

DEPARTAMENTO DE ESTATÍSTICA E-mail: dest@mat.ufrgs.br

## Trabalho de Conclusão de Curso

# Estimação de Parâmetros em Processos $k\text{-}{\bf Factor}$ GARMA $(p, {\bm u}, {\bm \lambda}, q)$ com Inovações $\alpha\text{-}{\bf Estáveis}$

Leticia Menegotto

26 de janeiro de 2018

Leticia Menegotto

# Estimação de Parâmetros em Processos k-Factor GARMA $(p, u, \lambda, q)$ com Inovações $\alpha$ -Estáveis

Trabalho de Conclusão apresentado à comissão de Graduação do Departamento de Estatística da Universidade Federal do Rio Grande do Sul, como parte dos requisitos para obtenção do título de Bacharel em Estatística.

Orientador: Prof. Dr. Cleber Bisognin

Porto Alegre Janeiro de 2018 Leticia Menegotto

# Estimação de Parâmetros em Processos k-Factor GARMA $(p, u, \lambda, q)$ com Inovações $\alpha$ -Estáveis

Este Trabalho foi julgado adequado para obtenção dos créditos da disciplina Trabalho de Conclusão de Curso em Estatística e aprovado em sua forma final pela Orientador e pela Banca Examinadora.

Orientador:\_\_\_

Prof. Dr. Cleber Bisognin, UFRGS Doutor(a) pela Universidade Federal do Rio Grande do Sul, Porto Alegre, RS

Banca Examinadora:

Prof. Dr. Marcio Valk, UFRGS Doutor pela Universidade de Campinas – Campinas, SP Leticia Menegotto

# Estimação de Parâmetros em Processos k-Factor GARMA $(p, u, \lambda, q)$ com Inovações $\alpha$ -Estáveis

Este Trabalho foi julgado adequado para obtenção dos créditos da disciplina Trabalho de Conclusão de Curso em Estatística e aprovado em sua forma final pela Orientador e pela Banca Examinadora.

Orientador:\_\_\_

Prof. Dr. Cleber Bisognin, UFRGS Doutor(a) pela Universidade Federal do Rio Grande do Sul, Porto Alegre, RS

Banca Examinadora:

,

Prof. Dr. Marcio Valk, UFRGS Doutor pela Universidade de Campinas – Campinas, SP

> Porto Alegre Janeiro de 2018

"A esperança é como o sol. Se você apenas acredita quando vê, você nunca vai sobreviver à noite.". (Leia Organa)

# Agradecimentos

Primeiramente agradeço à minha família pelo suporte e capacidade de acreditar e investir em mim. A presença dos meus pais Clecio e Sueli e de meus irmãos Luana e Lucas me deu a segurança de que não estou sozinha nesta jornada. Agradeço a vocês pelo apoio incondicional até mesmo nos momentos em que eles não faziam ideia do que eu estava estudando.

Aos meus amigos e colegas pelo incentivo e apoio constantes.

Ao Leonardo, amigo que a Estatística me deu, com quem aprendi a me tornar uma pessoa melhor a cada dificuldade enfrentada.

A todos os meus familiares pelo apoio.

A todos os professores que tive ao decorrer do curso.

E principalmente ao meu orientador, Professor Cleber, com quem adquiri experiência como bolsista de pesquisa e que se tornou um amigo/pai que tive dentro da UFRGS. Seus conselhos acadêmicos, pessoais e profissionais foram extremamente importantes e significativos pra mim.

## Resumo

Nosso objetivo neste trabalho é estudar séries temporais com as propriedades de longa dependência, com variância infinita, podendo ou não apresentar sazonalidade. Para tanto temos como objetivo principal estudar os processos k-Factor GARMA  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$  com inovações  $\alpha$ -estáveis, denotados por k-Factor GARMA  $S\alpha S$ .

Para os processos k-Factor GARMA  $S\alpha S$ , propomos estimadores a fim de estimar os seus parâmetros. Ou seja, estendemos o estimador proposto por Kokoszka e Taqqu (1995), para os processos ARFIMA(p, d, q), denotado por KT, para a estimação dos parâmetros dos processos k-Factor GARMA  $S\alpha S$ . Também estendemos o estimador MCMC utilizado nos processos SARFIMA  $(p, d, q) \times (P, D, Q)_s$  para os processos k-Factor GARMA  $S\alpha S$ . Tal estimador foi proposto por Diongue et al. (2008) para os processos SARFIMA $(p, d, q) \times (P, D, Q)_s$  com variância infinita.

No estudo dos processos k-Factor GARMA  $S\alpha S$ , realizamos uma revisão bibliográfica a fim de obter definições e propriedades já demonstradas por outros autores que estudam tais processos com variância finita e estendemos para os processos aqui estudados. Essas propriedades estão ligadas à estacionariedade, longa dependência, causalidade e invertibilidade do processo. A partir disso, definimos quais seriam os estimadores utilizados, bem como o janelamento utilizado em cada caso.

Modificamos os estimadores KT e MCMC utilizando as funções periodograma normalizado suavizado e a função periodograma suavizado de correlações como estimadores da função poder de transferência. Os novos estimadores foram denotados por KTPS, KTPSC, MCMCPS e MCMCPSC. Nestes estimadores utilizamos diferentes janelas espectrais e de suavização.

Através das simulações de Monte Carlo, foi possível verificar que o desempenho dos novos estimadores propostos foi tão bom quanto os já existentes, sendo que, dependendo da janela espectral ou de suavização utilizada, o estimador acerta, em média, o valor do parâmetro estimado. É perceptível também que todos os estimadores apresentaram melhor desempenho com as estimativas para o parâmetro u, uma vez que, em geral, os valores de vício, erro quadrático médio e variância para  $\hat{u}$  são bem baixos.

**Palavras-Chave:** Variância Infinita, Polinômio de Gegenbauer, Longa Dependência, Estimação, Distribuições Estáveis.

### Abstract

In this work we analyze some processes with long memory, infinite variance and that maybe presents seasonality. The main goal of our work is to study the k-Factor GARMA  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$  processes with infinite innovations, denoted as k-Factor GARMA  $S\alpha S$ .

For the k-Factor GARMA  $S\alpha S$  processes, we proposed estimators in order to estimate these processes parameters. In other words, we extend the estimator proposed by Kokoszka e Taqqu (1995) for the ARFIMA(p, d, q) processes, denoted as KT, for the parameters estimation of the k-Factor GARMA  $S\alpha S$  processes. We also extend the MCMC estimator, which is already used in the SARFIMA  $(p, d, q) \times (P, D, Q)_s$ for the k-Factor GARMA  $S\alpha S$  processes. This estimator was proposed by Diongue et al. (2008) for the SARFIMA  $(p, d, q) \times (P, D, Q)_s$  process with infinite variance.

In the study of the k-Factor GARMA  $S\alpha S$  processes, we did a literature review in order to get the definitions and properties that are already demonstrated by other authors that study these processes with finite variance and we extend to the processes that were studied in this work. These properties are about stationarity, long memory, causality and invertibility of the process. After having these information, we defined which estimators we would use, as well as the spectral window that would be used in each case.

We modified the KT and MCMC estimators using the smoothed normalized periodogram and the correlations smoothed periodogram functions as estimators of the power transfer function. The new estimators are called KTPS, KTPSC, MCMCPS and MCMCPSC. In these estimators, we used different types of lag and spectral windows.

Throughout the Monte Carlo simulations, it was possible to verify that the performance of the new estimators is as good as the performance of the previous estimator. Depending on the lag or spectral window that is used, the new estimators fits, in mean, the real value of the parameter. It's possible to see that all the estimators used are better when estimating the u values, once, in general, the values of bias, mean squared error and variance for  $\hat{u}$  are pretty low.

**Keywords:** Infinite Variance, Gegenbauer Polynomial, Long Memory, Estimation, Stable Distributions.

# Sumário

| 1 In  | trodução                                     | 18 |  |
|-------|----------------------------------------------|----|--|
| 2 Pi  | rocessos k-Factor GARMA $S\alpha S$          | 20 |  |
| 2.1   | Definições e Propriedades                    | 20 |  |
| 2.2   | Estimação dos Parâmetros                     | 27 |  |
| 2.2.1 | Periodogramas                                | 27 |  |
| 2.2.2 | Janelas Espectrais e de Suavização           | 30 |  |
| 2.3   | Estimação dos parâmetros                     | 33 |  |
| 2.3.1 | Estimador Kokoszka e Taqqu                   | 34 |  |
| 2.3.2 | Estimador de Whittle via Metropolis-Hastings | 35 |  |
| 3 Si  | mulações de Monte Carlo                      | 38 |  |
| 4 Co  | 4 Conclusões                                 |    |  |
| Refer | Referências Bibliográficas                   |    |  |
| Apên  | ApêndiceA                                    |    |  |

# Lista de Figuras

| Figura 2.1:  | Função Periodograma Normalizado, Função Periodograma Nor-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|              | malizado Suavizado e Função Periodograma Suavizado de Corre-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|              | lações das séries geradas a partir de processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, \boldsymbol{q})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(\gamma)$ |
|              | $S\alpha S$ , com $k = 1, \mu = 0, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - /        |
|              | conforme Figura 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Figura 2.2:  | Séries geradas a partir de processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 8            | $S\alpha S \mod k = 1$ $\mu = 0$ $\mu = 0.2$ $\lambda = 0.4$ $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|              | e suas respectivas Funções de Autocovariância Amostral $26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| Figura 2.3   | Função poder de transferência processos k-Factor GABMA $(n, y, \lambda, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| 1 iguia 2.9. | $k = 1$ $\mu = 0$ e $\lambda = 0$ ?: (a) $\mu = 1$ $n = 0 = a$ e $G = 0$ : (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
|              | $u = -1, \ n = 0 = a \in G = \pi; \ (c) \ u = 0.4, \ n = 0 = a \in G = 0.369\pi;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|              | $ \begin{array}{c} a = -1, p = 0 = q \in \mathcal{C} = \pi, \ (c) \ a = 0.4, p = 0 = q \in \mathcal{C} = 0.005\pi, \\ (d) \ u = -0.4, \ n = 0 = q \in \mathcal{C} = 0.63\pi; \ (o) \ u = 0.4, \ n = 1, \ q = 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|              | (d) $u = -0.4$ , $p = 0 = q \in 0 = 0.05\pi$ , (c) $u = 0.4$ , $p = 1, q = 0$ ,<br>com $\phi_{1} = 0.8 \oplus G = 0.369\pi$ ; (f) $u = 0.4, p = 1, q = 0$ , com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|              | $\phi_1 = 0.8 \circ C = 0.369\pi, (1) \ a = 0.4, \ p = 1, \ q = 0, \ \text{com}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Figure 24.   | $\psi_1 = -0.8 \text{ eV} = 0.309 \text{ h}, \dots \dots 1000 \text{ k} = 0.202 \text{ h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| r iguia 2.4. | $\lambda$ -ractor GARMA( $p, u, x, q$ ) - SaS, com $\lambda = (0.2, 0.2)$ , para $\kappa = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|              | $e = (0.2, 0.2, 0.2), \text{ para } k = 5. (a) k = 2, u = (-0.4, 0.0), G_1 = 0.621\pi (C_1 - 0.204\pi c_2 m - 0.5 m -$ |            |
|              | $0.051\%, G_2 = 0.204\% \text{ e } p = 0 = q, (0) \% = 3, \textbf{u} = (-0.1, 0.5, 0.9),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|              | $G_1 = 0.747\pi, G_2 = 0.405\pi, G_3 = 0.145\pi \text{ e } p = 0 = q; (c) \ k = 2,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|              | $u = (-0.4, 0.8), G_1 = 0.051\pi, G_2 = 0.204\pi, p = 1 = q, \phi_1 = 0.8 e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|              | $\theta_1 = 0.5; (d) \ k = 3, \ u = (-0.7, 0.3, 0.9), \ G_1 = 0.747\pi, \ G_2 = 0.403\pi,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|              | $G_3 = 0.143\pi, p = 1 = q, \phi_1 = 0.8 \text{ e} \theta_1 = 0.5. \dots $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Figura 2.5:  | Janelas de Bartlett de suavização e espectral. (a) Janela de Su-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|              | avização Triangular de Bartlett $W^{B}(\cdot)$ , com $m_{n} = 5$ . (b) Janela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|              | Espectral de Bartlett $W_n^D(\cdot)$ , com $m = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Figura 2.6:  | Janelas de Tukey de suavização e espectral. (a) Janela de Suavi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|              | zação Tukey $\mathcal{W}^{I}(\cdot)$ , com $m_{n} = 5$ . (b) Janela Espectral de Tukey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| _            | $W_n^{-1}(\cdot), \text{ com } m = 5. \dots 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Figura 2.7:  | Janelas de suavização e espectral de Parzen. (a) Janela de Sua-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|              | vização de Parzen $\mathcal{W}^{P}(\cdot)$ , com $m_n = 5$ (b) Janela Espectral de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|              | Parzen $W_n^P(\cdot)$ , com $m = 5$ 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| Figura 2.8:  | Janelas de Daniell de suavização e espectral. (a) Janela de Su-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|              | avização Daniell $\mathcal{W}^D(\cdot)$ , com $m_n = 5$ . (b) Janela Espectral de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|              | Daniell $W_n^D(\cdot)$ , com $m = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Figure 9.1.  | Créfese de convergêncie des estimations de parêmetre a succede                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| rigura 5.1:  | Grancos de convergencia das estimativas do parametro $u$ quando<br>utilizado o estimo don $VT$ por o $C$ $\begin{pmatrix} 1 & 2 & 1 & 5 & 1 & 7 & 1 & 0 \\ 0 & 1 & 0 & 1 & 2 & 0 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|              | utilizado o estimador K1 para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ (a) $\alpha = 1.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|              | (b) $\alpha = 1.5$ (c) $\alpha = 1.7$ (d) $\alpha = 1.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |

| Figura 3.2:  | Gráficos de convergência das estimativas do parâmetro $\lambda$ quando utilizado o estimador KT para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ (a) $\alpha = 1.3$                                                                                |    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figura 3.3:  | (b) $\alpha = 1.5$ (c) $\alpha = 1.7$ (d) $\alpha = 1.9$                                                                                                                                                                                   | 45 |
| Figura 3.4:  | Gráficos de convergência das estimativas para o parâmetro $\lambda$<br>quando utilizado o estimador KTPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ ,<br>(por linha), e $m = 1$ para as janelas espectrais de Bartlett, Daniell<br>e Parzen. | 40 |
| Figura 3.5:  | Gráficos de convergência das estimativas para o parâmetro $u$ quando utilizado o estimador KTPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e $m = 2$ para as janelas espectrais de Bartlett, Daniell e Parzen.                | 47 |
| Figura 3.6:  | Gráficos de convergência das estimativas para o parâmetro $\lambda$ quando utilizado o estimador KTPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e $m = 2$ para as janelas espectrais de Bartlett, Daniell e Parzen.          | 48 |
| Figura 3.7:  | Gráficos de convergência das estimativas para o parâmetro $u$<br>quando utilizado o estimador KTPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ ,<br>(por linha), e $m = 3$ para as janelas espectrais de Bartlett, Daniell<br>o Parzon        | 18 |
| Figura 3.8:  | Gráficos de convergência das estimativas para o parâmetro $\lambda$<br>quando utilizado o estimador KTPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$<br>(por linha), e $m = 3$ para as janelas espectrais de Bartlett, Daniell               | 10 |
| Figura 3.9:  | e Parzen.<br>Gráficos de convergência das estimativas para o parâmetro $u$<br>quando utilizado o estimador KTPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$<br>(por linha), e $m = 4$ para as janelas espectrais de Bartlett, Daniell        | 49 |
| Figura 3.10: | e Parzen                                                                                                                                                                                                                                   | 49 |
| Figura 3.11: | e Parzen                                                                                                                                                                                                                                   | 50 |
| Figura 3.12: | Parzen e Tukey                                                                                                                                                                                                                             | 50 |
| Figura 3.13: | Parzen e Tukey                                                                                                                                                                                                                             | 51 |
|              | Parzen e Tukey                                                                                                                                                                                                                             | 51 |

| Figura 3.14:  | Gráficos de convergência das estimativas para o parâmetro $\lambda$<br>quando utilizado o estimador KTPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$<br>(por linha), e $\beta = 0.85$ para as janelas de suavização de Bartlett  |    |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|               | Parzen e Tukey. $\dots$                                                                                                                                 | 52 |
| Figura 3.15:  | Gráficos de convergência das estimativas para o parâmetro $u$<br>quando utilizado o estimador KTPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$<br>(por linha), e $\beta = 0.9$ para as janelas de suavização de Bartlett,        |    |
|               | Parzen e Tukey                                                                                                                                                                                                                  | 52 |
| Figura 3.16:  | Gráficos de convergência das estimativas para o parâmetro $\lambda$<br>quando utilizado o estimador KTPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ ,<br>(por linha), e $\beta = 0.9$ para as janelas de suavização de Bartlett, | 50 |
| Figure 2.17.  | Parzen e Tukey                                                                                                                                                                                                                  | 53 |
| Figura 5.17.  | quando utilizado o estimador KTPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$<br>(por linha), e $\beta = 0.95$ para as janelas de suavização de Bartlett,<br>Parzon o Tukov                                                      | 52 |
| Figura 3.18:  | Gráficos de convergência das estimativas para o parâmetro $\lambda$<br>quando utilizado o estimador KTPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$                                                                             | 00 |
|               | (por linha), e $\beta = 0.95$ para as janelas de suavização de Bartlett,                                                                                                                                                        | 54 |
| Figura 3.19.  | Gráficos de convergência das estimativas do parâmetro <i>u</i> quando                                                                                                                                                           | 04 |
| 1 igura 5.15. | utilizado o estimador MCMC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ (a) $\alpha = 1.3$ (b) $\alpha = 1.5$ (c) $\alpha = 1.7$ (d) $\alpha = 1.9$ .                                                                               | 60 |
| Figura 3.20:  | Gráficos de convergência das estimativas do parâmetro $\lambda$ quando<br>utilizado o estimador MCMC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ (a) $\alpha =$<br>1.3 (b) $\alpha = 1.5$ (c) $\alpha = 1.7$ (d) $\alpha = 1.9$ .  | 61 |
| Figura 3.21:  | Gráficos de convergência das estimativas para o parâmetro $u$<br>quando utilizado o estimador MCMCPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$<br>(por linha), e $m = 1$ para as janelas espectrais de Bartlett, Parzen         |    |
| Figura 3.22:  | e Tukey                                                                                                                                                                                                                         | 62 |
| Figura 3.23:  | e Tukey                                                                                                                                                                                                                         | 62 |
|               | (por linha), e $m = 2$ para as janelas espectrais de Bartlett, Parzen                                                                                                                                                           | 63 |
| Figura 3.24:  | Gráficos de convergência das estimativas para o parâmetro $\lambda$<br>quando utilizado o estimador MCMCPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$                                                                            | 05 |
|               | (por linha), e $m = 2$ para as janelas espectrais de Bartlett, Parzen o Tukov                                                                                                                                                   | 62 |
| Figura 3.25:  | Gráficos de convergência das estimativas para o parâmetro $u$<br>quando utilizado o estimador MCMCPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$<br>(por linha), e $m = 3$ para as janelas espectrais de Bartlett, Parzen         | Uð |
|               | e Tukey.                                                                                                                                                                                                                        | 64 |

| Figura 3.26:    | Gráficos de convergência das estimativas para o parâmetro $\lambda$<br>quando utilizado o estimador MCMCPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ ,<br>(por linha) e $m = 3$ para as janelas espectrais de Bartlett Parzen       |            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                 | e Tukey                                                                                                                                                                                                                            | 34         |
| Figura 3.27:    | Gráficos de convergência das estimativas para o parâmetro $u$<br>quando utilizado o estimador MCMCPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$                                                                                     |            |
|                 | (por linha), e $m = 4$ para as janelas espectrais de Bartlett, Parzen<br>e Tukev.                                                                                                                                                  | 35         |
| Figura 3.28:    | Gráficos de convergência das estimativas para o parâmetro $\lambda$<br>quando utilizado o estimador MCMCPS para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ ,<br>(por linha), e $m = 4$ para as janelas espectrais de Bartlett, Parzen     |            |
| Figura 3 29.    | e Tukey                                                                                                                                                                                                                            | 35         |
| 1 igura 5.25.   | quando utilizado o estimador MCMCPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$<br>(por linha), e $\beta = 0.8$ para as janelas de suavização de Bartlett,                                                                          |            |
| <b>T</b> : 2.22 | Parzen e Tukey                                                                                                                                                                                                                     | 36         |
| Figura 3.30:    | Gráficos de convergência das estimativas para o parâmetro $\lambda$<br>quando utilizado o estimador MCMCPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ ,<br>(por linha), e $\beta = 0.8$ para as janelas de suavização de Bartlett,  |            |
|                 | Parzen e Tukey                                                                                                                                                                                                                     | 36         |
| Figura 3.31:    | Gráficos de convergência das estimativas para o parâmetro $u$<br>quando utilizado o estimador MCMCPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$<br>(por linha), e $\beta = 0.85$ para as janelas de suavização de Bartlett,        |            |
|                 | Parzen e Tukey                                                                                                                                                                                                                     | 37         |
| Figura 3.32:    | Gráficos de convergência das estimativas para o parâmetro $\lambda$<br>quando utilizado o estimador MCMCPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ ,<br>(por linha), e $\beta = 0.85$ para as janelas de suavização de Bartlett. |            |
|                 | Parzen e Tukey                                                                                                                                                                                                                     | 37         |
| Figura 3.33:    | Gráficos de convergência das estimativas para o parâmetro $u$ quando utilizado o estimador MCMCPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e $\beta = 0.9$ para as janelas de suavização de Bartlett,              |            |
| D' 9.94         | Parzen e Tukey.                                                                                                                                                                                                                    | 38         |
| F1gura 3.34:    | Grancos de convergencia das estimativas para o parametro $\lambda$<br>quando utilizado o estimador MCMCPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$<br>(por linha), e $\beta = 0.9$ para as janelas de suavização de Bartlett,    |            |
|                 | Parzen e Tukey                                                                                                                                                                                                                     | <i>3</i> 8 |
| Figura 3.35:    | Gráficos de convergência das estimativas para o parâmetro $u$<br>quando utilizado o estimador MCMCPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\},$<br>(por linha), e $\beta = 0.95$ para as janelas de suavização de Bartlett,        |            |
|                 | Parzen e Tukey                                                                                                                                                                                                                     | 39         |
| Figura 3.36:    | Gráficos de convergência das estimativas para o parâmetro $\lambda$<br>quando utilizado o estimador MCMCPSC para $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ ,<br>(por linha), e $\beta = 0.95$ para as janelas de suavização de Bartlett. |            |
|                 | Parzen e Tukey                                                                                                                                                                                                                     | 39         |

# Lista de Tabelas

| Tabela 3.1: | Resultado da estimação com o estimador KT para o processo $k$ -                                       |    |
|-------------|-------------------------------------------------------------------------------------------------------|----|
|             | Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, u = 0.2$ , |    |
|             | $\lambda = 0.4,  \alpha \in \{1.3, 1.5, 1.7, 1.9\}.$                                                  | 40 |
| Tabela 3.2: | Resultado da estimação com o estimador KTPS para o processok-                                         |    |
|             | Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 1,$    |    |
|             | $u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 1$ , para as janelas                  |    |
|             | espectrais de Bartlett, Daniell e Parzen.                                                             | 41 |
| Tabela 3.3: | Resultado da estimação com o estimador KTPS para o processo                                           |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 1,$  |    |
|             | $u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 2$ , para as janelas                  |    |
|             | espectrais de Bartlett, Daniell e Parzen.                                                             | 41 |
| Tabela 3.4: | Resultado da estimação com o estimador KTPS para o processo                                           |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 1,$  |    |
|             | $u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 3$ para as janelas                    |    |
|             | espectrais de Bartlett, Daniell e Parzen.                                                             | 42 |
| Tabela 3.5: | Resultado da estimação com o estimador KTPS para o processo                                           |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 1,$  |    |
|             | $u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 4$ para as janelas                    |    |
|             | espectrais de Bartlett, Daniell e Parzen.                                                             | 42 |
| Tabela 3.6: | Resultado da estimação com o estimador KTPSC para o processo $-$                                      |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 1,$  |    |
|             | $u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo $n = 1000$       |    |
|             | <br>e $\beta=0.8$ para as janelas de suavização de Bartlett, Parzen<br>e Tukey.                       | 43 |
| Tabela 3.7: | Resultado da estimação com o estimador KTPSC para o processo                                          |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 1,$  |    |
|             | $u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo $n = 1000$       |    |
|             | e $\beta=0.85$ para as janelas de suavização de Bartlett, Parzen e                                    |    |
|             | Tukey                                                                                                 | 43 |
| Tabela 3.8: | Resultado da estimação com o estimador KTPSC para o processo                                          |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 1,$  |    |
|             | $u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo $n = 1000$       |    |
|             | e $\beta=0.9$ para as janelas de suavização de Bartlett, Parzen e Tukey.                              | 44 |
| Tabela 3.9: | Resultado da estimação com o estimador KTPSC para o processo                                          |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 1,$  |    |
|             | $u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo $n = 1000$       |    |
|             | e $\beta = 0.95$ para as janelas de suavização de Bartlett, Parzen e                                  |    |
|             | Tukey                                                                                                 | 44 |

| Tabela 3.10:          | Resultado da estimação com o estimador MCMC para o processo                                                         |            |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|------------|
|                       | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $k = 1, p = 0 = q$ ,               | -          |
|                       | $u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}$ .                                                       | 56         |
| Tabela 3.11:          | Resultado da estimação com o estimador MCMCPS para o pro-                                                           |            |
|                       | cessok-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,                 |            |
|                       | $k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 1, \text{ para}$                             |            |
|                       | as janelas espectrais de Bartlett, Parzen e Tukey.                                                                  | 56         |
| Tabela 3.12:          | Resultado da estimação com o estimador MCMCPS para o pro-                                                           |            |
|                       | cesso k-Factor GARMA $(n, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $n = 0 = q$ .                |            |
|                       | $k = 1, y = 0, 2, \lambda = 0, 4, \alpha \in \{1, 3, 1, 5, 1, 7, 1, 9\}, m = 2$ para as                             |            |
|                       | ianolas ospostrais do Bartlott Parzon o Tukov                                                                       | 57         |
| $T_{a}$ halo 2.12.    | Damite de de estime são com o estime den MCMCDC para o pro                                                          | 51         |
| Tabela 5.15:          | Resultado da estimação com o estimador MOMOPS para o pro-                                                           |            |
|                       | cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,                |            |
|                       | $k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 3$ , para as                                 |            |
|                       | janelas espectrais de Bartlett, Parzen e Tukey                                                                      | 57         |
| Tabela 3.14:          | Resultado da estimação com o estimador MCMCPS para o pro-                                                           |            |
|                       | cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,                |            |
|                       | $k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 4$ , para as                                 |            |
|                       | janelas espectrais de Bartlett, Parzen e Tukev                                                                      | 58         |
| Tabela 3 15.          | Resultado da estimação com o estimador MCMCPSC para o pro-                                                          |            |
| 100010 0.10           | cesso k-Factor GARMA $(n \boldsymbol{u} \boldsymbol{\lambda} \boldsymbol{a}) - S\alpha S$ quando $n = 0 = a$        |            |
|                       | $k = 1$ $u = 0.2$ ) $= 0.4$ $\alpha \in \{1, 3, 1, 5, 1, 7, 1, 0\}$ $m = n^{\beta}$ soudo                           |            |
|                       | $\kappa = 1, \ u = 0.2, \ \lambda = 0.4, \ \alpha \in \{1.5, 1.5, 1.7, 1.9\}, \ m_n = n$ , sendo                    |            |
|                       | $n = 1000 \text{ e } \beta = 0.8 \text{ para as janeias de suavização de Bartiett,}$                                | <b>F</b> 0 |
|                       | Parzen e Tukey.                                                                                                     | 58         |
| Tabela $3.16$ :       | Resultado da estimação com o estimador MCMCPSC para o pro-                                                          |            |
|                       | cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,                |            |
|                       | $k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo                         |            |
|                       | $n$ = 1000 e $\beta$ = 0.85 para as janelas de suavização de Bartlett,                                              |            |
|                       | Parzen e Tukey.                                                                                                     | 59         |
| Tabela 3.17:          | Resultado da estimação com o estimador MCMCPSC para o pro-                                                          |            |
|                       | cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ .                |            |
|                       | $k = 1$ $u = 0.2$ $\lambda = 0.4$ $\alpha \in \{1, 3, 1, 5, 1, 7, 1, 9\}$ $m_{\nu} = n^{\beta}$ sendo               |            |
|                       | $n = 1000$ o $\beta = 0.9$ para as janolas do suavização do Bartlett                                                |            |
|                       | n = 1000  e  p = 0.9  para as janeias de suavização de Dartiett,                                                    | 50         |
| $T_{1}$ , 1, 1, 9, 10 | Parzen e Tukey.                                                                                                     | - 59       |
| Tabela 3.18:          | Resultado da estimação com o estimador MOMOPSO para o pro-                                                          |            |
|                       | cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,                |            |
|                       | $k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^p$ , sendo                               |            |
|                       | $n=1000$ e $\beta=0.95$ para as janelas de suavização de Bartlett,                                                  |            |
|                       | Parzen e Tukey                                                                                                      | 60         |
|                       |                                                                                                                     |            |
| Tabela A.1:           | Resultado da estimação com o estimador KT para o processo k-                                                        |            |
|                       | Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 2,$                  |            |
|                       | $\boldsymbol{u} = (0.2, 0.8),  \boldsymbol{\lambda} = (0.2, 0.4),  \alpha \in \{1.3, 1.5, 1.7, 1.9\}.$              | 76         |
| Tabela A.2:           | Resultado da estimação com o estimador KTPS para o processo                                                         |            |
|                       | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 2$ ,               |            |
|                       | $\boldsymbol{u} = (0.2, 0.8),  \boldsymbol{\lambda} = (0.2, 0.4),  \alpha \in \{1.3, 1.5, 1.7, 1.9\},  m = 1.$ para |            |
|                       | as janelas espectrais de Bartlett. Daniell e Parzen                                                                 | 77         |
|                       | as junctus espectruis de Darneue, Dannen e l'arzen                                                                  |            |

| Tabela A.3: | Resultado da estimação com o estimador KTPS para o processo                                                                 |    |
|-------------|-----------------------------------------------------------------------------------------------------------------------------|----|
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 2,$                        |    |
|             | $\boldsymbol{u} = (0.2, 0.8),  \boldsymbol{\lambda} = (0.2, 0.4),  \alpha \in \{1.3, 1.5, 1.7, 1.9\},  m = 2,  \text{para}$ |    |
|             | as janelas espectrais de Bartlett, Daniell e Parzen                                                                         | 78 |
| Tabela A.4: | Resultado da estimação com o estimador KTPS para o processo                                                                 |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 2$ ,                       |    |
|             | $\boldsymbol{u} = (0.2, 0.8),  \boldsymbol{\lambda} = (0.2, 0.4),  \alpha \in \{1.3, 1.5, 1.7, 1.9\},  m = 3,  \text{para}$ |    |
|             | as janelas espectrais de Bartlett, Daniell e Parzen.                                                                        | 79 |
| Tabela A.5: | Resultado da estimação com o estimador KTPS para o processo                                                                 |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 2$ ,                       |    |
|             | $\boldsymbol{u} = (0.2, 0.8),  \boldsymbol{\lambda} = (0.2, 0.4),  \alpha \in \{1.3, 1.5, 1.7, 1.9\},  m = 4,  \text{para}$ |    |
|             | as janelas espectrais de Bartlett, Daniell e Parzen                                                                         | 80 |
| Tabela A.6: | Resultado da estimação com o estimador KTPSC para o processo                                                                |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 2, \boldsymbol{u} = q$     |    |
|             | $(0.2, 0.8), \lambda = (0.2, 0.4), \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo                              |    |
|             | $n = 1000$ e $\beta = 0.8$ para as janelas de suavização de Bartlett,                                                       |    |
|             | Parzen e Tukey.                                                                                                             | 81 |
| Tabela A.7: | Resultado da estimação com o estimador KTPSC para o processo                                                                |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 2$ ,                       |    |
|             | $\boldsymbol{u} = (0.2, 0.8),  \boldsymbol{\lambda} = (0.2, 0.4),  \alpha \in \{1.3, 1.5, 1.7, 1.9\},  m_n = n^{\beta},$    |    |
|             | sendo $n = 1000$ e $\beta = 0.85$ para as janelas de suavização de                                                          |    |
|             | Bartlett, Parzen e Tukey                                                                                                    | 82 |
| Tabela A.8: | Resultado da estimação com o estimador KTPSC para o pro-                                                                    |    |
|             | cessok-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,                         |    |
|             | $k = 2, \ \boldsymbol{u} = (0.2, 0.8), \ \boldsymbol{\lambda} = (0.2, 0.4), \ \alpha \in \{1.3, 1.5, 1.7, 1.9\},$           |    |
|             | $m_n = n^{\beta}$ , sendo $n = 1000$ e $\beta = 0.9$ para as janelas de suavização                                          |    |
|             | de Bartlett, Parzen e Tukey                                                                                                 | 83 |
| Tabela A.9: | Resultado da estimação com o estimador KTPSC para o processo                                                                |    |
|             | k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 2$ ,                       |    |
|             | $\boldsymbol{u} = (0.2, 0.8),  \boldsymbol{\lambda} = (0.2, 0.4),  \alpha \in \{1.3, 1.5, 1.7, 1.9\},  m_n = n^{\beta},$    |    |
|             | sendo $n = 1000$ e $\beta = 0.95$ para as janelas de suavização de                                                          |    |
|             | Bartlett, Parzen e Tukey                                                                                                    | 84 |
| Tabela A.10 | :k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q, k = 2,$                       |    |
|             | $\boldsymbol{u} = (0.2, 0.8),  \boldsymbol{\lambda} = (0.2, 0.4),  \alpha \in \{1.3, 1.5, 1.7, 1.9\}.$                      | 85 |
| Tabela A.11 | :Resultado da estimação com o estimador MCMCPS para o pro-                                                                  |    |
|             | cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,                        |    |
|             | $k = 2, \ \boldsymbol{u} = (0.2, 0.8), \ \boldsymbol{\lambda} = (0.2, 0.4), \ \alpha \in \{1.3, 1.5, 1.7, 1.9\},$           |    |
|             | $m=1,\mathrm{para}$ as janelas de suavização de Bartlett, Parzen e Tukey.                                                   | 86 |
| Tabela A.12 | :Resultado da estimação com o estimador MCMCPS para o pro-                                                                  |    |
|             | cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,                        |    |
|             | $k = 2, \ \boldsymbol{u} = (0.2, 0.8), \ \boldsymbol{\lambda} = (0.2, 0.4), \ \alpha \in \{1.3, 1.5, 1.7, 1.9\},$           |    |
|             | $m=2,\mathrm{para}$ as janelas de suavização de Bartlett, Parzen e Tukey.                                                   | 87 |
| Tabela A.13 | :Resultado da estimação com o estimador MCMCPS para o pro-                                                                  |    |
|             | cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,                        |    |
|             | $k = 2, \ \boldsymbol{u} = (0.2, 0.8), \ \boldsymbol{\lambda} = (0.2, 0.4), \ \alpha \in \{1.3, 1.5, 1.7, 1.9\},$           |    |
|             | $m=3,\mathrm{para}$ as janelas de suavização de Bartlett, Parzen e Tukey.                                                   | 88 |

| Tabela A.14:Resultado da estimação com o estimador MCMCPS para o pro-                                             |    |
|-------------------------------------------------------------------------------------------------------------------|----|
| cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,              |    |
| $k = 2, \ \boldsymbol{u} = (0.2, 0.8), \ \boldsymbol{\lambda} = (0.2, 0.4), \ \alpha \in \{1.3, 1.5, 1.7, 1.9\},$ |    |
| m = 4, para as janelas de suavização de Bartlett, Parzen e Tukey.                                                 | 89 |
| Tabela A.15:Resultado da estimação com o estimador MCMCPSC para o pro-                                            |    |
| cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,              |    |
| $k = 2, \ \boldsymbol{u} = (0.2, 0.8), \ \boldsymbol{\lambda} = (0.2, 0.4), \ \alpha \in \{1.3, 1.5, 1.7, 1.9\},$ |    |
| $m_n = n^{\beta}$ , sendo $n = 1000$ e $\beta = 0.8$ para as janelas de suavização                                |    |
| de Bartlett, Parzen e Tukey                                                                                       | 90 |
| Tabela A.16:Resultado da estimação com o estimador MCMCPSC para o pro-                                            |    |
| cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,              |    |
| $k = 2, \ \boldsymbol{u} = (0.2, 0.8), \ \boldsymbol{\lambda} = (0.2, 0.4), \ \alpha \in \{1.3, 1.5, 1.7, 1.9\},$ |    |
| $m_n = n^{\beta}$ , sendo $n = 1000$ e $\beta = 0.85$ para as janelas de suaviza-                                 |    |
| ção de Bartlett, Parzen e Tukey                                                                                   | 91 |
| Tabela A.17:Resultado da estimação com o estimador MCMCPSC para o pro-                                            |    |
| cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,              |    |
| $k = 2, \ \boldsymbol{u} = (0.2, 0.8), \ \boldsymbol{\lambda} = (0.2, 0.4), \ \alpha \in \{1.3, 1.5, 1.7, 1.9\},$ |    |
| $m_n = n^{\beta}$ , sendo $n = 1000$ e $\beta = 0.9$ para as janelas de suavização                                |    |
| de Bartlett, Parzen e Tukey                                                                                       | 92 |
| Tabela A.18:Resultado da estimação com o estimador MCMCPSC para o pro-                                            |    |
| cesso k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,              |    |
| $k = 2, \ \boldsymbol{u} = (0.2, 0.8), \ \boldsymbol{\lambda} = (0.2, 0.4), \ \alpha \in \{1.3, 1.5, 1.7, 1.9\},$ |    |
| $m_n = n^{\beta}$ , sendo $n = 1000$ e $\beta = 0.95$ para as janelas de suaviza-                                 |    |
| ção de Bartlett, Parzen e Tukey                                                                                   | 93 |

## 1 Introdução

Em muitas aplicações práticas, pesquisadores têm estudado séries temporais que apresentem longa dependência e sazonalidade. Esse fenômeno ocorre em séries de rendimento, agregados monetários e taxa de inflação, por exemplo. Desta forma, vários métodos estatísticos foram propostos para modelar estas séries, dentre eles, os processos k-Factor GARMA  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$ . Giraitis e Leipus (1995) e, depois, Woodward et al. (1998) estendem os modelos Gegenbauer e GARMA, respectivamente, aos modelos k-Factor Gegenbauer e k-Factor GARMA  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$ , para os quais a função densidade espectral é ilimitada para um número finito k de frequências, chamadas de frequências de Gegenbauer.

Há também o interesse em modelar séries temporais com alta variabilidade. Desta forma, torna-se interessante estudar os processos que levem em consideração esta propriedade de tais séries. Inicialmente foram propostos os processos ARFIMA(p, d, q) com inovações  $\alpha$ -estáveis. Estes processo foram propostos por Kokoszka e Taqqu (1995), para estudar séries com a propriedade de longa dependência e alta variabilidade. Kokoszka e Taqqu (1999), apresentaram estes processos e apresentaram a função poder de transferência, longa dependência, estacionariedade e um estimador para os parâmetros destes processos.

Diongue et al. (2008) apresentam os processos SARFIMA $(p, d, q) \times (P, D, Q)_s$  com variância infinita, que são um caso particular dos processos k-Factor GARMA  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$ , bem como algumas propriedades como estacionariedade e invertibilidade e apresentam um estimador para os parâmetros destes processos.

Klüppelberg e Mikosch (1994) apresentam o periodograma normalizado e o periodograma normalizado suavizado, sendo este último um estimador fracamente consistente para a função poder de transferência.

A proposta deste trabalho é estudar os processos k-Factor GARMA  $(p, u, \lambda, q)$  $S\alpha S$ , suas propriedades e estimação. Estudamos as propriedades de estacionariedade, invertibilidade e causalidade destes processos, definidos no Capítulo 2, que permitem ajustar séries que tenham longa dependência, periodicidades sazonais e componentes de variância infinita.

Estendemos os estimadores propostos por Kokoszka e Taqqu (1999) para os processos ARFIMA(p, d, q) com inovações  $\alpha$ -estáveis, para os processos k-Factor GARMA  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$  que possuam inovações  $\alpha$ -estáveis, ou seja, processos com variância infinita, denotados por k-Factor GARMA  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$  S $\alpha$ S. Este estimador, denotado po KT, é baseado na função periodograma normalizado. Também estendemos o estimador proposto para os processos SARFIMA $(p, d, q) \times (P, D, Q)_s$  com inovações  $\alpha$ -estáveis por Ndongo et al. (2010) denotado por MCMC (utilizando o algoritmo de Metropolis Hastings) e a função periodograma normalizado para os processos os processos k-Factor GARMA  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$   $S\alpha S$ . Modificamos os estimadores acima citados utilizando as funções periodograma normalizado suavizado e função periodograma suavizado de correlação em vez da função periodograma normalizado como estimadores da função poder de transferência. Para as funções periodograma normalizado suavizado e função periodograma suavizado de correlação utilizamos diferentes janelas espectrais e de suavização.

No Capítulo 2, são definidas as funções periodogramas utilizadas (Seção 2.2.1), as janelas espectrais e de suavização utilizadas (Seção 2.2.2) e os estimadores propostos (Seção 2.3).

O Capítulo 3 e o Apêndice A apresentam as metodologias utilizadas para realização das Simulações de Monte Carlo, bem como os resultados obtidos no trabalho de estimação. Por fim, no Capítulo 4 apresentamos as conclusões obtidas.

## **2** Processos k-Factor GARMA $S\alpha S$

Os processos ARFIMA(p, d, q), onde  $d \in (-0.5, 0.5)$ , podem ser tratados como uma generalização dos processos ARIMA(p, d, q), onde  $d \in \mathbb{N}$ , para modelar dados com a propriedade de longa dependência, isto é, quando a função densidade espectral é ilimitada na frequência zero. Similarmente, os processos GARMA $(p, u, \lambda, q)$ são tratados como uma generalização dos processos ARFIMA(p, d, q), na qual a sua função densidade espectral torna-se ilimitada em alguma frequência G no intervalo  $(0, \pi]$ , não necessariamente a frequência zero. Contudo, uma limitação dos processos ARFIMA(p, d, q) e do processo mais geral GARMA $(p, u, \lambda, q)$  é que as suas funções densidade espectral tornam-se ilimitadas em apenas uma frequência do intervalo  $(0, \pi]$ . Por isso, Gray et al. (1989) sugerem a inclusão de mais de um fator Gegenbauer nos modelos GARMA.

Giraitis e Leipus (1995) e, depois, Woodward et al. (1998) estendem os modelos Gegenbauer e GARMA, respectivamente, aos modelos k-Factor Gegenbauer e k-Factor GARMA, para os quais a função densidade espectral é ilimitada para um número finito k de frequências, chamadas de frequências de Gegenbauer (ou frequências G), no intervalo  $(0, \pi]$ .

A seguir, definimos os polinômios Gegenbauer os quais são de grande importância para a definição dos processos GARMA e k-Factor GARMA e algumas de suas propriedades.

#### 2.1 Definições e Propriedades

Primeiramente vamos introduzir os polinômios de Gegenbauer. Estes polinômios são muito aplicados na matemática tanto pela sua ortogonalidade como pelas suas propriedades recursivas.

**Definição 1.** Os *polinômios Gegenbauer*  $C_j^{(\lambda)}(u)$  são definidos como os coeficientes na expansão em série de potência da seguinte função

$$(1 - 2uZ + Z^2)^{-\lambda} = \sum_{j \ge 0} C_j^{(\lambda)}(u) Z^j, \qquad (2.1)$$

para  $\lambda \neq 0, |u| \leq 1 \in |Z| \leq 1$ , onde

$$C_{j}^{(\lambda)}(u) = \sum_{k=0}^{[j/2]} \frac{(-1)^{k} \Gamma(\lambda - k + j) (2u)^{j-2k}}{\Gamma(\lambda) \Gamma(k+1) \Gamma(j-2k+1)},$$
(2.2)

 $\operatorname{com} [x]$  sendo a parte inteira de x.

Os polinômios Gegenbauer podem ser aproximados por

$$C_j^{(\lambda)}(u) \simeq \frac{\cos[(j+\lambda)G - (\lambda\pi/2)]}{\Gamma(\lambda) \, \mathrm{sen}^{\lambda}(G)} \left(\frac{2}{j}\right)^{1-\lambda}, \quad \text{quando} \quad j \to \infty,$$

onde a constante G é dada por  $G = \cos^{-1}(u)$ .

Assim, quando  $\lambda < 1$ ,  $\overline{C_j^{(\lambda)}}(u)$  decresce numa taxa hiperbólica, quando  $j \to \infty$ .

Computacionalmente, podemos calcular  $C_j^{(\lambda)}(u)$  usando a seguinte fórmula recursiva

$$C_{j}^{(\lambda)}(u) = 2u\left(\frac{\lambda - 1}{j} + 1\right)C_{j-1}^{(\lambda)}(u) - \left(2\frac{\lambda - 1}{j} + 1\right)C_{j-2}^{(\lambda)}(u),$$

para todo j > 2, com  $C_0^{(\lambda)}(u) = 1$ ,  $C_1^{(\lambda)}(u) = 2\lambda u$ ,  $C_2^{(\lambda)}(u) = 2\lambda(\lambda + 1)u^2 - \lambda$ . Tendo definido os polinômios Gegenbauer podemos definir os processos Gegen-

bauer e conseqüentemente os processos k-Factor Gegenbauer.

**Definição 2.** Seja  $\{X_t\}_{t\in\mathbb{Z}}$  o processo estocástico que satisfaz a equação

$$\prod_{j=1}^{k} (1 - 2u_j \mathcal{B} + \mathcal{B}^2)^{\lambda_j} (X_t - \mu) = \varepsilon_t,$$
(2.3)

onde k é um inteiro finito,  $|u_j| \leq 1$  e  $\lambda_j$  é um número fracionário, para  $j = 1, \dots, k$ ,  $\mu$  é a média do processo e  $\{\varepsilon_t\}_{t\in\mathbb{Z}}$  é um processo ruído branco. Então,  $\{X_t\}_{t\in\mathbb{Z}}$ é um processo k-Factor Gegenbauer de ordem  $(0, \boldsymbol{u}, \boldsymbol{\lambda}, 0)$ , denotado por k-Factor Gegenbauer $(0, \boldsymbol{u}, \boldsymbol{\lambda}, 0)$ , onde  $\boldsymbol{u} = (u_1, \dots, u_k)'$  e  $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_k)'$ .

A seguir apresentamos algumas propriedades dos processos k-Factor Gegenbauer $(0, \boldsymbol{u}, \boldsymbol{\lambda}, 0)$ .

**Proposição 1.** Seja  $\{X_t\}_{t\in\mathbb{Z}}$  um processo k-Factor Gegenbauer $(0, \boldsymbol{u}, \boldsymbol{\lambda}, 0)$  (ver Definição 2). Então,

- (i) o processo  $\{X_t\}_{t\in\mathbb{Z}}$  é estacionário se  $u_j$  são distintos e  $\lambda_j < 0.5$ , quando  $|u_j| < 1 \ e \ \lambda_j < 0.25$ , quando  $|u_j| = 1$ , para  $j = 1, \dots, k$ ;
- (ii) o processo estacionário {X<sub>t</sub>}<sub>t∈Z</sub> possui longa dependência se o item i) é satisfeito e ainda λ<sub>j</sub> > 0, para j = 1, · · · , k;
- (iii) o processo  $\{X_t\}_{t\in\mathbb{Z}}$  possui função densidade espectral dada por

$$f_{x}(w) = \frac{\sigma_{\varepsilon}^{2}}{2\pi} \prod_{j=1}^{k} [2(\cos(w) - u_{j})]^{-2\lambda_{j}}, \text{ para } w \in (0, \pi],$$

onde  $f_x(\cdot)$  é ilimitada nas frequências  $G_j = \cos^{-1}(u_j), j = 1, \cdots, k$ .

(iv) Seja

$$|\lambda_j| < \begin{cases} 0.5, & se \ 0 < u_j < 1; \\ 0.25, & se \ |u_j| = 1, \end{cases}$$
(2.4)

 $com \lambda_j \neq 1$ , para  $j = 1, \dots, k$ . Então, existe uma única solução estacionária,  $X_t$  da equação (2.3) a qual é causal e inversível.

**Demonstração:** A demonstração destas propriedades pode ser encontrada em Woodward et al. (1998).

A seguir definition os modelos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$ .

**Definição 3.** Seja  $\{X_t\}_{t\in\mathbb{Z}}$  um processo estocástico que satisfaz a equação

$$\phi(\mathcal{B})\prod_{j=1}^{k}(1-2u_{j}\mathcal{B}+\mathcal{B}^{2})^{\lambda_{j}}(X_{t}-\mu)=\theta(\mathcal{B})\varepsilon_{t},$$
(2.5)

onde k é um inteiro finito,  $|u_j| \leq 1$  e  $\lambda_j$  é um número fracionário, para  $j = 1, \dots, k$ ,  $\mu$  é a média do processo,  $\{\varepsilon_t\}_{t \in \mathbb{Z}}$  é um processo ruído branco e  $\phi(\cdot)$  e  $\theta(\cdot)$  são os polinômios de grau  $p \in q$  dados, respectivamente, por

$$\phi(z) = \sum_{\ell=0}^{p} (-\phi_{\ell}) z^{\ell} \quad e \quad \theta(z) = \sum_{m=0}^{q} (-\theta_{m}) z^{m},$$
(2.6)

onde  $\phi_{\ell}$ ,  $1 \leq \ell \leq p$ , e  $\theta_m$ ,  $1 \leq m \leq q$ , são constantes reais e  $\phi_0 = -1 = \theta_0$ . Então,  $\{X_t\}_{t \in \mathbb{Z}}$  é um processo auto-regressivo de média móvel k-Factor Gegenbauer de ordem  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$ , denotado por k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$ , onde  $\boldsymbol{u} = (u_1, \cdots, u_k)'$  e  $\boldsymbol{\lambda} = (\lambda_1, \cdots, \lambda_k)'$ .

Na proposição a seguir, apresentamos alguns resultados sobre k-Factor GAR- $MA(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$  estabelecidos e provados em Giraitis e Leipus (1995) e Woodward et al. (1998).

**Proposição 2.** Seja  $\{X_t\}_{t\in\mathbb{Z}}$  um processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$  conforme a Definição 3. Então,

- (i) o processo {X<sub>t</sub>}<sub>t∈Z</sub> é estacionário se todas as raízes da equação φ(z) = 0 estão fora do círculo unitário, e além disso, u<sub>j</sub> e λ<sub>j</sub>, para 1 ≤ j ≤ k, satisfazem a condição do item i) da Proposição 1;
- (ii) o processo estacionário {X<sub>t</sub>}<sub>t∈Z</sub> possui longa dependência se satisfaz as condições do item i) desta proposição e, além disso, λ<sub>j</sub> > 0, para 1 ≤ j ≤ k;
- (iii) o processo estacionário  $\{X_t\}_{t\in\mathbb{Z}}$  é causal se e somente se  $\phi(z) \neq 0$ , para  $|z| \leq 1$ ;
- (iv) o processo estacionário  $\{X_t\}_{t\in\mathbb{Z}}$  é inversível se e somente se  $\theta(z) \neq 0$ , para  $|z| \leq 1$ ;
- (v) a função densidade espectral do processo k-Factor GARMA, definido pela expressão (2.5), é dada por

$$f_X(w) = \frac{\sigma_{\varepsilon}^2}{2\pi} \frac{|\theta(e^{-iw})|^2}{|\phi(e^{-iw})|^2} \prod_{j=1}^k [2(\cos(w) - u_j)]^{-2\lambda_j},$$
(2.7)

onde  $0 < w \leq \pi \ e \ G_j = \cos^{-1}(u_j)$  são as chamadas frequências de Gegenbauer.

Neste trabalho estamos interessados em estudar os processos k-Factor GARMA  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$ , apresentados na Definição 3, no qual  $\{\varepsilon_t\}_{t\in\mathbb{Z}}$  é um processo ruído branco onde suas variáveis aleatórias possuem distribuição  $\alpha$ -estável. Denotaremos estes processos por k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ .

Assim, na definição a seguir, apresentamos uma variável aleatória com distribuição  $\alpha$ -estável. Uma das características destas variáveis é ter variância infinita.

**Definição 4.** Seja X uma variável aleatória que segue distribuição  $\alpha$ -estável. Então, sua função característica é dada por:

$$\varphi_X(a) = \mathbb{E}(e^{iaX}) = e^{-\sigma^{\alpha}|a|^{\alpha}}, \quad a \in \mathbb{R},$$
(2.8)

onde  $0 < \alpha \leq 2$  é o índice de estabilidade e  $\sigma > 0$  é o parâmetro de escala.

**Observação 1.** Algumas observações importantes.

- (i) Se  $\alpha = 2$ , a variável aleatória X, na Definição 4, possui distribuição gaussiana com  $Var(X) = 2\sigma^2$ .
- (ii) Se  $0 < \alpha < 2$ , temos  $\mathbb{E}|X|^p = \infty$ , para  $p \ge \alpha$  e para 0 ,

$$\mathbb{E}|X|^p = \mathbb{E}|\sigma^{-1}X|^p \sigma^p = C(p,\alpha)\sigma^p,$$

onde a constante  $C(p, \alpha)$  não depende do parâmetro de escala  $\sigma$ .

Na Proposição 3, a seguir, apresentamos algumas propriedades dos processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ .

**Proposição 3.** Seja  $\{X_t\}_{t\in\mathbb{Z}}$  um processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ . Então as seguintes afirmações são verdadeira.

- (i) O processo  $\{X_t\}_{t\in\mathbb{Z}}$  é estacionário quando  $|u_j| < 1$  e  $\lambda_j < 1 \frac{1}{\alpha}$  e quando  $|u_j| = 1$  e  $\lambda_j < \frac{1}{2}(1 \frac{1}{\alpha})$  para  $j = 1, \cdots, k$ ;
- (ii) O processo  $\{X_t\}_{t\in\mathbb{Z}}$  é invertível quando  $|u_j| < 1$  e  $\lambda_j > -1 + \frac{1}{\alpha}$  e quando  $|u_j| = 1$  e  $\lambda_j > -\frac{1}{2}(1 \frac{1}{\alpha})$ , para  $j = 1, \cdots, k$ ;
- (iii) Sob as condições dos itens (i) e (ii), desta proposição, as representações  $AR(\infty)$ e  $MA(\infty)$  do processo $\{X_t\}_{t\in\mathbb{Z}}$  são, respectivamente, dadas por

$$\varepsilon_t = \sum_{j=0}^{\infty} \pi_j X_{t-j} \tag{2.9}$$

$$X_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j} \tag{2.10}$$

Um processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  é dito causal, ver Proposição 2, item iii), se existe uma seqüência  $\{\psi_\ell\}_{\ell \in \mathbb{Z}_{\geq}}$  tal que  $\sum_{\ell \geq 0} |\psi_\ell| < \infty$  e

$$\psi(z) = \sum_{\ell \ge 0} \psi_{\ell} z^{\ell} = \frac{\theta(z)}{\phi(z)} \prod_{j=1}^{k} (1 - 2u_j z + z^2)^{-\lambda_j}.$$
 (2.11)

Um processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  é dito inversível, ver Proposição 2, item iv), se existe uma seqüência  $\{\pi_l\}_{l \in \mathbb{Z}_{\geq}}$  tal que  $\sum_{l \geq 0} |\pi_l| < \infty$  e

$$\pi(z) = \sum_{l \ge 0} \pi_l z^l = \frac{\phi(z)}{\theta(z)} \prod_{j=1}^k (1 - 2u_j z + z^2)^{\lambda_j}.$$
 (2.12)

(iv) Seja  $\{X_t\}_{t\in\mathbb{Z}}$  um processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  causal. Então a função poder de transferência do processo  $\{X_t\}_{t\in\mathbb{Z}}$  é dada por

$$f_{X}(\omega) = \frac{|\theta(e^{-\imath\omega})|}{|\phi(e^{-\imath\omega})|} \prod_{j=1}^{k} [2(\cos(\omega) - u_{j})]^{-2\lambda_{j}} = \left|\sum_{j \ge 0} \psi_{j} e^{-\imath j\omega}\right|^{2}, \quad (2.13)$$

onde  $0 < \omega \leq \pi$  e  $G_j = \cos^{-1}(u_j)$  são chamadas frequências de Gegenbauer.

Na Figura 2.1 podemos visualizar quatro séries temporais de tamanho n = 1000geradas a partir de processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ , onde cada linha corresponde a um  $\alpha$  diferente utilizado para a geração das inovações da série. A segunda coluna de gráficos é a função de autocorrelação amostral correspondente, e as últimas três colunas são, respectivamente, as Funções Periodograma Normalizado, Normalizado Suavizado com janela espectral de Bartlett e Suavizado de Correlações com janela de suavização de Bartlett, de cada série gerada. As Funções Periodograma são definidas e trabalhadas na Seção 2.2.1, bem como as janelas espectrais e de suavização são definidas na Seção 2.2.2.



Figura 2.1: Função Periodograma Normalizado, Função Periodograma Normalizado Suavizado e Função Periodograma Suavizado de Correlações das séries geradas a partir de processos k-Factor GARMA $(p, u, \lambda, q) - S\alpha S$ , com  $k = 1, \mu = 0, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}$  conforme Figura 2.2.



Figura 2.2: Séries geradas a partir de processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ , com  $k = 1, \mu = 0, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}$  e suas respectivas Funções de Autocovariância Amostral.

A Figura 2.3 apresenta alguns exemplos da função poder de transferência dos processos k-Factor GARMA $(p, u, \lambda, q)$ , com k = 1,  $\lambda = 0.2$ ,  $\mu = 0$  e diferentes valores para u, G. A expressão da função densidade espectral dos processos GARMA $(p, u, \lambda, q)$  (apresentada na Figura 2.3(a) com  $\lambda = 0.2$ , u = 1, p = 0 = q e G = 0) coincide com a expressão da função densidade espectral dos processos ARFIMA(p, d, q) quando d = 0.4, p = 0 = q e  $\mu = 0$ .

A Figura 2.4 apresenta alguns exemplos da função poder de transferência dos processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ , com  $\boldsymbol{\lambda} = (0.2, 0.2)$ , para k = 2 e  $\boldsymbol{\lambda} = (0.2, 0.2, 0.2)$ , para k = 3 e diferentes valores para  $\boldsymbol{u} \in p, q \in \{0, 1\}$ .

Na seção a seguir, propomos estimadores para os parâmetros dos processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ .



Figura 2.3: Função poder de transferência processos k-Factor GARMA $(p, u, \lambda, q)$ , com k = 1,  $\mu = 0$  e  $\lambda = 0.2$ : (a) u = 1, p = 0 = q e G = 0; (b) u = -1, p = 0 = q e  $G = \pi$ ; (c) u = 0.4, p = 0 = q e  $G = 0.369\pi$ ; (d) u = -0.4, p = 0 = q e  $G = 0.63\pi$ ; (e) u = 0.4, p = 1, q = 0, com  $\phi_1 = 0.8$  e  $G = 0.369\pi$ ; (f) u = 0.4, p = 1, q = 0, com  $\phi_1 = -0.8$  e  $G = 0.369\pi$ ;

### 2.2 Estimação dos Parâmetros

Nos estudos de Estatística, a análise inferencial é de grande importância para o desenvolvimento de conclusões pertinentes ao que está sendo estudado. Isso se deve ao fato de que recorremos aos estimadores para inferir características da população através da amostra representativa selecionada no estudo.

Mesmo em trabalhos envolvendo simulações, é importante que a análise inferencial seja feita, a fim de verificar o desempenho e qualidade dos estimadores que estão sendo utilizados no estudo. Neste trabalho, estamos verificando o desempenho dos estimadores utilizados, bem como de seus métodos de suavização espectral, a fim de comparar se o método que estamos propondo é tão bom quanto os já existentes na literatura. Nas seções a seguir, apresentaremos os diferentes tipos de periodogramas utilizados no decorrer das análises.

#### 2.2.1 Periodogramas

Nesta seção apresentamos as funções periodograma normalizado, periodograma normalizado suavizado e periodograma suavizado de correlações, que são estimadores da *função poder de transferência*.

Quando estamos trabalhando com processos gaussianos, a função periodograma é um estimador da função densidade espectral. De acordo com Siqueira (2003), as estimativas produzidas pela função periodograma podem ser ditas não polarizadas e



Figura 2.4: k-Factor GARMA( $p, u, \lambda, q$ ) –  $S\alpha S$ , com  $\lambda = (0.2, 0.2)$ , para k = 2 e  $\lambda = (0.2, 0.2, 0.2)$ , para k = 3: (a) k = 2, u = (-0.4, 0.8),  $G_1 = 0.631\pi$ ,  $G_2 = 0.204\pi$  e p = 0 = q; (b) k = 3, u = (-0.7, 0.3, 0.9),  $G_1 = 0.747\pi$ ,  $G_2 = 0.403\pi$ ,  $G_3 = 0.143\pi$  e p = 0 = q; (c) k = 2, u = (-0.4, 0.8),  $G_1 = 0.631\pi$ ,  $G_2 = 0.204\pi$ , p = 1 = q,  $\phi_1 = 0.8$  e  $\theta_1 = 0.5$ ; (d) k = 3, u = (-0.7, 0.3, 0.9),  $G_1 = 0.747\pi$ ,  $G_2 = 0.403\pi$ ,  $G_3 = 0.143\pi$ , p = 1 = q,  $\phi_1 = 0.8$  e  $\theta_1 = 0.5$ ; (d) k = 3, u = (-0.7, 0.3, 0.9),  $G_1 = 0.747\pi$ ,  $G_2 = 0.403\pi$ ,  $G_3 = 0.143\pi$ , p = 1 = q,  $\phi_1 = 0.8$  e  $\theta_1 = 0.5$ .

polarizadas, ou seja, não viesadas ou viesadas. Siqueira (2003) também afirma que ambas estimativas são assintoticamente não polarizadas, o que faz com que o valor estimado tenha uma variância alta, fazendo-se necessário o uso de algum método de suavização para melhora das estimativas.

Ao trabalharmos com séries que apresentam variância infinita, não mais tratamos da função densidade espectral, mas sim, da função poder de transferência. A função periodograma normalizado é estimador da função poder de transferência (ver Klüppelberg e Mikosch, 1994).

Na definição a seguir apresentamos a função poder de transferência.

**Definição 5.** Seja  $\{X_t\}_{t=1}^n$  um série temporal obtida a partir do processo  $\{X_t\}_{t\in\mathbb{Z}}$ . A função periodograma normalizado, denotada por  $\tilde{I}_n(\cdot)$ , é dada por

$$\widetilde{I}_n(\omega) = \left(\sum_{t=1}^n X_t^2\right)^{-1} \left|\sum_{t=1}^n X_t e^{-\iota \omega t}\right|^2, \quad \text{em que} \quad \omega \in [-\pi, \pi].$$
(2.14)

Klüppelberg e Mikosch (1994) demonstram que  $\tilde{I}_n(\cdot)$  é um estimador não viesado e não consistente para a *função poder de transferência*.

A Proposição 4 apresenta uma forma alternativa de escrevermos a função periodograma normalizado. Esta forma alternativa foi definida por Kokoszka e Taqqu (1994) e sua demonstração pode ser encontrada em Stein (2012). **Proposição 4.** A função periodograma normalizado *pode ser escrita da seguinte* forma

$$\widetilde{I}_n(\omega) = \sum_{|h| < n} \widehat{\rho}_X(h) e^{-i\omega h}, \quad em \ que \quad \omega \in [-\pi, \pi],$$
(2.15)

em que  $\hat{\rho}_{x}(\cdot)$  é a função de autocorrelação amostral dada pela Definição 4.

A seguir apresentamos a função periodograma normalizado suavizado, definido por Klüppelberg e Mikosch (1994), é um estimador consistente para a função poder de transferência.

Definição 6. A função periodograma normalizado suavizado é definido como

$$\tilde{T}_n(\omega) = \sum_{|k| \le m} W_n(k) \tilde{I}_n(\omega_k), \qquad (2.16)$$

onde

$$\omega_k = \omega + \frac{k}{n}, \quad |k| \leqslant m,$$

m=m(n)é uma sequência em  $\mathbb N$ tal que

$$m \to \infty$$
, e  $\frac{m}{n} \to 0$ ,  $n \to \infty$ ,

e  $(W_n)_{n\in\mathbb{N}}$  é uma sequência de pesos que satisfazem a seguintes condições

$$W_n(k) = W_n(-k), \quad W_n(k) \ge 0, \quad \text{para todo} \quad h \in \mathbb{N}_0,$$
 (2.17)

$$\sum_{|k|\leqslant m} W_n(k) = 1, \tag{2.18}$$

$$\sum_{|k|\leqslant m} W_n^2(k) = o(1), \quad n \to \infty.$$
(2.19)

A função  $W(\cdot)$  é chamada *janela espectral*.

Na definição a seguir apresentamos *função periodograma suavizado de correlações*. Este estimador da função poder de transferência foi definido por Stein (2012). Além disso, Stein (2012) prova a constistência deste estimador.

**Definição 7.** A *função periodograma suavizado de correlações* pode ser escrita da seguinte forma

$$\widetilde{K}_n(\omega) = \sum_{|h| < m_n} \mathcal{W}(h/m_n) \widehat{\rho}_X(h) e^{-i\omega h}, \quad \text{em que} \quad \omega \in [-\pi, \pi],$$
(2.20)

em que  $\hat{\rho}_x(\cdot)$  é a função de autocorrelação amostral dada pela Definição 4 e  $\mathcal{W}(\cdot)$  é uma função par, contínua por partes e satisfaz as condições,

$$\mathcal{W}(0) = 1,$$

$$|\mathcal{W}(x)| \leq 1$$
, para todo  $x$ 

е

$$\mathcal{W}(x) = 0$$
, para todo  $|x| > 1$ .

A função  $\mathcal{W}(\cdot)$  é chamada *lag window* ou *janela de suavização*.

#### Observação 2. Observações:

- (i) Definindo  $\mathcal{W}(x) \equiv 1$ , para  $|x| \leq 1$ ,  $e \ m_n = n$ , obtemos  $\widetilde{K}_n(\omega) = \widetilde{I}_n(\omega)$ .
- (ii) Segundo Brockwell e Davis (2013), página 358, para processos estacionários, m<sub>n</sub> é uma função em N tal que m<sub>n</sub> → ∞, e m<sub>n</sub>/n → 0, quando n → ∞. No caso dos processos satisfazendo as condições do Teorema 10.4.1 (página 351) e a condição para m<sub>n</sub>, o periodograma suavizado de covariância (ver equação 10.4.8 Brockwell e Davis, 2013), é um estimador consistente para a função densidade espectral.
- (iii) Neste trabalho, utilizamos  $m \in \{1, 2, 3, 4\}$  e  $m_n = n^{\beta}$ , para  $\beta \in \{0.8, 0.85, 0.9, 0.95\}$

#### 2.2.2 Janelas Espectrais e de Suavização

Existem diversas janelas, com diferentes características de formato no domínio do tempo, que influenciam em seu espectro. Neste trabalho estas janelas têm como função suavizar os periodogramas, tornando mais eficiente a estimação dos parâmetros dos processos que estamos estudando. No entanto, é necessário que se encontre um ponto ótimo para m (ver Definição 6) e  $m_n$  (ver Definição 7) para cada janela escolhida), a fim de não perder nenhuma característica da série que está sendo analisada.

Nesta seção apresentamos as janelas utilizadas como métodos de suavização espectral nos estimadores estudados neste trabalho.

#### Janela de Bartlett

A seguir definimos a Janela de Bartlett, também conhecida como Janela Triangular ou *Kernel* de Fejer.

Definição 8. Bartlett (1950) propôs a janela de suavização dada por

$$\mathcal{W}^B(h/m_n) = \begin{cases} 1 - \frac{|h|}{m_n}, & \text{se } |h| \le m_n; \\ 0, & \text{se } |h| > m_n, \end{cases}$$
(2.21)

onde  $m_n$  é o ponto de truncamento que depende do tamanho da amostra. A janela de suavização é baseada na função triangular dada por:

$$W(x) = \begin{cases} 1 - |x|, & \text{se } |x| \leq 1; \\ 0, & \text{se } |x| > 1. \end{cases}$$
(2.22)

Desta forma, a Janela de Bartlett é conhecida também como Janela Triangular. A Janela Espectral correspondente é dada por:

$$W_n^B(\omega) = \frac{1}{2\pi m} \left[ \frac{\operatorname{sen}(\frac{\omega m}{2})}{\operatorname{sen}(\frac{\omega}{2})} \right].$$
(2.23)

Na Figura 2.5, podemos visualizar a Janela Triangular de Suavização de Bartlett e sua correspondente Janela Espectral.

#### Janela de Tukey

A seguir definimos a janela de Blackmann-Tukey.



Figura 2.5: Janelas de Bartlett de suavização e espectral. (a) Janela de Suavização Triangular de Bartlett  $\mathcal{W}^B(\cdot)$ , com  $m_n = 5$ . (b) Janela Espectral de Bartlett  $W_n^B(\cdot)$ , com m = 5.

Fonte: O Autor.

Definição 9. Blackman e Tukey (1958) sugeriram a seguinte janela de suavização:

$$\mathcal{W}^{T}(h/m_{n}) = \begin{cases} 1 - 2a + 2a\cos\left(\frac{\pi h}{m_{n}}\right), & \text{se } |h| \leq m_{n}; \\ 0, & \text{se } |h| > m_{n}, \end{cases}$$
(2.24)

baseada na função contínua de ponderação

$$W(x) = \begin{cases} 1 - 2a + 2a\cos(\pi x), & \text{se } |x| \leq 1; \\ 0, & \text{se } |x| > 1, \end{cases}$$
(2.25)

Novamente  $m_n$  é o ponto de truncamento para a função de autocorrelação amostral e a constante a é escolhida no intervalo  $0 < a \leq 0.25$ , por isso  $\mathcal{W}^T(\cdot) \geq 0$ . A Janela de Blackman- Tukey, com a = 0.25 é referenciada como Janela de Tukey-Hanning e com a = 0.23 é referenciada como Janela de Tukey-Hamming. Neste trabalho utilizamos a = 0.25.

Desta forma temos que a Janela Espectral de Tukey é dada por:

$$W_n^T(\omega) = \frac{a}{2\pi} \frac{\operatorname{sen}[(\omega - \frac{\pi}{m})(m + \frac{1}{2})]}{\operatorname{sen}[\frac{(\omega - \frac{\pi}{m})}{2}]} + \frac{(1 - 2a)}{2\pi} \frac{\operatorname{sen}[\omega(m + \frac{1}{2})]}{\operatorname{sen}(\frac{\omega}{2})} + \frac{a}{2\pi} \frac{\operatorname{sen}[(\omega + \frac{\pi}{m})(m + \frac{1}{2})]}{\operatorname{sen}[\frac{(\omega + \frac{\pi}{m})}{2}]}$$
(2.26)

Como resultado, o estimador espectral de Tukey pode ser também negativo em algumas frequências de  $\omega$ .

Na Figura 2.6, podemos visualizar a Janela de Suavização de Tukey-Hanning e sua correspondente Janela Espectral.

**Observação 3.** Neste trabalho não utilizamos a janela espectral de Tukey-Hanning dada a sua alta complexidade.

#### Janela de Parzen

A seguir definimos a janela de Parzen.



Figura 2.6: Janelas de Tukey de suavização e espectral. (a) Janela de Suavização Tukey  $\mathcal{W}^{T}(\cdot)$ , com  $m_{n} = 5$ . (b) Janela Espectral de Tukey  $W_{n}^{T}(\cdot)$ , com m = 5. Fonte: O Autor.

Definição 10. Parzen (1961) sugeriu a seguinte janela de suavização:

$$\mathcal{W}^{P}(h/m_{n}) = \begin{cases} 1 - 6\left(\frac{h}{m_{n}}\right)^{2} + 6\left(\frac{|h|}{m_{n}}\right)^{3}, & \text{se } |h| \leq \frac{m_{n}}{2}; \\ 2\left(1 - \frac{|h|}{m_{n}}\right)^{3}, & \text{se } \frac{m_{n}}{2} < |h| \leq m_{n}; \\ 0, & \text{se } |h| > m_{n}, \end{cases}$$
(2.27)

A janela espectral correspondente para um valor par de m é dado por:

$$W_n^P(\omega) = \frac{3}{8\pi m^3} \left[ \frac{\sin\left(\frac{\omega m}{4}\right)}{\frac{1}{2}\sin\left(\frac{\omega}{2}\right)} \right]^4 \left\{ 1 - \frac{2}{3} \left[ \sin\left(\frac{\omega}{2}\right) \right]^2 \right\}$$
(2.28)

Na Figura 2.7 temos a ilustração da Janela de suavização e espectral de Parzen.



Figura 2.7: Janelas de suavização e espectral de Parzen. (a) Janela de Suavização de Parzen  $\mathcal{W}^{P}(\cdot)$ , com  $m_{n} = 5$  (b) Janela Espectral de Parzen  $W_{n}^{P}(\cdot)$ , com m = 5. Fonte: O Autor.

#### Janela de Daniell

A seguir definimos a janela de Daniell.

Definição 11. Segundo Brockwell e Davis (2013), a janela espectral

$$W_n^D(\omega) = \begin{cases} \frac{m}{2\pi}, & \text{se } |\omega| \leq \frac{\pi}{m};\\ 0, & \text{caso contrário,} \end{cases}$$
(2.29)

é dita Janela Espectral de Daniell, também chamada de janela de pesos iguais. Essa segunda nomenclatura é devida à principal característica desta janela, uma vez que ela corresponde a uma transformação média móvel simples (pesos iguais) dos valores do periodograma.

Desta forma, cada estimativa da densidade espectral é a média dos  $\frac{m}{2}$  valores do periodograma anteriores e posteriores ao período a ser estimado.

A Janela de Suavização correspondente é dada por:

$$\mathcal{W}_n^D(h/m_n) = \int_{-\pi}^{\pi} W(\omega) e^{(ih\omega)} d\omega = \pi^{-1}(m_n/h) \operatorname{sen}(h\pi/m_n)$$



Figura 2.8: Janelas de Daniell de suavização e espectral. (a) Janela de Suavização Daniell  $\mathcal{W}^{D}(\cdot)$ , com  $m_{n} = 5$ . (b) Janela Espectral de Daniell  $W_{n}^{D}(\cdot)$ , com m = 5. Fonte: O Autor.

Na Figura 2.8 apresentamos a Janela de suavização de Daniell  $\mathcal{W}_n^T(\cdot)$  e a Janela Espectral de Daniell  $W_n^T(\cdot)$ . Podemos perceber que esta última, por apresentar valores positivos e negativos, pode resultar em valores negativos para a função periodograma suavizado de correlação. Por este motivo esta janela não foi utilizada no periodograma suavizado de correlação, nos procedimentos de estimação dos parâmetros dos processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ .

Maiores detalhes sobre as janelas de suavização e espectral podem ser encontrados em Wei (2006) e Brockwell e Davis (2013).

### 2.3 Estimação dos parâmetros

Em estudos de séries temporais, temos como objetivos a estimação de parâmetros dos processos que são aplicados para ajuste dos dados e a previsão de valores futuros. Nas próximas seções, introduziremos o estimador de Kokoszka e Taqqu (1999), que será denotado por KT, como um estimador para o vetor de parâmetros dos processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ . Este estimador foi proposto inicialemnte para os processos ARFIMA (p, d, q), com inovações  $\alpha$ -estáveis. O processo ARFIMA (p, d, q) é um caso particular do processo k-Factor GARMA  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$ .

#### 2.3.1 Estimador Kokoszka e Taqqu

Nesta seção vamos estender o estimador proposto por Kokoszka e Taqqu (1999), proposto para os processos ARFIMA (p, d, q) com inovações  $\alpha$ -estáveis, com 1 <  $\alpha$  < 2, para os processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ . Estes processos são utilizados para estudar a classe de séries temporais com a característica de longa dependência e variância infinita.

#### 1) Estimador KT

Este estimador é baseado no estimador de Whittle (1951) utilizando o periodograma normalizado dado na Definição 5. Considere os processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$ –  $S\alpha S$  (ver Definição 3). Seja  $\sigma_n^2(\boldsymbol{\eta})$  função de  $\boldsymbol{\eta} = \{\boldsymbol{\phi}, \boldsymbol{u}, \boldsymbol{\lambda}, \boldsymbol{\theta}\}, \text{ com } \boldsymbol{\phi} = \{\phi_1, \cdots, \phi_p\},$  $\boldsymbol{u} = \{u_1, \cdots, u_k\}, \boldsymbol{\lambda} = \{\lambda_1, \cdots, \lambda_k\} \in \boldsymbol{\theta} = \{\theta_1, \cdots, \theta_q\}, \text{ dada por}$ 

$$\sigma_n^2(\boldsymbol{\eta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\tilde{I}_n(\omega)}{f_X(\omega, \boldsymbol{\eta})} d\omega, \qquad (2.30)$$

onde  $\tilde{I}_n(\omega)$  é o periodograma normalizado (ver Definição 5) e  $f_x(\omega, \eta)$  é a função poder de transferência (ver equação (2.13)).

O valor de  $\boldsymbol{\eta}$ , denotado por  $\hat{\boldsymbol{\eta}}$ , que minimiza  $\sigma_n^2(\boldsymbol{\eta})$  é o estimador para o verdadeiro valor de  $\boldsymbol{\eta}$ .

Na prática, utilizarmos a soma nas frequências de Fourier, ao invés da integral, assim minimizamos a seguinte função com relação a $\eta$ 

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_t \frac{\widetilde{I}_n(\omega_t)}{f_x(\omega_t, \boldsymbol{\eta})}$$
(2.31)

em que  $\omega_t = \frac{2\pi t}{n}$  são as frequências de Fourier,  $t \in \mathbb{Z}, -\lfloor \frac{n}{2} \rfloor < t \leq \lfloor \frac{n}{2} \rfloor$  ( $\lfloor x \rfloor$  é a parte inteira de x).

#### 2) Estimador KTPS

Nesta seção propomos o estimador denotado por KTPS. Este estimador é baseado no periodograma normalizado suavizado proposto por Klüppelberg e Mikosch (1994) em vez da função periodograma normalizado no estimador KT. Esta alteração decorre do fato de que a função periodograma normalizado não é um estimador consistente para a função poder de transferência. (Ver Teorema 2.1 de Klüppelberg e Mikosch, 1994).

O estimador KTPS é obtido substituindo-se a função periodograma normalizado pela função periodograma normalizado suavizado, dado pela expressão (2.16), na equação (2.31). Assim, o estimador de  $\boldsymbol{\eta}$ , denotado por  $\hat{\boldsymbol{\eta}}$ , é o valor que minimiza  $\sigma_T^2(\boldsymbol{\eta})$ , dada por

$$\widehat{\sigma}_T^2 = \frac{1}{n} \sum_t \frac{T_n(\omega_t)}{f_x(\omega_t, \boldsymbol{\eta})}$$
(2.32)

onde  $f_x(\omega, \boldsymbol{\eta})$  é a função poder de transferência (ver equação (2.13)),  $\omega_t = \frac{2\pi t}{n}$  são as frequências de Fourier,  $t \in \mathbb{Z}, -\lfloor \frac{n}{2} \rfloor < t \leq \lfloor \frac{n}{2} \rfloor$  ( $\lfloor x \rfloor$  é a parte inteira de x).

Para este estimador, utilizaremos as janelas de Bartlett (ver Definição 8), Daniell (ver Definição 11) e Tukey (ver Definição 9) como métodos de suavização nas simulações de Monte Carlo.

#### 3) Estimador KTPSC

Nesta seção propomos o estimador denotado por KTPSC. Este estimador é baseado na função periodograma suavizado de correlações proposto por Stein (2012) (ver Definição 7) em vez da função periodograma normalizado no estimador KT, pois esta função periodograma é um estimador consistente para a função poder de transferência (ver Teorema 2.8 de Stein, 2012).

O estimador KTPSC é obtido substituindo-se a função periodograma normalizado pela função periodograma normalizado suavizado de correlações, dado pela expressão (2.20), na equação (2.31). Assim, o estimador de  $\eta$ , denotado por  $\hat{\eta}$ , é o valor que minimiza  $\sigma_K^2(\eta)$ , dada por

$$\hat{\sigma}_K^2 = \frac{1}{n} \sum_t \frac{K_n(\omega_t)}{f_x(\omega_t, \boldsymbol{\eta})}$$
(2.33)

onde  $f_x(\omega, \boldsymbol{\eta})$  é a função poder de transferência (ver equação (2.13)),  $\omega_t = \frac{2\pi t}{n}$  são as frequências de Fourier,  $t \in \mathbb{Z}, -\lfloor \frac{n}{2} \rfloor < t \leq \lfloor \frac{n}{2} \rfloor$  ( $\lfloor x \rfloor$  é a parte inteira de x).

Este estimador terá as janelas de Bartlett (ver Definição 8), Parzen (ver Definição 10) e Tukey (ver Definição 9) como métodos de suavização nas simulações de Monte Carlo.

#### 2.3.2 Estimador de Whittle via Metropolis-Hastings

Nesta seção estendemos o estimador proposto por Ndongo et al. (2010), para os processos ARFISMA  $(0, d, 0) \times (0, D, 0)_s - S\alpha S$  ou SARFIMA  $(0, d, 0) \times (0, D, 0)_s - S\alpha S$ , para os processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  (ver Definição 3). Cabe lembrar que os processos SARFIMA  $(0, d, 0) \times (0, D, 0)_s$  são um caso particular dos processos k-Factor GARMA  $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q)$ . Este estimador consiste em estimar os parâmetros dos modelos utilizando o algoritmo de Metropolis-Hastings. Denotares este estimador por MCMC.

#### 1) Estimador MCMC

Este estimador é baseado no estimador de Whittle (1951) calculado sob frequências que são obtidas utilizando o algoritmo de Metropolis-Hastings e o periodograma normalizado dado na Definição 5.

Considere os processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  (ver Definição 3). Seja  $\sigma_n^2(\boldsymbol{\eta})$  função de  $\boldsymbol{\eta} = \{\boldsymbol{\phi}, \boldsymbol{u}, \boldsymbol{\lambda}, \boldsymbol{\theta}\},$  com  $\boldsymbol{\phi} = \{\phi_1, \cdots, \phi_p\},$   $\boldsymbol{u} = \{u_1, \cdots, u_k\},$  $\boldsymbol{\lambda} = \{\lambda_1, \cdots, \lambda_k\} \in \boldsymbol{\theta} = \{\theta_1, \cdots, \theta_q\},$  dada por

$$\sigma_n^2(\boldsymbol{\eta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{I_n(\omega)}{f_x(\omega, \boldsymbol{\eta})} d\omega.$$
(2.34)

Seja C uma constante tal que  $C = \int_{-\pi}^{\pi} \tilde{I}_n(\omega) d\omega$ . Assim, a equação (2.34) pode ser reescrita como

$$\sigma_n^2(\boldsymbol{\eta}) = C \int_{-\pi}^{\pi} \frac{f(\omega)}{f_X(\omega, \boldsymbol{\eta})} d\omega = C \mathbb{E}\left(\frac{1}{f_X(\omega, \boldsymbol{\eta})}\right),$$
(2.35)

onde  $f(\omega) = \frac{1}{C}\tilde{I}_n(\omega)$  é a função densidade em  $[-\pi, \pi]$ . O valor esperado em (2.35) pode ser aproximado pela média empírica

$$\overline{\sigma}_n^2(\boldsymbol{\eta}) = \frac{1}{N} \sum_{j=1}^N \frac{1}{f_x(\omega_j, \boldsymbol{\eta})},\tag{2.36}$$

onde N é suficientemente grande para satisfazer a lei dos grandes números. Abaixo, o algoritmo de Metropolis-Hastings para gerar a amostra  $(\omega_1, \dots, \omega_N)$ 

- i) Gerar  $\omega$ , para  $k \in \{1, \dots, N\};$
- ii) Gerar  $Y_k$  de uma distribuição uniforme no intervalo  $[-\pi, \pi]$  e denote o valor obtido por  $y_k$ , para  $k \in \{1, \dots, N\}$ ;
- iii) Tome

onde  $p(\omega_k, y_k) = \min\left\{\frac{f(y_k)}{f(\omega_k)}, 1\right\} = \min\left\{\frac{\tilde{I}_n(y_k)}{\tilde{I}_n(\omega_k)}, 1\right\}$ . Então, o estimador para  $\boldsymbol{\eta}$ , denotado por MCMC, é o valor  $\hat{\boldsymbol{\eta}}$  o qual minimiza 2.36 com respeito a  $\boldsymbol{\eta}$ . Maiores detalhes sobre o algoritmo de Metropolis-Hastings ver Gilks et al. (1998).

#### 2) Estimador MCMCPS

Nesta seção propomos o estimador denotado por MCMCPS. Este estimador é obtido substituindo-se a função periodograma normalizado pela função periodograma normalizado suavizado, dado pela expressão (2.16) na equação (2.34), pois a função periodograma normalizado suavizado é um um estimador consistente para a função poder de transferência (Ver Teorema 2.1 de Klüppelberg e Mikosch, 1994). Assim, o estimador de  $\boldsymbol{\eta}$ , denotado por  $\hat{\boldsymbol{\eta}}$ , é o valor que minimiza  $\sigma_T^2(\boldsymbol{\eta})$ , dada por:

$$\widehat{\sigma}_T^2(\boldsymbol{\eta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\widetilde{T}_n(\omega)}{f_X(\omega, \boldsymbol{\eta})} d\omega.$$
(2.37)

onde  $f_{X}(\cdot, \boldsymbol{\eta})$  é a função poder de transferência (ver equação (2.13)).

Este estimador terá as janelas de Bartlett (ver Definição 8), Parzen (ver Definição 10) e Tukey (ver Definição 9) como métodos de suavização nas simulações de Monte Carlo.

#### 2) Estimador MCMCPSC

Nesta seção propomos o estimador denotado por MCMCPSC. A proposta deste estimador é substituir a função periodograma normalizado pela função periodograma
suavizado de correlações, dado pela expressão (2.20), na equação (2.34). Isso decorre do fato da função periodograma suavizado de correlações ser um estimador consistente para a função poder de transferência (ver Teorema 2.8 de Stein, 2012). Assim, o estimador de  $\boldsymbol{\eta}$ , denotado por  $\hat{\boldsymbol{\eta}}$ , é o valor que minimiza  $\sigma_K^2(\boldsymbol{\eta})$ , dada por:

$$\widehat{\sigma}_{K}^{2}(\boldsymbol{\eta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\widetilde{K}_{n}(\omega)}{f_{X}(\omega, \boldsymbol{\eta})} d\omega.$$
(2.38)

onde  $f_x(\cdot, \boldsymbol{\eta})$  é a função poder de transferência (ver equação (2.13)). O procedimento de cálculo das frequências e de minimização permanece o mesmo que do estimador MCMC.

Este estimador terá as janelas de Bartlett (ver Definição 8), Parzen (ver Definição 10) e Tukey (ver Definição 9) como métodos de suavização nas simulações de Monte Carlo.

## 3 Simulações de Monte Carlo

Neste capítulo apresentamos as simulações de Monte Carlo envolvendo os processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  (ver Definição 3). As simulações envolvem gerar séries temporais com a característica de longa dependência e variância infinita e estimação dos parametros dos modelos a serem ajustados a estas séries. Para gerarmos realizações dos processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  utilizamos a representação média móvel infinita (ver expressão (2.11)) com apropriado ponto de truncamento. Por ser um processo complexo, este ponto de truncamento da expressão em (2.11) deve ser muito grande. Gray et al. (1989) utilizam a representação média móvel infinita dos processos Gegenbauer (quando k = 1 e p = 0 = q) para gerar realizações dos mesmos, truncando a representação em 290000 valores. Esta forma de gerar as realizações de um processo estocástico consome muito tempo computacional e a precisão depende de quanto rápido os coeficientes da representação média móvel infinita convergem à zero. Neste trabalho truncamos a representação média móvel infinita em 5000.

A seguir, descrevemos o procedimento utilizado para gerar as realizações de um processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ .

- Geramos 5000 coeficientes da representação média móvel infinita, dada pela equação (2.11).
- 2. Geramos um processo ruído branco com distribuição  $\alpha$ -estável, dada pela Definição 4, com  $\alpha = \{1.3, 1.5, 1.7, 1.9\}$  e parâmetro de escala  $\sigma = 1$ ;
- **3.** Geramos, para cada  $t \in \{1, \dots, n\}$ , os valores  $X_t$  calculando a convolução entre os coeficientes da representação média móvel infinita e o processo ruído branco.

A seguir, apresentamos os resultados da estimação dos parâmetros dos processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  gerados a partir do procedimento mencionado anteriormente. Os parâmetros foram estimados utilizando os estimadores propostos na seção 2.3. Para a função periodograma suavizado, usamos  $m \in \{1, 2, 3, 4\}$ , e as janelas espectrais de Bartlett, Daniell e Parzen. Para a função periodograma suavizado de correlação usamos  $m_n = n^{\beta}$ , com  $\beta \in \{0.8, 0.85, 0.9, 0.95\}$ , e as janelas de suavização de Bartlett, Parzen e Tukey-Hanning.

Por questão de espaço, estamos incluindo somente as Tabelas 3.1 a ?? nesta seção. Estas tabelas contemplam os resultados de simulação de Monte Carlo para n = 1000e re = 1000 replicações, a partir das quais calculamos a média, o vício, o erro quadrático médio e a variância. Foram geradas séries temporais, para os seguintes valores dos parâmetros  $k = 1, p = 0, q = 0, u = 0.2, \lambda = 0.4$  e  $\alpha = \{1.3, 1.5, 1.7, 1.9\}$ . As Tabelas 3.1 a 3.9 apresentam os resultados das simulações de Monte Carlo para os estimadores KT, KTPS e KTPSC, propostos na Seção 2.3.

A Tabela 3.1 apresenta os resultados obtidos para o estimador KT. É possível verificar que os melhores valores estimados para  $\hat{u}$  são encontrados quando  $\alpha$  tem valores maiores ( $\alpha = 1.7$  e  $\alpha = 1.9$ ). Já para  $\hat{\lambda}$ , o melhor valor encontrado foi ao utilizarmos  $\alpha = 1.5$ . De forma geral, os valores de vício, erro quadrático médio e variância estão baixos, um indicativo do bom desempenho do estimador.

Na Tabela 3.2, temos os resultados das simulações de Monte Carlo para o estimador KTPS quando utilizamos m = 1. Analisando os resultados obtidos em cada janela espectral, para a Janela de Bartlett, as melhores estimativas de  $\hat{u} \in \hat{\lambda}$  foram obtidas quando temos  $\alpha = 1.7$ . Utilizando a Janela de Daniell, os melhores valores de  $\hat{u}$  foram obtidos para  $\alpha = 1.3$  e  $\alpha = 1.9$ , e a melhor estimativa para  $\hat{\lambda}$  foi obtida quando  $\alpha = 1.7$ . Já ao utilizar a Janela de Parzen, a melhor estimativa de  $\hat{u}$  foi obtida com  $\alpha = 1.3$  e o melhor valor de  $\hat{\lambda}$  foi obtido quando  $\alpha = 1.7$ .

De forma geral, o estimador apresentou boas estimativas para os parâmetros, sendo que u foi melhor estimado, neste caso, ao utilizar a Janela de Bartlett com  $\alpha = 1.7$  e para  $\lambda$  ao utilizar as Janelas de Daniell e Parzen, uma vez que estes obtiveram uma estimativa mais próxima, com valores de vício, erro quadrático médio e variância baixos.

A Tabela 3.3 apresenta os resultados obtidos para o estimador KTPS quando m = 2. Novamente para a Janela de Bartlett, as melhores estimativas de  $\hat{u} \in \hat{\lambda}$  foram obtidas quando temos  $\alpha = 1.7$ . Para a Janela de Daniell, o melhor valor de  $\hat{u}$  é obtido quando  $\alpha = 1.5$ , e a melhor estimativa de  $\hat{\lambda}$  é obtida quando  $\alpha = 1.9$ . Quando o janelamento é feito através da Janela de Parzen, as melhores estimativas de  $\hat{u}$  é obtido quando  $\alpha = 1.7$  e  $\alpha = 1.9$ , enquanto o melhor valor de  $\hat{\lambda}$  é obtido quando  $\alpha = 1.7$  e  $\alpha = 1.9$ , enquanto o melhor valor de  $\hat{\lambda}$  é obtido quando  $\alpha = 1.9$ .

Para os valores de  $\hat{u}$ , o estimador KTPS com m = 2 apresentou valores muito próximos em todos os casos. No entanto, para os valores de  $\hat{\lambda}$ , podemos verificar que as estimativas melhoram à medida que aumentamos o valor de  $\alpha$  nas Janelas de Daniell e Parzen, ou seja, à medida que a distribuição das inovações se aproxima da distribuição gaussiana. Isso se torna mais visível ao verificarmos a Tabela 3.4, uma vez que todas as estimativas, com exceção do melhor valor de  $\hat{u}$  para a Janela de Bartlett, são obtidos quando  $\alpha = 1.9$ .

Na Tabela 3.5 temos os resultados das simulações de Monte Carlo para o estimador KTPS quando utilizamos m = 4. Novamente, com exceção de uma das estimativas de  $\hat{u}$  - desta vez pela Janela de Daniell - todas as outras melhores estimativas para  $\hat{u} \in \hat{\lambda}$  são obtidas quando  $\alpha = 1.9$  para todas as janelas.

Desta maneira, podemos inferir que, à medida que aumentamos o valor de m, este estimador funciona melhor com valores de  $\alpha$  que aproximam a distribuição das inovações à distribuição gaussiana. De forma geral, as estimativas de  $\hat{u}$  são bastante próximas em todos os casos, enquanto as de  $\hat{\lambda}$  são melhoradas com o aumento no valor de  $\alpha$ .

As Tabelas 3.6 a 3.9 apresentam os resultados obtidos através do estimador KTPSC para  $m_n = n^{\beta}$ , sendo n = 1000 e  $\beta \in \{0.8, 0.85, 0.9, 0.95\}$ . Através da tabela 3.6 podemos verificar que, para a Janela de Bartlett, as melhores estimativas de  $\hat{u}$  foram obtidas quando  $\alpha = 1.5$ , no qual o verdadeiro valor foi subestimado, e quando  $\alpha = 1.9$ , no qual o verdadeiro valor foi superestimado, porém, em ambos o valor do vício é igual em módulo. Para a estimativa de  $\hat{\lambda}$ , em todas as janelas os melhores valores foram estimados quando  $\alpha = 1.9$ . A estimativa de  $\hat{u}$  para a Janela de Parzen foi melhor quando  $\alpha = 1.5$  e para a Janela de Tukey, quando  $\alpha = 1.7$ . De maneira geral, as estimativas de  $\hat{u}$  são bem próximas em todos os casos, e as de  $\hat{\lambda}$  melhoram com a aproximação da distribuição gaussiana nas inovações do processo.

Na Tabela 3.7, é possível verificar que as estimativas de  $\hat{u}$  foram iguais para  $\alpha = 1.3$ ,  $\alpha = 1.7$  e  $\alpha = 1.9$ , e o melhor valor de  $\hat{\lambda}$  foi obtido quando  $\alpha = 1.9$  quando utilizamos a Janela de Bartlett. Para a Janela de Parzen, a melhor estimativa de  $\hat{u}$  foi obtida quando  $\alpha = 1.3$  e para  $\hat{\lambda}$  quando  $\alpha = 1.9$ . Por fim, para a Janela de Tukey, os melhores valores de  $\hat{u}$  foram obtidos quando  $\alpha = 1.3$  e  $\alpha = 1.9$  e a melhor estimativa de  $\hat{\lambda}$  foi encontrada quando  $\alpha = 1.9$ . Na maioria dos casos, as estimativas foram próximas para os valores de  $\hat{u}$  e melhoraram para  $\hat{\lambda}$  à medida que o  $\alpha$  aumentou.

Através da Tabela 3.8, é possível verificar que as estimativas para  $\hat{u}$  na Janela de Bartlett são iguais para todos os valores de  $\alpha$  e a melhor estimativa de  $\hat{\lambda}$  foi obtida quando  $\alpha = 1.9$ . Para a Janela de Parzen, a estimativa de  $\hat{u}$  foi igual para os valores de  $\alpha = 1.3$ ,  $\alpha = 1.7$  e  $\alpha = 1.9$ , e o melhor valor de  $\hat{\lambda}$  foi encontrado com  $\alpha = 1.9$ . Já para a Janela de Tukey, a melhor estimativa de  $\hat{u}$  foi obtida com  $\alpha = 1.5$  e a melhor estimativa de  $\hat{\lambda}$  foi obtida com  $\alpha = 1.9$ .

Por fim, a Tabela 3.9 apresenta as estimativas obtidas através do estimador KTPSC com  $\beta = 0.95$ . A estimativa de  $\hat{u}$  na Janela de Bartlett para  $\alpha = 1.7$ , e o melhor valor de  $\hat{\lambda}$  foi encontrado quando  $\alpha = 1.9$  - o mesmo ocorreu nas demais janelas ao estimar  $\hat{\lambda}$ . Na Janela de Parzen, os melhores valores de  $\hat{u}$  foram obtidos quando  $\alpha = 1.3$  - onde o valor do parâmetro foi subestimado - e quando  $\alpha = 1.7$  - onde o valor do parâmetro foi superestimado - no entanto, o valor do vício é igual em módulo. Para a Janela de Tukey, a melhor estimativa para  $\hat{u}$  foi obtido quando  $\alpha = 1.3$ .

De maneira geral, podemos verificar que as estimativas são todas bastante próximas quando se tratando do parâmetro u e que melhoram à medida que aumentamos tanto o valor de  $\beta$  quanto o valor de  $\alpha$  para toas as janelas de suavização, consequentemente o vício, erro quadrático médio e variância diminuem.

Tabela 3.1: Resultado da estimação com o estimador KT para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}.$ 

|       | $\alpha =$     | 1.3                 | $\alpha = 1.5$ |                     |  |
|-------|----------------|---------------------|----------------|---------------------|--|
|       | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$  | $\widehat{\lambda}$ |  |
| Média | 0,1998         | 0,4046              | 0,1996         | 0,4004              |  |
| Vício | -0,0002 0,0046 |                     | -0,0004        | 0,0004              |  |
| EQM   | 0,0000 0,0010  |                     | 0,0000         | 0,0009              |  |
| Var   | 0,0000         | 0,0010              | 0,0000         | 0,0009              |  |
|       | $\alpha =$     | 1.7                 | $\alpha = 1.9$ |                     |  |
| Média | 0,1999         | 0,3955              | 0,1999         | 0,3960              |  |
| Vício | -0,0001        | -0,0045             | -0,0001        | -0,0040             |  |
| EQM   | 0,0000         | 0,0008              | 0,0000         | 0,0007              |  |
| Var   | 0,0000         | 0,0007              | 0,0000         | 0,0007              |  |
| -     | F              | onte: Auto          | or.            |                     |  |

Tabela 3.2: Resultado da estimação com o estimador KTPS para o processok-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 1$ , para as janelas espectrais de Bartlett, Daniell e Parzen.

|       | $\alpha = 1.3$ |                     |               |                 |               |                     |  |
|-------|----------------|---------------------|---------------|-----------------|---------------|---------------------|--|
|       | Bar            | tlett               | Dai           | niell           | Par           | zen                 |  |
|       | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\hat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |
| Média | 0,1997         | 0,4116              | 0,1999        | 0,4311          | 0,1999        | 0,4126              |  |
| Vício | -0,0003        | 0,0116              | -0,0001       | 0,0311          | -0,0001       | 0,0126              |  |
| EQM   | 0,0000         | 0,0013              | 0,0000        | 0,0023          | 0,0000        | 0,0015              |  |
| Var   | 0,0000         | 0,0012              | 0,0000        | 0,0014          | 0,0000        | 0,0013              |  |
|       |                |                     | $\alpha =$    | 1.5             |               |                     |  |
| Média | 0,1997         | 0,4040              | 0,1997        | 0,3996          | 0,1998        | 0,4028              |  |
| Vício | -0,0003        | 0,0040              | -0,0003       | -0,0004         | -0,0002       | 0,0028              |  |
| EQM   | 0,0000         | 0,0010              | 0,0000        | 0,0007          | 0,0000        | 0,0007              |  |
| Var   | 0,0000         | 0,0009              | 0,0000        | 0,0007          | 0,0000        | 0,0007              |  |
|       |                |                     | $\alpha =$    | : 1.7           |               |                     |  |
| Média | 0,2000         | 0,3983              | 0,1998        | 0,4005          | 0,1998        | 0,4005              |  |
| Vício | 0,0000         | -0,0017             | -0,0002       | 0,0005          | -0,0002       | 0,0005              |  |
| EQM   | 0,0000         | 0,0009              | 0,0000        | 0,0007          | 0,0000        | 0,0007              |  |
| Var   | 0,0000         | 0,0008              | 0,0000        | 0,0007          | 0,0000        | 0,0007              |  |
|       |                |                     | $\alpha =$    | 1.9             |               |                     |  |
| Média | 0,1996         | 0,3979              | 0,1999        | 0,4013          | 0,2002        | 0,3978              |  |
| Vício | -0,0004        | -0,0021             | -0,0001       | 0,0013          | 0,0002        | -0,0022             |  |
| EQM   | 0,0000         | 0,0007              | 0,0000        | 0,0007          | 0,0000        | 0,0007              |  |
| Var   | 0,0000         | 0,0007              | 0,0000        | 0,0007          | 0,0000        | 0,0007              |  |
|       |                | т                   |               |                 |               |                     |  |

Tabela 3.3: Resultado da estimação com o estimador KTPS para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 2$ , para as janelas espectrais de Bartlett, Daniell e Parzen.

| $\alpha = 1.3$ |               |                     |               |                 |               |                     |  |
|----------------|---------------|---------------------|---------------|-----------------|---------------|---------------------|--|
|                | Bar           | tlett               | Dar           | niell           | Parzen        |                     |  |
|                | $\widehat{u}$ | $\widehat{\lambda}$ | $\widehat{u}$ | $\hat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |
| Média          | 0,1997        | 0,4116              | 0,1996        | 0,4163          | 0,1998        | 0,4155              |  |
| Vício          | -0,0003       | 0,0116              | -0,0004       | 0,0163          | -0,0002       | 0,0155              |  |
| EQM            | 0,0000        | 0,0013              | 0,0000        | 0,0014          | 0,0000        | 0,0015              |  |
| Var            | 0,0000        | 0,0011              | 0,0000        | 0,0012          | 0,0000        | 0,0012              |  |
|                |               |                     | $\alpha =$    | 1.5             |               | -                   |  |
| Média          | 0,1998        | 0,4058              | 0,1999        | 0,4059          | 0,1998        | 0,4063              |  |
| Vício          | -0,0002       | 0,0058              | -0,0001       | 0,0059          | -0,0002       | 0,0063              |  |
| EQM            | 0,0000        | 0,0009              | 0,0000        | 0,0007          | 0,0000        | 0,0007              |  |
| Var            | 0,0000        | 0,0009              | 0,0000        | 0,0007          | 0,0000        | 0,0007              |  |
|                |               |                     | $\alpha =$    | 1.7             |               |                     |  |
| Média          | 0,2000        | 0,4010              | 0,1996        | 0,3980          | 0,1999        | 0,4035              |  |
| Vício          | 0,0000        | 0,0010              | -0,0004       | -0,0020         | -0,0001       | 0,0035              |  |
| EQM            | 0,0000        | 0,0008              | 0,0000        | 0,0008          | 0,0000        | 0,0008              |  |
| Var            | 0,0000        | 0,0008              | 0,0000        | 0,0008          | 0,0000        | 0,0008              |  |
|                |               |                     | $\alpha =$    | 1.9             |               |                     |  |
| Média          | 0,1997        | 0,3969              | 0,1998        | 0,4005          | 0,1999        | 0,3993              |  |
| Vício          | -0,0003       | -0,0031             | -0,0002       | 0,0005          | -0,0001       | -0,0007             |  |
| EQM            | 0,0000        | 0,0006              | 0,0000        | 0,0007          | 0,0000        | 0,0007              |  |
| Var            | 0,0000        | 0,0006              | 0,0000        | 0,0007          | 0,0000        | 0,0007              |  |

Tabela 3.4: Resultado da estimação com o estimador KTPS para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 3$  para as janelas espectrais de Bartlett, Daniell e Parzen.

| $\alpha = 1.3$ |                |                     |               |                     |               |                     |  |
|----------------|----------------|---------------------|---------------|---------------------|---------------|---------------------|--|
|                | Bar            | tlett               | Dar           | niell               | Par           | zen                 |  |
|                | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |
| Média          | 0,1998         | 0,4188              | 0,1998        | 0,4184              | 0,1997        | 0,4144              |  |
| Vício          | -0,0002        | 0,0188              | -0,0002       | 0,0184              | -0,0003       | 0,0144              |  |
| EQM            | 0,0000         | 0,0017              | 0,0000        | 0,0015              | 0,0000        | 0,0019              |  |
| Var            | 0,0000         | 0,0013              | 0,0000        | 0,0012              | 0,0000        | 0,0017              |  |
|                |                |                     | $\alpha =$    | 1.5                 |               |                     |  |
| Média          | 0,1998         | 0,4102              | 0,1998        | 0,4096              | 0,1997        | 0,4048              |  |
| Vício          | -0,0002        | 0,0102              | -0,0002       | 0,0096              | -0,0003       | 0,0048              |  |
| EQM            | 0,0000         | 0,0012              | 0,0000        | 0,0009              | 0,0000        | 0,0008              |  |
| Var            | 0,0000         | 0,0011              | 0,0000        | 0,0008              | 0,0000        | 0,0007              |  |
|                |                |                     | $\alpha =$    | 1.7                 |               |                     |  |
| Média          | 0,2000         | 0,4047              | 0,1996        | 0,4063              | 0,1999        | 0,4040              |  |
| Vício          | 0,0000         | 0,0047              | -0,0004       | 0,0063              | -0,0001       | 0,0040              |  |
| EQM            | 0,0000         | 0,0007              | 0,0000        | 0,0008              | 0,0000        | 0,0007              |  |
| Var            | 0,0000         | 0,0007              | 0,0000        | 0,0008              | 0,0000        | 0,0007              |  |
|                | $\alpha = 1.9$ |                     |               |                     |               |                     |  |
| Média          | 0,1998         | 0,3988              | 0,2000        | 0,4034              | 0,2000        | 0,3991              |  |
| Vício          | -0,0002        | -0,0012             | 0,0000        | 0,0034              | 0,0000        | -0,0009             |  |
| EQM            | 0,0000         | 0,0006              | 0,0000        | 0,0007              | 0,0000        | 0,0007              |  |
| Var            | 0,0000         | 0,0006              | 0,0000        | 0,0007              | 0,0000        | 0,0007              |  |
|                |                | F                   | Fonte: Auto   | er.                 |               |                     |  |

Tabela 3.5: Resultado da estimação com o estimador KTPS para o processo k-Factor GARMA( $p, u, \lambda, q$ ) –  $S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 4$  para as janelas espectrais de Bartlett, Daniell e Parzen.

|       | $\alpha = 1.3$ |                     |               |                     |               |                     |  |  |
|-------|----------------|---------------------|---------------|---------------------|---------------|---------------------|--|--|
|       | Bar            | tlett               | Dai           | niell               | Parzen        |                     |  |  |
|       | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |  |
| Média | 0,1998         | 0,4158              | 0,1998        | 0,4218              | 0,1999        | 0,4150              |  |  |
| Vício | -0,0002        | 0,0158              | -0,0002       | 0,0218              | -0,0001       | 0,0150              |  |  |
| EQM   | 0,0000         | 0,0016              | 0,0000        | 0,0017              | 0,0000        | 0,0013              |  |  |
| Var   | 0,0000         | 0,0014              | 0,0000        | 0,0012              | 0,0000        | 0,0011              |  |  |
|       |                |                     | $\alpha =$    | 1.5                 |               |                     |  |  |
| Média | 0,1999         | 0,4094              | 0,1999        | 0,4144              | 0,1999        | 0,4038              |  |  |
| Vício | -0,0001        | 0,0094              | -0,0001       | 0,0144              | -0,0001       | 0,0038              |  |  |
| EQM   | 0,0000         | 0,0012              | 0,0000        | 0,0010              | 0,0000        | 0,0007              |  |  |
| Var   | 0,0000         | 0,0011              | 0,0000        | 0,0008              | 0,0000        | 0,0007              |  |  |
|       |                |                     | $\alpha =$    | 1.7                 |               |                     |  |  |
| Média | 0,1999         | 0,4018              | 0,1999        | 0,4117              | 0,1999        | 0,4028              |  |  |
| Vício | -0,0001        | 0,0018              | -0,0001       | 0,0117              | -0,0001       | 0,0028              |  |  |
| EQM   | 0,0000         | 0,0008              | 0,0000        | 0,0010              | 0,0000        | 0,0007              |  |  |
| Var   | 0,0000         | 0,0008              | 0,0000        | 0,0009              | 0,0000        | 0,0007              |  |  |
|       |                |                     | $\alpha =$    | 1.9                 |               |                     |  |  |
| Média | 0,2000         | 0,3982              | 0,1998        | 0,4062              | 0,2000        | 0,3993              |  |  |
| Vício | 0,0000         | -0,0018             | -0,0002       | 0,0062              | 0,0000        | -0,0007             |  |  |
| EQM   | 0,0000         | 0,0007              | 0,0000        | 0,0008              | 0,0000        | 0,0007              |  |  |
| Var   | 0,0000         | 0,0007              | 0,0000        | 0,0007              | 0,0000        | 0,0007              |  |  |

Tabela 3.6: Resultado da estimação com o estimador KTPSC para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo n = 1000 e  $\beta = 0.8$  para as janelas de suavização de Bartlett, Parzen e Tukey.

|       | $\alpha = 1.3$ |                     |                |                     |               |                     |  |  |
|-------|----------------|---------------------|----------------|---------------------|---------------|---------------------|--|--|
|       | Bar            | tlett               | Par            | zen Tukey           |               | key                 |  |  |
|       | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |  |
| Média | 0,1995         | 0,4348              | 0,1998         | 0,4366              | 0,1998        | 0,4235              |  |  |
| Vício | -0,0005        | 0,0348              | -0,0002        | 0,0366              | -0,0002       | 0,0235              |  |  |
| EQM   | 0,0000         | 0,0025              | 0,0000         | 0,0028              | 0,0000        | 0,0018              |  |  |
| Var   | 0,0000         | 0,0013              | 0,0000         | 0,0014              | 0,0000        | 0,0012              |  |  |
|       | •              | •                   | $\alpha = 1.5$ |                     |               | •                   |  |  |
| Média | 0,1999         | 0,4278              | 0,2000         | 0,4194              | 0,2002        | 0,4181              |  |  |
| Vício | -0,0001        | 0,0278              | 0,0000         | 0,0194              | 0,0002        | 0,0181              |  |  |
| EQM   | 0,0000         | 0,0019              | 0,0000         | 0,0011              | 0,0000        | 0,0014              |  |  |
| Var   | 0,0000         | 0,0011              | 0,0000         | 0,0007              | 0,0000        | 0,0011              |  |  |
|       |                |                     | $\alpha = 1.7$ |                     |               |                     |  |  |
| Média | 0,1998         | 0,4257              | 0,2002         | 0,4154              | 0,2000        | 0,4132              |  |  |
| Vício | -0,0002        | 0,0257              | 0,0002         | 0,0154              | 0,0000        | 0,0132              |  |  |
| EQM   | 0,0000         | 0,0017              | 0,0000         | 0,0010              | 0,0000        | 0,0010              |  |  |
| Var   | 0,0000         | 0,0010              | 0,0000         | 0,0008              | 0,0000        | 0,0008              |  |  |
|       | $\alpha = 1.9$ |                     |                |                     |               |                     |  |  |
| Média | 0,2001         | 0,4219              | 0,1998         | 0,4139              | 0,1998        | 0,4084              |  |  |
| Vício | 0,0001         | 0,0219              | -0,0002        | 0,0139              | -0,0002       | 0,0084              |  |  |
| EQM   | 0,0000         | 0,0015              | 0,0000         | 0,0009              | 0,0000        | 0,0008              |  |  |
| Var   | 0,0000         | 0,0010              | 0,0000         | 0,0007              | 0,0000        | 0,0007              |  |  |
|       |                | ]                   | Fonte: Auto    | or.                 |               |                     |  |  |

Tabela 3.7: Resultado da estimação com o estimador KTPSC para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo n = 1000 e  $\beta = 0.85$  para as janelas de suavização de Bartlett, Parzen e Tukey.

|       | $\alpha = 1.3$ |                     |                |                     |               |                     |  |  |
|-------|----------------|---------------------|----------------|---------------------|---------------|---------------------|--|--|
|       | Bar            | tlett               | Par            | zen                 | Tu            | key                 |  |  |
|       | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |  |
| Média | 0,1999         | 0,4319              | 0,2001         | 0,4190              | 0,1999        | 0,4216              |  |  |
| Vício | -0,0001        | 0,0319              | 0,0001         | 0,0190              | -0,0001       | 0,0216              |  |  |
| EQM   | 0,0000         | 0,0024              | 0,0000         | 0,0012              | 0,0000        | 0,0017              |  |  |
| Var   | 0,0000         | 0,0014              | 0,0000         | 0,0008              | 0,0000        | 0,0012              |  |  |
|       |                |                     | $\alpha = 1.5$ |                     |               |                     |  |  |
| Média | 0,1998         | 0,4290              | 0,1998         | 0,4180              | 0,1998        | 0,4147              |  |  |
| Vício | -0,0002        | 0,0290              | -0,0002        | 0,0180              | -0,0002       | 0,0147              |  |  |
| EQM   | 0,0000         | 0,0021              | 0,0000         | 0,0011              | 0,0000        | 0,0011              |  |  |
| Var   | 0,0000         | 0,0013              | 0,0000         | 0,0008              | 0,0000        | 0,0009              |  |  |
|       |                |                     | $\alpha = 1.7$ |                     |               |                     |  |  |
| Média | 0,1999         | 0,4198              | 0,1998         | 0,4144              | 0,1997        | 0,4107              |  |  |
| Vício | -0,0001        | 0,0198              | -0,0002        | 0,0144              | -0,0003       | 0,0107              |  |  |
| EQM   | 0,0000         | 0,0015              | 0,0000         | 0,0010              | 0,0000        | 0,0011              |  |  |
| Var   | 0,0000         | 0,0011              | 0,0000         | 0,0008              | 0,0000        | 0,0009              |  |  |
|       |                |                     | $\alpha = 1.9$ |                     | -             |                     |  |  |
| Média | 0,1999         | 0,4186              | 0,1997         | 0,4122              | 0,1999        | 0,4067              |  |  |
| Vício | -0,0001        | 0,0186              | -0,0003        | 0,0122              | -0,0001       | 0,0067              |  |  |
| EQM   | 0,0000         | 0,0013              | 0,0000         | 0,0009              | 0,0000        | 0,0008              |  |  |
| Var   | 0,0000         | 0,0010              | 0,0000         | 0,0008              | 0,0000        | 0,0007              |  |  |
| -     |                | F                   | Fonte: Auto    | r.                  |               |                     |  |  |

Tabela 3.8: Resultado da estimação com o estimador KTPSC para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo n = 1000 e  $\beta = 0.9$  para as janelas de suavização de Bartlett, Parzen e Tukey.

|       | $\alpha = 1.3$ |                     |                |                     |               |                     |  |  |
|-------|----------------|---------------------|----------------|---------------------|---------------|---------------------|--|--|
|       | Bar            | tlett               | Par            | zen                 | Tu            | key                 |  |  |
|       | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |  |
| Média | 0,1999         | 0,4277              | 0,1999         | 0,4192              | 0,1997        | 0,4183              |  |  |
| Vício | -0,0001        | 0,0277              | -0,0001        | 0,0192              | -0,0003       | 0,0183              |  |  |
| EQM   | 0,0000         | 0,0019              | 0,0000         | 0,0012              | 0,0000        | 0,0015              |  |  |
| Var   | 0,0000         | 0,0012              | 0,0000         | 0,0009              | 0,0000        | 0,0011              |  |  |
|       |                |                     | $\alpha = 1.5$ |                     |               |                     |  |  |
| Média | 0,1999         | 0,4219              | 0,1998         | 0,4161              | 0,2000        | 0,4128              |  |  |
| Vício | -0,0001        | 0,0219              | -0,0002        | 0,0161              | 0,0000        | 0,0128              |  |  |
| EQM   | 0,0000         | 0,0019              | 0,0000         | 0,0010              | 0,0000        | 0,0011              |  |  |
| Var   | 0,0000         | 0,0014              | 0,0000         | 0,0007              | 0,0000        | 0,0009              |  |  |
|       |                |                     | $\alpha = 1.7$ |                     |               |                     |  |  |
| Média | 0,1999         | 0,4178              | 0,1999         | 0,4159              | 0,2001        | 0,4077              |  |  |
| Vício | -0,0001        | 0,0178              | -0,0001        | 0,0159              | 0,0001        | 0,0077              |  |  |
| EQM   | 0,0000         | 0,0012              | 0,0000         | 0,0009              | 0,0000        | 0,0010              |  |  |
| Var   | 0,0000         | 0,0009              | 0,0000         | 0,0007              | 0,0000        | 0,0009              |  |  |
|       | $\alpha = 1.9$ |                     |                |                     |               |                     |  |  |
| Média | 0,1999         | 0,4129              | 0,1999         | 0,4121              | 0,2002        | 0,4043              |  |  |
| Vício | -0,0001        | 0,0129              | -0,0001        | 0,0121              | 0,0002        | 0,0043              |  |  |
| EQM   | 0,0000         | 0,0011              | 0,0000         | 0,0009              | 0,0000        | 0,0007              |  |  |
| Var   | 0,0000         | 0,0009              | 0,0000         | 0,0007              | 0,0000        | 0,0007              |  |  |
|       |                | F                   | Fonte: Auto    | r.                  |               |                     |  |  |

Tabela 3.9: Resultado da estimação com o estimador KTPSC para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo n = 1000 e  $\beta = 0.95$  para as janelas de suavização de Bartlett, Parzen e Tukey.

|       |               |                     | $\alpha = 1.3$ |                     |               |                     |
|-------|---------------|---------------------|----------------|---------------------|---------------|---------------------|
|       | Bar           | tlett               | Par            | zen                 | Tukey         |                     |
|       | $\widehat{u}$ | $\widehat{\lambda}$ | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |
| Média | 0,1998        | 0,4247              | 0,1999         | 0,4170              | 0,2000        | 0,4134              |
| Vício | -0,0002       | 0,0247              | -0,0001        | 0,0170              | 0,0000        | 0,0134              |
| EQM   | 0,0000        | 0,0020              | 0,0000         | 0,0009              | 0,0000        | 0,0013              |
| Var   | 0,0000        | 0,0014              | 0,0000         | 0,0006              | 0,0000        | 0,0011              |
|       |               |                     | $\alpha = 1.5$ |                     | -             |                     |
| Média | 0,2005        | 0,4198              | 0,1998         | 0,4149              | 0,1998        | 0,4070              |
| Vício | 0,0005        | 0,0198              | -0,0002        | 0,0149              | -0,0002       | 0,0070              |
| EQM   | 0,0003        | 0,0015              | 0,0000         | 0,0008              | 0,0000        | 0,0009              |
| Var   | 0,0003        | 0,0011              | 0,0000         | 0,0006              | 0,0000        | 0,0009              |
|       |               |                     | $\alpha = 1.7$ | -                   |               |                     |
| Média | 0,2000        | 0,4158              | 0,2001         | 0,4149              | 0,1998        | 0,4015              |
| Vício | 0,0000        | 0,0158              | 0,0001         | 0,0149              | -0,0002       | 0,0015              |
| EQM   | 0,0000        | 0,0012              | 0,0000         | 0,0010              | 0,0000        | 0,0007              |
| Var   | 0,0000        | 0,0010              | 0,0000         | 0,0008              | 0,0000        | 0,0007              |
|       |               |                     | $\alpha = 1.9$ |                     | -             |                     |
| Média | 0,1999        | 0,4128              | 0,2002         | 0,4128              | 0,1996        | 0,4009              |
| Vício | -0,0001       | 0,0128              | 0,0002         | 0,0128              | -0,0004       | 0,0009              |
| EQM   | 0,0000        | 0,0010              | 0,0000         | 0,0012              | 0,0000        | 0,0007              |
| Var   | 0,0000        | 0,0008              | 0,0000         | 0,0011              | 0,0000        | 0,0007              |
| -     |               | F                   | onte: Auto     | r.                  |               |                     |

44



Figura 3.1: Gráficos de convergência das estimativas do parâmetro u quando utilizado o estimador KT para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$  (a)  $\alpha = 1.3$  (b)  $\alpha = 1.5$  (c)  $\alpha = 1.7$  (d)  $\alpha = 1.9$ .

Os gráficos de convergência apresentados na Figura 3.1, nos mostram que as estimativas do parâmetro u tendem a convergir mais rapidamente quando temos  $\alpha = 1.7$ . Isso corrobora o resultado verificado através da Tabela 3.1, no qual um dos melhores valores para estimativa do parâmetro foi encontrado para este valor de  $\alpha$ .



Figura 3.2: Gráficos de convergência das estimativas do parâmetro  $\lambda$  quando utilizado o estimador KT para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$  (a)  $\alpha = 1.3$  (b)  $\alpha = 1.5$  (c)  $\alpha = 1.7$  (d)  $\alpha = 1.9$ .

Da mesma forma, os gráficos de convergência apresentados na Figura 3.2, nos mostram que as estimativas do parâmetro  $\lambda$  tendem a convergir mais rapidamente quando temos  $\alpha = 1.5$ . Isso corrobora o resultado verificado através da Tabela 3.1, no qual o melhor valor para estimativa deste parâmetro foi encontrado para este valor de  $\alpha$ .

As Figuras 3.3 a 3.10 ilustram a convergência das estimativas dos parâmetros u e  $\lambda$  quando utilizado o estimador KTPS, com  $m \in \{1, 2, 3, 4\}, \alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , para cada uma das janelas espectrais utilizadas, corroborando os resultados obtidos através das Tabelas 3.2 a 3.5 apresentadas anteriormente.



Figura 3.3: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador KTPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 1 para as janelas espectrais de Bartlett, Daniell e Parzen.



Figura 3.4: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador KTPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 1 para as janelas espectrais de Bartlett, Daniell e Parzen.



Figura 3.5: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador KTPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 2 para as janelas espectrais de Bartlett, Daniell e Parzen.



Figura 3.6: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador KTPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 2 para as janelas espectrais de Bartlett, Daniell e Parzen.



Figura 3.7: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador KTPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 3 para as janelas espectrais de Bartlett, Daniell e Parzen.



Figura 3.8: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador KTPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 3 para as janelas espectrais de Bartlett, Daniell e Parzen.



Figura 3.9: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador KTPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 4 para as janelas espectrais de Bartlett, Daniell e Parzen.



Figura 3.10: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador KTPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 4 para as janelas espectrais de Bartlett, Daniell e Parzen.

As Figuras 3.11 a 3.18 ilustram a convergência das estimativas dos parâmetros  $u \in \lambda$  quando utilizado o estimador KTPSC, onde  $m_n = n^\beta$ , com  $\beta \in \{0.8, 0.85, 0.9, 0.95\}$ , para cada janela de suavização utilizada, corroborando os resultados obtidos através das Tabelas 3.6 a 3.9 apresentadas anteriormente.



Figura 3.11: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador KTPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.8$  para as janelas de suaavização de Bartlett, Parzen e Tukey.



Figura 3.12: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador KTPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.8$  para as janelas de suavização de Bartlett, Parzen e Tukey.



Figura 3.13: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador KTPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.85$  para as janelas de suavização de Bartlett, Parzen e Tukey.



Figura 3.14: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador KTPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.85$  para as janelas de suavização de Bartlett, Parzen e Tukey.



Figura 3.15: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador KTPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.9$  para as janelas de suavização de Bartlett, Parzen e Tukey.



Figura 3.16: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador KTPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.9$  para as janelas de suavização de Bartlett, Parzen e Tukey.



Figura 3.17: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador KTPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.95$  para as janelas de suavização de Bartlett, Parzen e Tukey.



Figura 3.18: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador KTPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.95$  para as janelas de suavização de Bartlett, Parzen e Tukey.

As Tabelas 3.10 a 3.18 apresentam os resultados das simulações de Monte Carlo para os estimadores MCMC, MCMCPS e MCMCPSC, propostos na Seção 2.3. Para os resultados obtidos pelo estimador MCMC, podemos verificar que o mesmo tem estimnativa exata para o parâmetro u quando utilizando  $\alpha = 1.3$ . As demais estimativas deste parâmetro são bem próximas, com vício, erro quadrático médio e variância pequenos. Já as estimativas para o parâmetro  $\lambda$  geram valores de vício, erro quadrático médio e variância um pouco maiores, e a estimativa mais próxima do valor verdadeiro ocorre quando  $\alpha = 1.9$ .

A partir da Tabela 3.11, temos o resultado das estimações via estimador MCMCPS. Para a janela de Bartlett, o estimador obtém, em média, o valor exato quando  $\alpha = 1.3$ . Para o parâmetro  $\lambda$  a melhro estimativa ocorre quando  $\alpha = 1.9$  Utilizando a Janela de Parzen, a melhor estimativa para u ocorre quando  $\alpha = 1.3$  e para  $\lambda$ quando  $\alpha = 1.7$ . Já para a Janela de Tukey, a melhor estimativa para ambos os parâmetros ocorre quando  $\alpha = 1.5$ . De forma geral, a Janela de Bartlett apresentou melhores valores de  $\hat{u}$ , mesmo que todas as estimativas estejam consideravelmente boas, e as Janelas de Parzen e Tukey tiveram melhor desempenho com os valores de  $\hat{\lambda}$ .

Na Tabela 3.12, podemos verificar que as melhores estimativas para u nas Janelas de Bartlett e Parzen ocorrem quando  $\alpha = 1.7$ , e os melhores valores de  $\hat{\lambda}$  para estas mesmas janelas ocorrem quando  $\alpha = 1.3$ . Para a Janela de Tukey, as melhores estimativas para ambos os parâmetros ocorre quando  $\alpha = 1.5$ .

Através da Tabela 3.13 podemos verificar que as estimativas para o parâmetro *u* continuam boas, com baixos valores de vício, erro quadrático médio e variância. Esses valores para  $\lambda$  também são aceitáveis, embora não tão baixos quanto aos citados anteriormente. O melhor valor de  $\hat{u}$  quando utilizando a Janela de Bartlett é encontrado quando temos  $\alpha = 1.3$  e o melhor valor de  $\hat{\lambda}$  para esta mesma janela é encontrado quando  $\alpha = 1.5$ . Para a Janela de Parzen, o melhor valor de  $\hat{u}$  ocorre quando  $\alpha = 1.3$ ,  $\alpha = 1.5$  e  $\alpha = 1.9$ . Nestes casos, o valor de u tem mesmo valor de vício, erro quadrático médio e variância, embora seja subestimado quando  $\alpha = 1.5$ e superestimado nos outros dois casos. Já para  $\hat{\lambda}$ , o melhor valor ocorre quando  $\alpha = 1.3$ . Por fim, para a Janela de Tukey, quando  $\alpha = 1.9$ , o estimador acerta, em média, o valor verdadeiro do parâmetro u, e tem a melhor estimativa para o pareâmetro  $\lambda$  quando  $\alpha = 1.5$ .

Na Tabela 3.14 é possível notar que as estimativas para o parâmetro u permanecem próximas em todos os casos, com baixos valores de vício, erro quadrático médio e variância. Da mesma forma que dito anteriormente, as estimativas para o parâmetro  $\lambda$  também continuam boas, embora com valores um pouco maiores de vício, erro quadrático médio e variância, quando comparadas ao outro parâmetro. Para a Janela de Bartlett, as melhores estimativas para o parâmetro u ocorrem quando  $\alpha = 1.3$  e  $\alpha = 1.7$  e o melhor valor de  $\hat{\lambda}$  ocorre quando  $\alpha = 1.5$ . Utilizando a Janela de Parzen, o melhor valor de  $\hat{u}$  ocorre quando utilizado  $\alpha = 1.3$ , uma vez que nesta ocasião, o estimador acerta o valor do parâmetro na média de suas estimativas. Para o parâmetro  $\lambda$ , o melhor valor é encontrado quando  $\alpha = 1.5$ , ocasião em que o estimador acerta novamente, em média, o valor verdadeiro do parâmetro. Já com a Janela de Tukey, a melhor estimativa para o parâmetro u é encontrada quando  $\alpha = 1.9$  e o melhor valor de  $\hat{\lambda}$  ocorre quando  $\alpha = 1.5$ .

A partir da Tabela 3.15 temos os resultados das estimações utilizando o estimador MCMCPSC. Nesta primeira tabela, podemos verificar que as estimativas para o parâmetro u estão bem próximas do valor verdadeiro, uma vez que produziram baixos valores de vício, erro quadrático médio e variância, assim como nos estimadores anteriores. Para o parâmetro  $\lambda$ , as estimativas não são tão boas quanto ao do primeiro parâmetro, mas ainda assim produz valores aceitáveis de vício, erro quadrático médio e variância. Ao utilizar a Janela de Bartlett, o melhor valor de  $\hat{u}$  encontrado foi ao utilizar  $\alpha = 1.5$ , e neste caso, o estimador acertou, em média, o verdadeiro valor do parâmetro. Para este mesmo parâmetro, a melhor estimativa encontrada para a Janela de Parzen e para a Janela de Tukey ocorreu quando  $\alpha = 1.3$ . Para as estimativas de  $\lambda$ , em todas as janelas os melhores valores encontrados foram quando  $\alpha = 1.9$ .

Pela Tabela 3.16, é possível verificar que as melhores estimativas para ambos os parâmetros se concentram quando  $\alpha = 1.7$  e  $\alpha = 1.9$ . As estimativas do parâmetro u permanecem boas, com baixo vício, erro quadrático médio e variância, enquanto as estimativas para o parâmetro  $\lambda$  parecem ter uma melhora em todos os casos com o aumento do valor de  $\beta$ . A Tabela 3.17 nos mostra que as estimativas para ambos os parâmetros permanecem próximas das obtidas anteriormente, sendo que quando utilizada a Janela de Bartlett e  $\alpha = 1.5$ , o estimador acerta, em média, o verdadeiro valor do parâmetro u.

Por fim, de acordo com a Tabela 3.18, podemos verificar que as melhores estimativas obtidas para ambos os parâmetros quando utilizadas as janelas de Bartlett e Parzen ocorrem quando  $\alpha = 1.9$ . Já quando utilizada a Janela de Tukey, o melhor valor de  $\hat{u}$  ocorre quando  $\alpha = 1.3$  e o melhor valor de  $\hat{\lambda}$  ocorre quando  $\alpha = 1.5$ . Mais uma vez, em geral, as estimativas para o parâmetro u apresentaram baixos valores de vício, erro quadrático médio e variância, embora em alguns casos tenha apresentado um aumento considerável. Já as estimativas para  $\lambda$  parecem continuar no mesmo patamar das anteriores.

Tabela 3.10: Resultado da estimação com o estimador MCMC para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $k = 1, p = 0 = q, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}.$ 

|               | $\alpha =$    | 1.3                 | $\alpha =$    | $\alpha = 1.5$      |  |  |  |
|---------------|---------------|---------------------|---------------|---------------------|--|--|--|
|               | $\widehat{u}$ | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |  |  |
| Média         | 0,2000        | 0,4218              | 0,1999        | 0,4129              |  |  |  |
| Vício         | 0,0000        | 0,0218              | -0,0001       | 0,0129              |  |  |  |
| EQM           | 0,0001        | 0,0029              | 0,0001        | 0,0026              |  |  |  |
| Var           | 0,0001        | 0,0025              | 0,0001        | 0,0025              |  |  |  |
|               | $\alpha =$    | 1.7                 | α =           | = 1.9               |  |  |  |
| Média         | 0,2004        | 0,4077              | 0,1999        | 0,4068              |  |  |  |
| Vício         | 0,0004        | 0,0077              | -0,0001       | 0,0068              |  |  |  |
| EQM           | 0,0002        | 0,0022              | 0,0001        | 0,0022              |  |  |  |
| Var           | 0,0002        | 0,0022              | 0,0001        | 0,0022              |  |  |  |
| Fonte: Autor. |               |                     |               |                     |  |  |  |

Tabela 3.11: Resultado da estimação com o estimador MCMCPS para o processok-Factor GARMA( $p, u, \lambda, q$ ) –  $S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 1$ , para as janelas espectrais de Bartlett, Parzen e Tukey.

| $\alpha = 1.3$ |               |                     |                |                     |               |                     |  |
|----------------|---------------|---------------------|----------------|---------------------|---------------|---------------------|--|
|                | Bar           | tlett               | Par            | zen                 | Tukey         |                     |  |
|                | $\widehat{u}$ | $\widehat{\lambda}$ | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |
| Média          | 0,2000        | 0,4097              | 0,2002         | 0,4072              | 0,1996        | 0,4055              |  |
| Vício          | 0,0000        | 0,0097              | 0,0002         | 0,0072              | -0,0004       | 0,0055              |  |
| EQM            | 0,0001        | 0,0025              | 0,0002         | 0,0027              | 0,0001        | 0,0027              |  |
| Var            | 0,0001        | 0,0024              | 0,0002         | 0,0027              | 0,0001        | 0,0027              |  |
|                |               |                     | $\alpha = 1.5$ |                     |               |                     |  |
| Média          | 0,1999        | 0,4051              | 0,2007         | 0,4032              | 0,1999        | 0,3999              |  |
| Vício          | -0,0001       | 0,0051              | 0,0007         | 0,0032              | -0,0001       | -0,0001             |  |
| EQM            | 0,0001        | 0,0023              | 0,0004         | 0,0024              | 0,0001        | 0,0026              |  |
| Var            | 0,0001        | 0,0022              | 0,0004         | 0,0024              | 0,0001        | 0,0026              |  |
|                |               |                     | $\alpha = 1.7$ |                     |               |                     |  |
| Média          | 0,2003        | 0,4045              | 0,2009         | 0,4002              | 0,2002        | 0,3942              |  |
| Vício          | 0,0003        | 0,0045              | 0,0009         | 0,0002              | 0,0002        | -0,0058             |  |
| EQM            | 0,0001        | 0,0022              | 0,0004         | 0,0024              | 0,0002        | 0,0026              |  |
| Var            | 0,0001        | 0,0022              | 0,0004         | 0,0024              | 0,0002        | 0,0026              |  |
|                |               |                     | $\alpha = 1.9$ |                     |               | -                   |  |
| Média          | 0,1996        | 0,4022              | 0,2016         | 0,3976              | 0,2010        | 0,3916              |  |
| Vício          | -0,0004       | 0,0022              | 0,0016         | -0,0024             | 0,0010        | -0,0084             |  |
| EQM            | 0,0001        | 0,0022              | 0,0009         | 0,0022              | 0,0001        | 0,0027              |  |
| Var            | 0,0001        | 0,0022              | 0,0009         | 0,0022              | 0,0001        | 0,0026              |  |
|                |               | F                   | onte Auto      | r                   |               | -                   |  |

Tabela 3.12: Resultado da estimação com o estimador MCMCPS para o processo *k*-Factor GARMA( $p, u, \lambda, q$ ) –  $S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 2$ , para as janelas espectrais de Bartlett, Parzen e Tukey.

|       | $\alpha = 1.3$ |                 |                |                 |               |                     |  |  |
|-------|----------------|-----------------|----------------|-----------------|---------------|---------------------|--|--|
|       | Bar            | tlett           | Par            | zen             | zen Tuke      |                     |  |  |
|       | $\widehat{u}$  | $\hat{\lambda}$ | $\widehat{u}$  | $\hat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |  |
| Média | 0,2001         | 0,4023          | 0,2014         | 0,4007          | 0,1998        | 0,4048              |  |  |
| Vício | 0,0001         | 0,0023          | 0,0014         | 0,0007          | -0,0002       | 0,0048              |  |  |
| EQM   | 0,0001         | 0,0028          | 0,0006         | 0,0028          | 0,0001        | 0,0028              |  |  |
| Var   | 0,0001         | 0,0028          | 0,0006         | 0,0028          | 0,0001        | 0,0028              |  |  |
|       |                |                 | $\alpha = 1.5$ |                 |               |                     |  |  |
| Média | 0,2004         | 0,3958          | 0,2005         | 0,3978          | 0,1999        | 0,3991              |  |  |
| Vício | 0,0004         | -0,0042         | 0,0005         | -0,0022         | -0,0001       | -0,0009             |  |  |
| EQM   | 0,0003         | 0,0029          | 0,0001         | 0,0027          | 0,0001        | 0,0028              |  |  |
| Var   | 0,0003         | 0,0028          | 0,0001         | 0,0027          | 0,0001        | 0,0028              |  |  |
|       |                |                 | $\alpha = 1.7$ |                 |               |                     |  |  |
| Média | 0,2000         | 0,3946          | 0,2002         | 0,3919          | 0,2004        | 0,3956              |  |  |
| Vício | 0,0000         | -0,0054         | 0,0002         | -0,0081         | 0,0004        | -0,0044             |  |  |
| EQM   | 0,0001         | 0,0030          | 0,0001         | 0,0027          | 0,0001        | 0,0026              |  |  |
| Var   | 0,0001         | 0,0029          | 0,0001         | 0,0026          | 0,0001        | 0,0025              |  |  |
|       | $\alpha = 1.9$ |                 |                |                 |               |                     |  |  |
| Média | 0,2007         | 0,3934          | 0,2003         | 0,3908          | 0,1999        | 0,3914              |  |  |
| Vício | 0,0007         | -0,0066         | 0,0003         | -0,0092         | -0,0001       | -0,0086             |  |  |
| EQM   | 0,0002         | 0,0025          | 0,0002         | 0,0026          | 0,0002        | 0,0028              |  |  |
| Var   | 0,0002         | 0,0025          | 0,0002         | 0,0025          | 0,0002        | 0,0027              |  |  |
|       |                | T               |                |                 |               |                     |  |  |

Tabela 3.13: Resultado da estimação com o estimador MCMCPS para o processo *k*-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 3$ , para as janelas espectrais de Bartlett, Parzen e Tukey.

| $\alpha = 1.3$ |               |                     |                |                     |               |                     |  |
|----------------|---------------|---------------------|----------------|---------------------|---------------|---------------------|--|
|                | Bartlett      |                     | Parzen         |                     | Tukey         |                     |  |
|                | $\widehat{u}$ | $\widehat{\lambda}$ | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |
| Média          | 0,2003        | 0,4048              | 0,2003         | 0,4005              | 0,2003        | 0,4044              |  |
| Vício          | 0,0003        | 0,0048              | 0,0003         | 0,0005              | 0,0003        | 0,0044              |  |
| EQM            | 0,0001        | 0,0027              | 0,0001         | 0,0028              | 0,0001        | 0,0030              |  |
| Var            | 0,0001        | 0,0027              | 0,0001         | 0,0028              | 0,0001        | 0,0030              |  |
|                |               |                     | $\alpha = 1.5$ |                     |               |                     |  |
| Média          | 0,2004        | 0,3978              | 0,1997         | 0,3983              | 0,2006        | 0,3982              |  |
| Vício          | 0,0004        | -0,0022             | -0,0003        | -0,0017             | 0,0006        | -0,0018             |  |
| EQM            | 0,0001        | 0,0026              | 0,0001         | 0,0026              | 0,0001        | 0,0027              |  |
| Var            | 0,0001        | 0,0026              | 0,0001         | 0,0026              | 0,0001        | 0,0027              |  |
|                |               |                     | $\alpha = 1.7$ |                     |               |                     |  |
| Média          | 0,1996        | 0,3951              | 0,1996         | 0,3953              | 0,2001        | 0,3959              |  |
| Vício          | -0,0004       | -0,0049             | -0,0004        | -0,0047             | 0,0001        | -0,0041             |  |
| EQM            | 0,0001        | 0,0026              | 0,0001         | 0,0028              | 0,0001        | 0,0028              |  |
| Var            | 0,0001        | 0,0026              | 0,0001         | 0,0027              | 0,0001        | 0,0028              |  |
| $\alpha = 1.9$ |               |                     |                |                     |               |                     |  |
| Média          | 0,2007        | 0,3924              | 0,2003         | 0,3902              | 0,2000        | 0,3909              |  |
| Vício          | 0,0007        | -0,0076             | 0,0003         | -0,0098             | 0,0000        | -0,0091             |  |
| EQM            | 0,0002        | 0,0028              | 0,0001         | 0,0003              | 0,0002        | 0,0029              |  |
| Var            | 0,0002        | 0,0028              | 0,0001         | 0,0026              | 0,0002        | 0,0028              |  |
| Fonte: Autor.  |               |                     |                |                     |               |                     |  |

Tabela 3.14: Resultado da estimação com o estimador MCMCPS para o processo *k*-Factor GARMA( $p, u, \lambda, q$ ) –  $S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 4$ , para as janelas espectrais de Bartlett, Parzen e Tukey.

| $\alpha = 1.3$ |               |                     |                |                 |               |                     |  |
|----------------|---------------|---------------------|----------------|-----------------|---------------|---------------------|--|
|                | Bartlett      |                     | Parzen         |                 | Tu            | key                 |  |
|                | $\widehat{u}$ | $\widehat{\lambda}$ | $\widehat{u}$  | $\hat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |
| Média          | 0,2002        | 0,4032              | 0,2000         | 0,4026          | 0,2003        | 0,4043              |  |
| Vício          | 0,0002        | 0,0032              | 0,0000         | 0,0026          | 0,0003        | 0,0043              |  |
| EQM            | 0,0001        | 0,0026              | 0,0002         | 0,0031          | 0,0001        | 0,0030              |  |
| Var            | 0,0001        | 0,0026              | 0,0002         | 0,0031          | 0,0001        | 0,0030              |  |
|                |               |                     | $\alpha = 1.5$ |                 |               |                     |  |
| Média          | 0,1996        | 0,3984              | 0,2003         | 0,4000          | 0,1997        | 0,4023              |  |
| Vício          | -0,0004       | -0,0016             | 0,0003         | 0,0000          | -0,0003       | 0,0023              |  |
| EQM            | 0,0001        | 0,0026              | 0,0001         | 0,0026          | 0,0001        | 0,0026              |  |
| Var            | 0,0001        | 0,0026              | 0,0001         | 0,0026          | 0,0001        | 0,0026              |  |
|                |               |                     | $\alpha = 1.7$ |                 |               |                     |  |
| Média          | 0,2002        | 0,3933              | 0,1998         | 0,3971          | 0,1992        | 0,3963              |  |
| Vício          | 0,0002        | -0,0067             | -0,0002        | -0,0029         | -0,0008       | -0,0037             |  |
| EQM            | 0,0001        | 0,0027              | 0,0001         | 0,0027          | 0,0002        | 0,0026              |  |
| Var            | 0,0001        | 0,0026              | 0,0001         | 0,0027          | 0,0002        | 0,0026              |  |
| $\alpha = 1.9$ |               |                     |                |                 |               |                     |  |
| Média          | 0,2006        | 0,3926              | 0,1998         | 0,3931          | 0,1999        | 0,3906              |  |
| Vício          | 0,0006        | -0,0074             | -0,0002        | -0,0069         | -0,0001       | -0,0094             |  |
| EQM            | 0,0001        | 0,0026              | 0,0001         | 0,0026          | 0,0002        | 0,0027              |  |
| Var            | 0,0001        | 0,0026              | 0,0001         | 0,0025          | 0,0002        | 0,0026              |  |
| Fonto: Auton   |               |                     |                |                 |               |                     |  |

Tabela 3.15: Resultado da estimação com o estimador MCMCPSC para o processo *k*-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo n = 1000 e  $\beta = 0.8$  para as janelas de suavização de Bartlett, Parzen e Tukey.

| $\alpha = 1.3$ |               |                     |                |                     |               |                     |  |  |
|----------------|---------------|---------------------|----------------|---------------------|---------------|---------------------|--|--|
|                | Bartlett      |                     | Parzen         |                     | Tukey         |                     |  |  |
|                | $\widehat{u}$ | $\widehat{\lambda}$ | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |  |
| Média          | 0,1998        | 0,4194              | 0,1997         | 0,4172              | 0,2013        | 0,4097              |  |  |
| Vício          | -0,0002       | 0,0194              | -0,0003        | 0,0172              | 0,0013        | 0,0097              |  |  |
| EQM            | 0,0001        | 0,0025              | 0,0004         | 0,0027              | 0,0005        | 0,0027              |  |  |
| Var            | 0,0001        | 0,0021              | 0,0004         | 0,0024              | 0,0005        | 0,0026              |  |  |
|                |               |                     | $\alpha = 1.5$ |                     |               |                     |  |  |
| Média          | 0,1995        | 0,4172              | 0,1995         | 0,4158              | 0,2018        | 0,4071              |  |  |
| Vício          | -0,0005       | 0,0172              | -0,0005        | 0,0158              | 0,0018        | 0,0071              |  |  |
| EQM            | 0,0001        | 0,0024              | 0,0003         | 0,0024              | 0,0012        | 0,0026              |  |  |
| Var            | 0,0001        | 0,0021              | 0,0003         | 0,0022              | 0,0012        | 0,0025              |  |  |
|                |               |                     | $\alpha = 1.7$ |                     |               |                     |  |  |
| Média          | 0,2000        | 0,4120              | 0,1990         | 0,4146              | 0,2016        | 0,4026              |  |  |
| Vício          | 0,0000        | 0,0120              | -0,0010        | 0,0146              | 0,0016        | 0,0026              |  |  |
| EQM            | 0,0001        | 0,0020              | 0,0001         | 0,0024              | 0,0006        | 0,0027              |  |  |
| Var            | 0,0001        | 0,0018              | 0,0001         | 0,0022              | 0,0006        | 0,0027              |  |  |
| $\alpha = 1.9$ |               |                     |                |                     |               |                     |  |  |
| Média          | 0,2006        | 0,4113              | 0,2011         | 0,4114              | 0,2033        | 0,3997              |  |  |
| Vício          | 0,0006        | 0,0113              | 0,0011         | 0,0114              | 0,0033        | -0,0003             |  |  |
| EQM            | 0,0001        | 0,0022              | 0,0003         | 0,0023              | 0,0024        | 0,0030              |  |  |
| Var            | 0,0001        | 0,0020              | 0,0003         | 0,0021              | 0,0024        | 0,0030              |  |  |

Tabela 3.16: Resultado da estimação com o estimador MCMCPSC para o processo *k*-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo n = 1000 e  $\beta = 0.85$  para as janelas de suavização de Bartlett, Parzen e Tukey.

| $\alpha = 1.3$ |               |                     |                |                     |               |                     |  |
|----------------|---------------|---------------------|----------------|---------------------|---------------|---------------------|--|
|                | Bartlett      |                     | Parzen         |                     | Tukey         |                     |  |
|                | $\widehat{u}$ | $\widehat{\lambda}$ | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |
| Média          | 0,2003        | 0,4164              | 0,1981         | 0,4164              | 0,2023        | 0,4077              |  |
| Vício          | 0,0003        | 0,0164              | -0,0019        | 0,0164              | 0,0023        | 0,0077              |  |
| EQM            | 0,0001        | 0,0028              | 0,0003         | 0,0025              | 0,0010        | 0,0027              |  |
| Var            | 0,0001        | 0,0025              | 0,0003         | 0,0022              | 0,0010        | 0,0027              |  |
|                |               |                     | $\alpha = 1.5$ |                     |               |                     |  |
| Média          | 0,2003        | 0,4111              | 0,1988         | 0,4121              | 0,2019        | 0,4011              |  |
| Vício          | 0,0003        | 0,0111              | -0,0012        | 0,0121              | 0,0019        | 0,0011              |  |
| EQM            | 0,0001        | 0,0022              | 0,0002         | 0,0023              | 0,0012        | 0,0028              |  |
| Var            | 0,0001        | 0,0021              | 0,0002         | 0,0021              | 0,0012        | 0,0028              |  |
|                |               |                     | $\alpha = 1.7$ |                     |               |                     |  |
| Média          | 0,1999        | 0,4102              | 0,1999         | 0,4095              | 0,2017        | 0,3993              |  |
| Vício          | -0,0001       | 0,0102              | -0,0001        | 0,0095              | 0,0017        | -0,0007             |  |
| EQM            | 0,0001        | 0,0022              | 0,0001         | 0,0022              | 0,0011        | 0,0028              |  |
| Var            | 0,0001        | 0,0021              | 0,0001         | 0,0021              | 0,0011        | 0,0028              |  |
| $\alpha = 1.9$ |               |                     |                |                     |               |                     |  |
| Média          | 0,2002        | 0,4073              | 0,1996         | 0,4065              | 0,2026        | 0,3990              |  |
| Vício          | 0,0002        | 0,0073              | -0,0004        | 0,0065              | 0,0026        | -0,0010             |  |
| EQM            | 0,0001        | 0,0021              | 0,0001         | 0,0021              | 0,0021        | 0,0029              |  |
| Var            | 0,0001        | 0,0020              | 0,0001         | 0,0020              | 0,0021        | 0,0029              |  |
| Fonte: Autor.  |               |                     |                |                     |               |                     |  |

Tabela 3.17: Resultado da estimação com o estimador MCMCPSC para o processo *k*-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo n = 1000 e  $\beta = 0.9$  para as janelas de suavização de Bartlett, Parzen e Tukey.

| $\alpha = 1.3$ |                |                     |                |                     |               |                     |  |  |
|----------------|----------------|---------------------|----------------|---------------------|---------------|---------------------|--|--|
|                | Bartlett       |                     | Parzen         |                     | Tukey         |                     |  |  |
|                | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |  |
| Média          | 0,2001         | 0,4149              | 0,1997         | 0,4156              | 0,2003        | 0,4092              |  |  |
| Vício          | 0,0001         | 0,0149              | -0,0003        | 0,0156              | 0,0003        | 0,0092              |  |  |
| EQM            | 0,0001         | 0,0026              | 0,0003         | 0,0025              | 0,0002        | 0,0029              |  |  |
| Var            | 0,0001         | 0,0023              | 0,0003         | 0,0022              | 0,0002        | 0,0028              |  |  |
|                |                |                     | $\alpha = 1.5$ |                     |               |                     |  |  |
| Média          | 0,2000         | 0,4124              | 0,2002         | 0,4084              | 0,2007        | 0,4024              |  |  |
| Vício          | 0,0000         | 0,0124              | 0,0002         | 0,0084              | 0,0007        | 0,0024              |  |  |
| EQM            | 0,0001         | 0,0022              | 0,0003         | 0,0024              | 0,0010        | 0,0033              |  |  |
| Var            | 0,0001         | 0,0020              | 0,0003         | 0,0023              | 0,0010        | 0,0033              |  |  |
|                | $\alpha = 1.7$ |                     |                |                     |               |                     |  |  |
| Média          | 0,1997         | 0,4086              | 0,2002         | 0,4059              | 0,2041        | 0,3965              |  |  |
| Vício          | -0,0003        | 0,0086              | 0,0002         | 0,0059              | 0,0041        | -0,0035             |  |  |
| EQM            | 0,0001         | 0,0021              | 0,0002         | 0,0024              | 0,0022        | 0,0034              |  |  |
| Var            | 0,0001         | 0,0020              | 0,0002         | 0,0024              | 0,0022        | 0,0034              |  |  |
| $\alpha = 1.9$ |                |                     |                |                     |               |                     |  |  |
| Média          | 0,2001         | 0,4079              | 0,1999         | 0,4047              | 0,2023        | 0,3928              |  |  |
| Vício          | 0,0001         | 0,0079              | -0,0001        | 0,0047              | 0,0023        | -0,0072             |  |  |
| EQM            | 0,0001         | 0,0021              | 0,0001         | 0,0023              | 0,0014        | 0,0037              |  |  |
| Var            | 0,0001         | 0,0020              | 0,0001         | 0,0022              | 0,0014        | 0,0036              |  |  |
| Fonte: Autor.  |                |                     |                |                     |               |                     |  |  |

Tabela 3.18: Resultado da estimação com o estimador MCMCPSC para o processo *k*-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando  $p = 0 = q, k = 1, u = 0.2, \lambda = 0.4, \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo n = 1000 e  $\beta = 0.95$  para as janelas de suavização de Bartlett, Parzen e Tukey.

| $\alpha = 1.3$ |               |                     |                |                     |               |                     |  |
|----------------|---------------|---------------------|----------------|---------------------|---------------|---------------------|--|
|                | Bartlett      |                     | Parzen         |                     | Tukey         |                     |  |
|                | $\widehat{u}$ | $\widehat{\lambda}$ | $\widehat{u}$  | $\widehat{\lambda}$ | $\widehat{u}$ | $\widehat{\lambda}$ |  |
| Média          | 0,2002        | 0,4090              | 0,2012         | 0,4116              | 0,2007        | 0,4046              |  |
| Vício          | 0,0002        | 0,0090              | 0,0012         | 0,0116              | 0,0007        | 0,0046              |  |
| EQM            | 0,0001        | 0,0024              | 0,0003         | 0,0023              | 0,0007        | 0,0032              |  |
| Var            | 0,0001        | 0,0023              | 0,0002         | 0,0022              | 0,0007        | 0,0032              |  |
|                |               |                     | $\alpha = 1.5$ |                     |               |                     |  |
| Média          | 0,1996        | 0,4105              | 0,2015         | 0,4074              | 0,2022        | 0,4007              |  |
| Vício          | -0,0004       | 0,0105              | 0,0015         | 0,0074              | 0,0022        | 0,0007              |  |
| EQM            | 0,0001        | 0,0023              | 0,0006         | 0,0024              | 0,0009        | 0,0033              |  |
| Var            | 0,0001        | 0,0022              | 0,0006         | 0,0023              | 0,0009        | 0,0033              |  |
|                |               |                     | $\alpha = 1.7$ |                     |               |                     |  |
| Média          | 0,2003        | 0,4050              | 0,2015         | 0,4059              | 0,2008        | 0,3947              |  |
| Vício          | 0,0003        | 0,0050              | 0,0015         | 0,0059              | 0,0008        | -0,0053             |  |
| EQM            | 0,0001        | 0,0024              | 0,0010         | 0,0023              | 0,0008        | 0,0028              |  |
| Var            | 0,0001        | 0,0023              | 0,0010         | 0,0023              | 0,0008        | 0,0028              |  |
| $\alpha = 1.9$ |               |                     |                |                     |               |                     |  |
| Média          | 0,2001        | 0,4015              | 0,1998         | 0,4005              | 0,2040        | 0,3916              |  |
| Vício          | 0,0001        | 0,0015              | -0,0002        | 0,0005              | 0,0040        | -0,0084             |  |
| EQM            | 0,0001        | 0,0021              | 0,0001         | 0,0021              | 0,0023        | 0,0034              |  |
| Var            | 0,0001        | 0,0021              | 0,0001         | 0,0021              | 0,0023        | 0,0033              |  |
| Fonte: Autor.  |               |                     |                |                     |               |                     |  |

As Figuras 3.19 a 3.20 ilustram a convergência das estimativas dos parâmetros u e  $\lambda$  para o estimador MCMC, que confirmam os bons resultados obtidos no trabalho de simulação.



Figura 3.19: Gráficos de convergência das estimativas do parâmetro u quando utilizado o estimador MCMC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$  (a)  $\alpha = 1.3$  (b)  $\alpha = 1.5$  (c)  $\alpha = 1.7$  (d)  $\alpha = 1.9$ .



Figura 3.20: Gráficos de convergência das estimativas do parâmetro  $\lambda$  quando utilizado o estimador MCMC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$  (a)  $\alpha = 1.3$  (b)  $\alpha = 1.5$  (c)  $\alpha = 1.7$  (d)  $\alpha = 1.9$ .

As figuras 3.21 a 3.28 ilustram a convergência das estimativas obtidas para os parâmetros  $u \in \lambda$  quando utilizado o estimador MCMCPS, com  $m \in \{1, 2, 3, 4\}$ ,  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , para cada uma das janelas espectrais utilizadas. É possível confirmar o bom desempenho dos estimadores através da convergência dos valores que ficam próximos do valor real do parâmetro.



Figura 3.21: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador MCMCPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 1 para as janelas espectrais de Bartlett, Parzen e Tukey.



Figura 3.22: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador MCMCPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 1 para as janelas espectrais de Bartlett, Parzen e Tukey.



Figura 3.23: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador MCMCPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 2 para as janelas espectrais de Bartlett, Parzen e Tukey.



Figura 3.24: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador MCMCPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 2 para as janelas espectrais de Bartlett, Parzen e Tukey.



Figura 3.25: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador MCMCPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 3 para as janelas espectrais de Bartlett, Parzen e Tukey.



Figura 3.26: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador MCMCPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 3 para as janelas espectrais de Bartlett, Parzen e Tukey.



Figura 3.27: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador MCMCPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 4 para as janelas espectrais de Bartlett, Parzen e Tukey.



Figura 3.28: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador MCMCPS para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e m = 4 para as janelas espectrais de Bartlett, Parzen e Tukey.

Fonte: O Autor.

As figuras 3.29 a 3.36 ilustram a convergência das estimativas obtidas para os parâmetros  $u \in \lambda$  quando utilizado o estimador MCMCPSC, onde  $m_n = n^\beta \operatorname{com} \beta \in \{0.8, 0.85, 0.9, 0.95\}, \alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , para cada uma das janelas de suavização

utilizadas. Estas imagens corroboram o resultado ilustrado nas tabelas, uma vez que podemos visualizar em que casos a convergência para os valores reais dos parâmetros se dá rapidamente.



Figura 3.29: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador MCMCPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.8$  para as janelas de suavização de Bartlett, Parzen e Tukey.

Fonte: O Autor.



Figura 3.30: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador MCMCPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.8$  para as janelas de suavização de Bartlett, Parzen e Tukey.

66



Figura 3.31: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador MCMCPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.85$  para as janelas de suavização de Bartlett, Parzen e Tukey.



Figura 3.32: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador MCMCPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.85$  para as janelas de suavização de Bartlett, Parzen e Tukey.



Figura 3.33: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador MCMCPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.9$  para as janelas de suavização de Bartlett, Parzen e Tukey.



Figura 3.34: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador MCMCPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.9$  para as janelas de suavização de Bartlett, Parzen e Tukey.



Figura 3.35: Gráficos de convergência das estimativas para o parâmetro u quando utilizado o estimador MCMCPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.95$  para as janelas de suavização de Bartlett, Parzen e Tukey.



Figura 3.36: Gráficos de convergência das estimativas para o parâmetro  $\lambda$  quando utilizado o estimador MCMCPSC para  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , (por linha), e  $\beta = 0.95$  para as janelas de suavização de Bartlett, Parzen e Tukey.

## 4 Conclusões

Neste trabalho, apresentamos primeiramente alguns resultados teóricos já obtidos anteriormente por Diongue e Ndongo (2016), que tratam do processo k-Factor GARMA  $(p, u, \lambda, q)$  com inovações  $\alpha$ -estáveis. Além disso, definimos algumas funções periodogramas, onde destacamos o uso da função poder de transferência, bem como as janelas de suavização, janelas espectrais e estimadores propostos. Todas essas definições foram essenciais para justificar as aplicações realizadas no desenvolvimento das simulações de Monte Carlo.

Os estimadores propostos e utilizados nas simulações de Monte Carlo foram verificados quanto suas propriedades e condições, a fim de realizar as aplicações de acordo com o que já foi anteriormente definido pelos autores referenciados. Desta forma, concluímos que o uso da Janela de Suavização de Tukey e da Janela Espectral de Daniell não poderiam ser utilizadas pois seu uso traria a possibilidade de obtenção de resultados negativos. Propomos então, a utilização dos estimadores KT, KTPS, KTPSC, MCMC, MCMCPS, MCMCPSC, devidamente definidos na Seção 2.3.

Os estimadores KT e MCMC foram estendidos para utilização nos processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ , uma vez que ambos foram propostos anteriormente para utilização em outros processos com variância infinita. Já os estimadores KTPS, KTPSC, MCMCPS e MCMCPSC foram adaptados, ao trocarmos a função periodograma normalizado utilizada nos estimadores tradicionais pelo periodograma normalizado suavizado e pelo periodograma suavizado de correlações. O objetivo desta mudança era verificar o comportamento das estimativas obtidas de acordo com a função periodograma utilizada e seus métodos de suavização através das janelas espectrais e de suavização.

Realizamos diversas simulações de Monte Carlo variando parâmetros da distribuição das inovações, que seguem distribuição  $\alpha$ -estável, com  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ . Para a função periodograma suavizado, usamos  $m \in \{1, 2, 3, 4\}$ , e as janelas espectrais de Bartlett, Daniel e Parzen. Para a função periodograma suavizado de correlação usamos  $m_n = n^{\beta}$ , com  $\beta \in \{0.8, 0.85, 0.9, 0.95\}$ , e as janelas de suavização de Bartlett, Parzen e Tukey-Hanning. Geramos processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ , com tamanho amostral n = 1000, re = 1000 replicações,  $k \in \{1, 2\}$ , p = 0 = q,  $u \in \{0.2, 0.8\}$  e  $\lambda \in \{0.2, 0.4\}$ , sendo estes dois últimos parâmetros os que estávamos interessados em estimar.

Nos resultados das estimações para os processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ , quando se tratando do parâmetro u quando temos k = 1, todos os estimadores obtiveram bons resultados, com valores baixos de vício, erro quadrático médio e variância. No caso do estimador KTPS, em sete ocasiões o valor do parâmetro foi

estimado com exatidão, sendo a maioria delas ocorridas quando utilizada a Janela de Bartlett. Já para o parâmetro  $\lambda$ , as estimativas não foram tão próximas de forma geral, mas também apresentam valores baixos de vício, erro quadrático médio e variância. Este estimador apresentou tendência de aumento nos valores do vício, erro quadrático médio e variância à medida que aumentamos o valor de m.

O estimador KTPSC também apresentou estimativas do parâmetro u exatas em cinco ocasiões, sendo a maioria delas ocorridas quando utilizada a Janela de Tukey. De forma geral, as estimativas deste parâmetro foram bem parecidas com as obtidas com o estimador KTPS. Já para o parâmetro  $\lambda$  as estimativas tiveram valores de vício, erro quadrático médio e variância parecidos com os do estimador anterior. A Janela de Tukey foi a que obteve melhores resultados para ambos os parâmetros.

De forma geral, para os estimadores KT, KTPS e KTPSC, as estimativas para o parâmetro u são subestimadas na maioria das vezes, enquanto as estimativas para  $\lambda$  são superestimadas. Podemos dizer que o vício do parâmetro u é parcialmente compensado pelo vício do parâmetro  $\lambda$ , embora este último apresente valores relativamente maiores. Esse comportamento é ilustrado pelos gráficos de convergência apresentados nas figuras do Capítulo 3.

Quanto aos estimadores MCMC, MCMCPS e MCMCPSC, o comportamento das estimativas para ambos os parâmetros do processo são parecidos aos registrados pelos estimadores anteriores. Os estimadores apresentam, em média, bons resultados para as estimativas de u, com baixos valores de vício, erro quadrático médio e variância. Para o parâmetro  $\lambda$ , as estimativas não são tão próximas, porém, tão aceitáveis quanto às obtidas anteriormente. Quando utilizado o estimador MCMC, o mesmo obteve estimativa, em média, igual ao verdadeiro valor do parâmetro uquando  $\alpha = 1.3$ . Para o mesmo parâmetro, este comportamento foi registrado também quando utilizado o estimador MCMCPS com  $\alpha = 1.3$ , utilizando a Janela de Bartlett, com m = 1. A mesma Janela apresentou estimativa exata quando m = 2e  $\alpha = 1.5$ . O mesmo caso ocorreu para a Janela de Parzen quando  $m = 4 \text{ e } \alpha = 1.3$ , e para a Janela de Tukev quando  $m = 3 e \alpha = 1.9$ . Para o parâmetro  $\lambda$ , somente em um dos casos o estimador obteve o valor igual ao do verdadeiro parâmetro, quando  $m = 4 e \alpha = 1.5$ , utilizando a Janela de Parzen. Ao verificarmos os resultados do estimador MCMCPSC, a exatidão nas estimativas ocorre quando utilizada a Janela de Bartlett,  $\alpha = 1.5$ , quando temos  $\beta = 0.8$  e  $\beta = 0.9$ .

Para o parâmetro u, os estimadores MCMC, MCMCPS e MCMCPSC tiveram desempenhos muito parecidos com os anteriores. Nos resultados do estimador MCMCPS, a maior diferença que podemos notar quanto a este parâmetro se dá nos resultados obtidos através da utilização da Janela de Bartlett, que parecem apresentar vício, erro quadrático médio e variância maiores ao utilizarmos o parâmetro  $\alpha = 1.9$ , enquanto todos os demais resultados são bastante homogêneos. Para o parâmetro  $\lambda$ , as estimativas são melhores quando temos valores menores de m. Quando temos valores mais baixos de m, a tendência do estimador é superestimar o valor do parâmetro, situação que se inverte ao utilizarmos valores maiores de m.

Ao utilizar o estimador MCMCPSC, os valores obtidos para o parâmetro  $\lambda$  com a Janela de Tukey são consideravelmente menores que os demais para valores baixos de  $\alpha$  e maiores valores de  $\beta$ . As estimativas de  $\lambda$  obtidas através da Janela de Tukey são melhores, ou seja, apresentam menor vício, erro quadrático médio e variância em três dos quatro cenários simulados. Já as estimativas para u são praticamente iguais em todos os casos, com excessão do último cenário, quando a Janela de Parzen apresentou estimativas piores que as obtidas para os valores menores de  $\beta$ .

Nos resultados das estimações para os processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ , quando se tratando do parâmetro  $\boldsymbol{u}$  quando temos k = 2, apresentados no Apêndice A, os resultados são muito parecidos com os obtidos para os processos com k = 1, embora menos precisos. Os valores de vício, erro quadrático médio e variância continuam relativamente pequenos para ambos os estimadores e as diferenças em relação ao janelamento realizado é bem semelhante.

Desta forma, os novos estimadores propostos neste trabalho (KTPS, KTPSC, MCMCPS e MCMCPSC), têm desempenho tão bom quanto os já existentes na literatura e que já foram utilizados para estimar parâmetros em processos com variância infinita, na estimativa dos parâmetros de processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  nas condições que são tratadas durante o desenvolvimento desta monografia. Desta forma, além de trabalhar com processos que possuam variância infinita, é possível estimar de forma eficiente os parâmetros  $u \in \lambda$  destes processos utilizando os estimadores propostos neste trabalho.
## **Referências Bibliográficas**

- Bartlett, M. S. (1950). Periodogram analysis and continuous spectra. *Biometrika*, 37(1/2):1–16.
- Blackman, R. B. e Tukey, J. W. (1958). The measurement of power spectra.
- Brockwell, P. J. e Davis, R. A. (2013). *Time series: theory and methods*. Springer Science & Business Media.
- Diongue, A. K., Diop, A., e Ndongo, M. (2008). Seasonal fractional arima with stable innovations. *Statistics & Probability Letters*, 78(12):1404–1411.
- Diongue, A. K. e Ndongo, M. (2016). The k-factor garma process with infinite variance innovations. *Communications in Statistics-Simulation and Computation*, 45(2):420–437.
- Ferrara, L. e Guegan, D. (2001). Forecasting with k-factor gegenbauer processes: Theory and applications. *Journal of Forecasting*, 20(8):581–601.
- Gilks, W. R., Roberts, G. O., e Sahu, S. K. (1998). Adaptive markov chain monte carlo through regeneration. *Journal of the American statistical association*, 93(443):1045–1054.
- Giraitis, L. e Leipus, R. (1995). A generalized fractionally differencing approach in long-memory modeling. *Lithuanian Mathematical Journal*, 35(1):53–65.
- Gray, H. L., Zhang, N.-F., e Woodward, W. A. (1989). On generalized fractional processes. Journal of Time Series Analysis, 10(3):233–257.
- Klüppelberg, C. e Mikosch, T. (1994). Some limit theory for the self-normalised periodogram of stable processes. *Scandinavian Journal of Statistics*, pages 485– 491.
- Kokoszka, P. e Taqqu, M. (1999). Discrete time parametric models with long memory and infinite variance. *Mathematical and computer modelling*, 29(10):203–215.
- Kokoszka, P. S. e Taqqu, M. S. (1994). Infinite variance stable arma processes. Journal of Time Series Analysis, 15(2):203–220.
- Kokoszka, P. S. e Taqqu, M. S. (1995). Fractional arima with stable innovations. Stochastic processes and their applications, 60(1):19–47.

- Ndongo, M., Diongue, A. K., Diop, A., e Dossou-Gbété, S. (2010). Estimation of long-memory parameters for seasonal fractional arima with stable innovations. *Statistical Methodology*, 7(2):141–151.
- Parzen, E. (1961). Mathematical considerations in the estimation of spectra. Technometrics, 3(2):167–190.
- Siqueira, G. L. (2003). Estimação das respostas do canal real de propagação rádiomóvel nos domínios espacial e temporal. PhD thesis, PUC-Rio.
- Stein, J. (2012). Estimação em processos com longa dependência, sazonalidade e inovações normais ou α-estáveis. Dissertação de Mestrado. Porto Alegre: UFRGS.
- Wei, W. (2006). Time series analysis: univariate and multivariate analysis.
- Woodward, W. A., Cheng, Q. C., e Gray, H. L. (1998). A k-factor garma longmemory model. *Journal of time series analysis*, 19(4):485–504.

## ApêndiceA

As tabelas a seguir apresentam os resultados das simulações de Monte Carlo envolvendo os processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  (ver Definição 3) com k = 2 para os estimadores KT, KTPS, KTPSC, MCMCPS e MCMCPSC. Assim como no Capítulo 3, as simulações envolvem gerar séries temporais com a característica de longa dependência e variância infinita e estimação dos parâmetros dos modelos a serem ajustados a estas séries. Para gerarmos realizações dos processos k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  utilizamos a representação média móvel infinita (ver expressão (2.11)) com apropriado ponto de truncamento.

Por ser um processo complexo, este ponto de truncamento da expressão em (2.11) deve ser muito grande. Gray et al. (1989) utilizam a representação média móvel infinita dos processos Gegenbauer (quando k = 1 e p = 0 = q) para gerar realizações dos mesmos, truncando a representação em 290000 valores. Esta forma de gerar as realizações de um processo estocástico consome muito tempo computacional e a precisão depende de quanto rápido os coeficientes da representação média móvel infinita convergem à zero. Neste trabalho truncamos a representação média móvel infinita em 5000.

|       |                            | $\alpha =$      | 1.3                   |                       |                 | $\alpha$ =      | = 1.5                 |                       |  |  |
|-------|----------------------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|--|--|
|       | $\widehat{u}_1$            | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |  |  |
| Média | 0,1996                     | 0,8006          | 0,1887                | 0,4172                | 0,2004          | 0,8003          | 0,1889                | 0,4088                |  |  |
| Vício | -0,0004                    | 0,0006          | -0,0113               | 0,0172                | 0,0004          | 0,0003          | -0,0111               | 0,0088                |  |  |
| EQM   | 0,0006 0,0000 0,0006 0,001 |                 |                       |                       | 0,0002          | 0,0000          | 0,0006                | 0,0007                |  |  |
| Var   | 0,0006                     | 0,0000          | 0,0005                | 0,0010                | 0,0002          | 0,0000          | 0,0005                | 0,0007                |  |  |
|       |                            | $\alpha =$      | 1.7                   |                       | $\alpha = 1.9$  |                 |                       |                       |  |  |
| Média | 0, 1999                    | 0,8001          | 0,1875                | 0,4053                | 0,1981          | 0,8002          | 0,1656                | 0,3791                |  |  |
| Vício | -0,0001                    | 0,0001          | -0,0125               | 0,0053                | -0,0019         | 0,0002          | -0,0344               | -0,0209               |  |  |
| EQM   | 0,0005                     | 0,0000          | 0,0008                | 0,0006                | 0,0005          | 0,0000          | 0,0018                | 0,0009                |  |  |
| Var   | 0,0005                     | 0,0000          | 0,0006                | 0,0006                | 0,0005          | 0,0000          | 0,0006                | 0,0005                |  |  |

Tabela A.1: Resultado da estimação com o estimador KT para o processo k-Factor GARMA( $p, \boldsymbol{u}, \boldsymbol{\lambda}, q$ ) –  $S\alpha S$  quando  $p = 0 = q, k = 2, \boldsymbol{u} = (0.2, 0.8), \boldsymbol{\lambda} = (0.2, 0.4), \alpha \in \{1.3, 1.5, 1.7, 1.9\}.$ 

|       |                 |                 |                       |                       | <u> </u>        | $\alpha = 1.3$  |                       |                       |                 |                 |                       |                       |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|
|       |                 | Bar             | tlett                 |                       |                 | Dar             | niell                 |                       |                 | Par             | zen                   |                       |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |
| Média | 0,2013          | 0,8004          | 0,1900                | 0,4159                | 0,1996          | 0,8004          | 0,1880                | 0,4153                | 0,2003          | 0,8003          | 0,1897                | 0,4162                |
| Vício | 0,0013          | 0,0004          | -0,0100               | 0,0159                | -0,0004         | 0,0004          | -0,0120               | 0,0153                | 0,0003          | 0,0003          | -0,0103               | 0,0162                |
| EQM   | 0,0010          | 0,0000          | 0,0006                | 0,0013                | 0,0002          | 0,0000          | 0,0006                | 0,0012                | 0,0003          | 0,0000          | 0,0006                | 0,0013                |
| Var   | 0,0010          | 0,0000          | 0,0005                | 0,0010                | 0,0002          | 0,0000          | 0,0005                | 0,0010                | 0,0004          | 0,0000          | 0,0005                | 0,0010                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.5$  |                       |                       | ·               |                 |                       |                       |
| Média | 0, 1997         | 0,8004          | 0,1900                | 0,4105                | 0,1999          | 0,8002          | $0,\!1898$            | 0,4089                | 0,2004          | 0,8003          | $0,\!1885$            | 0,4083                |
| Vício | -0,0003         | 0,0004          | -0,0100               | 0,0105                | -0,0001         | 0,0002          | -0,0102               | 0,0089                | 0,0004          | 0,0003          | -0,0115               | 0,0083                |
| EQM   | 0,0003          | 0,0000          | 0,0006                | 0,0008                | 0,0004          | 0,0000          | 0,0006                | 0,0007                | 0,0005          | 0,0000          | 0,0006                | 0,0008                |
| Var   | 0,0003          | 0,0000          | 0,0005                | 0,0007                | 0,0004          | 0,0000          | 0,0005                | 0,0006                | 0,0005          | 0,0000          | 0,0005                | 0,0007                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |
| Média | 0,1987          | 0,8003          | 0,1891                | 0,4043                | 0,1992          | 0,8003          | $0,\!1888$            | 0,4053                | 0,1992          | 0,8003          | $0,\!1889$            | 0,4067                |
| Vício | -0,0013         | 0,0003          | -0,0109               | 0,0043                | -0,0008         | 0,0003          | -0,0112               | 0,0053                | -0,0008         | 0,0003          | -0,0111               | 0,0067                |
| EQM   | 0,0004          | 0,0000          | 0,0007                | 0,0004                | 0,0004          | 0,0000          | 0,0007                | 0,0005                | 0,0003          | 0,0000          | 0,0007                | 0,0006                |
| Var   | 0,0004          | 0,0000          | 0,0006                | 0,0004                | 0,0004          | 0,0000          | 0,0006                | 0,0005                | 0,0003          | 0,0000          | 0,0006                | 0,0005                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |
| Média | 0,2007          | 0,8001          | 0,1892                | 0,4027                | 0, 1999         | 0,8003          | 0, 1899               | 0,4036                | 0,1997          | 0,8002          | 0,1890                | 0,4028                |
| Vício | 0,0007          | 0,0001          | -0,0108               | 0,0027                | -0,0001         | 0,0003          | -0,0101               | 0,0036                | -0,0003         | 0,0002          | -0,0110               | 0,0028                |
| EQM   | 0,0004          | 0,0000          | 0,0007                | 0,0004                | 0,0003          | 0,0000          | 0,0007                | 0,0004                | 0,0004          | 0,0000          | 0,0007                | 0,0004                |
| Var   | 0,0004          | 0,0000          | 0,0006                | 0,0004                | 0,0003          | 0,0000          | 0,0006                | 0,0004                | 0,0004          | 0,0000          | 0,0006                | 0,0004                |

Tabela A.2: Resultado da estimação com o estimador KTPS para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando p = 0 = q, k = 2,  $\boldsymbol{u} = (0.2, 0.8)$ ,  $\boldsymbol{\lambda} = (0.2, 0.4)$ ,  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , m = 1, para as janelas espectrais de Bartlett, Daniell e Parzen.

|       | ( , , , , , ,   |                 |                       |                       | · <b>·</b>      | $\alpha = 1.3$  |                       | -                     |                 | ,               |                       |                       |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|
|       |                 | Bar             | tlett                 |                       |                 | Dai             | niell                 |                       |                 | Par             | rzen                  |                       |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |
| Média | 0,1994          | 0,8004          | 0,1892                | 0,4158                | 0,2004          | 0,8004          | 0,1913                | 0,4143                | 0,2016          | 0,8006          | 0,1909                | 0,4166                |
| Vício | -0,0006         | 0,0004          | -0,0108               | 0,0158                | 0,0004          | 0,0004          | -0,0087               | 0,0143                | 0,0016          | 0,0006          | -0,0091               | 0,0166                |
| EQM   | 0,0002          | 0,0000          | 0,0005                | 0,0012                | 0,0006          | 0,0000          | 0,0005                | 0,0012                | 0,0007          | 0,0000          | 0,0006                | 0,0013                |
| Var   | 0,0002          | 0,0000          | 0,0004                | 0,0010                | 0,0006          | 0,0000          | 0,0005                | 0,0010                | 0,0007          | 0,0000          | 0,0005                | 0,0010                |
|       | ·               | •               | ·                     |                       | ·               | $\alpha = 1.5$  | ·                     |                       |                 |                 |                       |                       |
| Média | 0,1998          | 0,8003          | 0,1893                | 0,4109                | 0,1989          | 0,8004          | 0,1903                | 0,4107                | 0, 1997         | 0,8006          | 0,1910                | 0,4105                |
| Vício | -0,0002         | 0,0003          | -0,0107               | 0,0109                | -0,0011         | 0,0004          | -0,0097               | 0,0107                | -0,0003         | 0,0006          | -0,0090               | 0,0105                |
| EQM   | 0,0002          | 0,0000          | 0,0007                | 0,0008                | 0,0003          | 0,0000          | 0,0006                | 0,0008                | 0,0006          | 0,0000          | 0,0005                | 0,0008                |
| Var   | 0,0002          | 0,0000          | 0,0006                | 0,0007                | 0,0003          | 0,0000          | 0,0005                | 0,0006                | 0,0006          | 0,0000          | 0,0004                | 0,0007                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |
| Média | 0,2004          | 0,8003          | 0,1888                | 0,4074                | 0, 1999         | 0,8003          | 0,1888                | 0,4072                | 0,1996          | 0,8003          | 0,1899                | 0,4058                |
| Vício | 0,0004          | 0,0003          | -0,0112               | 0,0074                | -0,0001         | 0,0003          | -0,0112               | 0,0072                | -0,0004         | 0,0003          | -0,0101               | 0,0058                |
| EQM   | 0,0004          | 0,0000          | 0,0007                | 0,0006                | 0,0004          | 0,0000          | 0,0007                | 0,0006                | 0,0004          | 0,0000          | 0,0006                | 0,0005                |
| Var   | 0,0004          | 0,0000          | 0,0005                | 0,0006                | 0,0004          | 0,0000          | 0,0006                | 0,0006                | 0,0004          | 0,0000          | 0,0005                | 0,0005                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |
| Média | 0,1996          | 0,8001          | 0,1880                | 0,4039                | 0,1993          | 0,8003          | 0,1901                | 0,4039                | 0,1994          | 0,8002          | 0,1902                | 0,4039                |
| Vício | -0,0004         | 0,0001          | -0,0120               | 0,0039                | -0,0007         | 0,0003          | -0,0099               | 0,0039                | -0,0006         | 0,0002          | -0,0098               | 0,0039                |
| EQM   | 0,0004          | 0,0000          | 0,0007                | 0,0004                | 0,0004          | 0,0000          | 0,0007                | $0,000\overline{4}$   | 0,0004          | 0,0000          | 0,0007                | $0,000\overline{4}$   |
| Var   | 0,0004          | 0,0000          | 0,0006                | 0,0004                | 0,0004          | 0,0000          | 0,0006                | 0,0004                | 0,0004          | 0,0000          | 0,0006                | 0,0004                |

Tabela A.3: Resultado da estimação com o estimador KTPS para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando p = 0 = q, k = 2,  $\boldsymbol{u} = (0.2, 0.8)$ ,  $\boldsymbol{\lambda} = (0.2, 0.4)$ ,  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , m = 2, para as janelas espectrais de Bartlett, Daniell e Parzen.

 $^{78}$ 

|       | <u> </u>        |                 | (                 | , ,                   | · <b>·</b>      | $\alpha = 1.3$  |                       | -                     |                 | ,               |                       |                       |
|-------|-----------------|-----------------|-------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|
|       |                 | Bar             | tlett             |                       |                 | Da              | niel                  |                       |                 | Par             | zen                   |                       |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\hat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |
| Média | 0,2014          | 0,8006          | 0,1916            | 0,4158                | 0,2014          | 0,8005          | 0,1930                | 0,4149                | 0,2009          | 0,8005          | 0,1910                | 0,4149                |
| Vício | 0,0014          | 0,0006          | -0,0084           | 0,0158                | 0,0014          | 0,0005          | -0,0070               | 0,0149                | 0,0009          | 0,0005          | -0,0090               | 0,0149                |
| EQM   | 0,0013          | 0,0000          | 0,0006            | 0,0013                | 0,0010          | 0,0000          | 0,0006                | 0,0011                | 0,0007          | 0,0000          | 0,0005                | 0,0012                |
| Var   | 0,0013          | 0,0000          | 0,0005            | 0,0010                | 0,0010          | 0,0000          | 0,0005                | 0,0009                | 0,0007          | 0,0000          | 0,0004                | 0,0010                |
|       |                 |                 |                   |                       | _               | $\alpha = 1.5$  |                       |                       |                 |                 |                       |                       |
| Média | 0,1992          | 0,8003          | 0, 1927           | 0,4098                | 0,2001          | 0,8004          | 0,1916                | 0,4096                | 0,2002          | 0,8003          | 0,1902                | 0,4112                |
| Vício | -0,0008         | 0,0003          | -0,0073           | 0,0098                | 0,0001          | 0,0004          | -0,0084               | 0,0096                | 0,0002          | 0,0003          | -0,0098               | 0,0112                |
| EQM   | 0,0004          | 0,0000          | 0,0006            | 0,0008                | 0,0002          | 0,0000          | 0,0006                | 0,0008                | 0,0004          | 0,0000          | 0,0006                | 0,0008                |
| Var   | 0,0004          | 0,0000          | 0,0005            | 0,0007                | 0,0002          | 0,0000          | 0,0005                | 0,0007                | 0,0004          | 0,0000          | 0,0005                | 0,0007                |
|       |                 |                 |                   |                       |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |
| Média | 0,1996          | 0,8004          | 0,1895            | 0,4065                | 0,1998          | 0,8001          | $0,\!1906$            | 0,4062                | 0,1985          | 0,8002          | $0,\!1897$            | 0,4069                |
| Vício | -0,0004         | 0,0004          | -0,0105           | 0,0065                | -0,0002         | 0,0001          | -0,0094               | 0,0062                | -0,0015         | 0,0002          | -0,0103               | 0,0069                |
| EQM   | 0,0004          | 0,0000          | 0,0007            | 0,0006                | 0,0004          | 0,0000          | 0,0007                | 0,0005                | 0,0005          | 0,0000          | 0,0007                | 0,0006                |
| Var   | 0,0004          | 0,0000          | 0,0006            | 0,0005                | 0,0004          | 0,0000          | 0,0006                | 0,0005                | 0,0005          | 0,0000          | 0,0006                | 0,0005                |
|       |                 |                 |                   |                       |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |
| Média | 0,2014          | 0,8002          | 0,1897            | 0,4031                | 0,1997          | 0,8002          | 0,1903                | 0,4053                | 0,2005          | 0,8002          | 0,1904                | 0,4031                |
| Vício | 0,0014          | 0,0002          | -0,0103           | 0,0031                | -0,0003         | 0,0002          | -0,0097               | 0,0053                | 0,0005          | 0,0002          | -0,0096               | 0,0031                |
| EQM   | 0,0005          | 0,0000          | 0,0007            | 0,0004                | 0,0004          | 0,0000          | 0,0007                | 0,0004                | 0,0004          | 0,0000          | 0,0007                | 0,0004                |
| Var   | 0,0005          | 0,0000          | 0,0006            | 0,0004                | 0,0004          | 0,0000          | 0,0006                | 0,0004                | 0,0004          | 0,0000          | 0,0006                | 0,0004                |

Tabela A.4: Resultado da estimação com o estimador KTPS para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando p = 0 = q, k = 2,  $\boldsymbol{u} = (0.2, 0.8)$ ,  $\boldsymbol{\lambda} = (0.2, 0.4)$ ,  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , m = 3, para as janelas espectrais de Bartlett, Daniell e Parzen.

| ,     | <u> </u>        | ( )             | // t                  | , ,                   | , <b>,</b> ,    | $\alpha = 1.3$  | 5                     | 1                     |                 | ,               |                       |                       |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|
|       |                 | Bar             | tlett                 |                       |                 | Dai             | niell                 |                       |                 | Par             | zen                   |                       |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |
| Média | 0,2006          | 0,8005          | 0,1905                | 0,4154                | 0,2012          | 0,8004          | 0,1927                | 0,4160                | 0,1987          | 0,8003          | 0,1901                | 0,4166                |
| Vício | 0,0006          | 0,0005          | -0,0095               | 0,0154                | 0,0012          | 0,0004          | -0,0073               | 0,0160                | -0,0013         | 0,0003          | -0,0099               | 0,0166                |
| EQM   | 0,0005          | 0,0000          | 0,0005                | 0,0012                | 0,0012          | 0,0000          | 0,0005                | 0,0012                | 0,0003          | 0,0000          | 0,0005                | 0,0012                |
| Var   | 0,0005          | 0,0000          | 0,0004                | 0,0010                | 0,0012          | 0,0000          | 0,0005                | 0,0009                | 0,0003          | 0,0000          | 0,0004                | 0,0009                |
|       | ·               |                 | ·                     |                       | ·               | $\alpha = 1.5$  | ·                     |                       | ·               |                 |                       |                       |
| Média | 0,1994          | 0,8002          | 0,1916                | 0,4095                | 0,1995          | 0,8003          | 0,1940                | 0,4116                | 0,1993          | 0,8004          | 0,1908                | 0,4090                |
| Vício | -0,0006         | 0,0002          | -0,0084               | 0,0095                | -0,0005         | 0,0003          | -0,0060               | 0,0116                | -0,0007         | 0,0004          | -0,0092               | 0,0090                |
| EQM   | 0,0003          | 0,0000          | 0,0006                | 0,0008                | 0,0004          | 0,0000          | 0,0005                | 0,0007                | 0,0004          | 0,0000          | 0,0006                | 0,0007                |
| Var   | 0,0003          | 0,0000          | 0,0005                | 0,0007                | 0,0004          | 0,0000          | 0,0005                | 0,0006                | 0,0004          | 0,0000          | 0,0005                | 0,0006                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |
| Média | 0,2004          | 0,8004          | 0,1907                | 0,4069                | 0,1993          | 0,8002          | 0,1906                | 0,4071                | 0,1998          | 0,8002          | 0,1902                | 0,4060                |
| Vício | 0,0004          | 0,0004          | -0,0093               | 0,0069                | -0,0007         | 0,0002          | -0,0094               | 0,0071                | -0,0002         | 0,0002          | -0,0098               | 0,0060                |
| EQM   | 0,0003          | 0,0000          | 0,0007                | 0,0006                | 0,0005          | 0,0000          | 0,0007                | 0,0006                | 0,0004          | 0,0000          | 0,0006                | 0,0005                |
| Var   | 0,0003          | 0,0000          | 0,0006                | 0,0005                | 0,0005          | 0,0000          | 0,0006                | 0,0005                | 0,0004          | 0,0000          | 0,0005                | 0,0005                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |
| Média | 0,1988          | 0,8002          | 0,1893                | 0,4043                | 0,1993          | 0,8000          | 0,1919                | 0,4046                | 0,1995          | 0,8003          | 0, 1912               | 0,4030                |
| Vício | -0,0012         | 0,0002          | -0,0107               | $0,004\overline{3}$   | -0,0007         | 0,0000          | -0,0081               | 0,0046                | -0,0005         | 0,0003          | -0,0088               | 0,0030                |
| EQM   | 0,0004          | 0,0000          | 0,0007                | 0,0004                | 0,0004          | 0,0000          | 0,0006                | 0,0005                | 0,0004          | 0,0000          | 0,0007                | 0,0004                |
| Var   | 0,0004          | 0,0000          | 0,0006                | 0,0004                | 0,0004          | 0,0000          | 0,0006                | 0,0004                | 0,0004          | 0,0000          | 0,0006                | 0,0004                |

Tabela A.5: Resultado da estimação com o estimador KTPS para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando p = 0 = q, k = 2,  $\boldsymbol{u} = (0.2, 0.8)$ ,  $\boldsymbol{\lambda} = (0.2, 0.4)$ ,  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , m = 4, para as janelas espectrais de Bartlett, Daniell e Parzen.

| Tabela A.6: | Resultado da            | estimação com o               | ) estimador KT        | PSC para o             | processo i   | k-Factor GA       | $\operatorname{ARMA}(p, \boldsymbol{u},$ | $\boldsymbol{\lambda}, q) - S \alpha S$ | quando $p$ | = 0 = q,  |
|-------------|-------------------------|-------------------------------|-----------------------|------------------------|--------------|-------------------|------------------------------------------|-----------------------------------------|------------|-----------|
| k = 2,  u = | $(0.2, 0.8), \lambda =$ | $(0.2, 0.4), \alpha \in \{1.$ | $3, 1.5, 1.7, 1.9\},$ | $m_n = n^{\beta}$ , se | endo $n = 1$ | $000 e \beta = 0$ | ).8 para as ja                           | anelas de suav                          | vização de | Bartlett, |
| Parzen e Tu | ıkey.                   |                               |                       |                        |              |                   |                                          |                                         |            |           |

|       |                 |                 |                       |                       |                 | $\alpha = 1.3$  |                       |                       |                 |                 |                       |                       |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|
|       |                 | Bar             | tlett                 |                       |                 | Par             | zen                   |                       |                 | Tu              | key                   |                       |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |
| Média | 0,2075          | 0,8001          | 0, 1929               | 0,4275                | 0,2083          | 0,8001          | 0,1963                | 0,4293                | 0,1996          | 0,8003          | 0,1955                | 0,4185                |
| Vício | 0,0075          | 0,0001          | -0,0071               | 0,0275                | 0,0083          | 0,0001          | -0,0037               | 0,0293                | -0,0004         | 0,0003          | -0,0045               | 0,0185                |
| EQM   | 0,0049          | 0,0000          | 0,0006                | 0,0018                | 0,0060          | 0,0000          | 0,0008                | 0,0020                | 0,0007          | 0,0000          | 0,0005                | 0,0013                |
| Var   | 0,0048          | 0,0000          | 0,0006                | 0,0011                | 0,0060          | 0,0000          | 0,0008                | 0,0011                | 0,0007          | 0,0000          | 0,0005                | 0,0009                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.5$  |                       |                       |                 |                 |                       |                       |
| Média | 0,2030          | 0,8001          | 0,1913                | 0,4223                | 0,2029          | 0,8000          | 0, 1965               | 0,4221                | 0,2000          | 0,8002          | 0,1937                | 0,4136                |
| Vício | 0,0030          | 0,0001          | -0,0087               | 0,0223                | 0,0029          | 0,0000          | -0,0035               | 0,0221                | 0,0000          | 0,0002          | -0,0063               | 0,0136                |
| EQM   | 0,0029          | 0,0000          | 0,0006                | 0,0014                | 0,0028          | 0,0000          | 0,0007                | 0,0013                | 0,0004          | 0,0000          | 0,0006                | 0,0009                |
| Var   | 0,0029          | 0,0000          | 0,0006                | 0,0009                | 0,0028          | 0,0000          | 0,0007                | 0,0008                | 0,0004          | 0,0000          | 0,0005                | 0,0007                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |
| Média | 0,1984          | 0,7997          | 0,1911                | 0,4163                | 0,1979          | 0,7998          | 0,1940                | 0,4198                | 0,1991          | 0,8001          | 0,1936                | 0,4077                |
| Vício | -0,0016         | -0,0003         | -0,0089               | 0,0163                | -0,0021         | -0,0002         | -0,0060               | 0,0198                | -0,0009         | 0,0001          | -0,0064               | 0,0077                |
| EQM   | 0,0003          | 0,0000          | 0,0007                | 0,0009                | 0,0002          | 0,0000          | 0,0007                | 0,0010                | 0,0003          | 0,0000          | 0,0006                | 0,0001                |
| Var   | 0,0003          | 0,0000          | 0,0006                | 0,0007                | 0,0002          | 0,0000          | 0,0006                | 0,0006                | 0,0003          | 0,0000          | 0,0006                | 0,0005                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |
| Média | 0,1984          | 0,8000          | 0,1909                | 0,4122                | 0,1976          | 0,7999          | 0,1946                | 0,4166                | 0,1995          | 0,8001          | 0,1948                | 0,4061                |
| Vício | -0,0016         | 0,0000          | -0,0091               | 0,0122                | -0,0024         | -0,0001         | -0,0054               | 0,0166                | -0,0005         | 0,0001          | -0,0052               | 0,0061                |
| EQM   | 0,0004          | 0,0000          | 0,0007                | 0,0007                | 0,0005          | 0,0000          | 0,0007                | 0,0008                | 0,0003          | 0,0000          | 0,0006                | 0,0005                |
| Var   | 0,0004          | 0,0000          | 0,0006                | 0,0005                | 0,0005          | 0,0000          | 0,0006                | 0,0005                | 0,0003          | 0,0000          | 0,0006                | 0,0004                |

| Tabela A.7: Re                   | esultado da estimação                    | com o estimador KT             | TPSC para o pro           | cesso k-Factor (    | $	ext{GARMA}(p, oldsymbol{u}, oldsymbol{\lambda}, q)$ - | $-S\alpha S$ quando | p = 0 = q,   |
|----------------------------------|------------------------------------------|--------------------------------|---------------------------|---------------------|---------------------------------------------------------|---------------------|--------------|
| $k = 2,  \boldsymbol{u} = (0.2)$ | $(2, 0.8), \lambda = (0.2, 0.4), \alpha$ | $\in \{1.3, 1.5, 1.7, 1.9\},\$ | $m_n = n^{\beta}$ , sendo | $n=1000$ e $\beta=$ | 0.85 para as janelas                                    | de suavização       | de Bartlett, |
| Parzen e Tukey                   | γ.                                       |                                |                           |                     |                                                         |                     |              |

|       |                 |                 |                       |                       |                 | $\alpha = 1.3$  |                       |                       |                 |                 |                       |                       |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|
|       |                 | Bar             | tlett                 |                       |                 | Par             | zen                   |                       |                 | Tu              | key                   |                       |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |
| Média | 0,2030          | 0,8002          | 0,1936                | 0,4235                | 0,2029          | 0,8003          | 0,1970                | 0,4251                | 0,2004          | 0,8005          | 0,1934                | 0,4160                |
| Vício | 0,0030          | 0,0002          | -0,0064               | 0,0235                | 0,0029          | 0,0003          | -0,0030               | 0,0251                | 0,0004          | 0,0005          | -0,0066               | 0,0160                |
| EQM   | 0,0032          | 0,0000          | 0,0005                | 0,0015                | 0,0027          | 0,0000          | 0,0006                | 0,0017                | 0,0010          | 0,0000          | 0,0006                | 0,0011                |
| Var   | 0,0032          | 0,0000          | 0,0005                | 0,0010                | 0,0026          | 0,0000          | 0,0006                | 0,0011                | 0,0010          | 0,0000          | 0,0006                | 0,0008                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.5$  |                       |                       |                 |                 |                       |                       |
| Média | 0,2011          | 0,8003          | 0,1926                | 0,4168                | 0,2006          | 0,8002          | 0,1978                | 0,4197                | 0,1996          | 0,8003          | 0,1930                | 0,4110                |
| Vício | 0,0011          | 0,0003          | -0,0074               | 0,0168                | 0,0006          | 0,0002          | -0,0022               | 0,0197                | -0,0004         | 0,0003          | -0,0070               | 0,0110                |
| EQM   | 0,0014          | 0,0000          | 0,0007                | 0,0011                | 0,0009          | 0,0000          | 0,0006                | 0,0012                | 0,0007          | 0,0000          | 0,0005                | 0,0007                |
| Var   | 0,0014          | 0,0000          | 0,0006                | 0,0008                | 0,0009          | 0,0000          | 0,0006                | 0,0008                | 0,0007          | 0,0000          | 0,0005                | 0,0006                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |
| Média | 0, 1992         | 0,8002          | 0,1936                | 0,4129                | 0,1987          | 0,8000          | 0,1944                | 0,4151                | 0,1992          | 0,8000          | 0,1918                | 0,4065                |
| Vício | -0,0008         | 0,0002          | -0,0064               | 0,0129                | -0,0013         | 0,0000          | -0,0056               | 0,0151                | -0,0008         | 0,0000          | -0,0082               | 0,0065                |
| EQM   | 0,0006          | 0,0000          | 0,0006                | 0,0007                | 0,0003          | 0,0000          | 0,0006                | 0,0008                | 0,0006          | 0,0000          | 0,0007                | 0,0006                |
| Var   | 0,0006          | 0,0000          | 0,0006                | 0,0006                | 0,0003          | 0,0000          | 0,0006                | 0,0006                | 0,0006          | 0,0000          | 0,0006                | 0,0005                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |
| Média | $0,\!1979$      | 0,7998          | 0,1928                | 0,4111                | 0,1993          | 0,7999          | 0,1941                | 0,4128                | 0,2001          | 0,8001          | 0,1925                | 0,4038                |
| Vício | -0,0021         | -0,0002         | -0,0072               | 0,0111                | -0,0007         | -0,0001         | -0,0059               | 0,0128                | 0,0001          | 0,0001          | -0,0075               | 0,0038                |
| EQM   | 0,0003          | 0,0000          | 0,0008                | 0,0006                | 0,0004          | 0,0000          | 0,0006                | 0,0006                | 0,0005          | 0,0000          | 0,0006                | 0,0004                |
| Var   | 0,0003          | 0,0000          | 0,0007                | 0,0005                | 0,0004          | 0,0000          | 0,0006                | 0,0005                | 0,0005          | 0,0000          | 0,0006                | 0,0004                |

| Tabela A.8:   | Resultado (              | da estimação           | com o estimado:                                          | r KTPSC pa       | ara o process                   | sok-Factor (        | $\operatorname{GARMA}(p, \cdot$ | $oldsymbol{u},oldsymbol{\lambda},q)-Slphaoldsymbol{b}$ | S quando $j$ | p = 0 = q,   |
|---------------|--------------------------|------------------------|----------------------------------------------------------|------------------|---------------------------------|---------------------|---------------------------------|--------------------------------------------------------|--------------|--------------|
| k = 2,  u = 0 | $(0.2, 0.8),  \lambda =$ | $= (0.2, 0.4), \alpha$ | $\in \{1.3, 1.5, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7$ | $1.9\}, m_n = n$ | $\lambda^{\beta}$ , sendo $n =$ | = 1000 e <i>β</i> = | = 0.9 para as                   | s janelas de su                                        | uavização d  | le Bartlett, |
| Parzen e Tu   | key.                     |                        |                                                          |                  |                                 |                     |                                 |                                                        |              |              |

|       |                 |                 |                       |                       |                 | $\alpha = 1.3$  |                       |                       |                 |                 |                       |                       |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|
|       |                 | Bar             | tlett                 |                       |                 | Par             | zen                   |                       |                 | Tu              | key                   |                       |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |
| Média | 0,2038          | 0,8003          | 0,1942                | 0,4228                | 0,2014          | 0,8002          | 0,1997                | 0,4218                | 0,1996          | 0,8006          | 0,1960                | 0,4167                |
| Vício | 0,0038          | 0,0003          | -0,0058               | 0,0228                | 0,0014          | 0,0002          | -0,0003               | 0,0218                | -0,0004         | 0,0006          | -0,0040               | 0,0167                |
| EQM   | 0,0031          | 0,0000          | 0,0006                | 0,0015                | 0,0018          | 0,0000          | 0,0008                | 0,0015                | 0,0006          | 0,0000          | 0,0008                | 0,0012                |
| Var   | 0,0031          | 0,0000          | 0,0005                | 0,0010                | 0,0018          | 0,0000          | 0,0008                | 0,0010                | 0,0006          | 0,0000          | 0,0008                | 0,0009                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.5$  |                       |                       |                 |                 |                       |                       |
| Média | 0,2004          | 0,8003          | 0,1921                | 0,4156                | 0,1991          | 0,8002          | 0,1959                | 0,4174                | 0,1996          | 0,8005          | 0,1928                | 0,4108                |
| Vício | 0,0004          | 0,0003          | -0,0079               | 0,0156                | -0,0009         | 0,0002          | -0,0041               | 0,0174                | -0,0004         | 0,0005          | -0,0072               | 0,0108                |
| EQM   | 0,0012          | 0,0000          | 0,0006                | 0,0011                | 0,0002          | 0,0000          | 0,0006                | 0,0010                | 0,0004          | 0,0000          | 0,0006                | 0,0008                |
| Var   | 0,0012          | 0,0000          | 0,0005                | 0,0008                | 0,0002          | 0,0000          | 0,0006                | 0,0007                | 0,0004          | 0,0000          | 0,0005                | 0,0007                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |
| Média | 0, 1997         | 0,8001          | 0,1917                | 0,4131                | 0,2001          | 0,8001          | 0,1944                | 0,4111                | $0,\!1995$      | 0,8003          | 0,1921                | 0,4059                |
| Vício | -0,0003         | 0,0001          | -0,0083               | 0,0131                | 0,0001          | 0,0001          | -0,0056               | 0,0111                | -0,0005         | 0,0003          | -0,0079               | 0,0059                |
| EQM   | 0,0004          | 0,0000          | 0,0007                | 0,0008                | 0,0004          | 0,0000          | 0,0006                | 0,0007                | 0,0003          | 0,0000          | 0,0007                | 0,0005                |
| Var   | 0,0004          | 0,0000          | 0,0006                | 0,0006                | 0,0004          | 0,0000          | 0,0006                | 0,0005                | 0,0003          | 0,0000          | 0,0006                | 0,0005                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |
| Média | 0,1996          | 0,8002          | 0,1915                | 0,4079                | 0,1996          | 0,7999          | 0,1930                | 0,4099                | 0,1994          | 0,8000          | 0,1912                | 0,4043                |
| Vício | -0,0004         | 0,0002          | -0,0085               | 0,0079                | -0,0004         | -0,0001         | -0,0070               | 0,0099                | -0,0006         | 0,0000          | -0,0088               | 0,0043                |
| EQM   | 0,0003          | 0,0000          | 0,0007                | 0,0005                | 0,0007          | 0,0000          | 0,0007                | 0,0005                | 0,0005          | 0,0000          | 0,0006                | 0,0004                |
| Var   | 0,0003          | 0,0000          | 0,0007                | 0,0004                | 0,0007          | 0,0000          | 0,0007                | 0,0004                | 0,0005          | 0,0000          | 0,0006                | 0,0004                |

| Tabela A.9: Resultado da es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | stimação com o estimador KTPSC                       | para o processo $k$ -Factor (                      | $GARMA(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha$ | S quando $p = 0 = q$ , |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|------------------------|
| $k = 2,  \boldsymbol{u} = (0.2, 0.8),  \boldsymbol{\lambda} = (0.2, 0.8), $ | $(2, 0.4), \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n =$ | = $n^{\beta}$ , sendo $n = 1000 \text{ e} \beta =$ | 0.95 para as janelas de su                                    | uavização de Bartlett, |
| Parzen e Tukey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                                                    |                                                               |                        |

|       | $\alpha = 1.3$  |                 |                       |                       |                 |                 |                       |                       |                 |                 |                       |                       |  |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|--|
|       |                 | Bar             | tlett                 |                       |                 | Par             | zen                   |                       |                 | Tu              | key                   |                       |  |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |  |
| Média | 0,2000          | 0,8004          | 0,1936                | 0,4192                | 0,2015          | 0,8006          | 0, 1959               | 0,4192                | 0,2010          | 0,8004          | 0, 1936               | 0,4155                |  |
| Vício | 0,0000          | 0,0004          | -0,0064               | 0,0192                | 0,0015          | 0,0006          | -0,0041               | 0,0192                | 0,0010          | 0,0004          | -0,0064               | 0,0155                |  |
| EQM   | 0,0006          | 0,0000          | 0,0005                | 0,0013                | 0,0017          | 0,0000          | 0,0005                | 0,0013                | 0,0009          | 0,0000          | 0,0006                | 0,0012                |  |
| Var   | 0,0006          | 0,0000          | 0,0005                | 0,0010                | 0,0017          | 0,0000          | 0,0005                | 0,0009                | 0,0009          | 0,0000          | 0,0006                | 0,0009                |  |
|       |                 |                 |                       |                       |                 | $\alpha = 1.5$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2007          | 0,8005          | 0,1916                | 0,4134                | 0,1995          | 0,8002          | 0,1949                | 0,4149                | 0,2000          | 0,8004          | 0,1923                | 0,4092                |  |
| Vício | 0,0007          | 0,0005          | -0,0084               | 0,0134                | -0,0005         | 0,0002          | -0,0051               | 0,0149                | 0,0000          | 0,0004          | -0,0077               | 0,0092                |  |
| EQM   | 0,0011          | 0,0000          | 0,0006                | 0,0009                | 0,0008          | 0,0008          | 0,0006                | 0,0010                | 0,0007          | 0,0000          | 0,0006                | 0,0007                |  |
| Var   | 0,0011          | 0,0000          | 0,0005                | 0,0007                | 0,0008          | 0,0008          | 0,0006                | 0,0008                | 0,0007          | 0,0000          | 0,0005                | 0,0006                |  |
|       | -               |                 |                       | -                     |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,1988          | 0,8002          | 0,1911                | 0,4113                | 0,1989          | 0,8001          | $0,\!1954$            | 0,4097                | 0,2004          | 0,8006          | 0,1909                | 0,4039                |  |
| Vício | -0,0012         | 0,0002          | -0,0089               | 0,0113                | -0,0011         | 0,0001          | -0,0046               | 0,0097                | 0,0004          | 0,0006          | -0,0091               | 0,0039                |  |
| EQM   | 0,0004          | 0,0000          | 0,0006                | 0,0007                | 0,0003          | 0,0000          | 0,0006                | 0,0006                | 0,0003          | 0,0000          | 0,0006                | 0,0005                |  |
| Var   | 0,0004          | 0,0000          | 0,0005                | 0,0006                | 0,0002          | 0,0000          | 0,0005                | 0,0005                | 0,0003          | 0,0000          | 0,0005                | 0,0005                |  |
|       | -               |                 |                       | -                     |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,1991          | 0,8002          | 0,1911                | 0,4062                | 0,1998          | 0,8002          | 0,1936                | 0,4064                | 0,1987          | 0,8001          | 0,1882                | 0,4028                |  |
| Vício | -0,0009         | 0,0002          | -0,0089               | 0,0062                | -0,0002         | 0,0002          | -0,0064               | 0,0064                | -0,0013         | 0,0001          | -0,0018               | 0,0028                |  |
| EQM   | 0,0005          | 0,0000          | 0,0007                | 0,0005                | 0,0003          | 0,0000          | 0,0006                | 0,0004                | 0,0003          | 0,0000          | 0,0008                | 0,0004                |  |
| Var   | 0,0005          | 0,0000          | 0,0006                | 0,0004                | 0,0003          | 0,0000          | 0,0006                | 0,0004                | 0,0003          | 0,0000          | 0,0006                | 0,0004                |  |

|       |                 | $\alpha =$      | 1.3                   |                       | $\alpha = 1.5$  |                 |                       |                       |  |  |  |  |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|--|--|--|--|
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |  |  |  |  |
| Média | 0,2079          | 0,8003          | 0,1884                | 0,4233                | 0,2061          | 0,8003          | 0,1882                | 0,4193                |  |  |  |  |
| Vício | 0,0079          | 0,0003          | -0,0116               | 0,0233                | 0,0061          | 0,0003          | -0,0118               | 0,0193                |  |  |  |  |
| EQM   | 0,0086          | 0,0001          | 0,0032                | 0,0028                | 0,0056          | 0,0001          | 0,0025                | 0,0023                |  |  |  |  |
| Var   | 0,0086          | 0,0001          | 0,0031                | 0,0022                | 0,0055          | 0,0001          | 0,0023                | 0,0020                |  |  |  |  |
|       |                 | $\alpha =$      | 1.7                   |                       | $\alpha = 1.9$  |                 |                       |                       |  |  |  |  |
| Média | 0,2014          | 0,7999          | 0, 1896               | 0,4152                | 0,2016          | 0,7997          | 0,1862                | 0,4128                |  |  |  |  |
| Vício | 0,0014          | -0,0001         | -0,0104               | 0,0152                | 0,0016          | -0,0003         | -0,0138               | 0,0128                |  |  |  |  |
| EQM   | 0,0026          | 0,0000          | 0,0023                | 0,0020                | 0,0032          | 0,0000          | 0,0023                | 0,0019                |  |  |  |  |
| Var   | 0,0026          | 0,0000          | 0,0022                | 0,0018                | 0,0032          | $0,\!0000$      | 0,0021                | $0,\!0017$            |  |  |  |  |

Tabela A.10: k-Factor GARMA $(p, u, \lambda, q) - S\alpha S$  quando  $p = 0 = q, k = 2, u = (0.2, 0.8), \lambda = (0.2, 0.4), \alpha \in \{1.3, 1.5, 1.7, 1.9\}.$ 

| _,    |                 |                 |                       |                       |                 |                 |                       |                       |                 |                 |                       |                       |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|
|       | 1               |                 |                       |                       |                 | $\alpha = 1.3$  |                       |                       |                 |                 |                       |                       |
|       |                 | Bar             | tlett                 |                       |                 | Par             | zen                   |                       |                 | Tu              | key                   |                       |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |
| Média | 0,2068          | 0,8004          | 0,1935                | 0,4160                | 0,2107          | 0,8013          | 0,1863                | 0,4075                | 0,2142          | 0,8007          | 0,1898                | 0,4087                |
| Vício | 0,0068          | 0,0004          | -0,0065               | 0,0160                | 0,0107          | 0,0013          | -0,0137               | 0,0075                | 0,0142          | 0,0007          | -0,0102               | 0,0087                |
| EQM   | 0,0061          | 0,0000          | 0,0031                | 0,0023                | 0,0079          | 0,0002          | 0,0029                | 0,0025                | 0,0094          | 0,0002          | 0,0036                | 0,0025                |
| Var   | 0,0061          | 0,0000          | 0,0031                | 0,0021                | 0,0078          | 0,0002          | 0,0027                | 0,0024                | 0,0092          | 0,0002          | 0,0035                | 0,0024                |
|       |                 | ·               | ·                     | ·                     | ·               | $\alpha = 1.5$  |                       | ·                     | ·               |                 |                       |                       |
| Média | 0,2066          | 0,8003          | 0,1905                | 0,4082                | 0,2083          | 0,8002          | 0,1877                | 0,4082                | 0,2098          | 0,8007          | 0, 1928               | 0,4080                |
| Vício | 0,0066          | 0,0003          | -0,0095               | 0,0082                | 0,0083          | 0,0002          | -0,0123               | 0,0082                | 0,0098          | 0,0007          | -0,0072               | 0,0080                |
| EQM   | 0,0048          | 0,0001          | 0,0030                | 0,0020                | 0,0053          | 0,0001          | 0,0028                | 0,0023                | 0,0072          | 0,0001          | 0,0032                | 0,0026                |
| Var   | 0,0047          | 0,0001          | 0,0029                | 0,0020                | 0,0052          | 0,0001          | 0,0026                | 0,0022                | 0,0071          | 0,0001          | 0,0032                | 0,0026                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |
| Média | 0,2093          | 0,8001          | 0,1912                | 0,4100                | 0,2064          | 0,8002          | 0,1882                | 0,4038                | 0,2084          | 0,8002          | 0,1872                | 0,4016                |
| Vício | 0,0093          | 0,0001          | -0,0088               | 0,0100                | 0,0064          | 0,0002          | -0,0118               | 0,0038                | 0,0084          | 0,0002          | -0,0128               | 0,0016                |
| EQM   | 0,0052          | 0,0000          | 0,0028                | 0,0022                | 0,0041          | 0,0001          | 0,0026                | 0,0020                | 0,0063          | 0,0001          | 0,0033                | 0,0022                |
| Var   | 0,0051          | 0,0000          | 0,0027                | 0,0021                | 0,0041          | 0,0001          | 0,0025                | 0,0020                | 0,0062          | 0,0001          | 0,0031                | 0,0022                |
|       |                 |                 |                       |                       |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |
| Média | 0, 1989         | 0,8000          | 0,1894                | 0,4063                | 0,2082          | 0,8006          | 0, 1927               | 0,4032                | 0,2064          | 0,8005          | 0,1914                | 0,4008                |
| Vício | -0,0011         | 0,0000          | -0,0106               | 0,0063                | 0,0082          | 0,0006          | -0,0073               | 0,0032                | 0,0064          | 0,0005          | -0,0086               | 0,0008                |
| EQM   | 0,0038          | 0,0000          | 0,0028                | 0,0019                | 0,0062          | 0,0001          | 0,0029                | 0,0019                | 0,0055          | 0,0001          | 0,0028                | 0,0023                |
| Var   | 0,0038          | 0,0000          | 0,0027                | 0,0019                | 0,0062          | 0,0001          | 0,0029                | 0,0019                | 0,0055          | 0,0001          | 0,0028                | 0,0023                |
|       |                 |                 |                       |                       |                 |                 |                       |                       |                 |                 |                       |                       |

Tabela A.11: Resultado da estimação com o estimador MCMCPS para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando p = 0 = q,  $k = 2, \boldsymbol{u} = (0.2, 0.8), \boldsymbol{\lambda} = (0.2, 0.4), \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m = 1$ , para as janelas de suavização de Bartlett, Parzen e Tukey.

| ,     | $\alpha = 1.3$  |                 |                       |                       |                 |                 |                       |                       |                 |                 |                   |                       |  |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-------------------|-----------------------|--|
|       |                 | Bar             | tlett                 |                       |                 | Par             | zen                   |                       |                 | Tu              | key               |                       |  |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\hat{\lambda}_1$ | $\widehat{\lambda}_2$ |  |
| Média | 0,2134          | 0,8003          | 0,1926                | 0,4068                | 0,2088          | 0,8001          | 0,1932                | 0,4083                | 0,2129          | 0,8001          | 0,1971            | 0,4083                |  |
| Vício | 0,0134          | 0,0003          | -0,0074               | 0,0068                | 0,0088          | 0,0001          | -0,0068               | 0,0083                | 0,0129          | 0,0001          | -0,0029           | 0,0083                |  |
| EQM   | 0,0077          | 0,0000          | 0,0035                | 0,0026                | 0,0074          | 0,0000          | 0,0039                | 0,0026                | 0,0079          | 0,0000          | 0,0039            | 0,0024                |  |
| Var   | 0,0075          | 0,0000          | 0,0034                | 0,0025                | 0,0073          | 0,0000          | 0,0039                | 0,0025                | 0,0078          | 0,0000          | 0,0039            | 0,0023                |  |
|       |                 | 1               | 1                     |                       |                 | $\alpha = 1.5$  |                       |                       |                 | I               |                   | 1                     |  |
| Média | 0,2090          | 0,8001          | 0,1876                | 0,4053                | 0,2077          | 0,8000          | 0,1909                | 0,4050                | 0,2115          | 0,8002          | 0,1915            | 0,4043                |  |
| Vício | 0,0090          | 0,0001          | -0,0124               | 0,0053                | 0,0077          | 0,0000          | -0,0091               | 0,0050                | 0,0115          | 0,0002          | -0,0085           | 0,0043                |  |
| EQM   | 0,0075          | 0,0000          | 0,0033                | 0,0022                | 0,0073          | 0,0001          | 0,0030                | 0,0024                | 0,0069          | 0,0001          | 0,0032            | 0,0022                |  |
| Var   | 0,0074          | 0,0000          | 0,0031                | 0,0022                | 0,0073          | 0,0001          | 0,0029                | 0,0024                | 0,0068          | 0,0001          | 0,0031            | 0,0022                |  |
|       |                 |                 |                       |                       |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                   |                       |  |
| Média | 0,2074          | 0,8006          | 0,1884                | 0,4031                | 0,2064          | 0,8001          | 0,1882                | 0,4028                | 0,2088          | 0,8002          | 0,1876            | 0,4029                |  |
| Vício | 0,0074          | 0,0006          | -0,0116               | 0,0031                | 0,0064          | 0,0001          | -0,0118               | 0,0028                | 0,0088          | 0,0002          | -0,0124           | 0,0029                |  |
| EQM   | 0,0076          | 0,0001          | 0,0030                | 0,0023                | 0,0062          | 0,0001          | 0,0034                | 0,0024                | 0,0068          | 0,0001          | 0,0039            | 0,0023                |  |
| Var   | 0,0076          | 0,0001          | 0,0029                | 0,0023                | 0,0062          | 0,0001          | 0,0033                | 0,0024                | 0,0067          | 0,0001          | 0,0037            | 0,0023                |  |
|       |                 |                 |                       |                       |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                   |                       |  |
| Média | 0,2101          | 0,8004          | 0,1879                | 0,4011                | 0,2121          | 0,8002          | 0,1882                | 0,4019                | 0,2051          | 0,8003          | 0,1898            | 0,3994                |  |
| Vício | 0,0101          | 0,0004          | -0,0121               | 0,0011                | 0,0121          | 0,0002          | -0,0118               | 0,0019                | 0,0051          | 0,0003          | -0,0102           | -0,0006               |  |
| EQM   | 0,0078          | 0,0001          | 0,0032                | 0,0025                | 0,0088          | 0,0001          | 0,0031                | 0,0023                | 0,0056          | 0,0001          | 0,0030            | 0,0024                |  |
| Var   | 0,0077          | 0,0001          | 0,0030                | 0,0025                | 0,0086          | 0,0001          | 0,0029                | 0,0023                | 0,0056          | 0,0001          | 0,0029            | 0,0024                |  |

Tabela A.12: Resultado da estimação com o estimador MCMCPS para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando p = 0 = q, k = 2,  $\boldsymbol{u} = (0.2, 0.8)$ ,  $\boldsymbol{\lambda} = (0.2, 0.4)$ ,  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , m = 2, para as janelas de suavização de Bartlett, Parzen e Tukey.

 $^{87}$ 

|       | $\alpha = 1.3$  |                 |                       |                       |                 |                     |                       |                       |                 |                 |                       |                       |  |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|---------------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|--|
|       |                 | Bar             | tlett                 |                       |                 | Par                 | zen                   |                       |                 | Tu              | key                   |                       |  |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$     | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |  |
| Média | 0,2145          | 0,8004          | 0,1904                | 0,4111                | 0,2157          | 0,8008              | 0,1917                | 0,4097                | 0,2153          | 0,8001          | 0, 1915               | 0,4102                |  |
| Vício | 0,0145          | 0,0004          | -0,0096               | 0,0111                | 0,0157          | 0,0008              | -0,0083               | 0,0097                | 0,0153          | 0,0001          | -0,0085               | 0,0102                |  |
| EQM   | 0,0085          | 0,0001          | 0,0035                | 0,0026                | 0,0097          | 0,0001              | 0,0034                | 0,0025                | 0,0101          | 0,0001          | 0,0039                | 0,0025                |  |
| Var   | 0,0083          | 0,0001          | 0,0034                | 0,0024                | 0,0095          | 0,0001              | 0,0034                | 0,0024                | 0,0098          | 0,0001          | 0,0038                | 0,0024                |  |
|       |                 | ·               | ·                     |                       |                 | $\alpha = 1.5$      |                       |                       | ·               |                 |                       |                       |  |
| Média | 0,2086          | 0,8005          | 0,1903                | 0,4043                | 0,2115          | 0,8006              | 0,1889                | 0,4059                | 0,2117          | 0,8004          | 0,1875                | 0,4049                |  |
| Vício | 0,0086          | 0,0005          | -0,0097               | 0,0043                | 0,0115          | 0,0006              | -0,0111               | 0,0059                | 0,0117          | 0,0004          | -0,0125               | 0,0049                |  |
| EQM   | 0,0058          | 0,0001          | 0,0031                | 0,0023                | 0,0073          | 0,0001              | 0,0031                | 0,0023                | 0,0070          | 0,0001          | 0,0033                | 0,0024                |  |
| Var   | 0,0057          | 0,0001          | 0,0030                | 0,0023                | 0,0072          | 0,0001              | 0,0030                | 0,0023                | 0,0069          | 0,0001          | 0,0032                | 0,0024                |  |
|       |                 |                 |                       |                       |                 | $\alpha = 1.7$      |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2061          | 0,8002          | 0,1897                | 0,4034                | 0,2106          | 0,8004              | 0,1908                | 0,4032                | 0,2108          | 0,8007          | 0,1910                | 0,4018                |  |
| Vício | 0,0061          | 0,0002          | -0,0103               | 0,0034                | 0,0106          | 0,0004              | -0,0092               | 0,0032                | 0,0108          | 0,0007          | -0,0090               | 0,0018                |  |
| EQM   | 0,0066          | 0,0001          | 0,0036                | 0,0023                | 0,0080          | 0,0001              | 0,0032                | 0,0024                | 0,0068          | 0,0001          | 0,0033                | 0,0023                |  |
| Var   | 0,0065          | 0,0001          | 0,0035                | 0,0023                | 0,0079          | 0,0001              | 0,0031                | 0,0024                | 0,0066          | 0,0001          | 0,0032                | 0,0023                |  |
|       |                 |                 |                       |                       |                 | $\alpha = 1.9$      |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2113          | 0,8001          | 0,1886                | 0,4023                | 0,2076          | 0,8004              | $0,\!1870$            | 0,4012                | 0,2105          | 0,8003          | $0,\!1879$            | 0,4000                |  |
| Vício | 0,0113          | 0,0001          | -0,0114               | 0,0023                | 0,0076          | $0,000\overline{4}$ | -0,0130               | 0,0012                | 0,0105          | 0,0003          | -0,0121               | 0,0000                |  |
| EQM   | 0,0068          | 0,0001          | 0,0033                | $0,002\overline{3}$   | 0,0068          | 0,0001              | 0,0035                | $0,002\overline{2}$   | 0,0079          | 0,0001          | 0,0033                | 0,0025                |  |
| Var   | 0,0066          | 0,0001          | 0,0031                | 0,0023                | 0,0067          | 0,0001              | 0,0034                | 0,0022                | 0,0078          | 0,0001          | 0,0031                | 0,0025                |  |

Tabela A.13: Resultado da estimação com o estimador MCMCPS para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando p = 0 = q, k = 2,  $\boldsymbol{u} = (0.2, 0.8)$ ,  $\boldsymbol{\lambda} = (0.2, 0.4)$ ,  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , m = 3, para as janelas de suavização de Bartlett, Parzen e Tukey.

 $\overset{8}{\infty}$ 

| ,     | $\alpha = 1.3$  |                 |                       |                       |                 |                 |                       |                       |                 |                 |                       |                       |  |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|--|
|       |                 | Bar             | tlett                 |                       |                 | Par             | zen                   |                       |                 | Tu              | key                   |                       |  |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |  |
| Média | 0,2139          | 0,8004          | 0,1890                | 0,4086                | 0,2111          | 0,8000          | 0,1906                | 0,4097                | 0,2100          | 0,8002          | 0,1948                | 0,4087                |  |
| Vício | 0,0139          | 0,0004          | -0,0110               | 0,0086                | 0,0111          | 0,0000          | -0,0094               | 0,0097                | 0,0100          | 0,0002          | -0,0052               | 0,0087                |  |
| EQM   | 0,0084          | 0,0001          | 0,0037                | 0,0026                | 0,0069          | 0,0001          | 0,0033                | 0,0025                | 0,0064          | 0,0000          | 0,0035                | 0,0026                |  |
| Var   | 0,0082          | 0,0001          | 0,0036                | 0,0025                | 0,0068          | 0,0001          | 0,0032                | 0,0024                | 0,0063          | 0,0000          | 0,0034                | 0,0025                |  |
|       |                 |                 |                       |                       |                 | $\alpha = 1.5$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2123          | 0,8001          | 0,1890                | 0,4051                | 0,2108          | 0,8005          | 0,1885                | 0,4047                | 0,2059          | 0,8000          | 0,1904                | 0,4042                |  |
| Vício | 0,0123          | 0,0001          | -0,0110               | 0,0051                | 0,0108          | 0,0005          | -0,0115               | 0,0047                | 0,0059          | 0,0000          | -0,0096               | 0,0042                |  |
| EQM   | 0,0070          | 0,0001          | 0,0031                | 0,0023                | 0,0070          | 0,0001          | 0,0030                | 0,0023                | 0,0068          | 0,0001          | 0,0033                | 0,0023                |  |
| Var   | 0,0069          | 0,0001          | 0,0030                | 0,0023                | 0,0069          | 0,0001          | 0,0029                | 0,0022                | 0,0068          | 0,0001          | 0,0032                | 0,0022                |  |
|       |                 |                 |                       |                       |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2129          | 0,8000          | 0,1880                | 0,4018                | 0,2102          | 0,8000          | 0,1840                | 0,4022                | 0,2094          | 0,8001          | 0,1881                | 0,3988                |  |
| Vício | 0,0129          | 0,0000          | -0,0120               | 0,0018                | 0,0102          | 0,0000          | -0,0160               | 0,0022                | 0,0094          | 0,0001          | -0,0119               | -0,0012               |  |
| EQM   | 0,0064          | 0,0001          | 0,0030                | 0,0023                | 0,0072          | 0,0001          | 0,0035                | 0,0023                | 0,0063          | 0,0001          | 0,0030                | 0,0023                |  |
| Var   | 0,0063          | 0,0001          | 0,0029                | 0,0023                | 0,0071          | 0,0001          | 0,0033                | 0,0023                | 0,0062          | 0,0001          | 0,0029                | 0,0023                |  |
|       |                 |                 |                       |                       |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2110          | 0,8003          | 0,1905                | 0,3989                | 0,2063          | 0,8005          | 0,1825                | 0,3993                | 0,2129          | 0,8002          | $0,\!1888$            | 0,4004                |  |
| Vício | 0,0110          | 0,0003          | -0,0095               | -0,0011               | 0,0063          | 0,0005          | -0,0175               | -0,0007               | 0,0129          | 0,0002          | -0,0112               | 0,0004                |  |
| EQM   | 0,0064          | 0,0001          | 0,0032                | 0,0025                | 0,0068          | 0,0001          | 0,0032                | 0,0024                | 0,0075          | 0,0001          | 0,0033                | 0,0023                |  |
| Var   | $0,\!0063$      | 0,0001          | 0,0031                | 0,0025                | 0,0068          | 0,0001          | 0,0029                | 0,0024                | 0,0073          | 0,0001          | 0,0031                | 0,0023                |  |

Tabela A.14: Resultado da estimação com o estimador MCMCPS para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$  quando p = 0 = q, k = 2,  $\boldsymbol{u} = (0.2, 0.8)$ ,  $\boldsymbol{\lambda} = (0.2, 0.4)$ ,  $\alpha \in \{1.3, 1.5, 1.7, 1.9\}$ , m = 4, para as janelas de suavização de Bartlett, Parzen e Tukey.

| Tabela A.15: Resultado da estimação com o estimador MCMCPSC para o processo $k$ -Factor GARMA $(p,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ , |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $k = 2, u = (0.2, 0.8), \lambda = (0.2, 0.4), \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo $n = 1000$ e $\beta = 0.8$ para as junction of the sense of the s | anelas de suavização de Bartlett,                                           |
| Parzen e Tukey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |

|       | $\alpha = 1.3$  |                 |                       |                       |                 |                 |                       |                       |                 |                 |                       |                       |  |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|--|
|       |                 | Bar             | tlett                 |                       |                 | Par             | rzen                  |                       |                 | Tu              | key                   |                       |  |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |  |
| Média | 0,2040          | 0,7997          | 0,1897                | 0,4227                | 0,2149          | 0,8026          | 0,1923                | 0,4252                | 0,2517          | 0,8060          | 0,1928                | 0,4148                |  |
| Vício | 0,0040          | -0,0003         | -0,0103               | 0,0227                | 0,0149          | 0,0026          | -0,0077               | 0,0252                | 0,0517          | 0,0060          | -0,0072               | 0,0148                |  |
| EQM   | 0,0059          | 0,0000          | 0,0029                | 0,0025                | 0,0119          | 0,0004          | 0,0030                | 0,0026                | 0,0285          | 0,0007          | 0,0043                | 0,0028                |  |
| Var   | 0,0059          | 0,0000          | 0,0028                | 0,0020                | 0,0117          | 0,0004          | 0,0030                | 0,0019                | 0,0259          | 0,0007          | 0,0042                | 0,0026                |  |
|       | -               |                 |                       | -                     | -               | $\alpha = 1.5$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2035          | 0,8000          | 0,1881                | 0,4179                | 0,2103          | 0,8011          | 0,1921                | 0,4200                | 0,2296          | 0,8040          | 0,1931                | 0,4163                |  |
| Vício | 0,0035          | 0,0000          | -0,0119               | 0,0179                | 0,0103          | 0,0011          | -0,0079               | 0,0200                | 0,0296          | 0,0040          | -0,0069               | 0,0163                |  |
| EQM   | 0,0060          | 0,0000          | 0,0026                | 0,0023                | 0,0071          | 0,0002          | 0,0029                | 0,0023                | 0,0198          | 0,0008          | 0,0038                | 0,0022                |  |
| Var   | 0,0060          | 0,0000          | 0,0025                | 0,0020                | 0,0070          | 0,0002          | 0,0028                | 0,0019                | 0,0189          | 0,0008          | 0,0038                | 0,0019                |  |
|       | -               |                 |                       | -                     | -               | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2010          | 0,7996          | 0,1908                | 0,4163                | 0,2044          | 0,8007          | 0,1916                | 0,4158                | 0,2258          | 0,8045          | 0,1925                | 0,4086                |  |
| Vício | 0,0010          | -0,0004         | -0,0092               | 0,0163                | 0,0044          | 0,0007          | -0,0084               | 0,0158                | 0,0258          | 0,0045          | -0,0075               | 0,0086                |  |
| EQM   | 0,0048          | 0,0000          | 0,0028                | 0,0022                | 0,0058          | 0,0001          | 0,0025                | 0,0021                | 0,0162          | 0,0006          | 0,0035                | 0,0025                |  |
| Var   | 0,0048          | 0,0000          | 0,0027                | 0,0019                | 0,0058          | 0,0001          | 0,0025                | 0,0018                | 0,0156          | 0,0006          | 0,0034                | 0,0024                |  |
|       | -               |                 |                       | -                     | -               | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,1982          | 0,8001          | 0,1885                | 0,4106                | 0,2010          | 0,8005          | 0, 1925               | 0,4171                | 0,2124          | 0,8015          | 0,1885                | 0,4076                |  |
| Vício | -0,0018         | 0,0001          | -0,0115               | 0,0106                | 0,0010          | 0,0005          | -0,0075               | 0,0171                | 0,0124          | 0,0015          | -0,0115               | 0,0076                |  |
| EQM   | 0,0028          | 0,0000          | 0,0024                | 0,0019                | 0,0047          | 0,0001          | 0,0025                | 0,0021                | 0,0092          | 0,0003          | 0,0034                | 0,0024                |  |
| Var   | 0,0028          | 0,0000          | 0,0023                | 0,0018                | 0,0047          | 0,0001          | 0,0024                | 0,0018                | 0,0090          | 0,0003          | 0,0033                | 0,0024                |  |

| Tabela A.16: Resultado da estimação com o estimador MCMCPSC para o processo k-Factor GARMA $(p, u, \lambda, q) - S\alpha S$ quando $p = 0$ =                                 | = q, |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| $k = 2, u = (0.2, 0.8), \lambda = (0.2, 0.4), \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo $n = 1000$ e $\beta = 0.85$ para as janelas de suavização de Bartl | ett, |
| Parzen e Tukey.                                                                                                                                                              |      |

|       | $\alpha = 1.3$  |                 |                       |                       |                 |                 |                       |                       |                 |                 |                       |                       |  |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|--|
|       |                 | Bar             | tlett                 |                       |                 | Par             | zen                   |                       |                 | Tu              | key                   |                       |  |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |  |
| Média | 0,2112          | 0,8002          | 0,1906                | 0,4225                | 0,2108          | 0,8001          | 0,1883                | 0,4102                | 0,2393          | 0,8059          | 0,1862                | 0,4053                |  |
| Vício | 0,0112          | 0,0002          | -0,0094               | 0,0225                | 0,0108          | 0,0001          | -0,0117               | 0,0102                | 0,0393          | 0,0059          | -0,0138               | 0,0053                |  |
| EQM   | 0,0081          | 0,0000          | 0,0027                | 0,0027                | 0,0075          | 0,0001          | 0,0026                | 0,0028                | 0,0253          | 0,0010          | 0,0038                | 0,0035                |  |
| Var   | 0,0080          | 0,0000          | 0,0027                | 0,0022                | 0,0074          | 0,0001          | 0,0025                | 0,0027                | 0,0237          | 0,0009          | 0,0036                | 0,0034                |  |
|       |                 |                 |                       |                       |                 | $\alpha = 1.5$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2035          | 0,8003          | 0,1909                | 0,4162                | 0,2023          | 0,8005          | 0,1888                | 0,4113                | 0,2281          | 0,8047          | 0,1884                | 0,4089                |  |
| Vício | 0,0035          | 0,0003          | -0,0091               | 0,0162                | 0,0023          | 0,0005          | -0,0112               | 0,0113                | 0,0281          | 0,0047          | -0,0116               | 0,0089                |  |
| EQM   | 0,0036          | 0,0000          | 0,0026                | 0,0022                | 0,0039          | 0,0000          | 0,0024                | 0,0023                | 0,0169          | 0,0007          | 0,0036                | 0,0028                |  |
| Var   | 0,0036          | 0,0000          | 0,0025                | 0,0020                | 0,0039          | 0,0000          | 0,0023                | 0,0022                | 0,0162          | 0,0007          | 0,0035                | 0,0027                |  |
|       |                 |                 | -                     | -                     |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2024          | 0,8002          | 0,1897                | 0,4157                | 0,2012          | 0,8002          | 0,1910                | $0,\!4117$            | 0,2182          | 0,8024          | 0,1885                | 0,4072                |  |
| Vício | 0,0024          | 0,0002          | -0,0103               | 0,0157                | 0,0012          | 0,0002          | -0,0090               | 0,0117                | 0,0182          | 0,0024          | -0,0115               | 0,0072                |  |
| EQM   | 0,0045          | 0,0001          | 0,0026                | 0,0021                | 0,0032          | 0,0001          | 0,0025                | 0,0020                | 0,0118          | 0,0004          | 0,0033                | 0,0023                |  |
| Var   | 0,0045          | 0,0001          | 0,0025                | 0,0019                | 0,0032          | 0,0001          | 0,0024                | 0,0018                | 0,0114          | 0,0004          | 0,0032                | 0,0023                |  |
|       |                 |                 | -                     | -                     |                 | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2010          | 0,7996          | 0,1876                | 0,4113                | 0,2015          | 0,7999          | 0,1909                | 0,4105                | 0,2092          | 0,8013          | 0,1877                | 0,4040                |  |
| Vício | 0,0010          | -0,0004         | -0,0124               | 0,0113                | 0,0015          | -0,0001         | -0,0091               | 0,0105                | 0,0092          | 0,0013          | -0,0123               | 0,0040                |  |
| EQM   | 0,0037          | 0,0000          | 0,0026                | 0,0019                | 0,0032          | 0,0000          | 0,0026                | 0,0018                | 0,0077          | 0,0002          | 0,0031                | 0,0022                |  |
| Var   | 0,0037          | 0,0000          | 0,0025                | 0,0018                | 0,0032          | 0,0000          | 0,0025                | 0,0017                | 0,0077          | 0,0002          | 0,0030                | 0,0022                |  |

| Tabela A.17: Resultado da estimação com o estimador MCMCPSC para o processo k-Factor GARMA $(p, u, \lambda, q) - S\alpha S$ quando $p = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = q,  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| $k = 2, u = (0.2, 0.8), \lambda = (0.2, 0.4), \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo $n = 1000$ e $\beta = 0.9$ para as janelas de suavização de Bartine de Suavização de Bar | lett, |
| Parzen e Tukey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |

|       | $\alpha = 1.3$  |                 |                       |                       |                 |                 |                       |                       |                 |                 |                       |                       |  |
|-------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|--|
|       |                 | Bar             | tlett                 |                       |                 | Par             | zen                   |                       |                 | Tu              | key                   |                       |  |
|       | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |  |
| Média | 0,2040          | 0,8001          | 0,1876                | 0,4183                | 0,2037          | 0,8000          | 0,1883                | 0,4084                | 0,2156          | 0,8010          | 0,1828                | 0,4035                |  |
| Vício | 0,0040          | 0,0001          | -0,0124               | 0,0183                | 0,0037          | 0,0000          | -0,0117               | 0,0084                | 0,0156          | 0,0010          | -0,0172               | 0,0035                |  |
| EQM   | 0,0063          | 0,0001          | 0,0032                | 0,0025                | 0,0051          | 0,0001          | 0,0027                | 0,0025                | 0,0086          | 0,0002          | 0,0035                | 0,0024                |  |
| Var   | 0,0063          | 0,0001          | 0,0030                | 0,0021                | 0,0051          | 0,0001          | 0,0026                | 0,0024                | 0,0083          | 0,0002          | 0,0032                | 0,0023                |  |
|       |                 |                 |                       |                       |                 | $\alpha = 1.5$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2078          | 0,8000          | 0,1892                | 0,4116                | 0,2088          | 0,8008          | 0,1877                | 0,4078                | 0,2138          | 0,8010          | 0,1847                | 0,4005                |  |
| Vício | 0,0078          | 0,0000          | -0,0108               | 0,0116                | 0,0088          | 0,0008          | -0,0123               | 0,0078                | 0,0138          | 0,0010          | -0,0153               | 0,0005                |  |
| EQM   | 0,0064          | 0,0000          | 0,0027                | 0,0021                | 0,0065          | 0,0001          | 0,0027                | 0,0024                | 0,0087          | 0,0002          | 0,0030                | 0,0027                |  |
| Var   | 0,0063          | 0,0000          | 0,0026                | 0,0020                | 0,0065          | 0,0001          | 0,0026                | 0,0024                | 0,0085          | 0,0002          | 0,0028                | 0,0027                |  |
|       |                 |                 |                       |                       |                 | $\alpha = 1.7$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2029          | 0,8002          | 0,1876                | 0,4089                | 0,2053          | 0,7997          | 0,1909                | 0,4077                | 0,2167          | 0,8010          | 0,1864                | 0,3976                |  |
| Vício | 0,0029          | 0,0002          | -0,0124               | 0,0089                | 0,0053          | -0,0003         | -0,0091               | 0,0077                | 0,0167          | 0,0011          | -0,0136               | -0,0024               |  |
| EQM   | 0,0041          | 0,0000          | 0,0026                | 0,0019                | 0,0045          | 0,0000          | 0,0027                | 0,0019                | 0,0104          | 0,0004          | 0,0035                | 0,0028                |  |
| Var   | 0,0041          | 0,0000          | 0,0024                | 0,0018                | 0,0045          | 0,0000          | 0,0026                | 0,0018                | 0,0102          | 0,0004          | 0,0034                | 0,0028                |  |
|       |                 |                 |                       |                       | -               | $\alpha = 1.9$  |                       |                       |                 |                 |                       |                       |  |
| Média | 0,2019          | 0,7999          | 0,1859                | 0,4095                | 0,2029          | 0,8002          | 0, 1925               | 0,4053                | 0,2114          | 0,8008          | 0,1866                | 0,3956                |  |
| Vício | 0,0019          | -0,0001         | -0,0141               | 0,0095                | 0,0029          | 0,0002          | -0,0075               | 0,0053                | 0,0114          | 0,0008          | -0,0134               | -0,0044               |  |
| EQM   | 0,0031          | 0,0000          | 0,0026                | 0,0019                | 0,0032          | 0,0000          | 0,0024                | 0,0018                | 0,0086          | 0,0002          | 0,0035                | 0,0026                |  |
| Var   | 0,0031          | 0,0000          | 0,0024                | 0,0018                | 0,0032          | 0,0000          | 0,0024                | 0,0018                | 0,0085          | 0,0002          | 0,0033                | 0,0026                |  |

| Tabela A.18: Resultado da estimação com o estimador MCMCPSC para o processo k-Factor GARMA $(p, \boldsymbol{u}, \boldsymbol{\lambda}, q) - S\alpha S$ quando $p = 0 = q$ ,       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $k = 2, u = (0.2, 0.8), \lambda = (0.2, 0.4), \alpha \in \{1.3, 1.5, 1.7, 1.9\}, m_n = n^{\beta}$ , sendo $n = 1000$ e $\beta = 0.95$ para as janelas de suavização de Bartlett, |
| Parzen e Tukey.                                                                                                                                                                  |

|                | $\alpha = 1.3$  |                 |                       |                       |                 |                 |                       |                       |                 |                 |                       |                       |  |
|----------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|--|
|                | Bartlett        |                 |                       |                       | Parzen          |                 |                       |                       | Tukey           |                 |                       |                       |  |
|                | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ | $\widehat{u}_1$ | $\widehat{u}_2$ | $\widehat{\lambda}_1$ | $\widehat{\lambda}_2$ |  |
| Média          | 0,2080          | 0,8003          | 0,1918                | 0,4148                | 0,2136          | 0,8010          | 0,1884                | 0,4043                | 0,2164          | 0,8015          | 0,1824                | 0,3974                |  |
| Vício          | 0,0080          | 0,0003          | -0,0082               | 0,0148                | 0,0136          | 0,0010          | -0,0116               | 0,0043                | 0,0164          | 0,0015          | -0,0176               | -0,0026               |  |
| EQM            | 0,0062          | 0,0000          | 0,0032                | 0,0024                | 0,0089          | 0,0001          | 0,0030                | 0,0028                | 0,0104          | 0,0003          | 0,0035                | 0,0034                |  |
| Var            | 0,0061          | 0,0000          | 0,0031                | 0,0021                | 0,0087          | 0,0001          | 0,0029                | 0,0028                | 0,0102          | 0,0003          | 0,0032                | 0,0034                |  |
| $\alpha = 1.5$ |                 |                 |                       |                       |                 |                 |                       |                       |                 |                 |                       |                       |  |
| Média          | 0,2072          | 0,8002          | 0,1898                | 0,4126                | 0,2061          | 0,8002          | 0,1901                | 0,4091                | 0,2138          | 0,8008          | 0,1855                | 0,3988                |  |
| Vício          | 0,0072          | 0,0002          | -0,0102               | 0,0126                | 0,0061          | 0,0002          | -0,0099               | 0,0091                | 0,0138          | 0,0008          | -0,0145               | -0,0012               |  |
| EQM            | 0,0051          | 0,0001          | 0,0027                | 0,0022                | 0,0048          | 0,0001          | 0,0025                | 0,0021                | 0,0090          | 0,0002          | 0,0033                | 0,0027                |  |
| Var            | 0,0051          | 0,0001          | 0,0026                | 0,0020                | 0,0048          | 0,0001          | 0,0024                | 0,0020                | 0,0088          | 0,0002          | 0,0031                | 0,0027                |  |
| $\alpha = 1.7$ |                 |                 |                       |                       |                 |                 |                       |                       |                 |                 |                       |                       |  |
| Média          | 0,2040          | 0,8002          | 0,1918                | 0,4077                | 0,2048          | 0,8006          | $0,\!1898$            | 0,4060                | 0,2156          | 0,8011          | 0,1831                | 0,3974                |  |
| Vício          | 0,0040          | 0,0002          | -0,0082               | 0,0077                | 0,0048          | 0,0006          | -0,0102               | 0,0060                | 0,0156          | 0,0011          | -0,0169               | -0,0026               |  |
| EQM            | 0,0042          | 0,0000          | 0,0028                | 0,0020                | 0,0043          | 0,0001          | 0,0026                | 0,0020                | 0,0084          | 0,0003          | 0,0038                | 0,0029                |  |
| Var            | 0,0041          | 0,0000          | 0,0027                | 0,0020                | 0,0043          | 0,0001          | 0,0025                | 0,0019                | 0,0081          | 0,0003          | 0,0035                | 0,0029                |  |
| $\alpha = 1.9$ |                 |                 |                       |                       |                 |                 |                       |                       |                 |                 |                       |                       |  |
| Média          | 0,2058          | 0,8001          | 0,1894                | 0,4055                | 0,2043          | 0,8004          | 0,1899                | 0,4032                | 0,2115          | 0,8010          | 0,1864                | 0,3999                |  |
| Vício          | 0,0058          | 0,0001          | -0,0106               | 0,0055                | 0,0043          | 0,0004          | -0,0101               | 0,0032                | 0,0115          | 0,0010          | -0,0136               | -0,0001               |  |
| EQM            | 0,0045          | 0,0001          | 0,0026                | 0,0019                | 0,0044          | 0,0001          | 0,0026                | 0,0019                | 0,0070          | 0,0002          | 0,0032                | 0,0028                |  |
| Var            | 0,0045          | 0,0001          | 0,0025                | 0,0019                | 0,0044          | 0,0001          | 0,0025                | 0,0019                | 0,0069          | 0,0002          | 0,0030                | 0,0028                |  |