As stated in previous work (FRATIN

et al., 2018), the DUE FIT is also influenced by the number of control-flow, branch oper-

ations, ECC, and GPU-CPU communication. Consequently, object detection CNNs have

a much higher probability of experiencing DUEs when compared to arithmetic codes.

Figure 4.1 also shows the percentage of SDCs for YOLOv3 that are tolerable,

that change detection. On beam experiments, the percentage of critical errors is similar

comparing the two data types. It is worth noting that detection errors are less dependent

on data type as coordinates are expressed integer values and, thus, are not influenced by

the number of corrupted digits in the mantissa. Since on object detection, the coordinates

are integers, an error that corrupts the last representation of the float could be masked by

the rounding process. Section 4.1 shows that critical errors depend on which layer and

the weight value of the neural network modified by the fault.

4.2 GPU FIT rate

In order to generalize the reliability analysis, this work goes beyond the study of

the CNNs’ reliability and evaluates a set of High Performance Computing (HPC) codes.

Thus, the following section presents an extensive evaluation of 11 applications on two

NVIDIA GPUs. This work first characterizes the Failure In Time (FIT) rate for the tested

codes, then for these codes, the Architecture Vulnerability Factor (AVF) is presented.

Figure 4.2 shows the experimentally measured SDC and DUE normalized FIT

rates for the GPUs executing the codes with ECC OFF and ON. Normalized values are

reported to not reveal business-sensitive data. Values are reported with 95% confidence

intervals considering a Poisson distribution.
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Figure 4.2: Normalized FIT rates for Kepler and Volta. Not all configurations could be
tested due to beam time limitations.
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Not surprisingly, the ECC reduces the SDC FIT rate significantly. For Kepler, the

average SDC FIT rate with ECC OFF is up to 21× higher than with ECC ON. For Volta,

it is not possible to test the same codes with ECC enabled and disabled for beam time

restrictions. The DUE FIT rate increases of up to 5×when ECC is ON. The DUE increase

is exacerbated for NW and FGEMM, because of the high number of kernel calls and

access to the main memory: NW is a component labeling algorithm that launches many

kernels concurrently to process different parts of the input simultaneously and FGEMM

uses lots of global memory and highly utilizes the memory bandwidth.

Matrix multiplication (either MxM or GEMM) is the code with the highest SDC

FIT rate for Kepler and Volta. The SDC FIT rate of matrix multiplication is particularly

significant when ECC is OFF (2 to 3× higher than the other codes). Matrix multiplication

heavily relies on FMA operation which, according to the data in Section 6.3, is among the

most vulnerable functional units. Moreover, as the code is easily parallelizable, most GPU

functional units are used for computation, which exacerbates the probability of faults.

Additionally, as shown in Figure 4.3, matrix multiplication has the highest AVF. As a

result, the higher FIT rate of matrix multiplication is caused by the use of highly sensitive

functional units, the parallel use of most of the available units in parallel, and the high

probability for a fault in one unit to affect the result.

In CNNs, as YOLOV2 and YOLOV3, more than 75% of the operations are matrix

multiplication related (REDMON; FARHADI, 2016). CNNs share with matrix multipli-
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cation the problem of using a high amount of the most sensitive functional units. However,

as shown in Figure 4.3, CNN’s AVF is low, reducing the probability of the (likely) faults

to propagate to the output.

For the Volta GPU, the focus of this analysis is comparing the FIT rates of codes

executed with different precisions (double, single, and half). For all the codes, indepen-

dently on the ECC status, increasing the precision increases the code FIT rate. A higher

precision functional unit has a higher area and, thus, a higher probability of being hit by

a neutron (see Figure 6.1). When ECC is disabled, the trend is exacerbated by the fact

that higher precision implies a higher number of bits to store data, and this has a linear

dependence with the FIT rate.

4.3 Architectural Vulnerability Factor

Figure 4.3 shows the AVF for all the codes considered. On Kepler, faults with

both SASSIFI and NVBitFI are injected, while on Volta, faults can be injected only with

NVBitFI. It is reasonable to recall that a higher AVF (probability for a fault to affect

computation) does not necessarily imply a higher error rate.

Figure 4.3: Architectural Vulnerability Factor for Kepler on the left (using SASSIFI and
NVBitFI) and Volta on the right (NVBitFI).
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Comparing the SASSIFI and NVBitFI results on Kepler in Figure 4.3, it seems

that AVF depends on the fault injector. For most of the benchmarks, the AVF is higher

on NVBitFI than on SASSIFI. On average, NVBitFI provides an 18% higher AVF than

SASSIFI. The differences between SASSIFI and NVBitFI on Kepler is particularly re-

markable for CCL (2.6×), FGaussian (1.9×), Quicksort (1.4×), and FHotspot (0.4×).

SASSIFI is older than NVBitFI and supports CUDA 7.0, while NVBitFI supports CUDA

10.1 and higher versions. As the NVIDIA compiler has been improved throughout the
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versions, even for older architectures, the generated SASS code changes with the com-

piler versions when compiled with default options. NVIDIA compiler has two main parts.

The front-end compiler takes the code written in a high-level language (e.g., CUDA) and

generates e intermediate code in a virtual ISA called parallel thread execution (PTX).

The back-end compiler takes the target-independent PTX code and applies many code

optimizations (e.g., unrolling, loop-invariant code motion, dead code elimination, register

allocation) before generating SASS code, which can run on the target GPU. Significant

updates are often made to the front-end and back-end compiler infrastructure to support

new features and future target SASS versions. As a result, while both fault injectors sim-

ilarly instrument the SASS code, the generated code can be different due to the compiler

version, with a significant impact on the code AVF.

One of the prior studies conducted on CPUs concludes that Intermediate

Representation-level fault injections are as accurate as assembly-level fault injections for

SDCs across different optimization levels (Palazzi et al., 2019). Given that the back-end

compiler performs many optimizations, the combinations (and the exact order of which)

can significantly change the sequence of the SASS instructions that execute on the GPU.

Such a conclusion will likely not hold for GPUs (a detailed analysis is presented at Sec-

tion 6.5). FGaussian, FLUD, FMxM, and Lava have the highest AVF on Kepler, for

both SASSIFI and NVBitFI. All these benchmarks are float-based applications (see Fig-

ure 3.1).

Figure 4.3 shows the AVF for Volta obtained with NVBitFI, focusing on mixed-

precision hardware. Half precision fault injection is not shown because, until the moment

of this work, NVBitFI does not offer support to half instructions. As FHotspot, FLava,

and FMxM execute the same kernel for all precisions, their SDC AVF is independent of

data precision (the variation between double and float is lower than 4%).

GEMM (and thus YOLO that relies on GEMM for convolution) executes a dif-

ferent kernel for each input and precision configuration. For each GEMM configuration,

the data is organized to fit each CUDA group (block, warp, and threads). For each group

level, there is a different memory tile configuration to better use the caches, maximiz-

ing the pressure in the memory and the functional units. Consequently, different kernels

will generate different instrumentation, which will impact the AVF. As shown in Fig-

ure 4.3, FGEMM has 30% higher AVF than DGEMM. YOLOv3 is an improved version

of YOLOv2, being more accurate and complex (YOLOv3 has 113 layers, YOLOv2 only

32). On CNNs, some faults that propagate to the output are not considered errors since
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they do not modify the classification result. Thus, the framework’s complexity will impact

the AVF, as a less precise CNN will tolerate more incorrect results than a more precise

one. Faults in YOLOv2 are then less likely to affect the output as it is less accurate than

YOLOv3.

4.4 Discussion on GPU reliability

The FIT rates of 11 codes obtained from beam experiments have been presented,

plus an in-depth reliability evaluation of CNNs is shown. The results from beam exper-

iments are complemented by two fault injection frameworks (SASSIFI and NVBitFI),

using two NVIDIA GPUs (Kepler and Volta). All the data presented in this Chapter gives

a strong motivation and background to paver the analysis that will be considered in the

following Chapters. It is worth noting that the FIT and AVF evaluation are only the first

steps to make conclusions on GPU reliability. The following Chapters will present other

concepts and propose new solutions to improve reliability at the software level.
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5 HARDENING TECHNIQUES

This chapter presents the hardening techniques proposed to improve the fault-

tolerance on GPUs. At first, this chapter gives a background on existing GPU software

and hardware fault tolerance methods. Then, the hardening for Convolutional Neural

Networks (CNNs) is shown. The software level fault tolerance is compared with available

Error Correction Code (ECC) for GPUs.

This chapter also presents a more generic software-level fault tolerance to appli-

cations on mixed-precision GPUs. The proposed technique, Reduced Precision Duplica-

tion With Comparison (RP-DWC), is a new way to implement Double Modular Redun-

dancy (DMR) for mixed-precision GPU architectures.

5.1 Available hardening techniques for GPUs

At different levels of abstractions, several strategies have been proposed to miti-

gate the effects of transient faults. Memory arrays can be efficiently protected with Error

Correcting Codes (ECC), which have already been shown to improve the device reliabil-

ity significantly (BAUMANN, 2005). High-end GPUs protect their main storage struc-

tures with Single Error Correction Double Error Detection (SECDED) ECC. The memory

hierarchy includes caches, register files, and global and shared memory. Some major re-

sources are left uncovered, including flip-flops in pipeline queues, logic gates, block/warp

schedulers, instruction dispatch units, and the interconnect network. ECC has been shown

to reduce the error rate by one order of magnitude for HPC applications executed on a

GPU but increases the number of crashes (Goncalves de Oliveira et al., 2016). There are

several ways to mitigate SDCs in software, such as using code replication (WADDEN et

al., 2014b). Unfortunately, while duplication in GPUs has been demonstrated to be even

more effective than ECC (Goncalves de Oliveira et al., 2016), in real-time systems that

come with strict deadlines, the overhead associated with duplication is unacceptable.

On the software level, the computation can be protected using Algorithm-Based

Fault Tolerance (ABFT) approaches (HUANG; ABRAHAM, 1984; Chen; Li; Chen,

2016; RECH et al., 2013; BRAUN; HALDER; WUNDERLICH, 2014), which are gen-

erally efficient but limited to a subset of applications only, such as matrix multiplication

and FFT. A more generic approach for software fault tolerance is Triple Modular Redun-

dancy (TMR), which consists of replicating the modules of a system three times. Then,
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in the end, a comparison between the modules’ results is made, and the fault correction is

done based on the values of two modules that are equal. The TMR has demonstrated the

most feasible way to perform error detection and correction (Lyons; Vanderkulk, 1962;

Chen; Li; Chen, 2016). However, TMR costs in terms of area, power consumption, and

performance are very high (Kastensmidt et al., 2005), in some cases, much more than

3× (Chen; Li; Chen, 2016).

In contrast, when it comes to computation, one of the most effective solutions to

detect and mitigate transient faults is duplication or, in general, replication. By comparing

the output of two independent copies of an instruction, it is possible to detect most of

the transient faults (ZIEGLER; PUCHNER, 2010). Duplication can be implemented in

software or hardware, in time (by executing the duplicated operations sequentially), or in

space (by running the duplicated operations in parallel).

Instruction Duplication With Comparison (DWC), a software-level approach, can

be easily implemented in highly parallel architectures such as GPUs. As threads are

executed in separated computing units, it is improbable for a fault in a copy to affect

also the duplicated one. Thus, as demonstrated in (OLIVEIRA et al., 2014; WADDEN et

al., 2014b; MAHMOUD et al., 2018), DWC in GPUs can detect more than 80% of the

transient faults. However, errors in shared resources (like caches, if unprotected) or in

the scheduler can potentially affect multiple threads and, thus, remain undetected. While

being very useful, DWC is far from being efficient as the introduced overhead in terms

of power consumption, silicon area, or execution time can be too high (costing at least

100% more than the unhardened version). As a result, DWC is impractical for HPC and

real-time systems such as autonomous vehicles.

Recent work has proposed solutions to reduce the cost of DWC in GPUs signif-

icantly. With redundant multithreading, for a particular set of applications, a slowdown

of less than 10% can be achieved but, for others, because of the cost of communication,

the overhead is still higher than 2x (WADDEN et al., 2014b). Software-managed Instruc-

tion Replication for GPUs (SInRG), on the contrary, can reach an overhead that is, on the

average, 69% the unhardened code execution time (MAHMOUD et al., 2018).

All the efficient DWC approaches proposed to date work under the assumption

that sufficient computing resources are available to run the duplicated copy in parallel with

the original one. Otherwise, the DWC overhead would still be forced to be at least 2x.

This work proposes to leverage the concept of approximate computing and the available

resources in modern mixed-precision architecture to reduce the overhead of DWC even
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further.

Many previous works have investigated computations in half- or single-precision

floating-point as an effective way of approximating an application and improving both

performance and energy efficiency (LAM et al., 2013; GRAND; GöTZ; WALKER, 2013).

Past work on approximate computing and mixed-precision architectures have demon-

strated the feasibility of exploiting the inherent error-tolerance of particular computational

patterns for improved performance or energy efficiency. In this work, the available forms

of controlled approximation to implement Instruction Reduced-Precision Duplicate with

Comparison (RP-DWC) is exploited, amortizing the overheads traditionally associated

with duplication.

5.2 Fault Tolerance for CNNs

This work advances the knowledge of GPU reliability by characterizing how mi-

croarchitecture vulnerabilities in a GPU can undermine a CNN’s reliability. Most previ-

ous works have focused on HPC application reliability on a GPU, leaving CNNs reliabil-

ity unstudied. CNNs are a class of applications of extreme importance for autonomous

vehicles, making their reliability evaluation fundamental.

Based on past analysis (LI et al., 2016), ECC does not mask all the faults as an

error in computing elements could propagate to the output. The beam tests provide the

realistic probability of experiencing an SDC when ECC is enabled or not, which is the

only way to evaluate ECC’s effectiveness. Not all the errors affect the CNNs classifi-

cation/detection, so they are considered Tolerable errors. Otherwise, errors that modify

the CNN’s output would be characterized as Critical errors. As shown in Section 2.3.1

and detailed better in (Santos et al., 2019), a novel and worrying insight derived from the

beam tests is that ECC does not reduce (or reduce only slightly) CNNs Critical SDC rate.

So the following two Sections, 5.2.1 and 5.2.2, detail improvements on CNN’s reliability

by using software based fault tolerance.

5.2.1 GEMM ABFT

Figure 5.1 shows the percentage of corrupted executions that are affected by sin-

gle, line (i.e., multiple corrupted elements on the same row/column of the output ma-
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trix), rectangle (four or more elements distributed in a rectangle/square), and randomly

distributed errors (random errors are grouped single errors that do not fit in the other

categories). The result also shows the spatial error distributions for 0.5% and 5% ac-

ceptable error margins. When a faulty execution has all of its corrupted elements inside

the tolerance margin are tagged as Potentially Masked. In the vast majority of cases,

GPU corruption affects more than a single output element. It is worth noting that mul-

tiple corrupted elements are not necessarily caused by multiple impinging particles but

instead inherent in the GPU computation to spread low-level transient faults across multi-

ple output elements. Considering multiple corrupted elements, the reliability of the neural

network is going to be impacted. Interestingly, most of the potentially masked executions

are those affected by a single corrupted element, while the number of rectangle errors

remains almost unchanged. It is possible to conclude that those errors that spread through

the GPU microarchitecture and the GEMM program are the same ones that have a greater

difference from the expected value.

Figure 5.1: SDCs spatial distribution in GEMM. All SDCs are extracted on beam experi-
ments.
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Rectangle errors are potentially the most severe for CNNs. Rectangle errors in

GEMM are caused by faults that impact the scheduling of the execution of multiple

threads in a Streaming Multiprocessor (SM). GEMM increased execution efficiency if

compared to a naive matrix multiplication implementation since it can divide the input

matrices into chunks that fit nicely in the cache of a SM, reducing memory latency. If

a fault can cause a thread to be incorrectly assigned or scheduled to a SM, or if some
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threads fail to synchronize, the whole SM output matrix portion is likely to be corrupted,

leading to a rectangular error. Errors in memory elements protected by ECC (e.g., reg-

isters and caches) have been reported to manifest into either single corrupted element or

line errors (RECH et al., 2013). When ECC is turned ON, single and line errors (which

are less critical for CNNs) are corrected, but all the other errors (including rectangular

errors) are not corrected. As a result, the percentage of rectangular errors increases when

ECC is enabled.

Figure 5.1 helps to explain why ECC is not very effective in reducing SDCs and

most critical SDCs in GEMM, consequently on CNNs. ECC reduces the absolute number

of SDCs but has the side effect of increasing the portion of rectangle errors, which are

more likely to propagate through CNN layers and affect detection. Additionally, the aver-

age difference between a corrupted element’s value and the expected value is higher when

ECC is enabled. It is then more likely for the faults not masked by ECC to significantly

impact the correctness of CNN.

Since ECC does not seem to be effective for CNNs, this work leverages ABFT to

protect YOLOv1, protecting matrix multiplication operations, as described by Huang et

al. (HUANG; ABRAHAM, 1984), and extended by Rech et al. (RECH et al., 2013), to

correct line and random errors in O(N) time. For FFT-based convolutions, a promising

ABFT able to detect more than 80% of faults has been described by Pilla et al. (PILLA

et al., 2014). Unfortunately, it is not possible to implement and evaluate ABFT on Faster

R-CNN and Resnet as they are built with NVIDIA proprietary cuDNN libraries, based on

Caffe and Torch, respectively. Nevertheless, the GEMM core used to perform convolution

in Faster R-CNN and Resnet is the same algorithm used in YOLOv1. The portion of

SDCs affecting GEMM that ABFT can correct will be very similar between the three

frameworks. Since the percentage of GEMM operations is higher in Faster R-CNN and

Resnet (82% and 80%, respectively) than in YOLOv1 (67%), ABFT could even be more

effective for the former frameworks.

It has been decided not to add a dimension to the input matrices for the checksum

to adapt ABFT for the CNNs, but instead to substitute the last row of the first input matrix

and the last column of the second input matrix with column/row checksums. The GEMM

kernels are tuned to fully use caches and registers. Adding an extra dimension would com-

promise execution time and significantly increase data movement and memory latency.

This would result in a different behavior under radiation not solely related to ABFT. It is

worth noting that the evicted row/column does not significantly reduce YOLOv1 detec-
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tion capabilities (differences from the ECC OFF and ABFT protected versions are lower

than 10%). It is possible to believe that performing the training of YOLOv1 with the

evicted rows/columns would reduce the detection differences. To focus on the efficacy of

the hardening strategy, the same weights are used (i.e., the same non-evicted data) to keep

the protected and unprotected versions similar.

The figure 5.1a shows the percentages of the detection for each fault tolerance

tested on YOLOv1 running on NVIDIA Kepler GPU. Figure 5.1a shows the percentage

of Critical and Tolerable SDCs produced for each technique. For comparison, the ECC

detection efficacy is extracted using the relative difference between the ECC OFF version

vs. the ECC ON version of YOLOv1. That is, figure 5.1a the ECC percentage of detection

is the relative difference between the execution under beam with ECC turned on vs. ECC

turned off. The ABFT procedure does not significantly affect YOLOv1’s SDCs or Crash

error rate.

Figure 5.2: Figure 5.1a shows the Detected vs Undetected errors for the three tested fault
tolerance for YOLOv1. Figure 5.1b shows the Critical vs Tolerable of undected SDCs on
YOLOv1 coparing the fault tolerance approaches
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It is clear that ABFT can correct about 60% of the SDCs. If considering only

the critical SDCs, an ABFT-protected YOLOv1 is more resilient than an ECC-protected

version. This is because ABFT corrects all the detected errors that affect GEMM compu-

tation. As shown in Figure 5.1, 80% to 90% of the observed errors for GEMM are single,

line, and random errors, which ABFT can correct.

As noted earlier, on GPUs, the ABFT code is run in parallel and executed in linear

time. However, since ABFT performs multiplication/accumulation, it can be implemented

using the same hardware used for matrix multiplication. That is, almost no hardware

changes are required to implement the proposed hardening. ECC, on the contrary, has a

logarithmic memory cost.
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5.2.2 Reliable Max-pooling

For this research, a utility that captures all of the outputs from each YOLOv1 layer

has been created to track faults propagation through the layers. This feature adds a small

execution overhead but does not modify the execution flow. When a fault is injected, each

layer’s data is compared with the fault-free data. Then it is possible to identify the layer

in which the fault occurred and how the fault modifies the data matrix in each layer. It can

also track how that fault propagates through the CNN pipeline until the fault is masked or

reaches a visible program output.

Next, based on the results, this work proposes to re-design the max pool layers

to detect, and possibly correct, faults. Figure 5.3 shows the percentage of the corrupted

elements across the CNN. As shown in Figure 5.3, errors spread quickly in a CNN. In-

jections leading to SDCs or Critical SDCs tend to have all the last layer’s output elements

corrupted. Alternatively, injections that are masked corrupt less than half of the elements

of the CNN output. To make CNN execution more reliable, it is fundamental to promptly

detect errors to prevent errors from propagating and reaching the fully connected layers.

Figure 5.3: Average percentage of corrupted elements at the output of each layer.
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Additionally, the results show that in a fault-free execution, the maximum abso-

lute value for elements entering the maxpool layer, considering all of the frames in the

Caltech and VOC datasets, is 21.15 for 1P, 12.23 for 3P, 8.39 for 8P, and 5.72 for 19P.

These values are extremely small, considering the full range of FP16 or FP32 that can

be represented and that radiation can produce. Instead of simply propagating the element
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with the highest value, the max-pooling operation should also evaluate if the value of the

element to propagate is reasonable.

A more reliable maxpool layer should evaluate if the value of the max element is

greater than a threshold (to be conservative, the threshold is set to be 10x the max value of

a fault-free execution) and, if so, halt the processing of the current frame and move to the

next frame. This solution will detect those faults in GPUs that affect multiple elements

that, as demonstrated in Section 5.2.1, are also the faults with the greatest impact on the

final value.

It is feasible to go a step further and correct errors by designing a maxpool layer

that, when detecting a faulty max value, propagates the second greatest element, if rea-

sonable. As the maxpool layer is intrinsically imprecise, propagating the second-highest

value does not significantly undermine detection quality (RIESENHUBER; POGGIO.,

1999; SCHERER; MÜLLER; BEHNKE, 2010). The overhead introduced to implement

detection/correction is limited to 4 variables that hold the thresholds and the potential

error detection overhead, which is done in O(1). This overhead is much lower than the

overhead for ECC, which is O(log n).

Figure 5.1b reports the percentage of SDCs detected, and undetected with the

proposed max pool layer. Data was obtained with beam experiments. Smartpool detected

98% of SDCs under the beam. The most promising result is that the radiation experiments

demonstrate that only 2% of the SDCs remain undetected, which is extremely close to the

99% detection limit ASIL-D imposes for self-driving vehicles.

5.3 Reduced Precision Duplication With Comparison

The traditional Duplication With Comparison (DWC) is a generic system modular

redundancy with a result comparison at the end. RP-DWC consists of duplicating the

instruction flow for execution in a lower precision. Using a reduced precision replica to

implement DWC has three main benefits compared to a traditional DWC:

Smaller overhead. For example, an FP32 operation imposes about half the over-

heads of the equivalent FP64 operation. In the specific case of modern GPUs addressed

here, since spare mixed-precision units are available, these overheads can be reduced even

further. When no dependence between the two replicas exists (intrinsically true for any

DWC-based strategy), and the code is not shared-memory or register limited (i.e., if the

original code does not use all of the available registers or memory), then two replicas can
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be executed in parallel.

Lower probability of having the replica corrupted, as reducing precision has

the effect of reducing the code error rate (see Section 4.2). It is expected that half the

chance to have detections caused by errors in the replica when using RP-DWC concerning

traditional DWC.

Diversity of the copies, since the replicated operations will now execute in a

different precision and use different processing resources, reducing the chances for a fault

to have the same impact in both copies and remain undetected.

Next, a few definitions are shown to formalize the RP-DWC approach. For sim-

plicity and ease of understanding the implementation on modern GPUs, it is considered,

without loss of generality, an FP64 original code and an FP32 redundant copy. The same

definitions and considerations apply to other precisions.

Considering two real numbers x and y, which can be encoded either as FP64 (x64

and y64) or in FP32 (x32 and y32). Operating x and y together yields value z64 (the output

of the original application) or z32 (used only for fault-detection). Even in the absence of

faults, due to the reduced precision, z64 6= z32. RP-DWC defines a tolerable interval for

the difference between z64 and z32, named Expected Precision Loss (EPL), over which

error detection is triggered. EPL acts as a threshold for triggering fault detection.

The intrinsic difference between z64 and z32 does not allow for detecting all the

faults. However, as shown in the results, most of the faults are still detected with RP-

DWC. The undetectable faults might be tolerated as they produce an error inside the

precision difference between FP64 and FP32 operations.

5.3.1 Overview of the Implementation

This work explicitly targets modern GPU architectures to show RP-DWC imple-

mentation and leverages the mixed-precision hardware to further amortize DWC costs.

RP-DWC is a software technique to be applied at compiler time. To implement RP-

DWC, five steps must be taken. The steps must be applied to each existing full precision

instruction from the original program flow:

Step 1. Casting the inputs to Reduced Precision. The 64 bits input data (x64

and y64) needs to be reduced to 32 bits (x32 and y32) to feed the reduced-precision replica.

There are various ways to perform the cast operation. For instance, NVIDIA features four

different casts (round up, round zero, round to nearest, round towards zero) (NVIDIA,
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2017). The cast operation does not significantly impact the Expected Precision Loss, as

in the experiments performed, the differences between the casts were, on average, orders

of magnitude smaller than 1%.

The default round to nearest cast is selected. The value is taken from the input

registers of the FP64 copy, and the casted value is stored in registers that are serving as an

input of the FP32 copy. While RP-DWC does not increase the pressure on caches or main

memory, it increases the pressure on the register file, possibly increasing the overhead

if there are insufficient registers to hold the values for both the FP64 and FP32 copies.

This property is intrinsic of any software DWC for GPUs, but, as the FP32 copy requires

only half the registers compared to the FP64 copy (each FP64 register occupies two FP32

registers), RP-DWC is less likely to reach register saturation than a traditional DWC.

Additionally, as in any DWC, if the fault affects the data before replication, both copies

will receive an erroneous input, preventing detection. On GPUs that include ECC in the

main memory structures, it is convenient to assume that the probability of having such a

corruption in the input data is very low.

Step 2. Executing the original and reduced-precision instructions. The two

copies are executed, either sequentially or in parallel in case dedicated mixed-precision

hardware is available. RP-DWC for GPUs duplicates the instructions inside a thread

rather than duplicating threads, warps, blocks, or kernels. By keeping the duplicated

instructions inside the same thread of the original copy, the programmer ensures that

those are executed in the same core using the idle mixed-precision hardware, avoiding

dependencies, duplicated caches, and synchronization issues. Since it is only necessary

to duplicate the instructions, then add a comparison at the end of the thread or after an

instruction code block, the duplication process can be automated at the compiling stage.

Step 3. Casting the high-precision result to reduced precision. Once both

instructions complete their execution, z64 is cast down to FP32 to prepare the comparison.

The z64 is cast to FP32 as it is needed only to detect an error, and more accurate error

detection by performing the comparison in FP64 will not be achieved.

Step 4. Performing the error detection operation. Dissimilarity to a traditional

DWC, as the two copies z64 and z32 are naturally different, in RP-DWC a simple a bit-

wise comparison does not suffice to detect faults. It is necessary to decide if the difference

between the two copies is within the Expected Precision Loss (EPL), which, for now,

is considered as given. The two outputs can be compared using the relative difference

δr =
z32
z64

(with z64 casted to FP32, in Step 4a). The operation performed in RP-DWC (a
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division) is much more complex than in a traditional DWC (a comparison). The absolute

difference would reduce the error detection overhead, but the result would depend on the

exponent (subtracting similar numbers with a high exponent provides a huge absolute

difference).

In the specific case of NVIDIA Volta GPUs, there are twice as many FP32 cores

as FP64 cores (see Chapter 3.1 for more details). As RP-DWC uses one FP32 core per

each FP64 operation in the original copy, there are indeed enough FP32 cores available

to perform the division in parallel with the next FP64-FP32 execution. NVIDIA also

features a fast division operation (fdividef ) that approximates the division results and

takes, on average, half the time of a standard division. The use of fdividef rather than a

normal division to detect faults is suggested as the relative difference between the results

is negligible.

An alternative comparison is the use of unsigned integers. To compare z64 (now

cast to FP32) and z32, it is possible to consider their representation as an unsigned inte-

ger (UINT32) and subtract them, which produces the difference δUINT . Re-interpreting

the FP32 values as UINT is not a cast operation since it requires no modification in the

representation and does not significantly increase the overhead. By subtracting the two

32 bits representations interpreted as UINT gives a fast (and accurate) evaluation of the

magnitude of the difference between the two numbers, which is exactly what is needed

to detect errors. The higher the result of the subtraction, the more significant is the dif-

ference between the two representations. If the two representations differ only for some

bits in the least significant digit of the mantissa, their values as UINT are very close. On

the contrary, if the two floating-point values have different exponent or sign bit, their val-

ues as UINT are very different. As for δr calculation, the UINT subtraction can also be

performed in parallel with the next FP64-FP32 as GPUs have dedicated integer cores (see

Chapter 3.1).

The user can choose the use of δUINT and δr. From the past experience, δUINT is

faster but might detect fewer errors than δr if the exponent is very low.

Step 5. Comparing and taking action on the result. Once z64 and z32 are

compared, the difference between z64 and z32 can be either (1) within or (2) outside the

EPL.

In case (1), it is assumed that the instruction execution is successful or, if a fault

happened, it produced an undetectable error. The execution can then proceed after casting

the next FP64 input to FP32. It is necessary always to feed the FP32 copy with the FP64
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values to reduce the divergence of reduced-precision executions. In case (2), an error flag

is raised to inform the application that an error has been detected.

It is worth noting that, as in any other duplication strategy, the comparison opera-

tion could be a single point of failure, i.e., a fault in this operation can lead to undetectable

errors. Nevertheless, as experimentally shown in Section 5.3.4, this does not undermine

the error coverage of RP-DWC as the comparison operation is less likely to be corrupted

than the duplicated operation. With the granularity discussed in Section 5.3.2 the proba-

bility of a fault in the comparison operation is reduced even further.

Depending on the system implementation, once the error flag is detected, the exe-

cution can be terminated or rolled-back to the previous check. The roll-backed execution

should be performed in FP64 by both copies to guarantee, for instance, that the detected

error does not come from a round-off error. However, one can decide to restrict the

threshold if inputs are very well structured (for example, in image processing applica-

tions, the pixels’ colors are well limited, and in physical simulations, the possible values

are known). If an unexpected input is received, a false-positive can trigger error detection,

and re-execution will not solve the problem. Additionally, roll-back also can deal with

the unlikely catastrophic cancellations. While executing both copies in FP64 might seem

to undermine the efficiency of RP-DWC, that only happens when an error (or an unlikely

false-positive) is detected. In these few cases, the overhead would be identical to that of a

traditional DWC.

5.3.2 Granularity of the Approach

DWC can be implemented with different granularities, i.e., performing the cor-

rectness check at each instruction or after a block of instructions. In a coarse-grained

RP-DWC, a sequence of FP64 instructions is duplicated with a series of FP32 instruc-

tions. The replicated sequence receives the FP64 input cast to FP32. The two sequences

are then executed in parallel without interacting until reaching the correctness check.

To detect errors as early as possible, the correctness should be checked at each

instruction. However, this requires a cast and a comparison operation at each operation,

increasing the introduced overhead (which, as shown in Section 5.3.5, is still lower than

a traditional DWC) and the probability for the error to occur in the comparison itself.

To evaluate the trade-off between the introduced overhead and the achieved error

detection, the correctness check with various granularities have been implemented: at
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each instruction, at the end of the computation, and after some or several instructions

(10, 100, 1,000). Longer sequences are not considered as basic blocks in GPUs have,

on the average, between 20 to 100 instructions (CHAKRABARTI et al., 2012). It is

worth noting that a correctness check should be performed independently on the chosen

granularity before any data-driven condition statement. A small divergence between FP64

and FP32, eventually caused by intrinsic differences, could force the two copies to take

different paths.

A longer block of instructions can potentially increase the two copies’ intrinsic

difference and, thus, the EPL. A bigger EPL, in principle, implies a higher number of

undetectable errors. However, as the error propagates in the sequence of instruction, it

may increase in magnitude, thus becoming detectable even with a bigger EPL.

5.3.3 Architectural Vulneratibility Factor

First, the AVF is analyzed, i.e., the probability for an injected fault (random single

bit flip) to propagate and generate a DUE (crash/hang) or a (detected or undetected) SDC.

The results are presented using δUINT to compare the two copies. The use of δr would

not affect the reported data significantly, having an impact on overhead lower than 5% in

the fine-grain RP-DWC and negligible in the coarse-grain RP-DWC.

Figure 5.4 shows the percentage of injected faults that are masked, that became an

SDC that is detected or undetected, or that produce a DUE. The data is obtained for the

micro-benchmarks with different RP-DWC granularities. That is, performing the correct-

ness check at each instruction, every 10, 100, or 1,000 instructions.

Figure 5.4 demonstrates that most of the injected faults are either masked or de-

tected. Additionally, the AVF for DUE is very small compared to the AVF for SDC. This

is because DUEs are mainly produced by errors in control logic or interfaces (FRATIN

et al., 2018; Chatzidimitriou et al., 2019), while the injections target mostly the datapath.

Figure 5.4 also shows that there is no significant difference in the AVF between opera-

tions and configurations (fine or coarse grain RP-DWC). Having similar AVF attests that

the configurations and operations have a similar probability for a fault to propagate or to

be masked. Fault injection does not include any information about the probability of a

fault during the different computations. In other words, it is not possible to evaluate from

Figure 5.4 alone if the additional instructions required to implement duplication affect

the code error rate. Beam experiment data, presented in the next subsection, will also



63

Figure 5.4: AVF results for the micro-benchmarks.
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consider this aspect.

Table 5.1 provides additional details on the efficiency and efficacy of RP-DWC

by listing the percentage of errors that are detected and the imposed overheads (execution

time and energy consumption). The detection rate and the overheads of a traditional

DWC are also included to ease the comparison with RP-DWC. Please recall that, while

for RP-DWC micro-benchmarks, the data is shown for different granularities. For the

traditional DWC and the realistic codes (MXM, Lava, FWT, and BlackScholes), only the

entire code’s duplication is shown, which is the best-case scenario overhead.

5.3.4 Error Detection

As shown in Table 5.1, the percentage of detected errors for RP-DWC ranges

from 57% for 1,000 op FMA to 76% for 10 op MUL. While increasing the granularity

increases the threshold, there seems to be no correlation between the detection rate and

the granularity. As discussed in Section 5.3.2, there are two reasons for that: (1) Fine-

grain RP-DWC requires a check at every executed instruction, increasing the probability

of having an (undetectable) check operation corruption. (2) An undetectable error in

the first operations of a block in a coarse-grain RP-DWC can increase in magnitude as

it propagates, eventually becoming detectable when the correctness check is performed.

The longer the block of instruction, the higher the probability for the undetectable errors to

become detectable. That implies a tradeoff is present between the performance overhead
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Table 5.1: Error detection and overhead (Fault Injection).
Overhead

Benchmark Granularity Time Energy Detection
1 op 34,9% 51,2% 67.1%

ADD 10 op 3,9% 41,0% 70.1%
(RP-DWC) 100 op 0,3% 28,0% 68.6%

1,000 op 0,1% 23,9% 59.8%
1 op 35,3% 52,3% 74.5%

MUL 10 op 3,6% 41,0% 76.5%
(RP-DWC) 100 op 0,3% 33,0% 59.3%

1,000 op 0,1% 31,9% 70,0%
1 op 35,3% 55,9% 55.4%

FMA 10 op 3,6% 43,0% 58.3%
(RP-DWC) 100 op 0,3% 35,0% 68.3%

1,000 op 0,1% 32,9% 57.2%
MXM (RP-DWC) 13,0% 62,0% 63.4%

LavaMD (RP-DWC) 18,1% 56,0% 83.4%
BlackScholes (RP-DWC) 5,8% 13,8% 66.2%

FWT (RP-DWC) 37,4% 50,1% 75.6%
ADD (trad. DWC) 94,2% 111,0% >95%
MUL (trad. DWC) 94,4% 124,0% >95%
FMA (trad. DWC) 99,1% 124,0% >95%
MXM (trad. DWC) 70,3% 108,0% >95%

LavaMD (trad. DWC) 83,6% 107,0% >95%
BlackScholes (trad. DWC) 50,5% 76,7% >95%

FWT (trad. DWC) 94,6% 106,6% >95%

and the time to detection, but not between the performance and the detection rate.

The slightly lower detection rate compared to traditional DWC (over 95% from Ta-

ble 5.1) or state-of-the-art DWC from previous work (Maniatakos et al., 2011; Seetharam

et al., 2013; KUDVA et al., 2013; WADDEN et al., 2014b; SULLIVAN, 2015; Goncalves

de Oliveira et al., 2016; MAHMOUD et al., 2018; Traiola et al., 2018; RODRIGUES et

al., 2019) is not surprising, since, as any faults hitting or propagating to the less-significant

bits of an FP64 number are not detectable. Even though this limitation of RP-DWC pro-

vides an upper bound of erroneous bits coverage it can achieve, these wrong least sig-

nificant bits are precisely the ones that will provide a smaller impact to the application

output, as shown in Section 5.3.7.

RP-DWC has a higher detection capability than previous work that approximates

the algorithm or proposes approximated hardware for error detection ((Maniatakos et al.,

2011; ZHANG; NATHAN; SORIN, 2015; RODRIGUES et al., 2019)), which is 55%-

76% for RP-DWC and 20%-40% for previous work. This data attests that approximating

the algorithm might not be as effective as approximating the hardware. The higher error
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detection of RP-DWC compared to the use of dedicated approximated hardware could be

caused by the higher approximation chosen in (Seetharam et al., 2013; Maniatakos et al.,

2011) and by intrinsically more reliable hardware designed by NVIDIA.

5.3.5 Overhead

Data in Table 5.1 shows that the execution time overhead of RP-DWC (35% in

the worst case of a fine-grain RP-DWC) is much lower than traditional DWC (70%-90%)

and of recent efficient DWC (39% in (MAHMOUD et al., 2018)). The implementation

created for this work of conventional DWC has a lower overhead compared to some pre-

vious studies that showed an overhead of 2x (Goncalves de Oliveira et al., 2016), as it

duplicates operations inside a thread rather than threads or blocks of threads. If FP64

cores are available, the GPU could then be able to schedule some of the two FP64 copies

in parallel. As expected, as the granularity of the correctness check is reduced, the over-

head is reduced. When the granularity is increased, as the comparison operations are less

frequent, the overhead is reduced accordingly, eventually becoming nearly-zero.

The Instructions Per Cycle (IPC) and the number of executed instructions of the

RP-DWC version are approximately 2x the unhardened versions, for all configurations.

On the contrary, for the traditional DWC versions, while the number of executed instruc-

tions is slightly higher than 2x, the IPC is very similar to the unhardened version (lower

than 1.2x). This also proves that the available resources now contribute to the reliability

improvement with a nearly zero overhead.

To further investigate the overhead differences between RP-DWC and traditional

DWC, the register file pressure is considered. The higher register file usage is found for

MXM traditional DWC, for which 41 registers per thread are instantiated. As the register

limit on NVIDIA Volta is 256 per thread, none of the tested configurations saturates the

register file. The higher overhead for traditional DWC, then, comes from the saturation

of computing units.

Table 5.1 shows that the energy overhead of RP-DWC is significantly reduced

when the correctness checks are less frequent, reaching a value that can be as low as 24%

to 32% BlackScholes reaches an even lower energy overhead (13.8%). However, such a

low overhead is not solely justified by RP-DWC, but also by the simplicity of the code

(few global memory access, no shared memory utilization, and executes only simple op-

erations) (Yazdanbakhsh et al., 2017). For the same reasons, the energy overhead of the
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traditional DWC is lower than for the other codes. The energy consumption overhead of

RP-DWC is comparable to the traditional DWC only for the fine-grain implementation

(1 check every operation for RP-DWC vs. one check at the end of the application for

traditional DWC). The energy consumption overhead of a fine grain RP-DWC is, then,

higher than 100%. This is justified because BlackScholes is actually executing 3x the

instructions of the unhardened version (FP64 and FP32 copies plus the error detection

operation). Traditional DWC has, even with the check only at the end of the computation,

a higher energy consumption overhead, which ranges from 111% to 124%. This favor-

able energy consumption result of RP-DWC is achieved by leveraging the FP32 cores to

execute the redundant copy in parallel.

Finally, for RP-DWC, the energy consumption overhead is always higher than

the time overhead as the error detection operation (UINT or δr) can be done in parallel

with floating-point operations in GPUs, reducing the time but not the energy overhead of

activating the idle cores for error detection.

5.3.6 Neutron Beam Experiments

To have an even more realistic evaluation of the effectiveness of RP-DWC and a

direct comparison with traditional DWC, the GPUs were exposed to accelerated neutron

beams. Dissimilarity to fault injection, during beam experiments, all the GPU resources

are irradiated and could be corrupted, and the fault model is as close as possible to the

real one.

Figure 5.5 reports the beam experiment results for the microbenchmark in the

unhardened version (no duplication) and protected with a traditional DWC and with RP-

DWC, in three different granularity (correctness check after 1, 100, or 1,000 operations).

The detection rates of DWC and RP-DWC are made explicit in the Figure to ease compar-

ing the effectiveness of the two techniques. All the reported values are affected by a 15%

experimental error due to statistic and neutrons count uncertainty. FIT rates have been

normalized to the lowest measured value (DUE rate of DWC-1 for ADD) not to reveal

business-sensitive data but still to allow a direct comparison between configurations. The

dashed lines are used just to differentiate the RP-DWC results from the traditional DWC

ones.

From Figure 5.5, it is possible to notice that the SDC FIT rate for the unhardened

version is lower than the FIT rate of the protected versions (considering the combination
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Figure 5.5: Normalized beam experimental data for the unhardened, the traditional DWC,
and RP-DWC versions of the micro-benchmarks. Dashed lines are used just to highlight
the RP-DWC versions.

of detected and undetected SDCs). This is expected, as the check operation introduces

a computation and memory overhead that can increase the protected versions error rate.

The increased FIT rate is higher when the check is performed at each instruction, as more

instructions are being executed. RP-DWC has a higher increase in the SDC rate for all

configurations but FMA. This is because the cast and error detection operations (detailed

in Section 5.3.1) are computationally more costly than ADD and MUL, but not of FMA.

Nevertheless, both traditional and RP-DWC detects most of the SDCs, resulting in a much

lower undetected SDC rate than the unhardened versions.

As observed with fault injection, and for the same reason, the detection rate of

the traditional DWC is always higher than the RP-DWC. On average, under the beam, the

detection rate of RP-DWC is 9% lower than DWC. The fact that the detection rates of RP-

DWC are higher than those reported in Table 5.1 should not surprise. Data in Table 5.1 is

obtained injecting only single bit flips, which are harder to detect with RP-DWC. When

even one corrupted bit is outside of EPL, RP-DWC triggers the detection. The higher

the number of bits flipped, the higher the probability of detection. As already studied

in previous work (RECH et al., 2014; Goncalves de Oliveira et al., 2016), radiation may

induce complex fault models in GPUs (multiple bit flips, the corruption of several threads,

and so on) that are easier to detect with RP-DWC. Detection rates in Table 5.1 are then a

conservative estimation of RP-DWC detection capabilities. Nevertheless, radiation during

beam experiment can also corrupt data before it is assigned to the two copies and, thus,

resulting in undetected errors. ECC’s presence would remove this possibility (the tested

Titan V does not have ECC), possibly improving the detection rates of both DWC and

RP-DWC.

Then, the use of RP-DWC results in a slightly lower error detection but makes
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both overheads much smaller than a traditional DWC and state-of-the-art DWC for GPUs

as reported in (WADDEN et al., 2014b; MAHMOUD et al., 2018). As shown in the next

subsection, the errors RP-DWC does not have a minimal impact on the output correctness

and could potentially be tolerated, mitigating the observed lower detection’s impact.

5.3.7 Detected vs Undetected Errors

As discussed in Section 5.3.1, in a real application of RP-DWC, once an error is

detected, the computation would either be terminated or the roll-back mechanism would

be triggered. In the experiments, the execution is allowed to complete even if an error is

detected in order to compare the impact of detected and undetected errors in the output

correctness.

To measure the impact of these errors, the concept of Tolerated Relative Error

(TRE) is used as introduced in (Fernandes dos Santos et al., 2019). A TRE of 0% implies

no tolerance in the output correctness, i.e., the computed output must match the expected

output. In other words, any mismatch between the computed output and the expected

value is considered a critical error. Increasing the TRE relaxes the correctness constraint

accepting (corrupted) values in a given range as tolerable (corrected). As an example,

considering a TRE of 10%, any output value between 90% and 110% of the expected

value will be considered as correct or, at least, tolerable. If the output is composed of

multiple elements, as in the tests, all elements must have a tolerable value for the execution

not to be considered corrupted.

Figure 5.6 shows how detected and undetected errors affect the code output. Only

fault-injection data is reported. Beam experiment results are similar and not shown. In

the y-axis, how much the SDC AVF rate would be reduced is plotted as a function of TRE

(that varies from 0% to 1% on the x-axis). When TRE is 0%, the AVF will be precisely

the experimental one (100%). As the TRE is increased, some corrupted executions even-

tually become tolerable and, then, the AVF will be reduced accordingly. A small TRE is

sufficient to significantly reduce the AVF, indicating that most of the errors have a small

impact on the output value.

Data in Figure 5.6 demonstrates that, for all codes, the critical error rate reduction

is much faster for the undetected faults (dashed lines in Figure 5.6). This indicates that

undetected faults have a much lower impact on the output correctness than the impact the

detected errors would have. Even with a TRE as small as 0.1%, all the undetected errors
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Figure 5.6: TRE for the microbenchmarks, ADD 5.5a, MUL 5.5b, and FMA 5.5c. Fig-
ure 5.5d shows the TRE for MXM, Lava, FWT, and BlackScholes.
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would be tolerated for all the micro-benchmarks (but MUL with 100 ops) while at least

60% of the detected errors would still be considered critical. This means that the errors

RP-DWC is unable to detect have an impact on the output value that is lower than 0.1%.

For MUL, as said, it is necessary to use a smaller input to avoid overflow in the FP32

replica. A small error might then induce a higher TRE. However, with a TRE of less than

5% (not shown), all the undetected errors for MUL would be considered tolerable. For

MXM, Lava, FWT, and BlackScholes, shown in Figure 5.5d, the trend is maintained, but

the impact of undetected faults is slightly higher (∼90% of the undetected errors modify
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the output of less than 1%). This is because MXM, Lava, FWT, and BlackScholes include

several instructions of different nature (i.e., ADD, MUL, FMA, and other instructions). It

is worth noting that in a traditional DWC (not shown), the detected and undetected error

effects in the application output overlap as the detection is independent of the relative

value of the error.

5.3.8 Impact of Undetected Errors in HPC and Safety-Critical Applications

While both the detected and undetected errors are considered different from the

expected FP64 result, data reported in Figure 5.6 shows that the RP-DWC technique de-

tects those errors that are more likely to generate a significant deviation from the applica-

tion output. Previous works have demonstrated that small fluctuations in the output value

(up to 4%) have a low or negligible impact and can, potentially, be even tolerated for

several HPC applications such as particles or physical simulation, weather forecast, heat

distribution, wave propagation, earthquakes prediction, etc. (GODDEKE; STRZODKA;

TUREK, 2007; GRAND; GöTZ; WALKER, 2013; PUENTE et al., 2014). The realistic

codes tested (MXM, LavaMD, FWT, BlackScholes) are among these HPC applications.

As shown in Table 5.1 and Figure 5.5, RP-DWC, while being more efficient, has a lower

error detection rate than traditional DWC (of∼15% for fault injection and∼9% for beam

experiments). Nevertheless, as shown in Figure 5.6, even considering a fluctuation in

the output value (i.e., a TRE) of 1%, more than 90% of the undetected errors with RP-

DWC are considered tolerable (99% for the micro-benchmarks). As a result, almost all

the RP-DWC undetectable errors, according to (PUENTE et al., 2014), can be tolerated

in several HPC applications.

Even for some safety-critical applications, such as CNNs for objects detection,

small variations in the output values are unlikely to induce critical faults (LI et al., 2017)

(see Section 4.1). A fault is critical for a CNN when it induces a misdetection. On the

other hand, a fault that only slightly modifies the CNN output but does not impact de-

tection will not cause vehicle misbehaviors and, thus, can be considered tolerable. An

additional fault injection campaign is run to evaluate the percentage of detected vs. un-

detected errors that are critical for CNNs. The analysis focus on RP-DWC for MXM, as

more than 70% of operations in a CNN are related to matrix multiplications and, as shown

in Section 4.1, most of CNN errors are caused by MXM corruptions. To understand if the

undetected errors would cause critical errors for a CNN, a fault injection campaign is per-
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formed on YOLOv3 processing frames from VOC2012 dataset (REDMON; FARHADI,

2018; EVERINGHAM et al., 2012). The output of a random matrix in a random layer of

YOLOv3 is modified. First, a relative error of 1% is injected as, according to Figure 5.6,

the vast majority (∼90%) of MXM errors RP-DWC is unable to detect have a TRE lower

than 1%. To consider the worst-case scenario for RP-DWC, all the elements or a row of

elements of the matrix are corrupted. None of the 1,000 injections induced misdetections

in YOLOv3. This result confirms that the faults RP-DWC is unable to detect have a neg-

ligible impact even in CNNs, which is not sufficient to cause misdetections. Then, when

a relative error is injected in the range 1% to 100% and about 12% of these errors (i.e.,

the ones RP-DWC is highly likely to detect) induced misdetections.

It is possible to derive that, while RP-DWC has a lower detection rate than a tra-

ditional DWC, only ∼10% of the errors RP-DWC is unable to detect (i.e., the ones with

a TRE higher than 1%) can potentially be critical for HPC or safety-critical applications.

If the other ∼90% of undetectable errors are considered as actually tolerable errors, then

the detection rate of RP-DWC increases from the 55%-83% (see Table 5.1) to 95%-98%,

which is comparable with the traditional DWC. The decision to consider or not the toler-

able errors and the tolerance threshold depends on the application. In any case, RP-DWC

shows a better cost-benefit trade-off (overhead-detection) than traditional DWC and could

be particularly useful for HPC applications.
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6 FAILURE IN TIME ESTIMATION

This Chapter presents one of the main contribution of this work, the Failure In

Time (FIT) rate estimation combining kernel profiling, fault injection, and error rate.

The results help to understand the impact of hidden GPU resources (parallelism man-

agement, scheduler, dispatcher, queues, etc.) and identify the code/architecture character-

istics/metrics that have a significant impact on the GPUs error rate. Finally, the Chapter

presents a case study about the differences of an analysis made strictly on the software

level and the proposed error rate estimation that also considers the hardware level.

6.1 FIT rate prediction through fault simulation

It is possible to assume that the cause of the observed code output error is one

and only one original neutron strike (that can produce a single or multiple bit-flip, as

evaluated in Section 6.3) in one and only one resource. This is justified by the observation

that, with the current technology and the low intensity of natural flux of particles, it is

possible to consider negligible the probability for more than one neutron to generate a

fault during one code execution. The cross-section of a bit of a 28nm SRAM cache

memory, for instance, is in the order of 10−16 - 10−17cm2 (BAGGIO et al., 2004). As

the flux of neutron at sea level is 13neutrons/(cm2 · h), the fault rate of a memory bit

is in the order of 10−15 - 10−16errors/h. Even on a hypothetical GPU with 1GB of

these SRAM internal memories (caches, shared memory, etc.), it would be expected to

see at most 1× 10−6errors/h, making it unlikely for more than one fault to occur during

one application execution. Additionally, all neutron-induced events are transient and not

cumulative: the sensitivity of a resource does not depend on the number of faults it has

undergone (BAUMANN, 2005). This guarantees that a code can be affected only by a

corruption that has happened during its execution, independently of what happened in

previous computations (unless the code uses a corrupted output as input, in which case

the error must be attributed to the previous computation and should not be counted in the

code FIT rate).

Neutron-induced errors are then uncorrelated and stochastic events. Thus, a de-

vice’s probability of being corrupted by a neutron is equal to the sum of the probabil-

ities of having a neutron-induced corruption in one of its resources, i.e., the probabil-

ity of disjoint events (P (Eventresource1 ∪ Eventresource2 ∪ . . . Eventresourcen)). Con-
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sequently, the Cross-Section of a code (and informally the FIT rate) is the sum of the

probabilities of having a neutron-induced fault in each of the resources used for its com-

putation multiplied by the probability for the fault in that resource to propagate and

manifest at the output (the resource AVF), i.e., the probability of independent events

(P (Propagationresource1 ∩ Propagationresource2 ∩ . . . P ropagationresourcen)).

Knowing the AVF and FIT rate of every resource used for computation, in prin-

ciple, would allow a perfect estimation of the FIT rate of a code. Unfortunately, even if

each GPU resource were accessible by the user, it would be unfeasible to measure the

FIT and AVF of each resource since the GPU is a very complex device. It has been de-

cided to limit this study to the contribution of GPUs’ main functional units and memories.

Beam experiments measured the FIT rates of most common functional units (arithmetical

micro-instructions), register file, and shared memory (details in Section 6.3). Then, the

probability for a fault in each micro-instruction or used memory to affect the code output

is calculated through fault injection.

The estimated FIT rate of a code (†FIT) can be calculated adding the expected

contribution of each micro-instruction P (EINSTi) and memory level P (EMEMi
) to the

code error rate, as shown in Equation 6.1.

†FIT =
n∑
i=1

P (EINSTi) +
m∑
i=1

P (EMEMi
) (6.1)

The contributions to the FIT rate of the code, P (EINSTi) and P (EMEMi
), as said,

depend on the number of resources used for computation, the probability of a fault to

be generated (the resource cross section or FIT), and the probability for the fault in that

resource to affect the computation (AVF) as formalized in the following Equations 6.2

and 6.3.

P (EINSTi) = f(INSTi) · AV FINSTi · FITINSTi (6.2)

P (EMEMi
) = f(MEMi) · AV FMEMi

· FITMEMi
(6.3)

Where f(INSTi) and f(MEMi) are the probability of having one instance of a micro-

instruction INSTi or a bit of memory levelMEMi used in the computation of the bench-

mark, AV FINSTi and AV FMEMi
, FITINSTi and FITMEMi

are the AVF and FIT of a

micro-instruction INSTi and a bit of memory MEMi, respectively. The FITINSTi and

FITMEMi
are informally used as the probability of the error in the hardware in a given re-
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source, as the FIT rate in this case is obtained from multiplying the σ[cm2] (the hardware

probability) by a constant flux (13× 109).

On a GPU, as on any other computing device, f(MEMi) is the number of bits of

memory level i instantiated for computation. It is worth noting that, when ECC is enabled

in memoryMEMi and if all memories have ECC it is possible to assume AV FMEMi
≈ 0

and as consequence P (EMEMi
) ≈ 0, simplifying Equation 6.1 to only its first summation.

f(INSTi) is the percentage of instructions of the type INSTi to be executed in

the code. On a GPU, the FIT rate has the peculiarity of varying significantly based on the

code degree of parallelism and on how the GPU scheduler can allocate the available func-

tional units. The next section discusses a possible way to consider the GPU peculiarity

using kernel profiling.

6.2 Profiling kernel dynamic instructions

On GPUs, the probability for a neutron to corrupt an operation inside a thread

depends on how many threads are active and how many parallel operations are being

executed. The higher the number of instructions a thread is allowed to schedule or the

higher the number of active threads in an SM, the higher the number of functional units

that can be corrupted. To understand how many computing resources are exposed and

should be considered in Equation 6.2, it is necessary to profile the codes to measure the

code parallelism.

The smaller threads working group in a GPU is a warp (i.e., 32 threads). The alive

warps in an SM can be in three different states: stalled, eligible (ready but waiting), and

selected (executing). Each SM has four warp schedulers that select the instructions from

warps based on their state. Then, each scheduler picks the eligible warp to execute up to 2

instructions, limiting the instruction issue parallelism to 4 per SM. The number of cycles

a warp requires to be ready to execute the next instruction is the latency of the warp. If the

latency cannot be hidden, the resources will be underutilized. During latencies, the alive

threads are exposed and could be corrupted. Thus, it is necessary to consider the number

of active warps (i.e., the Achieved Occupancy in NVIDIA profiling tools) to model the

number of functional units that could be corrupted.

The Achieved Occupancy alone is not sufficient to model the number of resources

used on GPUs. The number of active threads could be limited by resource utilization

(commonly, the amount of registers and shared memory). If the instructions in these (few)
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active threads do not have dependencies, they could be scheduled in parallel, saturating

the available functional units. This is the case of GEMM, for instance, that has a very

low occupancy (see Tables 3.1 and 3.2) but imposes massive stress in the functional units.

Other codes (as sort) have high occupancy but suffer from long latencies. This work also

considers the Instructions Per Cycle (IPC) of the code in the prediction model to account

for (un)efficient utilization of resources. A high IPC means that a thread can execute

a high number of instructions, implying that it has the allocation of a high number of

functional units (increasing the number of resources used for computation that can be

corrupted).

To consider the contribution of parallelism of GPUs, then, P (EINSTi) is multiplied

in Equation 6.2 by a factor (ϕINST ) defined as follows:

ϕINST = AchievedOccupancy ∗ IPC (6.4)

High occupancy and a high IPC indicate that many resources are employed for

computation. The lower the occupancy and the IPC, the lower the resources used for

computation.

6.3 Synthetic Micro benchmarks

As described on Equation 6.2 the model needs the FITINSTi and FITMEMi
for

the FIT estimation. To measure the FIT rate of the functional units and main atomic in-

structions of Kepler and Volta architectures, seven classes of synthetic micro-benchmarks

have been designed for this work. Reported results are used for predicting the FIT rates

of codes and are valuable to compare the reliability of the different funcional units that

compose GPUs architecture.

6.3.1 Micro-benchmarks profile and error rate

Errors are identified by comparing the result with the pre-computed fault-free out-

put when each thread’s operations have been completed. For errors at each operation are

not checked to avoid excessive overhead and make the probability of a fault in the com-

parison negligible. However, if two different neutrons corrupt two different instructions

during the 108 operations, it would be counted as one error underestimating the functional
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unit FIT rate. Nevertheless, in each hour, it has been observed <10 events. Considering

that an average of 2 seconds is necessary to execute 108 operations, in the worst case of

having each of the errors generated in the first of the 108 operations, the probability of

having two corruptions is lower than 1%. Also, more than one thread corrupted (more

than one sequence of operations with incorrect data) has happened in less than 1% of

corrupted execution. If each instruction is checked, all the errors would be caught but, as

only after a sequence of operations are checked, some errors might be masked, reducing

the FIT rate. To consider the masking effect of subsequent operations, a fault injection on

the micro-benchmarks were run and found that the AVF is always higher than 70% (being

100% for integer). To have the most accurate prediction, in Section 6.1, the FIT rate of

micro-benchmarks by their AVF are multiplied.

Figure 6.1 shows the SDC and DUE normalized FIT rate measured with beam

experiments for all micro-benchmarks on Kepler and Volta. FIT rates are normalized and

shown in arbitrary units (a.u.) to allow comparison without revealing business-sensitive

data. FMA, ADD, MUL, and MAD are tested, both with ECC ON and OFF and found

that the error rates are comparable (differences lower than 20%). In fact, these mico-

benchmarks use very little memory (few registers).

Figure 6.1: Micro-benchmarks experimental FIT rates, normalized to each device’s lowest
measured value: FADD’s DUE on Kepler, HFMA’s DUE on Volta. Memories values are
also normalized by the minimum memory FIT for each architecture.
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Figure 6.1 shows that for all the tested float instructions (FADD, FMUL, FFMA)

on Kepler, both SDC and DUE rates are very similar. When the instructions are executed
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using INT32, the FIT rate is, on average, 4× higher than FP32. This is probably because

the integer operations are executed in the same hardware as the FP32 operations with

evident lower efficiency that can increase the vulnerability. The INT32 error rates vary

according to the type of instruction, following the operation’s complexity. IMUL’s FIT

rate is approximately 30% higher than that of IADD. These results suggest that an integer

addition is less complex and demands less hardware than integer multiplication. Since

IMAD performs integer multiplication and addition, its FIT rate is higher than both IMUL

(10% higher) and IADD.

LDST is the only micro-benchmark for which the DUE rate is higher (7.1×)

than the SDC rate, which is expected because the critical operand in the LDST micro-

benchmark is a memory address. An incorrect address can either be valid or invalid. The

likelihood of a corrupted address to be valid is low if the total memory allocated is small,

which is the case. Hence, the chances of invalid addresses, such accesses trigger a device

or CUDA API exception, is higher.

Figure 6.1 also shows the SDC and DUE error rate for Volta micro-architecture.

This work focus on mixed-precision cores reliability as this is the crucial novelty in GPU

architectures. The differences in the FIT rates between int, double, float, and half preci-

sion operations in Figure 6.1 rely on the different Volta mixed-precision cores’ complex-

ities. Since a multiply requires more resources than an addition, its FIT rate is expected

to be higher, and FMA (fused multiply and addition) is expected to have FIT rate higher

than ADD and MUL, which is following the results. Additionally, the higher the oper-

ation precision, the higher the FIT rate (again, higher precision implies more resource

utilization). It is worth noting that, dissimilarly to Kepler, integer operations on Volta are

executed on dedicated cores. The FIT rate depends on the complexity of the hardware

resources.

Figure 6.1 also shows the FIT rate of micro-benchmark focussing on Matrix Multi-

plication and Addition (MMA), also known as Tensor Core, for Volta architecture (MMA

is not available for Kepler). Hardware MMA operations can be used via CUDA on 16x16

input matrices. The introduction of specific (sophisticated) hardware to execute matrix

multiplications in mixed-precision was driven by the importance of this operation in DNN

training and interference.

As the complexity of MMA is higher than those of other functional units and so

is the utilization, its FIT rate is expected to be higher than all other micro-benchmarks on

Volta. As shown in Figure 6.1, Half and Float MMA have FIT rates that are 12× higher
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than that of DFMA, which has the highest FIT rate among the others micro-benchmarks.

It is worth noting that, as one and only one neutron can generate an error in the 107 or 108

operations each thread performs (details in Section 3.4), the number of operations each

thread executes does not impact the FIT rate. A higher number of sequential operations

increases the number of errors because it increases the execution (i.e., exposure) time

and, thus, the neutron fluence, not because the hardware is more vulnerable. If more

operations are executed in parallel, the FIT rate is expected to increase as more operations

are performed but roughly the same execution time.

One interesting observation is that, while being more sensitive, the MMA core

performs, in one operation, the equivalent of 4x4 FMA or 4x4 ADD, MUL, and the loop

control variables needed to implement MxM in software (these latter instructions can

economize with a loop-unrolling). From the data, the FIT of each HMMA and FMMA

micro-benchmarks is 9× and 12× higher than an FMA micro-benchmark (it is worth

recalling that FMMA uses the HMMA core after a cast). As 64 MMA instructions are

required to multiply two 16x16 matrices, and for each warp-wide MMA instruction, it

is feasible instead execute a warp of 32 FMAs, it is possible to deduce that the use of

MMA is 2× (64/32, where 32 is the number of threads in a warp) more reliable than

the combination of operations needed to execute a software MxM. The use of MMA

eliminates repeated fetches of the multiply-and-add operations and reduces activity in

instruction memory and pipelines. As the size of the matrix multiplication supported by

the MMA increases the reliability (and performance), the benefit will also increase.

Figure 6.1 shows the error rate of a byte in the Register File (RF) and Shared

memory (SHARED), also normalized by the minimum FIT of each memory. The result

clearly shows RF as the most critical memory resource at the SM level on a GPU. This

result confirms previously published research (Goncalves de Oliveira et al., 2016). RF

and SHARED are implemented with different interleaving, which affects the probabil-

ity of MBUs. The experiments show that the MBU rate is less than 2% for RF and less

than 0.9% for SHARED. While the Kepler vs. Volta FIT rates are not shown (different

normalization for the two boards in Figure 6.1 were used), it is possible to see that the fab-

rication process plays a significant role. Kepler RF (28nm planar) has an approximately

an order of magnitude higher error rate than Volta RF (16nm FinFET). The difference

between planar and FinFET error rate is a known and documented phenomenon (NOH et

al., 2015).
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6.4 Beam vs Fault injection

After having detailed the reliability characteristics of Kepler and Volta architec-

tures and several codes, the codes’ FIT rates measured with beam experiments are com-

pared with those predicted with fault simulation and profiling. Following the methodol-

ogy described in Section 6.1, to predict the codes FIT rate the fault-injection (details in

Section 4.3), application profiling, and beam experiments on functional units (details in

Section 3.3) are combined. This comparison’s main scope is to evaluate at which level a

reliability analysis based on fault simulation can be considered realistic. It is good to re-

call that on Kepler, both SASSIFI and NVBitFI are tested, and on Volta, only NVBitFI, as

SASSIFI is not supported. Moreover, on Kepler, neither SASSIFI nor NVBitFI supports

fault injection on NVIDIA proprietary libraries such as cuDNN and CUBLAS. For the

codes based on NVIDIA libraries (GEMM and YOLO), the AVF measured with NVBitFI

on Volta is used for the Kepler prediction. As discussed in Section 4.3, NVBitFI and SAS-

SIFI provide SDC AVFs that differ, on average, by ∼18%. The difference then slightly

reduces the accuracy of the prediction for GEMM and YOLO on Kepler.

6.4.1 SDC

Figure 6.2 shows the comparison of the codes SDC FIT rate measured with beam

experiments and predicted with fault-injection. To ease the visualization of the com-

parison, for each code, the highest SDC FIT rate between the one measured with beam

experiments and the one predicted using fault injection is divided by the lowest SDC FIT

rate between the two. Whenever the fault injection SDC FIT rate is higher than the beam

one, the value are represented as negative, positive otherwise. For instance, on the Kepler

with ECC disabled executing FYOLOv2 beam experiments report a 12× higher FIT rates

than fault injection, for FYOLOv3 fault simulation predicts a FIT rate 7× bigger than the

one experimentally measured.

A promising result highlighted in Figure 6.2 is that despite the simplifications

fault simulation introduces, in most cases, the SDC FIT prediction is reasonably close to

the SDC FIT measured with the beam. The absolute average difference between fault

simulation and beam experiments on Kepler is 5× for SASSIFI and 6× for NVBITFI,

with ECC disabled. When ECC is enabled, on Kepler, the average difference is 11×

for SASSIFI and 8× for NVBITFI. On Volta, the average is 5× when ECC is disabled
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and 10× when ECC is enabled. As this work compares completely different evaluation

strategies, it is reasonable to believe these differences to be extremely promising.

Figure 6.2: Comparison between the SDC FIT rate measured with the beam and predicted
with fault injection.

(a) Kepler

-40

-30

-20

-10

0

10

20

30

40

FY
O

LO
V

3

FY
O

LO
V

2

FG
EM

M

Q
U

IC
K

SO
R

T

M
ER

G
ES

O
R

T

N
W

FM
X

M

FL
A

V
A

FH
O

TS
P

O
T

A
ve

ra
ge

FY
O

LO
V

3

FY
O

LO
V

2

FG
EM

M

Q
U

IC
K

SO
R

T

M
ER

G
ES

O
R

T

N
W

B
FS

C
C

L

FG
A

U
SS

IA
N

FL
U

D

FM
X

M

FL
A

V
A

FH
O

TS
P

O
T

A
ve

ra
ge

Fa
u

lt
 s

im
u

la
ti

o
n

 v
s 

B
e

am
 r

at
io

ECC OFF ECC ON

SASSIFI NVBITFI 142x
167x

(b) Volta
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For 25 out of 38 configurations, the fault injection underestimates the SDC FIT

rate. One limitation of the model is that not all resources are accessible for fault sim-

ulation, preventing from considering all the possible sites for errors. As discussed in

Section 6.3, only the most common micro-instructions are contemplated as testing all 20

instructions types is unfeasible. While the considered micro-instructions cover more than

70% of instructions that compose the codes (see Figure 3.1), it is still possible that some

errors in the unconsidered micro-instructions generate an error, and this would only count

in beam experiments. When ECC is disabled, the prediction model will consider the mem-
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ory error rate (Eq. 6.1) that has already been shown to dominate GPUs’ FIT rate (Haque;

Pande, 2010). On average, when ECC is disabled, fault injection can better predict the

beam SDC FIT rate, as the contribution to the FIT rate of the not modeled functional units

and instructions is much smaller than the memory contribution.

For some outliers (NW and CCL on Kepler, HHotspot on Volta), the fault-injection

based prediction is very different from the beam. The kernels used for NW and CCL are

not well suitable for GPUs, and they underuse the available resources and have poor

memory access patterns (Table 3.1). These inefficiencies may be the reason to reduce

the possibilities of having corruptions in functional units (as they are not stressed) and

increase the error rate due to other sources of errors, like threads and memory manage-

ment. The proposed model does not consider these sources of errors yet, resulting in a

poor underestimation for not well-parallelized codes. HHotspot on Volta overestimation

(fault injection FIT rate is 27× higher than beam FIT rate) relies on the impossibility to

inject faults in half-precision functional units (intrinsic limitation of NVBITFI). The float

functional units AVF is also used for the half precision. This simplification is acceptable

for most codes (HGEMM and HLava prediction is sufficient) but not for HHostspot, prob-

ably because of its intrinsic characteristic of iterating the computation that smooths faults

value (Oliveira et al., 2017).

As a final remark on SDC estimation, it would be good to to emphasize that,

while the FIT rates of functional units through beam experiments are measured, as shown

in (Chatzidimitriou et al., 2019) on ARM CPUs, an estimation of the FIT rate based on

micro-architectural models can also be sufficiently precise. The proposed model could

then be applied to predict the fault rate of codes executed in future GPUs once the micro-

architectural model is available. Despite the model’s intrinsic limitations, it can success-

fully provide a good FIT rate estimation on average, even when ECC is enabled.

6.4.2 DUE

The analysis can be used to derive exciting insights on the origins of DUEs as

well. DUEs can be caused by several factors: including interrupts triggered by ECC,

a corruption during device-host synchronizations, illegal memory accesses, corruption in

the hardware scheduler, changes in the program flow (such as corruption in the instruction

cache or the jump destination address), or faults in hardware resources that stuck the

device (more details in Section 6.4.2.1). Most of these causes for DUEs are independent
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of the arithmetical operation executing and are not modeled by the proposed prediction

strategy.

In this work mainly the arithmetical functional units, memories, and Load/Store

instructions of GPUs are characterized with beam experiments. In the prediction model,

only a subset of the causes for DUEs are included, and a significant underestimation of

the code DUE FIT rate is to be expected. Figure 6.3 shows that on the average, the

beam DUE FIT rate is 120× higher than the predicted DUE FIT rate for Kepler ECC off,

629× for Kepler ECC on, 60× for Volta ECC off, and 46,700× for Volta ECC on. This

high divergence attest that a large portion of DUEs does not come from arithmetic micro-

instructions and modeling micro-instructions and memories are not sufficient to predict

the GPU DUE rate.

Figure 6.3: Comparison between the DUE FIT rate measured with the beam and predicted
with fault injection.
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6.4.2.1 DUE source

For a subset of the codes presented on 3.2, the DUE events have been traced and

logged using the CUDA Runtime API (NVIDIA, 2021). It is then possible to deeply

evaluate the DUEs’ causes. Due to beam time limitations, not all codes are assessed.

Below is listed all the observed DUE outcomes under the neutron beam (Adapted

from (NVIDIA, 2021)). It is worth noting that only the GPU was exposed to the beam, the

CPU and the memories were not exposed. Consequentially, all the errors listed are directly

caused by events on GPU, and they are observed at least once in the beam experiments.

• Devices Unavailable: The device became unavailable both when the GPU mode

became Exclusive or Prohibited, or the previous kernel execution did not release

the used resources, and the device is "falsely" full.

• Illegal Instruction: When an illegal instruction happens during the kernel execu-

tion, leaving the process in an inconsistent status.

• Illegal Address or Misaligned Address: The address used in a Load or Store

instruction does not point to a valid memory address or is not aligned.

• Initialization Error: The CUDA driver failed to initialize, making it impossible

for the API continues.

• Invalid Device or No Device: The selected device by the CPU is invalid, or the

CUDA driver detects no device.

• Invalid PC: One of the kernel program counters got corrupted consequentially be-

came invalid.

• Invalid Address Space: A CUDA kernel can operate in different spaces of mem-

ories (i.e., global, shared, or local). This error happens when an instruction that

belongs to a specific memory space try to operate in a different one.

• Memory Allocation: The CUDA API is not able to allocate memory on GPU.

• System Crash: It is a DUE triggered by the setup software or hardware watchdog.

Then the DUE source could not be traced or is generally unknown.

• ECC Uncorrectable: When the Error Correction Code detects more than 1 bit of

flip in the memories, it cannot be corrected.

• Launch Failure: This error occurs when the CPU tries to launch a kernel and

fails. There are many reasons that it could happen, such as dereferencing an invalid

device pointer and accessing out of bounds shared memory, etc.
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• Hardware Stack Error: This error happens due to an error in the call stack during

kernel execution, generally due to stack corruption or exceeding the stack size limit.

• Invalid Value: This indicates that some parameters passed to the GPU are out of

the acceptable range of values. For example, more threads than the GPU supports.

Figure 6.4 shows, in percentage, the sources of DUEs have been identified in the

beam experiments for Kepler and Volta. The DUEs that comes from Devices Unavailable,

Invalid Value, No Device, Initialization Error, Hardware Stack Error, and Invalid Device

have been grouped under the category "Other Sources" as, on average, the combination

of these types of events caused less than 3% of DUEs in the experiments.

Figure 6.4: Detailed DUE sources for Kepler and Volta GPUs.
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(b) DUE source for Volta
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For Kepler and Volta, the System Crash is the leading cause of DUEs. System

Crashes are still the most manageable outcome of transient errors on GPUs. However,

tracing System Crashes sources is very hard, as most events are generated by exceptions

from the operating system or the hanging kernels inside the GPU killed by the watchdog.



85

On Kepler and Volta, it is possible to observe an explicit behavior caused by en-

abling ECC. In fact, when ECC is disabled, the DUEs come mainly from Illegal Address

(i.e., trying to access an incorrect memory address), which is an expected phenomenon

since all the Register File (RF), shared, and cache memories are unprotected, including

the ones that store the memory addresses for Load/Store instructions. A corruption in the

memory addresses is likely to violate the memory policy and be translated into an Illegal

Address. On the other hand, when the ECC is turned on, protecting the RF, shared, and

cache memories, there is a significant reduction of the average of Illegal Address DUEs

(less than 8% on Kepler, and less than 2% on Volta) and a consequent increase in proba-

bility DUE to be caused by ECC Uncorrectable errors. It is reasonable to believe that the

errors that caused IllegalAdreess DUEs when ECC is off migrated to ECC Uncorrectable

DUEs when ECC is on.

Section 4.2 have shown that the FIT rate for ECC on DUE is, on average, 30%

bigger on Kepler. Thus, it is expected that ECC Uncorrectable errors happened more

often than the other types. For instance, on Kepler, Illegal Address happened 1.8× less

than ECC Uncorrectable errors, on Volta, Illegal Address happened 37× less than ECC

Uncorrectable, when ECC is on.

Volta GPUs have support to Matrix Multiplication to be performed on hardware,

though MMA instruction. Figure 6.4b shows an exciting behavior for GEMM that uses

MMA instructions when compared to the traditional software Matrix Multiplication, com-

posed of a sequence of Fused Multiply and Add (FMA) instructions. There is a reduction

for ECC Uncorrectable DUEs of 10% for HGEMM-MMA and 22% for FGEMM-MMA

compared with common HGEMM and FGEMM, respectively.

It is worth remembering that MMA instructions are Single Instruction Multiple

Data (SIMD). MMA instructions operate directly in 16x16 matrices, while standard FMA,

used for general matrix multiplication, operates only in three registers. As expected, fewer

address calculations are necessary, consequentially fewer registers to store the addresses,

reducing the ECC Uncorrectable errors on MMA’s GEMMs.

Launch Failure is a DUE source directly related to how the kernels manage the

resources necessary for computation, such as global, shared, and local memories. The

error is caused by accessing invalid memory pointers, out of bounds shared memory and

system-related configurations. For instance, Quicksort on Kepler, each thread can also

launch other parallel kernels using NVIDIA Dynamic parallelism. So, each thread can

generate at least one Launch Failure error on Quicksort.
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6.5 Case Study: Measuring the Compiler Impact on Reliability with SDC rate esti-

mation

Until now, it has been demonstrated that the SDC estimation can provide a reason-

able estimation based on fault simulation and profiling data. However, as shown on the

AVF results in Section 4.3 the compiler can have a high impact on the final estimation. It

is worth remembering that the software fault injection is done on the SASS code gener-

ated by the compiler. Consequentially, it is necessary to study how the compiler can bias

the error analysis at the software level. Additionally, it is possible to compare the SDC

estimation with other metrics commonly used for error evaluation.

This Section presents a case study on how the compiler impacts the reliability eval-

uation. Also, the effects of the optimization flags applied at the NVCC Parallel Thread

Execution (PTX) compiling phase are analyzed. This Section uses the SDC rate pre-

diction presented before and another metric that only considers software level, the SDC

probability (the AVF weighted by the instruction percentage). Multiple NVCC optimiza-

tions for the two compiler versions are used (NVCC 10.2 and 11.3), and the impact of

each optimization using both the SDC probability (only software) and the SDC error rate

estimation are compared.

6.5.1 Optimization flags and compilers

A subset of benchmarks listed in Section 3.2 is selected to be evaluated on Kepler

and Volta GPUs. The codes are compiled with two NVIDIA CUDA Compiler (NVCC)

versions, NVCC 10.2 and 11.3. The select versions of NVCC are the latest ones that si-

multaneously support Kepler and Volta architectures. Each major update on NVCC intro-

duces support to newer architectures and compiler optimizations, which can be beneficial

or not to reliability.

All the GPU kernels are compiled with multiple NVCC compilation flags to mea-

sure the impact of each optimization on the final Source and Assembly (SASS) code.

The flags that generate a SASS code that differs from default NVCC optimization (O3)

are selected. It is expected that two identical codes will have the exact fault propagation

probabilities and the same FIT rate.

The following optimization flags are used in the evaluation:

O0, O1, and O3: The optimization levels available on NVCC for the tested benchmarks.
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Although O2 is supported for NVCC, the O2 option generates the same code as O3 for

the tested applications. All flags, but O0 and O1, are related to float approximations or

register file usage. The approximation flags are tested on top of the default NVCC con-

figuration (03).

FTZ-ON: The –ftz=true flag on NVCC flushes subnormal numbers (i.e., values smaller

than the smallest possible value) to zero. Faults that generate subnormal numbers will

probably be masked with FTZ-ON.

FMAD-OFF: The default NVCC optimization is to contract the multiply and accumulate

instructions into FMAD, FFMA, or DFMA. To disable the contraction of the multiply

and accumulate instructions, it is necessary to pass –fmad=false as a parameter. The con-

tracted instruction may generate a different result due to destructive cancellation, so it is

expected that the impact of a fault will be different on contracted instructions.

MinRF: Each thread on a CUDA kernel can use up to 255 registers, respecting the limits

of the GPU occupation. With the flag –maxrregcount=N the maximum number of reg-

isters per thread can be set, where N is the limit of registers per thread. For this work,

the number of registers per thread is set to the minimum for each architecture, 16 for Ke-

pler, 24 for Volta. Limiting the number of registers per thread can be used to increase the

GPU occupation. However, it also increases the register spill to the memory, which can

decrease the performance.

PrecSqrt-OFF and PrecDiv-OFF: The flag –prec-sqrt=false and –prec-div=false allow

the NVCC to use a fast approximation for the square root and float divisions, respectively.

Float approximations improve performance but may change the impact of the fault in the

final result.

FAST-MATH: Passing the flag –use_fast_math to NVCC enables all the fast approxi-

mations for arithmetic float operations. That is, all the flags –ftz=true, –prec-div=false,

–prec-sqrt=false, –fmad=true are set in the compilation process.

6.5.2 Preliminary analysis: Dynamic instructions profiling

It has been shown that the fault masking is directly related to the basic blocks

organizations and instruction dependencies of the code (ANWER et al., 2020). Conse-

quently, a code compiled with the O0 flag can mask more faults than a code compiled

with O3, as the unoptimized code (O0) has more dead code and redundant instructions.

As a consequence, a fault in a redundant instruction output will be masked (Ashraf et al.,
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2017). However, the unoptimized code will take much longer to execute than the opti-

mized one. Thus, it is necessary to consider the code size and the execution time in the

reliability analysis of different compiler optimizations.

Almost all the benchmarks listed in Section 3.2 have been built with all the flags

and compilers described previously. Figure 6.5 shows the code size and the execution time

relative to the default NVCC compilation (O3). The code size is measured by counting the

kernels SASS lines compared with the default NVCC configuration. The O3 configuration

is marked as a red line in the figure to represent the relative size for each configuration.

Figure 6.5: Code size and execution time relative to default NVCC compilation for ver-
sions 10.2 and 11.3
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Approximation is one of the most intuitive examples of the trade off between

performances and accuracy. Reducing the hardware core iterations to execute a floating-

point operation, e.g. using the fast math option, is a common type of approximation.

While it generally reduces the accuracy of the result, it can reduce the code size and the

execution time, as shown in Figure 6.5. From a reliability perspective, approximation

improves performance and can reduce the error rate (smaller area and/or fewer operations

executed). However, the impact of the fault in the approximate result can be higher as

fewer bits are used to represent the output. The probability for the fault to propagate

(AVF) can then be higher.

When compiler flags that limit the optimizations are applied (MinRF, O0, and

FMAD-OFF), the generated code is larger, and execution time tends to be higher (Fig-

ure 6.5). When the code is compiled with limited/no optimizations, the generated SASS

is not reorganized for performance or optimized memory accesses. Similarly, when the

register file usage is limited, the compiler inserts many register spills instructions to com-

pensate for the reduced registers per thread. The MinRF code size has, on average, 23%

more instructions than the only O3 code.

The execution time follows the same trend as code size. The optimizations that

perform approximation on the float instructions have a lower execution time than purely
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O3 compiled code. In fact, the FAST-MATH flag can reduce 40% of the execution time for

some codes. Contrarily, O0 and MinRF have the highest execution time. The unoptimized

code (O0) significantly reduces the instruction-level parallelism and reduces the memory

accesses performance, increasing the latency of the instructions. Equivalently, for the

MinRF version, the register spills necessary for reduced register file usage have a high

cost in terms of execution time. The instructions must wait for the operands that are not

in the register file.

Even if an unoptimized code has a lower error rate than an optimized one, it may

not be beneficial in terms of the amount of work produced before experiencing a failure

(i.e., Mean Work Between Failures (MWBF)). As show in Figure 6.5 an incorrect applied

optimization can be 5× slower than the optimized one (O3). Section 6.5.5 shows that the

optimized versions have higher MWBF than the unoptimized ones.

6.5.3 SDC probability

As discussed in previous works (YIM et al., 2011; FENG et al., 2010; LI; PAT-

TABIRAMAN, 2018; PALAZZI et al., 2019; ANWER et al., 2020), the instruction AVF

alone does not represent the probability of a given instruction selected from the code to

generate an SDC at the end of the execution. It is also necessary to consider the probabil-

ity of the instruction to be picked on the fault injection campaign and generate an SDC.

As the fault simulation is performed with multiple NVCC optimizations and with two dif-

ferent compiler versions, it is expected that the instruction distribution will be changed.

To consider the optimization impact in the fault propagation, the instruction distribution

is also considered on the fault propagation analysis, measuring the SDC probability (LI;

PATTABIRAMAN, 2018), as show in equation 6.5.

PSDC =
∑

(AV Fi ∗
Ni

Ntotal

) (6.5)

Where AV Fi represents an AVF for a given instruction i, and Ni

Ntotal
represents the

probability of an instruction i in the total instruction count (the percentage of instruction

i).

Figure 6.6 shows the SDC probability (PSDC) distribution (vertical axis) for all the

evaluated codes (horizontal axis). The results are shown for two GPUs, Kepler and Volta,

with two NVCC versions. For each device and compiler, the flags present in Section 6.5.1
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are tested. As some codes are mostly composed of NVIDIA closed libraries and can not

be optimized, not all codes from Section 3.2 can be compiled with different flags.

Figure 6.6: Silent Data Corruption Probability (P(SDC)) distribution. Based on (LI; PAT-
TABIRAMAN, 2018)
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For the majority of the benchmarks, the results show only a slight variation in the

SDC probability. The Coefficient of variation (i.e., how much the values are different

from the mean) is on average 15%. Most of the codes, but CCL, BFS, and NW, present

a SDC probability for the most optimization flags near the default configuration (O3).

This suggests that the error rate should not change much despite a high modification in

the executed machine code. This may be counterintuitive and can be caused because

SDC probability does not consider a significant part of the reliability equation, i.e., the

hardware fault probability. The analysis that will be proposed in the following subsection

and the experimental validation proposed in Section 6.5.5 verify this statement.

CCL, BFS, and NW have coefficients of variations of 31%, 35%, and 50%, re-

spectively. CCL, BFS, and NW are benchmarks that have a low AVF compared with the

other codes. Additionally, CCL, BFS, and NW are naive and not tuned for performance

implementations. Consequently, the benchmarks instruction distribution is very concen-

trated in load/store and MISC (i.g., sync and NOP) instructions. The reliability evaluation

of load, store, and MISC instructions is challenging, and it is hard to determine their sen-
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sitivity by software fault injection. Thus, the SDC probability may not reflect a realistic

scenario.

The compilation flag that produces the lowest SDC probability is the unoptimized

code (O0). The probability for the fault to be propagated (AVF) is lower for O0. The codes

built with O0 have useless basic blocks, or the output register is overwritten, increasing

the fault masking. On the other hand, the MinRF, FAST-MATH, and FTZ-ON have the

highest SDC probabilities. When the number of registers is limited, the criticality of each

register increases, as the compiler will continuously optimize to use all registers available.

As the number of instructions is reduced for the approximation flags, the fault impact in

an approximated instruction is expected to be higher at the software level. Obviously,

SDC probability does not consider that a lower number of registers and approximation

reduces the probability for the hardware fault to be generated.

Each functional unit has a specific probability of being corrupted. Consequently,

if an optimization changes the code instructions distribution, the AVF (evaluated by the

SDC probability) and the instruction’s contribution to the final error rate will change. It

is mandatory to consider both the functional units error rate and the performance of the

code to estimate a more accurate error rate. The hardware/software analysis is presented

in the following subsection.

6.5.4 SDC rate estimation

Figure 6.7 shows the SDC rate estimation (using the same approach present on

Section 6.1) for all configurations used in the SDC probability experiments. The values

in 6.7 are normalized by the highest estimated SDC rate for each board (i.e., FHOTSPOT

FAST-MATH 10.2 for Kepler, and FMXM O0 11.3 for Volta). It is worth noting that the

SDC probability and SDC rate estimation consider only errors on the functional units and

the output registers. The caches and shared memories error rate are not considered for

SDC probability or the SDC rate estimation. This scenario would be comparable to the

ECC ON on a real device.

The average Coefficient of Variation for the SDC rate estimation is 33.6% for all

the configurations present in Figure 6.7. The highest variations come from FLAVA, 98%

for Kepler and 103% for Volta. From the experiments, FLAVA is the most computing-

intensive code, 75% of the instructions are float arithmetic. FLAVA error rate is directly

connected to the functional units’ error rate and how they are used. If a flag configuration
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or a compiler generates a code that changes the IPC or the instruction distribution, the

SDC rate will be directly modified.

CCL, BFS, FGAUSSIAN, and NW have the lowest estimated SDC rate (the nor-

malized value is near 10−3). The low SDC estimation for FGAUSSIAN is due to the low

AVF related to the instructions that compose the code. Comparatively, the FGAUSSIAN

also has the lowest SDC probability. On the other hand, CCL, BFS, and NW have a low

SDC estimation due to very low IPCs and GPU occupation. This may present a method-

ology limitation, as the error rate estimation is normalized on performance metrics. Still,

for codes that perform poorly on performance metrics, it is necessary to evaluate other

instruction types on the GPU, such as branch, sync, and load/store from multiple levels

of cache. That is, the analysis must also evaluate the instructions that reduce the per-

formance of the kernel (i.g, instructions that create stalls in the pipeline) to increase the

accuracy of the estimation.

Figure 6.7: SDC rate estimation (†FIT ) distribution. Based on the methodology pre-
sented on 6.1

CCL BFS FCFD FGAUSSIAN FHOTSPOT FLAVA FLUD FMXM MERGESORT NW

0.0

0.2

0.4

0.6

0.8

1.0

Si
le

nt
 D

at
a 

Co
rru

pt
io

n 
ra

te
 e

st
im

at
io

n 
- 

FI
T

MinRF O0 O1 O3 FAST-MATH FMAD-OFF FTZ-ON PrecDiv-OFF PrecSqrt-OFF

Kepler NVCC 10.2 Kepler NVCC 11.3 Volta NVCC 10.2 Volta NVCC 11.3

NVCC 10.2 vs. 11.3: As expected, for the SDC probability, the differences be-

tween the compilers are not significant. The SDC probability ratio between NVCC 10.2

and 11.3 is on average 10%. Contrarily, for the SDC rate estimation, the NVCC 10.2

produces an estimation on average 7× higher than NVCC 11.3. In fact, the SDC rate
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estimation differences between NVCC 10.2 and 11.3 are not homogeneous as the SDC

probability. That is, a subset of the benchmarks has very high differences between the

compilers. While the differences between the NVCC 10.2 and 11.3 in the 75% quartile of

the experiments are only 25%, they can be 16× higher in the last quartile.

It has been shown that the optimization flags may change the error rate of an

application. It is worth noting that the software analysis provides similar SDC probability

for most configurations, which can be inaccurate as an estimator for the error rate. The

differences between the optimization flags appear only when the hardware error rate is

added to the analysis. A subset of configurations evaluated with beam experiments will

be analyzed in the next section to help to demonstrate this observation.

6.5.5 Validation through beam experiments

Beam experiments are performed to validate the analysis proposed above and to

show that a purely software fault injection is not sufficient to evaluate compiler optimiza-

tions effects on the code error rate.

Figure 6.7a shows the Failure in Time (FIT) rate for the Matrix Multiplication

(MXM) running on a Kepler GPU under a neutron beam. To avoid revealing business-

sensitive data, the FIT rate is normalized by the smallest value (i.e., MXM compiled with

O0 when ECC is ON). The data is presented with ECC enabled (ECC ON) and disabled

(ECC OFF) to evaluate also the impact on the error rate of the register file, caches L1/L2,

and shared memories.

On average, the optimization flags applied to MXM have a Coefficient of Varia-

tion between them that is 28.6%. Compared with the variations measured with the two

methodologies shown above, the SDC probability has a variation for MXM of 8.7%, and

the SDC rate estimation has a variation of 54%.

When the ECC is OFF, the SDC FIT rate is one order of magnitude higher than

when ECC is ON. Another interesting aspect is that the SDC FIT rate is always higher

than the DUE FIT rate when ECC is OFF while when ECC is ON, the DUE rate is similar

to or higher than the SDC rate. This is because a double-bit flip detection triggers an

exception, that leads to a crash.

Table 6.1 shows the ratio between the NVCC 10.2 and 11.3 FIT rates. When ECC

is OFF, the results show that the SDC rate for NVCC 10.2 is on average 30% higher

than NVCC 11.3 SDC rate. For ECC ON, the results show that the SDC and DUE for
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Figure 6.8: Error rate for FMXM compiled with different configurations running on a
Kepler GPU.

(a) Normalized Failure In Time (FIT) rate for CUDA 10.2 and 11.3
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Table 6.1: NVCC Ratio between NVCC 10.2 and 11.3. When the ratio is higher than 1,
NVCC 10.2 FIT rate is higher than NVCC 11.3.

SDC DUE

ECC OFF O1 1.2 1.1
O3 1.4 0.9

ECC ON

MinRF 1.0 1.3
O0 4.3 2.1
O1 2.0 1.1
O3 0.5 0.7

NVCC 10.2 are on average 95% and 30%, respectively, higher than NVCC 11.3. These

results follow the observations presented in Section 6.5.4 and attest that just considering

the software fault injection would lead to imprecise estimations. The MXM build with

NVCC 10.2 with the O3 uses the GPU resources better (including registers) and has a

better performance than O3 NVCC 11.3 version. Consequentially, the FIT rate is lower

for NVCC 10.2 with O3.
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Table 6.2: Ratio between the estimated SDC FIT rate and the SDC FIT rate obtained from
beam experiments.

ECC OFF ECC ON

NVCC 10.2

MinRF – 1.3
O0 – 1.3
O1 1.1 1.9
O3 -1.6 -1.6

NVCC 11.3

MinRF -1.1 1.3
O0 -1.6 -3.3
O1 -1.3 -1.1
O3 -2.1 1.2

Table 6.2 shows the ratio between the SDC rate estimation and the SDC rate ob-

tained on beam experiments. The results are following the data presented on Section 6.4.

That is, the estimated SDC rate is very similar to the obtained in a realistic environment.

6.5.6 Mean Workload Between Failures

To improve the discussion proposed in the FIT analysis, considering the perfor-

mance gain brought by GPU code optimizations, it is necessary to use a metric that cor-

relates reliability with performance. The Mean Work Between Failures (MWBF) is

measured for each tested configuration. The MWBF is defined as the amount of correct

data produced by the system before experiencing a failure (SDCs and DUEs) (REIS et

al., 2005). The MWBF is calculated by multiplying the number of executions between

failures by the workload of the application. A higher MWBF rate means the system can

process a bigger workload without experiencing errors. It is possible to determine if a

specific optimization or a compiler upgrade generated codes that can produce more use-

ful data before experiencing an error.

Figure 6.7b shows the MWBF for the float matrix multiplication (FMXM) for all

the configurations tested on the neutron beam experiments. Despite increasing the error

rate, flags that improve the performance also increase the MWBF of the application. In

fact, the optimized version can process more data before experiencing a failure. The

differences in the FIT rate for the O3 version for NVCC 11.3 reflect in the MWBF. The

NVCC 11.3 version uses fewer registers than the 10.2 one. Consequently, the O3 version

with the NVCC 11.3 has a higher MWBF when ECC is OFF. However, when the ECC

is ON, the O3 for NVCC 11.3 increases the FIT rate by 60% and keeps the performance.

The result is that the NVCC 10.2 compiled with O3 when ECC is ON has the highest
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MWBF from all configurations. Additionally, the ECC OFF version has a MWBF one

order of magnitude lower than the ECC ON. Even with the DUE increase, the ECC ON

version is more reliable and delivers more useful data than the ECC OFF.

It has been shown that the minor modifications on the compilation, like a slight

increase in the register file usage, can impact the application’s reliability. The many test

configurations present similar reliability on the analysis based solely on software-level

metrics (SDC probability). However, it has been shown unrealistic when the hardware

factors are applied to the investigation (SDC rate estimation). The software level analysis

is still a reasonable estimator of the code fault propagation. But, it does not consider

hardware factors such as instructions latency, GPU occupation, and IPC, which have been

demonstrated to impact the final error rate.

6.6 Considerations on FIT estimation

In this chapter, a methodology to estimate the FIT rate for GPUs is presented.

Most of the time, the estimation is satisfactory. Even considering the outliers, the SDC

prediction average stayed up to 12×. Additionally, in a case study, the FIT rate estima-

tion is compared with another metric that considers only software-level analysis (SDC

probability).

Although the FIT estimation can give a satisfactory result, the results showed that

the most common error model might not be the best approximation for fault injection to

simulate beam acceleration tests. The next chapter will present a new error model based

on the RTL fault injection to try to fill the gap between the beam error model and the

software error model.
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7 IMPROVED FAULT SIMULATION ERROR MODEL

This Chapter presents a new error model for GPUs as one of the significant con-

tributions of this work. The RTL fault simulation results are shown, then the new error

model for GPU’s fault simulation is proposed.

7.1 Overview of the Idea

The GPUs’ proposed reliability evaluation framework is divided into two main

steps: RTL fault simulation and software fault simulation (Figure 7.1).

Figure 7.1: Scheme of the proposed two-level fault simulation framework. Using the RTL
model the effects that faults in GPU modules (the fault injection is not performed in the
modules depicted as white boxes) have on the micro-instructions output are character-
ized. Based on the micro-instruction, its input, and the module of interest the fault model
(syndrome) is injected in software on a real GPU that executes a code.
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Using a GPU RTL model (details in Section 3.5.2), faults in the GPU main com-

puting modules are simulated. Pipeline Registers, Warp Scheduler, FP32 and INT func-

tional units, Special Function Units (SFUs), and control signals are considered. Errors

in memories (caches and register file) are not considered as it is assumed that GPUs em-

ployed in applications with strict reliability requirements feature ECC. Moreover, as a

fault in a memory cell(s) affects a software’s visible state directly (it translates into a

corrupted value with no further operations), its syndrome is already well known (sin-

gle/double bit-flip) and depends just on the memory technology (BAUMANN, 2005). On

the contrary, a fault inside a computing resource during an operation’s execution has a

not-obvious impact on the output (syndrome) (SUBASI et al., 2018), which is intended to

characterize.

Rather than executing an application in the RTL model, the effect of faults in a sub-

set of GPU ISA micro-instructions is characterized. Micro-instructions are the simplest,

atomic, two-input machine operations that form the compiled code. A micro-instruction
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is directly translated into hardware signals inside the device. The characterized micro-

instructions are based on GPU code profiling shown in Section 6.2. The codes used for

RTL fault injection follow the same approach described in Section 6.3. The only differ-

ence is that the micro-benchmarks used on the beam tests have 108 sequentially opera-

tions, while the micro-benchmarks used in RTL fault injection have only one operation.

Since there is no time constraint on fault simulation, there is no need to use more than one

operation. Additionally, the goal of fault simulation on RTL is to evaluate the functional

unit module and not a device as on beam experiments.

The operations evaluated are: Float point (FADD, FMUL, FFMA - Fused Mul and

Add), Integer operations (IADD, IMUL, IMAD - Mul and Add), Trascendental functions

(SIN, EXP), Load/Store (GLD, GST), Branch (BRA), and Integer set predicate/register

(ISET). This work also evaluates a mini-app (tiled MxM) to highlight possible scheduler

corruption effects that could be hidden in the SASS instructions characterization (details

in Section 7.2).

A perfect RTL fault injection would require one to test each micro-instruction with

the exact input values it receives when executed in the code being characterized, which is

unfeasible. Then the analysis is reduced to three input ranges Small, Medium, and Large.

Small range are numbers near to zero (i.e., between 10−5 to 10−6), Medium are numbers

between 101 to 103, and Large are numbers with exponent bigger than 105. Previous

work has shown that software fault injection results for GPUs do not depend on the input

value (with unbiased values) (Previlon et al., 2018). Part of this work contribution is to

understand if this result still holds for RTL fault injection and how much the fault effect

on the instruction output depends on the input value.

With the RTL fault simulation, both the probability for the fault to reach a vis-

ible software state (i.e., the Architectural Vulnerability Factor, AVF (MUKHERJEE et

al., 2003)) and the fault impact on the instruction output value have been measured. A

database of possible fault syndromes has been built based on the micro-instruction op-

code, the input range, and the injection site (the corrupted module). To quantify the

syndrome, a statistical distribution of the relative difference between the expected and

the observed corrupted micro-instruction output has been shown. In other words, it is

tracked how much in percentage the fault has modified the micro-instruction(s) output.

The syndromes, the number of corrupted threads, and the spatial distribution of wrong el-

ements (for tiled-MxM) populate a database used for the software fault injection, available

at (SANTOS et al., 2021).
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To simulate the RTL fault syndromes in software, the NVBitFI has been updated

(details in Section 3.5). The updated version of NVBitFI extracts the most suitable fault

syndrome from the RTL fault injection database to apply, considering the opcode and in-

put range. Once the instruction output is corrupted, the code execution continues, and the

effect on the output is characterized as SDC, DUE, or Masked. With modified NVBitFI,

then, the probability for the faults that reached a visible software state to propagate further

till the application output is measured (i.e., the Program Vulnerability Factor, PVF (SRID-

HARAN; KAELI, 2009)).

The benefit of the proposed strategy relies on the fact that the detailed and time-

consuming RTL evaluation on the SASS instructions is done only once to populate the

syndromes database. The software fault injection maintains its efficiency (thus allowing

the assessment of complex applications). Still, it provides both extra accuracy, by using

the RTL syndromes, and impact, as it is possible to the observed SDCs with their hardware

source.

7.1.1 Contributions and Limitations

This work proposes, for the first time for GPUs, to combine the fine-grain evalu-

ation of RTL fault injection with the flexibility and efficiency of software fault injection

in real GPUs. As characterizing realistic codes with RTL fault injection is unfeasible, it

is necessary to limit the RTL analysis to common GPU SASS instructions, gathering the

syndrome induced by faults in the instruction output value, i.e., an accurate fault model

for the most common machine operations is produced. As all GPU modules are acces-

sible in the RTL model, it is possible to provide deeper insights into GPU faults source

and characterize the effects of the fault on multiple threads. Then, using an updated soft-

ware framework (NVBitFI), the syndrome from the RTL analysis is injected (rather than

a simplistic fault model as all previous works on GPU software fault injection do). The

high speed of software fault injection allows us to observe the effect of fault syndromes

in the execution of real-world applications. In contrast, the few previous works on GPU

RTL fault injection are limited to naive workloads. While the proposed strategy can ef-

fectively allow a more detailed and accurate GPU reliability analysis, it is worth noting

some intrinsic limitations:

1. RTL is not the lowest possible abstraction layer (see Figure 2.1). RTL fault injection
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is chosen because the circuit or gate models are not available for GPUs, and their

characterization would, in any case, take too long. As shown in previous work,

though, RTL evaluation accuracy is very close to gate level simulation (Kochte et

al., 2010).

2. The proposed evaluation shares with any other research work based on open-source

models the limitation of being based on mature architectures. FlexGripPlus, the

only RTL open-source GPU model currently available, is based on NVIDIA G80

architecture. While it is impossible to guarantee that the observed fault syndrome is

representative of cutting-edge GPUs, the G80 is still CUDA compliant. It is based

on the same Instruction Set Architecture (ISA) of modern NVIDIA GPUs such as

Kepler, Volta, and Turing (except for tensor core and a few other instructions based

on updated modules). The hidden structures of a GPU, such as the scheduler and

the pipeline registers, are also supposed to be present even in modern architectures.

Given the CUDA compatibility, the decision is made based on the only RTL de-

scription available, even if it is from a different generation. Also, while probably

the FlexGripPlus intrinsic limitation might impact the precision of the evaluation, it

does not undermine the impact of the proposed strategy, which is directly adaptable

to other GPU RTL models as they become available.

3. The syndrome imposed by a fault could depend on the operation input. Testing all

inputs combination is impossible. Then, it was decided to limit the characterization

to three input ranges.

7.2 RTL fault injection results

As described in Figure 7.1 the first step to the proposed idea is to perform RTL

fault simulation. This section describes the process and discusses the results of the micro-

instructions AVF. The fault simulation is performed in 6 GPU modules characterizing,

for most modules, 12 micro-instructions with different input sets (3 ranges and 4 values

per range for arithmetic operations). In total, 144 RTL fault-injection campaigns are

performed and, for each campaign, more than 12,000 faults are injected. That is, data is

presented from more than 1,72x106 fault injections. This guarantees a statistical margin

error lower than 3%. RTL fault injection experiments were performed at Politecnico di

Torino in a research collaboration between both universities.
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Figure 7.2 shows, for simulations in Functional Units (FP32, INT, SFU), Warp

Scheduler, and Pipeline Registers, the AVF of each micro-instruction. Injections in func-

tional units for GLD, GST, BRA, and ISET have not been considered as the FUs are

idle when executing those micro-instructions. In Figure 7.2 it is possible to distinguish

between SDCs affecting single or multiple threads. The AVF does not significantly de-

pend on the input range (the AVF difference between S, M, and L inputs is always lower

than 5%), in accordance with (Previlon et al., 2018). In Figure 7.2 only the average AVF

measured with the three input ranges has been shown. Section 7.2.1 shows that the fault

syndrome does depend on the input range.

Figure 7.2: AVF of the injections at RTL level on the functional units (FP32, INT, SFU),
the scheduler, and pipeline registers for the different micro-instructions. The average AVF
measured with the S, M, L input ranges is plot.
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Figure 7.2 shows that faults in the scheduler are less likely to impact the compu-

tation than faults in the functional units or pipeline (the y-axes are on different scales).

It is reasonable to recall that in the micro-benchmarks, threads do not interact with each

other, reducing the scheduling strain. Moreover, the functional units corruptions are much

more likely to generate SDCs than DUEs, while DUEs mainly dominate the outcome of

injections in the pipeline. The observed behaviors are further investigated.

More than 60% of the SDCs caused by scheduler corruptions affect more than

one thread for the INT and FP32 micro-benchmarks, while injections in the functional

units cause multiple threads corruption only FSIN and FEXP. This is because the GPU

has a dedicated ADD, MUL, and MAD unit for each thread while the few (two) available

special function units (SFUs) need to be shared among different threads (see Figure 7.1).

A more in-depth analysis of the multiple SDCs sources revealed that faults cause the

multiple corrupted threads observed with functional units corruptions in FSIN and FEXP

are in the control units of the SFUs. Interestingly, also pipeline injections cause multi-

ple threads corruption. Investigating the causes for those multiple threads, it has been

found that, while most of the pipeline registers (≈84%) store operands for each parallel

core, there is also a tiny portion of registers (≈16%) devoted to controlling signals. The
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corruption of these latter registers caused the observed multiple threads SDCs.

On average, the number of corrupted parallel threads per warp is 1 for INT and

FP32 functional units, 8 for the SFUs, 28 for the scheduler, and 18 for the pipeline. These

averages show that the parallel operation’s modules in the GPU, such as the scheduler

and the pipeline, are more prone to corrupt a high number of multiple threads in a warp

than others. A fault in the control structures and signals of the pipeline and, mainly, of

the scheduler (which manages the warp operation) affects multiple threads. The lower

number of threads corrupted in the pipeline is related to the number of available FUs and

active threads at a given time (8 in our case). As some signals are not updated until a

new warp is dispatched, their corruption affects, on average, two of the four groups of 8

threads in a warp (32 threads).

The high DUE AVF for the pipeline (0.3% for floating-point, 2% for integer, 4%

for special units, 10% for control operations) is caused by corruptions of pipeline control

registers, despite being few (≈16%), are confirmed to be highly critical. The DUE AVF

is exacerbated for special function units because of the additional control signals required

to share the few available SFUs and control flow operations (GLD, GST, BRA, ISET), a

fault in the data path registers can corrupt the control flow.

The scheduler DUE AVF is almost constant (between 0.5% and 0.6%) for all

micro-instructions but BRA and ISET, for which the DUE AVF is about 0.8%. Track-

ing the fault propagation, scheduler DUEs are caused by faults affecting structures in the

controller devoted to storing the state of the warp or memory addresses. In contrast, the

scheduler SDCs are mainly caused by faults affecting warp state bits, disabling active or

enabling inactive threads.

As observed in Figure 7.2, the functional units AVF for the floating-point instruc-

tions (FADD, FMUL, FMAD) is much smaller than for the integer instructions (IADD,

IMUL, IMAD). This is caused by the higher complexity and area of the floating point

units, which are more than 3x larger than the integer units. A larger area increases the

number of injection sites, thus reducing the probability of selecting a critical computation

resource.

7.2.1 Fault Syndrome

For each SDC observed at the micro-instructions output a detailed report a de-

tailed report has been kept (described in Section 7.2), that includes also the corrupted
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output value. The fault syndrome is then characterized by measuring the relative error

induced by the fault (i.e., the ratio between the observed wrong output and the expected

output).

The relative error syndrome analysis highlights an exciting trend. Figures 7.3

and 7.4 show the distribution of relative errors for the tested micro-benchmarks. In the y-

axes is plotted the percentage of observed SDCs that modify the micro-instruction output

value from less than 10−8 to over 102. That is, 0.2% of SDCs observed on FADD executed

with the Small input range modify the output value by 10−6× and 0.3% of SDCs observed

on FFMA executed with the Large input range modify the output value by 10×.

Figure 7.3: Distribution of the fault syndrome (relative error) from the RTL fault injection
in the Functional Units (top), Pipeline (middle), and Scheduler (bottom) for the floating
point instructions executed with S, M, L inputs.

0.0%

0.1%

0.2%

0.3%

0.4%

0.0%

0.1%

0.2%

0.3%

0.4%FU-Small FU-Medium FU-Large

Pipeline-Small Pipeline-Medium Pipeline-Large

relative error relative error relative error

relative error relative error relative error

0.0%

0.1%

0.2%

0.3%

0.4%

<10-810-6 10-4 10-2 10 >102 <10-810-6 10-4 10-2 10 >102 <10-810-6 10-4 10-2 10 >102

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

<10-810-6 10-4 10-2 10 >102
0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

<10-810-6 10-4 10-2 10 >102
0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

<10-810-6 10-4 10-2 10 >102

FADD FMUL FFMA FSIN FEXP

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

relative error
<10-810-6 10-4 10-2 10 >102

Scheduler-Small

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

relative error
<10-810-6 10-4 10-2 10 >102

Scheduler-Medium

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

relative error
<10-810-6 10-4 10-2 10 >102

Scheduler-Large

As shown in Figures 7.3 for floating-point and Figure 7.4 for integer instructions,

the relative difference between the observed corrupted values and the expected value does

not follow a Gaussian distribution. There is a clear peak for all instructions that depend

on the input range and the injection site. In some configurations (FFMA and FMUL FU
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Figure 7.4: Distribution of the fault syndrome (relative error) from the RTL fault injection
in the Functional Units (top), Pipeline (middle), and Scheduler (bottom) for the integer
instructions executed with S, M, L inputs.
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injections with L input), two peaks are present. It is also interesting that the relative

difference distribution is narrow compared to the floating point or integer representation

range. Only a few cases (less than 0.05%) have been observed a syndrome with a relative

error higher than 102 (i.e., the corrupted output value is 100x bigger/smaller than the

expected one). This observation attests that injecting a random number of bit-flips in the

instruction output might not be realistic. The results show that there is a limited difference

between corrupted and correct values. Interestingly, the median of the syndrome values

between S/M/L varies by just∼1% in all cases but MUL and FMA, for which the median

changes by up to 30% (bigger input range has higher median). Only for MUL and FMA,

then, is expected a syndrome dependence on the input.

Once the opcode, the input range, and the injection site have been determined,

to inject the syndrome in software, it is necessary to select a relative error, statistically

taken from the data presented in Figures 7.3 and 7.4 and available at (SANTOS et al.,



105

2021). The syndrome (as relative error) does not follow a Gaussian distribution (almost

all distributions have a p-value smaller than 0.05 on the Shapiro-Wilk test), but instead

follows a power law distribution (CLAUSET; SHALIZI; NEWMAN, 2009), in which

few events are predominant. A Pseudo-Random Number Generator (PRNG) function is

created, based on the mathematical formalization in (CLAUSET; SHALIZI; NEWMAN,

2009), that generates the syndrome to be injected as follows:

relative_error = P−1(1− r) = xmin(1− r)−1/(α−1) (7.1)

Where 0 ≤ r < 1 is a uniformly distributed random value, α is the scaling factor

from the data, and xmin is the values lower bound. Both parameters are extracted from

the data on figures 7.4 and 7.3 based on the methods described in (CLAUSET; SHALIZI;

NEWMAN, 2009).

7.2.2 Tiled MxM errors distribution

Scheduler corruptions (and multiple threads corruptions in general) may have spe-

cific effects on the execution of codes in which threads interact with each other that may

not be detected with the micro-benchmarks that have been designed. As a specific and ex-

tremely important case study, this work also characterizes with RTL fault injection a tile-

based matrix multiplication (t-MxM) mini-app. The observation dictates the choice of

the mini-app that more than 70% of operations inside a CNN is MxM related (REDMON;

FARHADI, 2018). To avoid memory latencies and, thus, improve matrix multiplication

efficiency, large matrix multiplications are split into tiles (smaller MxM). The tile size is

set to maximize performances without saturating caches and registers. In the proposed

framework, the optimal tile size is 8x8. Each tile is assigned to a Streaming Multipro-

cessor and, then, all tiles are combined to form the output of MxM. In a CNN, the MxM

output forms the layer output (feature map).

To select the input for t-MxM, FLENET and FYOLOV3 have been executed with

the MNIST (LeCun et al., 1989) and VOC2012 (EVERINGHAM et al., 2012) datasets

and observed that most tiles involved in the convolution process have similar values. In

contrast, the tiles at the edge of the feature map have a higher amount of zero operands

because of padding (REDMON; FARHADI, 2018; LeCun et al., 1989). Then three inputs

for the tiles have been characterized with the RTL fault injection: (Max) Max tile (the tile



106

with the highest sum of elements values), (Z) Zero tile (the tile with the highest number of

zeros), and (R) Random tile (a tile selected among the ones without significantly biased

values). Four different values per tile type (Max, Z, R) are used.

A dedicated procedure o corrupt the output of tiled-MxM is included inside The

CNNs. The fault simulator picks a random tile during the execution of a random CNN

layer and modifies its output elements according to the syndrome (relative error and spa-

tial distribution) defined with the RTL fault injection.

To better study the impact of multiple threads corruptions in codes with threads in-

teractions, with the RTL fault injector, the mini-app t-MxM is characterized. Three input

types (Max, Zero, and Random tiles) are tested, averaging the results obtained with four

values per input type. For t-MxM, faults are injected in the scheduler and pipeline regis-

ters but not in the functional units. Faults in this latter module, as shown in Figure 7.2,

would not cause multiple threads corruptions in t-MxM (there is no transcendental opera-

tion). The effects of the single thread SDC would be the same as those observed injecting

the FU syndrome in software without requiring a costly RTL simulation.

Figure 7.5 shows the average AVF for DUEs, single and multiple corrupted ele-

ments in the t-MxM output for injections in the scheduler and pipeline. It is worth recall-

ing that one fault is injected per execution, the multiple corrupted elements are caused by

the single fault propagation.

Figure 7.5: AVF of the scheduler (left) and pipeline (right) for DUEs, single and multiple
thread SDCs for the Max, Zero, and Random t-MxM.
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A significant difference from the micro-benchmarks AVF in Figure 7.2 is that,

for t-MxM, the scheduler AVF is higher than the pipeline one. As mentioned, while the

micro-benchmarks are very simple and do not implement threads interactions, t-MxM also

includes several instructions for computing memory addresses and threads indices. The

higher strain on the scheduler and the higher portion of time spent in scheduling operation

increases the AVF (for both SDCs and DUEs). On the contrary, the pipeline AVF is higher

in the micro-benchmarks because, when a fault appears at the first instruction output, it is

marked as SDCs, without further chances to be masked (there is no other computation).

In t-MxM, an instruction’s wrong output can be masked in a downstream operation (for

instance, a multiplication by zero). This statement is supported by our pipeline data in

Figure 7.5, which shows a much lower SDC AVF for the Z tile.

An additional exciting result from Figure 7.5 is that the portion of SDCs that affect

multiple elements is very high (at least 70% of scheduler induced and 50% of pipeline in-

duced SDCs). It is possible to further study the multiple errors at the t-MxM output

by identifying the geometrical distribution of the corrupted elements. Table 7.1 shows the

different spatial multiple corrupted elements distribution patterns that are observed inject-

ing faults in the scheduler and pipeline registers. The corrupted elements are distributed

in a row, a column, a row and column, a block of elements (varying in size), randomly,

and all (or almost all) elements corrupted. Table 7.1 lists the percentage of occurrences

of the different patterns (single SDCs are not listed). As the distribution of the observed

patterns is very similar in the three inputs tested (M, Z, R tiles), the average distributions

are listed.

Table 7.1: Distribution of the multiple patterns (single corrupted elements are not listed)
observed with t-MxM.

row column row+column block random all
scheduler 0.96% 0.07% 0.45% 5.77% 0.69% 54.6%
pipeline 45.4% 1.36% 1.04% 7.29% 0.42% 4.17%

Interestingly, pipeline injection mainly produces corrupted rows, while scheduler

injection is more likely to affect the whole output matrix. Having an entire column cor-

rupted is very unlikely for both injection sites. This is because the t-MxM calculation

is row-major and, as mentioned, the distribution of these error patterns depends not only

on the way the GPU hardware reacts to the faults but also on the software propagation.

While this multiple elements distribution is not generic, the choice of t-MxM extended

evaluation is dictated by its importance in CNN’s execution. As shown in (Santos et al.,

2019; Ibrahim et al., 2020), the observed multiple errors patterns (but not single element



108

corruptions) can indeed induce misdetections in CNNs.

7.3 HPC Applications Evaluation

The modified NVBiTFI version selects the most suitable fault syndrome to apply

depending on the opcode, the input, and the module assumed to be the cause of the fault.

A cocktail of fault syndromes are injected following the power-law statistical distribution

described in Section 7.3 and shown in Figures 7.3 and 7.4.

A subset of applications from Section 3.2 are selected to be evaluated that are rep-

resentative of different HPC computational classes: FMXM, FLUD, Quicksort, FLAVA,

FGAUSSIAN, and FHOTSPOT. Also, two CNNs for classification and object detection

(FLENET and FYOLOV3) are considered. Each code is likely to stimulate specific GPU

modules, according to the distribution of opcodes depicted in Figure 3.1. Hence, results

obtained with the selected benchmarks could be representative also of similar applica-

tions.

To compare with the traditional single bit-flip evaluation, only single-thread SDC

are injected using the fault syndrome proposed. For CNNs, the RTL fault-injection on the

execution of t-MxM are also included to evaluate better the effects of scheduler faults and

multiple threads corruptions in the detection and classification of objects.

Figure 7.6: SDC Program Vulnerability Factor for HPC codes.
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Figure 7.6 shows the SDC Program Vulnerability Factor (PVF) for the HPC codes.
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PVF is the probability of the faults injected in the software visible states to generate an

SDC at the end of execution. In other words, when injecting in software, it is assumed that

the fault injected in RTL has corrupted the instruction output. For the data in Figure 7.6,

the fault injection is performed only in the 12 opcodes characterized with RTL fault in-

jection (that represent more than 70% of all executed opcodes, as shown in Figure 3.1).

RTL faults that generate DUEs (shown in Figure 7.2) are not considered in soft-

ware fault injection, as they simply hang the application. As the injection is performed

only in the output of the instructions and is intended to evaluate the manifestation at the

program’s output for the two error models, the DUEs are not considered in this analysis.

Two error models are considered: single bit-flip (randomly injected in the 32 bits

values) and the fault syndrome (injected using the power-law distribution) from RTL in-

jection. For all the codes presented in Figure 7.6, the fault syndrome model generates a

higher or equal PVF compared with the traditional single bit-flip error model. Interest-

ingly, it is possible to observe that the single bit-flip injection would underestimate the

application’s reliability of up to 30% for Lava and 48% for Hotspot, respectively. For

other codes (FGAUSSIAN and QUICKSORT), the two fault models provide very similar

results, as the PVF of the considered instructions is, by itself, extremely high (close to 1).

For CNNs, if it is considered an SDC, as it is done in Figure 7.6, a mismatch in

the application output, the single bit-flip injection underestimates the PVF of 33% for

FLENET and 50% for FYOLOV3. The higher reliability to the transient fault of CNNs

compared to HPC codes should not surprise, as it has already been observed and studied

on Section 4.1 and other works (Ibrahim et al., 2020).

For FLENET and FYOLOV3, the PVF is also measured when injecting the cor-

rupted t-MxM, as presented earlier in this section. On FLENET, the SDC PVF when t-

MxM fault model is injected is much higher than the other two fault models (12x higher),

while for FYOLOV3, it is similar to the relative error PVF. This different behavior is

because FLENET has a minimal number of network parameters per layer (12,000, on av-

erage). Thus, the corruption of a tile consists of the corruption of a considerable number

of parameters. On the contrary, FYOLOV3 layers are very big (100,000 parameters, on

average), and even fully corrupted 8x8 tile represent a small percentage of the matrix.

It is possible to further analyze the impact of faults in CNNs by distinguishing

between tolerable SDCs and critical SDCs, i.e., those that corrupt the output sufficiently

to cause a network misclassification/misdetection. The results show that t-MxM injection

produces an unacceptable amount of critical errors. For FLENET, the number of errors
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that change the classification entirely is 20% and, for FYOLOV3, it is 15%. It is worth

noting that, in FLENET, none of the injected single bit-flips nor RTL single thread syn-

drome produce misclassifications nor misdetections. A realistic and accurate fault model

that also considers faults in GPU critical resources as the scheduler is necessary not to

risk underestimating the effect of transient faults in CNNs.

By investigating further the RTL fault propagation, it has been found that the

control structures (inside the scheduler, the pipeline, and the SFU) are the primary sources

of errors that corrupt multiple threads, affecting a warp or even generating the geometrical

patterns of errors shown in Table 7.1. As seen with the software fault injection, despite the

limited size of these structures in a GPU core and the relatively low AVF, these critical

modules might produce severe consequences for an application, especially CNNs. An

efficient and effective hardening solution for GPU should target these modules.

Finally, it must be highlighted that injecting at RTL level one single fault in just

one of the applications listed in Figure 7.6 would take more than 10 hours, using our

12 CPUs server. As a total of 48,000 faults are injected, it would take 4.8 × 105 hours

to produce all data in Figure 7.6. That is more than 54 years. Despite the limitations

listed in Section 7.1.1 and the introduction of some simplifications on the input range, our

two-level framework allows an analysis that would otherwise be impossible.
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8 CONCLUSIONS

This chapter summarizes the main conclusions of this work and presents some

possible directions for the open questions raised during the research process.

8.1 Summary of contributions

At the beginning of this work, four items have been proposed to be discussed. In

the following, a summary of the main contributions for each item is presented.

1. Evaluate the reliability of High Performance Computing (HPC) applications and

Convolutional Neural Networks (CNNs): This work covered the error rate of sev-

eral types of HPC applications from different domains and also the error rate and

criticality of CNNs in Chapter 4. This thesis presented more data on radiation ex-

periments, and fault simulation for NVIDIA GPUs than any work in the literature

had shown until now.

2. Propose a new hardening for current GPU architectures: In Chapter 5 very effi-

cient and feasible fault tolerance solutions were presented. For CNNs the GEMM

ABFT and Reliable Max-pooling were introduced as a solution to the critical errors

on object detection. A more generically idea was implemented for the HPC bench-

marks, the RP-DWC. Both techniques can be efficiently achieved at the software

level with the available GPUs or with specific hardware.

3. Combine beam experiments and fault simulation: This work presented a novel ap-

proach for error rate estimation for NVIDIA GPUs that considers the GPU’s partic-

ular aspects. Based on the Error Probability concept, Chapter 6 provided a satisfac-

tory methodology to estimate the SDC rate of an application. In contrast with other

reliability evaluation methodologies, SDC rate estimation is able to consider the

software and hardware characteristics. Consequently, SDC rate estimation could

produce more insights on the reliability than a sole software-level analysis.

4. The conception of a new error model for GPUs: Lastly, based on all knowledge

built in the previous chapters, a new error model was presented in Chapter 7. The

novelty error model is based on a two-level fault injection that combines RTL and

software simulations. The proposed approach is able to incorporate the accuracy

of the RTL level fault propagation and the speed of software-based fault injection.
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The speedup for the new method can reduce the simulation time from months to

hours.

8.2 Future work

This thesis has presented a discussion on some of the main open problems for

GPU reliability. Still, some issues are highly complex and need to be more analyzed. For

instance, one of the issues with the FIT estimation method presented in Chapter 6 is the

benchmarks that have unsatisfactory performance on GPUs (low IPC and low occupancy)

due to the algorithm characteristics, such as memory access patterns, low functional units

utilization, etc. For those codes, a deeper study must be performed. Adding the error rate

of a higher number of instructions to the model can be a path to solve this issue. Also,

the model can be improved by combining the data from fault simulation in lower levels

than software, such as RTL and Micro-architectural. With a detailed analysis from RTL

and Micro-architectural fault injections, it may be possible to find the bottleneck for the

codes with a bad FIT estimation.

Also, it is necessary to investigate how the compiler impacts the reliability anal-

ysis. As demonstrated in Chapter 6, when the compiler modifies the final machine code,

it is expected that the error rate will also be changed. Thus, it is necessary to evaluate

more the compiler optimizations and code generation impact on the code’s reliability.

Additionally, it is mandatory to investigate if higher performance leads to better or worse

reliability since the final goal of GPU users is to achieve as much performance per watt

as possible.

In Chapter 5 very efficient software approaches were presented for CNNs. How-

ever, as the deep learning algorithms are increasing in complexity and size, it is necessary

to reduce even more the overhead added from hardening techniques applied to CNNs.

Consequently, it is essential to start designing hardened CNNs from the training process.

That is, the model training can be tuned to be hardened against radiation-induced errors in

the execution. A hardened CNN model would tolerate critical errors without the overhead

from the fault tolerance technique applied to the inference process.
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8.3 Conclusions

This work has presented a deep reliability analysis of a broad domain of applica-

tions from HPC to machine learning applications. This thesis provided a database for two

GPU architectures, Kepler and Volta, and presented trends for each application reliability

running on them. The efficiency of Error Correction Code (ECC) has also been measured

for both GPU architectures.

For the CNNs particular case, three CNNs were evaluated (YOLO, Faster R-CNN,

ResNet) on different NVIDIA GPUs. The CNNs were exposed to atmospheric-like neu-

tron beams and fault simulation. The results have shown that for CNNs, Crashes are more

frequent than SDCs, and the higher number of operations executed in Faster R-CNN and

ResNet makes them more prone to corruption than YOLO. It has been demonstrated that

GPUs microarchitecture can propagate a single fault to affect several output elements, and

this behavior significantly impacts CNN reliability. The critical and tolerable errors have

been distinguished in the execution of object detection frameworks. Unfortunately, ECC

is insufficient to ensure high reliability in CNNs, as it does not reduce the number of crit-

ical errors. As a contribution, this thesis proposed alternative protection techniques, such

as ABFT, that can be much more effective in reducing the critical error rate. Addition-

ally, fault propagation was studied for YOLO. Faults tend to spread during convolution,

suggesting that faults should be promptly detected to ensure high reliability. When an-

alyzing how faults propagate through GPUs when executing a CNN pipeline, this thesis

has proposed the design of maxpool layers to detect radiation-induced errors at runtime.

The reliability of mixed precision applications on NVIDIA GPUs was also eval-

uated in this research. It has been demonstrated that the use of mixed-precision data or

operation significantly affects the device error rate and the code behavior in the presence

of transient faults. The experimental data highlights that reducing precision is beneficial

both in terms of reduced error rate and improved performance. Additionally, the impact

of faults in output correctness has been studied. On GPUs, the higher the precision, the

lower the fault impact. In general, GPU double-precision executions always benefit from

a lower impact of faults in the output correctness. Based on the data generated for the

mixed-precision evaluation, a new hardening strategy was presented for GPUs, Reduced

Precision Duplication With Comparison (RP-DWC). RP-DWC is a strategy to detect

errors duplicating the original instructions with reduced-precision instructions. The tech-

nique is particularly promising for (but not limited to) mixed-precision architectures, as
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novel GPUs that have dedicated hardware cores to execute different precision operations.

RP-DWC uses available hardware that would otherwise be idle to improve the reliability

of codes with reduced overhead. Among the limitations of RP-DWC, the most challeng-

ing one is the reduced error detection capability that comes from the different intrinsic

results of lower precision executions. However, a significant amount of errors can still

be detected, and, more importantly, the undetected errors are the ones that have a more

negligible impact on the output correctness. As a result, undetected errors may still be

tolerated by various applications.

In order to evaluate if the most used error model for software fault simulation

(i.e., single bit flip) is comparable with realistic experiments, the FIT rates obtained from

beam experiments and fault simulation estimation for 15 codes were compared, using Ke-

pler and Volta based NVIDIA GPUs and two fault injection frameworks (SASSIFI and

NVBitFI). When considering the GPU parallelism management (GPU occupancy and

IPC), fault simulation provides SDC FIT rates comparable to the beam test results. The

result holds for two GPUs for a broad set of codes. The source of the SDC FIT rates

of codes executed on GPUs was investigated. The data from the beam and fault simu-

lation data are combined to understand if the FIT rate is due to the high resource usage,

the high criticality of resources (AVF), or a combination of the two. Finally, the main

GPUs’ functional units sensitivity are evaluated, including mixed-precision and tensor

cores. Unfortunately, fault simulation alone is not enough to assess the probability of

DUEs, as faults in inaccessible resources probably are the leading cause of these events.

Finally, a new error model was conceived based on the knowledge and data from

all the experiments, hardening strategies, and error rate estimation. The concept of multi-

level fault injection to GPUs is used. And, thanks to the combination of RTL and software

fault injection, the time required to have a detailed and accurate analysis of faults propaga-

tion from the hardware source to the application output is reduced by orders of magnitude.

The RTL accuracy of the proposed framework identifies the most critical GPU resources

for both SDCs and DUEs and identifies a set of possible fault effects (syndromes) in

the instructions output. The efficiency of the modified NVBitFI allows the propagation

of these effects in real-world applications. The proposed faults syndrome database pre-

sented in this work is made publicly available to provide a more accurate fault model than

the naive single bit-flip to evaluate the reliability of applications and validate hardening

solutions. Moreover, the framework’s flexibility grants the possibility of future updates,

both in terms of updated RTL model or extended instructions evaluation.
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APPENDIX A — RESUMO EXPANDIDO

Graphics Processing Units (GPUs), que anteriormente eram usadas como hard-

ware restrito a aplicações voltadas ao entretenimento e renderização gráfica, onde confi-

abilidade não é um requisito fundamental, estão sendo utilizadas em High Performance

Computing (HPC) e aplicações críticas como Convolutional Neural Networks (CNNs)

para carros autoguiados e exploração espacial. Tal mudança no mercado das GPUs foi

causada pelo aumento da capacidade de processamento e eficiência, melhorias nos frame-

works de programação e ferramentas de validação, e também uma maior preocupação

com a confiabilidade das GPUs. Neste cenário, esta pesquisa tem como objetivo entender

o processo de geração, propagação, e o impacto de falhas causadas nas GPUs. O con-

hecimento adquirido ao longo deste trabalho foi usado para propor técnicas de detecção e

correção de erros para GPUs.

Com o objetivo de investigar a confiabilidade das GPUs, este trabalho compara e

combina os resultados de um número considerável de experimentos de radiação, injeção

de falhas, e de análises arquitetural e algorítmica. Ao total oito experimentos de radiação

foram realizados para esta tese, totalizando mais de 2,000 horas de experimentos, que

equivalem a mais de 13,000,000 anos de radiação em um ambiente com fluxo equivalente

ao nível do mar. Este trabalho também é o primeiro a experimentalmente validar o Fail-

ure In Time (FIT) das CNNs. Entretanto, experimentos de radiação, quando realizados

isoladamente, não são suficientes para prover informações sobre a propagação das falhas,

sendo assim este trabalho também estuda sobre propagação de falhas nas GPUs através de

injeção de falhas nos níveis arquiteturais (usando simulações em Register Transfer Level

- RTL) e de software (usando as ferramentas SASSIFI e NVBITFI). A combinação de

experimentos de radiação e injeção de falhas tem o objetivo de responder duas questões

fundamentais na avaliação da confiabilidade de GPUs: Como é possível extrair resulta-

dos representativos e um estimar o FIT de uma forma realística usando somente injeção

de falhas, e também, validar se os tipos de modelo de falhas mais utilizados atualmente,

bit flip único ou duplo, são ou não modelos acurados para simulação de falhas no nível

de software para GPUs. Os resultados mostram que, para a maioria dos casos, a taxa de

Silent Data Corruption (SDC) extraída da injeção de falhas é suficientemente próxima

(diferenças menores que 5× ) da taxa de SDCs obtida em experimentos de radiação. Este

trabalho também propõe um novo modelo de falhas baseado nos erros relativos extraídos

de injeções de falhas usando RTL em oposição aos comumente usados, bit flip único e
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duplo.

Usando uma análise experimental, arquitetural, e algorítmica, este trabalho propõe

novas soluções de tolerância a falhas para HPC e aplicações críticas. Para isso, usa-se o

fato de que nem todas as falhas manifestadas na saída de uma aplicação são críticas, por

exemplo, um veículo autônomo não é afetado por uma falha que modifica um objeto que

não seria detectado mesmo sem a presença de falhas, devido à baixa probabilidade de

detecção que alguns objetos possuem, não sendo incluídos na detecção final. O mesmo

ocorre se o objeto detectado tem uma alta probabilidade de detecção e tem a forma alter-

ada pela falha, porém mesmo assim, tem um formato próximo ao esperado em um cenário

sem falhas. Fenômeno similar também acontece para aplicações HPC, onde uma serie de

aplicações aceitam pequenas variações na saída como parcialmente "corretas". Sendo as-

sim, este trabalho usa as validações de confiabilidade previamente feitas em diferentes ca-

madas (software e hardware) para identificar os recursos ou partes do código que são mais

críticos para a execução de uma aplicação, e então proteger somente o que é necessário.

Outro fato que baseia a proposição de novas técnicas, é que as técnicas existentes de

tolerância a falhas para GPUs não são suficientes para garantir uma grande confiabili-

dade para aplicações críticas. Aliado a isso, diversos recursos existentes nas GPUs atuais

são por muitas vezes não utilizados, e podem ser empregados para replicação. Os experi-

mentos feitos para esta tese mostram que Single Error Correction Double Error Detection

ECC consegue mascarar falhas nas estruturas de memória das GPUs, porém os erros críti-

cos (que tem um impacto grande na saída) são gerados por falhas em outros recursos não

protegidos como, unidades funcionais, escalonadores, filas e buffers. Consequentemente,

este trabalho aproveita-se das estruturas paralelas existentes nas GPUs para implementar

tolerância a falhas de forma eficiente e de propósito geral que sejam capazes de detectar

e corrigir erros críticos.

Baseado nos estudos feitos neste trabalho, duas soluções principais de tolerância a

falhas foram propostas: A primeira, uma solução específica para CNNs foi desenvolvida

em software capaz de detectar e corrigir erros, onde foi usado uma técnica já conhecida

chamada de Algorithm-Based Fault Tolerance (ABFT) para multiplicação de matrizes,

que nos experimentos realizados nesta tese mostrou-se responsável pela maioria dos erros

críticos das CNNs. Quando integrada as CNNs, ABFT consegue corrigir mais de 60%

dos erros que modificam a saída e que por consequência modificam o comportamento de

um carro autônomo. Também, a partir de experimentos de injeção de falhas foi observado

que as camadas maxpool são responsáveis por propagarem a maioria das falhas críticas
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em uma CNN, sendo assim, uma camada modificada da maxpool foi proposta para incluir

detecção de erros, a smartpool, que consegue detectar 98% dos SDCs. A segunda solução

baseia-se no fato que as GPUs modernas possuem hardware dedicado para executar op-

erações em precisões diferentes, e quando um recurso específico para uma certa precisão

é utilizado, os recursos para outras precisões ficam ociosos. Sabendo disso, este trabalho

propõe a Reduced Precision Duplication With Comparison (RP-DWC), onde o principal

objetivo é reduzir a sobrecarga da redundância, executando a cópia em uma precisão re-

duzida. Os resultados mostraram que o RP-DWC teve uma excelente taxa de detecção

de erros, podendo chegar a 86%, com sobrecargas mínimas de até 0.1% de aumento de

tempo de execução e para alguns casos 24% de aumento de consumo de energia. Para

validar as técnicas propostas neste trabalho foram usados experimentos de radiação, com

o intuito de garantir que os resultados obtidos são de fato realísticos.

Dessa forma, neste trabalho foi proposta uma metodologia para investigar a confi-

abilidade das GPUs e dispositivos paralelos no geral. Foi mostrado como integrar experi-

mentos de radiação e injeção de falhas, e também que com um entendimento detalhado da

confiabilidade dos dispositivos e algoritmos é possível desenvolver soluções de tolerân-

cia a falhas eficientes e efetivas. Este trabalho, então, pode servir de base para análises

futuras de GPUs ou outro dispositivo paralelo, uma vez que além dos resultados, todos

os dados e aplicações utilizadas estão públicos em repositórios online, com o objetivo de

facilitar futuras validações e acesso de terceiros.
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