
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

FACULDADE DE CIÊNCIAS ECONÔMICAS

DEPARTAMENTO DE ECONOMIA E RELAÇÕES INTERNACIONAIS

BRUNO PAESE

MAS-COLELL AND RAZIN MODEL OF INTERSECTORAL MIGRATION AND

GROWTH WITH DISTINCT POPULATION GROWTH RATES

Porto Alegre

2021



BRUNO PAESE

MAS-COLELL AND RAZIN MODEL OF INTERSECTORAL MIGRATION AND

GROWTH WITH DISTINCT POPULATION GROWTH RATES

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Economics.

Advisor: Prof. Dr. João Plínio Juchem Neto

Porto Alegre

2021



CIP - Catalogação na Publicação

Paese, Bruno
   Mas-Colell and Razin model of intersectoral
migration and growth with distinct population growth
rates / Bruno Paese. -- 2021.
   71 f. 
   Orientador: João Plínio Juchem Neto.

   Trabalho de conclusão de curso (Graduação) --
Universidade Federal do Rio Grande do Sul, Faculdade
de Ciências Econômicas, Curso de Ciências Econômicas,
Porto Alegre, BR-RS, 2021.

   1. Two-sector growth model. 2. Distinct population
growth. 3. Migration. 4. Tax policy. I. Juchem Neto,
João Plínio, orient.  II. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os
dados fornecidos pelo(a) autor(a).



BRUNO PAESE

MAS-COLELL AND RAZIN MODEL OF INTERSECTORAL MIGRATION AND

GROWTH WITH DISTINCT POPULATION GROWTH RATES

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Economics.

Approved on: Porto Alegre, november 23, 2021.

EXAMINATION BOARD:

Prof. Dr. João Plínio Juchem Neto - Advisor
UFRGS

Prof. Dr. Sergio Marley Modesto Monteiro
UFRGS

Prof. Dr. Jorge Paulo de Araújo
UFRGS



ACKNOWLEDGEMENTS

To my mom, my dad and my brother, for all the support over my academic

life, especially for giving me the possibility to devote myself to my studies. Also, to

my closest friends, for the understanding and support in difficult times, as well as the

companionship in moments of joy.

To Prof. Dr. João Plínio Juchem Neto, for guiding me in this work and in

my research scholarship, for all the knowledge transmitted and for all the patience and

availability always presented.

To my colleague Angelo Delamare, for always helping me with my MATLAB

codes.

To the National Council for Scientific and Technological Development (CNPq)

and to the Federal University of Rio Grande do Sul (UFRGS), for funding my research

through my scholarships.



RESUMO

Neste trabalho propomos a generalização do modelo de dois setores de crescimento

econômico e migração intersetorial de Mas-Colell e Razin a partir da introdução de taxas

de crescimento populacional distintas para cada setor. A dinâmica do nosso modelo

generalizado é definida por um sistema de duas Equações Diferenciais Ordinárias,

uma para o capital agregado per capita e a outra para a proporção de população

no setor industrial. Através da análise de estabilidade, mostra-se que nosso modelo

possui sempre um estado estacionário estável. Simulações numéricas foram feitas

considerando três cenários, um com taxas de crescimento populacionais iguais e

dois com taxas de crescimento populacionais distintas, com três diferentes políticas

fiscais para cada cenário. Comparando os cenários sob as mesmas políticas fiscais,

observamos que para o cenário com uma maior taxa de crescimento populacional

no setor industrial houve uma maior acúmulo de capital per capita agregado e mais

pessoas vivendo no setor industrial em relação ao cenário com taxas de crescimento

populacional iguais, para qualquer política fiscal. Para o cenário com uma maior taxa

de crescimento populacional no setor agrícola, o único caso com um acúmulo de capital

per capita agregado menor do que no cenário com taxas de crescimento populacional

iguais é aquele com um subsídio; além disso, houve menos pessoas vivendo no setor

industrial em relação ao cenário com taxas de crescimento populacional iguais, para as

três políticas fiscais.

Palavras-chave: Modelo de Crescimento Econômico de Dois Setores. Migração.

Crescimento Populacional Distinto. Política Fiscal.



ABSTRACT

In this work we propose a generalization of the Mas-Colell and Razin model of intersec-

toral migration and growth through the introduction of distinct population growth rates

for each sector. The dynamics of our generalized model is given by a system of two

Ordinary Differential Equations, one for the aggregate per capita capital and another for

the proportion of the population in the industrial sector. Furthermore, through a stability

analysis, we show that our model will always have a stable steady-state. Numerical

simulations were performed given three scenarios, one with equal population growth

rates and two with distinct population growth rates, with three different tax policies for

each scenario. Comparing the scenarios under the same tax policies, we observed that

for the scenario with a bigger population growth rate in the industrial sector, there was a

bigger aggregate per capita capital accumulation and more people living in the industrial

sector in relation to the scenario with equal population growth rates, for any tax policy.

For the scenario with a bigger population growth rate in the agricultural sector, the only

case with an aggregate per capita capital accumulation smaller than in the scenario

with equal population growth rates was the one with a subsidy; besides, there was less

people living in the industrial sector relative to the scenario with equal population growth

rates, for all three tax policies.

Keywords: Two-sector Growth Model. Migration. Distinct Population Growth. Tax

Policy.



LIST OF FIGURES

Figure 1 – The Solow-Swan model. . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2 – Phase diagram for the Mas-Colell and Razin model. . . . . . . . . . 37

Figure 3 – Phase diagram for different tax policies. . . . . . . . . . . . . . . . . 39

Figure 4 – Sketch of p(ρ) for ∆n > 0. . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5 – Sketch of p(ρ) for ∆n < 0. . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 6 – Isoclines k̇ = 0 and ρ̇ = 0 for nI = nA. . . . . . . . . . . . . . . . . . 55

Figure 7 – Isoclines k̇ = 0 and ρ̇ = 0 for nI > nA. . . . . . . . . . . . . . . . . . 56

Figure 8 – Isoclines k̇ = 0 and ρ̇ = 0 for nI < nA. . . . . . . . . . . . . . . . . . 56

Figure 9 – Temporal evolution of k . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 10 – Temporal evolution of ρ . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 11 – Temporal evolution of kI . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 12 – Temporal evolution of kA . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 13 – Temporal evolution of yI . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 14 – Temporal evolution of yA . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 15 – Temporal evolution of wI . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 16 – Temporal evolution of wA . . . . . . . . . . . . . . . . . . . . . . . . 59



LIST OF TABLES

Table 1 – Steady-state values of k and ρ . . . . . . . . . . . . . . . . . . . . . . 59

Table 2 – Steady-state values of kI and kA . . . . . . . . . . . . . . . . . . . . . 60

Table 3 – Steady-state values of yI and yA . . . . . . . . . . . . . . . . . . . . . 61



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 SOLOW-SWAN MODEL . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 SHINKAI’S TWO-SECTOR MODEL . . . . . . . . . . . . . . . . . . . 15

2.3 UZAWA’S TWO-SECTOR MODEL . . . . . . . . . . . . . . . . . . . 16

2.4 UZAWA’S TWO-SECTOR MODEL REVISITED . . . . . . . . . . . . 20

2.5 ALTERNATIVE TWO-SECTOR MODELS . . . . . . . . . . . . . . . . 27

3 MAS-COLELL AND RAZIN MODEL . . . . . . . . . . . . . . . . . . 29

3.1 TAX POLICY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 GENERALIZED MODEL WITH DISTINCT POPULATION GROWTH

RATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 EQUILIBRIA STABILITY ANALYSIS . . . . . . . . . . . . . . . . . . . 44

4.1.1 Stability of ρ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 Stability of k∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . 54

5.1 NUMERICAL SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

APPENDIX A – Euler’s method . . . . . . . . . . . . . . . . . . . . . 67

APPENDIX B – MATLAB script for the numerical simulations . . . . 68



10

1 INTRODUCTION

The interest for economic growth is certainly not new. Since the dawn of

Economics with the Physiocrats - when economic growth was believed to be governed

exclusively by natural laws, going through the early stages of industrial development

with the first industrial revolution, economists had already had their attention focused on

investigating the national wealth and how to increase it. From the 1930s, in the shadow

of the Great Depression, and essentially after the Second World War, in the 1950s and

1960s, there was a significant increase in the production of works in theory of economic

growth, precisely because it was an economically chaotic period. According to Kregel

(1972), “for while an economy is growing there may be no need to wonder at the cause,

but when it is not there is a pressing necessity to consider why not.” (KREGEL, 1972, p.

9).

In this context, the Neoclassical growth models stand out from the contes-

tation of the assumptions and results of post-Keynesian works like the Harrod-Domar

model. Solow (1956) and Swan (1956) formulated the first neoclassical model that

gained prominence and motivated far-reaching models, such as Uzawa (1961). These

early models that began to investigate the mechanisms of growth bothered some au-

thors like Jorgenson (1961), who argued that they embodied too much the advanced

and industrial economies, leaving aside the developing economies. Because of that,

Jorgenson (1961) developed a two-sector model whose structure most faithfully repre-

sented those of developing countries. However, Mas-Colell and Razin (1973) showed

that there was no need for Jorgenson to formulate a new model, because his model’s

growth patterns could be obtained and explained within a neoclassical framework.

The Mas-Colell and Razin model is a neoclassical two-sector growth model

with intersectoral migration. It consists of two sectors working under perfect competition,

an industrial and an agricultural sector, and two goods, one for consumption and

investment produced in the former and one only for consumption produced in the

latter. It contemplates only two inputs, capital and labor, which are fully employed

and move freely between the sectors. Production functions for both sectors are linear

homogeneous of Cobb-Douglas type. The Mas-Colell and Razin model introduces

a function that models the migration of labor from one sector to another, adding a

migratory dynamic which is one of the main differences between this model and the
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others considered.

The objective of this work is to generalize the Mas-Colell and Razin model

of intersectoral migration and growth, which considers the same population growth

rate in both sectors, in order to consider two distinct population growth rates, one for

the agricultural sector and another for the industrial one. This generalization allows

us to incorporate in our model a factor that expresses demographic changes more

plausibly, since population growth usually diverges between agricultural and urban

(industrial) regions. To formulate our generalized model, we first derived the Mas-Colell

and Razin model. After that, we introduced the distinct sectoral population growth rates,

which caused the redefinition of the main variables. To finish the formulation of our

generalized model, we carried out a stability analysis of its steady-states. The final

step was to investigate the impacts of different population growth rates and tax policies

on the endogenous variables of the model, which was done performing numerical

simulations and through the analysis of the phase diagrams of our model, using the

software MATLAB® and Maple®.

This work is structured as follows: we begin with a literature review focusing

on Neoclassical growth models, especially the ones with two sectors. The third chapter

presents and derives mathematically the Mas-Colell and Razin model, including the

introduction of a tax policy object. The fourth chapter presents our generalized model

and the stability analysis with distinct population growth rates. The fifth chapter shows

the numerical simulations and phase diagrams for three scenarios - one where the

population growth rates are equal and two where they are distinct -, given three different

tax policies for each scenario, and discuss the results. We close out with the conclusions

and perspectives of future research in the sixth chapter.
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2 LITERATURE REVIEW

One topic that has intrigued many economists, notably Marx and Keynes, is

the relation between capital accumulation and employment (DOMAR, 1946). Since the

first industrial revolution, economists have been concerned that in the new industrialized

nations capital would replace labor, causing massive unemployment and consequently

social and political disorder.

The second half of the XX century was pivotal in the theory of economic

growth. The seminal works of Harrod (1939) and Domar (1946) formulated a post-

keynesian model of economic growth that had a huge influence on the field of neoclassi-

cal growth theory, mainly for provoking a series of studies since the 1950s contesting

their results. One of the most influential one was conducted by Solow (1956), who made

a critical analysis of the Harrod-Domar model employing a neoclassical framework.

Among the assumptions of the Harrod-Domar model, the most problematic

one in the view of the neoclassical models was the one that assumes fixed proportions

between inputs - capital and labor - and output, making the capital-labor ratio and

capital-output ratio fixed, and therefore inserting rigidity into the model (WAN, 1971;

HAHN; MATTHEWS, 1964) . According to Hahn and Matthews (1964), “the amounts

of capital and of labour needed to produce a unit of output are both uniquely given; for

the moment this may be thought of as the result of technological considerations - fixed

coefficients in production” (HAHN; MATTHEWS, 1964, p. 783).

Solow noted that the equilibrium of the economic system considered by

Harrod and Domar “[...] boils down to a comparison between the natural rate of growth

which depends [...] on the increase of the labor force, and the warranted rate of growth

which depends on the saving and investing habits of households and firms” (SOLOW,

1956, p.65). In the Harrod-Domar model, the natural rate of growth is a constant rate at

which the labor force grows, and the warranted rate of growth is the model’s equilibrium

rate of growth, defined by the quotient between the saving-income ratio and the capital-

output ratio. It can only have a steady growth with full employment if the natural rate

equals the warranted rate (HAHN; MATTHEWS, 1964). This creates an environment in

which the growth equilibrium is always at the so called “knife-edge”, meaning that the

equilibrium is unstable, mostly because the natural and the warranted rates of growth

are independently determined (HAHN; MATTHEWS, 1964). As stated by Solow, such
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opposition between the natural and warranted rates is built upon the assumption of fixed

proportions in production. Without this strong assumption, it looks like the unstable

equilibrium on the “knife-edge” vanishes with it (SOLOW, 1956).

2.1 SOLOW-SWAN MODEL

Accepting all the assumptions of the Harrod-Domar model but that of fixed

proportions, Solow (1956) built a model of long-run growth under a neoclassical frame-

work. The economy is represented by one sector that produces a single homogeneous

good, whose rate of production is given by a global production function Y (t) = F (L,K),

which uses two factors of production, labor and capital, and shows constant returns to

scale; hence, it’s homogeneous of degree one. The output produced is either consumed

or saved with the rate of saving being given by the exogenous constant s ∈ (0, 1). The

rate of capital depreciation is given by δ ∈ (0, 1), which is also constant. Last, but not

least, there is full employment of capital and labor. The population growth - and hence,

the labor force, according to the assumption of full employment - is given by the constant

exogenous rate L̇
L

= n. Therefore, the net increase of the stock of capital is expressed

as:

K̇ = sY − δK,

where sY is the gross investment and δK the depreciation of capital. Thus, the dynamics

of the model is given by the following system of Ordinary Differential Equations (ODEs):

K̇ = sY − δK

L̇ = Ln,
(2.1)

given the initial conditions K(0) = K0 > 0 and L(0) = L0 > 0. Defining k = K
L

as

the capital-labor ratio, after some algebraic manipulations the system (2.1) can be

expressed as:

k̇ = s f(k)− (n+ δ) k, (2.2)
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given the initial condition k(0) = K0

L0
= k0 > 0. Equation (2.2) gives the dynamic of the

per capita capital accumulation in the economy. In line with Barro and Martin (2004), the

production function f(k) in (2.2) follows the neoclassical conditions, like constant returns

to scale, positive and diminishing returns to inputs, the Inada conditions - f(k) presents

a strictly concave behaviour -, and essentiality of the inputs1. The term (n+ δ)k is the

effective depreciation of per capita capital; if the saving rate were zero, then k would

decline either by the depreciation of per capita capital at the rate δ or by the population

increase at the rate n (BARRO; MARTIN, 2004).

Figure 1 shows the dynamics of k over time given by (2.2). Let the ag-

gregate capital-labor ratio be k∞ at the intersection of both curves. At this point,

k̇ = 0 ⇐⇒ sf(k∞) = (n + δ)k∞, means that the gross investment is equal to the

effective depreciation of the per capita capital, and so there is no per capita capital

accumulation. Point k∞ is the steady-state level of per capita capital. Considering

some initial aggregate capital-labor ratio k0 > k∞, it is easily seen that sf(k) < (n+ δ)k,

that is, the effective depreciation of per capita capital is bigger than the gross invest-

ment; consequently, k will decrease towards k∞. On the other hand, if k0 < k∞ then

sf(k) > (n+ δ)k, and so the gross investment outpaces the depreciation; thus, there is

per capita capital accumulation and k will increase towards k∞. This analysis indicates

that the steady-state k∞ is a stable equilibrium (SOLOW, 1956, p. 70).

In this way, Solow proved that Harrod and Domar could have achieved a

stable equilibrium with no unemployment if they had abandoned the fixed proportions

assumption. Working on the same problem, although independently, Swan (1956)

confirmed the results obtained by Solow. Their work on the matter came to be known

as the Solow-Swan model of economic growth, a landmark in the neoclassical growth

theory. The welcomed results had an immediate impact, catching the attention of

intellectuals that began to investigate if the model was solid enough to maintain the

main results under different conditions.

1The essentiality says that each input is essential for production, meaning that there cannot be any
production if the level of one of the factors of production is zero. For more details on the neoclassical
conditions, see Barro and Martin (2004), p.28.
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Figure 1 – The Solow-Swan model.

k⋅(n+δ )

s⋅f (k )

k∞ kk 00

Source: Adapted from Barro and Martin (2004).

2.2 SHINKAI’S TWO-SECTOR MODEL

Shinkai (1960) came to notice the differences between the Harrod-Domar

and the Solow-Swan models. At the former, he says that “is impossible to sustain

full employment unless the warranted rate of growth coincides with the natural rate,

and the initial stock of capital just equal the initial supply of labor multiplied by ‘the’

capital-labor ratio” (SHINKAI, 1960, p. 107)2. Meanwhile, the latter assumes flexible

technology assumptions - production works under neoclassical conditions -, making the

capital-labor ratio adjustable. Thus, Shinkai developed a two-sector model that could

express either the unstable equilibrium of Harrod and Domar or the stable equilibrium of

Solow and Swan, depending on the capital-labor ratio considered (SHINKAI, 1960).

Shinkai’s model was built upon an economy with two sectors, one based on

a capital-goods industry and the other on a consumption-goods industry. There are two

kinds of goods, with capital - investment - goods only demanded for production and

consumption goods only demanded by consumers. In regard to factors of production,

both sectors use solely capital and labor. Each industry uses the same technology,

and so all technological coefficients are constant. Depreciation of the capital stock is

2The emphasis on the capital-labor ratio is a result of the fixed proportions assumption, which makes
the capital-labor ratio constant.
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neglected, which makes the output of the capital-goods sector equal to the rate of net

investment. Additionally, there is free movement of capital between sectors. The supply

of labor N grows at an exogenous constant rate n; labor is homogeneous, meaning that

the real wage rate W is the same for all workers (SHINKAI, 1960, p. 108). Under these

assumptions, Shinkai (1960) shows that growth equilibrium will be stable only if the

consumption-goods industry is more capital-intensive than the capital-goods industry,

corroborating with the results found by Solow. Otherwise, if the capital-goods industry is

more capital-intensive than the consumption-goods one, then the equilibrium is unstable,

reproducing the results found by Harrod and Domar (SHINKAI, 1960).

2.3 UZAWA’S TWO-SECTOR MODEL

Looking at investigating further the two-sector scheme, Uzawa (1961) devel-

oped a neoclassical version of Shinkai’s model. As it was, he assumes that production

follows the neoclassical conditions, the same ones considered by the Solow-Swan

model. To begin establishing the model’s short-run equilibrium conditions, Uzawa

defines the production function of sector i as Yi = Fi(Ki, Li), i = 1, 2, where Ki and

Li are the stocks of capital and labor of sector i, respectively. The subscript 1 refers

to the investment-goods sector and the subscript 2 refers to the consumption-goods

sector. Considering P1 and P2 as the prices of the respective goods, then the marginal

productivity conditions can be defined as:

Pi
∂Fi
∂Ki

= r, Pi
∂Fi
∂Li

= w, i = 1, 2, (2.3)

with r being the return to capital and w the wage rate. Considering that there is free

movement of factors, r is equal in sectors 1 and 2, as well as w. Also, the hypothesis

of full employment of capital and labor results in K1 + K2 = K and L1 + L2 = L.

The assumptions that labor does not save, meaning that wages are spent entirely on

consumption goods, and that capital does not consume, meaning that profits are spent

entirely on capital goods, are defined respectively by:

P2Y2 = wL, (2.4)
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P1Y1 = rK. (2.5)

Equations (2.4) and (2.5) close the model’s short-run equilibrium conditions. Now, letting

ρi = Li
L
, i = 1, 2, be the labor allocation and ki, i = 1, 2, the per capita capital in each

sector, then the full employment hypothesis can be rewritten as:

ρ1k1 + ρ2k2 = k, (2.6)

ρ1 + ρ2 = 1. (2.7)

Taking the production function Yi = Fi(Ki, Li) and dividing by Li we have Yi
Li

= Fi(ki, 1) =

fi(ki). Thus, the output per capita is defines as:

yi =
Yi
Li

= fi(ki), i = 1, 2. (2.8)

Uzawa (1961) sets the wage-rental ratio as ω = w
r
, ω > 0, which is nothing more than

the price ratio of labor and capital; consequently, ω controls the optimum quantity of k in

each sector. Applying (2.3)3 into ω = w
r

we have:

ω =
fi(ki)

f ′i(ki)
− ki, i = 1, 2. (2.9)

Equation (2.9) gives the optimum quantity of per capita capital in each sector. Also, the

labor allocation to the capital-goods sector ρ1 is determined by:

ρ1f1(k1) = f ′1(k1)k, (2.10)

The set of equations (2.6-2.10) are the reduced short-run equilibrium conditions of the

model (UZAWA, 1961).

3Given that ∂Fi

∂Ki
= f ′i(ki) and ∂Fi

∂Li
= fi(ki)− kif ′i(ki) (BARRO; MARTIN, 2004, p. 28).
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From (2.9), ω = fi(ki)
f ′i(ki)

− ki ⇐⇒ ω + k1 = f1(k1)
f ′1(k1)

. Coming out of (2.10),

ρ1f1(k1) = f ′1(k1)k ⇐⇒ k
ρ1

= f1(k1)
f ′1(k1)

. Thus, ρ1 can be rewritten as:

k

ρ1

= ω + k1 =⇒ ρ1 =
k

ω + k1

. (2.11)

Isolating ρ1 in (2.7), together with (2.11), it is shown that:

k

ω + k1

= 1− ρ2 =⇒ ρ2 = 1− k

ω + k1

=
ω + k1 − k
ω + k1

.

Replacing ρ2 in (2.6) together with (2.11):

(
k

ω + k1

)
k1 +

(
ω + k1 − k
ω + k1

)
k2 = k =⇒ kk1 + ωk2 + k1k2 − kk2

ω + k1

= k

=⇒ kk1 + ωk2 + k1k2 − kk2 = ωk + kk1 =⇒ ωk2 + k1k2 = ωk + kk2

∴ k(ω + k2) = (ω + k1)k2.

Hence, Uzawa (1961) expresses k as:

k =

(
ω + k1

ω + k2

)
k2, (2.12)

where ki = ki(ω), i = 1, 2. Then, solving the implicit equation (2.12) for ω gives its

equilibrium value (UZAWA, 1961).

Finally, considering the capital depreciation rate as δ and the population

growth rate as n, the growth dynamics of Uzawa’s two-sector model is given by the

following system of ODEs:

K̇ = Y1 − δK

L̇ = Ln,
(2.13)
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given the initial conditions K(0) = K0 > 0 and L(0) = L0 > 0. The hypothesis that

capital does not consume defines P1Y1 = rK ⇒ Y1 = K r
P1

. Taking the system (2.13),

together with (2.3), the per capita capital accumulation takes the form:

k̇ = f ′1(k1)k − (δ + n)k, (2.14)

given the initial condition k(0) = k0 > 0, and where f ′1(k1) is the marginal product of

capital in the investment-goods sector. The non trivial steady-state of (2.14) is then

given by k̇ = 0, that is:

f ′1(k1∞) = δ + n,

where k1∞ = k1(ω∞), with ω∞ and k∞ being the steady-state levels of the wage-rental ra-

tio and the aggregate per capita capital accumulation, respectively. Under the hypothesis

that the consumption-goods sector is more capital-intensive than the investment-goods

sector (capital-intensity hypothesis), that is, k2(ω) > k1(ω), as proposed by Shinkai

(1960), Uzawa shows that k∞ is unique and stable. To that matter, he says “the unique-

ness of the balanced capital-labor ratio and its stability crucially hinge on the hypothesis

that the consumption-goods sector is more capital intensive than the investment-good

sector” (UZAWA, 1961, p. 45)4.

The importance of the assumption that says that the uniqueness and stability

of the equilibrium rely on the capital-intensity hypothesis was analyzed by Solow (1961),

on a pathway of showing that k and k1 always move together in Uzawa’s model. It is

clear that the per capita capital from both sectors increases when, and only when, the

wage-rentals ratio increases. The only way this association can be broken, according to

Solow (1961), is “if, while the separate machine/labor ratios should be rising, the less

machine-intensive industry should gain enough at the expense of the more machine-

intensive one to permit a fall in the overall machine/labor ratio” (SOLOW, 1961, p. 49).

Hence, capital-intensity hypothesis, it is true for any ω that:

K2

L2

>
K1

L1

⇐⇒ r

w

K2

L2

>
r

w

K1

L1

4Uzawa uses the term “balanced capital-labor ratio” to refer to k∞.
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When ω increases, the price ratio P2

P1
is going to increase or decrease depending on

the amount of labor in sector 2 in relation to that of sector 1. If the consumption-goods

sector - sector 2 - is more capital-intensive, it employs more capital than labor. On the

other hand, the investment-goods sector - sector 1 - is therefore more labor-intensive,

and so employs more labor than capital. Now, the increase of ω = w
r

will make P1

increase relatively more than P2, because the wage rate is increasing relatively more

than the rentals, making the labor-intensive product, the capital good, relatively more

expensive than the consumption good. Thus, an increase in ω leads to a decrease in

the price ratio P2

P1
, the same as an increase in P1

P2
(SOLOW, 1961).

In this matter, considering the hypothesis given by (2.4) and (2.5), Solow

(1961) shows that:

P2Y2 = wL =⇒ L =
P2Y2

w
,

P1Y1 = rK =⇒ K =
P1Y1

r
,

∴
K

L
=
w

r

P1

P2

Y1

Y2

.

So, if w
r

rises, P1

P2
must rise as well. For that, K

L
shall increase except if Y1

Y2
decreases,

but that cannot happen5; therefore, K
L

must grow and k and k1 must move on the same

direction (SOLOW, 1961).

2.4 UZAWA’S TWO-SECTOR MODEL REVISITED

In his note on Uzawa’s model, Solow indicates that the assumption that one

sector should be more capital-intensive than the other for the equilibrium to be unique

and stable is at best peculiar. Besides, he shows that the assumption that guarantees

the stability of the equilibrium path is the one that says that wages only consume and

rentals only save, which is the exact proposition that Uzawa (1963) replaces, introducing

the parameter propensity to save6 into the model. Solow’s note made Uzawa revisit his
5For a detailed explanation, see Solow (1961), p. 49.
6The way Uzawa (1963) refers to the rate of saving.
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model, changing assumptions and including a new parameter, but it did not make him

drop the capital-intensity hypothesis (SOLOW, 1961; UZAWA, 1963).

The basic assumptions and structure used by Uzawa (1963) are exactly

the same ones used by Uzawa (1961), as presented before. There are two sectors,

one producing only industrial goods and the other producing only consumption goods,

labelled respectively 1 and 2. There are only two homogeneous factors, labor L

and capital K. The first one grows at a constant exogenous rate n, the second one

depreciates at a constant rate δ. Considering neoclassical production conditions, the

production functions of both sectors are given by

Y1(t) = F1(K1, L1) (2.15)

and

Y2(t) = F2(K2, L2). (2.16)

The assumption that factors are fully employed is expressed through

K = K1 +K2 (2.17)

and

L = L1 + L2. (2.18)

Also, the gross national product in terms of consumption goods is represented by:

Y (t) = Y2(t) + p(t)Y1(t), (2.19)

where p = p(t) is the price ratio of the new industrial good in terms of the consumption

good, which is essentially the supply price of new investment goods. Considering that

the production factor’s market operates under perfect competition, and that there is free
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movement of factors between sectors, then the wage w equals the marginal product of

labor and the rentals r equals the marginal product of capital:

w =
∂F2

∂L2

= p
∂F1

∂L1

, (2.20)

r =
∂F2

∂K2

= p
∂F1

∂K1

. (2.21)

Wrapping up the model, the quantity of new investment goods is given by the following

equation:

pY1 = sY, (2.22)

in which the constant s ∈ (0, 1) is the average propensity to save7. The set of equations

(2.15-2.22) represents the short-run equilibrium conditions. Therefore, the growth

dynamics is given by the following system of ODEs:

K̇ = Y1 − δK

L̇ = Ln,
(2.23)

given the initial conditions K(0) = K0 > 0 and L(0) = L0 > 0. Equation (2.22) defines

Y1 = sY
p

in (2.23) (UZAWA, 1963).

Following the same procedure as in his previous work, Uzawa introduces the

per capita variables ki, ρi and yi, i = 1, 2, as well as the wage-rentals ratio ω. Therefore,

equations (2.19) and (2.22) can be rewritten respectively as:

y = y2 + py1, (2.24)

and

py1 = sy, (2.25)

7Uzawa (1963) dedicates a section of his work to handle a variable propensity to save. As this goes
beyond the purpose of this work, it will be purposely omitted.
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where the sectoral outputs per capita yi, i = 1, 2 are

y1 = f1

(
k2 − k
k2 − k1

)
(2.26)

and

y2 = f2

(
k − k1

k2 − k1

)
, (2.27)

alongside with the relative price of the new capital good

p =
f ′2
f ′1
. (2.28)

The optimum per capita capital ki, i = 1, 2 is determined by the same equation (2.9),

which is derived applying the marginal productivity conditions (2.20) and (2.21) into

ω. This equation, together with (2.24) - (2.28), close the model’s reduced short-run

equilibrium conditions. Taking (2.26) - (2.28), (2.24) turns out to be:

y = f2

(
k − k1

k2 − k1

)
+
f ′2
f ′1
f1

(
k2 − k
k2 − k1

)
=⇒ y =

f2f
′
1(k − k1) + f1f

′
2(k2 − k)

f ′1(k2 − k1)
.

Substituting y above together with (2.26) and (2.28) into (2.25):

f ′2
f ′1
f1

(
k2 − k
k2 − k1

)
= s

[
f2f

′
1(k − k1) + f1f

′
2(k2 − k)

f ′1(k2 − k1)

]

=⇒ f ′2f1(k2 − k)

f ′1(k2 − k1)
=

s

f ′1(k2 − k1)
[f2f

′
1(k − k1) + f1f

′
2(k2 − k)]

=⇒ f ′2f1(k2 − k) = s [f2f
′
1(k − k1) + f1f

′
2(k2 − k)] .

From (2.9), ki = fi
f ′i
− ω, i = 1, 2. Then:

f ′2f1

(
f2

f ′2
− ω − k

)
= s

{
f2f

′
1

[
k −

(
f1

f ′1
− ω

)]
+ f1f

′
2

[(
f2

f ′2
− ω

)
− k
]}
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=⇒ f1f2 − f ′2f1ω − f ′2f1k = s(f2f
′
1k − f1f2 + f2f

′
1ω + f1f2 − f ′2f1ω − f ′2f1k)

=⇒ f1f2 − f ′2f1(ω + k) = s[f2f
′
1(ω + k)− f ′2f1(ω + k)]

=⇒ f1f2 = sf2f
′
1(ω + k)− sf ′2f1(ω + k) + f ′2f1(ω + k)

=⇒ f1f2 = (ω + k)[sf2f
′
1 + (1− s)f ′2f1]

Dividing both sides by f ′1f ′2:

f1

f ′1

f2

f ′2
= (ω + k)

[
s
f2

f ′2
+ (1− s)f1

f ′1

]
=⇒ (ω + k) =

f1
f ′1

f2
f ′2[

sf2
f ′2

+ (1− s)f1
f ′1

]
Given that ki = fi

f ′i
− ω ⇐⇒ fi

f ′i
= ki + ω, i = 1, 2, then:

(ω + k) =
(k1 + ω)(k2 + ω)

s(k2 + ω) + (1− s)(k1 + ω)
. (2.29)

Equation (2.29) determines the equilibrium wage-rentals ratio. As stated by Uzawa

(1963), holding the capital-intensity hypothesis8, it is shown that the supply price of

the new capital good p is positively related to the wage-rentals ratio ω(k), as already

observed by Solow (1961) (SOLOW, 1961; UZAWA, 1963).

The gross national product y is uniquely determined at each given value of

ω(k). Taking (2.24) together with (2.26), (2.27) and (2.28):

y = f2

(
k − k1

k2 − k1

)
+
f ′2
f ′1
f1

(
k2 − k
k2 − k1

)

=⇒ y =
f2f

′
1(k − k1) + f1f

′
2(k2 − k)

f ′1(k2 − k1)

8Just as Uzawa said, the capital-intensity assumption “is required mainly for reasons of a mathematical
nature and for which it seems to be difficult to give any economic justification” (UZAWA, 1963, p. 109). In
fact, this justification is another contribution of Solow (1961).
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=⇒ y =
f2f

′
1k − f2f

′
1k1 + f1f

′
2k2 − f1f

′
2k

f ′1k2 − f ′1k1

Using ki = fi
f ′i
− ω, i = 1, 2 again:

y =
f2f

′
1k − f2f

′
1

(
f1
f ′1
− ω

)
+ f1f

′
2

(
f2
f ′2
− ω

)
− f1f

′
2k

f ′1

(
f2
f ′2
− ω

)
− f ′1

(
f1
f ′1
− ω

)

=⇒ y =
f2f

′
1k − f2f1 + f2f

′
1ω + f1f2 − f ′2f1ω − f1f

′
2k

f ′1f2
f ′2
− f ′1ω − f1 + f ′1ω

=⇒ y =
f2f

′
1k + f2f

′
1ω − f ′2f1ω − f1f

′
2k

f ′1f2
f ′2
− f1

=⇒ y =
f2f

′
1(ω + k)− f ′2f1(ω + k)

f ′1f2−f1f ′2
f ′2

=⇒ y = (ω + k)(f2f
′
1 − f ′2f1)

f ′2
f ′1f2 − f1f ′2

∴ y = f ′2(k2)(ω + k). (2.30)

According to Uzawa (1963), “the gross national product per capita is an increasing

function of the wage-rentals ratio if and only if the capital-intensity hypothesis is satisfied”

(UZAWA, 1963, p. 110). Finally, if the capital-intensity assumption holds, it can be

shown that the higher the average propensity to save s, the higher the wage-rentals

ratio ω, and the higher the quantity of new investment goods y1
9 (UZAWA, 1963).

In per capita terms, the system (2.23) can be reduced to:

k̇ = y1 − (δ + n)k.

9For a mathematical explanation, see (UZAWA, 1963, p. 109-110).
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From (2.25), the quantity of new capital goods can be expressed as y1 = sy
p

. Thus, k̇

can be written as:

k̇ =
sy

p
− (δ + n)k.

Yet, using (2.30) alongside with p =
f ′2
f ′1

:

k̇ = sf ′1(k1)(ω + k)− (δ + n)k, (2.31)

given the initial condition k(0) = k0 > 0. Equation (2.31) is the per capita capital

accumulation of Uzawa’s revisited two-sector model. The steady-state of (2.31) is

obtained by making k̇ = 0:

k̇ = 0 =⇒ sf ′1(k1∞)
(ω∞ + k∞)

k∞
= (δ + n),

where k1∞ = k1(ω∞), with the steady-state level of the wage-rental ratio being ω∞,

related to the respective steady-state level of per capita capital k∞10. In Uzawa’s words,

“if the capital-intensity hypothesis is satisfied, there always exists a uniquely determined

balanced capital-labor ratio k∞, corresponding to each level of the average propensity

to save s” (UZAWA, 1963, p. 111)11.

Comparing (2.31) with (2.14), it shows more than anything how the parameter

s assumes an important role in the dynamic of the per capita accumulation. In fact,

this revisited model works as an expansion of the Solow-Swan model to a two-sector

economy. The comparison between Solow’s and Uzawa’s models started the moment

Solow published his note on Uzawa’s work. The discussion referred, among other

things, to the difference between the two models. According to Inada (1963), “in Solow’s

one-sector model, a time path may be possible in which the capital-labor ratio increases

without limit or decreases to zero. Contrary to this, such a path is impossible in Uzawa’s

model” (INADA, 1963, p. 119). Solow (1961) blamed the assumptions expressed by

(2.4) and (2.5) for this, and even said that if Uzawa had considered saving as a fraction

10The model’s functioning is similar to the one seen from (UZAWA, 1961).
11The original numeration referring to the capital-intensity hypothesis was omitted, and the symbol

used to identify the steady-state per capita capital was changed in the citation.
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of the aggregate income, then stability would not hold and the two-sector model would

behave qualitatively like his one-sector model. Inada (1963) cleared up the discussion,

showing that the difference was, in fact, in another set of assumptions that Uzawa made

on the production functions12(SOLOW, 1961; INADA, 1963).

2.5 ALTERNATIVE TWO-SECTOR MODELS

All the models mentioned prior to this point belong to the theory of growth,

applied to advanced economies. There were just a few works on the theory of develop-

ment, for underdeveloped economies, whose “emphasis is laid on the balance between

capital accumulation and the growth of population, each adjusting to the other.” (JOR-

GENSON, 1961, p. 310). Looking to fill this gap, Jorgenson (1961) presented a theory

of development of a dual economy, a two-sector model where one sector represents an

advanced - or modern - sector, and the other represents a traditional - or agricultural -

sector. In Jorgenson’s model, the population growth depends on a balance between

the per capita food supply and mortality; if there is enough food supply to maintain the

population growth, then the model presents what Jorgenson called agricultural surplus.

In this case, some labor force working on the agricultural sector can be relocated to the

advanced sector. The model of a dual economy was developed under the hypothesis

that if an agricultural surplus arose, it would persist. This is the critical condition for an

economy to exhibit sustained growth13. Otherwise, if somehow the agricultural surplus

started to decrease - because of a change in the net rate of reproduction, for example -,

then the economy would be caught in a low-level equilibrium trap, which is stable for

any initial condition (JORGENSON, 1961).

Later on, Jorgenson (1967) presented two alternative approaches to his

theory of development of a dual economy, one classical and one neoclassical, devel-

oping both under the same framework to make comparisons possible. The differences

between both approaches are basically “assumptions made about the technology of the

agricultural sector and about conditions governing the supply of labour” (JORGENSON,

12Inada (1963) derived a generalization of Uzawa’s model, and showed that Solow’s one-sector model
is actually a particular case of Uzawa’s generalized model. For a better understanding, see (INADA,
1963).

13According to Jorgenson (1961), “The characteristics of an economy which experiences steady
growth depend not only on the existence of an agricultural surplus but also on technical conditions in the
advanced sector” (JORGENSON, 1961, p. 334).
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1967, p. 308). Dixit (1970) pointed out and analyzed the main differences between the

patterns of growth of the two approaches (DIXIT, 1970; JORGENSON, 1967). Subse-

quently, Mas-Colell and Razin (1973) showed that the growth patterns exhibited by the

Jorgenson’s model, such as “a decreasing rate of migration from rural to urban sector;

a stage of accelerated accumulation of capital; etc.” (MAS-COLELL; RAZIN, 1973, p.

72), could be explained by a neoclassical growth model. To accomplish this, Mas-Colell

and Razin introduced migration into a two-sector growth model (MAS-COLELL; RAZIN,

1973), which will be discussed in the next chapter.
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3 MAS-COLELL AND RAZIN MODEL

Beginning with the mathematical derivation of Mas-Colell and Razin (1973),

let us examine the model’s basic assumptions. The stocks of labor and capital, which are

fully employed, are given respectively by L = LA + LI - for simplicity, it is assumed that

LI +LA = 1 - and K = KA +KI , where I and A stands for the industrial and agricultural

sectors, respectively. About the production functions, they are linear homogeneous of

Cobb-Douglas type:

YI = Kβ
I L

1−β
I , (3.1)

YA = Kα
AL

1−α
A . (3.2)

Both YI and YA can be rewritten as:

YI = Kβ
I L

1
IL
−β
I = LI

Kβ
I

LβI
= LI

(
KI

LI

)β
,

YA = Kα
ALAL

−α
A = LA

Kα
A

LαA
= LA

(
KA

LA

)α
.

Given that the per capita capital in each sector is expressed by ki = Ki
Li
, i = I, A, then:

YI = LIk
β
I ,

YA = LA k
α
A.

Defining ρ = LI
L

= LI
LI+LA

as the proportion of total labour force employed in the industrial

sector, and (1− ρ) = LA
L

= LA
LI+LA

as the proportion of total labour force employed in the

agricultural sector, and dividing both functions by L, we obtain:

yI =
YI
L

=
LI
L
kβI = ρkβA,
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yA =
YA
L

=
LA
L
kαA = (1− ρ)kαA.

Therefore, equations (3.1) and (3.2) in per capita terms can be rewritten as:

yI = ρkβI , (3.3)

yA = (1− ρ)kαA. (3.4)

The stock of capital1 is also represented in per capita form:

KA +KI = K ⇔ ρkI + (1− ρ)kA = k. (3.5)

Taking (3.1) and (3.2) and differentiating with respect to the sectoral stocks

of capital, we get the marginal productivities of capital on both sectors:

∂YI
∂KI

= βKβ−1
I L1−β

I = β
Kβ−1
I

Lβ−1
I

= β

(
KI

LI

)β−1

= βkβ−1
I ,

∂YA
∂KA

= αKα−1
A L1−α

A = α
Kα−1
A

Lα−1
A

= α

(
KA

LA

)α−1

= αkα−1
A .

The value of the marginal productivity of capital in the industrial sector is V PMgKI =

pβkβ−1
I , with p being the price of the industrial good in terms of the agricultural good2,

while the one in the agricultural sector is V PMgKA = αkα−1
A . Considering that there is

perfect movement of capital between the sectors, the equilibrium condition is given by

the equalization of the marginal productivities:

pβkβ−1
I = αkα−1

A . (3.6)

1Given the full employment of capital and labor, it is true that

k =
K

L
=

K

ρ+ (1− ρ)
=
K

1
⇒ k = K.

2The agricultural good serves as the numéraire of the economy.
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Likewise, differentiating (3.1) and (3.2) with respect to the labor stocks from each sector

the marginal productivities of labor is:

∂YI
∂LI

= (1− β)Kβ
I L

1−β−1
I = (1− β)

Kβ
I

LβI
= (1− β)

(
KI

LI

)β
= (1− β)kβI ,

∂YA
∂LA

= (1− α)Kα
AL

1−α−1
A = (1− α)

Kα
A

LαA
= (1− α)

(
KA

LA

)α
= (1− α)kαA.

Then, the labor market in each sector will be in equilibrium when:

wI = p(1− β)kβI , wA = (1− α)kαA, (3.7)

where wI , wA are the wage rates in both sectors. The adjust in the labor market is not

instantaneous, allowing wI and wA to differ momentarily according to ρ. That is, if ρ is

small, meaning that the proportion of labor in the industrial sector is small, there will

be more workers on the agricultural sector, implying in a stronger competition in the

labor market in that region, which drives wA down. On the other hand, there will be

less competition in the labor market in the industrial region, driving wI up. Hence, this

creates a scenario where wI > wA. The logic for a high level of ρ is analogous; in this

case, wI < wA due to the stronger competition in the industrial labor market relatively to

the labor market in the agricultural region, which drives wI down.

Defining s as the rate of saving and δ as the proportion of income spent

on industrial goods for consumption - both constants -, with pyI + yA being the per

capita national income, it is possible to determine the demand for industrial product as

s(pyI + yA) + δ(pyI + yA) = (s+ δ)(pyI + yA), with the first term of the equation being the

share of income spent on industrial good for investment purposes and the second one

representing the share spent on industrial good for consumption purposes3. Meanwhile,

the industrial supply is expressed by pyI ; hence, the market equilibrium for the industrial

goods is given by:

(s+ δ)(pyI + yA) = pyI . (3.8)

3It is important to notice that the first term represents the income spent on industrial output for
investment because the model considers implicitly that savings equals investment.
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Replacing (3.3) and (3.4) in (3.8) and isolating kαA we have:

(s+ δ)(pρkβI + (1− ρ)kαA) = pρkβI

=⇒ kαA =
pρkβI

(
1

(s+δ)
− 1
)

(1− ρ)
.

Dividing the last equation by (3.6), we obtain:

kA =
ραkI

(
1

(s+δ)
− 1
)

(1− ρ)β
.

Now, going back to equation (3.5), kA can also be isolated:

ρkI + (1− ρ)kA = k =⇒ kA =
k − ρkI
(1− ρ)

.

Finally, we obtain an equation relying just on kI :

k − ρkI
(1− ρ)

=
ραkI

(
1

(s+δ)
− 1
)

(1− ρ)β

=⇒ kI =
β(

α
(s+δ)

− α + β
) (k

ρ

)
.

Therefore, multiplying both the numerator and the denominator by
(
s
s

)
, the final form of

the per capita capital of the industrial sector is given:

kI =
βs

α s
(s+δ)

− αs+ βs

(
k

ρ

)
=⇒ kI =

βs

α(λ− s) + βs

(
k

ρ

)
,

where λ = s
(s+δ)

is defined as the proportion of total industrial output in the form of

industrial good for investment purposes, i.e., the rate of investment. Defining the
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parameter θ = βs
α(λ−s)+βs for simplicity, Mas-Colell and Razin (1973) got the final equation

for kI :

kI = θ
k

ρ
. (3.9)

To derive the per capita capital of the agricultural sector, let us replace (3.9) on kA =
ραkI( 1

(s+δ)
−1)

(1−ρ)β
:

kA =
α

β

ρ

(1− ρ)

(
1− s− δ
s+ δ

)
θ
k

ρ
.

Given that θ is defined as θ = (s+δ)β
(s+δ)β+(1−s−δ)α , after some simplifications kA is denoted

by:

kA = (1− θ) k

(1− ρ)
. (3.10)

Moving forward, let us start looking into the equations that give the model

its dynamics. Knowing that the aggregate per capita capital is k = K(t)
L(t)

, it can be

differentiated with respect to time4:

dk

dt
=

d

dt

(
K

L

)
=
K̇L−KL̇

L2
=⇒ k̇ =

K̇L

L2
− KL̇

L2
=
K̇

L
− K

L

L̇

L
=
K̇

L
− kn

=⇒ k̇ =
λLI

(
KI
LI

)β
L

− kn =⇒ k̇ = λkβI

(
LI
L

)
− kn = λkβI ρ− kn

∴ k̇ = λyI − kn.

4The capital stock accumulation and the population growth are given by the following differential
equations:

K̇ = λYI = λKβ
I L

1−β
I = λKβ

I L
1
IL
−β
I = λLI

(
KI

LI

)β
, (3.11)

L̇

L
= n −→ L̇ = Ln, (3.12)

where n is a constant rate at which the population grows.
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Taking (3.3) and (3.9) into account, and dividing both sides by k, it gives the dynamic of

the aggregate per capita capital, which is the per capita capital accumulation:

k̇

k
= λθβ

(
k

ρ

)β−1

− n. (3.13)

The Mas-Colell and Razin model introduces a function that models the

migration of labor from one sector to the other, which is a positive function of the wage

differential from both sectors and is given by the following general form (MAS-COLELL;

RAZIN, 1973):

ρ̇

ρ
= f(wI , wA). (3.14)

To express the behavior of the relative rate of growth of migration ρ̇
ρ
, Mas-Colell and

Razin (1973) use a more specific form, in order to meet some requirements5:

ρ̇

ρ
= γ

[
wI − wA
wA

]
, (3.15)

where γ > 0. Replacing (3.7) in (3.15) gives:

ρ̇

ρ
= γ

[
p(1− β)kβI − (1− α)kαA

(1− α)kαA

]
=⇒ ρ̇

ρ
= γ

[
p(1− β)kβI
(1− α)kαA

− 1

]
.

Given that pβkβ−1
I = αkα−1

A , multiplying the right side of the equality by αkα−1
A

pβkβ−1
I

= 1 yields:

ρ̇

ρ
= γ

αkα−1
A

pβkβ−1
I

[
p(1− β)kβI
(1− α)kαA

− 1

]
=⇒ ρ̇

ρ
= γ

[
(1− β)

β

α

(1− α)

kα−1
A

kαA

kβI
kβ−1
I

− 1

]

=⇒ ρ̇

ρ
= γ

[
(1− β)

β

α

(1− α)

kI
kA
− 1

]
.

Substituting (3.9) and (3.10), we get that the dynamics of migration is expressed by6

ρ̇

ρ
= γ

[
(1− β)

β

α

(1− α)

θ

(1− θ)
(1− ρ)

ρ
− 1

]
. (3.16)

5If wI

wA
→∞, then ρ̇

ρ →∞.
6Through our derivation of the original model, we found out that Mas-Colell and Razin (1973) made a

mistake defining ρ̇
ρ , forgetting the term θ

(1−θ) . See Mas-Colell and Razin (1973), p. 76.



35

The direction of the migratory flow respects the wage differential in both sectors, that is,

labor flows into the sector paying the highest wage. If the wages are equal, there is no

migration. Thus, the equilibrium is the point where there will be no migration, meaning

that at this point the wages defined by (3.7) are equal:

f(wI , wA) = 0⇐⇒ wI = wA =⇒ p(1− β)kβI = (1− α)kαA.

Dividing by (3.6):

p(1− β)kβI
pβkβ−1

I

=
(1− α)kαA
αkα−1

A

=⇒ (1− β)

β
k
β−(1−β)
I =

(1− α)

α
k
α−(1−α)
A

=⇒ (1− β)

β
kI =

(1− α)

α
kA.

Replacing by (3.9) and (3.10):

(1− β)

β
θ
k

ρ
=

(1− α)

α
(1− θ) k

(1− ρ)
.

Making some algebraic manipulations:

(1− β)θα

βρ
=

(1− α)(1− θ)
(1− ρ)

=⇒ (1− β)θα

β(1− α)(1− θ)
=

ρ

(1− ρ)

=⇒ ρ =
(1− β)θα

β(1− α)(1− θ)
[
1 + (1−β)θα

β(1−α)(1−θ)

]
Consequently, the steady-state level of migration is defined by:

ρ∞ =
(1− β)θα

β(1− α)(1− θ) + (1− β)θα
. (3.17)

Now, for the analysis of the per capita capital on the steady-state, let us

rewrite equation (3.13) as k̇
k

= λyI
k
− n = λθβ

(
k
ρ

)β−1

− n. Thus:
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k̇ = 0⇐⇒ 0 = λθβ
(
k

ρ

)β−1

− n =⇒ n = λθβ
(
k

ρ

)β−1

=⇒ n = λθβ
ρ1−β

k1−β

∴ k =

(
λ

n

) 1
1−β

θ
β

1−β ρ.

Defining the parameter c =
(
λ
n

) 1
1−β θ

β
1−β for matters of simplification, the following

equation gives the steady-state level of the per capita capital:

k∞ = cρ∞. (3.18)

Summarizing the Mas-Colell and Razin two-sector model of intersectoral

migration and growth, the dynamics of the model is given by the following system of

ODEs:


k̇ = kλθβ

(
k

ρ

)β−1

− kn,

ρ̇ = ργ

[
(1− β)

β

α

(1− α)

θ

(1− θ)
(1− ρ)

ρ
− 1

]
,

(3.19)

for the initial conditions k(0) = k0 > 0 and ρ(0) = ρ0 > 0 (MAS-COLELL; RAZIN, 1973).

The stability of the steady-state given by (3.17) and (3.18) can be verified by the phase

diagram in Figure 2.

3.1 TAX POLICY

Seeking to introduce a tax policy into the model, Mas-Colell and Razin

(1973) included an ad valorem subsidy (tax) given to the agricultural sector7. The

rate τ represents a change in the price of the agricultural sector, i.e., pA = 1.(1 + τ),

and therefore will affect the marginal productivity of capital and the wage rate of the

agricultural sector, changing equations (3.6) and (3.7) as shown below (MAS-COLELL;

RAZIN, 1973):

pβkβ−1
I = (1 + τ)αkα−1

A , (3.20)
7It is supposed that the government raises - or gives - these funds from an income tax (MAS-COLELL;

RAZIN, 1973).
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Figure 2 – Phase diagram for the Mas-Colell and
Razin model.

Source: Mas-Colell and Razin (1973).

wA = (1 + τ)(1− α)kαA, (3.21)

where τ > −1, with −1 < τ < 0 being a tax and τ > 0 being a subsidy. From (3.20) and

(3.21), the Mas-Colell and Razin model can be derived again. Dividing kαA =
pρkβI (

1
(s+δ)

−1)
(1−ρ)

by (3.20) gives:

kαA
(1 + τ)αkα−1

A

=

pρkβI (
1

(s+δ)
−1)

(1−ρ)

pβkβ−1
I

−→ k
α−(α−1)
A

(1 + τ)α
=
ρk

β−(β−1)
I

(
1

(s+δ)
− 1
)

(1− ρ)β

=⇒ kA =
(1 + τ)αρkI

(
1

(s+δ)
− 1
)

(1− ρ)β
.

Isolating kA in (3.5) and equalizing with the equation above:

kI =
βs

(1 + τ)α(λ− s) + βs

(
k

ρ

)
.
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Defining θτ = βs
(1+τ)α(λ−s)+βs , we obtained the new equation of the per capita capital of

the industrial sector:

kI = θτ
k

ρ
. (3.22)

Now, replacing (3.22) on kA =
(1+τ)αρkI( 1

(s+δ)
−1)

(1−ρ)β
gives:

kA =
(1 + τ)α

β

ρ

(1− ρ)

(
1− s− δ
s+ δ

)
θτ
k

ρ
.

The parameter θτ can be rewritten as θτ = (s+δ)β
(s+δ)β+(1−s−δ)(1+τ)α

. After some simplifications,

we get:

kA =

[
1− (s+ δ)β

(s+ δ)β + (1− s− δ)(1 + τ)α

]
k

(1− ρ)
.

Thus, the new per capita capital of the agricultural sector is given by:

kA = (1− θτ )
k

(1− ρ)
. (3.23)

The parameter θτ plays a pivotal role in the Mas-Colell and Razin model with tax policy.

As we can see, the transmission of the policy to the per capita capital in both sectors

takes place through θτ , and the same happens for the rest of the variables. The new

dynamics of the model is given by the following system of ODEs:


k̇ = kλθβτ

(
k

ρ

)β−1

− kn,

ρ̇ = ργ

[
(1− β)

β

α

(1− α)

θτ
(1− θτ )

(1− ρ)

ρ
− 1

]
.

(3.24)

for the initial conditions k(0) = k0 > 0 and ρ(0) = ρ0 > 0. The new form of the

steady-states levels of the per capita capital and migration are given by:

k∞ = c ρ∞, (3.25)
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ρ∞ =
(1− β)θτα

β(1− α)(1− θτ ) + (1− β)θτα
. (3.26)

where c =
(
λ
n

) 1
1−β θ

β
1−β
τ . It is easy to see that if τ = 0 then θτ = (s+δ)β

(s+δ)β+(1−s−δ)α = βs
α(λ−s)+βs ,

recovering the parameter θ of the model without the tax policy. The following phase

diagram shows how changes in the tax policy affect the steady-state levels given by

(3.25) and (3.26) (MAS-COLELL; RAZIN, 1973):

Figure 3 – Phase diagram for different tax policies.

Source: Mas-Colell and Razin (1973).

Point A in Figure 3 is a steady-state in a case with a subsidy. As τ decreases, meaning

a decrease in the subsidy or even the change for a tax, the slope of the isocline k̇ = 0

decreases, while the horizontal isocline ρ̇ = 0 goes up. Therefore, for any decrease of τ ,

at the steady-state we will have bigger values for both ρ and k, as shown by point B.
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4 GENERALIZED MODEL WITH DISTINCT POPULATION GROWTH RATES

The objective of this section is to generalize the Mas-Colell and Razin model

of intersectoral migration and growth presented in the previous chapter, which considers

a single population growth rate, in order to consider two population growth rates, one for

each sector. Considering nA as the population growth rate of the agricultural sector and

nI as the population growth rate of the industrial sector, the population growth in each

sector is given by the following differential equations:

L̇I = LInI , (4.1)

L̇A = LAnA. (4.2)

Hence, the new labor dynamic is now given by L̇ = L̇I + L̇A. Dividing L̇ by L and using

(4.1) and (4.2) we obtain:

L̇

L
=
L̇I
L

+
L̇A
L

=
LInI
L

+
LAnA
L

=⇒ L̇

L
= nIρ+ nA(1− ρ). (4.3)

Equation (4.3) determines the dynamic of the aggregate population growth considering

distinct population growth rates. If we consider nA = nB = n in (4.3), we get the

population growth of the original model given by (3.12). Next, knowing that the aggregate

per capita capita is k = K(t)
L(t)

, we can differentiate it with respect to time:

k̇ =
dk

dt
=

d

dt

(
K

L

)
=
K̇L−KL̇

L2
=⇒ k̇ =

K̇L

L2
−KL̇
L2

=
K̇

L
−K
L

L̇

L
=
K̇

L
−k[nIρ+nA(1−ρ)]

=⇒ k̇ =
K̇

L
− k[nIρ+ nA(1− ρ)].

Replacing (3.11) in the equation above:
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k̇ =

(
λKβ

I L
1−β
I

)
L

− k [nIρ+ nA(1− ρ)] =

[
λLI

(
KI
LI

)β]
L

− k[nIρ+ nA(1− ρ)]

=⇒ k̇ = λkβI
LI
L
− k [nIρ+ nA(1− ρ)] =⇒ k̇ = λkβI ρ− k[nIρ+ nA(1− ρ)].

Dividing both sides by k, we get:

k̇

k
=
λkβI ρ

k
− [nIρ+ nA(1− ρ)] ,

Replacing (3.22):

k̇

k
=
λ
(
θτ

k
ρ

)β
ρ

k
− [nIρ+ nA(1− ρ)] = λθβτ

kβ

k

ρ

ρβ
− [nIρ+ nA(1− ρ)]

=⇒ k̇

k
= λθβτ k

β−1ρ1−β − [nIρ+ nA(1− ρ)] = λθβτ
kβ−1

ρβ−1
− [nIρ+ nA(1− ρ)]

Therefore, the dynamic of the aggregate per capita capital, given distinct population

growth rates, is defined as:

k̇

k
= λθβτ

(
k

ρ

)β−1

− [nIρ+ nA(1− ρ)] . (4.4)

As we can see, making nI = nA, we recover the dynamic of k as defined in the original

model by (3.13). In order to obtain the aggregate per capita capital at the steady-state,

we proceed as follows:

k̇ = 0⇐⇒ λθβτ

(
k

ρ

)β−1

− [nIρ+ nA(1− ρ)] = 0

∴ k∞ = θ
β

1−β
τ ρ∞

[
λ

nIρ∞ + nA(1− ρ∞)

] 1
1−β

. (4.5)

Once again, it is easily seen that if we take nI = nA, we recover k∞ of the original model

as defined in (3.18).
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The final step in defining our generalized model is to derive an equation for

the dynamics of ρ:

ρ̇

ρ
=

(
LI
L

)′(
LI
L

) =
L

LI

(
LI
L

)′
=

L

LI

(
L̇IL− LIL̇

L2

)
=
L̇IL− LIL̇

LIL

−→ ρ̇

ρ
=
L̇IL

LIL
− LIL̇

LIL
=
L̇I
LI
− L̇

L
.

Replacing (4.3):

ρ̇

ρ
=
L̇I
LI
− nIρ+ nA(1− ρ).

Knowing that the Mas-Colell and Razin model defines migration as M = L̇I − nILI , we

get:

ρ̇

ρ
=
M + nILI

LI
− [nIρ+ nA(1− ρ)] =

M

LI
+ nI − nIρ− nA(1− ρ)

=⇒ ρ̇

ρ
=
M

LI
+ nI(1− ρ)− nA(1− ρ)

=⇒ ρ̇

ρ
=
M

LI
+ (1− ρ)(nI − nA).

Given that the rate of migration towards the industrial sector in the original model is

defined by (3.16), we end up with:

ρ̇

ρ
= γ

[
(1− β)

β

α

(1− α)

θτ
(1− θτ )

(1− ρ)

ρ
− 1

]
+ (1− ρ)(nI − nA). (4.6)

As we can see, taking nI = nA we recover (3.16). Equation (4.6) shows that in our

generalized model the population dynamic in the industrial sector is determined not only

by the rate of migration towards the industrial sector, but also by the differential of the

sectoral population growth rates. In order to obtain the fraction of the population in the

industrial sector at the steady-state, we proceed as such:
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ρ̇ = 0⇐⇒ γρ

[
(1− β)

β

α

(1− α)

θτ
(1− θτ )

(1− ρ)

ρ
− 1

]
+ ρ(1− ρ)(nI − nA) = 0

⇐⇒ ρ2(nI−nA)+ρ

[
nA − nI + γ + γ

(
(1− β)

β

α

(1− α)

θτ
(1− θτ )

)]
−γ
[

(1− β)

β

α

(1− α)

θτ
(1− θτ )

]
= 0.

Defining σ = γ
[

(1−β)
β

α
(1−α)

θτ
(1−θτ )

]
and replacing it in the equation above:

ρ2(nI − nA) + ρ(nA − nI + γ + σ)− σ = 0.

Now, replacing ∆n = nI − nA, we get a quadratic equation for ρ:

∆nρ2 + (γ + σ −∆n)ρ− σ = 0. (4.7)

This means that mathematically our model may have two steady-states for ρ1. We

can verify that making ∆n = 0, we recover ρ∞ as defined in the Mas-Colell and Razin

model2, which has only one steady-state. Now, dividing (4.7) by ∆n, we get:

ρ2 +

(
γ + σ −∆n

∆n

)
ρ− σ

∆n
= 0.

Applying the quadratic formula to the equation above, we can see that the steady-states

for ρ are:

ρ1,2
∞ =

1

2

−(γ + σ −∆n

∆n

)
±

√(
γ + σ −∆n

∆n

)2

+
4σ

∆n

 . (4.8)

Summarizing, the dynamics is then defined by the following system of ODEs:


k̇ = kλθβτ

(
k

ρ

)β−1

− k[nIρ+ nA(1− ρ)]

ρ̇ = ργ

[
(1− β)

β

α

(1− α)

θτ
(1− θτ )

(1− ρ)

ρ
− 1

]
+ ρ(1− ρ)(nI − nA),

(4.9)

1Although ρ has two steady-states, we note that only one makes economic sense, i.e., 0 < ρ∞ < 1.
2Taking (4.7) and making ∆n = 0 gives us equation (3.26):

(γ + σ)ρ− σ = 0 =⇒ ρ∞ =
σ

γ + σ
=⇒ ρ∞ =

(1− β)αθτ
(1− β)αθτ + β(1− α)(1− θτ )

.



44

for the initial conditions k(0) = k0 > 0 and ρ(0) = ρ0 > 0. Besides that, it is worth

mentioning that the per capita capital, the per capita output and the wage in each sector

are determined by the following already known equations:

kI = θτ
k

ρ
, kA = (1− θτ )

k

(1− ρ)
,

yI = ρkβI , yA = (1− ρ)kαA,

wI = p(1− β)kβI , wA = (1 + τ)(1− α)kαA.

With that we conclude the derivation of our generalized model.

4.1 EQUILIBRIA STABILITY ANALYSIS

4.1.1 Stability of ρ∞

First, let us define the function p(ρ) as the equation (4.7). In section 4, we

had determined the steady-states for ρ in (4.8), which in the notation adopted here are

the roots for p(ρ). Rewriting (4.8), we get:

ρ1,2 =
1

2∆n

[
−(σ + γ −∆n)±

√
(σ + γ −∆n)2 + 4∆nσ

]
, (4.10)

where

ρ1 =
1

2∆n

[
−(σ + γ −∆n) +

√
(σ + γ −∆n)2 + 4∆nσ

]
, (4.11)

ρ2 =
1

2∆n

[
−(σ + γ −∆n)−

√
(σ + γ −∆n)2 + 4∆nσ

]
. (4.12)

We are interested in the signals of (4.11) and (4.12), and want to show that only one

has a feasible value, satisfying the condition ρ ∈ (0, 1)3. Now, we know that γ > 0, so
3Which is the interval of values that makes economic sense, once ρ is the proportion of people living

in the industrial sector.
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ρ1,2 depends on the signals of σ and ∆n. Let’s take a closer look at σ for a moment.

We defined σ = γ
[

(1−β)
β

α
(1−α)

θτ
(1−θτ )

]
, where α, β ∈ (0, 1) and τ > −1. Therefore, it all

relies upon θτ . Now, we already know that θτ = (s+δ)β
(s+δ)β+(1−s−δ)(1+τ)α

, where δ, s ∈ [0, 1].

Rewriting 1− s− δ = 1− (s+ δ) and dividing both the numerator and the denominator

of θτ by (s+ δ)β, we get:

θτ =
1

α(1+τ)
β

[
1

(s+δ)
− 1
]

+ 1
.

Once (s + δ) is the proportion of income spent on industrial goods (for consumption

and investment purposes), 1− (s+ δ) is the proportion of income spent on agricultural

goods, and so 1− (s+ δ) > 0. Then:

1− (s+ δ) > 0 =⇒ (s+ δ) < 1 =⇒ 1

(s+ δ)
> 1.

If 1
(s+δ)

> 1, then
[

1
(s+δ)

− 1
]
> 0, which means that α(1+τ)

β

[
1

(s+δ)
− 1
]

+ 1 > 1, due to
α(1+τ)

β
> 0,∀α, β, τ . Thus:

θτ =
1

α(1+τ)
β

[
1

(s+δ)
− 1
]

+ 1
< 1 =⇒ (1− θτ ) > 0.

The fact that (1− θτ ) > 0 guarantees that σ is strictly positive. Now that we

know that σ > 0, there is only ∆n to analyse. We express our results in the following

proposition:

Proposition 4.1.1 Considering any scenario with distinct population growth rates, there

will always be one, and only one, feasible ρ.

Proof: we have two possible cases, depending on the signal of ∆n. Let us start with

the case where the population growth rate is bigger in the industrial sector than in the

agricultural sector.

Case 1: ∆n > 0

In this case, −(σ + γ −∆n) S 0. Starting with −(σ + γ −∆n) = 0, we have ∆n = σ + γ,

implying that from (4.10) we get:
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ρ1,2 = ± 1

2∆n

√
4∆nσ = ±

√
σ

∆n

=⇒ ρ1 =

√
σ

∆n
, ρ2 = −

√
σ

∆n

=⇒ ρ1 > 0, ρ2 < 0,∀σ, γ > 0

Observing that ρ1 =
√

σ
∆n

=
√

σ
σ+γ

, it is clear that ρ1 < 1. Therefore:

ρ1 ∈ (0, 1), ρ2 < 0.

Now, for −(σ + γ −∆n) > 0, we get ∆n > σ + γ. Thus:

√
(σ + γ −∆n)2 + 4∆nσ > −(σ + γ −∆n),∀σ, γ

Therefore, ρ1 > 0 and ρ2 < 0. Taking ρ1, we can rewrite it as:

ρ1 =
1

2

−(σ + γ −∆n)

∆n
+

√(
σ + γ −∆n

∆n

)2

+
4σ

∆n

 .
Let us show that ρ1 < 1 by contradiction. Assuming that ρ1 ≥ 1, we have:

1

2

−(σ + γ −∆n)

∆n
+

√(
σ + γ −∆n

∆n

)2

+
4σ

∆n

 ≥ 1

⇐⇒ −(σ + γ −∆n)

∆n
+

√(
σ + γ −∆n

∆n

)2

+
4σ

∆n
≥ 2

⇐⇒ −
(
σ + γ

∆n
− 1

)√(
σ + γ −∆n

∆n

)2

+
4σ

∆n
≥ 2
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⇐⇒

√(
σ + γ −∆n

∆n

)2

+
4σ

∆n
≥ σ + γ

∆n
+ 1

⇐⇒

√(σ + γ −∆n

∆n

)2

+
4σ

∆n

2

≥
(
σ + γ

∆n
+ 1

)2

⇐⇒
(
σ + γ

∆n
− 1

)2

+
4σ

∆n
≥ (σ + γ)2

(∆n)2
+ 1 + 2

(
σ + γ

∆n

)

⇐⇒ −2

(
σ + γ

∆n

)
+

4σ

∆n
≥ 2

(
σ + γ

∆n

)

⇐⇒ 4σ

∆n
≥ 4

(
σ + γ

∆n

)

⇐⇒ σ ≥ σ + γ ⇔ 0 ≥ γ,

what is an absurd, because γ > 0. Hence, we conclude that ρ1 < 1, and so:

ρ1 ∈ (0, 1), ρ2 < 0.

For last, we have −(σ+ γ −∆n) < 0, for what we get ∆n < σ+ γ. For this condition, we

also have ρ1 > 0 and ρ2 < 0, because:

√
(σ + γ −∆n)2 + 4∆nσ > −(σ + γ −∆n),∀σ, γ.

Using the same reasoning as the previous occasion, we can show that ρ1 < 1.

∴ ∆n > 0 =⇒ ρ1 ∈ (0, 1), ρ2 < 0.

Case 2: ∆n < 0
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In a case where the population growth rate is bigger in the agricultural sector than in the

industrial sector, we always have −(σ + γ −∆n) < 0, which makes −(σ + γ −∆n) <√
(σ + γ −∆n)2 + 4∆nσ, considering that 4∆nσ < 0. Hence, from (4.10) is easy to see

that:

ρ1,2 > 0.

As before, we have to prove that only one between (4.11) and (4.12) belongs to the

interval (0, 1), that is, we have to show that one of them is smaller than 1 while the

other one is greater than 1. In that line, let us prove first that ρ1 < 1 by contradiction.

Considering ρ1 ≥ 1:

1

2∆n

[
−(σ + γ −∆n) +

√
(σ + γ −∆n)2 + 4∆nσ

]
≥ 1

⇐⇒ −(σ + γ −∆n) +
√

(σ + γ −∆n)2 + 4∆nσ ≤ 2∆n

⇐⇒
√

(σ + γ −∆n)2 + 4∆nσ ≤ σ + γ + ∆n,

where σ + γ + ∆n R 0, due to ∆n < 0. If σ + γ + ∆n ≤ 0, then we have an absurd

(following the last inequality), proving that ρ1 < 1. On the contrary, if σ + γ + ∆n > 0, we

shall continue the analysis:

⇐⇒
(√

(σ + γ −∆n)2 + 4∆nσ
)2

≤ (σ + γ + ∆n)2

⇐⇒ (σ + γ −∆n)2 + 4∆nσ ≤ (σ + γ + ∆n)2

⇐⇒ (σ + γ)2 + ∆n2 − 2∆n(σ + γ) + 4∆nσ ≤ (σ + γ)2 + ∆n2 + 2∆n(σ + γ)
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⇐⇒ 4∆nσ ≤ 4∆nσ + 4∆nγ ⇔ 4∆nγ ≥ 0,

which is an absurd, because ∆n < 0. Therefore, ρ1 < 1 =⇒ ρ1 ∈ (0, 1). Last, but not

least, let us show - also by contradiction - that ρ2 > 1. Assuming that ρ2 ≤ 1:

1

2∆n

[
−(σ + γ −∆n)−

√
(σ + γ −∆n)2 + 4∆nσ

]
≤ 1

⇐⇒ −(σ + γ −∆n)−
√

(σ + γ −∆n)2 + 4∆nσ ≥ 2∆n

⇐⇒ −
√

(σ + γ −∆n)2 + 4∆nσ ≥ σ + γ + ∆n.

Once again, σ + γ + ∆n R 0. If σ + γ + ∆n ≥ 0, then we have an absurd, proving

that ρ2 > 1. On the contrary, if σ + γ + ∆n < 0, we may continue multiplying the last

inequality by (−1):

⇐⇒
(√

(σ + γ −∆n)2 + 4∆nσ
)2

≤ (−(σ + γ + ∆n))2,

⇐⇒ (σ + γ −∆n)2 + 4∆nσ ≤ (σ + γ + ∆n)2

⇐⇒ (σ + γ)2 + ∆n2 − 2∆n(σ + γ) + 4∆nσ ≤ (σ + γ)2 + ∆n2 + 2∆n(σ + γ)

⇐⇒ 4∆nσ ≤ 4∆nσ + 4∆nγ ⇐⇒ 4∆nγ ≥ 0,

which is also an absurd, proving that ρ2 > 1. With that, we conclude the following:

∴ ∆n < 0 =⇒ ρ1 ∈ (0, 1), ρ2 > 1.
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�

Summarizing, proposition 4.1.1 has shown that for any scenario with distinct population

growth rates only ρ1 makes economic sense. Then, we may conclude the following

about the steady-state of ρ:

ρ∞ =


1

2∆n

[
−(σ + γ −∆n) +

√
(σ + γ −∆n)2 + 4∆nσ

]
, for ∆n 6= 0

(1− β)θτα

β(1− α)(1− θτ ) + (1− β)θτα
, for ∆n = 0.

(4.13)

The effort of obtaining (4.13) is a big deal for our generalized model. Back in section 4,

when we derived the steady-states for ρ in (4.8), we had the uncertainty of having two

possible steady-states, which obscured our results. Now we know only one of them is

appropriate, and we know exactly how to calculate it.

Finally, we can carry out a stability analysis on the steady-state ρ∞. From

(4.9), we get that ρ̇
ρ

= σ
(

1−ρ
ρ

)
− γ + (1− ρ)∆n. Hence:

ρ̇ Q 0⇐⇒ σ

(
1− ρ
ρ

)
− γ + (1− ρ)∆n Q 0

ρ̇ Q 0⇐⇒ σ(1− ρ)− γρ+ ρ∆n− ρ2∆n Q 0

ρ̇ Q 0⇐⇒ −∆nρ2 + (∆n− σ − γ)ρ+ σ Q 0

ρ̇ Q 0⇐⇒ ∆nρ2 + (γ + σ −∆n)ρ− σ R 0

∴ ρ̇ Q 0⇐⇒ p(ρ) R 0. (4.14)

Relation (4.14) shows that ρ∞ is stable for ∆n Q 0. If ∆n = 0, then p(ρ) = (σ+γ)ρ−σ Q

0 ⇐⇒ ρ Q σ
σ+γ

= ρ∞. Therefore, ρ̇ R 0 ⇐⇒ ρ Q ρ∞, where the stability of ρ∞ can be

easily verified. For ∆n ≶ 0, the stability can be verified graphically through Figures 4 and



51

54. Figure 4 is a sketch of p(ρ) for ∆n > 0. As expressed in (4.14), for p(ρ) > 0 we have

ρ̇ < 0, and so for any positive value of p(ρ) we observe a decrease in ρ, represented by

the grey arrows pointing to the left. Now, if p(ρ) < 0 then we have ρ̇ > 0, showing that for

any negative value of p(ρ) we observe an increase in ρ, movement represented by the

grey arrows pointing to the right. The arrows pointing to ρ∞ indicate its stability, showing

that no matter the value of the p(ρ), it tends to ρ∞. Analogously, Figure 5 shows the

stability of ρ∞ in a scenario with ∆n < 0, where the same signal reasoning is used.

Figure 4 – Sketch of p(ρ) for ∆n > 0.

ρ 2
ρρ∞

p(ρ )

0 1

Source: Elaborated by the author (2021).

4.1.2 Stability of k∞

The stability analysis of k∞ is similar to that of ρ∞. From (4.9), we get that
k̇
k

= λθβτ

(
k
ρ

)β−1

− [nIρ+ nA(1− ρ)]. Thus:

k̇ Q 0⇐⇒ λθβτ

(
k

ρ

)β−1

− [nIρ+ nA(1− ρ)] Q 0

4For our purposes we can ignore ρ /∈ (0, 1) as we have shown that it makes no economic sense. In
fact, ρ2 was included in our figures only for formal reasons.
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Figure 5 – Sketch of p(ρ) for ∆n < 0.

ρρ∞ ρ 2

p(ρ )

10

Source: Elaborated by the author (2021).

k̇ Q 0⇐⇒ λθβτ

(
k

ρ

)β−1

Q [nIρ+ nA(1− ρ)]

k̇ Q 0⇐⇒ λθβτ
ρ1−β

kβ−1
Q [nIρ+ nA(1− ρ)]

k̇ Q 0⇐⇒ 1

kβ−1
Q

λθβτ ρ
1−β

[nIρ+ nA(1− ρ)]

k̇ Q 0⇐⇒ kβ−1 R
λθβτ ρ

1−β

[nIρ+ nA(1− ρ)]

k̇ Q 0⇐⇒ k R θ
β

1−β
τ ρ∞

[
λ

nIρ∞ + nA(1− ρ∞)

] 1
1−β

∴ k̇ Q 0⇐⇒ s(ρ) R k, (4.15)
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for s(ρ) = θ
β

1−β
τ ρ

[
λ

nIρ+nA(1−ρ)

] 1
1−β

. At the steady-state, k∞ = s(ρ∞), which is constant.

Thus, k Q k∞ =⇒ k̇ R 0; this is shown by relation (4.15).When s(ρ) is positive - at any

point to the right of k∞ - k̇ < 0, and so k decreases towards k∞. On the other hand, if

s(ρ) is negative - at any point to the left of k∞ - k̇ > 0, k increases towards k∞. This

proves the stability of k∞.

Summarizing, the equilibrium of our generalized model is composed of the

following steady-states:

ρ∞ =


1

2∆n

[
−(σ + γ −∆n) +

√
(σ + γ −∆n)2 + 4∆nσ

]
, for ∆n 6= 0

(1− β)θτα

β(1− α)(1− θτ ) + (1− β)θτα
, for ∆n = 0,

k∞ = θ
β

1−β
τ ρ

[
λ

nIρ∞ + nA(1− ρ)

] 1
1−β

, for ∆n Q 0.
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5 RESULTS AND DISCUSSION

5.1 NUMERICAL SIMULATIONS

In this section we are going to perform numerical simulations to analyze

the behavior of the endogenous variables and present the phase diagrams of our

generalized model. Our problem boils down to solve the system of ODEs given by

(4.9) that defines the generalized model. We have chosen to solve it numerically using

the Euler’s method1 through the implementation of an algorithm using the software

MATLAB®; all the results were validated by the MATLAB command ode45. The script

developed - available in Appendix B - carries out the numerical simulations and makes

the graphs of the temporal evolution of our variables. The phase diagrams were

generated by the software Maple®.

Our simulations and graphical analysis consider three scenarios concerning

the sectoral population growth rates, one with equal rates, where nI = nA = 0.05, which

will be referred to as scenario 1, and two scenarios with distinct rates, one with the rate

in the industrial sector bigger than in the agricultural sector, where we take nI = 0.05

and nA = 0.01, which will be referred to as scenario 2, and the other with the rate in

the agricultural sector bigger than in the industrial sector, where we take nI = 0.01

and nA = 0.05, which will be referred to as scenario 3. We also contemplate three tax

policies, a case where no tax or subsidy is applied, and so τ = 0, a case with a tax,

where we take τ = −0.5, and a case with a subsidy, where τ = 0.5. At this point, it is

prudent to remember that the tax or subsidy is applied to the agricultural sector, and so

it affects the marginal productivity of capital and the wage rate of that region. The rest

of our parameters and its values are β = 0.4, α = 0.3, s = 0.15, γ = 0.01 and δ = 0.6,

which are the same values used by Mas-Colell and Razin (1973). The variables we

are interested in analyzing are the aggregate per capita capital (k), the share of the

population in the industrial sector (ρ), and the sectoral per capita capital (kI and kA) and

output (yI and yA); it is also worth looking at the wage rates (wI and wA) because they

explain the dynamics of the intersectoral migration.

We begin by presenting the phase diagrams in Figures 6 to 8. The diagrams

are composed by isoclines k̇ = 0 and ρ̇ = 0, where the last generates a horizontal curve,

1See Appendix A.
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because ρ∞ is always constant. We also opted for using the same color to identify

the isoclines belonging to the same tax policy, in order to facilitate the identification of

the steady-state and seeking to differentiate well the different policies. Last, the black

arrows on the edges indicate the dynamics.

Figure 6 – Isoclines k̇ = 0 and ρ̇ = 0 for nI = nA.

Source: Elaborated by the author (2021).

Starting with Figure 6, it shows the phase diagrams of scenario 1. The black

isoclines form the same diagram as Figure 2, while the blue and red isoclines express

the same changes that Figure 3 as discussed back in section 3.1. Thus, a subsidy

policy leads to an equilibrium with smaller k and ρ than the cases with no tax policy or

with a tax on the agricultural sector. As we can see, the black arrows show that the

steady-states are stable. Next, Figure 7 shows the phase diagrams of scenario 2; the

biggest difference from this scenario to the previous is the formats of k̇ = 0. Aside

from that, the conclusion is pretty much the same, that is, a subsidy policy leads to an

equilibrium with smaller k and ρ than the other two tax policies, and the steady-states

are also stable. Closing the phase diagrams analysis, Figure 8 shows the diagrams of

scenario 3. Again, the formats of k̇ = 0 differ from the other scenarios. Once again, the

pattern for the equilibrium showed in the other two scenarios repeat, but in this context

with more intensity, showed by a bigger distance between steady-states given each tax

policy (compare with scenario 2, for example). As before, the steady-states are stable,



56

as shown by the direction of the black arrows.

Figure 7 – Isoclines k̇ = 0 and ρ̇ = 0 for nI > nA.

Source: Elaborated by the author (2021).

Figure 8 – Isoclines k̇ = 0 and ρ̇ = 0 for nI < nA.

Source: Elaborated by the author (2021).
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The next step is to present the temporal evolution until the steady-state is

reached of our endogenous variables in all the scenarios considered. Each figure

contains three graphs, where each graph represents one of the scenarios involving

the population growth rates and each curve expresses a tax policy. The numerical

simulations complement the analysis of the phase diagrams, corroborating our results.

The discussion is left for the next subsection.

Figure 9 – Temporal evolution of k
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Source: Elaborated by the author (2021).

Figure 10 – Temporal evolution of ρ
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Source: Elaborated by the author (2021).

Figure 11 – Temporal evolution of kI
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Figure 12 – Temporal evolution of kA
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Source: Elaborated by the author (2021).

Figure 13 – Temporal evolution of yI
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Source: Elaborated by the author (2021).

Figure 14 – Temporal evolution of yA
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Source: Elaborated by the author (2021).

Figure 15 – Temporal evolution of wI
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Source: Elaborated by the author (2021).
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Figure 16 – Temporal evolution of wA
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Source: Elaborated by the author (2021).

5.2 DISCUSSION

In this subsection we are going to discuss the results of our numerical

simulations. Starting with the aggregate per capita capital, as seen in Figure 9, the

biggest values from all three scenarios are presented in the case with a tax, while the

smallest ones are from the case with a subsidy. Besides that, the biggest k appears

in scenario 3, and it is by a large margin. Also, it is curious to note that the smallest

value in scenario 2 is still bigger than the biggest one in scenario 1. About the share

of the population in the industrial sector, shown in Figure 10, the biggest values from

all the three scenarios are from the case with a tax, while the smallest values are from

the case with a subsidy, just as in the analysis of the aggregate per capita capital. The

meaning of this is that no matter the scenario, an agricultural product tax apparently

induces the population to move towards the industrial sector, while a subsidy serves

as a stimulus for more people to stay in the agricultural sector, relatively. It is easier to

see this in scenarios 1 and 3, especially in the last one, where the difference between ρ

from the cases with a tax and a subsidy is the biggest possible. The steady-state values

of k and ρ can be seen in Table 1:

Table 1 – Steady-state values of k and ρ
nI = nA nI > nA nI < nA

k∞ ρ∞ k∞ ρ∞ k∞ ρ∞
base scenario 6.254 0.72 9.1143 0.8571 7.9987 0.4436

tax 7.8013 0.8372 9.6457 0.8972 25.697 0.7006
subsidy 5.1482 0.6316 8.6181 0.8348 4.1471 0.3141

Source: Elaborated by the author (2021).

Dealing with the sectoral per capita capitals in Figures 11 and 12, kI and

kA seems to respect the pattern of k, with the exception of kA in scenario 2, where
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its value in the case with a subsidy is bigger than the one in the case with a tax. For

some reason, the introduction of a subsidy in the agricultural sector, in a scenario with

a bigger population growth rate in the industrial sector, makes the per capita capital

in the agricultural region grow atypically. One possible explanation might be the high

proportion of people living in the industrial sector in this scenario with a subsidy; in

this case, ρ = 0.8348 exactly, which is the biggest value from all the three scenarios

with a subsidy. Because there is few people living in the agricultural region, the capital

per capita will be substantial; in fact, kA > kI for any tax policy in scenario 2, and that

might be because of ρ. Now, considering the sectoral per capita outputs in Figures

13 and 14, yI is bigger than yA for any tax policy in scenarios 1 and 2; as a matter of

fact, the only case where yA > yI is in scenario 3 with a subsidy, where yA = 0.7969

and yI = 0.7763, only slightly bigger. Especially in scenarios 1 and 2, the difference

between the per capita output in both sectors is considerable, showing that somehow

the level of development in the industrial region is higher than in the agricultural region.

This development of the industrial region can be explained by two things; first, we can

easily see from Figure 10 that the share of the population living in the industrial sector is

bigger than the one living in the agricultural sector for any tax policy - notably in scenario

2, where they are much bigger -, meaning that the industrial region is succeeding in

attracting people; a second reason might be in the analysis of kI and kA. Despite the

per capita capital in the agricultural sector being bigger than the one in the industrial

sector for any tax policy, the difference between their values is not so big, meaning that

although there are much more people living in the industrial region, the per capita capital

there is proportionally high, which is also a sign of development. The steady-state

values of kI , kA, yI and yA can be seen in Tables 2 and 3:

Table 2 – Steady-state values of kI and kA
nI = nA nI > nA nI < nA

kI∞ kA∞ kI∞ kA∞ kI∞ kA∞
base scenario 6.9489 4.4672 8.5067 12.76 14.4262 2.875

tax 8.2828 5.3247 9.5558 10.43 32.6018 9.5374
subsidy 5.9283 3.811 7.508 14.23 9.6026 1.649

Source: Elaborated by the author (2021).

Last, but not least, we take a look at the wages in Figures 15 and 16. More

than their values, we are interested in their behaviors. Starting with scenario 1, which is
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Table 3 – Steady-state values of yI and yA
nI = nA nI > nA nI < nA

yI∞ yA∞ yI∞ yA∞ yI∞ yA∞
base scenario 1.5635 0.4387 2.0182 0.3067 1.2901 0.7638

tax 1.9503 0.2689 2.2132 0.2076 2.8235 0.5889
subsidy 1.2871 0.5504 1.8698 0.3664 0.7763 0.7969

Source: Elaborated by the author (2021).

the scenario that simulates the same conditions as in the original Mas-Colell and Razin

model, we can see that wI and wA converge on the same value in all cases, and that

is what we expect them to do, once the dynamics of ρ in the original model is equal

to the migration rate, which is a function of the wage differential. So, there will be no

migration when the wages are equal, and that is why in the original model ρ converges.

The migration rate is zero at the steady-state, which causes population stability. Now,

in scenarios 2 and 3, where there are distinct population growth rates, wages do not

converge to the same value in neither case, and they should not indeed. The dynamics

of ρ for scenarios with distinct population growth rates is determined not only by the

rate of migration towards the industrial sector, but also by the differential of the sectoral

population growth rates2. In these scenarios migration is not null at the steady-state,

and it is exactly the existence of that migration that serves as counterweight to the

larger population growth in a region, causing populations in the sectors to stabilize.

For example, if we take scenario 2 - where the population growth rate is bigger in the

industrial sector - regarding any tax policy, at t = 0 wI is much bigger than wA because

the population in the industrial sector is tiny (remember that ρ(0) = 0.1)3; this wage

difference indulges the industrial region, making it attractive to workers, what drives

ρ up. Over time, as more workers are attracted to the industrial region, wages in this

region begin to fall, while the one in the agricultural region rises. At some point, it wA

surpasses wI , which changes the direction of migration towards the agricultural region.

This condition is maintained at the steady state, and it is exactly the migration towards

the agricultural sector that serves as counterweight to the larger population growth in

the industrial region, stabilizing the population size in both sectors. The analysis for

scenario 3 is analogous, but considering that the population growth rate is bigger in

the agricultural sector, and so wI is bigger than wA the hole time, causing a continuous

2As mentioned before, this is easily seen by the equation that defines ρ̇ in (4.9).
3The lack of competition in the labor market makes the wage in that sector initially bigger.
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migratory flow towards the industrial region, which serves as a counterweight to the

larger population growth in the agricultural sector, stabilizing the population at the steady

state.
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6 CONCLUSION

In this work, we generalized the Mas-Colell and Razin two-sector model of

intersectoral migration and growth by introducing two population growth rates, one for

each sector. The introduction of sectoral population growth rates allowed us to determine

a new dynamic of the aggregate population growth, which came to be determined by

the rate of migration towards the industrial sector, as in the original model, and by

the differential of the sectoral population growth rates. Likewise, the per capita capital

accumulation of our generalized model also came to depend on the differential of the

sectoral population growth rates. The stability analysis showed that our generalized

model, determined by a system of two ODEs, has an unique economically feasible and

stable equilibrium given by ρ∞ and k∞.

To investigate the behavior of our endogenous variables, numerical simu-

lations were performed. With the different population growth rates it was possible to

consider three scenarios in our discussions, one with equal population growth rates,

in which we brought back the original model, and two with distinct population growth

rates, where we could observe the effects on the different rates. Besides that, we also

considered three tax policies, that is, a case with no tax or subsidy, a case with a tax

and a case with a subsidy. Overall, we made simulations for eight variables in three

scenarios with three tax policies each.

Considering the aggregate per capita capital (k) and comparing scenarios

under the same tax policies, any scenario with distinct population growth rates leads to a

bigger per capita capital accumulation relative to the scenario of the original model (with

equal population growth rates), except for the case of a subsidy in the scenario with a

bigger population growth rate in the agricultural sector; for this case, the scenario of the

original model leads to a bigger per capita capital accumulation. For the proportion of

the population in the industrial sector (ρ), for a population growth rate in the industrial

sector bigger than in the agricultural sector, the steady-state value of ρ is bigger than

in the scenario with equal population growth rates for any tax policy. For a population

growth rate in the agricultural sector bigger than in the industrial sector, the value of ρ

at the steady-state is smaller than in the scenario of the original model for all the three

tax policies. Thus, comparing cases with the same tax policies, the scenario with a

bigger population growth rate in the industrial sector results in more people living in the
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industrial sector in relation to the scenario with equal population growth rates, no matter

the tax policy; while the scenario with a bigger population growth rate in the agricultural

sector results in less people living in the industrial sector in relation to the scenario of

the original model, for all three tax policies.

As for the capital per capita in the industrial sector (kI), comparing cases

with the same tax policies, any scenario with distinct population growth rates leads to a

bigger steady-state value relative to the scenario with equal population growth rate. For

the capital per capita in the agricultural sector (kA), we observe that for the case with a

tax, any scenario with distinct population growth rates leads to a bigger steady-state

value relative to the scenario of the original model; now, for the cases with no tax policy

and a subsidy, the scenario with a bigger population growth rate in the industrial sector

has bigger steady-state values than the scenario with equal population growth rates,

but the latter has bigger steady-states than the scenario with a bigger population growth

rate in the agricultural sector.

Finally, considering the output per capita in the industrial sector (yI) under

the same tax policy, we notice that for the case with a tax, any scenario with distinct

population growth rates leads to a bigger steady-state value relative to the scenario of

the original model; on the other hand, for the cases without a tax policy and a subsidy,

the scenario with a bigger population growth rate in the industrial sector has bigger

steady-state values than the scenario with equal population growth rates, but the latter

has bigger steady-state values than the scenario with a bigger population growth rate

in the agricultural sector. For the output per capita in the agricultural sector (yA), all

steady-state values for the scenario of the original model are bigger than those in the

scenario with a bigger population growth rate in the industrial sector, but are smaller

than those of the scenario with a bigger population growth rate in the agricultural sector.

Future research may consider formulating the model with different production

functions. In this sense, Christiaans (2017) shows very interesting ideas, like using

an agricultural production function linear in labor. Other possibilities are considering

logistic population growth rather than Malthusian, imperfect capital mobility between the

sectors, and technological progress.
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APPENDIX A – EULER’S METHOD

Our generalized model is represented by a system of ODEs defined in (4.9).

The method chosen to solve it was the Euler’s method, which is a numerical method for

solving initial value problems of ODEs, which allows one’s to calculate approximations

at certain points. Following Chapra (2018), in general terms the method works like this.

Given any function that depends on the time y = f(t), the derivative of y in relation to t

is a function of both y and t,

dy

dt
= f(t, y).

We can define f(ti, yi) as being the ODE in time i, where i = 0, 1, 2, · · · . Therefore, the

Euler’s method is defined by the following equation:

yi+1 = yi + f(ti, yi)h,

where h represents the difference between ti+1 e ti. Here, k̇ and ρ̇ in (4.9) represent

f(ti, yi) (CHAPRA, 2018). The algorithm that implements the method can be seen in

our MATLAB® script, lines 36-44, in Appendix B.
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APPENDIX B – MATLAB SCRIPT FOR THE NUMERICAL SIMULATIONS

1 clear , clc;

2

3 % parameters

4 beta = 0.4; % parameter of the production function from the

industrial sector

5 alpha = 0.3; % parameter of the production function from

the agricultural sector

6 n_I = 0.05; % industrial population growth rate

7 n_A = 0.05; % agricultural population growth rate

8 delta_n = n_I - n_A;

9 s = 0.15; % rate of saving

10 delta = 0.6; % income spent on industrial goods

11 lambda = s/(s+delta);

12 tau = -0.5; %tax/subsidy given to the agricultural sector

13 gamma = 0.01;

14

15 while tau <= 0.5

16 theta = (s*beta)/((s*beta)+(( lambda -s)*alpha *(1+ tau)));

17 sigma = gamma *(((1- beta)/beta)*( alpha/(1-alpha))*(theta

/(1- theta)));

18 % Initial conditions for rho and k

19 rho (1) = 0.1;

20 k(1) = 0.1;

21

22 % steady -states

23 if n_I == n_A

24 rho_ss = (1-beta)*alpha*theta /(( beta*(1- alpha)*(1-

theta))+((1- beta)*alpha*theta))

25 else
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26 rho1_ss = (-((gamma+sigma -delta_n)/delta_n) + sqrt

((( gamma+sigma -delta_n)/delta_n)^2 + (4* sigma/

delta_n)))/2;

27 rho2_ss = (-((gamma+sigma -delta_n)/delta_n) - sqrt

((( gamma+sigma -delta_n)/delta_n)^2 + ((4* sigma)/

delta_n)))/2;

28 if rho1_ss >= 0 & rho1_ss <= 1

29 rho_ss = rho1_ss

30 else

31 rho_ss = rho2_ss

32 end

33 end

34 k_ss = theta^(beta/(1-beta))*rho_ss *(( lambda /((n_I*

rho_ss)+(n_A*(1- rho_ss))))^(1/(1 - beta)))

35

36 % Euler 's method

37 T = 850; % total time

38 N = 1000; % points

39 dt = T/N;

40 t = 0:dt:T;

41 for i = 1:N

42 rho(i+1) = rho(i) + (gamma*rho(i)*((1- beta)/beta*

alpha/(1-alpha)*theta/(1- theta)*(1-rho(i))/rho(i

) -1)+rho(i)*(1-rho(i))*(n_I -n_A))*dt;

43 k(i+1) = k(i) + (k(i)*lambda*theta^beta*(k(i)/rho(i

))^(beta -1)-k(i)*(n_I*rho(i)+n_A*(1-rho(i))))*dt

;

44 end

45

46 % per -capita capital , per -capita product , wage rates

and migration , for both

47 % sectors
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48

49 for i = 1:N

50 k_I(i) = (theta*k(i))/rho(i);

51 k_A(i) = ((1-theta)*k(i))/(1-rho(i));

52 y_I(i) = rho(i)*(k_I(i)^beta);

53 y_A(i) = (1-rho(i))*(k_A(i)^alpha);

54 p(i) = (y_A(i)/y_I(i))*((s+delta)/(1-s-delta)); %

relative price of the industrial good

55 w_I(i) = p(i)*(1-beta)*(k_I(i)^beta);

56 w_A(i) = (1+ tau)*(1- alpha)*(k_A(i)^alpha);

57 PMGK_I(i) = p(i)*beta*(k_I(i))^(beta -1);

58 PMGK_A(i) = (1+tau)*alpha*(k_A(i))^(alpha -1);

59 end

60

61 % convergence graphs

62 if tau == -0.5

63 plot(k, 'r', 'LineWidth ', 2);

64 xlabel('t');

65 ylabel('k');

66 % title('k vs. time ');

67 grid off;

68 hold on

69 elseif tau == 0

70 plot(k, 'k', 'LineWidth ', 2);

71 xlabel('t');

72 ylabel('k');

73 % title('k vs. time ');

74 grid off;

75 hold on

76 else

77 plot(k, 'b', 'LineWidth ', 2);

78 xlabel('t');
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79 ylabel('k');

80 % title('k vs. time ');

81 grid off;

82 hold on

83 end

84 tau = tau + 0.5;

85 end

86

87 legend('tax', 'base scenario ', 'subsidy ', 'location ', '

northwest ')

88 % ylabel ('$$\rho$$','Interpreter ','latex ','FontSize ',16)
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