
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

DANIEL KELLING BRUM

PanScript – A free platform for teaching
programming in many human languages

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Science

Advisor: Prof. Dr. Lucas Mello Schnorr

Porto Alegre
November 2021

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Rodrigo Machado
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS..4
LIST OF FIGURES ...5
LIST OF TABLES ...6
ABSTRACT..7
ABSTRACT..8
1 INTRODUCTION...9
2 BASIC CONCEPTS..12
2.1 Programming languages...12
2.2 Software development...13
2.3 Code execution ..14
3 RELATED WORK ...15
3.1 Localized programming languages ...15
3.2 Novice programming environments ..18
3.3 Comparisons between related work and PanScript...21
4 THE PANSCRIPT PLATFORM...24
4.1 Solution design ..24
4.1.1 Target demographics ..24
4.1.2 Main objectives ..25
4.1.3 Architecture and user interface ..26
4.1.4 Programming language and dialects ..27
4.2 Implementation ...30
4.2.1 Technology stack ...31
4.2.2 Code structure and reusability ...34
4.2.3 Canonical grammar..36
5 EVALUATION METHODOLOGY ..40
5.1 Self-evaluation ...40
5.2 Online survey...42
6 RESULTS OBTAINED...45
6.1 Self-evaluation results...45
6.2 Online survey results ..47
6.2.1 Questions about the participants ..49
6.2.2 Multiple-choice questions about PanScript ...55
6.2.3 Open-ended questions..58
7 CONCLUSION AND FUTURE WORK ..61
REFERENCES...62
APPENDIX A — PANSCRIPT’S TECHNICAL BACKLOG72
APPENDIX B — THE PANSCRIPT STANDARD LIBRARY75
APPENDIX C — THE PANSCRIPT CANONICAL GRAMMARS........................79
APPENDIX D — RESPONSES TO THE OPEN-ENDED QUESTIONS OF

PANSCRIPT’S ONLINE SURVEY (IN BRAZILIAN PORTUGUESE)87

LIST OF ABBREVIATIONS AND ACRONYMS

ANTLR ANother Tool for Language Recognition

API Application Programming Interface

ASCII American Standard Code for Information Interchange

AST Abstract Syntax Tree

CJK Chinese, Japanese, and Korean

CPU Central Processing Unit

CS Computer Science

CSS Cascading Style Sheets

CT Computational Thinking

ELF Executable and Linking Format

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IT Information Technology

JS JavaScript

JSON JavaScript Object Notation

OOP Object-oriented Programming

PE Portable Executable

PEG Parsing Expression Grammar

RTL Right-to-left

SOV Subject-object-verb

SVO Subject-verb-object

UI User Interface

URL Uniform Resource Locator

UX User Experience

XML Extensible Markup Language

LIST OF FIGURES

Figure 4.1 PanScript’s client-server architecture, also depicting requests made by
the client..26

Figure 4.2 Flowchart of the code execution process. ..27
Figure 4.3 Early wireframe of PanScript’s user interface. ..28
Figure 4.4 Code samples for PanScript in English and Portuguese.30
Figure 4.5 PanScript’s user interface ..33
Figure 4.6 PanScript’s code execution with implementation details.34
Figure 4.7 Directory and file structure of PanScript’s source code.................................35
Figure 4.8 PanScript’s canonical lexer grammar...37
Figure 4.9 PanScript’s lexer grammar for Brazilian Portuguese.....................................37
Figure 4.10 PanScript grammar with program and statements.38
Figure 4.11 PanScript grammar with function declaration. ..39
Figure 4.12 PanScript grammar with expression and atom. ...39

Figure 5.1 Images shown as reference in Q17, the programming exercise.....................44

Figure 6.1 Fibonacci in PanScript and Python..48
Figure 6.2 Factorial in PanScript and PHP..48
Figure 6.3 FizzBuzz in PanScript and Ruby. ..48
Figure 6.4 Sample solution for the exercise about the quadratic formula.......................57
Figure 6.5 Results for each item in the Likert-type questionnaire.58

LIST OF TABLES

Table 3.1 Comparisons between related work and PanScript. ..22

Table 6.1 Self-evaluation of the PanScript project..45
Table 6.2 Q2. How old are you? ...49
Table 6.3 Q3. Do you know how to read and write in English?50
Table 6.4 Q4. At what age could you already express yourself in English?...................50
Table 6.5 Q5. What resources did you use when learning English? E.g., games,

movies, TV series, songs, dictionary, school, courses, online forums.51
Table 6.6 Q6. Do you know how to program?..51
Table 6.7 Q7. At what age could you already write computer programs?......................52
Table 6.8 # Respondents by Ages for English and Programming...................................52
Table 6.9 Q8. In which programming languages did you learn to program? E.g.,

Portugol, Assembly, BASIC, C, Delphi, Fortran, Pascal, PHP, Java, Python.53
Table 6.10 Q9. What resources did you use when learning to program? E.g.,

books, magazines, school, technical program, online forums.53
Table 6.11 Q10. What difficulties did you face while learning to program? If you

have learned programming before learning English, did that cause any spe-
cific issue?...54

Table 6.12 Q17. Based on the various examples available, write a simple program
to calculate the roots of a quadratic equation given the coefficients.56

Table 6.13 Q18. Copy and paste your code below..56
Table 6.14 Q20. On a scale of zero to ten, how much would you recommend Pan-

Script as a tool to help in the basic teaching of programming to students that
do not understand English?...58

Table 6.15 Q21. What did you consider good in PanScript? ..59
Table 6.16 Q22. What would you change in PanScript? ..60

ABSTRACT

Learning to program can be a difficult task. It requires understanding new paradigms and

abstractions, logic and computational thinking, and the programming language’s syntax

itself. That task becomes even more challenging when the student lacks basic English

understanding, which is the case for millions of children in many developing countries.

The main programming languages of today are all English-based: their keywords, the

names of their functions, and most of the code available on the Internet are in English.

For teachers, it can be hard to find adequate resources to teach basic programming con-

cepts in the student’s native language, which is something we believe could simplify the

learning process. The purpose of PanScript is to help solve this problem by introducing an

open-source platform to aggregate many text-based programming languages that are lo-

calized and simplified, along with a web-based beginner-friendly localized programming

environment. The platform’s design allows contributors to easily add new programming

language dialects by translating tokens, error messages, and code samples. In this way,

PanScript aims to help more people have their first contact with programming.

Keywords: Panscript. localized. programming. language. educational. novice. teaching.

algorithm.

PanScript – Uma plataforma livre para ensinar programação em vários idiomas

ABSTRACT

Aprender a programar pode ser uma tarefa difícil. Requer o entendimento de novos

paradigmas e abstrações, pensamento lógico e computacional, e a própria sintaxe da lin-

guagem de programação. Esta tarefa se torna ainda mais desafiadora quando o estudante

não possui entendimento básico da língua inglesa, que é o caso de milhões de crianças

em vários países em desenvolvimento. As principais linguagens de programação de hoje

são todas baseadas no inglês: suas palavras-chave, os nomes de suas funções, e a maior

parte do código disponível na Internet estão em inglês. Para professores, pode ser difícil

encontrar recursos adequados para ensinar conceitos básicos de programação no idioma

nativo do estudante, algo que acreditamos poder simplificar o processo de aprendizagem.

O propósito do PanScript é ajudar a resolver este problema introduzindo uma plataforma

de código aberto para agregar várias linguagens de programação textuais, localizadas e

simplificadas, bem como um ambiente de programação baseado em web, localizado e

amigável. O desenho da plataforma permite que contribuintes adicionem novos diale-

tos da linguagem de programação com facilidade, traduzindo símbolos, mensagens de

erro, e exemplos de código. Desta forma, PanScript visa ajudar mais pessoas a terem seu

primeiro contato com programação.

Keywords: panscript, localizado, linguagem, programação, educativa, ensino, básico,

algoritmo.

9

1 INTRODUCTION

English is currently the most taught foreign language in the world (CRYSTAL,

2003). Although estimates show more than 6000 human languages exist today (ANDER-

SON, 2010), the last century has seen English alone become a native or auxiliary language

to more than one billion people (ETHNOLOGUE, 2019). Nowadays, students can benefit

from the language’s role as a global lingua franca for business, science, and technology

(KIRKPATRICK, 2011). By learning a single additional language, a Brazilian student

gains access to up to 50% of the knowledge and content on the Internet (SOLTANO,

2021). The language’s ability to reach a much wider audience is precisely why this work

is in English instead of Portuguese.

While some countries such as the Netherlands, Norway, Sweden, and Denmark

may have more than 80% of the population understanding English (EUROBAROME-

TER, 2012), others such as India, Mexico, and Russia have closer to 11% (INDIA, 2011;

IMCO, 2015; CENTER, 2014). In Brazil, Data Popular (2013) estimated that only 5%

of the population has some knowledge of English, with almost half of those claiming to

have just a basic level of understanding. Although these numbers seem higher among

the younger generations, they are still close to only 10%. In other words, for some de-

veloping countries, even a basic level of English understanding may be hard to achieve,

and expecting it from students in unrelated tasks could hinder their learning compared to

students that can learn in their native languages (DASGUPTA; HILL, 2017).

Since the beginning of modern computer programming, developers write their

code primarily in English. In the 1950s, the first high-level programming languages al-

ready used English keywords and function names. That was the case for languages such

as Fortran, Lisp, ALGOL, and COBOL, to name a few (SEBESTA, 2012). For pro-

fessional programmers, the benefits of learning English are undeniable. Most software

documentation, programming examples, and instructional materials are in English (GUO,

2018). Official style guides advise programmers to use English when naming variables,

functions, classes, and even when commenting code (ROSSUM; WARSAW; COGHLAN,

2001). The largest programming-related online forum, Stack Overflow, has an English-

only policy, and although a few localized versions of the site do exist, they have fewer

users and are thus less convenient (ATWOOD, 2009).

As for beginner programmers, supposedly a basic level of English understanding

should be enough. Students only need to internalize a few keywords, such as if, else,

10

print, and return, as well as a few function names. Even so, Guo (2018) has found that

close to one in every six non-native English students face problems learning to program

while also learning English. Considering that 94% of the world does not have English

as their first language (ETHNOLOGUE, 2019), the issue reveals itself more prevalent.

For Anido (2015), perhaps the most significant barrier for Brazilian students is that the

target demographics of existing tools have English as their first language. And while

some of those tools have means of internationalization, most programming environments

still require some knowledge of English. If done right, though, Guo (2018) also suggests

that students might feel more motivated to improve their English skills due to a newfound

interest in programming, in which case the barrier could become an opportunity.

Researching this topic, we have come across several projects relevant to the issue

of teaching programming to non-English speakers. We have found projects aimed at lo-

calizing programming to a specific human language, such as Portugol Studio (ESTEVES

et al., 2014), PSeInt (NOVARA, 2003), and Kati (کاتی) (KATI, c. 2019); projects aimed

at supporting multiple human languages at once, such as Babylscript (IU, 2011a), Citrine

(MOOIJ, 2014), and WLanguage (PC SOFT, 1992); and projects aimed at teaching young

students how to program visually, such as Scratch (RESNICK et al., 2007) and Blockly

(GOOGLE; MIT, 2012). We have looked at many such projects trying to find a localized

solution that eases students into a mainstream programming language after learning the

basics of programming in their native languages. While localized programming solutions

could accomplish that goal, the existing ones are either not educational or are limited to

a single human language, such that adding support to a different human language might

not be an easy task, if at all possible. Moreover, having several localized projects without

compatibility creates the risk of fragmenting student communities, while our objective

is to integrate these students into the English-speaking community. Block programming

environments could also achieve that objective, given that they can provide multiple local-

ized textual representations for a single code block. However, we believe that transitioning

from visual programming to a mainstream programming language feels jarring and that a

simple localized text-based language could help bridge that gap (PERERA et al., 2021).

Given this scenario, this work proposes creating a free online platform to provide

localized simplified programming languages, collectively known as PanScript. Teachers

will have the option of using the platform in computing class laboratories, as it mainly

targets students aged 11 to 16 in their first contacts with programming. To best accom-

modate such a target demographic, PanScript’s design has objectives such as localization,

11

user-friendliness, accessibility, code simplicity, frictionless UX, extensibility, and useful-

ness. These are defined more precisely in Chapter 4. Following these objectives, we

intend to provide teachers with a tool for teaching the basics of programming to young

students anywhere in the world in their native language. After that, PanScript may be

used in its canonical English version to teach English keywords before classes transition

to a mainstream programming language such as C, Java, Python, or others.

Chapter 2 introduces basic concepts that are relevant for understanding implemen-

tation details. Chapter 3 explores a vast array of related work in localized and educational

programming languages and platforms. Chapter 4 describes PanScript’s design and im-

plementation in detail. Chapter 5 specifies this work’s evaluation methodology, which in-

volves self-evaluation and a survey with a prototype of the platform. Chapter 6 discusses

the results of both evaluations, and Chapter 7 presents conclusions and future work.

12

2 BASIC CONCEPTS

This chapter briefly introduces a few concepts of programming languages, soft-

ware development, and code execution. These concepts enable a better understanding of

the implementation details in Chapter 4.

2.1 Programming languages

A programming language is a notation for writing computer programs by permit-

ting the specification of instructions, computations, or algorithms to control a computer’s

operation (SIGPLAN, 2003). It also assists the programmer in areas such as program

design, documentation, and debugging (HOARE, 1973). Programming languages range

from low-level (which are more similar to machine code, such as Assembly) to high-level

(which enable higher levels of abstraction, such as C++ and Java) (SEBESTA, 2012).

Low-level languages tend to be machine-oriented, while high-level languages are more

user-oriented. We can classify programming languages using several criteria, including

their supported programming paradigms and their typing systems.

Programming paradigms are classifications based on the main concepts and sup-

ported features of a programming language (WATT, 2004). The most well-known cat-

egories include imperative (containing both procedural and object-oriented paradigms),

functional, and logic (SEBESTA, 2012). Nowadays, most mainstream languages are

multi-paradigm, supporting a combination of constructs from functional, procedural, and

object-oriented programming.

A type system is a set of types and associated rules governing their use in pro-

grams, as defined by a programming language (SEBESTA, 2012). They are a means to

group values into known categories, allowing the programmer to express their intent more

clearly, and allowing a type-checking routine to prevent the program from violating the

language’s semantic rules. An example of one such rule is disallowing multiplication be-

tween a number and a boolean (or logic) value (WATT, 2004). We often categorize type

systems as either static or dynamic. In a statically typed language, all of the variables

and expressions always have well-defined fixed types, such that programs can be fully

type-checked during compile-time (WATT, 2004). Some languages support both static

and dynamic typing as well. For example, the type dynamic in C# allows an object to

bypass static type-checking (MICROSOFT, 2015).

13

2.2 Software development

Writing code typically enjoys the help of an Integrated Development Environment

(IDE). The IDE is a program that provides functionality such as code editing, syntax

highlighting, code completion, refactoring, and debugging, among others (WATT, 2004).

Notable examples include Visual Studio (MICROSOFT, 1997), IntelliJ (JETBRAINS,

2001), Xcode (APPLE, 2003), and PyCharm (JETBRAINS, 2010).

Code reusability is the ability for programmers to reuse existing code when de-

veloping new applications, avoiding the need to recreate the same solution many times

(SEBESTA, 2012). Programmers reuse code in several ways, such as using published

libraries, packages, and modules; forking a repository to create a private version of an

open-source solution; and sharing code snippets on online forums.

Web development is writing programs to run on the web, typically in a client-

server architecture. Using a web browser, the user connects to a web server that hosts the

web application, and the server returns files and data in response to interactions. Some

applications provide an offline version of the website, such that basic functionality re-

mains available even without Internet connectivity. A web application that never requires

an Internet connection can be released as a purely client-side application.

Modern web applications contain several independent parts, known as components

(REACT, 2017), packages, modules (NPM, 2019), or plug-ins (GULP.JS, 2014). These

components are self-contained, reusable applications that provide specific functionality.

Examples include a date picker shaped like a calendar or a theme-able code editor. Open-

source developers create components such as these, which other developers then reuse in

many different applications.

Web applications also typically make use of Application Programming Interfaces

(APIs) when interacting with data. An API is an interface that defines the many operations

a service provides, including which data formats to use when issuing a specific request

(PEZOA et al., 2016). In web development, APIs commonly make meaningful use of

HTTP verbs, such as GET and POST, in conjunction with either JSON or XML-encoded

objects to send and receive data to and from a server.

14

2.3 Code execution

A program executes on Central Processing Units (CPUs), which require specific

machine instructions instead of textual source code. There are many options for convert-

ing source code into machine code. The most common are compilation and interpretation

(AHO; SETHI; ULLMAN, 1986); however transpilation is also relevant. Compilation

is a process that transforms the source code into a binary object format, containing the

low-level instructions for the target processor. Object files can be linked together to form

an executable file, such as ELF (for Unix) or PE (for Windows). Interpretation is a pro-

cess that parses source code and executes it in runtime, generally without the need for

binary object files. In Just-In-Time (JIT) compilers, an intermediary bytecode representa-

tion may allow optimizations before code execution. When using interpretation without

static-checking, programming mistakes such as invalid code can remain unnoticed until

the affected code section runs. Finally, while compilation and interpretation are means to

turn source code into machine code for execution, transpilation is a process that translates

source code from one programming language to another (ANDRÉS; PÉREZ, 2017).

For all previous cases, concepts such as grammars, lexers, and parsers are helpful

for language specification, lexical analysis, and syntactic analysis (AHO; SETHI; ULL-

MAN, 1986). A grammar describes all the terminal symbols (tokens) in a language and

all possible combinations of such symbols in syntactically correct structures (programs).

Several different grammar notations exist. They typically consist of a set of “head = body”

production rules, in which “head” is a non-terminal symbol and “body” may contain

one or more terminal and non-terminal symbols. Recursion occurs when the same non-

terminal appears on both sides of a production rule, either directly or indirectly.

A lexer transforms the source code into a list of tokens based on the terminal sym-

bols of the grammar. These tokens are matched against the grammar’s productions using

a parsing algorithm to generate a syntax tree, which in turn may be optimized and even-

tually translated to machine code or to another programming language (AHO; SETHI;

ULLMAN, 1986). Although less common, some scannerless parsers also exist, in which

both tokenization and parsing occur in the same step (VISSER, 1999). Manually de-

veloping parsers is complex and error-prone. A popular alternative is to use a tool that

interprets the grammar definition and generates a lexer/parser program that transforms the

input text into a syntax tree for further processing. Tools such as Flex/Bison and ANTLR

are examples of parser generators (AHO; SETHI; ULLMAN, 1986).

15

3 RELATED WORK

While researching related work for this project, we have noticed that teaching

programming to non-English speakers lies in the intersection between programming edu-

cation and multilingualism. That is why we have divided the related work into two main

groups: localized programming languages and educational programming platforms. This

chapter defines these two concepts, explores existing solutions, and points out gaps that

can prevent these solutions from teaching programming to non-English speakers.

3.1 Localized programming languages

We here define a “localized programming language” as a programming language,

general-purpose or not, that uses localized keywords in their programs. Therefore, either

the programming language uses non-English tokens, or it supports tokens in multiple

human languages. We have found more than 90 examples of such programming languages

on the Internet. While many more are bound to exist, we have selected 19 of them to

describe in detail in this section, starting with Portugol.

Portugol consists of a simplified programming language using Portuguese key-

words without accents (e.g., “senao” instead of “senão”). A few implementations exist,

including VISUALG (SOUZA; NICOLODI, c. 2003) and Portugol Studio (ESTEVES

et al., 2014). While VISUALG’s design has remained the same for more than a decade,

Portugol Studio still sees active development by its maintainers. Portugol Studio includes

code samples and documentation written in Portuguese, as well as localized error mes-

sages. The language’s syntax is similar to C, Java, and PHP (NOSCHANG et al., 2014).

Portugol Studio is one of the few localized programming projects with articles

published about them. Noschang et al. (2014) describe the IDE and the motivations for

teaching Brazilian students using Portugol. Junior and França (2017) compare several

educational programming projects and state that, since Portugol Studio is a desktop appli-

cation, this makes it harder for students to practice at home. Esteves et al. (2019) describe

the advancements made after five years of the IDE’s initial release, most notably mention-

ing Portugol Webstudio, which is a web-based version of Portugol Studio. Other projects

with an academic background include PSeInt (NOVARA, 2003), Potigol (LUCENA et

al., 2011), Babylscript (IU, 2011a), and CodeInternational (PIECH; ABU-EL-HAIJA,

2020a), which we describe in the following paragraphs.

16

PSeInt is perhaps one of the most successful localized programming projects to

date. Initially created in Argentina in 2003, it was proven helpful in introductory program-

ming classes in Panama (SÃNCHEZ; BAHAMONDEZ; CLUNIE, 2020), Peru (ARO,

2016), Mexico (CRUZ-BARRAGÁN; MARTÍN; LULE-PERALTA, 2019), and Cuba

(CAÑETE; ENRIQUE; RICARDO, 2019). Cañete, Enrique and Ricardo (2019) have

found that the usage of PSeInt may favor the development of algorithmic thinking when

learning Linear Algebra. Aro (2016) has found a positive correlation between the use of

PSeInt and the levels of cognitive learning on students of a “Fundamentals of Algorithms”

course in Peru. Huerta and González-Bañales (2018) have observed a significant reduc-

tion in student failure rates on a “Fundamentals of Algorithms” course in Mexico. At the

time of writing, PSeInt’s development remains active 18 years after its initial release.

Other recent open-source projects for Portuguese and Spanish include Potigol

(LUCENA et al., 2011) and Latino (MONTERO et al., 2015), respectively. According

to Lucena and Lucena (2016), Potigol is a multi-paradigm programming language with

syntax similar to Ruby and Python. Potigol is designed for beginners and encourages a

functional programming style. Meanwhile, Latino is a procedural programming language

with syntax inspired by Lua and Python. Latino too prioritizes educational purposes. Both

projects were first released in 2015 and remain active to this day.

Babylscript is a modified JavaScript interpreter that supports 19 dialects. One

curious feature of the project is the ability for programmers to switch between two or

more languages in the same source code file, which is something we believe could create

some confusion for non-polyglot developers. The project’s repository was last updated

in 2019 with minor translation adjustments. Most recently, the author has uploaded a

YouTube video with motivations for using Babylscript (IU, 2020). In his article about the

project, Iu (2011b) mentions that supporting the automated translation of code from one

vocabulary to another is the holy grail of multilingual programming. CodeInternational

accomplishes something similar to that objective.

According to Piech and Abu-El-Haija (2020b), CodeInternational is a tool to make

programming more accessible to non-English speakers while still using typical introduc-

tory Computer Science programming languages, such as Python and Java. Their approach

is to leverage the Google Translate API to automatically translate (and possibly transliter-

ate) comments, string literals, class names, function names, and even variable names from

one human language to another. However, the tool does not translate keywords because

that would require a custom compiler or interpreter. The authors report that their work is

17

in use in at least four classes around the world.

Yet another effort for localized programming can be seen in both Excel (Microsoft,

1987) and WLanguage (PC SOFT, 1992). At least since Excel 97, the program includes

localization for the function names used in formulas on the spreadsheet’s cells (SOUTO;

LIVI, 1999). Today, according to documentation for the official “Functions Translator”

add-in, Excel supports more than 80 human languages (MICROSOFT, 2018), with at least

20 unique translations (where multiple function names differ from all the other transla-

tions). As for WLanguage, the creators of WINDEV have localized their programming

language to support coding in French, English, and Chinese (PC SOFT, 2014). Users

may automatically translate their code between localizations, and similar to Babylscript,

multiple languages may appear in the same source code file.

Citrine (MOOIJ, 2014) is a project that goes even further in its localization efforts.

Aiming to make the language more abstract by using pictographic symbols instead of just

words, Citrine’s syntax incorporates mandatory Unicode characters to represent actions

such as “declare” () and “write” (). The project includes automatic translations for

more than a hundred human languages. However, the quality of these translations varies.

For Brazilian Portuguese, the list type appears mistranslated as the verb listar, and the

stop keyword appears localized as punto, which is an Italian word.

While Citrine uses Unicode symbols to make its syntax more abstract, Tampio

(HAUHIO, 2017) goes in the opposite direction: it tries to resemble the Finnish language

as much as possible, including several cases of word inflection and some forms of verb

conjugation. Code written in Tampio looks like regular written text, except for the in-

dentation. The project’s repository was last updated in 2018, with almost all the commits

written by a single person.

Other language-specific localized programming languages include Al-Khawarizm

(�EC�w���) (AL-KHAWARIZM, 2018), Alif (���) (DRAGA, 2018), Ammoria (A§CwÌm�)

(AMMOURI, 2006), Qalb (l�) (NASSER, 2012), and Kati (کاتی) (KATI, c. 2019).

These projects have in common the support for right-to-left (RTL) languages: Arabic and

Persian. Not only does text flow from right to left, but the UI elements also have their

positions shifted. For example, horizontal menu entries usually appear in the opposite

order compared to their English counterparts. It is also noteworthy how Qalb explores the

use of Arabic “kashida,” which are extensions of arbitrary length between characters, as

a creative way to align source code.

One finds an entirely different set of challenges in the CJK (Chinese, Japanese,

18

Korean) language family. Nadesiko (なでしこ) (Whale Flight Desk, 2004) and Pro-

duire (プロデル) (YUTO, 2007) are two examples for Japanese, and Wenyan (文言)

(HUANG, 2019) is an esoteric example for Classical Chinese. These languages typically

do not require spaces in their sentences. Programming languages attempting to support

Japanese and Chinese must either require the usage of spaces or use a language-specific

lexer to split the words, either using a dictionary or some heuristic based on auxiliary par-

ticles and inflections. Another notable characteristic of Japanese, Persian, and many other

languages, is their subject-object-verb (SOV) sentence structure, different than English’s

subject-verb-object (SVO) structure. This difference may influence the programming lan-

guage’s design, as is the case for both Produire and Kati.

Finally, we could mention many other projects that are either abandoned or that

are much more limited in scope and popularity. Wikipedia (2021b) lists more than 100 of

the so-called “Non-English-based programming languages.” Hopefully, this project will

not end up as yet another unknown entry on the list.

3.2 Novice programming environments

We here define a “novice programming environment” as a platform where the

primary goals are to teach beginners how to think computationally and how to create

computer programs. Although some examples from the previous section also qualify

as “novice programming environments,” such as Portugol Studio, this section focuses

on projects with greater notoriety, such as Scratch and Blockly, to further explore the

existing literature about existing solutions. Section 3.3 later presents other classifications

including purpose, platform, and paradigm.

Scratch (RESNICK et al., 2007) is a visual programming environment that allows

users to learn computer programming in a self-directed way through exploration and col-

laboration (MALONEY et al., 2010). Rather than providing a text editor and some help

articles, as some of the works in the previous section do, Scratch gives its users a collec-

tion of small code blocks that they can combine like LEGO bricks to create event-driven

visual programs. These code blocks are then connected to form complex imperative logic

without much risk of syntax errors (MALONEY et al., 2008). Scratch programs typically

involve manipulating 2D object sprites on the screen to create a game, an animation, or

an interactive story (ZAMIN et al., 2018).

A very distinguishing feature of Scratch is the social nature of the platform (MAL-

19

ONEY et al., 2010). The more than 73 million registered Scratch users have access to rich

galleries of projects created by the community in many different countries (SCRATCH,

2021). Users may inspect these projects and “remix” them with ease, as human language

is mostly not a barrier when reusing Scratch code. A program created in Scratch is purely

a JSON file and a collection of assets (images, sounds, etc.) inside of a Zip archive. Since

the code is not textual, code blocks may have their labels localized independently of the

author’s native language (DASGUPTA; HILL, 2017). Scratch does not automatically

translate variable names, although it could, similar to what CodeInternational does.

The past decade has seen a vast number of studies on the usage of Scratch for

teaching young students about programming and computational thinking. Researchers

have verified that Scratch and similar solutions may help students recognize and assim-

ilate computing-related concepts (SÁEZ-LÓPEZ; ROMÁN-GONZÁLEZ; VÁZQUEZ-

CANO, 2016; AIVALOGLOU; HERMANS, 2016; ZHANG; NOURI, 2019). They may

also make students more inclined to pursue Computer Science courses (OUAHBI et

al., 2015; WEINTROP; WILENSKY, 2017; BALA; ALACAPINAR, 2021). More of-

ten than not, students report positive attitudes towards Scratch (ÖZORAN; CAGILTAY;

TOPALLI, 2012; WILSON; MOFFAT, 2012; REZENDE; BISPO, 2018), even though a

significant improvement is not noticeable in their final grades (ARMONI; MEERBAUM-

SALANT; BEN-ARI, 2015; HERMANS; AIVALOGLOU, 2017).

Wing (2006) defines computational thinking (CT) as “using abstraction and de-

composition when attacking a large complex task or designing large complex systems.”

According to Pérez-Marín et al. (2020), Scratch has a positive impact on both CT and gen-

eral knowledge of computing. These are reasons why many authors have recommended

the use of Scratch in the school environment for both middle school and high school

students (SÁEZ-LÓPEZ; ROMÁN-GONZÁLEZ; VÁZQUEZ-CANO, 2016; OUAHBI

et al., 2015; ZAMIN et al., 2018). Maloney et al. (2008) also noted that children learn

Scratch even in the absence of experienced mentors.

One recurring concern is whether Scratch can teach good programming habits.

Meerbaum-Salant, Armoni and Ben-Ari (2011) found that Scratch users picked up bad

habits such as complete bottom-up development and excessively fine-grained program-

ming. Aivaloglou and Hermans (2016) found procedures and conditional loops to be seen

infrequently, while code duplication and dead code were much too common. Hermans

and Aivaloglou (2017) mention the frequent use of infinite loops in the projects, indicat-

ing the concept is perhaps not fully understood. Armoni, Meerbaum-Salant and Ben-Ari

20

(2015) noted the same phenomenon, where one student stated during class that “loops

are forever.” To paraphrase Kalelioglu and Gulbahar (2014), just providing the learning

environment will not fulfill the need for effective teaching.

Scratch is one of several block programming projects. Other examples include

Blockly (GOOGLE; MIT, 2012), Alice (PAUSCH, 1998), Tynker (TYNKER, 2013), and

App Inventor (ABELSON; FRIEDMAN, 2010), among others. According to Zamin et

al. (2018), Blockly is Google’s version of MIT’s Scratch. It is mostly used as a tool to

build other educational projects, such as App Inventor and even Scratch 3.0 itself. Alice

is a 3D tool designed by Carnegie Mellon that teaches concepts of object-oriented pro-

gramming (OOP). Alice does not provide a web version of its platform, which causes

students to have some difficulties setting it up at home (DURAK, 2020). Tynker is

a freemium platform offering online self-paced courses that teach block programming,

Python, JavaScript, Java, HTML, and CSS. App Inventor is a visual platform for develop-

ing mobile apps, similar to Android Studio. App Inventor has a more complicated setup

process that requires a mobile device for testing the app. Several other visual program-

ming tools are available (PEREIRA; SEABRA; SOUZA, 2020).

Another common concern echoed by Fraser (2015) is encouraging students to

move on from Scratch to learn fully-fledged programming languages such as Python,

Java, and C#. Although Blockly presents JavaScript code alongside the Blockly edi-

tor, students may not pay much attention to that code (SERAJ et al., 2019). Judging

by the findings in Hermans and Aivaloglou (2017), Weintrop and Wilensky (2017), and

Rezende and Bispo (2018), we believe it could be beneficial to introduce visual program-

ming tools along with simplified text-based programming. Such a process could give

students something interesting to experiment with (ARMONI; MEERBAUM-SALANT;

BEN-ARI, 2015) while at the same time demonstrating what else to expect from the

field, bridging the gap between block programming and “real” programming languages

(MARIMUTHU; GOVENDER, 2018; PERERA et al., 2021).

Finally, yet another recent solution in this category is Grasshopper (GOOGLE,

2019): a platform created for adults that teaches JavaScript using gamification. Like other

visual programming solutions, Grasshopper also represents code internally as Abstract

Syntax Trees (ASTs) rather than text. The difference is that, instead of using blocks like

Scratch and Blockly, Grasshopper presents the code very similarly to formatted JavaScript

code in a text-based code editor (MALYSHEVA, 2017). We believe that Grasshopper’s

code editing functionality would also work well on an app targeted at younger students.

21

3.3 Comparisons between related work and PanScript

This section compares the works we have discussed in this chapter. We classify

the projects in terms of purpose, supported platforms, localization, paradigm, input mode,

and approximate year of release. Table 3.1 presents an overview of these comparisons.

We can observe that most of the selected text-based projects have an educational

purpose and a single localization option is provided. That is the case for VISUALG, Por-

tugol Studio, Potigol, PSeInt, Latino, Al-Khawarizm, Alif, Ammoria, Kati, and Nadesiko.

The exceptions are a few languages that aspire to be general-purpose (e.g., Babylscript,

Citrine, and Produire), a few esoteric projects (Tampio, Qalb, and Wenyan), and a couple

of business-oriented products (WLanguage and Excel Formulas).

Moreover, we notice almost half of the educational projects support a purely

web-based environment: Portugol Studio, Kati, Nadesiko, Scratch, Blockly, Tynker, and

Grasshopper. We did not count App Inventor because it requires a combination of web

and mobile platforms, as the code runs on the developer’s smartphone.

Considering paradigms, the most common are imperative and object-oriented pro-

gramming (OOP). Potigol is the only educational initiative that supports functional pro-

gramming constructs as well as OOP. Excel and Qalb are strictly functional; however,

these are not educational projects. As usual, block programming initiatives rely on the

event-driven paradigm. The exception is Tynker, which also offers programming courses

in Python, JavaScript, Java, etc.

Considering the input mode, Grasshopper is the most unique project. Its puzzles

provide a few tokens that the user can add to their answer. The source code appears

onscreen as if it had been typed in a code editor. Later lessons then teach the student how

to use an actual code editor to type their code instead of selecting tokens one by one.

Based on these criteria, PanScript is different in the sense that it offers text-based

programming localized to many human languages with an educational purpose. At the

moment its paradigm is merely imperative; however it could be expanded to support OOP

in the future if educators believe it is necessary. For the time being, we have preferred to

keep the language small and simple.

22
Table 3.1 – Comparisons between related work and PanScript.

Project Purpose Platform Localization Paradigm Input Mode Year (approx.)

VISUALG Educational Windows Portuguese Imperative Textual 2003

Portugol Studio Educational Windows, Linux, Mac, Web Portuguese Imperative Textual 2014

Potigol Educational Many (Java) Portuguese Multi Textual 2011

PSeInt Educational Windows, Linux, Mac Spanish Imperative Textual 2003

Latino Educational Windows, Linux, Mac Spanish Imperative Textual 2015

Babylscript General Many (Java) Many OOP Textual 2011

CodeInternational Educational Many (Python) Many N/A N/A 2020

Excel Formulas Business Windows, Mac Many Functional Textual 1987

WLanguage Business Windows, Linux, Mac French,

English,

Chinese

OOP Textual 1992

Citrine General Windows, Linux Many OOP Textual 2014

Tampio Esoteric Many (Python) Finnish OOP Textual 2017

Al-Khawarizm Educational Windows, Linux Arabic OOP Many 2018

Alif Educational Windows, Linux, Mac Arabic OOP Textual 2018

Ammoria Educational Windows Arabic Imperative Textual 2007

Qalb Esoteric Web Arabic Functional Textual 2012

Kati Educational Web Persian Imperative Textual 2019

Continued on next page.

23

Continued from previous page.

Project Purpose Platform Localization Paradigm Input Mode Year (approx.)

Nadesiko Educational Windows, Web Japanese Imperative Textual 2004

Produire General Windows Japanese OOP Textual 2007

Wenyan Esoteric Web, Node.js Classical

Chinese

OOP Textual 2019

Scratch Educational Windows, Mac, Web, Mobile Many Event-driven Block 2007

Blockly Educational Web Many Event-driven Block 2012

Alice Educational Windows, Linux, Mac Many Event-driven Block 1998

Tynker Educational Web, Mobile English Many Block 2013

App Inventor Educational Web + Mobile (together) Many Event-driven Block 2010

Grasshopper Educational Web, Mobile English,

Spanish,

Portuguese

Imperative Hybrid 2019

PanScript Educational Web Many Imperative Textual 2021

Source: The Author

24

4 THE PANSCRIPT PLATFORM

This chapter explores the solution design and implementation details of PanScript.

Section 4.1 specifies the solution’s target demographics, main objectives, architecture,

programming environment, and the features of the simplified programming language.

Section 4.2 elaborates on PanScript’s dependencies, code structure, canonical grammar,

and support for different human languages.

4.1 Solution design

This section introduces PanScript’s target demographics, the project’s main objec-

tives, the platform itself, the canonical programming language, and the localized dialects.

4.1.1 Target demographics

PanScript focuses on three target demographics: non-English speakers aged 11 to

16 who are learning computer programming, teachers responsible for these students, and

developers who wish to contribute to the project. We proceed to describe these demo-

graphics using three generic personas: student, teacher, and developer.

The student persona represents a student learning computer programming at mid-

dle school, high school, or summer camp. The student is not a native English speaker,

but they may understand a few English words thanks to mobile phones, computers, and

games. The student may have previous experience with Scratch or a similar tool, al-

though they may not have much interest in programming yet. They wish to complete their

assignments and find out if programming is an enjoyable hobby or career path.

The teacher persona represents a teacher who educates young students about basic

computer programming and algorithms. They may not have a Computer Science back-

ground, and they may have learned to program later in their career. The teacher intends

to prepare students for the digital era by providing them with the necessary skills in a

low-risk environment. They have at least a working knowledge of English and can teach

students how to write their programs in English PanScript. They also have at least ba-

sic knowledge of Python or another mainstream programming language and can teach

students how to write programs in that language.

25

The developer persona represents an open-source developer who enjoys collabo-

rating to free educational projects. They understand that PanScript does not aim to become

a mainstream programming language, and they appreciate how the platform facilitates the

creation of simple localized programming languages. If they are a native speaker of a

language other than English, they can contribute a new PanScript dialect. If not, they can

help improving interface design, user experience, accessibility features, etc.

4.1.2 Main objectives

As mentioned in Chapter 1, to best accommodate the needs of its target demo-

graphics, this project has a few key objectives: localization, user-friendliness, accessibil-

ity, code simplicity, frictionless UX, extensibility, static checking, and usefulness, as well

as being free and open-source. We define these concepts more precisely below.

For PanScript, localization refers to adapting the programming language’s key-

words and function names to different languages, adjusting the user interface as a whole,

and translating any error message produced during the transpilation or execution of the

code. For example, when supporting Arabic, the user interface should switch to an en-

tirely right-to-left (RTL) layout. User-friendliness means the solution should be intuitive

and easy to use by teachers and students. Accessibility means it must support screen-

readers for the visually impaired and keyboard-only input for people with motor disabil-

ities. It should also provide font-size adjustment and editor theme selection, with at least

one high contrast option. Code simplicity manifests itself as the reduced use of symbols,

such that the code is easier to read, the same way Python is perceived to be easier to read

than C++. It also implies the PanScript language itself should employ simple concepts to

avoid being overwhelming. Frictionless UX means the platform should provide a smooth

user experience (UX), avoiding requirements such as software installation or specific plat-

forms or plug-ins. It should also support mobile devices such as smartphones and tablets.

Extensibility refers to supporting more human languages in the future. It must be relatively

easy to introduce new localized PanScript dialects, including ones that use right-to-left

writing and Unicode characters. Static checking means the code must preferably fail in

compile-time rather than runtime, making errors easier to spot. The language should use

static type-checking to avoid bugs caused by implicit conversions. Usefulness means that

students must interact with relevant programming concepts and keywords that they can

use in mainstream programming languages. Our goal is for students to learn PanScript be-

26

fore the introduction of a general-purpose programming language. Free and open-source

means the final solution should be readily available, free of charge, for anyone interested

in using, learning, copying, sharing, modifying, or contributing to its expansion.

As we show in this chapter, these key objectives have influenced all major design

decisions in the project.

4.1.3 Architecture and user interface

PanScript’s web-based design supports any operating system that can run modern

web browsers like Mozilla Firefox, Google Chrome, and Microsoft Edge. This design

decision is in line with the objective of frictionless UX, since avoiding a complicated setup

process allows students to more easily access the platform from their home computers or

their smartphones.

Figure 4.1 presents PanScript’s client-server architecture. New requests are made

by the client every time the user selects a language they have not previously selected. To

avoid web hosting costs, PanScript is currently a static web application hosted on GitHub

Pages. As such, everything runs on the client-side: syntax highlighting, code validation,

code transpilation, and code execution all occur in the user’s web browser.

Figure 4.1 – PanScript’s client-server architecture, also depicting requests made by the client.

PanScript System

User User's PC (Client)

 1 - Client requests home page

 2 - Server returns home page

 3 - Client requests pt-BR language

 4 - Server returns pt-BR files

 5 - Client requests example file

 6 - Server returns example file GitHub Pages (Server)

Source: The Author

Being a web-based application, PanScript contains several internal components.

A code editor allows users to write their code with syntax highlighting directly in the

browser. A virtual console displays any output or error message related to the transpilation

or execution of the user’s code. A menu bar allows users to select a different human

language, save and load PanScript code files, and run the code in the editor. Users can

also view code samples for the current language and choose a theme for the code editor.

27

Figure 4.2 presents an overview of what happens when the user clicks the Run

button. Within the dotted box, a transpiler must (1) parse the localized PanScript code,

(2) run static checks to verify the declaration of all identifiers and the adherence to all

type rules, and (3) generate valid JavaScript code that the browser can execute, equivalent

to the user’s code. Finally, (4) the transpiler concatenates the standard library code and

the generated JavaScript code.

Figure 4.2 – Flowchart of the code execution process.

End

User clicks
Run button

Start Parse user
code

No

Yes

Found
error?

Show localized
errors in output

console

Run static
checks

Yes

NoFound
error?

Append
standard

library code
Execute code End

Generate
JavaScript

code

Transpiler

(1) (2) (3) (4)

Source: The Author

Most of the internal components are present in PanScript’s user interface (UI).

Similar to Scratch’s design philosophy, PanScript’s UI is a single page with all relevant

controls visible at all times. Figure 4.3 presents an initial wireframe of the user interface.

It includes the code editor, the virtual console, and several menu buttons for interacting

with the platform.

An example of user interaction with the PanScript platform is as follows. The user

navigates to the PanScript website using a web browser. They choose the appropriate

localization language in the menu. They view the code samples for that language and use

them as a reference to write their own code. They click a button to run the code and verify

if the output console displays any compilation error. If there is an error, they modify and

re-run their code. Finally, they check the output generated in the console.

4.1.4 Programming language and dialects

PanScript’s language design has gone through several iterations since the project

started, back in December 2019. Initially, its syntax would more closely resemble nat-

ural language, such as using the word equals instead of ==. However, the principle of

28

Figure 4.3 – Early wireframe of PanScript’s user interface.

Source: The Author

usefulness has helped steer the syntax towards inspirations such as Ruby, Python, PHP,

and C. Objectives such as code simplicity and static checking have also informed other

fundamental aspects of the design, such as the typing system. Code simplicity has led us

to deliberately avoid using a large number of symbols such as semicolons (;), colons (:),

and braces ({}) in code blocks. It has also induced us to prefer a smaller set of features

and focus the standard library to a core minimum, as shown in Appendix B.

PanScript uses an imperative paradigm, mainly because command sequences tend

to give a reasonably accurate picture of how computers work. Explaining algorithms as

sets of instructions analogous to the steps of a recipe can make the concept more intuitive

for first-time learners. Initial drafts included object-orientation, but we have dropped it

to keep the language small and simple. As such, PanScript deliberately lacks support for

more complex concepts such as objects, namespaces, and first-class functions.

Static checking has influenced us to adopt a strong, static, and explicit typing sys-

tem. In PanScript, every variable declaration must have a type. The same is true for

function declarations containing a non-empty return statement. PanScript currently pro-

vides the following primitive types: text, number, and logical. To avoid accidental null

values, PanScript requires initialization for all variable declarations. At this moment,

there is no distinction between integers and real numbers, although these subtypes are

under consideration for future versions of the platform.

29

Similar to C, constants and variables in PanScript can be declared either globally or

locally. To avoid name shadowing, PanScript requires the redeclaration of global variables

using the global keyword before they are accessed, similar to Python and PHP. Names

of identifiers may contain non-ASCII characters if the dialect allows them. Functions

may have no type declared, in which case their internal type is none. Recursive functions

are supported, but much like ANSI C, function declarations cannot appear nested inside

another function’s body. PanScript uses static scoping, as it is more common (SEBESTA,

2012) and more intuitive than dynamic scoping. PanScript does not include any language

that requires right-to-left writing at this time, but that too will be supported.

PanScript represents its operators using symbols. The following operations are

supported: assignment (=), addition (+), subtraction (-), multiplication (*), division (/),

remainder (%), text concatenation (+), and composite assignment operators (e.g., += and

-=). We have chosen not to include bitwise operators (>>, <<, |, &, ˆ), increment operators

(++x, x++), and decrement operators (--x, x--). As for comparison operators, PanScript

includes logical and (&&), or (||), and not (!) operators, equality (==), difference (!=),

and the standard numeric comparison operators such as greater-than (>) and less-than (<).

PanScript also supports PHP-like text interpolation, in which text literals may contain

variable names or expressions surrounded by braces.

Contrary to Python, users cannot separate multiple statements in the same line of

code using semicolons (;). Furthermore, indentation is not meaningful in PanScript. As

in Ruby and Lua, users close blocks of code using the end keyword. PanScript does not

contain context-specific versions of the end keyword (e.g., endIf or endFor). Supported

control flow statements include if/else, while loops, forever loops (similar to Scratch),

and for-from-to loops (similar to ALGOL). As for comments, PanScript supports C-style

multi-line comments, and both C-style and Python-style inline comments.

The canonical language’s standard library is a reduced version of JavaScript’s

standard library, with some modifications. The functions that manipulate the output con-

sole include write, write_inline, and clear. Text functions include pad_left, length,

repeat, left, right, reverse_text, and trim. Numeric functions include absolute,

power, round, floor, ceiling, minimum, and maximum. The complete list of standard li-

brary functions is much longer, and is available in Appendix B. We have also considered

providing functions to manipulate date/time types or interact with the web through HTTP.

However, we believe such features would rarely be useful and would only amount to un-

needed complexity. The standard library is written in JavaScript, which is the same pro-

30

gramming language that the transpiler generates. During execution, the transpiler loads

all function definitions together with the user’s code, evaluating both simultaneously. Pan-

Script dialects provide localized names for the standard library functions.

Having described the PanScript platform and canonical language, we can discuss

PanScript’s support for localized dialects. Figure 4.4 presents code samples for PanScript

in English and Portuguese. The figure also showcases text interpolation, with expressions

appearing inside text literals, surrounded by braces. The localized versions of PanScript

allow students to develop computational thinking and learn general programming con-

cepts in their native language. PanScript can also support languages that are not based on

the canonical language, that is, languages that do not implement the same lexer, parser,

and standard library. This way, the platform may host localized programming languages

that include an entirely different set of features than PanScript, as long as they can be

transpiled to JavaScript.

Figure 4.4 – Code samples for PanScript in English and Portuguese.

(a) English (US) (b) Portuguese (Brazil)

Source: The Author

4.2 Implementation

This section details PanScript’s current implementation. It describes the organi-

zation of the code, the technologies and dependencies in use, the support for multiple

dialects, and the canonical grammar.

31

4.2.1 Technology stack

Following the project’s objectives, PanScript’s technology stack consists of web-

based components developed with HTML, CSS, and JavaScript. Aiming to modernize

the project as much as possible, we have adopted TypeScript (MICROSOFT, 2012) as

the primary programming language and Node.js (DAHL, 2009) as the back-end runtime.

TypeScript is a superset of JavaScript with support for static type-checking, which makes

it ideal for avoiding bugs related to wrong variable types. For the front-end, we have cho-

sen React.js (WALKE, 2013) due to its current popularity, hopefully facilitating adoption

by open-source developers.

Within the Node.js and TypeScript realms, we have considered dozens of compo-

nents for package management, code bundling, unit testing, code formatting, code lint-

ing, and build task orchestration. We have also tested several options for incorporating the

parser, the code editor, and the output terminal as components readily available rather than

developing them from scratch. The current version of the platform leverages technologies

such as npm (SCHLUETER, 2010), webpack (KOPPERS; LARKIN et al., 2014), Testing

Library (DODDS et al., 2018), Prettier (CHEDEAU; LONG et al., 2017), ESLint (ZA-

KAS, 2013), gulp.js (SCHOFFSTALL, 2013), antlr4ts (HARRIS; HARWELL, 2016),

CodeMirror (HAVERBEKE, 2007), Xterm.js (KASIDIARIS; IMMS et al., 2016), and

Ant Design (TEAM, 2016). The following paragraphs discuss why we have opted for

some of these components instead of alternatives.

The first major technical decision was which programming language to use for

the project. JavaScript and WebAssembly are the only programming languages that run

natively on all major web browsers, with JavaScript currently being far more common.

Alternatively, developers can write their code in TypeScript and have that code be tran-

spiled to JavaScript during the build process. Since we believe static checking is beneficial

for writing correct source code, we have chosen TypeScript instead of JavaScript.

The next decision concerns front-end libraries or frameworks. According to Stack-

Overflow’s Developer Survey (STACKOVERFLOW, 2020), the most popular front-end

technologies for JavaScript as of 2020 are React.js, Angular (GOOGLE, 2016), Vue.js

(YOU, 2014), and Gatsby (MATHEWS, 2015). Of these, React and Vue are the most

“loved” and the most “wanted,” according to the same survey. We have chosen React for

this project because it has extensive documentation and many components readily avail-

able through the package manager npm.

32

After settling on TypeScript and React.js, the next decision needed for a proof-of-

concept was which parser library to use. Wikipedia (2021a) lists more than 150 parser

generators, dozens of which generate JavaScript code, including ANTLR (PARR; HAR-

WELL; FISHER, 1992), JavaCC (ORACLE, 2000), Canopy (COGLAN, 2010), Waxeye

(HILL, 2008), PEG.js (MAJDA; RYUU, 2010), and nearley (CHANDRA, 2014). One

feature we were actively seeking was the ability to replace the tokens in the lexer gram-

mar while preserving both the parser grammar and the abstract syntax tree (AST) code.

Because of this, we have opted for a parser generator that would allow separating gram-

mar definitions from code. Furthermore, we wanted the grammar notation to be intuitive

enough to be easily understood by new contributors. The result was the elimination of all

PEG-based parsers since their grammars can quickly become polluted with whitespace

tokens. The preference for native TypeScript support has pushed us towards ANTLR, for

which a forked version, named antlr4ts, generates TypeScript code instead of JavaScript.

ANTLR was also a good candidate due to its use of custom visitors to manually traverse

the AST using object-oriented code. The custom visitor code is kept separate from both

the lexer and parser grammar files, improving grammar readability. Additionally, ANTLR

grammars support left recursion and use adaptive parsing strategies to choose the most

appropriate derivation rule in runtime, improving readability even further (PARR; HAR-

WELL; FISHER, 2014).

Finally, the last component choice worth mentioning was between the Monaco

Editor (MICROSOFT, 2016), CodeMirror (HAVERBEKE, 2007), and Ace (AJAX.ORG,

2010). We have developed the proof-of-concept using Monaco – the same code editor

used in Visual Studio Code and several other online platforms. One considerable limi-

tation we have found was that Monaco does not yet support mobile devices. As such,

students would be unable to use the platform on their smartphones. Due to the objec-

tive of frictionless UX, the choice was between CodeMirror and Ace. We have chosen

CodeMirror because of its prevalence in several web-based platforms that contain code

editors, such as phpMyAdmin (PHPMYADMIN, 1998), pgAdmin (PAGE et al., c. 2000),

CodePen (VAZQUEZ; SABAT; COYIER, 2012), LeetCode (LEETCODE, 2011), and

Jupyter (JUPYTER, 2015).

Figure 4.5 shows the latest version of the UI using these components. The menu

buttons and the file explorer on the left are React components from Ant Design. The code

editor at the center is a React component based on CodeMirror, and the output terminal

on the right is a React component based on Xterm.js. During operation, the contents of

33

the files are periodically saved to the browser’s local storage, meaning the user’s code

remains available even if they close the page and return a few days later.

Figure 4.5 – PanScript’s user interface

Source: The Author

Figure 4.6 presents a diagram illustrating what happens internally when the user

presses the Run button. It is a more detailed version of Figure 4.2, showing the different

parts of the transpiler in action, along with the localization artifacts. In runtime, the

transpiler imports the Custom Lexer, Custom Parser, and Custom Visitor for the language

that is currently selected. With them, it transforms the input code into a sequence of

tokens. It then parses the tokens to generate an ANTLR parse tree. In a separate parsing

step, the transpiler traverses the parse tree to generate JavaScript code while validating

declarations and variable types. When it finishes, PanScript evaluates both the user’s

transpiled JavaScript code and the standard library code. The > run text appears in the

output console, followed by any output generated by the user’s program.

34

Figure 4.6 – PanScript’s code execution with implementation details.

PanScript's Code Execution
User Interface

PanScript dialect
is selected

Run button is
pressed

Output localized
error messages

Output localized
error messages

Output localized
error messages

Show program
output

App

Initialize transpiler
for selected

dialect

Print "> run" to the
output console

Run JS code

Transpiler

Download
Custom Parser,

Lexer, and Visitor

Convert input to
ANTLR

CharStream

Instantiate
Custom Lexer

Instantiate
Custom Parser

Instantiate
Custom Visitor

Custom Lexer

Error?

Convert ANTLR
CharStream to

ANTLR
TokenStream

Yes

Custom Parser

Convert ANTLR
TokenStream to

ANTLR
ParseTree

Error?

Custom Visitor

Visit ParseTree to
run static checks

and generate
JavaScript code

Error?

Yes

No

No

Yes

No

Source: The Author

4.2.2 Code structure and reusability

Figure 4.7 presents the file structure of PanScript’s source code, with both a col-

lapsed and an expanded view. The npm package manager maintains the node_modules

directory. When the developer runs the npm install command, npm downloads all of

the project’s dependencies to node_modules. The src directory is where the project’s

source files live. The src/components directory contains all the TypeScript/React (.tsx)

code files. The src/languages directory holds the common subdirectory and one addi-

tional subdirectory per PanScript dialect. The src/languages/common directory contains

the standard definitions used in all PanScript languages, including the Common Lexer,

Common Parser, and Common Visitor. Other language-specific directories contain spe-

35

cialized versions of these files, such as the Custom Lexer and Custom Parser. The files

in src/languages/en_us mostly import and re-export the Common code files, while the

files in src/languages/pt_br redefine the keywords and messages with ones in Brazilian

Portuguese. The src/static directory contains static files such as themes for the editor.

Figure 4.7 – Directory and file structure of PanScript’s source code.

Only directories
/

node_modules/

...

src/

components/

languages/

common/

en_us/

code_samples/

fr_fr/

code_samples/

pt_br/

code_samples/

static/

themes/

transpiler/

Directories and files
/

node_modules/

...

src/

components/

App.tsx

Console.tsx

Editor.tsx

...

languages/

common/

CommonLexer.g4

CommonParser.g4

CommonVisitor.ts

...

en_us/

code_samples/

variables.en_us.pan

...

CustomLexer.g4

CustomParser.g4

CustomVisitor.ts

...

pt_br/

code_samples/

variables.pt_br.pan

...

CustomLexer.g4

CustomParser.g4

CustomVisitor.ts

...

Transpiler.ts

...

static/

themes/

monokai.css

...

index.html

index.tsx

...

package.json

...

Source: The Author

The project includes two types of code reusability. External reusability is how we

refer to the reuse of code created by other open-source developers that we have incorpo-

36

rated into the PanScript code base. It encompasses all of the packages mentioned earlier,

as well as the dependencies of those packages. Because of the nature of dependencies

having other dependencies, PanScript indirectly includes more than 900 npm packages.

Internal reusability is the reuse of PanScript code to develop new PanScript dialects. Pan-

Script dialects may inherit most of the grammar and code defined by the canonical lan-

guage. Contributing new dialects typically requires nothing more than copying an existing

localized version, such as pt_br, and defining new translations for keywords and messages

in the CustomLocalizedStrings.ts file. The custom parser grammar can also redefine

statements, allowing developers to reorder the tokens or use different ones altogether. In

this way, PanScript could host programming languages that are much more complex than

its canonical language.

4.2.3 Canonical grammar

PanScript’s canonical grammar consists of a lexer grammar and a parser grammar.

Appendix C presents both of these grammars in full.

Figure 4.8 presents samples of the canonical lexer grammar. It recognizes the fol-

lowing reserved words: and, break, constant, continue, else, end, false, for, forever,

from, function, global, if, logical, not, number, or, return, returns, text, to, true,

and while. PanScript dialects usually localize these keywords into different words.

Figure 4.9 presents a localized lexer grammar in which all keywords are in Brazil-

ian Portuguese. This localized lexer grammar recognizes the following reserved words:

e, interrompa, constante, continue, senao, fim, falso, para, para sempre, de, funcao,

global, se, logico, nao, numero, ou, retorne, retorna, texto, ate, verdadeiro, and

enquanto. Initially we had used accented keywords such as número. However, user feed-

back was mostly negative in that regard, which is why accented characters are no longer

included in keywords and standard library function names. They can still appear in user-

created variable and function names, if the dialect allows it.

Figure 4.10 presents samples of the canonical parser grammar, which defines a

program as a sequence of zero or more topStatement. A topStatement may be either a

functionDeclaration or a statement. The eos shown in the figure is an end-of-statement,

which may be either one or more newlines or an end-of-file marker. A statement may be

a variableDeclaration, a variableAssignment, an ifStatement, a forFromToStatement,

a whileStatement, a foreverStatement (for infinite loops), or a functionCall.

37

Figure 4.8 – PanScript’s canonical lexer grammar.

Source: The Author

Figure 4.9 – PanScript’s lexer grammar for Brazilian Portuguese.

Source: The Author

38

Figure 4.10 – PanScript grammar with program and statements.
program

: NEWLINE* topStatement*
;

topStatement

: functionDeclaration eos

| statement

;

statement

: variableDeclaration eos

| variableAssignment eos

| ifStatement eos

| forFromToStatement eos

| whileStatement eos

| foreverStatement eos

| functionCall eos

;

Source: The Author

As shown in Figure 4.11, functionDeclaration consists of the keyword function

followed be the function’s name, an optional list of parameters surrounded by paren-

theses, an optional return type after the keyword returns, and a set of zero or more

innerStatement before the keyword end. innerStatement may be a statement, as previ-

ously defined, a globalStatement (used to bring an existing global variable into the local

scope), a breakStatement, a continueStatement, or a returnStatement. As previously

mentioned, type may be logical, number, or text.

Finally, Figure 4.12 presents the expression and atom rules. An expression can

be either a parenthesisExpression, used to manually specify the order of operations; a

unary plusExpression (+), minusExpression (-), and notExpression (! or not); a right-

associative binary powerExpression (ˆ); the standard mathematical operations of multi-

plication (*), division (/), remainder (%), addition (+), and subtraction (-); the standard

comparison operators less-than (<), less-than-or-equal-to (<=); greater-than (>), greater-

than-or-equal-to (>=), equal-to (==), and different-than (!=); the logical andExpression

(&& or and), and orExpression (|| or or); and the atomExpression. An atomExpression

is either true, false, a number, a text, a functionCall, or an identifier.

39

Figure 4.11 – PanScript grammar with function declaration.
functionDeclaration

: FUNCTION IDENTIFIER OPEN_PARENTHESIS parameterList? CLOSE_PARENTHESIS

(RETURNS type)? NEWLINE+ innerStatement* END

;

innerStatement

: globalStatement eos

| breakStatement eos

| continueStatement eos

| returnStatement eos

| statement

;

globalStatement

: GLOBAL IDENTIFIER

;

parameterList

: type IDENTIFIER (COMMA type IDENTIFIER)*
;

Source: The Author

Figure 4.12 – PanScript grammar with expression and atom.
expression

: OPEN_PARENTHESIS expression CLOSE_PARENTHESIS #parenthesisExpression

| ADD expression #plusExpression

| SUBTRACT expression #minusExpression

| NOT expression #notExpression

| <assoc=right> expression POWER expression #powerExpression

| expression MULTIPLY expression #multiplyExpression

| expression DIVIDE expression #divideExpression

| expression REMAINDER expression #remainderExpression

| expression ADD expression #addExpression

| expression SUBTRACT expression #subtractExpression

| expression LESS expression #lessExpression

| expression LESS_OR_EQUAL expression #lessEqualExpression

| expression GREATER expression #greaterExpression

| expression GREATER_OR_EQUAL expression #greaterEqualExpression

| expression EQUAL expression #equalExpression

| expression DIFFERENT expression #differentExpression

| expression AND expression #andExpression

| expression OR expression #orExpression

| atom #atomExpression

;

atom

: TRUE #trueAtom

| FALSE #falseAtom

| numberLiteral #numberAtom

| textLiteral #textAtom

| functionCall #functionCallAtom

| IDENTIFIER #identifierAtom

;

Source: The Author

40

5 EVALUATION METHODOLOGY

This chapter specifies how we evaluate the solution’s prototype. We have chosen

to use a self-evaluation against the project’s long-term goals, as well as an online survey.

We use these two separate evaluations because, together, they provide both an inside and

outside view of the project’s accomplishments thus far.

5.1 Self-evaluation

The self-evaluation is a strict review of the PanScript prototype to identify whether

it adheres to the long-term goals we have set out to accomplish. These goals are the

same project objectives previously described in Chapter 4. From the beginning, we have

expected that the prototype might not offer all the desired functionality of the complete

solution. The self-evaluation is a means to highlight what this work effectively achieved

and what may remain as future work.

Within the objective of localization, we expected the solution to provide at least

two localized dialects other than English. All the text visible in the user interface should

appear in the user’s selected language. The error messages that the transpiler generates

should be localized, including the names of the types in a type-mismatch error. When

writing logical values to the console, the keywords true and false should be localized,

too. If the prototype includes a language with right-to-left writing, the user interface

should reorganize itself to show the file selector on the right and the output console on

the left, and all components should have their text flow from right to left. Localizations

should support accented characters and Unicode characters.

Within accessibility, we expected the interface to support keyboard-only naviga-

tion, making it clear whenever the user needs to use some key combination to deselect

a given component (e.g., when deselecting the code editor). The solution should also

support screen readers, although we admit code editors can have severely low usability

for blind people even with screen reader support. At the very least, the solution should

provide means to increase all font sizes and enable a high-contrast mode, such that it

accommodates people with low vision.

For code simplicity, we expect the solution to require a small number of sym-

bols, making its syntax resemble a simplified Python rather than C or Java. The language

should not require a semicolon (;) at the end of every statement, and it should not require

41

a colon (:) at the start of code blocks. However, function arguments should appear sur-

rounded by parentheses, and expression operators should have symbolic representations,

such as + for addition and || for logical disjunction. We expect the language to provide a

small set of functions with intuitive names in its standard library.

Regarding the objective of frictionless UX, PanScript should be a fast website that

works in all major web browsers (Mozilla Firefox, Google Chrome, Microsoft Edge, and

Safari) in both desktop and mobile platforms. The user should not have to install browser

plug-ins or other apps to use the solution.

In extensibility, PanScript should allow the inclusion of new localizations with

relative ease. Contributors should not need to know how to write ANTLR grammars from

scratch. Instead, dialect contributors should localize keywords, error messages, and code

samples in very few source code files. Additionally, contributors providing languages

with right-to-left (RTL) writing should be able to easily configure their language with a

flag that enables such behavior throughout the user interface.

For static checking, we expect the entirety of the user’s code to be type-checked

before execution begins. The transpiler must verify that all declarations, attributions, ex-

pressions, and function call arguments have types that are equivalent to the ones required.

The static checker must issue an error if the user’s code references a variable before its

declaration. In a function’s body, accessing a global variable without bringing it into

scope with the global keyword should also lead to an error. In case of type mismatches,

the error message in the console should indicate the line in which the error occurred, the

type that the static checker expected, and the actual type it has found. Finally, the error

messages should provide hints for how to fix common errors whenever possible.

Concerning usefulness, the language should still resemble well-known program-

ming languages such as Python, Ruby, PHP, and C. To verify this, we plan to compare

simple implementations of programs such as FizzBuzz, Factorial, and Fibonacci among

different programming languages. The PanScript implementations should resemble the

other ones in the number of lines, keywords, and functions used.

As for being free and open-source, we intend to have PanScript’s code available

online in a public repository under the MIT license (LIN et al., 2006). The website must

have a link to the source code for all to find. The repository should contain manifests with

the adopted code of conduct and guides for contributing to the PanScript project. The

repository’s initial page should acknowledge all contributors ever involved in the project.

User-friendliness is left out of self-evaluation, as the online survey provides us

42

with better means to gauge it. The following section describes the methodology used in

said survey.

5.2 Online survey

The objective of our online survey is to gather feedback on PanScript’s prototype

from students, developers, researchers, and teachers. The survey is conducted only in

Portuguese due to difficulties in localizing it to other non-English languages. We asked

participants to access PanScript using a desktop computer since the prototype did not

support mobile devices when we conducted the survey.

We start by asking the respondents a few questions about themselves. Q1. Do

you agree to participate in this survey? Q2. How old are you? Q3. Do you know how

to read and write in English? Q4. At what age could you already express yourself in

English? Q5. What resources did you use when learning English? E.g., games, movies,

TV series, songs, dictionary, school, courses, online forums... Q6. Do you know how to

program? Q7. At what age could you already write computer programs? Q8. In which

programming languages did you learn to program? E.g., Portugol, Assembly, BASIC, C,

Delphi, Fortran, Pascal, PHP, Java, Python... Q9. What resources did you use when

learning to program? E.g., books, magazines, school, technical program, online forums...

Q10. What difficulties did you face while learning to program? If you have learned

programming before learning English, did that cause any specific issue?

All age-related questions (Q2, Q4, and Q7) provide alternatives bucketed as fol-

lows: a) 15 years or less; b) 16-20; c) 21-25; . . . ; h) 46-50; and i) 50 years or more. Q3,

which asks if the respondent knows English, offers the following alternatives: a) I know

how to read and write in English very well; b) I know how to read and write in English

reasonably well; c) I do not know how to read or write in English, but I am learning it;

and d) I do not know how to read or write in English and I am not learning it. Q6 offers

similar options when asking the respondent if they know how to program: a) I know how

to program very well; b) I know how to program reasonably well; c) I do not know how to

program, but I am learning it; and d) I do not know how to program and I am not learning

it. Q5, Q8, Q9, and Q10 are open-ended questions.

In the next section of the survey, we ask respondents to access the PanScript pro-

totype at the URL <https://panscript.github.io/>. We again ask them to use a desktop

computer to answer the remaining questions since the prototype does not currently sup-

https://panscript.github.io/

43

port mobile devices. Q11. Were you able to access the website? If the respondent states

that they could not access the website, they will skip questions Q12 through Q20 and go

to the final open-ended questions to explain whichever issues they have faced.

Having already accessed the PanScript prototype, we ask respondents to familiar-

ize themselves with the interface, observing the different elements and controls at their

own pace. We proceed to instruct the participant in using a few of these elements before

attempting a programming exercise. Q12. Could you get used to the interface? Q13.

Change the language of the tool to Portuguese (Brazil). Q14. Change the editor’s theme

to the one you prefer. Q15. View the Basic example that teaches Variables. Q16. Run the

Basic example that teaches Variables. Q12 is a simple Yes and No question. Q13 through

Q16 provide the following alternatives: a) I have completed the task without difficulties;

b) I have completed the task with difficulties; and c) I could not complete the task.

Our programming exercise asks the participant to write localized PanScript code

to calculate the real roots of a quadratic equation for a given set of coefficients. We

have provided instructions on what the quadratic formula looks like, which standard li-

brary functions we expected them to use, and the results they should obtain. Q17. Based

on the various examples available, write a simple program to calculate the roots of a

quadratic equation given the coefficients a = 2, b = 12, c = -14. You should only need

the functions “square_root” and “write.” You do not need to create a function. Cal-

culating the results and writing them onscreen is enough. If you cannot complete this

task, there is no problem. Just indicate so and continue answering the survey. Formulas

and expected results are in the images below. More information is at the following link:

<https://brasilescola.uol.com.br/matematica/ formula-bhaskara.htm>. Figure 5.1 shows

the images presented below this question and before its alternatives. Note that “executar”

is Portuguese for “run.” The following alternatives are available: a) I have completed the

task without difficulties; b) I have completed the task with difficulties; c) I could not com-

plete the task; and d) I did not feel like completing the task. We then ask the respondent

to provide their source code for further analysis. Q18. Copy and paste your code below.

The subsequent section contains a series of qualitative questions about PanScript.

Q19 is a Likert-type scale questionnaire (LIKERT, 1932) with 17 items in total. The fol-

lowing alternatives are available for each item: a) Strongly disagree; b) Partially disagree;

c) Indifferent; d) Partially agree; e) Strongly agree; f) I do not know. The Likert items are

as follows: i. I think the tool is limited; ii. I think the code’s syntax is easy to understand;

iii. I think the website is fast; iv. I think the tool can help in teaching programming; v.

https://brasilescola.uol.com.br/matematica/formula-bhaskara.htm

44

Figure 5.1 – Images shown as reference in Q17, the programming exercise.

Source: The Author

I like the tool; vi. I think the tool is intuitive; vii. I think the examples are incomplete;

viii. I think better tools already exist; ix. I think the examples are easy to understand; x.

I think the layout is disorganized; xi. I think the tool is useful; xii. I think the interface

is ugly; xiii. I think the error messages are complex; xiv. I do not like the code’s syntax;

xv. I think the tool is easy to use; xvi. I do not like the tool; and xvii. I think the tool is

frustrating. There are nine negative Likert items (e.g., I think the interface is ugly) and

eight positive ones (e.g., I think the website is fast). We have randomly sorted the Likert

items; however, all participants receive them in this order.

Q20 is a Net Promoter Score (NPS) question (REICHHELD, 2003). It asks partic-

ipants to rate PanScript on a scale of zero to ten. These numbers will help us understand

how well respondents accepted the tool. Q20. On a scale of zero to ten, how much

would you recommend PanScript as a tool to help in the basic teaching of programming

to students that do not understand English?

The final section of the survey includes five open-ended questions to gather the

participant’s feedback on PanScript and uncover any problems they might have faced.

Q21. What did you consider good in PanScript? Q22. What would you change in Pan-

Script? Q23. Describe any issues you have faced while using PanScript. Q24. Did you

miss any features in the tool? Which one(s)? Q25. This space is for your additional

comments.

45

6 RESULTS OBTAINED

In this chapter, we discuss the results of our self-evaluation and the online survey.

We have characterized both of these evaluation criteria in full in Chapter 5.

6.1 Self-evaluation results

We discuss the results of the self-evaluation below. Table 6.1 presents an overview

of the completion status of each of the project’s objectives. As previously mentioned, our

self-evaluation is not concerned with user-friendliness because that is best measured by

the online survey in the following section.

Table 6.1 – Self-evaluation of the PanScript project

Objective Status

Localization Needs Attention
User-friendliness N/A
Accessibility Needs Attention
Code simplicity OK
Frictionless UX Almost Done
Extensibility OK
Static checking OK
Usefulness OK
Free and Open-Source OK

Source: The Author

Regarding localization, the PanScript prototype succeeded in localizing all the vis-

ible elements of the user interface, including the heading, the labels of all the buttons, all

messages written in the output console, and the localized programming languages them-

selves. Currently, the project offers both Portuguese and French localization. We did not

yet have the opportunity to include a language that requires right-to-left (RTL) writing.

Almost all of the components we use today support RTL modes, including Ant Design

(DESIGN, 2020) and CodeMirror (CODEMIRROR, 2017). The exception is Xterm.js,

which has an open issue about RTL support since 2017 (XTERM.JS, 2017). Therefore,

significant changes are needed to support Arabic, Persian, Hebrew, and other RTL lan-

guages. Portuguese already supports accented characters in variables and function names.

As for accessibility, the prototype currently lacks most of the features that the

complete solution should have. Keyboard-only navigation is not entirely possible yet.

46

We have included a feature to enable deselecting the editor by pressing the escape key;

however, this does not allow the user to select the output console using only a keyboard.

Even if they could, they would be unable to scroll it using only the keyboard, hindering

their user experience. Another problem with keyboard-only input is that the Directory

Tree element from Ant Design had a bug that prevented keyboard navigation. We have

contributed a fix to that bug such that the next release will not have the same problem

(BRUM, 2021). Support for screen readers in PanScript is also sub-optimal. Upon testing

the solution with the Screen Reader extension for Google Chrome, we have found that

the language selector is being read out loud as “auto-completion list,” and the tree of

examples is read as “Edit text.” These problems prevent a blind person from selecting

code samples. Furthermore, the prototype does not yet provide the option to increase font

sizes, although several editor themes are available, including a high contrast version of

the Monokai theme.

We believe the prototype firmly achieves the goal of code simplicity. While dedi-

cating multiple weeks to planning language syntax and features, we have conducted sev-

eral small surveys with friends and colleagues to gather feedback on design decisions

along the way. The result is a small language, a clean syntax, and a standard library with

function names that we believe are easy to read and understand. As intended, PanScript

code uses a reduced number of symbols. If we ignore expression operators, the only sym-

bols required are the equals sign (=) in variable initialization, double and single quotes ("

and ’) in text literals, parentheses and commas (,) in function arguments, and braces for

interpolating variables within text literals.

Frictionless UX is another objective only partially met. PanScript is accessible

through a fast static website hosted in GitHub Pages. However, mobile support is currently

unavailable, and we were unable to test whether the application works on the newest

versions of the Safari browser. It reportedly does not work at the moment. Other modern

desktop-based web browsers are supported, and no browser plug-in is required.

In terms of extensibility, PanScript’s design allows easy integration of new dialects

into the platform. For example, adding support for Spanish requires only a few code

changes. First, the contributor should clone the localization folder of another language,

such as pt_br for Brazilian Portuguese, renaming it with an appropriate language code,

such as es_es. They should also rename the files in the code_samples directory with

the new language code. After that, the contributor should review the CustomLexer.g4

and CustomParser.g4 grammar files, translating all token values as necessary. The file

47

LocalizedStrings.ts contains tokens, function names, and error messages that require

translation as well. The next step is to update the LanguageOptions.ts file to display

the new language in the menu. Having completed these changes, running npm run dev

allows the contributor to test if everything is working as expected. They can then use the

platform to translate the code samples for the new language, saving the changes back to

the code_samples folder. The final step is to run npm run qa to invoke the code formatter,

the code linter, and the platform’s unit tests before submitting the changes for review.

PanScript’s static checking is working as planned. The current implementation is

correctly keeping track of new variables and functions as the user declares them, along

with their types. Expressions and attributions are always type-checked as expected. The

arguments of function calls are also compared with the function’s signature to make sure

they match in number and types.

Concerning usefulness, code syntax of all PanScript dialects retains the language’s

inspiration in Python, Ruby, PHP, and C. Figure 6.1 compares a Fibonacci implementation

in PanScript and Python. Figure 6.2 compares Factorial between PanScript and PHP.

Figure 6.3 compares FizzBuzz implemented in both PanScript and Ruby. The PanScript

language provides concepts relevant to the development of computational thinking and

allows a swift transition to mainstream programming languages.

Finally, PanScript meets the goal of being free and open-source, having adopted

the MIT license since the beginning. We have chosen to host the website using GitHub

Pages, making it available at the following URL: <https://panscript.github.io/>. Any-

one interested can access the project’s source code at the following public git repository:

<https://github.com/panscript/code>.

6.2 Online survey results

We have conducted our online survey to evaluate the PanScript prototype between

September 22nd and October 2nd, 2021. We have shared a link to the Microsoft Forms

on mailing lists and social networks, aimed primarily at IT students, teachers, analysts,

and researchers from Brazil. We have gathered 62 responses in total. However, one of the

respondents has answered Q1 refusing to participate in the survey, and two respondents

answered Q11 indicating they did not have access to desktop computers to try PanScript.

Therefore, we proceed to analyze the results in this section considering 59 answers.

https://panscript.github.io/
https://github.com/panscript/code

48

Figure 6.1 – Fibonacci in PanScript and Python.

Panscript
function fib(number n) returns number

if n == 0

return 0

else if n == 1

return 1

end

return fib(n - 1) + fib(n - 2)

end

write(fib(7))

Python
def fib(n: int) -> int:

if n == 0:

return 0

elif n == 1:

return 1

return fib(n - 1) + fib(n - 2)

print(fib(7))

Source: The Author

Figure 6.2 – Factorial in PanScript and PHP.

Panscript
function factorial(number n) returns number

if n == 0

return 1

end

return n * factorial(n - 1)

end

write(factorial(5))

PHP
function factorial(int $n): int {

if ($n == 0) {

return 1;

}

return $n * factorial($n - 1);

}

echo factorial(5);

Source: The Author

Figure 6.3 – FizzBuzz in PanScript and Ruby.

Panscript
function fizzbuzz(number n)

for number i from 1 to n

if i % 15 == 0

write("FizzBuzz")

else if i % 3 == 0

write("Fizz")

else if i % 5 == 0

write("Buzz")

else

write(i)

end

end

end

fizzbuzz(20)

Ruby
def fizzbuzz(n)

for i in 1..n

if i % 15 == 0

puts "FizzBuzz"

elsif i % 3 == 0

puts "Fizz"

elsif i % 5 == 0

puts "Buzz"

else

puts i

end

end

end

fizzbuzz(20)

Source: The Author

49

6.2.1 Questions about the participants

This subsection groups questions Q2 through Q10. These questions asked partic-

ipants about their age, proficiency in English and programming, the materials they have

learned from, and the barriers encountered while learning.

Q2 attempted to characterize participants in terms of age. Table 6.2 presents the

age distribution of the 59 respondents. We can see that almost 70% are aged 21 to 30,

which is not in line with PanScript’s target age demographic. However, we believe this

survey still holds value as a peer-review of our work, even though it can neither prove nor

disprove the adequacy of the tool in teaching young students.

Table 6.2 – Q2. How old are you?

Age # Respondents

15 years or less 0
16-20 4
21-25 22
26-30 19
31-35 9
36-40 3
41-45 0
46-50 2
50 years or more 0

Source: The Author

Q3 asked participants to rate their English proficiency considering both reading

and writing. Table 6.3 presents the aggregated results, in which almost 95% of partici-

pants claim to read and write in English sufficiently well. This number is much higher

than the one observed by Data Popular (2013), indicating that our sample might be heavily

biased towards people who have had the time and resources to learn English better than

most of the Brazilian population. Once again, this is not in line with PanScript’s target

demographic, which focuses on students that do not understand English yet. Our sample

also seems to suffer from a survivorship bias (BROWN et al., 1992), as we are surveying

students from a prestigious university (UFRGS), professionals working in IT, teachers,

and researchers, instead of average Brazilian students. These observations should dis-

courage the generalization of these results to other parts of the population.

50

Table 6.3 – Q3. Do you know how to read and write in English?

English Proficiency # Respondents

I know how to read and write in English very well 29
I know how to read and write in English reasonably well 27
I do not know how to read or write in English, but I am learning it 3
I do not know how to read or write in English and I am not learning it 0

Source: The Author

We have also asked participants at what age they could already express themselves

in English. Table 6.4 presents the responses we have collected for Q4. More than a third

of participants indicated being able to express themselves in English when they were 15

or younger. Another third of participants had achieved the same level before turning 21.

Three respondents have not answered this question, having previously indicated that they

cannot read or write in English yet.

Table 6.4 – Q4. At what age could you already express yourself in English?

Age for English # Respondents

15 years or less 21
16-20 20
21-25 7
26-30 8
31-35 0
36-40 0
41-45 0
46-50 0
50 years or more 0

Source: The Author

Q5 is the last question about English proficiency. It asked participants which re-

sources helped them learn English. Since this was an open-ended question, we have

manually reviewed the responses and grouped them into the following categories: Apps,

Books, Courses, Dictionary, Friends, Games, Internet, Movies, School, Self-paced Stud-

ies, Songs, Technical Materials, Travel, TV Series, and Work-related Tools. Table 6.5

presents the aggregated results from all participants. Responses could mention more than

one resource, which is why the sum of all answers adds up to more than 59. From our

understanding, the high proportion of respondents mentioning English courses helps cor-

roborate our hypothesis about survivorship bias. English courses can be very pricey in

Brazil, and a large part of the population does not have enough money to pay for them.

51

Table 6.5 – Q5. What resources did you use when learning English? E.g., games, movies, TV
series, songs, dictionary, school, courses, online forums. . .

English Resource # Respondents

Courses 37
Movies 33
TV Series 32
Songs 30
Games 29
School 23
Internet 22
Dictionary 9
Technical Materials 7
Travel 6
Books 5
Apps 4
Friends 3
Self-paced Studies 3
Work-related Tools 3

Source: The Author

On the subject of programming proficiency, Q6 asked participants whether they

already knew how to program. Table 6.6 presents the results. We can observe that more

than 90% of respondents claim they know how to program. Again, this is not in line with

PanScript’s target demographics, which should consist predominantly of students who are

still learning to program. Still, we maintain that the results can serve as a peer-review and

that it could still invalidate our prototype depending on the feedback received.

Table 6.6 – Q6. Do you know how to program?

Programming Proficiency # Respondents

I know how to program very well 36
I know how to program reasonably well 18
I do not know how to program, but I am learning it 5
I do not know how to program and I am not learning it 0

Source: The Author

Similar to Q4, Q7 asked participants at what age they could already create their

own computer programs. Table 6.7 contains the results. We observe that close to 47% of

respondents have learned to write their own programs at the age range of 16 to 20. Our

goal is for PanScript to enable students even younger than that to experiment with ba-

sic programming concepts while still experiencing the regular “look-and-feel” of writing

code. Five respondents have not answered this question, as they have previously indicated

that they cannot program yet.

52

Table 6.7 – Q7. At what age could you already write computer programs?

Age for Programming # Respondents

15 years or less 8
16-20 28
21-25 15
26-30 2
31-35 1
36-40 0
41-45 0
46-50 0
50 years or more 0

Source: The Author

We compare the answers for Q4 and Q7 in Table 6.8, which cross-references the

age at which participants learned English and the age at which they learned programming.

We have omitted rows and columns that would contain only zeroes. There are a total of

52 respondents who indicated knowing both English and programming. We can see that

34% of those respondents have learned both English and programming in the same five-

year range, and another 21% have learned programming before learning English. It is

precisely these students that PanScript aims to help, allowing them to learn programming

logic without the need for English words.

Table 6.8 – # Respondents by Ages for English and Programming

Age for English Age for Programming
15 years or less 16-20 21-25 26-30 31-35

15 years or less 3 13 3 0 0
16-20 2 12 4 1 0
21-25 1 1 3 1 0
26-30 2 1 4 0 1

Source: The Author

Q8 asked respondents which programming languages taught them how to pro-

gram. Table 6.9 presents the results. C was by far the most frequently mentioned pro-

gramming language, followed by Python and Java. The high spot for C could be due to

the language’s general popularity and also because it is present in first-semester classes of

Computer Science and Computer Engineering at UFRGS. It is worth noting how Portu-

gol appeared in 13% of all answers, indicating some programming courses in Brazil have

adopted it as an educational tool. PanScript aims to be similar to a globalized version of

Portugol, available in dozens of languages to help teach students of all cultures and back-

grounds. Finally, the considerably high number of mentions for R could be because some

53

respondents work with Data Analysis and Data Science. We have omitted responses with

less than three mentions.

Table 6.9 – Q8. In which programming languages did you learn to program? E.g., Portugol,
Assembly, BASIC, C, Delphi, Fortran, Pascal, PHP, Java, Python. . .

Programming Language # Respondents

C 43
Python 34
Java 17
C++ 13
JavaScript 12
R 9
Portugol 8
Pascal 8
PHP 8
Assembly 7
Delphi 4
SQL 3
Ruby 3

Source: The Author

Similar to Q5, Q9 proceeded to ask participants which resources have helped them

learn to program. Table 6.10 presents the aggregated results. Here, too, we have manu-

ally grouped responses into several categories: Apps and Platforms, Books, Colleagues,

Courses, Family, Internet, School, Technical Materials, and University. Once again, we

can see how prevalent university students (or former students) are in our sample since

more than two-thirds of respondents have mentioned university.

Table 6.10 – Q9. What resources did you use when learning to program? E.g., books, magazines,
school, technical program, online forums. . .

Programming Resource # Respondents

University 40
Internet 38
Courses 36
Books 18
School 6
Technical Materials 4
Apps and Platforms 2
Colleagues 2
Family 1

Source: The Author

54

As the last question about participants themselves, Q10 asked respondents to list

difficulties they have faced while learning to program. We have also asked if they have

faced any particular issue related to English understanding. Table 6.11 presents the re-

sults of our manual categorization of the answers. We have used the following categories:

Computing Concepts, Communities, Documentation, English, Errors, Best Practices, Ma-

terials, Motivation, Paradigms, Practical Use, Programming Languages, and Program-

ming Logic. Most respondents have mentioned programming languages (syntax, seman-

tics, and standard libraries) and programming logic as difficulties. With C in particular,

it is notable how some abbreviated function names can seem meaningless even for En-

glish speakers: scanf, malloc, strtok, snprintf, to name a few. All these names have

meaning; however, that meaning is only evident after reading some documentation that

mentions that strtok is a string tokenizer, for example. Close to 20% of respondents

considered not knowing English as being an issue. A few more respondents stated they

probably did not have this issue because they already knew English before learning to

program. The full set of responses for this question is available in Appendix D.

Table 6.11 – Q10. What difficulties did you face while learning to program? If you have learned
programming before learning English, did that cause any specific issue?

Difficulty # Respondents

Programming Logic 15
Programming Languages 15
Computing Concepts 12
English 12
Materials 9
Paradigms 6
Practical Use 4
Documentation 3
Communities 3
Best Practices 3
Errors 2
Motivation 1

Source: The Author

The majority of respondents have mentioned that programming logic was their

most significant barrier. We proceed to highlight some of the answers we have received.

One participant has noted that: “When I started programming, I already knew English

well, and I believe that has greatly facilitated learning. Initially, I had trouble mentally

visualizing the steps that the algorithm would follow in the code that I was writing; I

often forgot to type colons, semicolons, etc.; and understanding the usage of so many

55

functions [. . .].” A second participant stated that: “As I was already fluent in English

before programming, that aspect has not caused any issues. The hardest part [. . .] was

remembering the specific programming language’s syntax to express my logic.” Another

respondent said that “Programming logic was the greatest difficulty; however, knowing

English before learning to program was certainly fundamental.” Yet another answer puts

it similarly: “The largest difficulty was the development of programming logic; yes, I

learned programming before learning English more in-depth, so that has brought issues

in interpreting what I was programming [. . .].”

On subjects other than logic, one participant stated: “I had practically no English

proficiency when I started with programming; however, understanding structured code

was easy because it involved few words such as main, printf, and some strange mnemonics

such as malloc. What I would say was the hardest part was understanding the abstraction

of memory through variables [. . .].” A second respondent told us that: “The biggest issue

was understanding abstract concepts, especially in object-oriented programming. Learn-

ing programming before learning English has created difficulties when looking for help

on the Internet, as most documentation and forums in this subject area are in English.”

A third participant has said that: “The greatest difficulty was always understanding er-

ror messages, even as an English speaker [. . .].” Finally, one participant has mentioned

learning programming with Portugol, an educational programming language localized to

Portuguese: “Yes, it has brought difficulties with English terms; however, using Portugol,

there was no problem related to language.”

6.2.2 Multiple-choice questions about PanScript

This subsection groups questions Q12 through Q20. These are multiple-choice

questions about PanScript and the several tasks we have asked participants to perform

using the prototype.

Questions Q12 through Q16 asked participants to access the PanScript prototype

and perform small tasks to familiarize themselves with the user interface. All of these

tasks were completed without difficulty by at least 98% of respondents. Only one partic-

ipant has reported an issue while changing the language to Portuguese, and another had

some problem changing the editor’s theme. Although these respondents did not elaborate

on these issues in the open-ended questions, we assume they were related to the placement

or visibility of menu items.

56

Q17 was the programming exercise in which we asked participants to write sim-

ple code to calculate the real roots of a second-degree polynomial using the quadratic

formula. Table 6.12 presents the results. We can observe that close to 88% of respondents

have completed the task, although almost 36% had difficulties. Of the nearly 12% of re-

spondents who did not finish the exercise, only two participants said they could not do it,

with the other five indicating they merely preferred to move on with the survey.

Table 6.12 – Q17. Based on the various examples available, write a simple program to calculate
the roots of a quadratic equation given the coefficients. . .

Response # Respondents

I have completed the task without difficulties 38
I have completed the task with difficulties 14
I could not complete the task 2
I did not feel like completing the task 5

Source: The Author

Q18 asked participants to copy and paste the code they had written for the pre-

vious question, allowing us to verify if the solutions were indeed correct and whether

any unexpected coding pattern had appeared. Table 6.13 presents the results of our ob-

servations. A total of 49 respondents provided their code for analysis. We have found

that 39 of these respondents did produce an entirely correct solution to the problem. Two

of them have opted to write their code using English PanScript, while others have used

Brazilian Portuguese as per our instructions. Figure 6.4 presents one such solution. Of

the nine respondents who wrote incorrect code, six of them had mistakes in the quadratic

equation. These mistakes included missing parentheses in the denominator, forgetting to

change a sign to calculate the second root, etc. The other three respondents seemed to

have abandoned their solutions. Finally, one respondent was seemingly confused by our

instructions and thought they were not allowed to use variables. However, even in that

case, they had successfully calculated the real roots of the given polynomial.

Table 6.13 – Q18. Copy and paste your code below

Code provided? Code correct? Remarks # Respondents

Yes
Yes

All correct 37
Used English PanScript 2
Did not use variables 1

No
Error in the quadratic formula 6
Incomplete code 3

No N/A Code not available 10
Source: The Author

57

Figure 6.4 – Sample solution for the exercise about the quadratic formula.

numero a = 2

numero b = 12

numero c = -14

numero delta = b*b-4*a*c

numero x1 = (-b+raiz_quadrada(delta))/(2*a)

numero x2 = (-b-raiz_quadrada(delta))/(2*a)

escreva(delta)

escreva(x1)

escreva(x2)

Source: The Author

Q19 contained 17 Likert-type items (LIKERT, 1932) in total. Respondents should

indicate whether and how much they agree or disagree with each statement. Figure 6.5

presents the aggregated results for all the items. We can see that participants show a favor-

able attitude towards PanScript. They agree with many positive statements and disagree

with many negative ones. Two topics seem particularly contentious: whether better tools

exist and whether the code’s syntax is good. For the first of these topics, most participants

do not agree nor disagree with the statement. It is likely that, even if they know tools like

Scratch and Portugol Studio, they might not know them well enough to compare them

with PanScript. As for the second topic, code syntax was quite controversial. 22% of

respondents did not like the code’s syntax, and more than 8% did not think it was easy to

understand. As we will see in the open-ended questions, the vast majority of complaints

were related to the use of accented characters in Portuguese keywords such as número and

lógico. We have since revised the Brazilian Portuguese dialect such that it no longer con-

tains obligatory accented characters. Users may include accented characters in identifiers,

but they do not appear in keywords and standard library function names.

Q20 is a Net Promoter Score (NPS) type question (REICHHELD, 2003), in which

we asked participants how likely they were to recommend PanScript as a tool for teach-

ing elementary programming concepts. Table 6.14 presents the breakdown of responses.

When applying the standard NPS methodology, we obtain 59% of promoters (those who

voted 9 or 10), 25% of passives (voting 7 or 8), and 15% of detractors (who voted less

than 7). We calculate the final NPS score by subtracting the percentage of detractors from

the percentage of promoters. For PanScript, the final result was 44, which is considered

good, although it shows room for improvement.

58

Figure 6.5 – Results for each item in the Likert-type questionnaire.

Source: The Author

Table 6.14 – Q20. On a scale of zero to ten, how much would you recommend PanScript as a tool
to help in the basic teaching of programming to students that do not understand English?

Response # Respondents

0 0
1 0
2 1
3 1
4 0
5 4
6 3
7 6
8 9
9 12
10 23

Source: The Author

6.2.3 Open-ended questions

This subsection groups Q21 through Q25, which are open-ended questions. Par-

ticipants who could not access the PanScript platform could still answer these questions,

allowing them to describe any issues they had. Below we discuss the general sentiments

expressed by respondents and their suggestions on ways to improve the tool. The full set

of responses for these questions is available in Appendix D.

59

Q21 asked what participants liked about PanScript. Table 6.15 presents the most

frequent topics mentioned. Most of the positive reactions are related to the user interface

being intuitive, simple, friendly, and uncluttered. The second most frequently mentioned

positive aspect of PanScript is its simple and intuitive code, followed by its localization

and potential support for more human languages. Respondents were also favorable of our

code samples, stating that they were clear, objective, and plentiful. Finally, other aspects

mentioned include the tool’s general ease of use, the fact that it is entirely web-based (not

requiring installation), and the fast feedback when interpreting the user’s code.

Table 6.15 – Q21. What did you consider good in PanScript?

Mentions # Respondents

UI/UX 30
Code syntax 19
Localization 16
Code samples 12
Ease of use 7
Educational 6
Web-based 5
Fast feedback 2

Source: The Author

Q22 asked participants for constructive criticism, prompting them to list things

they would change in PanScript. Q23 also asked participants if they had any issues using

PanScript. Additionally, Q24 asked participants if they had missed any feature while

using PanScript. We have analyzed the answers to all of these questions to create a list of

topics that can inform future work in the project. Table 6.16 presents the most prominent

subjects. The most frequently mentioned aspect was a distaste for the accented keywords

in the Portuguese dialect, shared by more than a third of respondents. Upon receiving this

feedback, we opted to remove mandatory accents from keywords and standard library

function names. The second most relevant issue was the lack of layout responsiveness

since the solution did not work well on smaller resolutions and scaled environments, such

as notebooks. We have since made several changes to PanScript’s layout to accommodate

smaller resolutions.

We proceed to list other items mentioned by multiple respondents. Some partic-

ipants have pointed out missing features such as an autocomplete functionality, missing

data structures such as lists and tuples, and the lack of a visual programming component

(e.g., providing some code visualization such as the control flow diagrams generated by

PSeInt). The input function is also not yet present because it would require type conver-

60

sions and error handling functionality to try and parse numbers. Additionally, there is

room for improving code samples, such as making them shorter and more kid-friendly.

We have omitted from the table several additional improvement opportunities mentioned

only once. We list all relevant entries as future work in Appendix A.

Table 6.16 – Q22. What would you change in PanScript?

Mentions # Respondents

Remove accents 22
Layout responsiveness 6
Autocomplete in the editor 5
Data structures (such as lists and tuples) 4
Visual programming 4
Improve code samples (shorter and more kid-friendly) 3
Input function in the standard library 3
Shorter keywords 3
Transpilation to other programming languages 2
Text search in the editor 2
Improve error messages (more kid-friendly) 2
Additional documentation similar to Python’s 2

Source: The Author

Particularly about Q23, a few participants have mentioned issues with missing

features or existing bugs that we have since fixed in PanScript. These included a bug that

could cause the code sample to load with the wrong language, the undo button being able

to clear the code editor, and a lack of type-checking for function arguments. These are all

fixed. Others have mentioned bugs that may still be present in PanScript. These include

the tool being incompatible with the Safari browser and an error message indicating the

wrong line of code as the origin of an error. We do not have access to a Mac to test the

current Safari browser, and we could not reproduce the issue with the error message.

Finally, answers for Q25 mostly congratulated our work. A few participants were

keen to show the tool to their friends or students and help them learn programming with it.

They have felt PanScript could help teach elementary school students and high school stu-

dents alike. However, at least three respondents have mentioned the importance of testing

the tool with its actual target audience first. As previously stated, even though the present

survey could have invalidated our hypotheses from a peer-review standpoint, it would not

prove our assumptions since it did not reach PanScript’s target demographic. Only two

participants have remained skeptical of the tool, stating that it is preferable to teach using

mainstream programming languages; and pointing out that students themselves might not

be interested in learning through an educational programming language.

61

7 CONCLUSION AND FUTURE WORK

In this work, we have sought to understand and help mitigate the issue of young

students trying to learn programming without knowing the English words that appear

in most programming languages. We have noted how learning English is beneficial for

developers, computer scientists, and computer engineers alike. English is currently a

global lingua franca for many fields, while at the same time, many developing countries

still display low proficiency levels in it. This imposes additional cognitive loads for non-

English speakers, which English speakers do not face. We have looked at similar works

that attempted to address these issues and the gaps that are still present in them.

Given this scenario, this work proposed the introduction of PanScript: a free web-

based educational platform providing simple text-based programming languages that are

localized to many human languages. PanScript’s target demographics include young stu-

dents aged 11 to 16, teachers that can use it in class, and open-source developers who

wish to contribute. The main goals of the project are localization, user-friendliness, ac-

cessibility, code simplicity, frictionless UX, extensibility, static checking, usefulness, and

being free and open-source. We have developed a prototype following these objectives

using several technologies, such as TypeScript, React, ANTLR, CodeMirror, Xterm.js,

and Ant Design. The prototype is available at the URL <https://panscript.github.io/>.

We have evaluated PanScript using both self-evaluations against the project’s goals

and an online survey conducted with 59 students, professionals, teachers, and researchers

in IT. Results for the self-evaluation show room for improvement in terms of localiza-

tion for right-to-left languages, accessibility, and frictionless UX. Results for the online

survey are significantly positive; however, they cannot prove our hypotheses because the

respondents we have reached are not part of the tool’s target demographic. Instead, the

survey functioned more as a peer-review of our work. Furthermore, the sample is not

representative of the general population, at least due to its level of education.

Through the online survey, we have received many suggestions for improving Pan-

Script. We have added most of them to our product backlog, including improvements

to the platform’s layout, making code samples and error messages more kid-friendly,

and providing features such as an input function and basic data structures. Appendix A

presents the current technical backlog for the project in full. Additionally, further research

is needed to test PanScript with elementary and high school students, observing whether

they enjoy learning programming with the tool or prefer alternatives such as Scratch.

https://panscript.github.io/

62

REFERENCES

ABELSON, H.; FRIEDMAN, M. MIT App Inventor. 2010. Accessed on 2021-07-01;
Archived under <https://archive.is/kRtnL>. Available from Internet: <https://appinventor.
mit.edu/>.

AHO, A. V.; SETHI, R.; ULLMAN, J. D. Compilers: Principles, Techniques, and
Tools. USA: Addison-Wesley Longman Publishing Co., Inc., 1986. ISBN 0201100886.

AIVALOGLOU, E.; HERMANS, F. How kids code and how we know: An exploratory
study on the scratch repository. In: Proceedings of the 2016 ACM Conference on Inter-
national Computing Education Research. New York, NY, USA: Association for Com-
puting Machinery, 2016. (ICER ’16), p. 53–61. ISBN 9781450344494. Available from
Internet: <https://doi.org/10.1145/2960310.2960325>.

AJAX.ORG. Ace. 2010. Accessed on 2021-07-26; Archived under <https://archive.is/
B5pz7>. Available from Internet: <https://ace.c9.io/>.

AL-KHAWARIZM. Al-Khawarizm. 2018. Accessed on 2021-05-23; Archived under
<https://archive.is/uLLI9>. Available from Internet: <https://alkhawarizm.org/>.

AMMOURI, A. A. A. Ammoria. 2006. Accessed on 2021-05-23; Archived under
<https://archive.is/5ik2F>. Available from Internet: <http://ammoria.sourceforge.net/ar/
ar_index.html>.

ANDERSON, S. R. How many languages are there in the world. Linguistic Society of
America, 2010.

ANDRÉS, B. F.; PÉREZ, M. Transpiler-based architecture for multi-platform web appli-
cations. In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). [S.l.:
s.n.], 2017. p. 1–6.

ANIDO, R. Saci – ainda outro ambiente para o ensino de programação. In: Anais do
XXIII Workshop sobre Educação em Computação. Porto Alegre, RS, Brasil: SBC,
2015. p. 226–235. ISSN 2595-6175. Available from Internet: <https://sol.sbc.org.br/
index.php/wei/article/view/10239>.

APPLE. Xcode. 2003. Accessed on 2021-06-16; Archived under <https://archive.ph/
ejPs4>. Available from Internet: <https://developer.apple.com/xcode/>.

ARMONI, M.; MEERBAUM-SALANT, O.; BEN-ARI, M. From scratch to “real” pro-
gramming. ACM Trans. Comput. Educ., Association for Computing Machinery, New
York, NY, USA, v. 14, n. 4, feb. 2015. Available from Internet: <https://doi.org/10.1145/
2677087>.

ARO, W. M. E. Software pseint en los niveles cognitivos en estudiantes del curso princip-
ios de algoritmos de la universidad tecnológica del perú-lima. Universidad César Vallejo,
2016.

ATWOOD, J. Non-English Question Policy. [S.l.]: Stack Overflow Blog, 2009. <https://
stackoverflow.blog/2009/07/23/non-english-question-policy/>. Accessed on 2021-04-04;
Archived under <https://archive.is/1UyZf>.

https://archive.is/kRtnL
https://appinventor.mit.edu/
https://appinventor.mit.edu/
https://doi.org/10.1145/2960310.2960325
https://archive.is/B5pz7
https://archive.is/B5pz7
https://ace.c9.io/
https://archive.is/uLLI9
https://alkhawarizm.org/
https://archive.is/5ik2F
http://ammoria.sourceforge.net/ar/ar_index.html
http://ammoria.sourceforge.net/ar/ar_index.html
https://sol.sbc.org.br/index.php/wei/article/view/10239
https://sol.sbc.org.br/index.php/wei/article/view/10239
https://archive.ph/ejPs4
https://archive.ph/ejPs4
https://developer.apple.com/xcode/
https://doi.org/10.1145/2677087
https://doi.org/10.1145/2677087
https://stackoverflow.blog/2009/07/23/non-english-question-policy/
https://stackoverflow.blog/2009/07/23/non-english-question-policy/
https://archive.is/1UyZf

63

BALA, R. B.; ALACAPINAR, F. G. Scratch in teaching programming: Effect on problem
solving skill and attitude. International Journal of Quality in Education, Abdülkadir
KABADAYI, v. 5, p. 63 – 81, 2021.

BROWN, S. J. et al. Survivorship bias in performance studies. The Review of Financial
Studies, Oxford University Press, v. 5, n. 4, p. 553–580, 1992.

BRUM, D. fix: DirectoryTree keyboard error. 2021. Accessed on 2021-11-02;
Archived under <https://archive.is/izk50>. Available from Internet: <https://github.com/
ant-design/ant-design/pull/32551>.

CAÑETE, B.; ENRIQUE, J.; RICARDO, A. V. La introducción de la herramienta didác-
tica pseint en el proceso de enseñanza aprendizaje: una propuesta para álgebra lineal.
Transformación, Universidad de Camagüey, v. 15, n. 1, p. 147–157, 2019.

CENTER, L. Foreign Language Proficiency. [S.l.]: Leveda Center, 2014. <https:
//www.levada.ru/2014/05/28/vladenie-inostrannymi-yazykami/>. Accessed on 2021-04-
08; Archived under <https://archive.is/BL3cK>.

CHANDRA, K. nearley. 2014. Accessed on 2021-07-26; Archived under <https://
archive.is/imC1c>. Available from Internet: <https://nearley.js.org/>.

CHEDEAU, C.; LONG, J. et al. Prettier. 2017. Accessed on 2021-07-26; Archived under
<https://archive.is/S2ewW>. Available from Internet: <https://prettier.io/>.

CODEMIRROR. Bi-directional Text Demo. 2017. Accessed on 2021-11-02; Archived
under <https://archive.is/4N0nD>. Available from Internet: <https://codemirror.net/
demo/bidi.html>.

COGLAN, J. Canopy. 2010. Accessed on 2021-07-26; Archived under <https://archive.
is/y6J8u>. Available from Internet: <http://canopy.jcoglan.com/>.

CRUZ-BARRAGÁN, A.; MARTÍN, A.; LULE-PERALTA, A. Pseint technological tool
to develop logical-mathematical intelligence in structured computer programming. Jour-
nal of Technology and Innovation, p. 22–30, 12 2019.

CRYSTAL, D. English as a Global Language. [S.l.: s.n.], 2003. ISBN 9780521530323.

DAHL, R. Node.js. 2009. Accessed on 2021-07-26; Archived under <https://archive.is/
lhoeX>. Available from Internet: <https://nodejs.org/>.

DASGUPTA, S.; HILL, B. M. Learning to code in localized programming languages. In:
Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale. New York,
NY, USA: Association for Computing Machinery, 2017. (L@S ’17), p. 33–39. ISBN
9781450344500. Available from Internet: <https://doi.org/10.1145/3051457.3051464>.

Data Popular. Learning English in Brazil. [S.l.]: British Council, 2013. <https:
//www.britishcouncil.org.br/sites/default/files/learning_english_in_brazil.pdf>. Accessed
on 2021-04-04; Archived under <https://archive.is/m0DNq>.

DESIGN, A. ConfigProvider. 2020. Accessed on 2021-11-02; Archived under
<https://archive.is/0b9sS>. Available from Internet: <https://ant.design/components/
config-provider/>.

https://archive.is/izk50
https://github.com/ant-design/ant-design/pull/32551
https://github.com/ant-design/ant-design/pull/32551
https://www.levada.ru/2014/05/28/vladenie-inostrannymi-yazykami/
https://www.levada.ru/2014/05/28/vladenie-inostrannymi-yazykami/
https://archive.is/BL3cK
https://archive.is/imC1c
https://archive.is/imC1c
https://nearley.js.org/
https://archive.is/S2ewW
https://prettier.io/
https://archive.is/4N0nD
https://codemirror.net/demo/bidi.html
https://codemirror.net/demo/bidi.html
https://archive.is/y6J8u
https://archive.is/y6J8u
http://canopy.jcoglan.com/
https://archive.is/lhoeX
https://archive.is/lhoeX
https://nodejs.org/
https://doi.org/10.1145/3051457.3051464
https://www.britishcouncil.org.br/sites/default/files/learning_english_in_brazil.pdf
https://www.britishcouncil.org.br/sites/default/files/learning_english_in_brazil.pdf
https://archive.is/m0DNq
https://archive.is/0b9sS
https://ant.design/components/config-provider/
https://ant.design/components/config-provider/

64

DODDS, K. C. et al. Testing Library. 2018. Accessed on 2021-07-26; Archived under
<https://archive.is/kU8ep>. Available from Internet: <https://testing-library.com/>.

DRAGA, H. Alif. 2018. Accessed on 2021-05-23; Archived under <https://archive.is/
Ts9sl>. Available from Internet: <https://www.aliflang.org/>.

DURAK, H. Y. The effects of using different tools in programming teaching of secondary
school students on engagement, computational thinking and reflective thinking skills for
problem solving. Technology, Knowledge and Learning, v. 25, 03 2020.

ESTEVES, A. et al. Portugol Studio. 2014. Accessed on 2021-05-22; Archived un-
der <https://archive.ph/K11eT>. Available from Internet: <http://lite.acad.univali.br/
portugol/>.

ESTEVES, A. et al. Portugol studio: Em direção a uma comunidade aberta para pesquisa
sobre o aprendizado de programação. In: SBC. Anais do XXVII Workshop sobre Edu-
cação em Computação. [S.l.], 2019. p. 513–522.

ETHNOLOGUE. English | Ethnologue. 2019. <https://www.ethnologue.com/language/
eng>. Accessed on 2021-04-05; Archived under <https://web.archive.org/web/
20190926183242/https://www.ethnologue.com/language/eng>.

EUROBAROMETER. Europeans and Their Languages. [S.l.]: European Comis-
sion, 2012. <https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_
386_en.pdf>. Accessed on 2021-04-08; Archived under <https://web.archive.org/web/
20210401070700/https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_
386_en.pdf>.

FRASER, N. Ten things we’ve learned from blockly. In: 2015 IEEE Blocks and Beyond
Workshop (Blocks and Beyond). [S.l.: s.n.], 2015. p. 49–50.

GOOGLE. Angular. 2016. Accessed on 2021-07-26; Archived under <https://archive.is/
bQYzU>. Available from Internet: <https://angular.io/>.

GOOGLE. Google Grasshopper. 2019. Accessed on 2021-07-01; Archived under
<https://archive.is/YHIE9>. Available from Internet: <https://grasshopper.app/>.

GOOGLE; MIT. Blockly. 2012. Accessed on 2021-06-17; Archived under <https://
archive.is/Bsor9>. Available from Internet: <https://developers.google.com/blockly>.

GULP.JS. Popular plugins. 2014. Accessed on 2021-11-01; Archived under <https://
archive.is/OQuCe>. Available from Internet: <https://gulpjs.com/plugins/>.

GUO, P. J. Non-native english speakers learning computer programming: Barriers, de-
sires, and design opportunities. In: Proceedings of the 2018 CHI Conference on Hu-
man Factors in Computing Systems. New York, NY, USA: Association for Computing
Machinery, 2018. (CHI ’18), p. 1–14. ISBN 9781450356206. Available from Internet:
<https://doi.org/10.1145/3173574.3173970>.

HARRIS, B.; HARWELL, S. antlr4ts. 2016. Accessed on 2021-07-26; Archived
under <https://archive.is/UqN0k>. Available from Internet: <https://github.com/
tunnelvisionlabs/antlr4ts>.

https://archive.is/kU8ep
https://testing-library.com/
https://archive.is/Ts9sl
https://archive.is/Ts9sl
https://www.aliflang.org/
https://archive.ph/K11eT
http://lite.acad.univali.br/portugol/
http://lite.acad.univali.br/portugol/
https://www.ethnologue.com/language/eng
https://www.ethnologue.com/language/eng
https://web.archive.org/web/20190926183242/https://www.ethnologue.com/language/eng
https://web.archive.org/web/20190926183242/https://www.ethnologue.com/language/eng
https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_386_en.pdf
https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_386_en.pdf
https://web.archive.org/web/20210401070700/https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_386_en.pdf
https://web.archive.org/web/20210401070700/https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_386_en.pdf
https://web.archive.org/web/20210401070700/https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_386_en.pdf
https://archive.is/bQYzU
https://archive.is/bQYzU
https://angular.io/
https://archive.is/YHIE9
https://grasshopper.app/
https://archive.is/Bsor9
https://archive.is/Bsor9
https://developers.google.com/blockly
https://archive.is/OQuCe
https://archive.is/OQuCe
https://gulpjs.com/plugins/
https://doi.org/10.1145/3173574.3173970
https://archive.is/UqN0k
https://github.com/tunnelvisionlabs/antlr4ts
https://github.com/tunnelvisionlabs/antlr4ts

65

HAUHIO, I. Tampio. 2017. Accessed on 2021-05-23; Archived under <https://archive.
is/A5Chm>. Available from Internet: <https://github.com/fergusq/tampio>.

HAVERBEKE, M. CodeMirror. 2007. Accessed on 2021-07-26; Archived under <https:
//archive.is/byA3p>. Available from Internet: <https://codemirror.net/>.

HERMANS, F.; AIVALOGLOU, E. To scratch or not to scratch? a controlled experiment
comparing plugged first and unplugged first programming lessons. In: Proceedings of
the 12th Workshop on Primary and Secondary Computing Education. New York,
NY, USA: Association for Computing Machinery, 2017. (WiPSCE ’17), p. 49–56. ISBN
9781450354288. Available from Internet: <https://doi.org/10.1145/3137065.3137072>.

HILL, O. Waxeye. 2008. Accessed on 2021-07-26; Archived under <https://archive.is/
ZjLds>. Available from Internet: <https://waxeye.org/>.

HOARE, C. A. R. Hints on Programming Language Design. Stanford, CA, USA: Stan-
ford University, Department of Computer Science, 1973.

HUANG, L. Wenyan. 2019. Accessed on 2021-05-23; Archived under <https://archive.
is/1FgEy>. Available from Internet: <https://wy-lang.org/>.

HUERTA, J. A. A.; GONZÁLEZ-BAÑALES, D. L. Pseint como herramienta para mejo-
rar el proceso de enseñanza aprendizaje de algoritmos, pseudocódigo y diagramas de
flujo. Tecnologías de la Información en Educación: Sistematización de experiencias
docentes, p. 91, 2018.

IMCO. Ingles es posible. [S.l.]: Instituto Mexicano para la Competitivi-
dad, 2015. <https://imco.org.mx/wp-content/uploads/2015/04/2015_Documento_
completo_Ingles_es_posible.pdf>. Accessed on 2021-04-08; Archived under
<https://web.archive.org/web/20210117115841/https://imco.org.mx/wp-content/
uploads/2015/04/2015_Documento_completo_Ingles_es_posible.pdf>.

INDIA, G. of. Population by Bilingualism and Trilingualism. [S.l.]: Of-
fice of the Registrar General & Census Commissioner, 2011. <https://www.
censusindia.gov.in/2011census/C-17.html>. Accessed on 2021-04-08; Archived un-
der <https://web.archive.org/web/20201019143407/https://www.censusindia.gov.in/
2011census/C-17/DDW-C17-0000.XLSX>.

IU, M.-Y. C. Babylscript. 2011. Accessed on 2021-05-22; Archived under <https:
//archive.ph/A2BZW>. Available from Internet: <http://www.babylscript.com/>.

IU, M.-Y. C. Babylscript: multilingual javascript. In: Proceedings of the ACM inter-
national conference companion on Object oriented programming systems languages
and applications companion. [S.l.: s.n.], 2011. p. 197–198.

IU, M.-Y. C. Babylscript: Why Are Programming Languages Always in En-
glish? 2020. Accessed on 2021-11-02; Archived under <https://web.archive.org/web/
20210115100325/https://www.youtube.com/watch?v=_-PvtTVeunQ>. Available from
Internet: <https://www.youtube.com/watch?v=_-PvtTVeunQ>.

JETBRAINS. IntelliJ. 2001. Accessed on 2021-06-16; Archived under <https://archive.
ph/krjJB>. Available from Internet: <https://www.jetbrains.com/idea/>.

https://archive.is/A5Chm
https://archive.is/A5Chm
https://github.com/fergusq/tampio
https://archive.is/byA3p
https://archive.is/byA3p
https://codemirror.net/
https://doi.org/10.1145/3137065.3137072
https://archive.is/ZjLds
https://archive.is/ZjLds
https://waxeye.org/
https://archive.is/1FgEy
https://archive.is/1FgEy
https://wy-lang.org/
https://imco.org.mx/wp-content/uploads/2015/04/2015_Documento_completo_Ingles_es_posible.pdf
https://imco.org.mx/wp-content/uploads/2015/04/2015_Documento_completo_Ingles_es_posible.pdf
https://web.archive.org/web/20210117115841/https://imco.org.mx/wp-content/uploads/2015/04/2015_Documento_completo_Ingles_es_posible.pdf
https://web.archive.org/web/20210117115841/https://imco.org.mx/wp-content/uploads/2015/04/2015_Documento_completo_Ingles_es_posible.pdf
https://www.censusindia.gov.in/2011census/C-17.html
https://www.censusindia.gov.in/2011census/C-17.html
https://web.archive.org/web/20201019143407/https://www.censusindia.gov.in/2011census/C-17/DDW-C17-0000.XLSX
https://web.archive.org/web/20201019143407/https://www.censusindia.gov.in/2011census/C-17/DDW-C17-0000.XLSX
https://archive.ph/A2BZW
https://archive.ph/A2BZW
http://www.babylscript.com/
https://web.archive.org/web/20210115100325/https://www.youtube.com/watch?v=_-PvtTVeunQ
https://web.archive.org/web/20210115100325/https://www.youtube.com/watch?v=_-PvtTVeunQ
https://www.youtube.com/watch?v=_-PvtTVeunQ
https://archive.ph/krjJB
https://archive.ph/krjJB
https://www.jetbrains.com/idea/

66

JETBRAINS. PyCharm. 2010. Accessed on 2021-06-16; Archived under <https://
archive.ph/UDJ3w>. Available from Internet: <https://www.jetbrains.com/pycharm/>.

JUNIOR, S. M. da S.; FRANÇA, S. V. A. Programação para todos: Análise comparativa
de ferramentas utilizadas no ensino de programação. In: SBC. Anais do XXV Workshop
sobre Educação em Computação. [S.l.], 2017.

JUPYTER. Jupyter. 2015. Accessed on 2021-07-26; Archived under <https://archive.is/
WwgIP>. Available from Internet: <https://jupyter.org/>.

KALELIOGLU, F.; GULBAHAR, Y. The effects of teaching programming via scratch on
problem solving skills: A discussion from learners’ perspective. Informatics in Educa-
tion, v. 13, p. 33–50, 04 2014.

KASIDIARIS, P.; IMMS, D. et al. Xterm.js. 2016. Accessed on 2021-07-26; Archived
under <https://archive.is/KizpT>. Available from Internet: <https://xtermjs.org/>.

KATI. Kati. c. 2019. Accessed on 2021-05-23; Archived under <https://archive.is/
M7xq2>. Available from Internet: <https://www.scanf.ir/?page=kati>.

KIRKPATRICK, A. Internationalization or englishization: Medium of instruction in to-
day’s universities. Centre for Governance and Citizenship, The Hong Kong Institute
of Education, 01 2011.

KOPPERS, T.; LARKIN, S. et al. webpack. 2014. Accessed on 2021-07-26; Archived
under <https://archive.is/oY3WE>. Available from Internet: <https://webpack.js.org/>.

LEETCODE. LeetCode. 2011. Accessed on 2021-07-26; Archived under <https://
archive.is/b60uT>. Available from Internet: <https://leetcode.com/>.

LIKERT, R. A technique for the measurement of attitudes. Archives of psychology, 1932.

LIN, Y.-H. et al. Open source licenses and the creative commons framework: License
selection and comparison. J. Inf. Sci. Eng., v. 22, p. 1–17, 01 2006.

LUCENA, L. R.; LUCENA, M. Potigol, a programming language for beginners. In: Pro-
ceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education. [S.l.: s.n.], 2016. p. 368–368.

LUCENA, L. R. et al. Potigol. 2011. Accessed on 2021-05-22; Archived under <https:
//archive.ph/Zkykf>. Available from Internet: <https://potigol.github.io/>.

MAJDA, D.; RYUU, F.-z. PEG.js. 2010. Accessed on 2021-07-26; Archived under
<https://archive.is/UxE1Y>. Available from Internet: <https://pegjs.org/>.

MALONEY, J. et al. The scratch programming language and environment. Association
for Computing Machinery, New York, NY, USA, v. 10, n. 4, nov. 2010. Available from
Internet: <https://doi.org/10.1145/1868358.1868363>.

MALONEY, J. H. et al. Programming by choice: Urban youth learning programming with
scratch. SIGCSE Bull., Association for Computing Machinery, New York, NY, USA,
v. 40, n. 1, p. 367–371, mar. 2008. ISSN 0097-8418. Available from Internet: <https:
//doi.org/10.1145/1352322.1352260>.

https://archive.ph/UDJ3w
https://archive.ph/UDJ3w
https://www.jetbrains.com/pycharm/
https://archive.is/WwgIP
https://archive.is/WwgIP
https://jupyter.org/
https://archive.is/KizpT
https://xtermjs.org/
https://archive.is/M7xq2
https://archive.is/M7xq2
https://www.scanf.ir/?page=kati
https://archive.is/oY3WE
https://webpack.js.org/
https://archive.is/b60uT
https://archive.is/b60uT
https://leetcode.com/
https://archive.ph/Zkykf
https://archive.ph/Zkykf
https://potigol.github.io/
https://archive.is/UxE1Y
https://pegjs.org/
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1352322.1352260
https://doi.org/10.1145/1352322.1352260

67

MALYSHEVA, Y. An ast-based interface for composing and editing javascript on the
phone. In: 2017 IEEE Blocks and Beyond Workshop (B B). [S.l.: s.n.], 2017. p. 9–16.

MARIMUTHU, M.; GOVENDER, P. Perceptions of scratch programming among sec-
ondary school students in kwazulu-natal, south africa. The African Journal of Informa-
tion and Communication, v. 21, p. 51–80, 11 2018.

MATHEWS, K. A. Gatsby. 2015. Accessed on 2021-07-26; Archived under <https://
archive.is/CrFAF>. Available from Internet: <https://www.gatsbyjs.com/>.

MEERBAUM-SALANT, O.; ARMONI, M.; BEN-ARI, M. Habits of programming in
scratch. In: Proceedings of the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education. New York, NY, USA: Association for
Computing Machinery, 2011. (ITiCSE ’11), p. 168–172. ISBN 9781450306973. Avail-
able from Internet: <https://doi.org/10.1145/1999747.1999796>.

Microsoft. Excel. 1987. Accessed on 2021-05-24; Archived under <https://archive.is/
M6hWJ>. Available from Internet: <https://www.microsoft.com/en-us/microsoft-365/
excel>.

MICROSOFT. Visual Studio. 1997. Accessed on 2021-06-16; Archived under <https:
//archive.is/6L0f3>. Available from Internet: <https://visualstudio.microsoft.com/>.

MICROSOFT. TypeScript. 2012. Accessed on 2021-07-26; Archived under <https:
//archive.is/Ns00M>. Available from Internet: <https://www.typescriptlang.org/>.

MICROSOFT. Using type dynamic (C# Programming Guide). [S.l.]: Mi-
crosoft, 2015. <https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
types/using-type-dynamic>. Accessed on 2021-04-17; Archived under <https:
//archive.is/ILSda>.

MICROSOFT. Monaco Editor. 2016. Accessed on 2021-07-26; Archived under <https://
archive.is/U0hPc>. Available from Internet: <https://microsoft.github.io/monaco-editor/
>.

MICROSOFT. Excel Functions Translator. [S.l.]: Mi-
crosoft, 2018. <https://support.microsoft.com/en-us/office/
excel-functions-translator-f262d0c0-991c-485b-89b6-32cc8d326889>. Accessed
on 2021-05-24; Archived under <https://archive.ph/Yzdwv>.

MONTERO, P. R. et al. Latino. 2015. Accessed on 2021-06-13; Archived under <https:
//archive.is/CJL11>. Available from Internet: <https://www.lenguajelatino.org/>.

MOOIJ, G. de. Citrine. 2014. Accessed on 2021-05-23; Archived under <https://archive.
is/Qu0Fu>. Available from Internet: <https://citrine-lang.org/>.

NASSER, R. Qalb. 2012. Accessed on 2021-05-23; Archived under <https://archive.is/
nd1lK>. Available from Internet: <http://nas.sr/%D9%82%D9%84%D8%A8/>.

NOSCHANG, L. F. et al. Portugol studio: Uma ide para iniciantes em programaçao.
Anais do CSBC/WEI, p. 535–545, 2014.

https://archive.is/CrFAF
https://archive.is/CrFAF
https://www.gatsbyjs.com/
https://doi.org/10.1145/1999747.1999796
https://archive.is/M6hWJ
https://archive.is/M6hWJ
https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel
https://archive.is/6L0f3
https://archive.is/6L0f3
https://visualstudio.microsoft.com/
https://archive.is/Ns00M
https://archive.is/Ns00M
https://www.typescriptlang.org/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/using-type-dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/using-type-dynamic
https://archive.is/ILSda
https://archive.is/ILSda
https://archive.is/U0hPc
https://archive.is/U0hPc
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://support.microsoft.com/en-us/office/excel-functions-translator-f262d0c0-991c-485b-89b6-32cc8d326889
https://support.microsoft.com/en-us/office/excel-functions-translator-f262d0c0-991c-485b-89b6-32cc8d326889
https://archive.ph/Yzdwv
https://archive.is/CJL11
https://archive.is/CJL11
https://www.lenguajelatino.org/
https://archive.is/Qu0Fu
https://archive.is/Qu0Fu
https://citrine-lang.org/
https://archive.is/nd1lK
https://archive.is/nd1lK
http://nas.sr/%D9%82%D9%84%D8%A8/

68

NOVARA, P. PSeInt. 2003. Accessed on 2021-05-22; Archived under <https://archive.
ph/f08vl>. Available from Internet: <http://pseint.sourceforge.net>.

NPM. About packages and modules. 2019. Accessed on 2021-11-01; Archived un-
der <https://archive.is/OgNWC>. Available from Internet: <https://docs.npmjs.com/
about-packages-and-modules>.

ORACLE. JavaCC. 2000. Accessed on 2021-07-26; Archived under <https://archive.is/
7o1n1>. Available from Internet: <https://javacc.github.io/javacc/>.

OUAHBI, I. et al. Learning basic programming concepts by creating games with scratch
programming environment. Procedia - Social and Behavioral Sciences, v. 191, p. 1479–
1482, 2015. ISSN 1877-0428. The Proceedings of 6th World Conference on educa-
tional Sciences. Available from Internet: <https://www.sciencedirect.com/science/article/
pii/S1877042815024842>.

PAGE, D. et al. pgAdmin. c. 2000. Accessed on 2021-07-26; Archived under <https:
//archive.is/Hhrps>. Available from Internet: <https://www.pgadmin.org/>.

PARR, T.; HARWELL, S.; FISHER, K. ANTLR. 1992. Accessed on 2021-07-26;
Archived under <https://archive.is/pLubC>. Available from Internet: <https://www.antlr.
org/>.

PARR, T.; HARWELL, S.; FISHER, K. Adaptive ll(*) parsing: The power of dynamic
analysis. SIGPLAN Not., Association for Computing Machinery, New York, NY, USA,
v. 49, n. 10, p. 579–598, oct. 2014. ISSN 0362-1340. Available from Internet: <https:
//doi.org/10.1145/2714064.2660202>.

PAUSCH, R. Alice. 1998. Accessed on 2021-07-01; Archived under <https://archive.is/
XUU8v>. Available from Internet: <https://www.alice.org/>.

PC SOFT. WLanguage. 1992. Accessed on 2021-05-24; Archived under <https://
archive.is/M6hWJ>. Available from Internet: <https://pcsoft.fr/wlangage.htm>.

PC SOFT. WINDEV Nouvelle Version 26. [S.l.]: PC SOFT, 2014. <https://pcsoft.
fr/windev/ebook/56/index.html>. Accessed on 2021-05-24; Archived under <https://
archive.is/PgdhH>.

PEREIRA, D. E. F.; SEABRA, R. D.; SOUZA, A. D. de. Ferramentas de apoio ao ensino
introdutório de programação: um mapeamento sistemático. RENOTE, v. 18, n. 2, p.
491–500, 2020.

PERERA, P. et al. A systematic mapping of introductory programming languages for
novice learners. IEEE Access, v. 9, p. 88121–88136, 2021.

PÉREZ-MARÍN, D. et al. Can computational thinking be improved by using a methodol-
ogy based on metaphors and scratch to teach computer programming to children? Com-
puters in Human Behavior, v. 105, p. 105849, 2020. ISSN 0747-5632. Available from
Internet: <https://www.sciencedirect.com/science/article/pii/S0747563218306137>.

PEZOA, F. et al. Foundations of json schema. In: Proceedings of the 25th Inter-
national Conference on World Wide Web. Republic and Canton of Geneva, CHE:

https://archive.ph/f08vl
https://archive.ph/f08vl
http://pseint.sourceforge.net
https://archive.is/OgNWC
https://docs.npmjs.com/about-packages-and-modules
https://docs.npmjs.com/about-packages-and-modules
https://archive.is/7o1n1
https://archive.is/7o1n1
https://javacc.github.io/javacc/
https://www.sciencedirect.com/science/article/pii/S1877042815024842
https://www.sciencedirect.com/science/article/pii/S1877042815024842
https://archive.is/Hhrps
https://archive.is/Hhrps
https://www.pgadmin.org/
https://archive.is/pLubC
https://www.antlr.org/
https://www.antlr.org/
https://doi.org/10.1145/2714064.2660202
https://doi.org/10.1145/2714064.2660202
https://archive.is/XUU8v
https://archive.is/XUU8v
https://www.alice.org/
https://archive.is/M6hWJ
https://archive.is/M6hWJ
https://pcsoft.fr/wlangage.htm
https://pcsoft.fr/windev/ebook/56/index.html
https://pcsoft.fr/windev/ebook/56/index.html
https://archive.is/PgdhH
https://archive.is/PgdhH
https://www.sciencedirect.com/science/article/pii/S0747563218306137

69

International World Wide Web Conferences Steering Committee, 2016. (WWW ’16),
p. 263–273. ISBN 9781450341431. Available from Internet: <https://doi.org/10.1145/
2872427.2883029>.

PHPMYADMIN. 1998. Accessed on 2021-07-26; Archived under <https://archive.is/
FZeIK>. Available from Internet: <https://www.phpmyadmin.net/>.

PIECH, C.; ABU-EL-HAIJA, S. CodeInternational. 2020. Accessed on 2021-05-22;
Archived under <https://archive.ph/n3Hwx>. Available from Internet: <https://compedu.
stanford.edu/codeInternational/docs/>.

PIECH, C.; ABU-EL-HAIJA, S. Human languages in source code: Auto-translation for
localized instruction. In: Proceedings of the Seventh ACM Conference on Learning@
Scale. [S.l.: s.n.], 2020. p. 167–174.

REACT. Components and Props. 2017. Accessed on 2021-11-01; Archived un-
der <https://archive.is/dT8lY>. Available from Internet: <https://reactjs.org/docs/
components-and-props.html>.

REICHHELD, F. F. The one number you need to grow. Harvard business review, v. 81,
n. 12, p. 46–55, 2003.

RESNICK, M. et al. Scratch. 2007. Accessed on 2021-06-16; Archived under <https:
//archive.is/IoEza>. Available from Internet: <https://scratch.mit.edu/>.

REZENDE, C. M. C.; BISPO, E. L. Comparison between the use of pseudocode and
visual programming in programming teaching: An evaluation from scratch tool. In: 2018
13th Iberian Conference on Information Systems and Technologies (CISTI). [S.l.:
s.n.], 2018. p. 1–5.

ROSSUM, G. van; WARSAW, B.; COGHLAN, N. Style Guide for Python Code. [S.l.]:
Python Software Foundation, 2001. <https://www.python.org/dev/peps/pep-0008/>. Ac-
cessed on 2021-04-05; Archived under <https://archive.is/4Tcxu>.

SÁEZ-LÓPEZ, J.-M.; ROMÁN-GONZÁLEZ, M.; VÁZQUEZ-CANO, E. Visual pro-
gramming languages integrated across the curriculum in elementary school: A two year
case study using “scratch” in five schools. Computers & Education, v. 97, p. 129–
141, 2016. ISSN 0360-1315. Available from Internet: <https://www.sciencedirect.com/
science/article/pii/S0360131516300549>.

SÃNCHEZ, M.; BAHAMONDEZ, E. V.; CLUNIE, G. T. de. Use of pseint in teaching
programming: A case study. In: Proceedings of the 10th Euro-American Conference
on Telematics and Information Systems. New York, NY, USA: Association for Com-
puting Machinery, 2020. (EATIS ’20). ISBN 9781450377119. Available from Internet:
<https://doi.org/10.1145/3401895.3402083>.

SCHLUETER, I. Z. npm. 2010. Accessed on 2021-07-26; Archived under <https:
//archive.is/Euvjq>. Available from Internet: <https://www.npmjs.com/>.

SCHOFFSTALL, E. gulp.js. 2013. Accessed on 2021-07-26; Archived under <https://
archive.is/tU3Q0>. Available from Internet: <https://gulpjs.com/>.

https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
https://archive.is/FZeIK
https://archive.is/FZeIK
https://www.phpmyadmin.net/
https://archive.ph/n3Hwx
https://compedu.stanford.edu/codeInternational/docs/
https://compedu.stanford.edu/codeInternational/docs/
https://archive.is/dT8lY
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://archive.is/IoEza
https://archive.is/IoEza
https://scratch.mit.edu/
https://www.python.org/dev/peps/pep-0008/
https://archive.is/4Tcxu
https://www.sciencedirect.com/science/article/pii/S0360131516300549
https://www.sciencedirect.com/science/article/pii/S0360131516300549
https://doi.org/10.1145/3401895.3402083
https://archive.is/Euvjq
https://archive.is/Euvjq
https://www.npmjs.com/
https://archive.is/tU3Q0
https://archive.is/tU3Q0
https://gulpjs.com/

70

SCRATCH. Scratch Statistics. [S.l.]: Scratch, 2021. <https://scratch.mit.edu/statistics/>.
Accessed on 2021-07-01; Archived under <https://archive.ph/e7GMQ>.

SEBESTA, R. W. Concepts of Programming Languages. 10th. ed. [S.l.]: Pearson, 2012.
ISBN 0273769103.

SERAJ, M. et al. Scratch and google blockly: How girls’ programming skills and attitudes
are influenced. In: Proceedings of the 19th Koli Calling International Conference
on Computing Education Research. New York, NY, USA: Association for Comput-
ing Machinery, 2019. (Koli Calling ’19). ISBN 9781450377157. Available from Internet:
<https://doi.org/10.1145/3364510.3364515>.

SIGPLAN, A. BYLAWS of the Special Interest Group on PROGRAMMING
LANGUAGES of the Association for Computing Machinery. [S.l.]: ACM,
2003. <http://www.acm.org/sigs/sigplan/sigplan_bylaws.htm>. Accessed on 2021-04-
07; Archived under <https://web.archive.org/web/20060622110145/http://www.acm.org/
sigs/sigplan/sigplan_bylaws.htm>.

SOLTANO, S. Historical trends in the usage statistics of content languages
for websites. [S.l.]: W3techs.com, 2021. <https://w3techs.com/technologies/history_
overview/content_language>. Accessed on 2021-04-04; Archived under <https://archive.
is/we2IE>.

SOUTO, M. A. M.; LIVI, M. A. C. INF01210 - INTRODUÇÃO À INFORMÁTICA.
[S.l.]: UFRGS - Instituto de Informática, 1999. <http://www.inf.ufrgs.br/~cidalivi/
INF01210/excel1991.pdf>. Accessed on 2021-05-24; Archived under <https://archive.
is/0Y15l>.

SOUZA, C. M. de; NICOLODI, A. C. VISUALG 3.0. c. 2003. Accessed on 2021-05-22;
Archived under <https://archive.is/sf62p>. Available from Internet: <https://sourceforge.
net/projects/visualg30/>.

STACKOVERFLOW. Developer Survey 2020. [S.l.]: Stack Overflow, 2020. <https://
insights.stackoverflow.com/survey/>. Accessed on 2021-04-07; Archived under <https:
//web.archive.org/web/20210228225102/https://insights.stackoverflow.com/survey/>.

TEAM, A. D. Ant Design. 2016. Accessed on 2021-09-30; Archived under <https://
archive.is/PZ5SZ>. Available from Internet: <https://ant.design/>.

TYNKER. Tynker. 2013. Accessed on 2021-07-01; Archived under <https://archive.is/
hA0x3>. Available from Internet: <https://www.tynker.com/>.

VAZQUEZ, A.; SABAT, T.; COYIER, C. CodePen. 2012. Accessed on 2021-07-26;
Archived under <https://archive.is/TdcDc>. Available from Internet: <https://codepen.
io/>.

VISSER, E. Scannerless generalized-lr parsing. 04 1999.

WALKE, J. React.js. 2013. Accessed on 2021-07-26; Archived under <https://archive.is/
jDg5y>. Available from Internet: <https://reactjs.org/>.

WATT, D. A. Programming Language Design Concepts. Hoboken, NJ, USA: John Wi-
ley & Sons, Inc., 2004. ISBN 0470853204.

https://scratch.mit.edu/statistics/
https://archive.ph/e7GMQ
https://doi.org/10.1145/3364510.3364515
http://www.acm.org/sigs/sigplan/sigplan_bylaws.htm
https://web.archive.org/web/20060622110145/http://www.acm.org/sigs/sigplan/sigplan_bylaws.htm
https://web.archive.org/web/20060622110145/http://www.acm.org/sigs/sigplan/sigplan_bylaws.htm
https://w3techs.com/technologies/history_overview/content_language
https://w3techs.com/technologies/history_overview/content_language
https://archive.is/we2IE
https://archive.is/we2IE
http://www.inf.ufrgs.br/~cidalivi/INF01210/excel1991.pdf
http://www.inf.ufrgs.br/~cidalivi/INF01210/excel1991.pdf
https://archive.is/0Y15l
https://archive.is/0Y15l
https://archive.is/sf62p
https://sourceforge.net/projects/visualg30/
https://sourceforge.net/projects/visualg30/
https://insights.stackoverflow.com/survey/
https://insights.stackoverflow.com/survey/
https://web.archive.org/web/20210228225102/https://insights.stackoverflow.com/survey/
https://web.archive.org/web/20210228225102/https://insights.stackoverflow.com/survey/
https://archive.is/PZ5SZ
https://archive.is/PZ5SZ
https://ant.design/
https://archive.is/hA0x3
https://archive.is/hA0x3
https://www.tynker.com/
https://archive.is/TdcDc
https://codepen.io/
https://codepen.io/
https://archive.is/jDg5y
https://archive.is/jDg5y
https://reactjs.org/

71

WEINTROP, D.; WILENSKY, U. Comparing block-based and text-based programming
in high school computer science classrooms. Association for Computing Machinery, New
York, NY, USA, v. 18, n. 1, oct. 2017. Available from Internet: <https://doi.org/10.1145/
3089799>.

Whale Flight Desk. Nadesiko. 2004. Accessed on 2021-05-23; Archived under <https:
//archive.is/6NCQA>. Available from Internet: <https://nadesi.com/>.

Wikipedia. Comparison of parser generators. [S.l.]: Wikipedia, 2021. <https:
//en.wikipedia.org/wiki/Comparison_of_parser_generators>. Accessed on 2021-07-27;
Archived under <https://archive.is/SHdkI>.

Wikipedia. Non-English-based programming languages. [S.l.]: Wikipedia, 2021.
<https://en.wikipedia.org/wiki/Non-English-based_programming_languages>. Accessed
on 2021-05-24; Archived under <https://archive.is/b5HEz>.

WILSON, A.; MOFFAT, D. Evaluating scratch to introduce younger schoolchildren to
programming. Proceedings of the 22nd Annual Workshop of the Psychology of Pro-
gramming Interest group-PPIG2010, September 19-22, 2010, 05 2012.

WING, J. Computational thinking. Communications of the ACM, v. 49, p. 33–35, 03
2006.

XTERM.JS. Support RTL languages. 2017. Accessed on 2021-11-02; Archived under
<https://archive.is/hlmrc>. Available from Internet: <https://github.com/xtermjs/xterm.
js/issues/701>.

YOU, E. Vue.js. 2014. Accessed on 2021-07-26; Archived under <https://archive.is/
lF8x8>. Available from Internet: <https://vuejs.org/>.

YUTO. Produire. 2007. Accessed on 2021-05-23; Archived under <https://archive.is/
pJMjN>. Available from Internet: <http://rdr.utopiat.net/>.

ZAKAS, N. C. ESLint. 2013. Accessed on 2021-07-26; Archived under <https://archive.
is/R4wnG>. Available from Internet: <https://eslint.org/>.

ZAMIN, N. et al. Learning block programming using scratch among school children in
malaysia and australia: An exploratory study. In: 2018 4th International Conference on
Computer and Information Sciences (ICCOINS). [S.l.: s.n.], 2018. p. 1–6.

ZHANG, L.; NOURI, J. A systematic review of learning compu-
tational thinking through scratch in k-9. Computers & Education,
https://authors.elsevier.com/a/1ZIfP1HucdHyVb, p. 103607, 06 2019.

ÖZORAN, D.; CAGILTAY, N.; TOPALLI, D. Using scratch in introduction to program-
ming course for engineering students. In: . [S.l.: s.n.], 2012.

https://doi.org/10.1145/3089799
https://doi.org/10.1145/3089799
https://archive.is/6NCQA
https://archive.is/6NCQA
https://nadesi.com/
https://en.wikipedia.org/wiki/Comparison_of_parser_generators
https://en.wikipedia.org/wiki/Comparison_of_parser_generators
https://archive.is/SHdkI
https://en.wikipedia.org/wiki/Non-English-based_programming_languages
https://archive.is/b5HEz
https://archive.is/hlmrc
https://github.com/xtermjs/xterm.js/issues/701
https://github.com/xtermjs/xterm.js/issues/701
https://archive.is/lF8x8
https://archive.is/lF8x8
https://vuejs.org/
https://archive.is/pJMjN
https://archive.is/pJMjN
http://rdr.utopiat.net/
https://archive.is/R4wnG
https://archive.is/R4wnG
https://eslint.org/

72

APPENDIX A — PANSCRIPT’S TECHNICAL BACKLOG

Current backlog for the PanScript project.

Summary Description

1 Responsive layout Have the UI adapt itself to smaller resolutions.

2 Resizable elements Allow the user to collapse/resize the file explorer,

the code editor, and the output console using ver-

tical splitters.

3 Menu redesign Make the Run button more prominent; perhaps

group some menu items.

4 Detect language based on the

user’s browser

Automatically select a language for first-time vis-

itors based on browser settings.

5 Code samples about how to

fix common errors

Tell users the types of error messages that can ap-

pear, why they occur, and how to fix them.

6 Code samples about

composite assignment

operators

Add usage examples for +=, -=, *=, etc.

7 Improve code samples Reorganize code samples, making them shorter

and more kid-friendly; explain functions further;

explain type compatibility.

8 Improve error messages Make error messages more simple and kid-

friendly; also add some color to them.

9 Input function Add the ability to read a string from the standard

input.

10 Automatic indentation in the

code editor

Automatically indent code blocks for condition-

als, loops, and function definitions.

11 Autocomplete suggestions in

the code editor

Autocomplete for at least keywords and function

names for the current dialect.

12 Tooltip showing the

arguments a function expects

When editing a function call, display names and

types of expected arguments.

13 Support for lists/arrays Support for list types and related code samples.

14 Support the Safari browser Fix whichever bug prevents PanScript from being

used in Safari.

Continued on next page.

73

Continued from previous page.

Summary Description

15 Add more languages Add Spanish, Russian, Hindi, Tamil, Bengali,

Marathi, Urdu, Hausa, Swahili, Yoruba, Amharic,

Arabic, Persian, Tagalog, Vietnamese, Indone-

sian, Javanese, Malay, Thai, Italian, Greek...

16 Creation of new files in the

file-tree

Add the ability to create new files in the file ex-

plorer; file upload should create a new file.

17 Output functions allowing

multiple arguments

Allow write and write_inline functions to work

with more than one argument, similar to Python

and Ruby.

18 Better UI/UX design Find designers to help improve PanScript’s look

and feel.

19 Mobile support Support mobile devices using a different layout.

20 Accessibility features Add font size controls; improve keyboard-only in-

put; fix screen reader support.

21 Type casting Add the ability to convert values between text,

number, and logical types; have the means to test

if conversion would be possible; throw error in

case of invalid conversion.

22 Add optional/nullable types Support for optional/nullable wrapper to safely

represent missing values.

23 Try/catch Ability to handle exceptions that occur during ex-

ecution (e.g., conversion error).

24 Inform user when saving

contents to Local Storage

Inform the user whenever PanScript stores the

contents of the code editor in the browser’s Local

Storage.

25 Search in the code editor Enable search in the code editor.

26 Textual documentation Provide detailed textual documentation to accom-

pany the code samples (similar to Python’s).

27 Code visualization Support generating control flow diagrams (similar

to PSeInt’s).

Continued on next page.

74

Continued from previous page.

Summary Description

28 Code translation Provide automatic translation of keywords and

standard library function names between Pan-

Script dialects.

29 Proposed exercises for each

lesson

Invite students to solve problems using the con-

cepts they learned (similar to Codecademy).

30 Support for tuples Support for tuples and related code samples.

31 Support for dictionaries Support for dictionary and related code samples.

32 Tooltips with translated

keywords in the editor

Have the code editor show tooltips with transla-

tions when the user hovers over keywords.

33 Tour with usage instructions Add a tour for first-time visitors presenting the UI

and its controls.

34 Offline mode Option to download the app for offline use.

35 Support for user-defined

types

Support for creating and utilizing new user-

defined types.

36 Support for importing other

files

Ability to import code from other files.

37 Debug mode Add a step-by-step execution mode for debug-

ging.

38 Object-oriented

programming concepts

Add support for OOP classes, objects, etc.

39 Option to show the

JavaScript code

Option to display the JavaScript code generated

from the user’s PanScript code.

40 Code transpilation to Python Ability to convert PanScript code to Python.

Source: The Author

75

APPENDIX B — THE PANSCRIPT STANDARD LIBRARY

Input/Output functions.

English name Portuguese name Description

write(1) escreva(1) Write a line of text to the output console.

write_inline(1) escreva_na_linha(1) Write text to the output console remaining in

the same line.

new_line(1) nova_linha(1) Write a line break to the output console.

clear() limpe() Clear the output console.

Source: The Author

Text functions.

English name Portuguese name Description

to_text(1) para_texto(1) Convert a value of any type to text type.

pad_left(3) preencha_esquerda(3) Pad a text to the left using another text un-

til a given length.

pad_right(3) preencha_direita(3) Pad a text to the right using another text

until a given length.

length(1) comprimento(1) Number of characters in a text.

repeat(2) repita(2) Repeat a certain text n times.

upper_case(1) maiusculas(1) Return the text with all characters con-

verted to uppercase.

lower_case(1) minusculas(1) Return the text with all characters con-

verted to lowercase.

sentence_case(1) sentenca(1) Return a text with the first character con-

verted to uppercase and the remaining

characters converted to lowercase.

left(2) esquerda(2) Return up to n characters from the start of

the text.

right(2) direita(2) Return up to n characters from the end of

the text.

Continued on next page.

76

Continued from previous page.

English name Portuguese name Description

middle(3) meio(3) Return up to n characters from the text

starting at the given position (0-indexed).

slice_text(3) fatie_texto(3) Return all characters between two posi-

tions of a text (0-indexed).

reverse_text(1) inverta_texto(1) Return the text with all characters in the

inverse order.

in_text(2) no_texto(2) Return true if a text contains another text.

position(2) posicao(2) Return the index (inside a text) of the first

occurrence of another text.

trim(1) aparar(1) Remove whitespace characters from the

start and the end of a text.

trim_left(1) aparar_esquerda(1) Remove whitespace characters from the

start of a text.

trim_right(1) aparar_direita(1) Remove whitespace characters from the

end of a text.

Source: The Author

Math functions.

English name Portuguese name Description

pi() pi() Return an approximate value of the

constant π.

e() e() Return an approximate value of the

constant e.

absolute(1) absoluto(1) Return the absolute value (modulo) of

a number.

power(2) potencia(2) Return a raised to the power b.

square_root(1) raiz_quadrada(1) Return the square root of a number.

sine(1) seno(1) Return the sine of a number. The num-

ber should be in radians.

Continued on next page.

77

Continued from previous page.

English name Portuguese name Description

cosine(1) cosseno(1) Return the cosine of a number. The

number should be in radians.

tangent(1) tangente(1) Return the tangent of a number. The

number should be in radians.

arc_sine(1) arco_seno(1) Return the arc sine (inverse of sine) of

a number. The result is in radians.

arc_cosine(1) arco_cosseno(1) Return the arc cosine (inverse of co-

sine) of a number. The result is in ra-

dians.

arc_tangent(1) arco_tangente(1) Return the arc tangent (inverse of tan-

gent) of a number. The result is in ra-

dians.

exponential(1) exponencial(1) Return ex for a number x, where e is

the Euler’s number.

natural_logarithm(1) logaritmo_natural(1) Return the natural logarithm (inverse

of exponential) of a number.

logarithm(2) logaritmo(2) Return the logarithm of a number in a

given base.

floor(1) piso(1) Return the given number rounded

down to the previous integer.

ceiling(1) teto(1) Return the given number rounded up to

the next integer.

truncate(1) trunque(1) Return the given number without any

fractional part.

minimum(2) minimo(2) Return the smallest of two numbers.

maximum(2) maximo(2) Return the largest of two numbers.

random_real(2) real_aleatorio(2) Return a random real number in the in-

terval [a, b) using a uniform distribu-

tion.

Continued on next page.

78

Continued from previous page.

English name Portuguese name Description

random_integer(2) inteiro_aleatorio(2) Return a random integer in the interval

[a, b) using a uniform distribution.

round(1) arredonde(1) Return the given number rounded to

the nearest integer (midpoint rounded

away from zero).

round_n_places(2) arredonde_n_casas(2) Return the given number rounded to n

places (midpoint rounded away from

zero).

truncate_n_places(2) trunque_n_casas(2) Return the given number truncated to

n places.

Source: The Author

79

APPENDIX C — THE PANSCRIPT CANONICAL GRAMMARS

Canonical lexer grammar with minified formatting

1 lexer grammar CommonLexer;

2

3 @members { parenLevel = 0; }

4 tokens { TEXT_CONTENT }

5

6 fragment Alpha

7 : [A-Za-z]

8 ;

9

10 fragment Digit

11 : [0-9]

12 ;

13

14 TRUE: ’true’;

15 FALSE: ’false’;

16 BREAK: ’break’;

17 CONSTANT: ’constant’;

18 CONTINUE: ’continue’;

19 ELSE: ’else’;

20 END: ’end’;

21 FOR: ’for’;

22 FOREVER: ’forever’;

23 FROM: ’from’;

24 FUNCTION: ’function’;

25 GLOBAL: ’global’;

26 IF: ’if’;

27 RETURN: ’return’;

28 RETURNS: ’returns’;

29 TO: ’to’;

30 WHILE: ’while’;

31 ASSIGN: ’=’;

32 ADD: ’+’;

33 SUBTRACT: ’-’;

34 MULTIPLY: ’*’;

35 DIVIDE: ’/’;

36 REMAINDER: ’%’;

37 POWER: ’^’;

80

38 ADD_ASSIGN: ’+=’;

39 SUBTRACT_ASSIGN: ’-=’;

40 MULTIPLY_ASSIGN: ’*=’;

41 DIVIDE_ASSIGN: ’/=’;

42 REMAINDER_ASSIGN: ’%=’;

43 POWER_ASSIGN: ’^=’;

44 LESS: ’<’;

45 LESS_OR_EQUAL: ’<=’;

46 GREATER: ’>’;

47 GREATER_OR_EQUAL: ’>=’;

48 EQUAL: ’==’;

49 DIFFERENT: ’!=’;

50 AND: ’&&’ | ’and’;

51 OR: ’||’ | ’or’;

52 NOT: ’!’ | ’not’;

53 LOGICAL: ’logical’;

54 NUMBER: ’number’;

55 TEXT: ’text’;

56 OPEN_PARENTHESIS: ’(’ { this.parenLevel += 1; };

57 CLOSE_PARENTHESIS: ’)’ { this.parenLevel -= 1; };

58 OPEN_BRACKET: ’[’;

59 CLOSE_BRACKET: ’]’;

60 OPEN_BRACE: ’{’;

61 CLOSE_BRACE: ’}’ -> popMode; // end text interpolation

62 DOT: ’.’;

63 COMMA: ’,’;

64

65 QUOTE_SINGLE

66 : ’\’’ -> pushMode(SINGLE_QUOTE_TEXT) // start text

67 ;

68

69 QUOTE_DOUBLE

70 : ’"’ -> pushMode(DOUBLE_QUOTE_TEXT) // start text

71 ;

72

73 IDENTIFIER

74 : (Alpha | ’_’) (Alpha | Digit | ’_’)*

75 ;

76

77 DECIMAL_NUMBER // allow numbers like 1, 1., .1 and 1.1

78 : Digit+ ’.’?

81

79 | Digit* ’.’ Digit+

80 ;

81

82 HEX_NUMBER

83 : ’0x’ [0-9A-Fa-f]+

84 ;

85

86 BINARY_NUMBER

87 : ’0b’ [01]+

88 ;

89

90 NEWLINE // ignored inside parentheses

91 : { this.parenLevel == 0 }? [\r\n]+

92 ;

93

94 WHITESPACE // capture newlines inside parentheses

95 : ({ this.parenLevel > 0 }? [\t\r\n]+

96 | [\t]+) -> channel(HIDDEN)

97 ;

98

99 LINE_COMMENT

100 : (’//’ ~[\r\n]*

101 | ’#’ ~[\r\n]*) -> channel(HIDDEN)

102 ;

103

104 BLOCK_COMMENT

105 : ’/*’ .*? ’*/’ -> channel(HIDDEN)

106 ;

107

108 UNKNOWN

109 : .

110 ;

111

112

113 mode SINGLE_QUOTE_TEXT;

114

115 SINGLE_QUOTE_TEXT_QUOTE_SINGLE // end text

116 : ’\’’ -> type(QUOTE_SINGLE), popMode

117 ;

118

119 SINGLE_QUOTE_TEXT_CONTENT

82

120 : (’\\’ . // escaped character

121 | ~[\\\r\n’]+) -> type(TEXT_CONTENT)

122 ;

123

124

125 mode DOUBLE_QUOTE_TEXT;

126

127 DOUBLE_QUOTE_TEXT_QUOTE_DOUBLE // end text

128 : ’"’ -> type(QUOTE_DOUBLE), popMode

129 ;

130

131 DOUBLE_QUOTE_TEXT_OPEN_BRACE // start text interpolation

132 : ’{’ -> type(OPEN_BRACE), pushMode(DEFAULT_MODE)

133 ;

134

135 DOUBLE_QUOTE_TEXT_CONTENT

136 : (’\\’ . // escaped character

137 | ~[\\\r\n"{]+) -> type(TEXT_CONTENT)

138 ;

83

Canonical parser grammar

1 parser grammar CommonParser;

2

3 options { tokenVocab=CommonLexer; }

4

5 program

6 : NEWLINE* topStatement*

7 ;

8

9 topStatement

10 : functionDeclaration eos

11 | statement

12 ;

13

14 innerStatement

15 : globalStatement eos

16 | breakStatement eos

17 | continueStatement eos

18 | returnStatement eos

19 | statement

20 ;

21

22 statement

23 : variableDeclaration eos

24 | variableAssignment eos

25 | ifStatement eos

26 | forFromToStatement eos

27 | whileStatement eos

28 | foreverStatement eos

29 | functionCall eos

30 ;

31

32 globalStatement

33 : GLOBAL IDENTIFIER

34 ;

35

36 functionDeclaration

37 : FUNCTION IDENTIFIER OPEN_PARENTHESIS parameterList? CLOSE_PARENTHESIS

38 (RETURNS type)? NEWLINE+ innerStatement* END

39 ;

40

84

41 parameterList

42 : type IDENTIFIER (COMMA type IDENTIFIER)*

43 ;

44

45 variableDeclaration

46 : CONSTANT? type IDENTIFIER ASSIGN expression

47 ;

48

49 type

50 : LOGICAL #logicalType

51 | NUMBER #numberType

52 | TEXT #textType

53 ;

54

55 expression

56 : OPEN_PARENTHESIS expression CLOSE_PARENTHESIS #parenthesisExpression

57 | ADD expression #plusExpression

58 | SUBTRACT expression #minusExpression

59 | NOT expression #notExpression

60 | <assoc=right> expression POWER expression #powerExpression

61 | expression MULTIPLY expression #multiplyExpression

62 | expression DIVIDE expression #divideExpression

63 | expression REMAINDER expression #remainderExpression

64 | expression ADD expression #addExpression

65 | expression SUBTRACT expression #subtractExpression

66 | expression LESS expression #lessExpression

67 | expression LESS_OR_EQUAL expression #lessEqualExpression

68 | expression GREATER expression #greaterExpression

69 | expression GREATER_OR_EQUAL expression #greaterEqualExpression

70 | expression EQUAL expression #equalExpression

71 | expression DIFFERENT expression #differentExpression

72 | expression AND expression #andExpression

73 | expression OR expression #orExpression

74 | atom #atomExpression

75 ;

76

77 atom

78 : TRUE #trueAtom

79 | FALSE #falseAtom

80 | numberLiteral #numberAtom

81 | textLiteral #textAtom

85

82 | functionCall #functionCallAtom

83 | IDENTIFIER #identifierAtom

84 ;

85

86 numberLiteral

87 : DECIMAL_NUMBER

88 | HEX_NUMBER

89 | BINARY_NUMBER

90 ;

91

92 textLiteral

93 : QUOTE_SINGLE simpleText* QUOTE_SINGLE #simpleTextLiteral

94 | QUOTE_DOUBLE interpolatedText* QUOTE_DOUBLE #interpolatedTextLiteral

95 ;

96

97 simpleText

98 : TEXT_CONTENT

99 ;

100

101 interpolatedText

102 : simpleText #interpolatedSimpleText

103 | OPEN_BRACE expression CLOSE_BRACE #interpolatedExpressionText

104 ;

105

106 functionCall

107 : IDENTIFIER OPEN_PARENTHESIS argumentList? CLOSE_PARENTHESIS

108 ;

109

110 argumentList

111 : expression (COMMA expression)*

112 ;

113

114 variableAssignment

115 : IDENTIFIER ASSIGN expression #assignment

116 | IDENTIFIER ADD_ASSIGN expression #addAssignment

117 | IDENTIFIER SUBTRACT_ASSIGN expression #subtractAssignment

118 | IDENTIFIER MULTIPLY_ASSIGN expression #multiplyAssignment

119 | IDENTIFIER DIVIDE_ASSIGN expression #divideAssignment

120 | IDENTIFIER REMAINDER_ASSIGN expression #remainderAssignment

121 | IDENTIFIER POWER_ASSIGN expression #powerAssignment

122 ;

86

123

124 ifStatement

125 : IF expression NEWLINE+ innerStatement* elseIfPart* elsePart? END

126 ;

127

128 elseIfPart

129 : ELSE IF expression NEWLINE+ innerStatement*

130 ;

131

132 elsePart

133 : ELSE NEWLINE+ innerStatement*

134 ;

135

136 forFromToStatement

137 : FOR type IDENTIFIER FROM expression TO expression NEWLINE+ innerStatement* END

138 ;

139

140 whileStatement

141 : WHILE expression NEWLINE+ innerStatement* END

142 ;

143

144 foreverStatement

145 : FOREVER NEWLINE+ innerStatement* END

146 ;

147

148 breakStatement

149 : BREAK

150 ;

151

152 continueStatement

153 : CONTINUE

154 ;

155

156 returnStatement

157 : RETURN expression?

158 ;

159

160 eos

161 : NEWLINE+ EOF?

162 | EOF

163 ;

87

APPENDIX D — RESPONSES TO THE OPEN-ENDED QUESTIONS OF

PANSCRIPT’S ONLINE SURVEY (IN BRAZILIAN PORTUGUESE)

Q10. Descreva brevemente as dificuldades que você enfrentou aprendendo programação. Se você
aprendeu programação antes de aprender inglês, isso trouxe alguma dificuldade específica?

Id Response

2 Encontrar material adequeado para o meu nível, motivação para me aprofundar

mais. Aprendi inglês antes de programação.

3 Eu aprendi depois de aprender inglês. A principal dificuldade foi a inicial, de

aprender o paradigma e os conceitos principais. Depois disso, foi coisas específi-

cas de linguagens, e conceitos fundamentais de computação.

4

5 Lidar com as diferentes sintaxes entre linguagens; lidar com diferentes paradig-

mas (OO x Procedural x Funcional); eventualmente lidar com linguagens muito

verbosas (Java)

6 Eu já sabia inglês bem basico, então não acho que o idioma fez diferença.

7 Antes de ter mais confiança no Inglês tinha que procurar conteudo em português

ou traduzir os que tinha a disposição.

8 Não lembro de ter tido grandes dificuldades para aprender programação. Acho

que o mais difícil foi entender ponteiros em C. Quando comecei a aprender pro-

gramação, eu já sabia o suficiente de inglês.

9 Sim, trouxe, principalmente no paradigma de classes porque existiam nomenclat-

uras diferentes e mais subjetivas.

10 Entender os conceitos da programação em si, trabalhar com matrizes, etc

11 Eu já sabia o básico do inglês, portanto, nesse quesito foi fácil. As maiores bar-

reiras eram relacionadas a conceitos diretamente ligadas a programação (orien-

tação a objetos, por exemplo).

12 Eu já sabia inglês quando comecei a programar, então não foi uma dificuldade.

13 Entender a lógica para montar as estruturas e o funcionamento delas. Como eu já

tinha um nível de inglês, não senti dificuldades com relação aos comandos serem

estarem no idioma.

15 Como aprendi programação junto com inglês, entender a documentação das bib-

liotecas e programas foi a maior dificuldade.

Continued on next page.

88

Continued from previous page.

Id Response

16 A maior dificuldade sempre foi entender as mensagens de erro, mesmo falando in-

gles e lendo claramente o que a mensagem queria dizer, os compiladores parecem

reclamar de um “;” faltando de uma maneira muito estranha.

17 Aprendi programação depois de aprender inglês. Maiores dificuldade giravam

em torno de documentação incompleta, falta de algo que direcionasse os estudos

(quando era o caso) e falta de fóruns de dúvidas mais básicas

18 Mesmo começando a programar sem saber inglês, isso não trouxe dificuldade para

escrever o código em si. Porém, para conseguir auxílio de materiais sim, pois

quase tudo, na época que comecei a programar, estava em inglês.

19 entendimento de hardware. inglês não foi um problema.

20 Lembrar as idiossincrasias da linguagem, traduzir a lógica pensada em lógica de

programação

21 Quando comecei a programar, já sabia bem o inglês e acredito que isto tenha facil-

itado muito o aprendizado. No começo, tinha dificuldade de prever mentalmente

os passos que o algoritmo iria seguir no código que eu estava escrevendo, eu es-

quecia com frequência de digitar dois pontos, ponto e vírgula etc. e entender o

funcionamento das tantas funções que eu deveria usar. Não demorou muito para

eu me adaptar, no entanto.

22 - Interpretar mensagens de erro da linguagem, especialmente de compiladores

- Como organizar o código (diminuir acoplamento, aumentar coesão, garantir

SRP)

- Estruturas de dados tipo grafo e árvores

23 A maior dificuldade foi entender a parte técnica da linguagem. O idioma não foi

um fator determinante.

24 Dificuldade relacionada às caracteristicas das linguagens, métodos de progra-

mação (orientada a objetos), modelagem de dados. Não, aprendia inglês primeiro

25

26 Logica de programação foi a maior dificuldade, porém certamente saber inglês

antes de saber a programar foi imprecindivel.

27 Sintaxe, semântica, erros de programação, bugs

Continued on next page.

89

Continued from previous page.

Id Response

28 Não tinha muito bem onde aplicar os conhecimentos que estava adquirindo

29 Já possuía algum domínio do inglês. Dificuldades mais relacionadas a lógica.

30 Usar muito computador para diversas coisas e começar a automatizar tarefas

31 Nenhuma dificuldade relacionada a idioma

32 Sim, eu sou da area de dev frontend e ainda sinto um pouco de dificuldade no

ingles.

33 A maior dificuldade é entender o problema a ser resolvido e transformá-lo em

código. Além de escrever um código mais otimizado. Aprendi a programar sem

ter muito conhecimento em inglês, e isso também dificultou um pouco.

34

35 Sim, o inglês limita no aprendizado e.g no tempo que investe nas leituras e com-

preensão delas.

36 As principais dificuldades foram no aprendizado da lógica de programação. Já

tinha domínio do inglês quando comecei a programar.

37 Sim, aprendi programação antes de aprender inglês. Entrei na universidade muito

cedo e muito verde, demorei um tempo a entender que inglês seria essencial. Mas

aprendi a programar no primeiro semestre com Pascal. Conceitos como Loop,

palavras-chave como Then else demoraram a fazer sentido porque eu ficava bus-

cando qual era tradução no meu dicionário mental. Lembro de gastar horas procu-

rando tradução decente para NIL. São poucas palavras, parece que não vai influ-

enciar, mas é um ledo engano. Atrapalha sim. Outra dificuldade relacionada que

enfrentei era a escassez de títulos bibliográficos em português. Também tive a

dificuldade com os exercícios. Na época, os principais repositórios de questões

extras para treino eram a UVA e o topcoder, ambos em inglês. Enfim, não foi

moleza.

38 A lógica quando apresentado com a linguagem ILA em português procedural aju-

dou no entendimento e depois isso virou uma tradução. Hoje em dia, a medida em

que o entendimento do inglês é aprofundado, facilita ainda mais o entendimento

de novos recursos e tecnologias.

39 Sintaxe, mas não relacionado ao inglês.

Continued on next page.

90

Continued from previous page.

Id Response

40 A principal dificuldade foi entender conceitos mais abstratos, especialmente em

programação orientada a objetos. Aprender programação antes de aprender inglês

trouxe dificuldade na hora de buscar auxílio na Internet, pois a maior parte da

documentação e fóruns da área está em inglês.

41 Algumas explicações disponíveis em livros eram excessivamente técnicas para

a minha idade (10 anos na época) – não haviam livros de programação “para

crianças”.

Para diversos conceitos, eram necessárias explicações por parte do meu pai, para

depois entender o que o livro queria dizer (o livro que eu tinha, felizmente, era em

português).

42 Na época achei difícil encontrar um material para iniciantes. Apesar de já saber

um pouco de inglês na época, não era muito proficiente. Pensando agora isso pode

ter dificuldado achar um material legal.

43 Ter aprendido inglês antes ajudou bastante.

44 Minha primeira experiência foi em uma disciplina da graduação, foi muito difícil

porque eu não entendia a lógica, a dinâmica da coisa. Eu não estava acostumada a

pensar dessa forma tão lógica e sequencial, e foi bem difícil no início, eu também

não entendia bem o funcionamento do computador, e tinha dificuldades com a

relação com o linux. Outra dificuldade foi entender que a dinâmica de programar

envolve aprender copiando e errando, na época eu não me sentia confortável com

isso, então acabava me frustrando muito.

45 Eu tinha praticamente nenhuma proficiência em inglês quando comecei com

programação, mas entender código estruturado foi fácil pois envolvida poucas

palavras como main, printf, e alguns mnemônicos estranhos como malloc. O que

eu diria que foi mais difícil foi compreender a abstração de memória por variáveis,

e com frequência eu confundia o nome da variável com o conteúdo da mesmo

(p.ex. “int idade;”)

46 Já sabia bem inglês quando comecei a aprender programação, mas, ainda assim,

no início tive dificuldades com termos técnicos e demorei pra absorver com natu-

ralidade o que cada comando significava dentro do programa.

Continued on next page.

91

Continued from previous page.

Id Response

47 A falta de um professor mais acessível em cursos online gratuitos ou de plataforma

é um grande obstáculo, nada se compara à faculdade, onde podemos conversar di-

retamente com os professores ou nossos colegas que provavelmente têm o mesmo

nível de saber nosso. Perguntas em fóruns não deixam de ser úteis, mas podem

dificultar um pouco o iniciante em programação, pois quem responderá não tem o

mínimo de noção do que a pessoa que perguntou já sabe ou não; não é dinâmico.

48 Não me lembrod e ter dificuldades

49 A dificuldade maior é fazer rodar os programas de primeira (porque sempre es-

queço alguma bobagem). Eu geralmente tenho muitas ideias, mas às vezes elas

são ambiciosas demais para a minha habilidade. Acho o uso de matrizes difícil

também.

50 Como eu já era fluente em inglês antes de programar, esse aspecto não trouxe

nenhuma dificuldade. A parte mais difícil do aprendizado de programação foi

lembrar as sintaxes específicas da linguagem de programação para expressar a

minha lógica.

51 Assimilar a lógica de programação, principalmente. Já sabia inglês antes de

começar a programar

52 Sim, aprendi a programar antes de aprender inglês, e o que aconteceu é que eu tive

que acabar aprendendo inglês, pelo menos o básico das instruções (for, if, else...).

53 Aprendi inglês antes de programar. Dificuldades maiores no início foram entender

os comandos, passar a lógica que montava na minha cabeça para a sintaxe da

linguagem

54 Sim, aprendi, mas não foi uma dificuldade. Trouxe benefícios, pois aprendi inglês.

55

56 A principal dificuldade foi o desenvolvimento da lógica de programação; e sim, eu

aprendi programação antes de aprender inglês de forma mais aprofundada, então

isso trouxe dificuldade quanto a intepretação do que eu estava programando; fazia

e entendia os comandos, mas não o contexto da aplicação.

57 Sim, trouxe dificuldade em relação aos termos em inglês , mas no Portugol foi

tranquilo a questão da língua

Continued on next page.

92

Continued from previous page.

Id Response

58 Não houve dificuldades.

60 Não tive muitos problemas em aprender programação. Se incluir “pensar logica-

mente”, em que cada passo, mesmo que mínimo, precisa ser especificado, poderia

ser um ponto de dificuldade.

61 dificuldade para estruturar o pensamento em linguagem de programação

62 Tive muitos problemas em entender como programas rodavam/compilavam, já

que, nas cadeiras introdutórias, a maior parte do conteúdo é apresentada fora do

contexto de plataformas UNIX. Além disso, tive dificuldades para aprender a or-

ganizar e a separar meu código em diversos arquivos fonte.

Source: The Author

93

Q21. O que você achou bom na ferramenta PanScript?

Id Response

2 Interface simples, a possibilidade de poder criar a própria versão da sintaxe inde-

pendente da língua

3 A clareza e a simplicidade. O site também é minimalista, o que é *excelente*, já

que não afoga o usuário com opções que ele pode nem entender.

4 Praticidade, e a ferramenta é bem intuitiva

5 A função de troca de idiomas; o uso de acentos gráficos no código

6 Achei simples e sem grandes problemas de uso.

7 Fácil de usar, com exemplos legais

8 Achei a interface e a linguagem de programação bastante simples e intuitivas.

9 Acho uma ótima iniciativa.

10 Interface bem feita e (aparentemente) sem nenhum erro grave

11 O propósito de ensino de programação em língua portuguesa é muito legal. Tam-

bém a interface é bem intuitiva e facilita o uso.

12 Fácil de usar, exemplos claros.

13 Simples e bem didática. Muito boa para quem irá iniciar os estudos de progra-

mação.

15 Simplicidade e vários exemplos inclusos.

16 Achei a sintaxe muito intuitiva. Passando rápido pelos exemplos deu pra escrever

o programa e rodar de primeira, sem erros (o que é raro...). Não tive a experiencia

de ter um erro pra saber o quão bom são as mensagens de erro.

17 Opções de comando totalmente em português, exemplos, ser totalmente web

(tenho um cunhado que está tendo que aprender para uma matéria da Faculdade,

mas a família da minha esposa é bem não tecnológica a ponto dele se quer con-

seguir instalar o Python no windows sem a minha ajuda)

18 Intuitiva e com exemplos fáceis. Apresenta o erro de forma clara permitindo ao

estudante identificar a linha em que se encontra o erro.

19 Entendimento da lógica

20 A ideia parece interessante, mas é difícil julgar se atinge o objetivo já tendo ex-

periência com programação.

Continued on next page.

94

Continued from previous page.

Id Response

21 O fato da interface ser bem simplificada e permitir programar em português. A

sintaxe não usa tantos caracteres, então é boa para o aprendizado de quem nunca

programou. Me lembrou bastante o VisualG.

22 Rapidez e suporta a português

23 Intuitiva e ambiente “limpo” (sem poluição visual na tela).

24 Facilidade de testar e ter exemplos com explicação

25 Achei uma ideia muito boa e bem executada. Tem muito potencial.

26 Facilidade e objetividade

27 Eu achei que a sintaxe é muito didática, eu certamente recomendaria para alunes

futuros. Tem aspectos muitos bons e simples na forma como a linguagem é apre-

sentada.

28 * Ela ser traduzida para o português

* Não focar em uma linguagem específica de programação mas no racional

* Ser bem intuitiva

29 Bem organizada.

30 Pareceu bem interessante

31 Interface

32 Simplicidade.

33 Bastante intuitiva e fácil de usar.

34 Simplicidade

35 Está acorde ao padrão de editores online

36 Interface simples e intuitiva, funcionamento no navegador (não requer instalação),

feedback rápido, possibilidades de customização

37 a proposta de programar em português, a disponibilidade de exemplos para ex-

plicar as diversas estruturas, os exemplos terem mais código que texto. a interface

simples, direta, eficiente e amigável.

38 Uma ótima ferramenta que pode apoiar muitas pessoas,

39 Interface, exemplos

40 Exemplos bem organizados, explicações apresentadas de forma clara e direta.

Continued on next page.

95

Continued from previous page.

Id Response

41 A quebra da barreira da língua

Já lecionei em turmas onde raros eram aqueles que já tinham algum conhecimento

prévio de inglês; algo simples como ‘if (num > 5) { printf("blah"); }‘ já es-

barra no “o que é num” e “o que é print” – até pq as pessoas associam “print” com

impressora

42 Achei bom que tem em português.

43 A facilidade no uso e na segmentação das paginas.

44 Eu gostei bastante dela. MAS, eu acho que ela é intuitiva para quem entende de

programação, para quem já está acostumado. Ela serve de apoio, mas necessita de

um professor/tutor para ajudar no início, eu não acho que ela serve para aprender

sozinho. Para aprender sozinho talvez só se tivesse um arquivo de texto auxiliar

que sugerisse atividades.

Mas eu super vou recomendar a ferramenta

45 A ideia em si é boa, está muito bem executada.

46 É uma ferramenta simples com tudo que é necessário para quem está começando

no mundo da programação. Extremamente intuitiva e a versão em português é

muito prática. Já trabalhei em uma oficina ensinando programação com portugol,

mas, para quem nunca desenvolveu nada e não está adaptado à uma IDE, essa

ferramenta é muito útil!

47 Presença de comandos em português; não ser necessário baixar nenhum programa.

48 Ter uma sintaxe em português, não ter complexidades desnecessárias, o que é

ótimo para quem está começando.

49 Design, intenção

50 Interface, opções de customização (língua e tema)

51 Sintaxe acessível, portabilidade para várias línguas, erros amigáveis, interpretação

rápida.

52 Gostei da ideia de ter uma ferramenta inicial para códigos simples, quase pseudo-

códigos.

53 A facilidade de usabilidade (poder rodar direto do navegador, sem ser necessária

nenhuma instalação) e os exemplos para guia

Continued on next page.

96

Continued from previous page.

Id Response

54 Interface, facilidade de uso, exemplos.

55 Linguagem legal, só apagar os resultados da execução quando eu quero, e ser on-

line (não precisar instalar nenhum programa, ou seja, poder programar em qual-

quer computador é um ponto legal).

56 Ela é simples e intuitiva.

57 Achei intuitiva, com exemplos claros, mas ainda tenho dificuldade em programar

58 Interface.

60 Achei interessante por poder tem algo em PT-BR. Eu achei que pode ser muito

valioso para ensinar para crianças do ensino fundamental sobre programação.

61 mais fácil de aprender a programar do que usando um compilador tradicional

62 O potencial de inclusão de novas linguagens e do futuro desenvolvimento open-

source dessa ferramenta. Desconheço o design empregado para a criação das

gramáticas da linguagem, mas imagino que seja possível distribuir de maneira

modular cada língua implementada.

Source: The Author

97

Q22. O que você mudaria na ferramenta PanScript?

Id Response

2 Exemplos menores e quebrados em mais arquivos

3 Quem sabe as mensagens de erro podiam ser um pouco mais básicas, quem sabe

até “kid friendly”. “Não pude encontrar o identificador de nome m no escopo

atual:” podia se tornar algo como “Não sei o que ’m’ é, tem certeza que ele foi

declarado?” ou algo assim. (quem sabe até checar “erros clássicos”, como tentar

chamar variáveis de outro escopo?)

4 Pessoalmente eu acho que é estranho usar acento ao programar, mas eu entendo o

motivo de estar assim

5 No escopo atual, acredito que está em ótima condição, portanto não mudaria nada

(além de funcionalidades adicionais como listas)

6 Nada

7 pelo que testei, não houve tradução automática de funções basicas da linguagem,

achei que se mudasse de ingles pra portugues a função usada “square_root” mu-

daria para “raiz_quadrada”, mantendo os demais nomes no sistema como estavam,

mas apenas carregou o outro arquivo do sistema pré-feito

8 Acho que nada.

9 Por um lado entendo que tenha a intenção de parecer uma IDE, mas poderia ser

mais fora da caixa.

10 Não usaria acentos nas funções por padrão,

ex: potência() -> potencia()

11 Só design. Achei meio quadrado demais.

12 Não consegui pensar em nada.

13 Não tive muito tempo para explorar a ferramenta e não sei se já tem essa possi-

bilidade mas acharia interessante adicionar em paralelo a linguagem orientada a

objetos.

15 Creio que já é um excelente produto mínimo viável e não necessite de mudanças

por ora. Mas seria interessante criar uma trilha de aprendizado que fosse aos

poucos substituindo o português pelo inglês para que a familiaridade com o idioma

aumente.

Continued on next page.

98

Continued from previous page.

Id Response

16 Adicionaria um exemplo com erros comuns :)

Além disso, como existe um mapeamento 1-1 das funcões em cada língua (foi o

que me parece ao menos) um incremento bem legal pro futuro seria um parser que

transforma de uma lingua pra outra. Aka tu escreve em portugues e pode enviar

o código em ingles e vice-versa. Claro que ainda tem o problema do nome das

variaives/conteúdo das strings, mas ainda assim parece interessante.

Um tipo nativo “tupla” seria bem interessante também :) pra poder retornar mul-

tiplas coisas ao mesmo tempo (eu tentei e não consegui ao menos)

17 Tiraria os acentos para quem está aprendendo já se acostumar e autocomplete de

comandos do comando que está sendo digitado

18 Acho que não mudaria nada.

19 Nada

20 Colocaria em algum lugar a linguagem por trás da ferramenta e talvez uma expli-

cação mais explícita de objetivos e o que fazer, talvez com uma tela inicial.

21 Não usei a ferramenta o suficiente para encontrar pontos nos quais eu faria mu-

danças.

22 Adicionaria suporte a contas de usuário para poder salvar meus códigos e acessá-

los de qualquer lugar.

Talvez poder gerar códigos em outras linguagens (ex: Python) a partir de um

código .pan.

23 Não mudaria e sim manteria. Apenas as linguagens português e inglês. O por-

tuguês para melhor entendimento de quem está começando a programar e não

conhece o idioma. O inglês por ser um idioma universal e quase todas as ferra-

mentas de programação são no idioma inglês.

24 Responsividade para diferentes resoluções

25 Adicionaria mais idiomas e exemplos mais amigáveis para crianças, talvez não

relacionados à matemática

26 copia e cola

usar variáveis em cálculos

Continued on next page.

99

Continued from previous page.

Id Response

27 Acho que precisaria mais exemplos de documentação, de como criar uma função,

de como fazer retorno de múltiplos valores, exemplos diferentes além de coisas

simples. Há limitações, como por exemplo, só se pode declarar funções antes de

começar o código por inteiro.

28 * Como é uma ferramenta direcionada para estudantes, minha maior dificuldade

era não ter a aplicação do que estava aprendendo. Minha sugestão seria criar

alguns exercícios de fixação finais com respostas já pré-definidas para que o es-

tudante aplique o que ele está aprendendo. Exemplo: ferramenta de R do Code

Academy (https://www.codecademy.com/learn/learn-r)

29 Estratégias modernas de ensino de programação utilizam a visualização e outras

metodologias lúdicas.

30 Talvez mais metodos gráficos para facilitar o entendimento

31 Evitar usar acentos em tipos de variáveis

32 Tiraria as palavras reservadas com acento.

Ex: número

33 Alteraria o local onde está o botão de temas, já que ele altera o tema de onde você

escreve o código, desta forma, estão em lados opostos.

34 Organização e tamanho dos arquivos de exemplo

35 Eu gostaria da sintaxis ser em inglês mesmo, por que até são poucas palavras

reservadas por linguaguem.

O que se seria um diferencial seria ter a documentação ao dar e.g. ctrl + enter

(no idioma que a pessoa escolheu) isso para aumentar a produtividade do progra-

mador.

36 Melhorias na interface, possibilidade de instalar localmente para uso offline

37 As mensagens de erro eu destacaria em outras cores. Eu evitaria usar acentuação

gráfica na sintaxe das palavras-

38 Facilidade para entendimento de lógica

Continued on next page.

100

Continued from previous page.

Id Response

39 Alguns nomes ficaram compridos, por exemplo “verdadeiro”. Não sei se mudaria,

mas talvez valha analisar se tem opções mais curtas. Também não sei se isso será

um problema para quem está recém aprendendo.

Permitir várias declarações de variáveis com o mesmo tipo. Ex: “número a = 2, b

= 3”

40 Uma sugestão seria não utilizar acentuação em elementos da linguagem, como

por exemplo em “lógico” ou “número”. Entendo que faz parte do idioma que

escolhi (Português) e pode ser apenas um viés meu devido a experiência com

outras linguagens, mas é algo que poderia ser avaliado com mais pessoas.

41 a regra

variable_attribution: TOK_TYPE TOK_NAME ‘=‘ TOK_LITERAL

em português, pra mim, soa estranho ‘texto algo = "valor"‘

Também acho que pode causar um pouco de frustração para os alunos iniciantes

– “pq tenho que dizer que é texto? pq o computador não sabe que é texto se estou

dando um texto como valor” – já vi isso em aula.

Talvez eu utilizaria algo go-like (‘variavel := literal‘ , ou explicitamente

‘variavel : tipo = literal‘)

Algo que poderia ser avaliado em uma pesquisa com alunos aprendendo progra-

mação, qual seria mais simples ;)

42 1. gostaria de uma documentação mais textual mesmo. Enquanto fazia o exercício

da bhaskara achei chato ter que procurar as funções que precisava (raiz_quadrada

etc) através de exemplos. Os exemplos são fundamentais e importantes, não estou

sugerindo tirá-los ok

2. eu particularmente gosto de ter acesso às ferramentas por meios que não sejam

o navegador. Mas acho que nesse contexto de ensino de gente mais nova o que faz

mais sentido é ter acesso em um navegador mesmo, aí não precisa instalar nada

nos PCs das escolas e tal.

43 Achei genial a ideia, nunca tinha visto nada do tipo. Com certeza vai ajudar quem

está no processo de aprendizagem e não domina o ingles.

Continued on next page.

101

Continued from previous page.

Id Response

44 Acho que uma sistema de busca, para achar as funções, e mensagens de erro mais

didáticas. Por exemplo, coloque na mensagem de erro coisas como “A variável tal

não foi achada, você lembrou de definir ela? o nome dela é o mesmo em todas as

linhas?”

“Algo de errado não está certo, verifique a sintaxe do seu texto”.

Algo que ensine as pessoas a como fazer o debug.

45 Eu talvez colocaria algum mecanismo para clicar na saída do “console” e apontar

qual linha do código fonte gerou tal saída. Além disso, não encontrei nenhum tipo

de função para fazer leitura pelo terminal.

46 No meu computador a tela inteira ocupou mais espaço pros lados, o que fez com

que, toda vez que queria ver a saída inteira, eu tivesse que mover pro lado (seria

legal, talvez, tornar as caixas de escrita e saída redimensionáveis). A caixa da

saída corta a linha (ás vezes, no meio das palavras) e, entendo que fica melhor de

vizualizar, mas pode ser que a pessoa ache que tem algo pulando uma linha. Por

fim, acredito que seja um vício meu já, mas, se tivesse uma opção para escrever

os comandos sem acento ou cedilha, eu usaria haha

47 Além dos arquivos de exemplo, incluiria uma página de documentação com mais

detalhamento sobre os aspectos da linguagem, a medida que o estudante evoluísse

isso se tornaria necessário.

48 não colocaria acentos nas palavras reservadas, talvez algumas seriam abreviações

ao invés da palavra inteira

49 Linguagem de programação é meio péssima porque você não sabe direito qual vai

ser, explicitem que é para ensinar lógica de programação e não a programar.

50 Remover acentos do código (número -> num ou algum outro nome sem acento)

51 Inserção de alguma funcionalidade de entrada de dados por parte do usuário, para

possibilitar pequenos programas interativos

52 Fiquei com dúvida em relação à acentuação, entendo que o objetivo seja utilizar a

língua portuguesa, mas será que é necessário mesmo? Ex: número. T

53 Nada me vem a cabeça no momento

54 Talvez incluir algum sistema de ajuda, um fórum de debates ou de dúvidas.

Continued on next page.

102

Continued from previous page.

Id Response

55 Deixar o usuário mexer em quanto da tela é ocupada pelo terminal e também

deixar recolher o navegador de arquivos. O terminal também poderia seguir a cor

do tema. Não encontrei uma forma de criar um novo arquivo para conseguir editar

dois ao mesmo tempo, se ainda não for possível, acharia interessante fazer.

56 Poder armazenar os resultados de operações matemáticas diretamente em var-

iáveis.

57 Esta muito bom o design, manteria assim.

58 O botão “executar” deveria ser mais chamativo (destacá-lo mais).

60 Por enquanto, não mudaria nada. Pela pesquisa e como ela foi conduzida, tudo

fluiu super bem.

61 -

62 Eu alteraria o atual syntax highlighting para utilizar tree-sitter (ficando, assim,

mais bonito).

Source: The Author

103

Q23. Descreva quaisquer problemas que você tenha encontrado usando o PanScript:

Id Response

2 Nenhum problema

3 Nenhum!

4

5 A limitação da minha inteligência

6 Não tive

7 O site podia se limitar ao tamanho da tela, acho que poderia deixar como opção

minimizar a parte dos exemplos, porque a tela ficou “maior” que a minha e apare-

ceu um scroll horizontal.

8 Às vezes o idioma do código de exemplo não muda quando eu troco no dropdown,

daí fica invertido: aparece selecionado Português, mas o idioma do código está em

inglês.

No meu computador (notebook) a interface está um pouco mais larga que a largura

da janela, daí aparece uma barra de rolagem horizontal.

(Estou usando Google Chrome 93.0.4577.82 no Ubuntu 20.04.3)

No exemplo do condicional “Se”, ele não faz nada se o resultado for 3. Não sei se

era essa a intenção, mas se for, acho que deveria ter um comentário explicando.

9 Nenhum

10 Ao abrir um exemplo, pode-se utilizar o “desfazer” e apagar o exemplo

11 Ao executar a função desenvolvida no exercício anterior demorou um pouco para

haver retorno. No caso eu usei “potência(x)”, invés de “potência(x,n)’, talvez isso

tenha causado isso. Além disso, acho esquecer do “n” na função deveria subir um

erro, invês de mostrar “NaN”.

12 No exemplo de constantes o código não roda. Aparece a seguinte mensagem:

Erro na linha 19:

Não posso alterar o valor de nome porque foi declarado como

"constante":

nome = "Pedro" // comente esta linha para corrigir o erro

ˆˆˆˆ

13

15 Nenhum problema.

Continued on next page.

104

Continued from previous page.

Id Response

16 Por algum motivo quando eu foi fazer ‘escreva("x1: ", para_texto(x1))‘ no

meu código eu usei uma vírgula ao invés da concatenação (+) (tentei fazer como

faria mais “naturalmente”). Isso não gerou nenhum erro, só printou “x1: ” na

tela :) depois percebi que tinha que trocar a vírgula por um +. não entendi qual a

utilidade do segundo parametro do escreva (ou terceiro etc)

17 Falta de habituação com linguagem mais fortemente tipada (estou acostumado

com Python)

18 Não encontrei nenhum problema

19

20 Tive a impressão que algumas vezes o texto do código não se adequava à lin-

guagem selecionada (os comentários iniciais apareciam em inglês estando a lin-

guagem em português). Não sei dizer se é algum bugzinho, mas aconteceu comigo

clicando aleatoriamente nos arquivos e na linguagem.

21 Não encontrei problemas.

22 Nenhum

23 Ao realizar testes, o erro que retorna não corresponde a linha do erro. Ex: alterada

a linha 11, o erro apresentado mostra a linha 20.

24

25

26

27 Problema ao ver exemplos mais complexos, como funções funcionam, tiver que

ver a parte 6 e não teve essa instrução.

28 Não encontrei nenhum

29 Nenhum.

30

31

32

33

34

Continued on next page.

105

Continued from previous page.

Id Response

35 escrevi “numero” ao invés de “número”, então o tipos de dados são muito depen-

dentes da gramatica.

escrevi “escrever” ao invés de “escreva” mas para mim faz sentido escrever ao

invés de escreva.

36 Não funcionou no primeiro navegador onde tentei (Safari), acabei usando no

Chrome

37 não tive problemas

38

39 Acento. Primeira vez escrevi “numero”. Possivelmente por costume de programar

em inglês.

40

41

42 Senti falta de uma documentação mais textual, tipo como tem na documentação

de python.

43

44 Eu não achei a sintaxe para multiplicação e divisão, eu fiz por que imaginei que

fosse o padrão.

45 A versão em português da ferramenta acaba tendo uns nomes mais longos. Além

disso, trocar de idioma enquanto escreve código faz PanScript apagar o conteúdo

do arquivo “Principal” sem ao menos avisar o usuário.

46 Não entendi só porque quando clico em “Desfazer”, estando em algum dos exem-

plos, ele apaga tudo, sendo que não foi uma alteração feita por mim. Não que seja

ruim desse jeito, mas achei que essa ação fosse apenas para mudanças feitas pelo

programador.

47 O código não fica salvo online quando o editamos, é preciso salvá-lo na nossa

máquina, caso contrário, ele será perdido quando executarmos um outro código.

48

49

50 Nenhum

51 Nenhum problema

Continued on next page.

106

Continued from previous page.

Id Response

52

53

54 nenhum

55 O layout ficou muito grande para a minha tela, não dava para ver que o botão

vermelho era para limpar sem rolar a barra horizontal.

56 Não sei se porque a recomendação do exercício era para utilizar apenas o “escreva”

e o “raiz quadrada”, mas foi frustrante ter que escrever tantas linhas de código para

chegar a uma resposta de um problema tão simples, como de resolução de equação

de segundo grau.

57 Não consegui calcular a formula de bhascara, mas devo ter errado em algum mo-

mento

58

60 Nenhum problema encontrado.

61 -

62 Nenhum.

Source: The Author

107

Q24. Você sentiu falta de alguma funcionalidade na ferramenta? Qual(is)?

Id Response

2 Não

3 Tentei declarar variáveis na mesma linha e não consegui:

número a = 3, b = 5, c = 4

4

5 Uso de listas

6 Para aprendizado, referências visuais são importantes. A possibilidade de desen-

har ou de ver coisas mais parecidas com o que entendemos como um software é

um estímulo importante.

7

8 Entrada de texto;

Estruturas de dados: listas, vetores.

9 Quick search

10

11 Não senti falta.

12 Talvez uma explicação da parte conceitual junto dos exemplos. Eu já sei pro-

gramar, então as coisas fazem sentido só de bater o olho, mas talvez alguém que

nunca tenha contato com programação encontre dificuldade. Por exemplo, por

que para imprimir uma variável do tipo número com um texto eu preciso utilizar

a função “para_texto”, ou por que texto ficam entre “ ” e números não.

13

15 Não

16 Tuplas !

17 Para aprendizado inicial está excelente, pensando em algo além do inicial talvez

fosse interessante a possibilidade de importar funções que o próprio usuário crie

em outros arquivos para que o aluno seja capaz de aprender questões de organiza-

ção de código também. Pensando na possibilidade de fazer contas, creio que seja

interessante a opção de manipulação de arrays e matrizes

18

19

20 Não, mas acredito que o público alvo possa dizer melhor.

Continued on next page.

108

Continued from previous page.

Id Response

21 Acredito que seria muito válido acrescentar uma funcionalidade de depuração.

Aprender a usar um depurador é elemental para quem está começando.

22 Autocomplete

23 Não

24

25

26

27 Acho que se tivesse uma wiki além dos códigos exemplos, seria uma ótima opção.

Acho que a linguagem tem tudo para expandir.

28 Exercícios de fixação.

29 operador ternário de comparação

x=(x==1?2:1)

30

31

32

33

34

35 texto está_estudando = verdadeiro

Erro na linha 20:

Esperava que o tipo de verdadeiro fosse texto, mas era lógico:

texto está_estudando = verdadeiro

-----------------------ˆˆˆˆˆˆˆˆˆˆ

36 Funcionalidades encontradas em editores de código (indentação automática,

fechamento automático de parênteses, sugestões ao digitar, etc)

37 Debug. Execução passo a passo, linha a linha. Pra quem está aprendendo é muito

útil também.

38 Ensino a lógica com conceitos visuais

39 Permitir várias declarações de variáveis com o mesmo tipo. Ex: “número a = 2,

b = 3”

40

Continued on next page.

109

Continued from previous page.

Id Response

41 Para introdução aos conceitos de programação, não senti falta de nada.

Para avançar em alguns tópicos, daí senti falta de tipos estruturados e vetores

42 função que cálcula as soluções de polinômio de segundo grau. Brincs

43

44

45 É um recurso valioso para quem está iniciando em programação, mas poderia in-

cluir alguns recursos como “autocompletar” com uma ajuda embutida em pop-up,

por exemplo. Ainda assim, da minha experiência, esse tipo de recurso mais prej-

udica que ajuda o aprendizado de iniciantes de programação, então a abordagem

com exemplos é mais adequada.

46 Uma coisa que senti foi que, ao fazer upload de um arquivo do meu computador,

ele modificou o programa do exemplo onde eu estava, talvez fosse interessante,

nesses casos, criar um novo arquivo em “Seus arquivos”.

47

48

49

50 Interação com “usuário” (e.g. text input)

51 - Inserção de alguma funcionalidade de entrada de dados por parte do usuário,

para possibilitar pequenos programas interativos

- Alguma função inspirada em linguagens funcionais, para servir como um “extra”

no aprendizado para aqueles que quisessem algo mais avançado

52

53 Poder “apagar” o histórico do console (as vezes pode confundir, principalmente

quando troca de script)

54 manipular arquivos. Tipos definidos pelo usuário, como enumerações e estruturas

(ao menos).

55

Continued on next page.

110

Continued from previous page.

Id Response

56 Bem como disse, foi orientado a utilizar apenas as funções “escreva” e “ raiz

quadrada”, mas o que mais me incomodou foi não poder alocar os resultados das

operações diretamente em uma variável. Ademais, quando eu tentava inserir mais

operações matemática na função escreva gerava um erro, tive que escrever em

duas linhas uma função simples. O Python é uma linguagem tão simples quanto a

proposta, e este permite uma otimização destes elementos em IDES tão intuitivos

quanto esta, a única diferença é estar em português, mas também já há IDES que

aceitam a programação em português.

57

58

60 Talvez um autocomplete seria interessante, ou pelo menos limitar autocomplete

para recursos como funções e tipos nativos. Reescrever os nomes de variáveis e

funções pode ser um bom exercício para o aluno entender que dar bons nomes é

relevante durante o desenvolvimento de programas.

61 talvez seria bom ver o que os metodos esperam (tipo um control P pra ver os

parametros)

62 Eu adicionaria uma interface de linha de comando para a linguagem (ou a tornaria

explícita).

Source: The Author

111

Q25. Este espaço é livre para você fazer comentários adicionais:

Id Response

2

3 Excelente trabalho, parabéns!!!!!!!!!!!!!!!!!!!!!!!!!!!!

4

5 Eu achei muito TOP!

6

7 Muito legal! Parabéns!

8

9 Já quero saber como seriam classes.

10 Bom trabalho :)

11 Parabéns pelo projeto.

12

13

15

16 Parabéns pelo trabalho Daniel, ficou muito legal :)

17 Está realmente muito bom. Eu consegui navegar bem e entender o que precisava.

Porém talvez a minha crítica esteja enviesada por já saber programar e estar ha-

bituado a linguagens diferentes e gostar de fuçar as coisas. Por conta disso, acon-

selharia a testar a ferramenta com alunos que precisam aprender programação,

mas que não são de cursos relativos. Testar em alunos de graduação de Física,

Matemática, Ensino Médio e Fundamental, (quem sabe até Letras rs) etc.

18 Achei a ferramenta muito boa para iniciantes em programação, permitindo desen-

volver a lógica que é o mais importante. Depois é só traduzir os comando para a

sintaxe de qualquer linguagem de programação que se quer aprender.

19 Não entendi se ao escrever na lingua materna, o compilador conseguiria traduzir...

Mas a questão é que o aprendizado de uma linguagem de programação é voltado

a resolver problemas em um domínio específico. Não vejo com bons olhos uma

linguagem que seria apenas conceitual e não adequada para usar em produção.

20

Continued on next page.

112

Continued from previous page.

Id Response

21 Embora a proposta principal da ferramenta seja propiciar o aprendizado de não

falantes de inglês, acredito que o público-alvo da ferramenta poderia ser esten-

dido para crianças ou adolescentes que possam ter interesse em programar, mas

se sentem impedidos pela dificuldade de instalar programas ou outros motivos.

Ter contato com programação desde cedo certamente é crucial para desenvolver

as habilidades de desenvolvedor para o resto da vida, além de que geralmente este

tipo de estímulo promove um aumento no desempenho escolar. Fica a dica.

22

23

24

25

26

27 Eu queria que nós trocássemos uma ideia, pois achei muito legal o projeto e um

TCC útil e com ação educacional.

28 Ótimo trabalho, Dani! Espero que teu TCC bombe demais!

29 Apenas para apontar que existem linguagens que não tem idiomas em sua sintaxe:

J (<https://www.jsoftware.com/>), retina (<https://github.com/m-ender/retina/

wiki/The-Language>), Jelly (<https://github.com/cairdcoinheringaahing/

jellylanguage>)

30

31

32

33

34

35 Parabéns pelo seu trabalho.

36 Parabéns à(s) pessoa(s) que desenvolveram a ferramenta.

Continued on next page.

https://www.jsoftware.com/
https://github.com/m-ender/retina/wiki/The-Language
https://github.com/m-ender/retina/wiki/The-Language
https://github.com/cairdcoinheringaahing/jellylanguage
https://github.com/cairdcoinheringaahing/jellylanguage

113

Continued from previous page.

Id Response

37 fico me perguntando porque eu apresentaria para os meus alunos mais uma ferra-

menta. Não tenho uma resposta clara. Já experimentei dar aula com portugol, e

a reclamação mais recorrente (e também a mais cruel) é que foi um tempo inútil.

Argumentam que apanharam igual pra compreender a lógica, mas diziam que após

todo esse “sofrimento” não poderiam usar a linguagem útil.

Bom seria se o sistema contasse com uma traduçaõ direta do código para outras

linguagens mais badaladas.

38 Embora exista melhorias a ferramenta é uma ótima iniciativa e já quero compar-

tilhar para todos que podem aprender

39 Sucesso! :)

40 Parabéns pelo trabalho! Proposta bem interessante e foi interessante utilizar a

ferramenta desenvolvida.

41

42 Gostei bastante e achei potencialmente útil!

43

44

45

46 Amei o TCC e tenho interesse de usar futuramente em oficinas para estudantes do

ensino médio e básico, se for possível! Parabéns pelo trabalho!

47

48

49

50

51 Gostei muito do projeto, acredito que poderia ser largamente utilizado no ensino

de programação básica, inclusive introduzido no ensino público para fomentar

mais profissionais nessa área.

52 Eu realmente achei interessante a ferramenta. Eu vou começar a lecionar a disci-

plina de programação para adolescentes e talvez esse seja um ótimo público alvo

do PanScript. Parabéns pela pesquisa!

Continued on next page.

114

Continued from previous page.

Id Response

53 Achei a iniciativa muito boa e que pode auxiliar muitos estudantes no início da

vida de programação! Parabéns! :)

54 ótima iniciativa.

55

56

57

58

60 Gostei muito. Achei uma boa ferramenta de aprendizado inicial.

61 bacana, gostei da ideia, acho que pode ajudar estudantes aprendendo pois permite

abstrair a parte do compilador, .c , .h, etc

62

Source: The Author

	Contents
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Abstract
	Abstract
	1 Introduction
	2 Basic Concepts
	2.1 Programming languages
	2.2 Software development
	2.3 Code execution

	3 Related Work
	3.1 Localized programming languages
	3.2 Novice programming environments
	3.3 Comparisons between related work and PanScript

	4 The PanScript Platform
	4.1 Solution design
	4.1.1 Target demographics
	4.1.2 Main objectives
	4.1.3 Architecture and user interface
	4.1.4 Programming language and dialects

	4.2 Implementation
	4.2.1 Technology stack
	4.2.2 Code structure and reusability
	4.2.3 Canonical grammar

	5 Evaluation Methodology
	5.1 Self-evaluation
	5.2 Online survey

	6 Results Obtained
	6.1 Self-evaluation results
	6.2 Online survey results
	6.2.1 Questions about the participants
	6.2.2 Multiple-choice questions about PanScript
	6.2.3 Open-ended questions

	7 Conclusion and Future Work
	References
	Appendix A — PanScript's Technical Backlog
	Appendix B — The PanScript Standard Library
	Appendix C — The PanScript canonical grammars
	Appendix D — Responses to the open-ended questions of PanScript's online survey (in Brazilian Portuguese)

